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A B S T R A C T   

The recent advance of digital twin (DT) has greatly facilitated the development of predictive maintenance (PdM). 
DT for PdM enables accurate equipment status recognition and proactive fault prediction, enhancing reliability. 
This shift from reactive to proactive services optimizes maintenance schedules, minimizes downtime, and im
proves enterprise profitability and competitiveness. However, the research and application of DT for PdM are still 
in their infancy, probably because the role and function of machine learning (ML) in DT for PdM have not yet 
been fully investigated by the industry and academia. This paper focuses on a systematic review of the role of ML 
in DT for PdM and identifies, evaluates and analyses a clear and systematic approach to the published literature 
relevant to DT and PdM. Subsequently, the state-of-the-art applications of ML in various application areas of DT 
for PdM are introduced. Finally, the challenges and opportunities of ML for DT-PdM are revealed and discussed. 
The outcome of this paper can bring tangible benefits to the research and implementation of ML in DT-PdM.   

1. Introduction 

The digital twin (DT) consists primarily of a physical entity, a digital 
copy, and a connection, to leverage virtual analytics to enhance the 
performance of the physical entity [1,2]. The concept of the DT emerged 
from NASA’s Apollo program, integrating information and data from 
cyberspace and physical space [3]. The concept of DT was initially 
proposed by Michael Grieves and has since then become a widely used 
term [4]. Companies have applied various models to their systems en
gineering output, incorporating physical and mathematical models. In 
2012, NASA conceptualized DT as "the integration of a multidisci
plinary, multi-scale simulation process that makes full use of physical 
models, sensors, operational history, and other data, which serves as a 
mirror image of the physical product in virtual space and reflects the full 
life-cycle process of the corresponding physical entity product" [5]. 
However, the implementation of intelligent manufacturing based on DT 
is still in its infancy, as far as the concept, characteristics and general 
framework of DT are concerned [6]. DT is now widely researched in 
product lifecycle management. In particular, publications on DT for 
predictive maintenance (PdM) have gained a lot of attention in recent 

years. The DT application adopts a proactive approach to equipment 
management services by integrating real-time equipment sensor data 
such as temperature and vibration with environmental data, to update 
the DT model and prevent unplanned downtime. Therefore, the research 
on the current state of DT-PdM is crucial, which allows for precise 
equipment status validation, early fault detection, and ultimately con
tributes to enhanced stability and reduced costs for organizations. 

PdM techniques are utilized to assess the condition of equipment in 
operation, thereby predicting when maintenance will be required. This 
approach not only saves costs compared to routine or regular preventive 
maintenance but also enhances operational efficiency [7,8]. As per a 
report by IoT analytics in Hamburg, Germany, the PdM market is pres
ently valued at $6.9 billion and is projected to reach $28.2 billion by 
2026. There are currently over 280 PdM solution providers in the 
market, which is expected to grow to over 500 by 2026. The ultimate 
goal of PdM is to enable condition-based maintenance by utilizing 
real-time or near-real-time data transmission and relevant modeling 
techniques to improve a company’s operational reliability and facilitate 
continuous improvement [9–11]. As per a report by IoT analytics in 
Hamburg, Germany, the PdM market is presently valued at $6.9 billion 
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and is projected to reach $28.2 billion by 2026. There are currently over 
280 PdM solution providers in the market, which is expected to grow to 
over 500 by 2026. DT-PdM is an essential technology for fault diagnosis, 
remaining useful life (RUL) prediction, and health indicator (HI) con
struction. It has been applied in diverse domains such as computer nu
merical control (CNC) machine tools, bearing, and gearbox, utilizing 
multi-source datasets to construct virtual models for optimization of 
PdM applications. Data-driven models currently require the collection of 
large amounts of multi-source data and the construction of models from 
a variety of sources including internet of things (IoT) data, environ
mental data, operational data, simulation data, and control data 
[12–19]. Physics-based models are also an important modeling 
approach, such as finite element analysis (FEA) to construct DT models 
from components [20]. DT, as a new technology that takes advantage of 
both a physics-based approach and a data-driven approach, has gained 
increasing attention in PdM [9,21–23]. Fig. 1 illustrates a line graph 
showing the number of papers published on ML-PdM and DT-PdM 
indexed by Google Scholar from 2001 to 2022. It can be seen that 
both ML-PdM and DT-PdM have undergone rapid growth in recent 
years. ML-PdM has consistently had more publications than DT-PdM 
each year, while DT-PdM witnessed moderate growth. The current 
implementations of DT-PdM face challenges in building high-fidelity 
models and deploying them in the industry. One of the main reasons 
is that it is hard to integrate, analyze and model the multi-modal data 
and derive the information and knowledge for DT. Machine learning 
(ML), as the key technology in advanced data analytics, plays a critical 
role in DT-PdM. Therefore, it is worthwhile to collect review and analyze 
the recently published papers to identify the role and function of ML in 
DT-PdM. 

ML is an essential technology to facilitate the development of DT- 
PdM [24]. It has been used in many fields such as manufacturing and 
aerospace [25,26]. With the development of sensor technology, data is 
collected, stored, and applied in a data-driven PdM. In addition, data 
combined with physical information is also becoming an effective 
modeling approach. ML uses valid data to reveal hidden knowledge and 
build complex correlations to improve model accuracy and help make 
decisions on problems [27]. In the context of industry 4.0, the topic of 
DT-PdM has received continued attention but still in its infancy. 
Therefore, many researchers have studied ML techniques to facilitate the 
development of DT-PdM, such as fault diagnosis and RUL prediction in 
virtual spaces [28,29]. However, existing review articles relevant to 
DT-PdM mainly focus on analyzing the application scenarios of DT-PdM, 

categorizing DT models, or researching specific components. There is 
still a lack of exploration of the role and function of ML [5,30,31]. 
Therefore, the main contributions of this paper are: (1) a framework for 
DT-PdM with ML techniques is proposed; (2) the role and function of ML 
in DT-PdM are identified through the critical review of relevant papers 
published in the last five years; (3) the research challenges and future 
opportunities to address implementation issues and proposing solutions 
in high-fidelity digital model construction, data fusion, physics 
informed-machine learning and cloud-edge collaboration when imple
menting DT-PdM are discussed. The rest of the paper is organized as 
followed: Section 2 introduces the state-of-the-art DT and PdM, 
including an introduction to DT and PdM respectively. Section 3 details 
the methodology of collecting review papers, and Section 4 introduces 
the role and function of ML in DT-PdM, as well as explaining the 
contribution of DT techniques in establishing applications. The oppor
tunities are discovered and clarified in Section 5 and Section 6 
concludes. 

