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General Article

The use of frequentist statistics to perform inference in 
applied research is riddled with difficulties. There is 
strong evidence suggesting that p  values and confi-
dence intervals are often misinterpreted in practice 
(Belia et al., 2005; Falk & Greenbaum, 1995; Haller & 
Kraus, 2002; Hoekstra et al., 2014; Oakes, 1986), and 
the numerous types of misinterpretations have been 
often reiterated (e.g., Goodman, 2008; Greenland et al., 
2016). Suggestions to improve the current state of affairs 
are various. Researchers have advocated for improving 
statistical education (e.g., Guo & Ma, 2022; Lakens, 
2021), strengthening the bounds for decision-ruling 
(Benjamin et al., 2017), “retiring” the categorical flavor 
inherent to statistical significance (Amrhein et al., 2019), 
or even banning null hypothesis significance testing 
(NHST) altogether (Trafimow & Marks, 2015). The 
apparent mismatch between what practitioners wish to 
accomplish and what frequentist inference permits may 
be at the core of the many problems that have been 
identified. In this respect, Bayesian statistics is being 

advocated by some as a better alternative (Kruschke & 
Liddell, 2018; Wagenmakers, 2007).

The last 10 years have witnessed an increase in pub-
lished materials aiming at promoting the Bayesian para-
digm to researchers in the social sciences (Etz & 
Vandekerckhove, 2018; Świątkowski & Carrier, 2020; van 
de Schoot et  al., 2014). But Bayesian statistics is still 
relatively unknown and novel among social scientists. 
Hence, it would not be surprising if researchers would 
be making interpretation mistakes when using some of 
the newly learned Bayesian inferential tools. In this 
article, we mostly focus on null hypothesis Bayesian 
testing (NHBT) and the Bayes factor, that is, the Bayesian 
counterparts to NHST and the p value, respectively. A 
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Abstract
Hypothesis testing is often used for inference in the social sciences. In particular, null hypothesis significance testing 
(NHST) and its p value have been ubiquitous in published research for decades. Much more recently, null hypothesis 
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Following preliminary work by Wong and colleagues, we investigated how, and to what extent, researchers misapply 
the Bayes factor in applied psychological research by means of a literature study. Based on a final sample of 167 articles, 
our results indicate that, not unlike NHST and the p value, the use of NHBT and the Bayes factor also shows signs of 
misconceptions. We consider the root causes of the identified problems and provide suggestions to improve the current 
state of affairs. This article is aimed to assist researchers in drawing the best inferences possible while using NHBT and 
the Bayes factor in applied research.
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first study by Wong et al. (2022) suggested that there are 
indeed misunderstandings related to the practical use of 
Bayesian hypothesis testing and the Bayes factor.

This article has been written for applied social scien-
tists for whom the Bayes factor is still a relatively new 
tool. The article has two main objectives. The first is to 
provide a full account of what a correct use of the Bayes 
factor entails. To this effect, we offer a commented 
reanalysis of a published result, carefully explaining how 
the Bayes factor can be adequately used to draw infer-
ences. At the same time, we refer to some pitfalls that 
are important to avoid. We intend this part of the article 
to be used as a template of good practices for those 
wishing to use the Bayes factor in their work. The sec-
ond objective of this article is to provide an overview 
of how the Bayes factor has been suboptimally handled 
by practitioners in published research. We offer an 
extension to the work of Wong and colleagues by cover-
ing a wider range of articles and assessment criteria. 
Furthermore, Wong et al. (2022) did not elaborate in 
detail on the main factors behind the identified prob-
lems. In this article, we offer an extended discussion that 
aims at going to the root of each problem. Specifically, 
we identified various reasons that may help understand-
ing the occurrence of such idiosyncrasies. This discus-
sion is of great value because we can aim at improving 
matters only after the source of the problems has been 
clearly identified. On the basis of the results of our  
discussions, we suggest possible future avenues for 
improvement.

The article is organized as follows. We start by offer-
ing a short introduction to the Bayes factor and how it 
can be used to test hypotheses (or perform model com-
parison in general). Next, we showcase the Bayes factor 
by analyzing data from a real example and discussing 
both good and less ideal approaches. We then summa-
rize the main findings from the work from Wong and 
colleagues and present the details of the current study. 
After presenting the main results, we elaborate on the 
reasons that may help illuminate why these problems 
seem to occur more or less consistently. The article ends 
with a short summary of the previous discussion and 
with some constructive suggestions for the future.

The Concept of the Bayes Factor

The Bayes factor offers a means of comparing the pre-
dictive ability of two models (say, 0 and 1). These 
models encompass two competing explanations for the 
real-world phenomenon under study. The “best” of the 
two models is the one that better predicts the data that 
were observed. In mathematical terms, the Bayes factor 
is the ratio of two marginal likelihoods,

      BF
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for i = 0 1, . In words, p D i( | )  is the probability (or prob-
ability density for continuous data) of the observed data 
under Mi. This probability is actually a weighted average 
of p D i i( | , )θ  , which is the likelihood of the observed 
data under Mi at a particular value of the model param-
eter θi.

1 The set of all possible values of θi is denoted by 
Θi

. The weights of the weighted average are provided by 
p i i( | )θ  , the prior probability associated with θi .  The 
prior probability of θi is typically chosen before looking 
at the observed data. The idea is then that the marginal 
likelihood, p D i( | ) , is a value based on the probability 
of the observed data at various parameter values and the 
prior probabilities of each such parameter value.

The Bayes factor in Equation 1 offers a relative assess-
ment of the probability of the observed data under the 
two competing models. For example, BF10 5=  means that 
the observed data are 5 times as likely in case 1 were 
true than if 0 were true. Conversely, BF10 0 2= . , which 

can be rewritten as BF01
1

0 2
5= =

.
 (notice the updated 

subscript), means that the observed data are 5 times as 

likely in case 0 were true than if 1 were true.
An alternative means of portraying the Bayes factor is 

based on assuming that 0 and 1 are the only possible 
models of interest. In this sense, we act as if these are the 
only two models that could have generated the data that 
were observed. This is of course rather limited and con-
trived, which may incidentally be a source of confusion 
for users of the Bayes factor, as we discuss later. Thus, 
conditional on either 0

 or 1 being true, both before 
and after observing the data, the probabilities of the two 
models are complementary, that is, they sum to one:

p p p D p D( ) ( ) ( | ) ( | ).   1 0 1 01 1= − = −and   (3)

Ratios of complementary probabilities are known as 
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Written this way, BF10 quantifies the change in the 
relative likelihood of either model from before to after 
observing the data D . The prior odds represent our rela-
tive belief in either model before looking at the data. If 
BF10 5=  then, regardless of the prior odds, one’s initial 
relative belief should be revised by a factor of 5 to 1 in 
favor of 1 over 0. The relative revised belief is given 
by the posterior odds.

By rewriting the posterior odds as 1 0

0

− p D

p D
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can derive expressions for both posterior-model prob-
abilities from Equation 4:
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From Equation 4 we see that the Bayes factor is equal 
to the ratio of the posterior odds to the prior odds. The 
Bayes factor is therefore a ratio of two odds, or an odds 
ratio. Regarded this way, BF10 5=  means that the poste-
rior odds of 1 over 0 are 5 times as large as the prior 
odds of 1 over 0. Following the same example as 
above, if the prior odds of 1 against 0 equal 4,  
and thus p( ) .0 20=  and p( ) .1 80= , then the poste-
rior odds equal 5 4 20× = , which implies that 

p D( | ) .1

20

1 20
952=

+
=  and p D( | ) . .0 1 952 048= − =  

by Equation 5. The observed data thus allowed us to 
reinforce our belief in model 1 (its probability increased 
from .80 to .952), whereas model 0 loses some credibil-
ity (its probability decreased from .20 to .048). In sum, 
the Bayes factor indicates how a rational agent should 
reallocate probability among two competing models by 
taking into account the information in the observed data, 
provided that one indicates what the prior probabilities 
of the models are.

The Bayes factor offers a rather general framework for 
model comparison. In the Bayesian framework, a “model” 
consists of two elements: a likelihood function (seen as a 
function of the data given one or more model parameters) 
and a set of prior distributions for the model parameters. 
A likelihood and a prior together yield a predictive distri-
bution for the data. Using this predictive distribution, any 
two such models may be compared via the Bayes factor. 
In the social sciences, however, the Bayes factor is primarily 
used via NHBT (Tendeiro & Kiers, 2019). One of the mod-
els, the null model, stipulates that the model parameters 
of interest are equal to a constant (e.g., a true mean is 
exactly 0), or that several parameters are equal to one 
another (e.g., all true means are the same). Such hypoth-
eses operationalize the concept of an “absence” of an effect 
or “invariance” of parameters (Rouder et al., 2009). An 
alternative model, then, is one possible operationalization 

of “existence” or “variance.” Null hypothesis testing is com-
mon in social-sciences research, and in fact it is in this 
particular setting that most introductions to Bayesian-model 
comparison and the Bayes factor are portrayed.

