
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/163231/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Munguia-Galeano, Francisco , Tan, Ah-Hwee and Ji, Ze 2025. Deep reinforcement learning with explicit
context representation. IEEE Transactions on Neural Networks and Learning Systems 36 (1) , pp. 419-432.

10.1109/TNNLS.2023.3325633

Publishers page: https://doi.org/10.1109/TNNLS.2023.3325633

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Deep Reinforcement Learning
with Explicit Context Representation

Francisco Munguia-Galeano, Ah-Hwee Tan, Senior Member, IEEE,, Ze Ji, Member, IEEE

Abstract—Though Reinforcement learning (RL) has shown
an outstanding capability for solving complex computational
problems, most RL algorithms lack an explicit method that
would allow learning from contextual information. On the other
hand, humans often use context to identify patterns and relations
among elements in the environment, along with how to avoid
making wrong actions. However, what may seem like an obviously
wrong decision from a human perspective could take hundreds
of steps for an RL agent to learn to avoid. This paper proposes a
framework for discrete environments called Iota explicit context
representation (IECR). The framework involves representing
each state using contextual key frames (CKFs), which can then
be used to extract a function that represents the affordances
of the state; in addition, two loss functions are introduced with
respect to the affordances of the state. The novelty of the IECR
framework lies in its capacity to extract contextual information
from the environment and learn from the CKFs’ representation.
We validate the framework by developing four new algorithms
that learn using context: Iota deep Q-network (IDQN), Iota
double deep Q-network (IDDQN), Iota dueling deep Q-network
(IDuDQN), and Iota dueling double deep Q-network (IDDDQN).
Furthermore, we evaluate the framework and the new algorithms
in five discrete environments. We show that all the algorithms,
which use contextual information, converge in around 40,000
training steps of the neural networks, significantly outperforming
their state-of-the-art equivalents.

Index Terms—Artificial Intelligence, Deep Reinforcement
Learning, Machine Learning, Neural Networks, Q-learning, Re-
inforcement Learning, Affordances.

I. INTRODUCTION

Over the past few years, reinforcement learning (RL), a
sub-field of Machine learning (ML), has demonstrated strong
capability in learning policies to control decision-making in
sequential environments [1]–[3]. One of the most famous
RL algorithms is Q-learning (QL), which is an off-policy
RL approach that updates the action selection for a given
state using Bellman optimal equations based on the temporal
difference (TD) principle [4]. In RL, the quality of data
sampling significantly impacts the learning progress of the
agent. Off-line RL learning approaches have shown that high-
quality data improves RL performance [5]–[7].

Additionally, the quality of data sampling relies on the effec-
tiveness of the exploration process. In this context, it is crucial
to determine when and how to conduct data sampling [8]–[10].
However, RL algorithms utilize an ϵ-greedy policy [11], which
involves initially selecting actions randomly and then biasing

Francisco Munguia-Galeano and Ze Ji are with the School of Engineering,
Cardiff University, Cardiff, CF24 3AA, United Kingdom (e-mail: Munguia-
GaleanoF@cardiff.ac.uk, jiz1@cardiff.ac.uk)

A.-H. Tan is with the School of Computing and Information Systems,
Singapore Management University (email: ahtan@smu.edu.sg).

Fig. 1. Deep reinforcement learning with explicit context representation.

the preference towards actions chosen by the agent. The main
issue with state-of-the-art approaches is that undesirable data
can become trivial due to the ϵ-greedy policy. This is because
the agent may keep selecting the incorrect actions for multiple
episodes until the ϵ-greedy policy reaches a low probability,
and the agent learns to avoid them. As a result, the training
dataset grows exponentially with low-quality data, leading to
a deceleration in the agent’s learning process. This challenge
is referred to as the efficiency problem in sampling [12], [13].

One way to improve data sampling efficiency is by using
contextual information. Context provides meaning to raw data,
reduces ambiguity, and helps focus attention on a clear objec-
tive. Without context, a situation can be incomprehensible.
In the scope of this paper, the term context is defined as
the set of conditions and circumstances associated with a
given state in the environment. Many reinforcement learning
environments have access to contextual data, but it requires
significant time and effort for an RL agent to directly learn
from this information.

In addition to the limited involvement of contextual infor-
mation in RL, distinguishing between two states is challenging
due to the stochastic nature of RL [14], [15]. A critical knowl-
edge gap lies in effectively leveraging available contextual
information, such as affordances, objects, positions, shapes,
and other physical characteristics, to enhance the sampling
quality of the agent during environment exploration. Ideally,
an agent should learn as rapidly as a human does [16], [17].

In this paper, we present the Iota Explicit Context Repre-
sentation (IECR) framework, which aims to improve learning
performance by incorporating contextual data (Fig. 1). The
IECR framework initially converts environment information

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

into contextual key frames (CKFs), which consist of a matrix
where each cell contains a token representing an element from
the environment, along with its position, size, and direction.
Our contributions can be summarized as follows:

• We introduce IECR, a framework that utilizes contextual
data to enhance the learning process of RL agents.

• We propose four new algorithms based on IECR: Iota
Deep Q-network (IDQN), Iota Double Deep Q-network
(IDDQN), Iota Dueling Deep Q-network (IDuDQN), and
Iota Dueling Double Deep Q-network (IDDDQN).

We conduct two stages of experiments: (i) the first stage
aims to demonstrate the impact of the CKFs representation
on the learning performance of IDQN, and (ii) the second
stage evaluates the performance of the proposed framework
and state-of-the-art algorithms under the same conditions. Both
stages utilize the implementations from stable-baselines [18].
The benchmark problem domain for evaluating the algorithms
consists of five discrete environments, and their specific char-
acteristics are detailed in Section V.

The rest of the paper is organized as follows: Section II
reviews the relevant literature on deep RL methods, including
DQN, DDQN, DuDQN, and DDDQN and discusses the rele-
vant works using context and their similarities and differences
with our framework. Section III presents the technical prelim-
inaries. In section IV, we formally introduce the framework
and detail the new algorithms proposed. Section V describes
the characteristics of the environments and neural networks
and the evaluation metrics employed. In section VI, we report
the experimental results. Section VII provides a discussion.
Finally, we discuss future work and conclude the paper in
section VIII.

II. RELATED WORK

This section reviews popular deep RL approaches and rele-
vant literature, summarized in three subsections: context-free,
implicit context-based and explicit context-based methods.

A. Context-free methods

This subsection comprises methods in which no contextual
information is given. Hence, the agent learns everything from
scratch. Among these methods, Deep Q-network (DQN), the
implementation of neural networks into QL [11], has sev-
eral state-of-the-art variants such as Double deep Q-network
(DDQN) [19], Dueling deep Q-network (DuDQN) [20] and
Double dueling deep Q-network (DDDQN) [20] (see Fig. 2).
Part of the success of those approaches can be attributed to
their scalability.

Due to its versatility, DQN has been used for many appli-
cations and has proved its effectiveness in multiple fields [21].
Successful applications of DQN and its variants include
DQN for same-day deliveries [22], path planning for au-
tonomous surface vehicles [23]–[26], and even in optimization
of demand-side management systems for energy consump-
tion [27]. One of the most well-known implementations of
DQN is for playing Atari games [11], where DQN-trained
policies outperformed humans in most of the games used for
their experiments.

DQN and DDQN use two neural networks: a main neural
network and a target neural network. The input for both
networks is a given state, and the outputs are the Q-values.
While the main neural network serves for training and making
decisions, the target network stabilizes the agent’s learning
process (the target neural network must be frozen for a
number of steps, usually 100). In RL, sampling adequate
data from the training environment is particularly important
as it improves the learning process. This is because the agent
incrementally updates its parameters while producing its own
training set [28], [29].

Fig. 2. Typical neural network architectures used in DQN’s variants [20].