2. The state-of-the-art of digital twin and predictive 
maintenance 

2.1. Digital twin in manufacturing 

According to recent reports, the spending on DT has already reached 
$4.6 billion in 2022 and is expected to grow to around $34 billion in 
2030. This includes various technologies such as computer-aided design 
(CAD) modeling, connectivity, cloud computing, industrial internet of 
things (IIoT) software platforms, remote monitoring, shop-floor worker 
hardware, physics-based simulation, ML, and systems integration, 
among others, all of which contribute significantly to the development 
of DT [32–38]. Essentially, the DT consists of three main components: 
the physical product in physical space, the virtual product in virtual 
space, and the interface for data and information interaction between 
physical and virtual space [5]. In essence, the DT is a reverse engi
neering feat in which everything that happens in the physical world is 
replicated in the digital space. A true full life cycle concept is realized 
through continuous tracking and feedback. The DT has several key 
features, including: (1) DT allows the collaboration and communication 
between physical entities and digital avatars [39]; (2) DT can generate 
insights and predictions about the behavior and performance of the 
physical asset; (3) The presence of DT allowing manufacturers to test 
and optimize their operations virtually before implementing changes in 
the real world; (4) DT can be continuously improved by collecting data, 
analyzing performance, and providing feedback for optimization. 

DT are virtual models of physical entities that can be used to simulate 
their behavior and predict their performance. The development of 
technologies such as IoT, big data, and edge computing have paved the 
way for the development of DT modeling in the manufacturing industry. 
It can help optimize production processes, reduce downtime, and 
improve product quality by identifying and addressing issues before 
they occur. The origins and development of DT are deeply rooted in the 
industrial sector, initially to ensure reliable and stable equipment for the 
US Air Force, and later to improve efficiency in product design, devel
opment, and testing across various stages of the product lifecycle. 
Intelligent scheduling is an essential aspect of technology in the work
shop. However, traditional algorithmic models, such as Markov models, 
may not always guarantee long-term stability and accuracy in workshop 
scheduling due to the presence of large coupling factors. Therefore, the 
use of DT technology, which combines real and virtual interactions to 
automatically optimize algorithms, can enhance production planning 
and scheduling, and reduce the impact of production downtime on site. 

In recent times, the commercial landscape of DT in manufacturing 
has greatly improved, with companies pushing the boundaries of its 
application. An excellent embodiment of this shift is the foray into the 
"industrial metaverse". The cutting-edge technology companies such as 
Siemens has launched its take on the industrial metaverse. Their 

Fig. 1. Trends in ML-PdM and DT-PdM development: a Google Scholar publi
cation analysis. 
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approach to the DT goes beyond mere mimicry of physical assets in a 
digital environment. Siemens’ platform brings together the twin’s rep
resentation with data analytics, artificial intelligence, and automation in 
a dynamic ecosystem. The ecosystem promotes collaborative design and 
operations, with real-time updates and integrations, which can promote 
the evolution of tools tailored for diverse manufacturing needs [40]. In 
recent years, Nvidia also has focused on the industrial metaverse. Nvi
dia’s Omniverse platform—a collaborative and physically accurate 
simulation environment This platform allows manufacturers to visualize 
intricate processes and scenarios in high fidelity, ensuring that even the 
minutest of details can be reviewed and refined. Furthermore, Nvidia’s 
prowess in AI plays a crucial role in analyzing data within this meta
verse, driving predictive insights and performance optimizations [41]. 
The collaboration between Nvidia and Siemens in establishing an in
dustrial metaverse represents a pivotal moment in the DT journey. It’s 
not just about replicating the physical in the digital realm anymore. It’s 
about building a comprehensive, interconnected, and intelligent virtual 
environment that can grow, adapt, and innovate alongside its physical 
counterpart. 

In addition, DT technology has found its application in diverse in
dustries such as machinery, logistics, the energy industry, weaponry, 
and others [5]. For instance, Rauscher et al. developed a DT-based 
simulation tool to minimize the duration of reactor downtime at the 
plant, which improves the quality and consistency of the input data and 
enables credible information to be derived from the simulation results to 
support the design and decision-making process [42]. Wu et al. [43] 
proposed an architecture of service platform for cold chain logistics 
using Internet of Everything and DT. Hu [44] proposed a mutual 
information-enhanced DT approach to promote the performance of 
vision-guided robotic grasping. CNC machine tools currently tend to 
affect production due to accuracy. Researchers have investigated DT for 
the condition monitoring of machine tools [45,46]. Building upon the 
versatility of DT, another significant application is PdM. PdM, backed by 
numerous academic studies, has become a sought-after approach in 
prognostic and health management [47–49], with many organizations 
embracing it for notable cost savings and efficiency enhancements. 

2.2. Cutting-edge applications of predictive maintenance 

PdM techniques are utilized to assess the condition of equipment in 
operation, thereby predicting when maintenance will be required. This 
approach not only saves costs compared to routine or regular preventive 
maintenance but also enhances operational efficiency [7,8]. The ulti
mate goal of PdM is to enable condition-based maintenance by utilizing 
real-time or near-real-time data transmission and relevant modeling 
techniques to improve a company’s operational reliability and facilitate 
continuous improvement [9–11]. Currently, there are three primary 
PdM solutions: data-driven modeling, physical-based modeling, and 
hybrid modeling which combine both data-driven and physical-based 
methods. Data-driven modeling involves using multidimensional, large 
amounts of data gathered by sensors for research, exploration, and 
mining, along with domain knowledge to build models for PdM of 
equipment. Physical-based modeling is the study of the laws of motion of 
matter, combined with a variety of factors, and possibly the use of hy
potheses and other methods to explore the laws and knowledge of PdM 
of equipment through simulation. In addition, the hybridization of 
data-driven and physical-based methods is an important approach to 
PdM, where data-driven models and physical models are combined to 
form hybrid models and make predictions. Further details are provided 
in the next section. Deep learning is the latest advanced technique in ML. 
Besides Deep learning, the classical ML algorithms also have been 
instrumental in the advancements of DT-PdM [3]. However, their ap
plications and efficacies vary based on specific tasks and the data type 
[50]. The classical ML algorithms are efficient for datasets of moderate 
size. Classical ML algorithms like decision trees, support vector ma
chines, or clustering techniques can be effective when the data structure 

is less intricate [51]. When deploying classical ML algorithms, feature 
engineering is needed. In contrast, deep learning algorithms require 
substantial amounts of data and large computational resources to train 
effectively. Deep learning can be effective in extracting features from 
complex internal structures like images, text, or high-dimensional sensor 
data without complex feature engineering [52]. The development of ML 
techniques has facilitated the data-driven method for PdM [53]. This 
approach has shown promising results in fault diagnosis and RUL pre
diction. For instance, Yu et al. employed a non-linear approach to 
degrade the intrinsic signal components and identified the dynamic 
matrix of different gear faults through the transfer function of gearbox 
vibrations under non-stationary conditions [54]. Chen et al. introduced 
the gcforest algorithm to PdM and built predictive models, which were 
implemented successfully [55]. Jamil et al. proposed a transfer learning 
model that extracts useful information from small training samples for 
similar working conditions and models, achieving high model accuracy 
in diverse environments [56]. Zuo et al. developed a probabilistic spike 
response model to facilitate multilayer network learning and improve 
the performance of the model for bearing fault diagnosis [57]. Among 
numerous studies of data-driven PdM, deep learning has gained 
increasing attention in recent years since it can automatically extract the 
key features relevant to the health status of assets. 