A Worked-Out Example

Haeffel et al. (2023) conducted a series of studies to 
learn about cognitive vulnerability to depression (origi-
nal data available at https://osf.io/umg9p). Their research 
focused on five different groups (Honduran young 
adults, Nepali adults, Western adults, Black U.S. adults, 
and U.S. undergraduates). Cognitive vulnerability was 
measured by means of the Cognitive Style Questionnaire 
(CSQ; Haeffel et al., 2008). We performed a reanalysis2 
of two-tailed independent-samples t-tests reported in 
the article, which compares the CSQ scores between U.S. 
undergraduates (USugrad group; n = 110, x = 4 25. , 
SD = .84) and Western adults (Western group; n = 104, 
x = 4 12. , sd = .92). In what follows, we highlight both 
correct and also incorrect (or at least not ideal) takes on 
the Bayes factor. These questionable reporting or inter-
preting practices (QRIPs) are the primary focus of our 
main study and are introduced after this section. Readers 
should refer to Table 2, in which we define the various 
QRIPs that we analyzed in our study. We identify various 
QRIPs already in this worked example.

The test’s null hypothesis 0 stipulates that there is 
no difference in mean CSQ score between the two 
groups in the population. The alternative hypothesis 1 
indicates that there is a difference, either positive or 
negative. The result of the classical t-test is as follows: 
t = 1 11. , df = 207 6. , p = .27.3 By most levels of signifi-
cance in use in the social sciences, we would “fail to 
reject” 0. We next carry out a Bayesian t-test for the 
same group comparison. In the materials we shared at 
the OSF we show in detail how this can be done either 
in R by means of the BayesFactor package (Morey & 
Rouder, 2021) or in JASP, an easy-to-use graphical user 
interface reminiscent of SPSS ( JASP Team, 2023). Here 
we explain the most important steps that need to be 
considered to optimally perform a Bayesian test. Readers 
may want to refer to our suggested checklist on how to 
perform a Bayesian hypothesis test (see Appendix). We 
also elaborate on a few ideas that are important to keep 
in mind while interpreting Bayes factors in practice.

Null hypothesis, alternative hypothesis, 
and prior assumptions

We assume that the CSQ scores are normally distributed 
in either group, with potentially different mean param-
eters (USugrad group: m

U
; Western group: m

W
) and with 

a common standard deviation σ. The null hypothesis for 
the Bayesian test is the same as for the classical t-test; 
it stipulates that there is no difference in mean CSQ 

https://osf.io/umg9p
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scores between the Western group and the USugrad 
group in the population, and hence the t-test statistic 
will have a Student’s t distribution. Defining µ µ µ= −W U, 
the null hypothesis is then that µ = 0. The alternative 
hypothesis, on the other hand, is not exactly the same 
as that from the classical t-test. In Bayesian hypothesis 
testing, it does not suffice to specify the possible values 
of the parameter being tested (i.e., µ≠ 0). One must also 
choose a prior distribution. In simple terms, this prior 
distribution assigns probability to each possible value 
of the parameter. Importantly, the prior should not be 
informed by the data. That is, the prior should reflect 
information that is independent from the observed data. 
The prior distribution may come about in various ways, 
for instance, to reflect current knowledge, differing sci-
entific perspectives (e.g., skeptical, liberal, or main-
stream), or known constraints of the parameter (e.g., 
priors for variances should be truncated below 0). Often, 
default priors have been set in place in commonly avail-
able software. Such priors, although not incorrect on 
their own, rely on mathematical idealized desiderata and 
may lack an empirical foundation.

For the Bayesian independent-samples t -test, the 
BayesFactor R package offers the Cauchy prior for the 
standardized grouped difference given by δ µ σ= / . The 
Cauchy distribution is the t distribution with one degree 
of freedom, and it resembles the normal distribution but 
with heavier tails. By adjusting the Cauchy distribution’s 
scale parameter r  we can determine how concentrated 
around 0 the prior should be. Parameter r  implies that, 
a priori, there is 50% probability that the true standard-
ized difference between the two groups means is at most 
r  in magnitude. By default, r = 2 2/ —about 0 707. — 
but this value can be changed at will. Priors with non-
zero means can easily be used as well. But other priors 
(say, asymmetric), although possible to use in theory, 
may require some changes to the analysis parameters or 
extra programming to implement them in practice.

We, the authors, lack a deep insight on the topic of 
cognitive vulnerability to depression. It is therefore dif-
ficult to choose a prior that is well-informed. Experts 
may be able to argue that standardized differences larger 
than 0.1, or perhaps 0.3 or 0.5, are quite unlikely. Such 
information could be used to specify a prior. In our case, 
we settle by using the default scale value of 0.707, but 
we also run a sensitivity analysis. This means that we 
consider the test result at various competing values of 
the scale parameter. Furthermore, priors with different 
values of the location parameter can also be explored. 
Do observe that priors symmetric around 0 allocate 
equal prior credence to symmetric values around 0. This 
may not be reasonable or properly reflect the current 
state of affairs (e.g., whether it is sensible that both 
d = 0 5.  and d = −0 5.  are a priori equally likely). In such 
cases it may be best to entertain varying prior location 

values while also studying how sensitive the Bayes factor 
is to such variations. All in all, sensitivity analyses help 
us determine whether the test result is not too depen-
dent on the chosen prior. Strong prior dependence 
should be acknowledged, and one needs to exert cau-
tion in drawing conclusions from the results. Sensitivity 
analyses are nearly always a good thing to try, even 
when we have given very careful thought into choosing 
our priors.4 Concerning parameter σ, we note that this 
is a so-called nuisance parameter: It occurs in both 
models being compared, and it is not the main focus of 
the test. In such cases, its prior is assumed not to be 
very influential (Rouder et  al., 2009). Following the 
default implementation in the BayesFactor R package, 
we assume Jeffreys’s improper prior on the variance: 
p( ) /σ σ2 21= . As a general rule, we note that it is good 
practice to always report which priors were used (see 
QRIPS 3b and 3c) and whenever possible to also provide 
a justification for the choice made (see QRIP 3a).

Interpretation

The result of the test—the Bayes factor—is BF10 0 27= .  

or, equivalently, BF
BF01

10

1
3 7= = . . This can be inter-

preted as follows (recall Equation 1): The observed data 
are 3.7 more likely under 0 than under 1. Alternatively, 
and recalling Equation 4, we can also conclude that the 
observed data tell us that we should revise our relative 
initial belief by a factor of 3.7 to 1 in favor of 0. Thus, 
someone with no prior preference for either hypothesis 
(i.e., prior odds = 1) should now believe that the null 
model is 3.7 times more probable than this alternative 
model (i.e., posterior odds = 3 7 1. ×  = 3.7). In terms of 
posterior-model probabilities (Equation 5), this implies 

that p D( | )
.

.
.1

0 27 1

1 0 27 1
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×
+ ×

=  and p D p( | ) ( ) . 0 11 79= − =

p D p( | ) ( ) . 0 11 79= − = . Another person, say someone who truly 

believed originally that 1 has probability .80 (and there-

fore p( ) .0 20=  and prior odds = 
p

p

( )

( )

.

.




1

0

8

2
=  = 4), must 

now revise their beliefs and conclude that the data are 
0 27 4 1 1. .× =  times more likely under 1 than under 0. 
In terms of posterior-model probabilities we have that 

p D( | )
.

.
.1

0 27 4

1 0 27 4
52=

×
+ ×

=  and p D( | ) .0 48= . After 

having observed the data, this person is now more uncer-
tain about the relative merit of either hypothesis than ini-
tially. It is important to reiterate the fact that the interpretation 
of the Bayes factor and probabilities reported above is 
contingent on the two specific chosen hypotheses only. 
Only in this sense can the prior and posterior-model prob-
abilities be complementary to each other (Equation 3).
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Supporting the null hypothesis

The running example is one interesting case of the Bayes 
factor providing relative support in favor of the null 
hypothesis compared with the particular alternative 
hypothesis used. It is well known that classic frequentist 
procedures do not allow supporting the null (although 
equivalence tests do exist; Wellek, 2003). From the fre-
quentist t-test result and at customary significance levels, 
we may claim only that there was not enough evidence 
allowing us to reject the null hypothesis. Faced with 
such an outcome, it is likely that researchers may expect 
to find some added value in the Bayes factor.

Bayes factor versus posterior odds

Observe that the Bayes factor is a statement about the 
relative probability of the data under the two competing 
hypotheses or models (Equation 1). The posterior odds, 
on the other hand, do offer a relative assessment of the 
probability of the hypotheses after observing the data. 
The Bayes factor and the posterior odds are different, 
and this is important to recognize (see QRIPs 1 and 6). 
It is commonly observed in the literature that the Bayes 
factor gauges the predictive ability of both models under 
comparison. This observation may tempt unwary prac-
titioners to “forget” about the data and project their rea-
soning on the models only. To be clear: If the interest 
is in looking at the relative likelihood of both hypotheses 
after observing the data, then one needs to look at the 
posterior odds instead of the Bayes factor. Specifically, 
and for the running example, it is incorrect to state that 
“0 is 3.7 more likely than 1 after observing the data” 

under all prior odds except unity. In such cases and to 
avoid ambiguity, practitioners are advised to explicitly 
state that their prior odds equal 1, so the Bayes factor 
and the posterior odds are equal to each other.