An approach to solve this problem is Deep Q-network
from demonstrations (DQNfD) [30]. DQNfD is an example
of how the quality of the sampled data improves the agent’s
performance. As a way of illustration, DDNfD takes 1 million
steps to achieve good scores, while DDQN takes 84 to 85 mil-
lion steps to accomplish a similar performance. The approach
creates a data set with human demonstrations to pre-train a
neural network. After using the DQNfD algorithm, the agent
outperforms DDQN in 41 out of 42 Atari games. However,
these algorithms lack the human ability to recognize actions
while observing video streams [31], [32], and this valuable
contextual information is often omitted. This situation leaves
the agent with the task of learning it from scratch. IECR
combines the information of the CKFs and the set of rules
to extract affordable sets of actions.

B. Implicit context-based methods

Several existing approaches use indirect contextual infor-
mation and previous experience to enhance their learning
capabilities. For example, Transfer learning (TL) [33] is an
approach that uses previous experiences from solving pre-
liminary source tasks to learn a new policy and use it for
a new target task. Therefore, TL uses fewer samples than
if the policy has been trained from scratch. Given a target
task, an RL transfer agent must perform three steps: select
a correct source task, find the relation between source and
target tasks, and transfer knowledge from source to target task.
QL has been combined with TL in Transfer Reinforcement
Learning under Unobserved Contextual Information [34], in
which they propose to solve a contextual Markov decision

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

process (CMDP) [35], [36] using TF. The authors provide
casual bounds and a context-aware policy to assist the agent’s
learning process. On the contrary, IECR includes all the
contextual information from the very beginning encoded in
CKFs representing the states.

Kabra et al. [37] demonstrates the potential of using a
contextual exploration technique in real-time user recommen-
dations. Hence, using previous experiences avoids training an
agent from scratch. A similar approach is employed in [38],
where RL and contextual resources are used to make top-k
recommendations. On the contrary, IECR starts from scratch
without any previous experience by producing a context-aware
selection of actions through the training process using only
CKFs and an affordance function.

Another approach to improve stochastic exploration per-
formance is generative action selection through probability
(GRASP) [28]. GRASP uses a generator for exploration spaces
by using a generative adversarial network (GAN). Under other
conditions, context can be included indirectly in the agent’s
learning process. Methods such as proximal policy optimiza-
tion (PPO) [39] and asynchronous actor-critic (A2C) [40] can
be equipped with recurrent neural networks (RNN). RNNs
use the previous output as part of the input. Hence, it is
possible to store past information; in this way, RNNs feed
the agent with indirect contextual data. In this work, PPO and
A2C implementations from the stable-baselines are used to
compare their performance with IDQN, IDDQN, IDuDQN,
and IDDDQN.

C. Explicit context-based methods

In the literature, several methods exist that include explicit
contextual information. For example, Benjamins et al. [41],
[42] introduced a framework designed to solve CMDPs and
a benchmark library. The framework includes information
such as gravity, target distance, actuator strength, and joint
stiffness in the learning process. They demonstrated how the
contextual data affect the performance learning of the agents.
However, the affordances of the actions are not included
in these studies and lack the codification of the state that
IECR uses. An approach that involves encoding the state and
the contextual features is presented by Sodhani et al. [43].
The authors develop a method that relies on the capacity to
relate tasks to external supplementary data to improve the
agent’s learning performance. Additionally, Injecting domain
knowledge into the neural network [44] is another method
that proves contextual data’s positive influence on an agent’s
learning performance. However, all the methods mentioned
above still fail to include important contextual information,
such as the affordances of the actions.

In this context, affordance is the semantic link between
the environment and the possibility of taking an action [45].
For example, a hammer affords to hit, while a pen affords to
write. Affordances have been applied successfully to different
fields [46], [47]. An example of a successful implementation
of affordances in an agent is in [48], which presents a method
based on affordances to predict a human’s next action such
that a robot reacts accordingly. Moreover, the method not

only reaches any environment where its predictions are valid
but also accelerates RL in new scenarios. However, learning
affordances in RL (usually done through a large number of
interactions with the environment or learning from demon-
stration) still lacks an explicit method to add affordance rules
based on context and the ability to use them to improve the
learning process of the agent.

Particularly relevant to this paper is the approach called
Training Agents with Interactive Reinforcement Learning and
Contextual Affordances [49], which provides resources known
as “contextual affordances”, aiming to use them as constraints
of high-level actions depending on the elements present in the
environment. Despite adding contextual affordances to assist
the exploration task, the authors use the same loss function
defined in [11] rather than the context-reactive loss functions
IECR uses. Another difference is that IECR provides CKFs
that are part of the representation of the state and more
information about the environment such that it is possible to
feed the agent with CKFs rather than using a set of binary
codes that represent a small set of elements in the environment
that only assist in the exploration stage. To the best of the
authors’ knowledge, the tokenization of the state in the shape
of CKFs to find the affordances and use both elements to train
a neural network in discrete environments still need further
investigation.

III. PRELIMINARIES

A Markov decision process (MDP) is a 5-tuple
⟨S,A,R, T, γ⟩ where S is a set of states, A is a set of
actions, R(s, a) is a reward function, T (s′|s, a) is a transition
function equal to a probability distribution P (s′|s, a), and γ
is a discount factor [50]. An agent uses a policy π to select an
action a ∈ A given a state s ∈ S; the agent then reaches state
s′ according to P (s′|s, a) and receives a reward R(s, a). The
agent’s main objective is to maximize the expected discounted
reward over the agent’s trajectory, which implies finding an
optimal policy π∗. The Q function Qπ(s, a) denotes the value
of an action state pair that approximates the expected future
reward that can be obtained from (s, a) when a policy π is
given. The optimal value function Q∗(s, a) can be obtained
from the Bellman optimality equation [11]:

Q∗(s, a) = Es′∼P

[
R(a, s) + γmax

a′
Q∗(s′, a′)

]
(1)

The expectation can be removed and approximated using
bootstrapping because the reward function R(s, a) is the
immediate reward r obtained when performing an action a
in a given state. Therefore, the Q function Qθ(s, a) can be
approximated with a neural network using k transitions from
a replay buffer Dreplay; then, the optimal value function
Q∗(s, a) is:

Q∗(s, a) = r + γmax
a′

Q∗(s′, a′) (2)

DQN uses two neural networks. The main neural network θ
computes the present value of the given pair (s, a). The target

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

Fig. 3. In this figure, the IECR framework is applied to DQN, DDQN, DuDQN, and DDQN to create four new algorithms that learn with context. The
affordances function ι(s) is connected with the whole framework, hence, the name of our approach.

neural network Qθ′(s, a) is frozen for n training steps and is
used to compute the next pair (s′, a′); here, the loss function
Jdn(Q) is given by the following:

Jdn(Q) = r + γmax
a′

Q∗(s′, a′)−Qθ(s, a) (3)

DQN takes the maximum Q-value of the target neural
network, while DDQN takes the index of the maximum Q-
value from the main neural network and then takes the value
of that index from the target neural network. In this way,
DDQN solves the problem of overestimating the states that
DQN presents in some environments. Since DQN sometimes
learns unreasonable high values, the main goal of DDQN [19]
is to reduce the overestimation of actions for a given state s.
DDQN takes the maximum index of the main neural network
and then the actual value of that index in the target neural
network to calculate the loss Jddn(Q):

Jddn(Q) = r + γQθ′(s′, argmax
a

Qθ(s
′, a))−Qθ(s, a) (4)

Dueling deep Q-network (DuDQN) [20] uses two output
separate estimators: the advantage output stream Aθ(s, a) and
the Vθ(s) output stream. DuDQN uses two streams in the
neural network to estimate separately the advantage Aθ(s, a)
that is given by the following:

Aθ(s, a) = Qθ(s, a)− Vθ(s), (5)

where Aθ(s, a) is the advantage, and Vθ(s) is the value of
the state s. Even though the actions are selected using the
advantage stream channel, the loss function (3) for DuDQN
is the same used in DQN. DDDQN is the implementation of
the DDQN principle to DuDQN. DuDQN and DDDQN take
actions based on the maximum value of the advantage stream
output. Fig. 2 shows how the output streams from DQN and
DDQN differ from the architectures of DuDQN and DDDQN.