Although data-driven PdM is the focus of current research and 
relatively easy to collect input information, physical modeling cannot be 
ignored to aid the development of PdM. The physics-based approach 
primarily employs physical principles to explore, summarize, and 
emulate the operation of a system [58]. Physical model-based PdM is 
also a crucial method, such as finite element methods, which use 
mathematical relationships to explore potential relationships [9,59]. 
Finite element models and Monte Carlo methods are utilized to reduce 
the uncertainty in life prediction and build life prediction models for 
predicting component life [9]. Numerical analysis is another alternative 
approach where the stress data collected from feedback sensors are 
modeled by analyzing the uncertainty of the crack from a microscopic 
perspective to study degradation trends and analyze the RUL of the 
component in conjunction with the crack length [9,60]. The hydraulic 
pump generates power in the machine, and da Silveira et al. used 
knowledge exploration and mapping to derive a physical model of the 
sub-process and a model based on vibration analysis to implement PdM 
on the hydraulic pump [61]. Aivaliotis et al. developed a method for 
calculating RUL based on physical simulation models for PdM of pro
duction equipment using predictive and health management (PHM) 
techniques. The resources of a production plant are modeled to enable 
the simulation of its functions and to identify maintenance activities for 
the machines [21]. Physical model development is based on interdisci
plinary analysis of multiple physical fields in coupled systems. However, 
the current PdM-based approach primarily focuses on a single physical 
modeling approach, leading to inadequate exploration of the integration 
of multiple modes in the physical field. These modes include the kine
matic field, chemical reactions, electrostatic interactions, and physical 
fields [22]. Hybridizing data-driven and physical methods have great 
potential in promoting the development of PdM-based physical 
modeling that considers these important factors. 

The use of data-driven and physical hybridizations is becoming 
increasingly popular in enhancing data-driven models with physical 
models. This approach involves synthesizing data generated by a phys
ical model with the original data to create a life prediction model with 
improved accuracy. Studies have demonstrated the effectiveness of this 
approach, especially in high-assurance models [9,62]. Optimization of 
physical models by ML requires appropriate and necessary conditions 
[63]. However, the optimization of physical models by ML requires 
certain necessary and sufficient conditions. The necessary conditions 
involve a causal relationship between the input and output parameters, 
while the sufficient conditions involve the theoretical construction of 
input parameters and output results [22,64]. Recent research has pro
posed various hybridization methods for improving the accuracy of 
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reliability analysis. For instance, Zheng et al. developed a regularized 
deep polynomial chaos neural network to achieve iterative learning of 
expansion coefficients and used this method to improve the reliability of 
satellite systems [65]. Yu developed a hybrid DT-based physical and 
data-driven model to identify minor faults in gearboxes [66]. Similarly, 
Chi et al. proposed a systematic framework approach for dynamically 
analyzing the real-time reliability of information systems by construct
ing an extreme learning machine and simulating energy management 
system behavior based on a stacked autoencoder (AE) model [67]. Li 
et al. proposed a novel high-dimensional data abstraction framework for 
reliability dimensionality reduction using Gaussian functions to capture 
the limit state functions in the latent space for process regression [68]. 

To summarize, the integration of data-driven and physical-based 
approaches can be beneficial to the development of DT-PdM. Data- 
driven approach can be restricted by the limitations in data collection, 
and the quality of data may not meet the requirements of the specific 
application. On the other hand, a physical-based approach can address 
the lack of data samples, but integrating physical knowledge for the 
development of data-driven methods can be challenging. Thus, hybrid
izing data-driven and physical methods requires more attention in the 
future research. 

3. Research methodology 

In this section, a systematic literature review was conducted to 
investigate the use of DT-PdM. The methodology involved five steps: 
specifying research questions, identifying search sources, formulating 
criteria for article selection, classifying articles published within the last 
five years based on an extensive review, and providing a brief descrip
tion of each article. The approach ensured a comprehensive and unbi
ased analysis of the existing literature. The review aimed to provide an 
overview of the current state of research and application of DT-PdM and 
to identify gaps and areas for future research. 

3.1. Research questions 

To address the aforementioned development challenges of DT for 
PdM, this section aims to investigate the role of ML technology in this 
context. The research questions, presented in Table 1, serve as the 
foundation for this inquiry. 

3.2. Search strategy 

3.2.1. Search terms identification 
According to the research questions, the paper designs a search 

strategy that focuses on keywords, search resources, search criteria and 
a collection of qualified published articles related to the topic. The 
search query using Boolean operators is shown in Fig. 2. 

3.2.2. Resources for searching 
Six databases were selected for the search using keyword insertion, 

including IEEE Xplore Digital Library, Science Direct, Springer Link, 
Scopus, Google Scholar, and Taylor & Francis which are representative 
of scientific research databases and contain a large amount of literature 
with strong links to the topics of the review. 

•IEEE Xplore Digital Library (http://ieeexplore.ieee.org). 
•ScienceDirect (http://www.sciencedirect.com). 
•SpringerLink (https://link.springer.com). 
•Scopus (https://www.scopus.com). 

•Google Scholar (https://scholar.google.com). 
•Taylor & Francis (https://taylorandfrancis.com). 

3.2.3. Inclusion and exclusion criteria for article selection 
The inclusion and exclusion criteria are listed below for the selection 

process, and the exclusion criteria apply to the title, abstract, and key
words of the publication. 

Exclusion criteria, sources that met the following restrictions were 
excluded from this study:  

(1) Exclusion of review articles collected on databases using the 
search query.  

(2) Exclusion of articles with no data source or experimental results 
were collected on the databases using the search query.  

(3) Exclude articles where the DT for the PdM application does not 
match the topic of the article.  

(4) Articles that were not written in English. 

Inclusion criteria, sources that met the following restrictions were 
included in this study:  

(1) All the articles, written in English, DT technologies for tackling 
PdM issues. 

(2) Articles that introduce new techniques to improve the perfor
mance of existing DT technologies used for PdM. 

3.2.4. Article selection and assessment process 
A large number of publications were retrieved from the six main 

databases through keyword searches of the databases using Boolean- 
based operators and were selected based on inclusion and exclusion 
criteria. 26 publications were evaluated to meet the selection criteria. As 
shown in Table 2. 

3.2.5. Classification of recent research work 
In the previous section, recent research on DT for PdM was reviewed 

including the implementation process of different PdM applications 
using DT techniques. It is found that ML techniques play a crucial role in 
DT for PdM, but there is still a part where ML techniques are not applied. 
Table 2 classifies the articles of DT for PdM in the last five years. In 
Table 2, the main classification objectives include exploring the role of 
ML techniques in DT for PdM and whether ML techniques have been 
used to build the model. Another classification is the type of ML tech
niques used, including traditional ML algorithms, deep learning, and 
transfer learning. More than half of the studies have applied ML tech
niques to build DT for PdM models. In addition, data is an important 
aspect of ML but is often overlooked. Lastly, research objectives and 
tasks are included separately, as the results of the research are equally 
important. Several insights from Table 2 are listed as follows: 

(1) Data types: The studies consider various types of data for anal
ysis, such as sensor data, inspection data, force measurement 
data, acoustic data, vibration signals, images, text, simulation 
data, etc. ML plays a crucial role in identifying patterns, anom
alies, and trends related to asset health and maintenance needs. 
However, how to comprehensively integrate these multi-source 
data for DT-PdM needs to be further explored.  

(2) The use of ML: Various machine learning algorithms have been 
utilized, including deep learning, SVM and Random Forest. 
Among different types of algorithms, deep learning is the ma
jority choice in these studies due to its capability to extract the 
senior features relevant to the asset health status from the multi- 
source data.  