Relative evidence, priors, and labels

Hypothesis testing, or model comparison more generally, 
is an inherently relative endeavor. The merits of any one 
hypothesis are dependent on what other hypothesis we 
choose for the test. This is true regardless of the infer-
ential paradigm of choice (frequentist or Bayesian), but 
it is perhaps more exacerbated in Bayesian testing 
because of the role played by prior distributions. Avoid-
ing making absolute statements favoring one hypothesis 
(while disregarding its testing counterpart) is better 
avoided (see QRIP 4). Furthermore, sensitivity analyses 
showing the sensitivity of the Bayes factor to varying 
priors are important. Figure 1 shows how the Bayes fac-
tor for our test varies as a function of the scale of the 
Cauchy prior under the alternative hypothesis. It can be 
seen that there is relative evidence in favor of 0 for 
varying Cauchy priors under 1, with the value of BF01 
ranging between about 3 and about 7 for a range of 
scale-parameter values between 0.5 and 1.5. We can 
conclude that the relative evidence in favor of the null 
hypothesis is at most moderate for a broad range of prior 
distributions under the alternative model (we did not 
explore the sensitivity to priors under varying location 
parameters here but, of course, could have). Qualitative 
labels such as “anecdotal” or “moderate” are alien to the 
Bayes factor (Kass & Raftery, 1995; Lee & Wagenmakers, 
2014) and have been introduced merely to assist 

1/3

1

3

10

30

BF
01

0 0.5 1.51

Evidence for H1

Evidence for H0 Strong

Moderate

Anecdotal

Anecdotal

Evidence

Cauchy Prior Width

Fig. 1. Analysis of sensitivity to prior width for the independent t -test Bayes factor con-
trasting the mean Cognitive Style Questionnaire scores between the U.S. undergraduate and 
Western groups. The x -axis is the value of the scale parameter of the Cauchy prior for the 
standardized difference between the two group means under the alternative hypothesis. For 
the Cauchy-prior scale values between 0 and 1.5, the Bayes factor ranges between 1 and 
about 7 in favor of the null hypothesis against an alternative hypothesis with this particular 
prior distribution. This level of evidence brought about by the data is labeled as at most 
moderate on the basis of the classification of Lee and Wagenmakers (2014).
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researchers in their interpretations. It is best at all times 
to report the numerical value of the Bayes factor because 
it conveys a more complete picture of the amount of 
evidence encapsulated in the Bayes factor (see QRIP 10). 
Furthermore, practitioners are advised not to capitalize 
too much on the specific wording of the labels. Evidence 
labeled “moderate,” for example, may (and should) be 
perceived differently among different researchers or 
even among different research fields. If labels are to be 
used, it is best to describe what they represent by taking 
the entire context into account (e.g., research field, spe-
cifics of the experiment, research design, models being 
compared).

Bayes factor and effect size

The Bayes factor is not a valid measure of the effect size 
(see QRIP 7). For example, for the Bayesian t-test above, 
increasing the sample size with no bound will lead to 
an increase of BF10 also with no bound, provided that 
the true difference between both groups is different from 
zero. In this sense, a Bayes factor of BF01 3 7= .  does not 
necessarily reflect a smaller standardized group differ-
ence than the value BF01 20=  would. For such queries, 
one needs to rely on valid effect-size indices (e.g., d , r , 
ω2). Our advice is for applied researchers to report a 
measure of the size of the effect being tested together 
with either confidence or credible intervals and also the 
Bayes factor as a measure of the evidence in the data. 
For the running example, we found Cohen’s d = 0.15, an 
effect that may be considered of small magnitude—95% 
confidence interval = [ . , .−0 12 0 42].

Presence versus absence

Simplistic phrasing of research hypotheses such as “0: 
There is no difference” and “1: There is a difference” can 
arguably lead researchers to use the Bayes factor with 
the goal of establishing either the absence (0) or pres-
ence (1) of an effect. Logically speaking, the Bayes factor 
in isolation cannot establish either theory (see QRIP 5). 
The Bayes factor may be used to gather relative evidence 
in the data supporting either hypothesis. Hypotheses 
receiving strong support, especially after a sequence of 
multiple well-established experiments, will naturally lead 
researchers to update their theories. But Bayes factors 
are just a stochastic expression of our knowledge and 
should not be used as if they were a proof of a theorem. 
For the running example, the relative evidence weakly 
favors the null hypothesis compared with the particular 
alternative hypothesis used. Depending on our prior 
odds, our relative belief between both hypotheses is 
now slightly shifted toward the null hypothesis of an 
absence of an effect. However, as argued before, using 

other alternative hypotheses may change the outcome 
quite drastically. More evidence and more experiments 
are probably needed before the scientific community 
can reach a consensus. The important point we want to 
make is that such a decision lies beyond the conceptual 
boundaries of the Bayes factor itself and requires extra-
neous information and agreed-on norms (akin to the 
particle-physics community accepting the existence of 
the Higgs boson on the basis of the five-sigma rule).

Inconclusive evidence

Bayes factors of (about) 1 imply that the observed data 
are equally likely under either hypothesis under com-
parison (Equation 1). In other words, there is lack of 
evidence either way. This should not be confused with 
evidence of absence, that is, that it is likely that there is 
no effect (see QRIP 9). A simple analogy is that of a 
nonsignificant frequentist test result. For the running 
example, BF01 approaches 1 as the Cauchy prior under 
0 concentrates around 0 (see Fig. 1). At the conver-
gence limit, null and alternative hypotheses coincide, 
and thus the data are perfectly uninformative.

The Bayes Factor in Applied Research

In the previous section we provided a detailed account 
of how to use the Bayes factor by means of an example. 
Although the origins of the Bayes factor go back about 
100 years (Etz & Wagenmakers, 2017), the interest on its 
use in applied work only increased since the 1990s with 
the seminal article by Robert Kass and Adrian Raftery 
(Kass & Raftery, 1995). In addition, the availability of 
faster computers and dedicated software such as JASP 
( JASP Team, 2023) and BayesFactor (Morey & Rouder, 
2021) facilitated a wider adoption of this tool in practice 
in the last, say, 10 years. It is therefore natural to ques-
tion how well practitioners have been dealing with the 
Bayes factor in applied research. However, there is not 
a lot of literature on this topic. To the best of our knowl-
edge, Wong et al. (2022) is the only article of the kind. 
Because the current article builds on Study 1 in Wong 
et al. (2022), here we present a brief summary of the 
main findings in Wong et al. (2022). We then present the 
details of our extension to Wong et al. (2022).

Wong et al. (2022)

Study 1 of Wong et al. (2022) is a small peer-reviewed 
literature study of 73 published applied articles. The 
study focused exclusively on how researchers used 
NHBT. Each article was inspected, and the occurence of 
any of the eight QRIPs was marked down. Table 1 identi-
fies and provides a brief description of each QRIP, 
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together with the corresponding incidence in the sam-
pled articles. As can be seen, the three most common 
QRIPs were the third (incomplete reporting of prior 
distributions), fourth (not referring to the comparison of 
models), and fifth (making absolute statements). Wong 
et al. (2022) also recorded other occurences of QRIPs 
beyond those mentioned in Table 1. One in particular 
was found often (21.9%): Bayes factors close to 1—
which should imply that the models under comparison 
were relatively equally predictive of the observed data—
were instead interpreted as supporting the null model 
of absence.

The current study

This article used the setup and findings from Wong  
et al. (2022) as a template, and both conceptually rep-
licated and significantly extended their study design. We 
describe the details of our study in the Method section. 
Here we just list the main additions of our study to that 
by Wong et al. (2022):

1. Extended literature search. We performed a larger 
search for applications of the Bayes factor in the 
social-sciences literature. After filtering we were 
left with a set of 167 articles, which more than 
doubled the original study. All articles from the 
original study are also included in the new 
sample.

2. Extended criteria. We included new criteria for 
assessment (see Table 2). We also labeled some 
of these criteria QRIPs because they reflect inap-
propriate applications of the Bayes factor. While 
updating the list of criteria, we decided to discon-
tinue QRIPs 2 and 8 by Wong et al. (2022), as we 
explain later. Furthermore, we included some 
criteria that are simply descriptive in nature and 

partly reflect the Bayes factor usage intentions 
from the researchers.

3. Abstracts. In our study we distinguished between 
the abstract and the rest of the article. The reason 
is that an abstract, by nature, is more condensed 
than the body of the article. This fact may have 
consequences in how results including the Bayes 
factor may be reported. In our study we first present 
the results excluding all abstracts. Results specifi-
cally from the abstracts are reported separately.