IV. IOTA EXPLICIT CONTEXT REPRESENTATION
FRAMEWORK

In this section, the IECR framework (Fig. 3) is presented,
aiming to allow the smooth integration of contextual infor-
mation into the learning process of deep RL agents based

on DQN, DDQN, DuDQN, and DDDQN. For each variant
of DQN, the IECR framework uses three algorithms, detailed
in the next three subsections: CKFs’ generation, affordances
function generation, and learning.

A. Contextual key frames

This subsection introduces Algorithm 1, which focuses
on identifying known semantic data from the environment
(objects, positions, sizes, and directions) and using it as a
feature representation of the state. The contextual key frames
algorithm takes as an input the semantic set F , the width of
the screen sw, and its height sh. The output is a CKF that
contains the tokens of all the elements in the environment.
At this point, the goal is to create a set of tokens Z that
represent an ne number of elements in the environment, such
that Algorithm 1 can transform it into CKFs. The set of tokens
is given by the following:

Z = {ζi | i ∈ [0, ne)}, (6)

where ζi is the token of the i-th element. Formally, a CKF is a
n×m matrix where CKFn,m ∈ Z. In order to obtain Z, first,
extracting the information from the environment is necessary.
For this purpose, the characteristics of every component in the
environment are known and tokenized such that the agent can
understand them. The token ζi is given by:

ζi = ki + ai + bi + di, (7)

where ki is the key of each type of element in the environment,
ai is the vertical numerical position, bi is the horizontal
numerical position, and di is the direction of the i-th element,
respectively. Let:

N = {⟨namei, ki⟩ | i ∈ E, ki =
i

µ
}, (8)

be the set of tuples representing the pair name of the el-
ement with its respective key ki. Set N represents the re-
lation between the element name and its key. For example,
⟨mario, 0.1⟩, ⟨pipe, 0.3⟩, ⟨hole, 0.8⟩. Let:

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

(a)

(b)

(c)
Fig. 4. Tokenization of the state. In (a), there is an example of tokenization of the state according to the element type and the number of elements. In (b),
the position of each element in the cell of the CKF is added to the token value. In (c), the direction of the elements and their numerical values are added to
the token.

P = {⟨xi, yi, ui, vi, ai, bi⟩ | i ∈ [0, ne), xi ∈ [0,∞), yi ∈ [0,∞),

ui = ⌊
sw

xi
⌋, vi = ⌊

sh

yi
⌋, ai =

⌊10(swxi
− ui)⌋

10µ
,

bi =
⌊10(shyi

− vi)⌋
100µ

},

(9)

be the set containing the position in the image of each element
of the environment. Here, xi and yi are the horizontal and
vertical positions of the agent in pixels, ui is the number of
rows, vi the number of columns, sw and sh are the width and
height size in pixels of the screen. This set defines the values
of ai and bi that depend on the token range value µ.

On the right side of Fig. 4a, it can be observed that the
number of elements ne is equal to nine. For each element, a
number of index i is designated. The main element the neural
network will control must have i = 1, whereas the rest are

randomly assigned. In order to calculate ki, it is necessary
to obtain the token range value µ = 10τ , when τ ∈ {1, 2},
10ne ≥ 10τ > ne, and ne < 100. This means that for the
example of ne = 9 on the right side of the Fig. 4a, µ = 10
such that it is possible to use only one decimal to represent
the key ki of the element in ζi. When there are more than
nine elements in the environment (see the left side of Fig. 4a),
then µ = 100, in this manner, it is possible to represent the
11 elements with two decimals of ζi.

Since the elements in the environment are not only static
but dynamic, a method to represent their position inside the
CKF is necessary. The set P contains the equivalences of
the width and height of every element and the position of an
element inside its own grid in CKFn,m. This idea is illustrated
in Fig. 4b, despite the element being inside the same cell, the
horizontal position ai and vertical position bi provide helpful
information that can be encoded in ζi. This representation
differentiates states even when the element is situated in the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

same cell of the CKF.
In Fig. 4c, the purpose of di is illustrated. When an element

changes direction, this means a different state. Consequently,
this information must be taken into account. The value of di
is in the set of movement directions V . Let:

V = {⟨→,
1

1000µ
⟩, ⟨↗,

2

1000µ
⟩, ⟨↑, 3

1000µ
⟩, ⟨↖,

4

1000µ
⟩,

⟨←,
5

1000µ
⟩, ⟨↙,

6

1000µ
⟩, ⟨↓, 7

1000µ
⟩, ⟨↘,

8

1000µ
⟩},

(10)

be the set that contains the tuples ⟨V 1, V 2⟩, where V 1 is the
movement direction and V 2 its numerical value. Let:

W = {⟨wi, hi, ẇi, ḣi⟩ | i ∈ [0, ne), w ∈ [0, sw], h ∈ [0, sh],

(i = 1→ ẇi, ḣi) ∧ (i > 1→ ẇi = ⌈
wi

w1
⌉, ḣi = ⌈

hi

h1
⌉},
(11)

be the set that represents the sizes of all the elements, where
wi is the width of the element in pixels, hi is the height of the
element in pixels, ẇi is the width that is taken as a reference
of the size of the main element of the environment, and ḣi

is the height of the i-th element taking the size of the main
element of the environment as a reference. Set W contains the
information that represents the environment elements’ sizes.
With all the sets defined before, it is now possible to define
the semantic set F , which is given by the following:

F = {⟨ki, ui, vi, ai, bi, di, ẇi, ḣi⟩ | i ∈ [0, ne), ki ∈ N2,

ui ∈ P 3, vi ∈ P 4, ai ∈ P 5, bi ∈ P 6, di ∈ V 2,

ẇi ∈W 3, ḣi ∈W 4},
(12)

Algorithm 1 CKFs generator.
Input : Semantic set F , the number of elements ne, the
screen width sw, and the screen height sh
Result : CKF
n← ⌈ shh1

⌉;
m← ⌈ sww1

⌉;
Create an n×m CKF filled with zeros;
for i = 1, ne do

Get ki, ui, vi, ai, bi, di from F ;
for r = 0, wi do

for c = 0, hi do
CKF(ui+r,vi+c) = ζi;

end for
end for

end for

B. Iota function

The affordances function explores the interactions among
the elements of the environment. This is achieved by classi-
fying what combinations of actions are not allowed according
to the context of the environment. The affordances function is
represented through ι(s) for a given state s. Let:

A = {aj | j ∈ Z+, a ∈ {0, 1}}, (13)

be the set of actions the agent can execute in the environment.
Here, the total number of actions is given by na = |A|. Let:

R = {⟨aj , ki, ϕi, αi⟩ | aj ∈ A, i ∈ E, ϕi, αi ∈ Z}, (14)

be the set of rules that contains which interactions among
the actions and environment are evidently wrong, where a is
the action, ϕ is the horizontal exploration range, and α is the
vertical exploration range. Table II shows five sets of rules
manually defined for each environment. These sets of rules
contain negative affordances, which are actions that the agent
is not allowed to execute given that situation.

Algorithm 2 takes as input the state s in the shape of CKF,
the set of rules R, the first element of the set F , and the
number of actions na. All the rules related to each action are
explored through the CKF obtained using Algorithm 1. The
exploration ranges ϕ and α allow the agent to identify near or
far elements that may put the agent into a bad state. However,
decision-making using only ι(s) is not enough to find an
optimal policy because there may be states with multiple
choices where ι(s) does not provide the optimal action.