(3) Research tasks: The research tasks of these studies primarily 
focus on fault diagnosis, HI construction and RUL prediction. 
These are the main tasks in PdM, which aim to enhance 

Table 1 
Research questions posed for the systematic literature review.  

Research questions 

RQ1: What is the role and function of the ML in DT for PdM? 
RQ2: What are the cutting challenges and opportunities of DT for PdM?  
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maintenance decision-making by predicting and identifying po
tential faults or degradation in the assets. 

Deep learning has emerged as the most prevalent ML technique in 
PdM applications. This is achieved through the collection of high-quality 
input data that includes different data types such as signals, text, and 
images [10]. Deep learning, such as convolutional neural networks 
(CNN) has been shown to be effective and has been applied to many 
industrial applications such as fault diagnosis, HI construction, and RUL 
prediction for different targets such as bearings, gearboxes, and pumps 
[9,66,76]. However, while deep learning has been widely applied to 
PdM, its impact on DT has not been extensively explored. The use of 
deep learning requires large amounts of training data. Moreover, deep 
learning algorithms require large computational resources for model 
training, which can be a challenge in the actual deployment. ‘Black-box’ 
models like deep learning also pose challenges for explaining ability, 
leading researchers to develop interpretable models for DT in PdM. 
Nonetheless, while most DT-PdM applications involve a large number of 

input data sources and use ML techniques, some of these data sources are 
poorly described, and multi-source data collection is often inadequate. It 
is challenging to construct a DT based on inadequate multi-source data 
to promote the performance of PdM. Therefore, exploring the role of ML 
in DT-PdM is crucial. 

4. Machine learning for digital twin-driven predictive 
maintenance 

The integration of information technology into manufacturing has 
facilitated significant advancements through digitization technology. It 
has led to the development of various practical applications, which have 
been focused on enhancing the role of information technology in 
manufacturing and achieving seamless data transfer and virtual-real 
relationships between the physical and virtual domains [21,79,83,84]. 
As a result, the industrial system’s overall development strategy has 
prioritized the implementation of DT technology. DT has received 
increasing attention from the industry due to its ability to encompass all 

((“digital twin” AND “predictive maintenance”) OR (“digital twin” AND “remaining use 

life”) OR (“digital twin” AND “fault diagnosis”) OR (“digital twin” AND “health indicator”)

Fig. 2. The search query for searching publications.  

Table 2 
The classification of research work of DT for PdM.  

Reference Deployment of 
ML 

ML 
algorithm 

Data type Research object Research task 

Hosamo, et al.[28] Y ANN, SVM Sensor data, 
inspection data 

Stable air handling unit Fault diagnosis 

Luo, et al.[29] Y LR, RF, SVR Force measurement data, acoustic data CNC machine tool Remaining useful life 
Liu, et al.[9] Y Deep learning Operation data, security data, life-time 

data 
Bearing Fault diagnosis 

Georgoulias and 
Chryssolouris[21] 

N  Controller data, sensor data Gearbox Remaining useful life 

Shangguan, et al.[69] Y Clustering, SVM Telemetry data Satellite system Fault diagnosis 
Mahmoodian, et al.[70] N  Telemetry data Civil Infrastructure Fault diagnosis 
Lv, et al.[71] Y Deep learning Vibration signals, images, text Bearing Fault diagnosis 
Nguyen, et al.[58] N  Sensor data, 

physics information 
Thermal–hydraulic systems Fault diagnosis 

Xiong, et al.[35] N  Operation data PET open-circuit (O/C) Fault diagnosis 
Huang, et al.[72] Y Deep learning Sensor data, engine data, 

simulation data 
Aero-engine Fault diagnosis 

Hu, et al.[73] Y Deep learning Vibration data, current data, acoustic 
data 

Rotating machines Health indicator 

Hong and Pula[74] Y Deep learning Images, simulation data Photovoltaic Fault diagnosis 
Feng, et al.[49] Y Deep learning Simulation data, 

surface measurement data 
Bearing Remaining useful life 

Xie, et al.[36] N  Sensor data, 
operation data 

HVAC systems Fault diagnosis 

Wang, et al.[75] Y Transfer 
learning 

Operation data, environment data, Hydraulic electromechanical 
equipment 

Fault diagnosis 

Yu, et al.[66] N  Simulation data, vibration data Gearbox Fault diagnosis 
Xia, et al.[76] Y Transfer 

learning 
Measured data, condition data Pump Fault diagnosis 

Jain, et al.[77] N  Solar irradiance and panel temperature 
data 

Photovoltaic Fault diagnosis 

Darvishi, et al.[78] Y Deep learning Sensor data Sensors Fault diagnosis 
Liu, et al.[45] Y Monte Carlo 

tree 
CWRU CNC machine tool Fault diagnosis 

Jafari and Byun[79] Y XGBoost Current data, 
voltage data, temperature data 

Battery State of charge 

Moghadam, et al.[80] N  Controller data Gearbox Remaining useful life 
Xiong, et al.[10] Y Deep learning Sensor data operating data, signal data Aero-engine Health indicator 
Xue, et al.[46] Y CART Vibration data CNC machine tool Fault diagnosis 
Savolainen and Urbani 

[81] 
N  Simulation data Multi-unit system Operations and 

maintenance 
Wang et al.[82] N  Vibration data Rotating machinery Fault diagnosis  
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stages of structural design, manufacturing, assembly, and operational 
health management. This emerging set of concepts has been applied to 
manufacturing, including machinery and production lines, to enhance 
plant operations management. The technology enables real-time moni
toring of operating equipment, leading to improved efficiency in the 
inspection and repair of faulty equipment, which can reduce produc
tivity loss caused by equipment failure and regular maintenance re
quirements [74]. In the context of DT-PdM, ML plays a pivotal role in 
leveraging the power of DT. By analyzing the vast amounts of 
multi-source data such as monitoring data and maintenance data, ML 
algorithms can detect patterns and anomalies indicative of equipment 
failure or performance degradation. The essential tasks in PdM such as 
HI construction, RUL prediction, and fault diagnosis can be imple
mented via the modeling of multi-source data using ML. Before diving 
into how DT aids Predictive Maintenance (PdM), it’s crucial to under
stand the key tasks integral to PdM:  

1. Health indicator estimation: An aggregated metric or a set of 
metrics that give a snapshot of the current health or condition of a 
piece of equipment. This index allows operators to track the overall 
well-being of machinery and decide on appropriate actions based on 
its status.  

2. Remaining useful life prediction: An estimate of the time left 
before a machine or equipment reaches the end of its effective 
operational life. This prediction helps plan maintenance activities 
and replacements in a timely manner. 

3. Fault diagnosis: The process of identifying, isolating, and pin
pointing the root cause of a malfunction or an anomaly in a system. It 
provides clarity on specific problems, facilitating targeted repair and 
maintenance actions. 

With the aforementioned concepts clarified, the role of ML for DT- 
PdM can be better identified. PdM, at its core, revolves around the 
systematic use of HI, RUL, and fault diagnosis to predict the future 

condition of equipment and schedule maintenance accordingly. ML is 
the key component in this framework. By harnessing ML to sift through 
voluminous datasets from different data sources, it becomes possible to 
identify the degradation and faulty patterns of equipment issues.The 
relationship between the multi-source data and different tasks is illus
trated in Fig. 3. 