4. Extended discussion. Importantly, we included an 
extended discussion of our results. Our goal is to 
go beyond reporting the results and to try to 
understand the rationale supporting our findings. 
Simply put: Why do these inconsistencies come 
about as often as they do? This discussion is of 
value if one wants to take the next step forward, 
which is to propose measures aiming at curtailing 
the prevalence of these problems.

5. Recommendations. Based on our findings, we 
offer concrete suggestions for improvement. 
Among all our suggestions, we highlight the 
checklist that we developed (see Appendix). This 
checklist aims at aiding both authors as well as 
journal reviewers and editors in using the Bayes 
factor in practice.

Method

Article selection

The first author ( J. N. Tendeiro) performed the article 
selection. An advanced search for research articles was 
conducted on Google Scholar on December 22, 2021, 
using the key (“bayes factor” AND “bayesian 
test” AND psychol) from 2010 on. This led to 508 
hits. From these hits, 399 were dropped. The dropped 

Table 1. QRIPs for Null Hypothesis Bayesian Testing

QRIP (incidence) Brief description

1—Describing the BF as posterior odds (4.1%) Defining or elaborating on BFs as posterior odds ratios
2—Not specifying null and alternative hypotheses (24.7%) Unclear which models are being tested by the BF
3—Incomplete reporting of prior distributions (69.9%) Omitting the prior distribution from the alternative 

hypothesis
4—Not referring to the comparison of models (60.3%) Presenting BFs as absolute evidence for one of the two 

models
5—Making absolute statements (56.2%) Concluding that there is (not) an effect on the basis of 

the BF
6—Using the BF as posterior odds (17.8%) Interpreting BFs as ratios of posterior model probabilities
7—Considering the BF as effect size (12.3%) Associating the size of the BF to the size of the effect
8—Mismatch between statistical and research  

hypotheses (2.7%)
BF applied to incorrect operationalizations of research 

hypotheses

Note: Retrieved from Wong et al. (2022). QRIP = questionable reporting or interpreting practice. BF = Bayes factor.
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hits were either repetitions (e.g., preprints of also 
selected final published articles) or false hits (e.g., the-
ses, non-English-language sources, no PDF available, 
book/book chapters, no empirical applications of the 
Bayes factor, or not a research article). Articles that used 
only the Bayes factor through the Bayesian information 
criterion (Raftery, 1995; Schwarz, 1978; Wagenmakers, 
2007) were also removed because not all the required 
criteria could be inspected. Thus, 508 399 109− =  articles 
from this search entered our study.

We further complemented our sample with the result 
from an advanced search on the Web of Science on 
November 29, 2021, using the following key: 
(TI=((bayes factor OR bayes* selection 
OR bayes* test*) AND psychol*) OR 
AB=((bayes factor OR bayes* selection OR 
bayes* test* OR bf*) AND psychol*) OR 
AK=((bayes factor OR bayes* selection OR 
bayes* test* OR bf*) AND psychol*)) AND 
PY=(2010-2022). This led to 730 hits. Of these, 27 
overlapped with the Google search, so 703 unique hits 
remained. However, only 58 new articles survived the 
removal of repetitions or false hits. The main problem 
was the inclusion of the “bf” acronym, which led to 
selecting a wide range of false positives (e.g., body fat, 
big five). In summary, our study includes 109 58 167( ) ( )GS WoS+ =

109 58 167( ) ( )GS WoS+ =  articles.

Article grading

We independently graded 10 articles randomly selected 
from the sample of 167 articles. Each of us graded the 
same 10 articles. The purpose of this pilot study was to 
calibrate the grading procedure to be used in the entire 
sample. Prior to the pilot study, we decided to cover the 
eight criteria listed in Table 1 plus two more:

•• #9: When faced with an inconclusive Bayes factor 
(e.g., 1 3 3/ < <BF ), conclude that there is no 
effect.
Explanation: A Bayes factor around 1 implies that 
both models under comparison are equally predic-
tive for the data observed. Concluding that there 
is no effect amounts to claiming support for the 
null hypothesis in NHBT. This is a clear mistake.

•• #10: Interpret the Bayes factor simply using cutoffs 
(e.g., 1–3, 3–10).
Explanation: The Bayes factor encapsulates the 
evidence in the data (see Morey et al., 2016). Evi-
dence through the Bayes factor is best interpreted 
as a ratio-scaled value on the continuum between 
0 and infinity. Discretizing the Bayes factor value 
implies losing valuable information, and the discrete 
values are merely arbitrary choices of the analyst 

(rather than the reader). Therefore, we judge it as 
suboptimal when researchers report or interpret 
results on the basis only of a set of discrete labels 
of evidence (as provided, e.g., in Jeffreys, 1961).

We discussed the results in a group meeting. The rat-
ings among the five of us were largely in agreement. We 
focused on aspects for which some disagreement existed, 
as well as on things to adapt to make the assessment 
more streamlined. As a result, we decided on the fol-
lowing grading plan for all articles:

•• Exclude the second (not specifying null and alter-
native hypotheses) and the eighth (mismatch 
between statistical and research hypotheses) cri-
teria. The main argument in favor of the exclusion 
is that these criteria are not necessarily related to 
the Bayes factor per se (i.e., they could also be 
observed in articles resorting to NHST).

•• The third criterion (incomplete reporting of prior 
distributions) was replaced by three more nar-
rowed criteria:
|| #3a: The reason or justification for the chosen 

priors is not provided.

Explanation: Ideally, the choice of the prior 
distributions taking part in a Bayesian model 
should be carefully justified. However, prior elici-
tation is a notoriously difficult endeavor (e.g., 
Falconer et  al., 2022). Some authors seem to 
avoid this issue altogether and provide no expla-
nation for the priors used in their analyses.

|| #3b: It is unclear which priors were used under 
either model.

Explanation: Not providing a justification for 
the priors used is not the same as not declaring 
which priors were used; we think that, at a 
minimum, priors should be reported for the 
sake of reproducibility of the analyses.

|| #3c: The information on priors is incomplete 
(e.g., only the distribution family, but not the 
specific distribution used, is provided).

Explanation: For example, stating to have 
used a Cauchy prior but omitting the corre-
sponding scale parameter is not good practice. 
In such cases, the reader will need trial and 
error to disclose the missing information. We 
think this should be avoided.

•• To attempt a thorough characterization of the 
practical use of the Bayes factor in applied 
research, we further included three extra criteria. 
These are descriptive in nature and do not neces-
sarily reflect misuses of the Bayes factor. Instead, 
they are aimed at providing a more fine-grained 
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characterization about how and why the Bayes 
factor was used. Thus, we do not refer to them as 
QRIPs:
|| A: Justifying using a prior because it is “the” 

default
Explanation: In practice, resorting to default 
priors (e.g., as suggested by available software) 
is commonplace. We wanted to learn how 
often this was done in practice.

|| B: Arguing to use the Bayes factor to be able to 
draw support for null findings from NHST
Explanation: Some researchers seem to resort 
to the Bayes factor only after classical testing led 
to failure to reject the null hypothesis. Such 
researchers are then attracted to the ability of the 
Bayes factor to provide relative support in favor 
of the null hypothesis. We tallied the number of 
times this behavior was found in our sample.

|| C: Arguing that the Bayes factor allows distin-
guishing between the presence and the absence 
of an effect
Explanation: It may be argued that a null 
model such as 0 0: θ =  completely captures 
the notion of a total absence of the effect  
operationalized by parameter θ. Perhaps sur-
prisingly, however, operationalizing the com-
plementary notion of the existence of an effect 
is not as straightforward. The problem is  
that, in Bayesian inference, simply stating the 
parameter support (such as 1 0: θ ≠ ) is insuf-
ficient; we must also supply a corresponding 
prior distribution for the parameter at hand. 
Because different choices of priors entail 

different Bayes factor values, we must realize 
that one particular choice of a prior will lead 
to nothing more than one operationalization 
of what the researchers trust to represent the 
existence of an effect.

To make things further complex, it is also 
important to realize that the Bayes factor typically 
does not permit a strict separation between any 
two models under comparison. Bayesian model 
comparison proceeds by the accumulation of evi-
dence either way; it does not logically function 
as proving a mathematical theorem does. Thus, 
authors claiming to use the Bayes factor to “estab-
lish,” or “distinguish,” between the existence or 
absence of an effect may be surprised to learn 
that their desideratum is quite difficult to achieve. 
In our study, we identified articles that explicitly 
claimed to have used the Bayes factor with this 
particular motivation in mind.

Table 2 lists the criteria used to classify the sampled 
articles. We kept, and extended, the original numeration 
from Wong et al. (2022) for consistency.

The above inspection was conducted by reading 
through all sections in the papers except for the abstract. 
The abstract is a rather condensed text for which we 
speculated that some types of reporting problems are 
more prone. After conducting the study, we decided to 
go through all the abstracts and flag all criteria separately 
from the rest of the articles. We report these results in 
a separate section. 

All supporting files that complement this article can 
be found at https://osf.io/57ew4.