Algorithm 2 ι(s) generator.
Input : CKF, number of actions na, set of rules R and
semantic set F
Result : ι(s)
Create an ι vector with na elements filled with ones;
Get k1, u1, v1 from CKF;
for a = 0, na do

Get Ra = ⟨aj , ki, ϕi, αi⟩ from R;
for r = 0, |Ra| do

Get kr, αr, αr from Ra;
for p = u1, u1 + ϕr do

if CKFp,v1 = kr then
ιa = 0;

end for
for l = v1, v1 + αr do

if CKFu1,l = kr then
ιa = 0;

end for
end for

end for
ι(s)← ι;

C. Learning

This subsection explains how the CKFs and ι(s) are in-
corporated into the DQN, DDQN, DuDQN, and DDDQN
algorithms. For this purpose, we introduce Algorithm 3 and
how it can be applied to DQN variants to create the four
new algorithms developed in this research: IDQN, IDDQN,
IDuDQN, and IDDDQN. The main differences (Fig. 3) among
the algorithms are in their neural network architecture (sin-
gle or dueling), action selection (Q-values-stream-based or

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

Advantage-stream-based), and loss functions (simple or dou-
ble).

Algorithm 3 Context-based learning
Set neural network architecture;
\∗ Single stream for IDQN and IDDQN, and double stream
for IDuDQN and IDDDQN ∗\
Initialize main and target neural networks with random
weights θ and θ′, respectively;
Initialize a buffer Dreplay;
for n number of episodes do

for t = 1, T do
Get a CKF with Algorithm 1;
Get ι(s) with Algorithm 2;
With probability ϵ, execute a valid action;
\∗ Eq. (15) for IDQN and IDDQN or Eq. (24)
IDuDQN and IDDDQN ∗\
Store s, s′, r, ι(s), ι(s′) transition in Dreplay;
Sample a transition from Dreplay;
if the state is terminal then

Set Jι(Q) = 0
\∗ target = r for IDQN and IDuDQN or
targetdouble = r for IDDQN and IDDDQN ∗\

else
Calculate the loss;
\∗ Jsimple(Q) for IDQN and IDuDQN or
Jdouble(Q) for IDDQN and IDDDQN ∗\

Perform gradient descent step on the loss;
Update θ;
if t mod τ = 0 then

θ′ ← θ
s← s′

end for
end for

We begin with IDQN, which is the implementation of the
IECR framework into DQN. Then, the affordances function
ι(s), used for selection-making tasks, is given by the follow-
ing:

at = argmax
a

[(Qθ(s, a) + |min
a

Qθ(s, a)|)⊙ ι(s)] (15)

Adding ι(s) to the action selection process produces useful
data but not optimal solutions. Hence, it is necessary to include
ι(s) into the DQN learning Eq. (2) by applying the Hadamard
product operation:

target = r + γmax
a′

[(Qθ′(s′, a′)+

|min
a′

Qθ′(s′, a′)|)⊙ ι(s′)−min
a′

Qθ′(s′, a′)]
(16)

For IDQN, the main simple neural network loss Jιn(Q) is
given by the following:

Jιn(Q) = (target−Qθ(s, a))
2 (17)

Since it is possible to obtain ι(s), the target value goal for
the main neural network, which indicates how the network

overestimates impossible actions according to ι(s), can be
calculated as follows:

goal = r + γmax
a

[(Qθ(s, a)+

|min
a

Qθ′(s, a)|)⊙ ι(s)−min
a

Qθ(s, a)]
(18)

In Fig. 5, the affordance loss Jaffordance(Q) functionality
is illustrated. The loss increases when the neural network
overestimates a non-valid action (Fig. 5a). On the contrary,
when the neural network respects the constraints given by i(s),
the loss is equal to zero (Fig. 5b). The affordance loss is given
by the following:

Jaffordance(Q) = (goal −max
a

Qθ(s, a))
2 (19)

The total simple loss Jsimple(Q) is the sum of the main
simple neural network loss Jιn(Q) and the affordance loss
Jaffordance(Q):

Jsimple(Q) = Jιn(Q) + λJaffordance(Q) (20)

The λ parameter controls the effect between losses. We
examine removing the affordance loss in the next section.
Algorithm 3. IDDQN is the implementation of DDQN in
IDQN. The difference when compared with IDQN is in its
targetdouble equation given by the following:

targetdouble = r + γQθ′(s′, argmax
a′

[(Qθ′(s′, a′)+

|min
a′

Qθ′(s′, a′)|)⊙ ι(s′)−min
a′

Qθ(s
′, a′)])

(21)

Given targetdouble is possible to obtain the main double
neural network loss Jιnd(Q):

Jιnd(Q) = (targetdouble −max
a

Qθ(s, a))2 (22)

The total double loss for IDDQN Jdouble(Q) is the sum
of the main double neural network loss Jιnd(Q) and the
affordance loss Jaffordance(Q):

Jdouble(Q) = Jιnd(Q) + λJaffordance(Q) (23)

IDDQN differs from IDQL in the way the total loss is
calculated. IDQL uses J(Q)simple, whereas IDDQN uses the
double loss J(Q)double. For action selection, both algorithms
use Eq. (15). IDQN and IDDQN use neural networks with
single streams (Fig. 2 top image)

On the other hand, dueling architectures use the advan-
tage stream to select an action during the training process.
IDuDQN utilizes neural networks with dueling streams (Fig. 2
bottom image) and the simple loss function J(Q)simple.
However, the DuDQN action selection equation is given by
the following:

at = argmax
a

[(Aθ(s, a) + |min
a

Aθ(s, a)|)⊙ ι(s)] (24)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

(a) (b)
Fig. 5. This figure illustrates how the affordances can be used to influence neural networks’ learning. In (a), the neural network predicts a non-valid action.
Consequently, the affordances loss increases. In (b), the neural network outputs respect the boundaries given by ι(s). This provokes the affordances loss to
be equal to zero.

IDDDQN utilizes neural networks with dueling streams
(Fig. 2 bottom image), the first for the advantage and the
second for the Q-values. It also selects an action from the
advantage stream using the Eq. (24). DDDQN uses the double
loss J(Q)double.

IDQN, IDDQN, IDuDQN, and IDDDQN require a buffer
replay Dreplay, a main neural network Qθ, and a target neural
network Q′

θ. The weights of the main neural network θ are
copied to the target neural network weight θ′ every nstep

steps, where nstep is usually set to 100. The pseudo-code
of Algorithm 3 explains how to implement the algorithms
mentioned above.

V. EXPERIMENTAL SETUP

This section describes the experimental setup used in this
paper to evaluate the performance of the IDQN, IDDQN,
IDuDQN, and IDDDQN algorithms. For our experiments,
we utilized five environments (Fig. 6). Each environment
has distinctive characteristics that challenge the algorithms in
multiple ways. The experiments are conducted in two stages.
The first stage of experiments evaluates how IDQN performs
against DQN and a random policy to prove that IDQN can
learn from the CKFs’ representation. The second stage of
experiments compares the performance of IDQN, IDDQN,
IDuDQN, and IDDDQN against their state-of-the-art variants.
For both stages of experiments, the CKFs’ representation
is used as the input of the neural networks. To compare
the performance of our algorithms, we used DQN, DDQN,

DuDQN, DDDQN, PPO, and A2C implementations of the
stable-baselines.

(a)

(b)
(c)

(d)

(e)

Fig. 6. Game environments. (a) Mario. (b) Pacman. (c) FlappyBirds. (d)
TaxiDriver. (e) ScaraRobot.

In the first stage, we measured the learning progress in every
episode by using the average reward. This calculation is based
on the decisions of the neural network. In the second stage, the
progress was measured in epochs. We used the same network
architecture and hyperparameters for all the experiments. The
neural network architectures (single and double stream) are
shown in Fig. 7. To this end, Table I shows the parameter
values used for all the environments and experiments.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

TABLE I
PARAMETERS USED DURING THE EXPERIMENTS.