The advantage of DT-PdM is that it can guide the twin model’s 
evolution in real-time according to changes in the physical object’s 
operating state through the interaction of data between the physical 
object and the virtual model [28]. The simulation analysis feeds the 
prognostic results to the diagnostic control center of the DT, which helps 
the physical entity optimize and make decisions. ML in DT offers 
tremendous potential for revolutionizing of PdM. By leveraging the in
sights and capabilities of these technologies, organizations can optimize 
their maintenance practices, achieve greater asset reliability, and drive 
significant improvements in operational performance. With the ability 
to accurately diagnosis the faulty state and predict the equipment fail
ures, ML empowers organizations to make data-driven decisions and 
take proactive measures to ensure the smooth operation of 
manufacturing processes and maximize productivity. In this section, a 
DT-PdM framework is first elaborated. Subsequently, the role and 
function of ML in DT-PdM are reviewed and discussed. 

4.1. Digital twin-driven predictive maintenance framework 

Implementing PdM applications has been a challenge for many 
scholars, as noted in previous research [77,78,85], However, the 
continued development of DT has provided a broad and acceptable 
technical framework for DT-PdM, which contains physical entities, 
digital entities, and connectivity-related components [12,73,86]. 
Despite this progress, integrating PdM into a common DT framework 
remains a formidable challenge that requires extensive research and 
development efforts to overcome. To address this challenge, the Amer
ican National Institute of Standards and related research are designing 

Fig. 3. The relationship of multi-source data and tasks in DT-PdM.  
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ISO 23247 to help standardize DT frameworks [69,87]. The standard 
provides a targeted integration of the DT framework and the PdM 
framework, clearly stating the general principles of the framework, the 
reference system, and relevant information, and proposing relevant 
reference models [2]. 

Based on the existing work [88], a DT generic framework for PdM is 
proposed in Fig. 4, which combines ML techniques and DT-PdM appli
cations. Implementing DT-PdM in the framework of DT-PdM mainly 
involves three stages. First, the monitoring data in the physical layer is 
collected, including process data, equipment data, and product data, 
which is transmitted through wireless networks to edge devices and 
finally to the cloud. In this process, the transmission of high-volume 
multi-source data is a major concern due to the limitation of broad
band and the computational cost of the cloud computer. Hence, the 
cloud-edge collaboration that adopts ML techniques can be a potential 
solution. In the cloud-edge collaboration of DT-PdM, the data sampling 
strategy can be optimized, and the sensor data can be pre-processed to 
extract the key features to lower the data transmission load. 

Finally, with the information obtained from DT, advanced ML al
gorithms such as deep learning can be used for fault diagnosis and RUL 
prediction modeling. The results can be used to optimize the decision- 
making in PdM such as maintenance planning, spare parts manage
ment, and job scheduling. In the modeling of fault diagnosis and RUL 
prediction, several challenges such as data imbalance, the reasoning of 
the fault root cause, and the unseen tasks transfer learning can be 
addressed by the collaboration of ML and DT. DT can be used to simulate 
and generate data samples for the minority faulty class and the unseen 

tasks. Meanwhile, the DT can be used to verify the fault root cause 
identified by the ML algorithms. 

4.2. Machine learning for health indicator construction and remaining 
useful life prediction 

4.2.1. Overview of health indicator and remaining useful life prediction 
Both HI and RUL prediction are essential in PdM. RUL prediction is 

concerned with estimating the remaining operational lifespan of a ma
chine, whereas HI prediction focuses on quantifying the overall health 
condition. The RUL prediction provides a time-based estimation, indi
cating how much time is left before failure, while the HI provides a 
numerical value representing the health level. HI construction can be 
used as an input or feature for RUL prediction models. By considering 
the HI value along with other relevant features, RUL prediction models 
can consider the current health condition of the machine to improve the 
accuracy of the remaining life estimation. The construction of HI relies 
heavily on subjective assessments which can reveal the damage level of 
the component or system. The problem of ambiguity leads to challenges 
in the accuracy of the RUL prediction. Therefore, the construction of 
multi-stage equipment degradation trends through HI to aid RUL pre
diction may be a suitable approach [89], by splitting the multi-stage 
degradation state and using multi-model predictions instead of 
single-model predictions with low accuracy, so this section will illustrate 
the construction of a combined HI and RUL model based on DT. In 
conjunction with the application of HI, HI consists of three main 
attributes: 

Fig. 4. A framework for ML in DT-PdM.  
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(1) Detectability: As different fault levels reflect different HI 
knowledge, the sensitivity of the HI is important and the best HI is 
assessed by the ability to detect the smallest fault type, which is 
often related to the construction of the fault characteristics [90].  

(2) Separability: The aim is to distinguish between fault and non- 
fault types and to have realistic and reliable results [90].  

(3) Trendability: the degradation of a component after a failure can 
be positively correlated with the running time and the fitting 
error is within acceptable limits, and the results are optimized 
continuously using a suitable evaluation matrix [91]. The con
struction of an HI is therefore essential and is considered to be 
optimal once it has achieved the requirements of detectability, 
separability, and Trendability. 

4.2.2. Machine learning for health indicator construction 
There are two primary types of HI-based construction: statistical- 

based models and ML-based models. Historically, HI was based on a 
statistically driven approach to modeling. For example, index-based 
transient maintenance targets simple components like bearings by 
extracting statistical parameters from monitoring signals to derive trend 
characteristics like root mean square (RMS), which reflects energy or 
amplitude and represents the health state [92]. However, researchers 
have found that RMS is affected by various operating conditions and is 
not very resistant to interference, making it unsuitable as a direct indi
cator of component HI [93]. The statistical-based approach to HI con
struction requires researchers to make human observations or 
discoveries of degradation trends, which can be time-consuming and 
subject to the variability of the parts being studied. To overcome these 
challenges, ML techniques can be employed to mine correlated degra
dation knowledge for HI. 

ML techniques are currently a popular research topic for building HI. 
However, due to the limitations of current statistical parameters, the 
knowledge-mining presentation of the mechanisms may be incomplete. 
To address this, researchers have proposed constructing HI using a 
fusion of ML techniques. For example, Widodo fused peak, kurtosis, and 
entropy using principal component analysis for dimensionality reduc
tion to construct HI [94]. Saidi et al. established a filtered detection 
method and successfully applied it to the HI construction of wind turbine 
bearings [95]. Moshrefzadeh et al. proposed spectral amplitude modu
lation that uses SVM and subspace k-Nearest Neighbor (k-NN) to 
calculate the impulsivity of signals and determine the state of health of 
the machine [96]. Mosallam et al. used features extracted in the time 
domain frequency domain and used principle component analysis 
models to construct HI [97]. These ML-based approaches demonstrate 
the ability to bridge gaps in statistical knowledge mining and informa
tion fusion, highlighting their potential in addressing HI construction 
methods. In DT-PdM, DT can generate key features that are relevant to 
the machine’s health status. By simulating the behavior of the physical 
asset in a virtual environment, DT captures and represents various as
pects of the machine’s operation, performance, and condition. These 
captured features can be further used in HI estimation modeling. 
Meanwhile, the HI is a virtual metric that is hard to be directly evalu
ated. The simulation and visualization function of DT can be helpful in 
the evaluation of HI. 