Table 2. Criteria Used

Criterion Brief description

QRIP  
 1—Describing the BF as posterior odds Defining or elaborating on BFs as posterior odds ratios
 3a—Missing explanation for the chosen priors Reason or justification for the chosen priors not provided
 3b—No mention of the priors used Unclear which priors were used under either model
 3c—Incomplete info regarding the priors used Providing, e.g., only the distribution family (“Cauchy”)
 4—Not referring to the comparison of models Presenting BFs as absolute evidence for one of the two 

models
 5—Making absolute statements Concluding that there is (not) an effect on the basis of the BF
 6—Using the BF as posterior odds Interpreting BFs as ratios of posterior model probabilities
 7—Considering the BF as effect size Associating the size of the BF to the size of the effect
 9—Inconclusive evidence as evidence of absence Stating that there is no effect when faced with inconclusive 

evidence (e.g., 1 3 3/ < <BF )
  10—Interpreting ranges of BF values only Interpreting the BF simply using cutoffs (e.g., 1–3, 3–10)
Usage  
 A—Default prior Justifying using a prior because it is “the” default
 B—Null results BFs as a follow-up to nonsignificant outcomes from NHST
 C—Presence vs. absence BFs to distinguish between the presence and absence of an 

effect

Note: QRIP = questionable reporting or interpreting practice; BF = Bayes factor; NHST = null hypothesis significance testing.

https://osf.io/57ew4
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Results

The frequencies and percentages associated to each 
evaluated criterion are given in Table 3. As can be seen, 
only four of the 10 QRIPs (3c, 7, 9, and 10) were rela-
tively rare (less than 10% of the articles). Overall, 149 
articles (89.2%) displayed at least one QRIP, and 104 
articles (62.3%) displayed at least two QRIPs.

Table 4 shows the occurrence of pairs of criteria. 
Furthermore, the supplementary material available at the 
OSF further includes more tabulations for these data that 
help to better clarify the results. We refer to results from 
these tables in the discussion that follows to better char-
acterize each identified problem.

Discussion of the Results

In what follows, we revisit each criterion that we 
included in our study. We list arguments that may help 
clarify why the observed issues are occurring as fre-
quently as found in our study. This is the result of a joint 
discussion between the authors over these matters.

QRIPs 1 and 6

QRIP 1 concerns defining the Bayes factor as if it were 
a posterior odds. Equation 4 shows that the Bayes fac-
tor equates only to the posterior odds in the special 
case in which the prior odds is equal to 1. In other 
words, only when both models under comparison are 
a priori equally likely can the Bayes factor be inter-
preted as posterior model odds. However, in 13.2% of 
the articles we found that Bayes factors are simply 
introduced as if they were posterior odds, without hav-
ing explicitly stated that prior odds equal to 1 were 
assumed. For example:

These Bayes Factors can be readily interpreted as 
a ratio of evidence in favour of the experimental 
effect compared to the null effect. For example, a 
BF10 of 3 would represent that the experimental 
effect is three times more likely than the null, given 
the data. (P9

5)

Or take this example: “For instance, a BF10 10=  means 
that the H1 is ten times more likely to be true than the 
H0” (P130). Relatedly, QRIP 6 concerns confusing the 
Bayes factor with the posterior odds when interpreting 
the results. This error was found relatively often—in 
20.4% of the articles. Here is one example:

Table 3. Number of Articles Displaying the Corresponding 
Criterion

Criterion Number of articles (%)

QRIP  
 #1 22 (13.2)
 #3a 18 (10.8)
 #3b 50 (29.9)
 #3c 10 (6.0)
 #4 104 (62.3)
 #5 59 (35.3)
 #6 34 (20.4)
 #7 7 (4.2)
 #9 6 (3.6)
 #10 9 (5.4)
Usage  
 A 59 (35.3)
 B 27 (16.2)
 C 30 (18.0)

Note: QRIP = questionable reporting or interpreting practice.

Table 4. Frequencies of the Occurrence of Pairs of Criteria

Criterion #1 #3a #3b #3c #4 #5 #6 #7 #9 #10 A B C

#1 — 1.2 3.0 1.2 7.8 4.2 5.4 0.6 0.6 5.4 3.6 3.6
#3a  2 — 0.6 1.8 6.6 1.2 1.2 0.6 3.0 1.8
#3b  5  1 — 0.6 21.0 14.4 6.0 3.6 1.8 4.2 0.6 1.8 4.2
#3c  2  3 1 — 3.6 0.6 1.2 0 0.6 0.6 0.6 3.6  
#4 13 11 35 6 — 21.6 12.6 2.4 1.2 5.4 22.2 12.0 14.4
#5  7  2 24 1 36 — 6.0 1.8 2.4 2.4 13.2 3.0 6.0
#6  9  2 10 2 21 10 — 1.2 7.8 4.8 3.0
#7  1  1 6 4 3 2 —  
#9 3 1 2 4 — 1.2 1.2 1.2
#10  1 7 1 9 4 — 0.6 0.6 0.6
A  9 1 1 37 22 13 2 1 — 6.6 7.2
B  6  5 3 6 20 5 8 2 1 11 — 2.4
C  6  3 7 24 10 5 2 1 12 4 —

Note: Dashes are used to indicate a diagonal line from the top left of the table to the bottom right. Counts are shown under this 
diagonal, percentages are shown above it, and missing entries are equal to 0.
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Bayesian analyses . . . produced a JZS Bayes Factor 
of 3.74. According to Jeffreys (1961), this result indi-
cates that there is some evidence for H0 over H1 (i.e., 
the hypothesis that gender is not associated with ODL 
scores is about three to four times more likely than 
the hypothesis that gender is associated with ODL 
scores, based on our sample’s results). (P110)

Here is another example: “The alternative hypothesis is 
2 times more likely than the null hypothesis (B+ =0 2 46. ; 
Bayesian 95 % CI [0.106, 0.896])” (P11).

We discussed these findings and tried to explain them. 
We can summarize our main explanations in four points.

Lack of knowledge. It is entirely likely that practitioners 
still do not master the basics of the Bayes factor. This is a 
natural explanation that is also equally plausible to most 
of the coming QRIPs, and we do not repeat it further. The 
main argument is that Bayesian hypothesis testing is still 
relatively novel for most practitioners, and surely so com-
pared with frequentist inference.

Principle of indifference. Some researchers may be 
implicitly assuming that prior odds equal 1, that is, that a 
priori both models under comparison are equally likely 
following the advice by Jeffreys.6 If so, the problem may 
be perceived as one of lack of communication.

Bayesian versus classical approaches. Many intro-
ductory texts to Bayesian inference capitalize on the fact 
that the p value is based on the “wrong” conditional prob-
ability (of observed data—or more extreme—given a null 
hypothesis). Bayesian statistics, on the other hand, as the 
theory of inverse probability ( Jeffreys, 1961), is touted as 
allowing the conditional and computing probabilities of 
hypotheses to be reversed given the observed data. This is 
at the essence of posterior probabilities and distributions 
and of the Bayesian credible interval. The above might 
create a false impression that all Bayesian statistical tools 
(including the Bayes factor) can be interpreted as the 
“inverse probability” of hypotheses given data. However, 
as shown in Equation 1, the Bayes factor is based on 
probabilities of the observed data conditional on the 
hypotheses. We suggest it is possible that this feature is 
not sufficiently well appreciated by practitioners.

Cognitive dissonance. It is possible that some research-
ers are aware of the issue. However, they also realize that 
they followed recommendations to use Bayes factors 
despite the fact that Bayes factors cannot be interpreted as 
posterior odds (as they actually wished). To alleviate this 
cognitive dissonance, they convince themselves that they 
are entitled to “somewhat extend” the realm of the Bayes 
factor to what Bayesian inference at large does.

QRIPs 3a, 3b, and 3c; Usage A

These four reporting styles concern how researchers 
deal with prior distributions when using Bayes factors. 
In almost one third of the articles nothing about priors 
was mentioned (QRIP3b; 29.9%). Incomplete available 
information regarding the priors used was not a fre-
quently found issue (QRIP3c; 6%). It sometimes hap-
pened that the used priors were mentioned but no 
explanation was provided (QRIP3a; 10.8%), or the 
authors simply stated that they used the software’s 
default priors (Usage A; 35.3%). In total, 130 articles 
(77.8%) displayed at least one of these reporting styles. 
Our arguments explaining this state of affairs are sum-
marized as follows.

Too little space. Text space in most journals comes at a 
premium. Researchers are used to write succinctly when-
ever possible, saving space to highlight the main results 
from their studies. This fact may disadvantage a thorough 
presentation of the analytical details in the methods and 
results sections of articles. We found that, for articles 
reporting priors (i.e., not committing QRIP 3b), eight 
(6.8%) placed such information in supporting materials 
(supplements or appendices), although only one of these 
eight articles had a journal word limit. Furthermore, from 
articles reporting incomplete information regarding the 
priors used (QRIP 3c), three (30%) were published in jour-
nals with a strict word limit. Thus, at least to some extent, 
the pressure to write concisely may be conditioning the 
way explanations are provided. This argument may be a 
plausible explanation for QRIPs 3a, 3b, and 3c and to 
some extent to Usage A as well.