Parameter Value
Learning rate (γ) 0.99
Mini-batch size 64
Episodes 2000
Epochs 200
Optimizer Adam
Optimizer learning rate 0.0001
Loss function huber
Training steps per epoch 400
Maximum steps per episode 3000
Target network update steps(τ) 100
Replay buffer size 50000
ϵmax 0.9
ϵmin 0.05
σepisode (ϵ decay per episode) 0.001
σepoch (ϵ decay per epoch) 0.01

A. Environments description

Mario (Fig. 6a) is a game in which the free space available
in the environment allows the agent to move almost every-
where, and this is a challenge. Moreover, negative rewards
could take longer to propagate. For example, suppose there
is a hole, and the jumping action was executed several states
before. In that case, it will take several steps to make the agent
understand that the action taken puts the agent in a deficient
state. The reward function of the Mario environment is given
by:

rmario(s, a) =

10, finishing the game
−10, dying
1, moving forward one square
0, otherwise

(25)

Pacman (Fig. 6b) is a simple game where the agent’s path
is highly constrained. An action that immediately crashes with
a wall or an enemy is easily identifiable in this environment.
However, when using the ϵ-greedy policy, the agent does not
consider evident mistakes. On the other hand, the ι(s) function
can avoid immediate mistakes and accelerate the agent’s
learning. The reward function of the Pacman environment is
given by:

rpacman(s, a) =

10, finishing the game
−10, dying
1, eating a pellet
0, otherwise

(26)

Even though FlappyBirds (Fig. 6c) is a game with only two
actions (fly and fall), their random selection under the same
probability provokes the agent to stay at the top of the screen,
since the fly action has a more biased behavior than the fall
action. The replay buffer will eventually fill with useless data
that affect the agent’s learning process. The reward function
of the FlappyBirds environment is given by:

rflappybirds(s, a) =

10, finishing the game
−10, dying
1, passing the pipes
0, otherwise

(27)

TaxiDriver (Fig. 6d) and ScaraRobot (Fig. 6e) are envi-
ronments that can only be solved by finishing two tasks:
pick and drop. This characteristic complicates the exploration-
exploitation process of the agent because the buffer fills more
with demonstrations of the first task (pick) than the second one
(drop). The reward function of the TaxiDriver environment is
given by:

rtaxidriver(s, a) =

10, picking in the right place
10, dropping in the right place
0, otherwise

(28)

The reward function of the ScaraRobot environment is given
by the following:

rScaraRobot(s, a) =

10, picking in the right place
10, dropping in the right place
1, getting closer to the goal
0, otherwise

(29)

For all our experiments, we took the average reward (pro-
duced from the actions of the neural network) as an indicator
of learning progress. The set of rules for each environment is
given in Table II.

B. First stage of experiments

This experiment aimed to prove the neural networks’ ca-
pacity to learn from the CKFs. During this first stage of the
experiments, we performed IDQN for the five environments
and utilized the number of episodes as a common reference.
Every episode is constrained to end if the agent reaches
3,000 steps, dies, or completes the game. In addition, we
ran three extra experiments for each environment. Thus, this
could confirm that IDQN performs better than DQN and a
full random policy. We also performed DQN using the same
number of episodes IDQN took to learn.

C. Second stage of experiments

A problem with the first stage is that the incorporation of
the affordance function ι(s) allows the agent to last longer
during every episode. However, DQN makes more mistakes,
and the number of training steps for the neural networks is
significantly lower because every episode ends prematurely.
The goal of this second stage is to deal with this unfair com-
parison. For this purpose, we measure the learning progress in
epochs, where one epoch is conformed of 400 training steps.
To this end, we also compared the influence of the affordance
loss Eq. (19) by setting λ to 0, 0.5, 1, 5 and 10, respectively.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

TABLE II
SET OF RULES FOR EACH GAME ENVIRONMENT.

Environment Set of rules
Mario RMario = {⟨right, pipe, 1, 0⟩,

⟨right, enemy, 2, 0⟩,
⟨right, hole, 2, 0⟩,
⟨right, block, 1, 0⟩,
⟨jump, empty, 0,−1⟩}

Pacman RPacman = {⟨right, wall, 1, 0⟩,
⟨left, wall,−1, 0⟩,
⟨up,wall, 0, 1⟩,
⟨down,wall, 0,−1⟩,
⟨right, ghost, 1, 0⟩,
⟨left, ghost,−1, 0⟩,
⟨up, ghost, 0, 1⟩,
⟨down, ghost, 0,−1⟩}

FlappyBirds RFlappyBirds = {⟨fly, pipeup, 3, 0⟩,
⟨fly, pipeup, 0, 1⟩,
⟨fly, ceiling, 0, 1⟩,
⟨fall, pipedown, 3, 0⟩,
⟨fall, pipedown, 0,−1⟩,
⟨fall, floor, 0,−1⟩}

TaxiDriver RTaxiDriver = {⟨right, wall, 1, 0⟩,
⟨left, wall,−1, 0⟩, ⟨up,wall, 0, 1⟩,
⟨down,wall, 0,−1⟩, ⟨pick, wall, 0, 0⟩,
⟨pick, empty, 0, 0⟩, ⟨drop, wall, 0, 0⟩,
⟨drop, empty, 0, 0⟩}

ScaraRobot RScaraRobot = {⟨right, obstacle, 1, 0⟩,
⟨left, obstacle,−1, 0⟩, ⟨up, obstacle, 0, 1⟩,
⟨down, obstacle, 0,−1⟩,
⟨pick, obstacle, 0, 0⟩, ⟨pick, empty, 0, 0⟩,
⟨drop, obstacle, 0, 0⟩, ⟨drop, empty, 0, 0⟩}

(a)

(b)
Fig. 7. Neural network architectures used in the experiments. (a) Neural
network setup used for IDQN and IDDQN. (b) Neural network setup used by
IDuDQN and IDDDQN.

VI. RESULTS

During this section, we describe the learning curves in Fig. 8
from the results of the two stages of the experiments. The

affordance loss impact is also discussed at the end of this
section. Demo available at https://youtu.be/Gqsud7KUZfM.

A. Results of the first stage of the experiments

From Fig. 8a to Fig. 8e, we show the learning curves of
the first stage of the experiments for the five experimental
environments: Mario, Pacman, FlappyBirds, TaxiDriver, and
ScaraRobot. Both DQN and the random agents show similar
performance within the Mario environment at the beginning
of the training. The nature of the environment can explain this
behavior. While Pacman is highly constrained, Mario can take
several actions within its open environment. Meanwhile, when
there is an enemy or an obstacle, our ι(s) function provides
actions that prevent the agent from dying or getting stuck.
Consequently, IDQN feeds the replay buffer with better-quality
data while reaching further states during the game.

In the Pacman environment, the efforts of DQN are im-
practical because every episode ends prematurely. Likewise,
when using a random policy, the performance is poor because,
most of the time, the agent can only go in two directions.
Consequently, the equal probability of taking those actions
leads the agent to a poor exploration of the environment. IDQN
performs better because our ι(s) function avoids impractical
actions such as crashing against a wall or an enemy. This
behavior may take more than 2,000 episodes for DQN to learn.

In the FlappyBirds environment, IDQN can easily out-
perform DQN because the stochastic nature of the ϵ-greedy
policy exploration with equal probability indirectly biases the
agent’s behavior. Therefore, the replay buffer fills with data
related to crashes against the pipes, floor, or ceiling and rarely
with passing through the pipes. Moreover, when randomly
sampling a mini-batch from the replay buffer, the probability
of picking a transition representing a positive reward when
passing through the pipes is exceptionally low. Hence, the
agent mainly trains with impractical data and rarely trains
from transitions that represent the actual goal of the game.
In contrast, IDQN can make decisions based on the obstacles
around the bird. Thus, every episode lasts longer and fills the
replay buffer with better-quality training data.