4.2.3. Machine learning for remaining useful life prediction 
On the other hand, RUL prediction is a crucial technique in equip

ment management, which involves building mathematical and simula
tion models to predict the future state and operating trends of a system 
by combining various observations [80,98]. According to Salunkhe 
et al., RUL is the time remaining before the equipment fails in operation, 
obtained by building models based on the current age, condition, and 
past operating conditions of the equipment [99]. Initially, researchers 
classified these approaches as physical model-based, data-based, and 
hybrid-based. However, as research on RUL prediction continued, re
searchers further classified data-driven approaches as artificial 

intelligence model-based and statistical methods [100]. Currently, 
statistical-based models, physically-driven models, and data-driven 
models are being explored by researchers. The core principle of phys
ical models for RUL prediction is to develop a mathematical model of the 
degradation trend of a mechanical component by considering its failure 
mechanism or damage principle. This requires the consolidation of 
various sources of information, including physical experiments and FEA. 
While physical-based models require a complete understanding of the 
failure mechanism of the equipment and the setting of effective pa
rameters to achieve accurate estimation, they may limit the extension 
and application of the method for some complex mechanical systems. 
Statistical model-based RUL prediction focuses on building a statistical 
model from a large amount of empirical knowledge and deriving the 
RUL model from observations. The classical approach is autoregressive 
(AR) model which assumes future state values and measures the error of 
a linear function of observed and run values [101]. 

The data-driven RUL prediction focuses on utilizing ML techniques to 
uncover trends in mechanical degradation rather than relying on phys
ical or statistical models. Various deep learning techniques have been 
used for RUL prediction. Recurrent neural networks (RNN) are widely 
used for RUL prediction because of their ability to handle explicit time 
series data. Zemouri et al. proposed a recurrent radial basis function 
network and used it to predict the RUL of mechanical components [102]. 
Hybrid method-based RUL prediction has also been proposed, inte
grating the advantages of different methods to construct integrated 
degradation models. However, there are relatively few studies in this 
category. Some researchers have used multiple prediction methods by 
fusing different strategies to build hybrid integrated prediction frame
works. For example, Zemouri et al. combined ANN with AR models to 
develop a hybrid approach [102]. 

Fig. 5 illustrates a line graph showing the number of papers pub
lished on developing HI and RUL prediction models using ML indexed by 
Google Scholar from 2001 to 2022. Although this data may not capture 
all publications and could potentially include non-academic publica
tions, this proportion provides a valuable reference, indicating a sig
nificant increase in the importance of ML in developing HI and RUL 
prediction models. It can be seen that 2010 and 2017 are two acceler
ating points. The publication trends of both HI and RUL prediction are 
similar to the developing trend of deep learning in this period. Mean
while, it is obvious that the research of RUL outweighed that of HI in the 
last decades. With the development of DT, the research of HI can be 
beneficial and the number of publications can be promoted. 

Fig. 5. Trends in ML-based RUL prediction model development: a Google 
Scholar publication analysis. 
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4.2.4. Leveraging health indicator construction and remaining useful life 
prediction with digital twin 

HI construction and RUL prediction are the main tasks in PdM. The 
application of DT techniques can enhance the accuracy of HI and RUL 
prediction, as production environments can vary significantly, resulting 
in low model accuracy [49]. Fig. 6 illustrates the process of DT-driven HI 
and RUL prediction. The figure encompasses five distinct stages: data 
collection, communication, DT mapping, behavior prediction, and DT 
updating. Each stage plays a vital role in facilitating accurate and effi
cient PdM practices. 

Stage 1: Multi-source data including sensor data, simulation data, 
and statistical data is collected for analysis and modeling. The cloud 
computer set up the data collection plan according to the feature 
importance in ML. The collection plan is then sent to the edge device 
including the required features, and sampling frequency. Finally, the 
specific data required by the cloud platform is transmitted to the cloud 
platform. 

Stage 2: Updating different models including geometric model, data 
analytics model and physics model to achieve high fidelity mappings 
with the real-world asset. The geometric model can be updated via the 
analysis of the shape data such as point-cloud data. The data analytics 

models can be calibrated and updated via incremental learning or 
continuous learning. Meanwhile, ML can be used to discover new 
knowledge of physics which can update the physics model. 

Stage 3: Data fusion is implemented to fuse the data from different 
sources. After the monitoring data is used to update the DT, the key 
features relevant to the asset health status such as wear degree and crack 
dimension are estimated using DT simulation. The simulated data, 
monitoring data and statistical data is then fused using advanced ML 
technique. 

Stage 4: The fused data is then used for HI and RUL prediction 
modeling. The prevailing deep learning algorithm is then deployed to 
construct a HI model based on the fused data. Then the predicted HI is 
used to estimate the RUL based on the HI curve construed in DT. 

Stage 5: Based on the HI and RUL prediction, the asset performance 
in DT is evaluated and the optimal maintenance plan and the job 
schedule are determined in DT. ML techniques such as reinforcement 
learning can be adopted to optimize maintenance planning, which can 
achieve the lowest maintenance cost and machine down time. 

Fig. 6. The process of DT-driven HI and RUL prediction.  
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4.3. Fault diagnosis based on machine learning 

With the increasing use of smart devices, health management tech
nology has become crucial for building fault diagnosis models using 
monitoring data. Fault diagnosis involves monitoring equipment’s 
operating status and analyzing the failure mechanism after a fault or 
anomaly has occurred. Anomaly detection has been widely studied in 
PdM. However, it’s worth noting that anomaly detection often overlaps 
with fault diagnosis [103]. Both are essentially classification tasks: while 
anomaly detection classifies operational data into ’normal’ or ’anoma
lous’, fault diagnosis often extends this by classifying the specific type or 
cause of the anomaly. Hence, the anomaly detection tasks were classi
fied into fault diagnosis in this study. Advanced fault prediction using 
intelligent technology can help enterprises manage and reduce costs 
[13]. However, building such models requires a combination of expe
rienced domain knowledge. ML has emerged as a prevalent approach for 
intelligent fault diagnosis, utilizing ML and deep learning networks to 
model collected data and learn machine diagnostic knowledge adap
tively. This approach replaces the previous reliance on engineer expe
rience and knowledge for equipment maintenance [104]. 

4.3.1. Machine learning for fault diagnosis 
ML-based fault diagnosis was one of the early applications of intel

ligent fault diagnosis. For instance, Wong et al. proposed an improved 
self-organizing mapping for bearing fault diagnosis. With the advance of 
deep learning, the performance of fault diagnosis has improved greatly. 
Liu et al. and Lu et al. used stacked sparse AE and stacked denoising AE 
to apply fault diagnosis to bearings with higher accuracy than SVM and 
other methods [105,106]. CNN can capture the key faulty features from 
the input data. CNN was successfully constructed for diagnostic models 
of rolling element bearings, gears, motors, and hydraulic pumps [107]. 
The attention mechanism is also a hot topic in the development of fault 
diagnosis. The introduction of an attention mechanism can help models 
autonomously assign learning weights and offsets to learn important 
information and ignore unimportant information, such as spatial 
attention [108–110] and channel attention [111,112]. 