Habits inherited from NHST. Specifying alternative 
hypotheses and hypothesizing effect sizes of interest are 
essential to conducting power analyses in Neyman-Pearson- 
based NHST. Nevertheless, conducting power analyses is 
rare in practice. As a consequence, researchers pay rela-
tively little attention to the alternative hypothesis already 
when conducting frequentist analyses. It is possible that 
this mindset is being carried over to NHBT, which would 
justify the neglect of the importance of priors in Bayesian 
testing as well.

QRIP 4

Bayesian evidence is relative. This means that the quan-
tification of the merits of one model is strongly depen-
dent on what other model is used for the comparison. 
As obvious as this may sound, it is very surprising that 
more than 60% of the articles seem to gloss over this 
fact. Here are two such examples: “With this ‘stronger’ 
VB05 prior, we found strong evidence for the null 
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hypothesis (BFsnull ranging from 12.7 to 22.7 for the 5 
ROIs)” ( )P134 , and “These analyses revealed a Bayes factor 
of . . . Bf1 0 0 19, .=  in the mindful attention condition, 
supporting the null hypothesis that sexual motivation 
does not affect partner judgments following mindful 
attention” ( )P85 . We also found that, among researchers 
who failed to mention what prior distributions were used 
(QRIP 3b), 70% also failed to explicitly refer to the rela-
tiveness of the evidence displayed by the Bayes factor 
outcome. This behavior is perhaps best explained by 
one or more of the reasons below.

Writing style. To some extent, we think that the eco-
nomic way in which researchers write their articles can 
partly explain this result. Having to write repeatedly 
expressions such as “The Bayes factor indicates that the 
data are X times more likely under Model A than under 
Model B” is taxing after some time. It is very likely that 
some researchers objectively choose to omit parts of the 
text for the sake of convenience.

Implicitly assumed. This explanation is strongly tied 
with the previous one. We found examples of articles that 
in some instances explicitly referred to the relativeness of 
the evidence but in other cases did not. In addition to 
writing style, it is perhaps further assumed that the reader 
understands what is happening. As a consequence, drop-
ping some words along the way may be perceived as 
“acceptable.”

Increased impact. Ascribing evidence to one of the 
models only may also be a strategy to amplify the strength 
of the results found. The second example above is one 
good example of this. It feels stronger to only report “sup-
port for the null hypothesis of absence” than to report 
“support for the null hypothesis of absence over one pos-
sible operationalization of the alternative hypothesis of 
existence” instead. The shorter way of reporting the result 
is “fancier” and is easier to sell in an abstract or a talk, for 
example.

QRIP 5 and Usage C

As discussed before, there seems to be an irresistible 
appeal of researchers toward using the Bayes factor to 
establish the presence of an effect, or the lack thereof. 
Our account of Usage C indicates that 18% of the articles 
referred to this desideratum. In addition, 35% of the arti-
cles relied on the Bayes factor to make statements about 
the existence (or lack thereof) of effects (QRIP 5). Here 
are two examples: “For 6-year-olds, there was no difference 
between environments (Msmooth = 2 11.  vs. M rough = 1 93. , 
t( ) .52 1 0= , p = 0 31. , d = 0 3. , BF = .42” (P76 ), and “[a] Bayes-
ian analysis found a reverse alignment effect with fewer 

errors when the arrow pointed away from the object’s 
handle (1.7% vs. 0.8%), BF = 25 9. ” ( )P20 . Several explana-
tions seem plausible to us.

Increased impact. Like QRIP 4, one possible explana-
tion is to enhance the results (i.e., to overclaim).

Avoiding uncertainty. Relatedly, the generalized lack 
of modesty that permeates published research (Hoekstra 
& Vazire, 2021) may also help explain this phenomenon. 
In fact, many researchers seem averse to acknowledging 
the uncertainty in their experiments and data analyses.

Writing style. We think that some authors may find that 
a misleading expression such as “there is a difference 
between the two groups (BF = . . .)” is interchangeable 
with the more adequate expression “the evidence sup-
ports the hypothesis that there is a difference between the 
two groups over the hypothesis that there is no difference 
(BF = . . .).” The former expression is unfortunate because 
it mixes the relative evidence found for an effect (the 
Bayes factor value) with the effect hypothesis itself.

Influence from NHST. This is directly related to the 
previous point. Old habits from reporting statistical results 
from NHST may also help clarify the situation. In rigor, a 
“statistically significant” outcome simply states that an 
effect of at least the magnitude that was observed would 
be too unlikely were the null hypothesis true. It is a state-
ment about the data under a particular hypothesis and not 
about any of the hypotheses. Likewise, a similar situation 
occurs with the Bayes factor, and QRIP 5 is a way to 
express that.

Decision-making. Testing two hypotheses need not 
always end with a decision between the two. In many 
cases, reporting the relative plausibility between both 
hypotheses should suffice. But this strategy may be per-
ceived as “too nuanced” or even “incomplete.” Thus, 
instead of conducting a detailed cost-benefit analysis, and 
with the pressure to choose and discard between hypoth-
eses, researchers may then fall into QRIP 5’s trap and 
declare the existence or absence of the effect under study.

QRIP 7

Few articles (seven; 4.2%) considered the Bayes factor as 
an effect-size measure. Here is one example: “Pupil size 
was larger in a higher tracking load. . . . However, the 
Bayesian test showed only positive, but smaller, effect of 
Load on tracking pupil size (BFincl. .= 7 506)” (P104).

p values and effect sizes. QRIP 7 may be the Bayesian 
counterpart to the wrongful association between statistical 
and practical significance. It is well known that even the 
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tiniest of effects may become “statistically significant” pro-
vided that we have access to enough data. Likewise, 
widely different effect sizes can be associated with similar 
levels of evidence as indicated by the Bayes factor, 
depending on the priors used (Wong et al., 2022). Some 
researchers may make the same mistake as they make 
with small p values and thus equate high values of BF10 
with large effect sizes.

Bayes factor labels. It is possible that commonly used 
labels to qualify levels of evidence (e.g., 1 310< <BF  = 
anecdotal evidence for 1, 3 1010< <BF  = moderate evi-
dence for 1; Jeffreys, 1961) may create some confusion 
related to the magnitude of the associated effect size and 
perhaps foster the aforementioned wrongful association 
between test statistics and effect sizes.

QRIP 9

Bayes factors close to 1 imply that the evidence for either 
model under comparison is about the same. Erroneously, 
in a small set of articles (six; 3.6%), researchers instead 
concluded that they found evidence for the null model 
of no effect on reporting Bayes factor values close to 1. 
For example: “In contrast there was no difference in 
meaning between the thinking without examples and 
planning conditions; the Bayes factor provided anecdotal 
evidence in favor of the null (BF10 86= . )” ( )P105 . Here is 
another example:

The difference was significant in the t-test (t(55) = 
2.14, p = .04) but not when calculated on the basis 
of Cohen’s d (d = .29, confidence interval between 
−.09 and .67) or according to a Bayesian test (Bayes 
factor B10 1 2= . ). Since both the confidence interval 
and the Bayes’ factor do not point towards a true 
difference and the t-test is borderline significant, 
this can be considered a very small or non-existent 
effect. ( )P12

Influence from NHST. A nonsignificant outcome should 
imply a noncommital attitude toward the null hypothesis. 
However, too often researchers interpret nonsignificant 
findings as “evidence for the null” (e.g., Goodman, 2008). 
We think that it is possible that this unfortunate reasoning 
may be resurfacing within Bayesian testing in the form of 
QRIP 9.

Absence as default. This explanation is closely related 
to the previous explanation. From NHST tradition, the 
null model (typically, of absence) is the hypothesis that 
researchers try to nullify. Faced with an absence of evi-
dence against the null model, researchers fail to reject 
the null model and retain it instead. The decision to 

retain the null model need not necessarily reflect belief 
in the null model, however. From a Neyman-Pearson 
point of view, retaining or accepting the null hypothesis 
reflects only a behavioral decision of action. This pro-
cess of decision-making is unrelated to the notion of 
belief in the hypothesis retained (Neyman & Pearson, 
1933). It may also be interpreted as a conservative deci-
sion. This “frequentist” attitude of retaining the null 
model in the absence of evidence is also what QRIP 9 
could be based on.

Dichotomization. Hypothesis testing is inherently a 
dichotomic inferential exercise. Such dichotomization helps 
create a clear divide between a null model of absence and 
an alternative model of presence. It is then possible that, 
when faced with inconclusive evidence (i.e., Bayes factors 
close to 1), researchers are prone to choose the absence 
side of the dichotomy, also because of the two reasons 
below.

Increased impact. It sounds arguably stronger to say 
that there is “evidence of an absence of an effect” rather 
than to say “the evidence between absence and existence 
is ambiguous.”