In the TaxiDriver and ScaraRobot environments, DQN
presents difficulty in learning the drop action. In these envi-
ronments, it is very easy to collide against obstacles due to the
stochastic nature of DQN. This behavior fills the buffer with
useless data, and the episodes end prematurely. IDQN does
not need to explore or learn when to pick or drop because
that behavior is already encoded in the affordance function
ι(s).

B. Results of the second stage of the experiments

For the second stage of the experiments, the learning curves
from Fig. 8f to Fig. 8h show a comparison between the
performance of the state-of-the-art algorithms DQN, DDQN,
DuDQN, DDDQN, PPO, and A2C and the IECR variants
IDQN, IDDQN, IDuDQN, and IDDDQN. We summarize the
results of this stage in Table III. We applied the same number
of training steps to compare the algorithms fairly. The agent
was trained for 200 epochs, where every epoch is equivalent

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)
Fig. 8. The learning curves above show the results from the two stages of
experiments. The results of the first stage of the experiment are shown in
(a) Mario, (c) Pacman, (c) Flappybirds, (d) TaxiDriver, and (e) ScaraRobot.
The progress is measured in every episode. The results of the second stage
of the experiments are shown in (f), (g), (h), (i), and (j), where the progress
is measured every epoch. Every epoch is equivalent to 400 training steps.
In the second stage, the learning progress of the state-of-the-art algorithms
was less chaotic. However, IECR variants still outperform the state-of-the-art
approaches.

to 400 training steps. In the Mario environment, the DQN,
DDQN, DuDQN, and DDDQN learning curves show more
stable progress than in the first stage of the experiments.
We can also observe better learning progress when ι(s) is
involved. In Mario’s environment, the gap between state-of-

the-art approaches is smaller than in Pacman and FlappyBirds
because this environment has plenty of open space where the
agent can decide where to go. Moreover, the ι(s) only has an
effect when enemies, pipes, or holes are nearby, and most of
the time, all the actions are available. However, ι(s) assists in
critical moments of decisions and allows the agent to explore
further and fill the replay buffer with this information. Besides,
PPO showed competitive learning progress, while A2C got
stuck into a local minimum (see Fig. 8f).

In the Pacman environment, ι(s) has a higher impact
because environment obstacles such as walls and ghosts are
always next to Pacman. While the state-of-the-art approaches
use a stochastic policy for exploring the environment provok-
ing Pacman to crash against the walls or to die by touching a
ghost, ι(s) will avoid these states.

In the FlappyBirds environment, the state-of-the-art ap-
proaches had difficulties in exploring the environment and
finding high-value states. On the contrary, ι(s) explores and
supports good decisions based on what is surrounding the
bird. Consequently, the state-of-the-art approaches rarely train
from adequate states, whereas ι(s) guides the agent into better
decisions through every episode.

In the TaxiDriver environment, the affordances function ι(s)
assisted the agent exploration efficiently because, once the
taxi reached the passenger position, the only possible action
according to the set of rules is picking. Therefore, the state-
of-the-art algorithms must visit the same state several times to
learn that picking is the only possible action at that state. In
Fig. 8i, it can be noted that IECR variants learn faster due to
the reason explained before.

The ScaraRobot environment behaves similarly to
TaxiDriver. When the robotic arm reaches the picking or
dropping positions, only one action is allowed (picking
or dropping). However, the state-of-the-art approaches
cannot produce enough high-quality data dependent on the
action-selection process, which reverberates in their learning
performance (Fig. 8f).

C. Affordance loss impact

To measure the impact of the affordance loss, we calculated
the percentage of improvement by taking λ = 0 as a reference
for all the environments. In Fig. 9, we summarize the results
showed in Table IV. When λ = 0.5, IDQN and IDuDQN
had an improvement of 7.5% and 6%, respectively. IDDQN
and IDDDQN showed a deterioration in the performance of
1% and 14%. For λ = 1, IDQN and IDDQN improved
their performance by 1.5% and 5.5%, whereas IDuDQN
and IDDDQN’s performance decreased by 2.5% and 7.5%,
respectively. The experiment results show that λ = 5 pro-
duced an improvement in the performance of IDQN, IDDQN,
and IDuDQN of 6.8%, 1.8% and 0.5%, while IDDDQN’s
performance dropped by 4.5%. Setting λ = 10 improved
IDQN, IDDQN, and IDuDQN’s performance by 8.9%, 1.7%
and 6.5%, respectively. IDDDQN’s performance decreased by
5.2%.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

TABLE III
AVERAGE REWARD OBTAINED IN THE SECOND STAGE OF THE EXPERIMENTS.

IDQN IDDQN IDuDQN IDDDQN DQN DDQN DuDQN DDDQN PPO A2C
Mario 26.24 25.87 30.24 23.69 23.24 20.28 27.06 23.88 23.94 −5.24
Pacman 45.77 45.03 39.71 41.16 23.02 14.63 20.36 26.05 25.68 6.55
FlappyBirds 15.18 15.18 14.16 13.49 −8.02 −8.26 −8.72 −8.49 −8.38 −8.83
TaxiDriver 14.51 16.22 16.54 18.1 1.11 1.11 1.24 0.9 7.05 0.22
ScaraRobot 690.35 715.17 679.27 647.82 239.26 258.12 182.97 133.04 108.48 7.83

Fig. 9. The results above show the effect of varying the value of λ in the
algorithms.

TABLE IV
AFFORDANCE LOSS IMPACT (AVERAGE REWARD).

Environment (λ) IDQN IDDQN IDuDQN IDDDQN

Mario (0) 24.91 25.01 26.75 36.36
Pacman (0) 41.19 45.92 48.95 41.02
FlappyBirds (0) 14.93 15.18 13.38 14.41
TaxiDriver (0) 14.77 15.29 15.51 16.86
ScaraRobot (0) 680.65 641.92 731.89 697.07

Mario (0.5) 25.65 26.81 23.46 23.81
Pacman (0.5) 42.78 47.58 45.86 42.95
FlappyBirds (0.5) 14.9 15.18 13.76 13.92
TaxiDriver (0.5) 14.97 15.46 15.91 15.8
ScaraRobot (0.5) 810.28 595.5 966.78 573.0

Mario (1) 26.24 25.87 30.24 23.69
Pacman (1) 45.77 45.03 39.71 41.16
FlappyBirds (1) 15.18 15.18 14.16 13.49
TaxiDriver (1) 14.51 16.22 16.54 18.1
ScaraRobot (1) 690.35 715.17 679.27 647.82

Mario (5) 26.42 24.54 24.79 25.75
Pacman (5) 41.96 50.42 45.47 50.09
FlappyBirds (5) 15.18 15.18 13.49 13.33
TaxiDriver (5) 14.94 16.64 14.5 15.27
ScaraRobot (5) 841.11 593.11 914.08 711.51

Mario (10) 25.14 26.12 24.31 29.34
Pacman (10) 44.43 48.63 44.73 41.87
FlappyBirds (10) 15.16 15.12 13.75 13.29
TaxiDriver (10) 16.83 16.1 18.3 18.55
ScaraRobot (10) 802.81 591.69 959.26 614.2

VII. DISCUSSION

This paper has introduced the IECR framework, aiming to
accelerate the agent’s learning process by utilizing available
contextual information in the environment. This approach is
first fed from a manually defined set of rules, much like
what a human does. Then it uses the rules to generate an
affordance function that seeks to reduce the exploration space
and optimize the decision-making process.

In real-world tasks, humans understand the rules, so repeat-
ing the same mistake millions of times is unnecessary. IECR
is a successful framework that uses this human capability to
benefit from context and use it to make intelligent decisions.
The fact that IECR variants outperform all these state-of-the-
art approaches makes it clear how vital context is during the
learning process of an agent.