In real industrial scenarios, healthy data can be easily collected, but 
the amount of faulty data often falls short of the requirement, which 
poses a challenge for building reliable diagnostic models. Therefore, 
transfer learning has been introduced to facilitate the application of fault 
diagnosis in engineering scenarios, such as transfer component analysis 
[113], joint distribution adaptive [114], and novel sparse de-noising AE 
[76]. The role of ML in fault diagnosis applications has become 
increasingly important and has evolved toward general-purpose models 
[115]. This section mainly reviews the development of ML in fault 
diagnosis from conventional ML-based fault diagnosis to deep 
learning-based fault diagnosis. 

Transfer learning is a prevailing deep learning technique, which is 
helpful in fault diagnosis [116]. It is also expected to extend from aca
demic research to industrial scenarios, reducing the cost of large 
amounts of labeled data by reusing diagnostic knowledge across multi
ple related domains to solve problems [75,113]. TrAdaboost is a transfer 
learning algorithm that originated from Adaboost, and Shen et al. used 
cross-domain features to train a set of k-NN- based diagnostic models 
through the TrAdabost algorithm [117]. Similarly, Cao et al. proposed a 
deep CNN-based fault diagnosis model for gearboxes, where the authors 
constructed a 24-layer CNN model and trained it using ImageNet data
sets, and used transfer learning techniques to select parameters to 
pre-train themselves on another CNN diagnostic model [118]. 

In summary, the application of ML-based fault diagnosis methods has 
grown exponentially over time, with a gradual shift from traditional 
statistical methods to ML methods in the construction of fault diagnosis 
models. The widespread interest and application of transfer learning 
techniques suggest a potential shift towards the development of more 
generic models that can be used across multiple related domains. As the 
field continues to evolve, it is expected that the development of more 

sophisticated algorithms and models will lead to even more accurate and 
efficient fault diagnosis systems, ultimately improving the safety and 
reliability of industrial equipment. 

4.3.2. Leveraging fault diagnosis model construction with digital twin 
The construction of fault diagnosis models using ML faces various 

challenges, such as data imbalance and poor data quality. The emer
gence of DT has played a significant role in addressing these challenges 
by assisting in data pre-processing. This has, in turn, facilitated the 
development of fault diagnosis based on DT applications, with a 
particular focus on the role of DT techniques in predictive model 
establishment [72,119]. DT-based fault diagnosis may be able to provide 
effective observation data and facilitate data fusion techniques such as 
knowledge graphs to build models based on field environmental moni
toring observations of field exploration relationships [71]. 

In terms of data pre-processing, traditional data collection may lead 
to missing values, data interruptions and other problems due to many 
technical reasons such as hardware equipment, and transmission pro
tocols. DT can address these problems to some extent through virtual 
worlds instead of traditional methods such as replacing missing values 
with mean values to improve accuracy. Additionally, insufficient fault 
data is a great challenge in fault diagnosis modeling using ML. DT can 
generate faulty samples to address the unbalanced number of fault types 
instead of traditional modeling using over-sampling [120] and 
under-sampling [121] to improve model accuracy. With the advance of 
deep transfer learning, few-shot fault diagnosis can be achieved, while it 
still cannot address the unseen fault diagnosis challenge. However, 
DT-driven fault diagnosis can address this issue by generating faulty 
samples based on DT. The process of DT-driven unseen fault diagnosis 
using deep transfer learning is illustrated in Fig. 7. With the high-fidelity 
DT, the characteristic and performance of unseen fault can be simulated 
and the high-quality data samples for the unseen fault can be obtained. 
Then deep transfer learning can be deployed for the unseen fault diag
nosis modeling. 

DT-based fault diagnosis also facilitates the fault root cause 
reasoning. In a complex asset, it is challenging to identify the root cause. 
In DT, the correlation between the components and the sub-system can 
be identified, which can be transformed into a graph representation. 
Advanced graph neural network algorithms can then be used to build a 
node classification model so to identify the root cause of the fault. 
Meanwhile, external knowledge from the fault diagnosis knowledge 
graph also can be introduced into DT to enhance the fault root cause 
reasoning capability [122]. With the introduction of knowledge graph, 
DT-driven fault diagnosis can benefit from a comprehensive and inter
connected understanding of the system. The knowledge graph serves as 
a powerful tool for root cause analysis by capturing and organizing 
domain knowledge and enabling the exploration and discovery of 
complex fault mechanisms. 

5. Challenges and opportunities 

Based on the analysis and discussion in the previous sections, there 
are some challenges identified in DT-PdM. (1) The complexity of DT- 
PdM systems requires high-fidelity modeling, but only a few studies 
have considered and explored this, with most researchers only modeling 
DT-PdM for a single component without considering the high-fidelity of 
the model; (2) Most of the articles collected data from a variety of 
sources including physical information collection, but there are few 
descriptions of data fusion for different levels of DT-PdM, only inte
grating and modeling the data collected from multiple sources; (3) To 
improve the generality of the model, some of the articles use physics 
knowledge for modeling but do not effectively combine ML techniques, 
which may not effectively establish an ML model; (4) Most researchers 
mainly focus on ML modeling, while a suitable low-latency interactive 
cloud-edge collaboration solution to deploy DT-PdM applications has 
not been considered. Therefore, in response to the above issues raised in 
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the collected articles, this section presents future challenges and op
portunities in four areas: ML for high-fidelity digital model construction, 
multi-source data fusion, physics-informed machine learning (PIML) for 
DT-PdM and cloud-edge collaboration for low latency interaction to 
address the current research gaps. 

5.1. Machine learning for high-fidelity digital model construction 

This section outlines an approach for developing high-fidelity models 
of DT for PdM, while also summarizing the current challenges and op
portunities in this field. The process of modeling high-fidelity DT for 
PdM can be divided into three main steps: geometric model annotation, 
high-fidelity reality mapping, and qualitative and quantitative evalua
tion of high-fidelity models. 

The first step involves accurately representing the true geometry of 
the physical space using aids such as CAD and computer-aided 
manufacturing (CAM) techniques for geometry annotation. Different 
types of annotation, including product design information, definition 
information, basic metadata information, functional information, para
metric information, and static structure, can be utilized to achieve an 
accurate representation of the physical space. The existing studies have 
conducted the data synthetic using the virtual geometric model, which 
can be used for the tasks in PdM [9,10,21,28,29,35,36,45,46,49,58,66, 
69–82]. Furthermore, ML algorithms can facilitate continuous learning 
and adaptation of the DT as new data from the physical asset is available. 
By updating the models and retraining them with the latest information, 
the DT can continuously improve its performance and fidelity over time. 
This allows for a dynamic and evolving representation of the physical 
asset’s behavior. Meanwhile, ML can be applied to learn and optimize 
the behavior of the DT. By training the models on historical data and 
observed outcomes, ML algorithms can discover complex patterns, re
lationships, and dependencies within the system. This enables the DT to 
simulate and predict the behavior of the physical asset with higher fi
delity and accuracy. Meanwhile, the construction of a high-fidelity 
model must be evaluated. Since the virtual model differs from the 
physical entity in general and the DT model usually consists of several 
sub-models, evaluating the results of the ML model with a single 
quantitative indicator can be challenging. Therefore, the high-fidelity 
DT model construction needs to be further investigated. 