Preference for parsimony. The previous explanation 
not only sounds stronger but also simpler. We think that 
perhaps some form of Occam’s razor is taking place here 
and researchers err for preferring the simpler way out 
(see, e.g., Gallistel, 2009). We note, however, that the 
Bayes factor already has a preference for simpler models 
( Jefferys & Berger, 1991), so an additional preference for 
parsimony should be justified explicitly.

QRIP 10

Basing the interpretation of Bayes factors on qualitative 
labels associated with ranges of values is the core of this 
QRIP. We observed this phenomenon in nine articles 
(5.4%). Here is one instance:

Both disgust and fear were experienced more in 
the experimental group (ps ≤ .05), but disgust 
showed clearly the largest difference. In terms of 
Bayes factor (BF), evidence for greater disgust in 
the experimental group was strong (BF10 10> ), but 
there was only weak evidence for a difference in 
other emotions (BF10 3’s < ). ( )P125

Summary. In the article from which the example above 
was retrieved, there are six Bayes factors being inter-
preted (given in a table). The authors may have consid-
ered it to be too verbose to interpret each Bayes factor 
individually.
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Seeking authority. Resorting to interpretative labels has 
the major advantage of being able to quote others to back 
up one’s own results. In this sense, researchers need less 
effort to determine the strength of the evidence that they 
found (i.e., they need not “think”).

Avoid criticism. Related to the previous explanation, 
using labels may be perceived as a means of protection 
against criticism aimed at the inherent subjectivity of inter-
preting Bayes factors. Thus, any questions concerning the 
perceived magnitude of the estimated effect can be 
deferred to the Bayes factor label system that was used.

Repeat literature. Most introductions to Bayesian hypoth-
esis testing refer to at least one label system for the Bayes 
factors. Some researchers may have found such systems 
compelling to the point of excessively relying on them.

NHST. Using labels such as “significant” or “nonsignifi-
cant” is commonplace in frequentist inference. It is possi-
ble that some researchers are projecting the same kind of 
reporting behavior onto the Bayes factor.

Usage B

Twenty-seven articles (16.2%) mentioned that they used 
the Bayes factor as a follow-up to nonsignificant results 
from NHST. For example:

In order to address the possibility that this study 
was underpowered (among other reasons), we also 
incorporated Bayesian analyses, which do not 
require a stopping rule (e.g., Rouder, 2014). If a  
t-test yielded a non-significant result, we conducted 
a Bayesian t-test ( . )rprior = 0 707 . ( )P115

Below are some considerations related to this particular 
motivation toward using the Bayes factor.

Support H0. Very clearly, the desire to draw support for 
the null hypothesis is the most logical explanation. Sup-
porting the null hypothesis is not allowed in NHST, and 
thus the Bayes factor is seen as advantageous (see, e.g., 
Dienes, 2014).

Trojan horse. The Bayes factor’s ability to draw relative 
support for the null hypothesis is one of its most touted 
advantages. We speculate whether, for some researchers, 
it was precisely this purported advantage that drew them 
to the Bayes factor.

Request from reviewers. Given that the use of Bayesian 
hypothesis testing is growing, it is also possible that 
reviewers are explicitly requesting this type of analyses.

QRIPs in Abstracts

We also looked at the occurrence of each criterion in the 
abstracts. The most prominent QRIPs are those associated 
with short and catchy reporting: 24 (14.4%) QRIP 4 (evi-
dence reported as absolute instead of relative) and 10 
(6.0%) QRIP 5 (reporting the presence or absence of 
effects). Seven articles (4.2%) explicitly referred to a gen-
eral goal of establishing the absence or presence of a 
particular effect, for which the Bayes factor would be of 
use (Usage C).

In general, the main questionable reporting practices 
that we identified in abstracts seem to be directly related 
to the fact that they are meant to be short. The pressure 
to write an appealing abstract may also help explaining 
our findings. Of course, authors should refrain from 
engaging in this habit in order to prevent distortions in 
the published literature.

Summary and Recommendations

In the previous section we outlined various possible 
causes for the problems we identified. In short, we think 
that the main causes for the problems include a basic 
lack of understanding, omission of important informa-
tion, unfamiliarity on dealing with prior distributions, 
resorting to writing styles that overemphasize impact 
and deemphasize uncertainty and a desire to make a 
dichotomous decision as the final test’s outcome.

In addition to the anticipated problems that we iden-
tified in our article reading (per Table 2), we also made 
note of a few other problems that we found (see the 
Supplementary Material available at the OSF). Here  
we mention three such occurrences. In one example, 
we identified a few instances of articles in which the 
authors seemed to conflate the concept of “evidence” 
(i.e., how the data allow us to update our belief) with 
that of “belief” (i.e., how likely we think each hypoth-
esis is after observing the data). This is related to QRIP 
1. In another example, there were authors who seemed 
to think that Bayesian statistics is less reliant on model 
assumptions. This is obviously misguided. In fact, 
Bayesian statistics has the potential of bringing models 
and their underlying assumptions to the analysis fore-
front. This is not always the case with frequentists sta-
tistics (e.g., the set of data “at least as extreme as” is 
not always clearly defined; Lindley, 1993). Finally, some 
authors were under the impression that Bayes factors 
could be used to test model fit. Perhaps surprisingly, 
Bayes factors do not fare well in what concerns model 
fit. The strength of the Bayes factor is to quantify the 
relative predictive ability between two models. One 
particular model may outpredict another competing 
model while at the same time fit the data quite poorly 
(but probably better than the model it outperformed). 
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Our advice is to always consider model fit separately 
from testing through the Bayes factor.

All together, our findings provide a clearer image of the 
ongoing problems related to the use of the Bayes factor 
in practice. To address the current state of affairs, we also 
wish to offer some constructive suggestions aimed at 
improving things going forward. Figure 2 shows our sug-
gestions and how they are meant to attend to each QRIP. 
Below we briefly summarize each of our proposals.

Learning materials

Introductions to the Bayes factor commonly start by 
highlighting problems with the p value. These limita-
tions then motivate the use of the Bayes factor, which 
is then showcased. We think that this setup misses a 
crucial component, which is a critical appraisal of the 
Bayes factor. Some of us have written about this before 
(see Tendeiro & Kiers, 2019; Wong et al., 2022), but this 
is much more the exception than the rule. We suggest 

that updated materials (e.g., articles, apps, training ses-
sions) offering thoughtful discussions of the various 
QRIPs shown on Table 2 would go to great lengths to 
mitigate the problems we identified. In particular, we 
suggest that researchers learn the following:

•• There is a difference between the concepts of the 
Bayes factor (the evidence) and posterior odds 
(the belief; QRIPs 1 and 6).7

•• Prior odds must be specified whenever there is 
interest in the posterior odds. Reporting posterior 
odds without prior odds is, at best, not ideal 
because it requires that the reader must consider 
what the authors’ priors odds were to start with.

•• Reporting the priors used is crucial (QRIPs 3a, 3b, 
and 3c). Furthermore, and as much as possible, 
the motivation for choosing such priors should 
also be provided.

•• It is important to conduct sensitivity analyses to 
assess the influence of the priors on the Bayes 

• The BF is only a number, after all.
• Report BFs together with effect sizes and posterior
   distribution and/or credible interval of estimates. 

Potential
Cause

Potential
Solution

Lack of knowledge

BF versus the ‘theory of inverse probability’

Cognitive dissonance

Principle of indifference

Parsimony (space, style)

Dealing with priors

Increase impact, reduce uncertainty

Dichotomization, decision making

Desire to support

QRIPs: 1, 4, 3abc, 6, 7

QRIPs: 1, 5, 6

QRIPs: 1, 6

QRIPs: 1, 6

QRIPs: 3abc, 4, 5, 10

QRIPs: 3abc

QRIPs: 4, 5, 9, 10

QRIPs: 5, 7, 9, 10

QRIPs: 9

Better learning materials.
• Discuss both advantages and limitations of the BF.
• Disambiguate the BF from the p-value.

Use checklist (appendix).

Resort to supplemental material if needed.

• Testing using interval null hypotheses.
• Estimation. 

Consider alternative inferential options.

Accept uncertainty.

Fig. 2. Summary of the potential causes for the problems identified in the literature study and suggestions for potential solutions. For each 
potential cause (left), QRIPs that we anticipate that follow as a consequence are listed. Potential solutions (right) are linked back to the 
causes that we expect they most directly apply to. QRIP = questionable reporting or interpreting practice; BF = Bayes factor.
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factor. In our study, only 26 papers (15.6%) explic-
itly referred to sensitivity analysis.

•• The Bayes factor is only a measure of the relative 
evidence between the two models under compari-
son (QRIP 4).

•• It is most likely impossible that the Bayes factor 
of one isolated study can be used to establish the 
absence or presence of any effect (QRIP 5). Using 
the Bayes factor in this way should be deemed to 
be a severe error.