In the FlappyBirds environment, the IECR variants IDQN,
IDDQN, IDuDQN, and IDDDQN outperform state-of-the-
art approaches. There may be better approaches than DQN,
DDQN, DuDQN, or DDDQN. For example, a Q-table and
QL could manage to solve this environment quickly. Since
FlappyBirds is a highly repetitive environment, the number of
states can be calculated. Another solution may be to use two
replay buffers: one buffer for poor and average transitions and
a second buffer exclusive for good transitions. It would be
necessary to bias the sampling process of the data to collect
good transitions so that the agent can learn and find a solution
for the environment. Another solution may be to design a
reward function that pushes the bird to the middle of the pipes.
However, IDQN does not require such modifications, and a set
of rules is enough to solve the environment.

The results in Table IV show that λ and the two loss
functions based on the affordance function (J(Q)simple and
J(Q)double) have a higher impact in IDQN, IDDQN, and
IDuDQN than in IDDDQN. We believe that the reason for this
is that the J(Q)double loss function is related to the Q-values
stream of the target neural network. Hence, the weights of
the main and target neural networks may provoke the possible
actions in the advantage stream to differ from the ones in the
Q-values stream.

Simply carrying out a stochastic exploration of the environ-
ment does not secure a good learning process for the agent.
Therefore, the satisfactory results of IECR introduced in this
paper can be explained by the quality of the data produced with
the assistance of the ι(s) function. IECR has the potential to be
implemented not only in games but in other domains because
it is compatible with discrete environments.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

VIII. CONCLUSION AND FUTURE WORK

The framework developed in this paper demonstrates a
seamless integration of contextual data in deep RL. We have
demonstrated that our framework and the resulting algorithms,
namely IDQN, IDDQN, IDuDQN, and IDDDQN, signifi-
cantly enhance the agent’s performance by converging in
the experimental environments within approximately 40,000
training steps. In comparison, all state-of-the-art approaches
in this study exhibited inferior results when compared to
IECR variants. By incorporating a manually defined set of
rules and the concept of CKFs, we obtain an affordance
function, enabling the agent to benefit from higher-quality
data compared to the data obtained from a pure stochastic
exploration. Our contributions include an intuitive framework
that incorporates contextual information to improve RL, as
well as the introduction of four novel algorithms based on
IECR.

The results from the first stage of experiments demonstrate
the capacity of IDQN to learn from CKFs representation. In
the second stage, our results indicate that IECR variants con-
sistently outperform state-of-the-art algorithms when utilizing
the same number of training steps (40,000) as a reference.
IECR provides a solution for challenging states where, instead
of learning after millions of interactions, the agent computes
ι(s) and avoids becoming stuck before proceeding to explore
the environment.

This paper has explored the integration of context in RL and
has opened new avenues for challenges in the field. The current
limitations of this work pertain to continuous environments,
where the state representation may pose difficulties in finding
an affordance function. In future work, we plan to investigate
the application of this framework in continuous and three-
dimensional environments, with a particular focus on robotics.
We hypothesize that our affordance function, ι(s), which
represents the probability of taking an action based on the
context, could also accelerate the learning process of agents
in these settings. Moreover, with the semantic representation
of the environment, there is potential to develop an agent
capable of learning, explaining its actions, and understanding
the environment.

ACKNOWLEDGMENT

This project was partially supported by Consejo Nacional de
Humaninades Ciencias y Tecnologı́as (CONAHCyT), Cardiff
University, National Research Foundation, Singapore under
its AI Singapore Programme (AISG Award No: AISG2-RP-
2020-019), and the Jubilee Technology Fellowship awarded
to Ah-Hwee Tan by Singapore Management University. This
work was partially supported by the Engineering and Physical
Sciences Research Council (grant No. EP/X018962/1).

REFERENCES

[1] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” arXiv preprint arXiv:1511.05952, 2015.

[2] J. P. Hanna, S. Niekum, and P. Stone, “Importance sampling in reinforce-
ment learning with an estimated behavior policy,” Machine Learning,
vol. 110, no. 6, pp. 1267–1317, 2021.

[3] X. Wang, S. Wang, X. Liang, D. Zhao, J. Huang, X. Xu, B. Dai, and
Q. Miao, “Deep reinforcement learning: a survey,” IEEE Transactions
on Neural Networks and Learning Systems, 2022.

[4] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, pp.
279–292, 1992.

[5] T. Yu, A. Kumar, Y. Chebotar, K. Hausman, S. Levine, and C. Finn,
“Conservative data sharing for multi-task offline reinforcement learn-
ing,” Advances in Neural Information Processing Systems, vol. 34, pp.
11 501–11 516, 2021.

[6] X. Yang, Z. Ji, J. Wu, Y.-K. Lai, C. Wei, G. Liu, and R. Setchi,
“Hierarchical reinforcement learning with universal policies for multi-
step robotic manipulation,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 33, no. 9, pp. 4727–4741, 2021.

[7] Z. Ren, D. Dong, H. Li, and C. Chen, “Self-paced prioritized curriculum
learning with coverage penalty in deep reinforcement learning,” IEEE
transactions on neural networks and learning systems, vol. 29, no. 6,
pp. 2216–2226, 2018.

[8] I. Osband, B. Van Roy, D. J. Russo, Z. Wen et al., “Deep exploration
via randomized value functions.” J. Mach. Learn. Res., vol. 20, no. 124,
pp. 1–62, 2019.

[9] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and
R. Munos, “Unifying count-based exploration and intrinsic motivation,”
Advances in neural information processing systems, vol. 29, 2016.

[10] J. Pan, X. Wang, Y. Cheng, and Q. Yu, “Multisource transfer double
dqn based on actor learning,” IEEE transactions on neural networks
and learning systems, vol. 29, no. 6, pp. 2227–2238, 2018.

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[12] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel,
“Overcoming exploration in reinforcement learning with demonstra-
tions,” in 2018 IEEE international conference on robotics and automa-
tion (ICRA). IEEE, 2018, pp. 6292–6299.

[13] L. Blondé and A. Kalousis, “Sample-efficient imitation learning via
generative adversarial nets,” in The 22nd International Conference on
Artificial Intelligence and Statistics. PMLR, 2019, pp. 3138–3148.

[14] C. Ribeiro, “Reinforcement learning agents,” Artificial intelligence re-
view, vol. 17, pp. 223–250, 2002.

[15] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement
learning without exploration,” in International conference on machine
learning. PMLR, 2019, pp. 2052–2062.

[16] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International conference on
machine learning. PMLR, 2017, pp. 1126–1135.

[17] V. Voss, L. Nechepurenko, R. Schaefer, and S. Bauer, “Playing a strategy
game with knowledge-based reinforcement learning,” SN Computer
Science, vol. 1, no. 2, p. 78, 2020.

[18] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore,
P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, and Y. Wu, “Stable baselines,” https://github.com/
hill-a/stable-baselines, 2018.

[19] H. Hasselt, “Double q-learning,” Advances in neural information pro-
cessing systems, vol. 23, 2010.

[20] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
International conference on machine learning. PMLR, 2016, pp. 1995–
2003.

[21] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Processing
Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[22] X. Chen, M. W. Ulmer, and B. W. Thomas, “Deep q-learning for same-
day delivery with vehicles and drones,” European Journal of Operational
Research, vol. 298, no. 3, pp. 939–952, 2022.

[23] S. Y. Luis, D. G. Reina, and S. L. T. Marı́n, “A multiagent deep rein-
forcement learning approach for path planning in autonomous surface
vehicles: The ypacaraı́ lake patrolling case,” IEEE Access, vol. 9, pp.
17 084–17 099, 2021.

[24] H. Li, Q. Zhang, and D. Zhao, “Deep reinforcement learning-based
automatic exploration for navigation in unknown environment,” IEEE
transactions on neural networks and learning systems, vol. 31, no. 6,
pp. 2064–2076, 2019.