5.2. Multi-source data fusion in DT-PdM 

In the DT-PdM, the collected data comes from various sources such as 
sensors, IoT devices, maintenance logs, and external databases. After the 
multi-source data is collected, the data needs to be integrated and 
analyzed. However, none of the existing studies identifies the ap
proaches for integrating the multi-source data and extracting the salient 
features for DT-PdM. By fusing data from multiple sources, the DT can 
provide a more comprehensive view of the asset’s health status, which 

can bring tangible benefits to the PdM. 
There are several challenges in the multi-source data fusion for DT- 

PdM. Firstly, these data sources may have different formats, structures, 
and quality levels. Handling the heterogeneity of data requires advanced 
ML techniques for data pre-processing, normalization, and trans
formation to ensure compatibility and consistency across different 
sources. Secondly, the quality and reliability of data from different 
sources can vary significantly. Some sources may provide accurate and 
reliable data, while others may be prone to errors, noise, or missing 
values. Dealing with data quality issues and developing methods to 
identify and handle unreliable or faulty data is crucial for accurate data 
fusion and subsequent predictive maintenance analysis. Thirdly, the 
data fusion of multi-sources data while maintaining synchronization and 
temporal coherence is essential for accurate analysis. Different data 
sources may have different sampling rates, time stamps, and event 
triggers. Aligning and synchronizing data from various sources is critical 
to ensure meaningful fusion and analysis. In the multi-source data 
fusion, a potential tool in facilitating this integration is the Asset 
Administration Shell (AAS) [123]. The AAS provides a standardized 
interface for integrating data and services across various sources, 
ensuring seamless data fusion by encapsulating assets in information 
models, thus addressing different information contexts with uniformity. 
Furthermore, another useful tool in multi-source data fusion is 
manufacturing middleware [124], which can play a substantial role in 
bridging the heterogeneous data environments. Manufacturing middle
ware ensures that disparate data formats, structures, and quality levels 
are homogenized, providing a consistent platform for further analysis in 
the DT-PdM framework. Overall, it is worthwhile to investigate 
multi-source data fusion in the DT for PdM, which can improve the 
accuracy, timeliness, and comprehensiveness of maintenance decisions. 

5.3. Physics-informed machine learning for digital twin-driven predictive 
maintenance 

To address the challenge of insufficient data volume in PdM for 
equipment failures, as well as to improve model generalization and 
ensure the physical soundness of results, PIML is a promising approach. 
In this section, the advantages of PIML-driven models and the challenges 
that may arise in the future from three perspectives [125] are 
introduced. 

The training of ML models for PdM may require several components, 
including data, model architecture, optimization algorithms, and infer
ence methods. Physical priors can be integrated into one or more of 
these components to improve performance. Firstly, for problems with 
constraints or related equations, data can be augmented or integrated, 
models can learn from this generated data, and physical knowledge can 
be reused to improve predictions compared to using only raw data. 
Additionally, the integration of physical knowledge may lead to a 
reduced need for data in the training process when applying PIML 

Fig. 7. The process of DT-driven unseen fault diagnosis using deep transfer learning.  
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methods. Secondly, as the integration of physical knowledge may 
exhibit periodic or other physical patterns, the generality of the 
problem-solving can be enhanced, enabling the construction of a generic 
network model architecture. Finally, in model optimization, the opti
mization objective can integrate physical knowledge to reshape the 
optimization space and help the training process converge. 

However, despite these advantages, PIML still faces several chal
lenges in the future. Firstly, PIML requires relevant knowledge about the 
domain of PdM to select the appropriate physical knowledge for inte
gration and to promote flexibility in the selection of physical knowledge. 
Secondly, due to the complexity of the equipment system architecture 
and fault information, there is a lack of evaluation of PIML methods for 
equipment failures and a lack of evaluation of various fault knowledge 
integration methods. Finally, in PIML, the loss function and optimization 
approach need to be designed to incorporate and enforce the physical 
laws or governing equations of the problem being solved. A suitable loss 
function and optimization approach can ensure that the neural network 
learns and respects the underlying physics, leading to more accurate and 
physically consistent predictions. Hence, PIML is a promising approach 
for addressing challenges in DT-PdM, but several challenges need to be 
further researched. 

5.4. Cloud-edge collaboration for low latency interaction 

When deploying ML in DT-PdM, concerns over latency and cloud- 
edge collaboration arise. DT-PdM relies on timely and accurate infor
mation to make informed decisions regarding asset health and mainte
nance actions. Low latency allows for rapid data processing, analysis, 
and decision-making at the edge, enabling real-time responses to critical 
events and minimizing downtime. This is particularly important in 
scenarios where immediate actions are required to prevent equipment 
failure or mitigate potential risks. Edge computing brings computational 
resources closer to the data source, reducing the latency involved in 
sending data to the cloud for processing. By leveraging the capability of 
data analytics in edge devices, data can be processed and analyzed 
locally, enabling faster insights and reducing the dependency on cloud 
resources. Low latency facilitates efficient utilization of edge computing 
capabilities, enabling quick response times and reducing the need for 
extensive data transfers to the cloud. 

In order to achieve low latency in the cloud-edge collaboration of DT- 
PdM, several challenges need to be addressed. Firstly, edge devices often 
have limited computational power, memory, and energy resources. 
Running sophisticated machine learning algorithms on resource- 
constrained devices can be a challenge, requiring optimization tech
niques and efficient resource allocation strategies. Hence, lightweight 
and effective ML algorithms need to be explored. Secondly, DT-PdM 
involves processing and analyzing a large volume of data generated by 
numerous edge devices. Distributed ML algorithms for numerous edge 
devices can be a potential solution to achieve satisfactory performance 
with lower latency. The scheme of distributed ML in the DT-PdM de
serves more attention in the future. Finally, the security and privacy of 
data in a cloud-edge collaboration are crucial. The need to transmit 
sensitive data between the cloud and edge devices while ensuring secure 
communication and preventing unauthorized access adds complexity to 
achieving low latency. Overcoming these challenges requires leveraging 
technologies such as advanced ML and edge computing techniques to 
achieve low latency in cloud-edge collaboration for DT-PdM. 

6. Conclusions 

ML techniques have made considerable contributions to DT for PdM 
applications, such as fault diagnosis, RUL prediction, HI construction 
and, to varying degrees, to DT techniques and PdM applications. This 
paper explores the role and function of ML techniques in DT for PdM 
applications. The results are then presented and further explained in the 
framework of DT techniques for PdM applications and ML. The latest ML 

techniques used in the three main application areas of DT for PdM are 
analyzed and classified. Furthermore, the main aspects of ML that 
contribute to the construction of virtual spaces and physical models are 
explored in depth for DT for PdM applications in different domains. 
Finally, the main research challenges are described and the opportu
nities and various prospects for DT for PdM ML techniques are discussed. 
Based on the foregoing, this paper provides insight into the research and 
implementation of DT for PdM, which can bring tangible benefits to the 
operation and maintenance of the industry. 
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