•• It is important to always provide a full account 
of the interpretations in the article.8 We do real-
ize, however, that this is difficult without becom-
ing overly repetitive. One suggestion is that 
authors add to the description of the statistical 
analysis in the methods section something like 
this: “Whenever we interpret a test result as pro-
viding support for one of the hypothesis, we 
mean to say that the evidence supports this 
hypothesis over the selected competing hypoth-
esis.” At the very least, we strongly suggest that 
authors follow our suggestion for the key out-
comes of their studies.

•• The Bayes factor is not an effect-size measure 
(QRIP 7).

•• Understanding the difference between the absence 
of evidence and evidence of absence is essential 
(QRIP 9).

•• The Bayes factor value should always be reported 
(QRIP 10). This is the Bayesian equivalent to 
requesting the exact p value instead of an inequal-
ity (e.g., p < .05). Providing the exact value of the 
Bayes factor has three immediate advantages: 
Readers may also make their own judgment con-
cerning the strength of the evidence reported in 
articles, it facilitates future meta-analyses, and it 
allows the calculation of the posterior odds. Nev-
ertheless, authors should still feel free to interpret 
the magnitude of the evidence as they see fit.

Checklist

We prepared a checklist that practitioners may use to 
guide them, at least throughout their first interactions 
with Bayesian hypothesis testing (see Appendix). This 
checklist highlights what aspects should be reported, 
either in the article itself or possibly in the supporting 
materials. We think that by using such a checklist 
researchers will feel reassured that they are taking all 
the important steps in their analysis. The checklist may 
also be of help to both journals and reviewers in devel-
oping standardized guidelines to which authors must 
abide. This may further contribute to increasing authors’ 
awareness to these issues.

Supplementary material

Our checklist is thorough and possibly leads to more 
information than one is willing to incorporate in their 
articles. Relegating some information to the supporting 
materials is a valid solution in such cases. Authors may 
want to resort to free and publicly available repositories 
such as OSF for this purpose. Journals may also promote 
the practice of sharing supporting materials that include 
the information detailed on the checklist on their web-
sites. One suggestion is to use supplementary material 
(if needed) to fully report the priors used and the moti-
vation for choosing such priors. It is important to keep 
in mind that priors are part of the models; therefore, any 
inference is contingent on the chosen priors. In this 
sense, failing to report priors may be considered as much 
of an error as it is to fail to report that one assumes 
normally distributed data, for example. Another sugges-
tion is to place the results of sensitivity analyses in the 
supplementary materials.9

Accept uncertainty

Statistical tools should be used within their own 
bounds. All the Bayes factor offers is a means of gath-
ering evidence in favor of either hypothesis put up to 
a test. This does not equate to a formal proof as if it 
were a mathematical theorem. We suggest researchers 
adjust their expectations to what the Bayes factor per-
mits. In particular, it is important to avoid the dichoto-
mization trap that hypothesis testing typically entails. 
If a decision is really needed and in particular if the 
stakes are high, it is perhaps best to consider statistical-
decision theory (Berger, 1993). It is also important to 
report effect sizes in order to complement test results.

Alternative inferential procedures

Testing, in particular null hypothesis testing, may not be 
what researchers need at all times. Some researchers 
have questioned the role of point null hypotheses (e.g., 
Vardeman, 1987). It is important to point out that alter-
natives do exist. One option is to use interval null 
hypothesis (Morey & Rouder, 2011). But often a research 
question may be well addressed by means of resorting 
to estimation instead. Arguably estimation may offer 
what testing does, and more (Tendeiro & Kiers, 2023).

Conclusion

In this article we charted the current state of affairs 
concerning the use of the Bayes factor in applied 
research. Our findings suggest that current practices are 
at best suboptimal. This happens in spite of Bayesian 
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inference in general, and the Bayes factor in particular, 
being often described as more intuitive than frequentist 
inference (Kruschke & Liddell, 2018). We think that the 
problem is real and needs to be addressed for the quality 
of research to increase.

Some of the numbers appear small; for example, we 
found that 3.6% of the articles committed the error (QRIP 
9) of confusing Bayes factors of about 1 with evidence 
of absence. We note that the error rates we report are 
marginal error rates, but important error rates—such as 
the probability of committing an error given the situation 
is right—should be higher. For instance, one can commit 
QRIP 9 only if the Bayes factor is around 1. Following 
a suggestion from a reviewer, we computed the propor-
tion of occurrences of QRIP 9 among all occurrences of 

Bayes factor values between 1

3
 and 3 in the text (values 

reported only in tables were not considered). The result 
was 14 occurrences in 429, or 3.3%. This finding does 
not fully align with our intuition. Based on this subanaly-
sis only, it is yet unclear what the actual conditional error 
rates should be.

In addition to reporting the identified problems, we also 
attempted to explain what reasons may be behind each 
problem. Naturally, our arguments are not evidence-based. 
Future research aiming at a more fine-grained understand-
ing of the current situation would be extremely helpful.

We have offered some suggestions for actions to be 
taken that may contribute toward improving the situa-
tion. We think that what is needed is a better understand-
ing of the effect of prior distributions, the difference 
between posterior odds and the Bayes factor, the impor-
tance of providing thorough reports of the analyses con-
ducted (Kruschke, 2021; van Doorn et  al., 2021), the 
need to explain the choices made, the disconnect 
between Bayes factors and effect sizes, and what it takes 
to establish that a particular effect is absent or present. 
Also, carrying frequentist preconceptions over into the 
Bayesian world is not advisable.

The way forward is not to ban Bayesian inference 
from our toolbox. Instead, more and better education 
on Bayesian inference is needed. We think that future 
work should use findings from Wong et al. (2022) and 
this article to shape improved educational materials. Bet-
ter showcasing how Bayesian inference can be correctly 
used will empower applied researchers and improve the 
quality of the published scientific findings.

Appendix

Below is an ordered list with the points that should be 
taken into account when conducting a Bayesian hypoth-
eses test through the Bayes factor:

 1. Check whether model assumptions hold well 
(e.g., independence of observations, normality).

 2. Specify the two hypotheses that will be tested 
against each other (0 and 1).

 3. Completely specify the prior distributions for all 
parameters under either hypothesis.

 4. Explain the choice of priors as much as possible.
 5. (Optional) Specify prior odds in case you are 

interested in the final updated relative belief.
 6. Specify the software used to compute the Bayes 

factor.
 7. Report the Bayes factor using clear notation (e.g., 

use BF01 to denote the evidence in favor of 0 
relative to 1).

 8. Interpret the Bayes factor on the basis of either 
Equation 1 or Equation 4 (describe evidence).

 9. Conduct sensitivity analyses to assess the effect 
of the priors on the Bayes factor. Consider varying 
both the width and the location of the priors.

10. (Optional) If prior odds were specified, compute 
the posterior probabilities of both hypotheses 
using Equation 5 (describe belief).

11. Report the estimated effect size together with a pos-
terior distribution, or at least a credible interval.

12. Include a brief account of all steps above in your 
report. Some information (e.g., from Steps 3, 5, and 
8) may be relegated to supplementary material.
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Notes

1. Here we treat θi  as a single and continuous random variable for 
simplicity. The concept of marginal likelihood extends straight-
forwardly to the multiple random variables case by extending 
Equation 2 to multiple integration and to discrete random vari-
ables by replacing the integration by a summation.
2. Files are available at https://osf.io/57ew4.
3. Unlike the original article, here we did not perform corrections 
for multiple testing for simplicity.
4. Relatedly, we can also suggest the “Bayes factor workflow” 
from Schad et al. (2022), who provided guidance with respect to 
determining the computational stability of the Bayes factor.
5. We refer to specific articles in the sample using the codes 
P P1 167,. . . , .
6. “To take the prior probabilities different in the absence of 
observational reason for doing so would be an expression of 
sheer prejudice. The rule that we should then take them equal 
is not a statement of any belief about the actual composition 
of the world, nor is it an inference from previous experi-
ence; it is merely the formal way of expressing ignorance. It is 
sometimes referred to as the Principle of Insufficient Reason 
(Laplace) or the equal distribution of ignorance” ( Jeffreys, 
1961, pp. 33–34).
7. In fact, we also found some authors who seemed to clearly 
understand this distinction: “From Bayes’ theorem, the odds of 
the two hypotheses given the data, Pr H D Pr H D( | ) / ( | )0 1 , are 
equal to the prior odds (that is, the odds before the current data 
were collected) multiplied by the Bayes factor” (P44).
8. Here is one good example: “This analysis revealed a value of 
6.08 to 1 in favor of the null hypothesis over the SLH for the pres-
ent Experiments 2, 3 and 4. As such, the current results constitute 
‘some’ evidence in favor of a null over the SLH” (P78).
9. Or concisely in the article itself, as the following example 
illustrates: “Previously reported effect sizes for action language 
impairments in PD have been very large: approximately Cohen’s 
d = 2. . . . However, we accepted the possibility that our effects 
would be smaller than this, given how well our control condi-
tions were matched to the experimental conditions, and par-
ticularly in the metaphor conditions. Given this uncertainty, we 
report BFs under a range of Cauchy prior widths including 2 
(based on previous effects), as well as the default (.707) to deter-
mine the robustness of the effects” (P123).
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