[25] R. Chai, H. Niu, J. Carrasco, F. Arvin, H. Yin, and B. Lennox,
“Design and experimental validation of deep reinforcement learning-
based fast trajectory planning and control for mobile robot in unknown
environment,” IEEE Transactions on Neural Networks and Learning
Systems, 2022.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 14

[26] Z. Yang, K. Merrick, L. Jin, and H. A. Abbass, “Hierarchical deep
reinforcement learning for continuous action control,” IEEE transactions
on neural networks and learning systems, vol. 29, no. 11, pp. 5174–5184,
2018.

[27] C.-S. Tai, J.-H. Hong, and L.-C. Fu, “A real-time demand-side manage-
ment system considering user behavior using deep q-learning in home
area network,” in 2019 IEEE International Conference on Systems, Man
and Cybernetics (SMC). IEEE, 2019, pp. 4050–4055.

[28] D. Xu, F. Zhu, Q. Liu, and P. Zhao, “Improving exploration efficiency
of deep reinforcement learning through samples produced by generative
model,” Expert Systems with Applications, vol. 185, p. 115680, 2021.

[29] M. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and
data-efficient approach to policy search,” in Proceedings of the 28th
International Conference on machine learning (ICML-11), 2011, pp.
465–472.

[30] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
D. Horgan, J. Quan, A. Sendonaris, I. Osband et al., “Deep q-learning
from demonstrations,” in Proceedings of the AAAI conference on artifi-
cial intelligence, vol. 32, no. 1, 2018.

[31] S. Liu, S. Wang, X. Liu, C.-T. Lin, and Z. Lv, “Fuzzy detection aided
real-time and robust visual tracking under complex environments,” IEEE
Transactions on Fuzzy Systems, vol. 29, no. 1, pp. 90–102, 2020.

[32] S. Liu, Y. Li, and W. Fu, “Human-centered attention-aware networks for
action recognition,” International Journal of Intelligent Systems, vol. 37,
no. 12, pp. 10 968–10 987, 2022.

[33] M. E. Taylor and P. Stone, “Transfer learning for reinforcement learning
domains: A survey.” Journal of Machine Learning Research, vol. 10,
no. 7, 2009.

[34] Y. Zhang and M. M. Zavlanos, “Transfer reinforcement learning under
unobserved contextual information,” in 2020 ACM/IEEE 11th Interna-
tional Conference on Cyber-Physical Systems (ICCPS). IEEE, 2020,
pp. 75–86.

[35] A. Hallak, D. Di Castro, and S. Mannor, “Contextual markov decision
processes,” arXiv preprint arXiv:1502.02259, 2015.

[36] S. Belogolovsky, P. Korsunsky, S. Mannor, C. Tessler, and T. Zahavy,
“Inverse reinforcement learning in contextual mdps,” Machine Learning,
vol. 110, no. 9, pp. 2295–2334, 2021.

[37] A. Kabra, A. Agarwal, and A. S. Parihar, “Potent real-time recom-
mendations using multimodel contextual reinforcement learning,” IEEE
Transactions on Computational Social Systems, vol. 9, no. 2, pp. 581–
593, 2021.

[38] ——, “Cluster-based deep contextual reinforcement learning for top-k
recommendations,” in Proceedings of the International Conference on
Computing and Communication Systems: I3CS 2020, NEHU, Shillong,
India. Springer, 2021, pp. 125–135.

[39] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[40] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning.
PMLR, 2016, pp. 1928–1937.

[41] C. Benjamins, T. Eimer, F. Schubert, A. Mohan, A. Biedenkapp,
B. Rosenhahn, F. Hutter, and M. Lindauer, “Contextualize me–the case
for context in reinforcement learning,” arXiv preprint arXiv:2202.04500,
2022.

[42] C. Benjamins, T. Eimer, F. Schubert, A. Biedenkapp, B. Rosenhahn,
F. Hutter, and M. Lindauer, “Carl: A benchmark for contextual and adap-
tive reinforcement learning,” arXiv preprint arXiv:2110.02102, 2021.

[43] S. Sodhani, A. Zhang, and J. Pineau, “Multi-task reinforcement learning
with context-based representations,” in International Conference on
Machine Learning. PMLR, 2021, pp. 9767–9779.

[44] T.-H. Teng, A.-H. Tan, and J. M. Zurada, “Self-organizing neural
networks integrating domain knowledge and reinforcement learning,”
IEEE transactions on neural networks and learning systems, vol. 26,
no. 5, pp. 889–902, 2014.

[45] J. J. Gibson, “The theory of affordances,” Hilldale, USA, vol. 1, no. 2,
pp. 67–82, 1977.

[46] N. Yamanobe, W. Wan, I. G. Ramirez-Alpizar, D. Petit, T. Tsuji,
S. Akizuki, M. Hashimoto, K. Nagata, and K. Harada, “A brief review
of affordance in robotic manipulation research,” Advanced Robotics,
vol. 31, no. 19-20, pp. 1086–1101, 2017.

[47] H. S. Koppula and A. Saxena, “Anticipating human activities using
object affordances for reactive robotic response,” IEEE transactions on
pattern analysis and machine intelligence, vol. 38, no. 1, pp. 14–29,
2015.

[48] E. Chalmers, E. B. Contreras, B. Robertson, A. Luczak, and A. Gruber,
“Learning to predict consequences as a method of knowledge transfer
in reinforcement learning,” IEEE transactions on neural networks and
learning systems, vol. 29, no. 6, pp. 2259–2270, 2017.

[49] F. Cruz, S. Magg, C. Weber, and S. Wermter, “Training agents with
interactive reinforcement learning and contextual affordances,” IEEE
Transactions on Cognitive and Developmental Systems, vol. 8, no. 4,
pp. 271–284, 2016.

[50] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

Francisco Munguia-Galeano received the B.S. de-
gree in robotics engineering and his master’s de-
gree (Hons.) in computing technology from Instituto
Politécnico Nacional, Mexico, in 2015 and 2018,
respectively. He is currently pursuing the Ph.D.
degree in engineering at Cardiff University, United
Kingdom. Prior to joining Cardiff University as a
Research Assistant in 2021, he gained experience
working as an Automation Engineer and, more re-
cently, as a software developer. His research interests
encompass reinforcement learning and robotics.

Ah Hwee Tan (SM’04) received the B.Sc. (Hons.)
and M.Sc. degrees in computer and information
science from the National University of Singapore,
Singapore, and the Ph.D. degree in cognitive and
neural systems from Boston University, Boston,
MA, USA. He is currently Professor of Computer
Science, Associate Dean of Research, and the in-
augural Jubilee Technology Fellow at the School
of Computing and Information Systems, Singapore
Management University (SMU). Prior to joining
SMU, he was a tenured full Professor of Computer

Science and Associate Chair of Research at the School of Computer Sci-
ence and Engineering (SCSE), Nanyang Technological University (NTU).
His research interests include cognitive and neural systems, brain inspired
intelligent agents, machine learning, knowledge discovery, and text mining.
Dr. Tan is an Associate Editor of IEEE COMPUTATIONAL INTELLIGENCE
MAGAZINE.

Ze Ji (Member, IEEE) received a B.Eng. degree
from Jilin University, Changchun, China, in 2001,
M.Sc. degree from the University of Birmingham,
Birmingham, U.K., in 2003, and Ph.D. degree from
Cardiff University, Cardiff, U.K., in 2007. He is a
senior lecturer (associate professor) with the School
of Engineering, Cardiff University, U.K. He is also
the recipient of the Royal Academy of Engineering
Industrial Fellow. Prior to his current position, he
was working in industry (Dyson, Lenovo, etc) on au-
tonomous robotics. His research interests are cross-

disciplinary, including autonomous robot navigation, robot manipulation, robot
learning, computer vision, simultaneous localization and mapping (SLAM),
acoustic localization, and tactile sensing.

