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A B S T R A C T   

As an energy-intensive industry, the steel industry grapples with increasing energy costs and decarbonisation 
pressures. Therefore, multi-objective optimisation is widely applied in the production scheduling of the steel-
making plant. However, the optimal solution prioritising energy savings and emission reductions may lead to 
impractical or less economically efficient solutions, since the processing time requirement (PTR) of steel pro-
duction orders in real-world production is neglected. This study fills the research gap by discussing the impact of 
PTR on the make-span of the steelmaking process and incorporating it into the optimisation model. Considering 
the variability of PTR, the solving of the multi-objective scheduling problem is transformed into the selection 
from Pareto solutions with different make-spans. To better leverage the temporal flexibility of the steelmaking 
process, a what-if-analysis-based strategy coupled with the Normal Boundary Intersection method is proposed to 
generate a series of evenly distributed Pareto solutions. The energy storage system is integrated to improve the 
time granularity of the steelmaking plant’s flexibility. Our case studies demonstrate that the electricity and 
emission costs are reduced by 68.5%, indirect emissions are reduced by 83.5%, and the on-site renewable energy 
self-consumption rate increases by 12.1%. The effectiveness of the proposed method implies that it is of great 
relevance to the development of a cleaner steel industry in the future.   

1. Introduction 

Steel, as a cornerstone of modern economies and a linchpin of the 
energy transition, is responsible for approximately 8% of global energy 
demand and 7% of energy sector CO2 emissions (IEA, 2020). The 
imperative of reducing these emissions by at least 50% by 2050 (IEA, 
2020) is challenged by the steel industry’s heavy coal dependency (Sun 
et al., 2020), making steel industry emissions “hard-to-abate”. Among 
commercialised steelmaking technologies, secondary steelmaking, 
which recycles scrap metal, promotes resource efficiency and emission 
reduction in the steel industry. However, its inherently 
electricity-intensive nature results in high electricity costs and increased 
grid-related indirect emissions. The steelmaking1 process is identified 
for its substantial potential in offering demand-side flexibility (Zhang 
et al., 2017; Wang et al., 2023a), as its large electricity consumption and 
power demand, and well-established infrastructures for control and 
communication. A strategic production schedule is highly desirable for 

substantial electricity cost savings and to mitigate indirect emissions 
without significant capital investments. 

Existing literature predominantly centres on single objectives, pri-
oritising either make-span minimisation or electricity cost reduction. 
The objective for optimal scheduling of steel plants has traditionally 
been focused on minimising the make-span (Harjunkoski and Gross-
mann, 2001; Harjunkoski and Sand, 2008) to promote rapid production, 
thereby fully utilising the heavily invested facilities. In recent times, 
smart grid technologies and the liberalisation of the energy markets 
have allowed steel plants to actively participate in demand response or 
demand side management to optimise their electricity costs. Given the 
recent surge in electricity prices, minimising electricity costs has become 
a priority for steelmaking plants. Strategies for energy-aware scheduling 
have been explored with a variety of emphases, such as peak load 
management (Ashok, 2006; Wang et al., 2023b; Zhang et al., 2017), 
electricity cost reduction (Castro et al., 2009, 2013, 2019, 2020) and 
ancillary services provision (Ramin et al., 2018; Xu et al., 2020, 2021). 
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Although a significant decrease in electricity costs is evident, other ob-
jectives in production schedules, such as emission reduction and 
make-span minimisation, are often neglected. Multi-objective optimi-
sations considering both cost and emission reduction are emphasised by 
some studies. Given the concerns regarding fossil fuel usage and its 
resultant greenhouse gas emissions, grid-related carbon emissions have 
likewise been highlighted in the literature. Zhang et al. (2014) examined 
the trade-off between electricity costs and grid-associated carbon 
emissions while not compromising production throughput under 
time-of-use tariffs for a flow shop. For the scheduling of a steelmaking 
process, current studies have mainly two limitations: 1) the existing 
model of the steelmaking process is not compact enough; 2) the pro-
cessing time requirement (PTR) of steel production orders is overlooked. 

The scheduling of the steelmaking process is often recognised as one 
of the most intricate industrial scheduling problems, as it is a large-scale, 
multistage, multiproduct batch process encompassing parallel equip-
ment and critical production-related constraints (Harjunkoski and 
Grossmann, 2001). The resource-task network (RTN) serves as a profi-
cient modelling framework, systematically illustrating intricate chemi-
cal processes. Castro et al. (2013) validate the effectiveness of the RTN 
model for developing a steelmaking process model, effectively capturing 
the key scheduling constraints of a steel plant. However, the modelling 
of indirect emissions is neglected in the RTN model. Thus, to be applied 
to the multi-objective scheduling problem, both electricity consumption 
and indirect emission need to be included in the RTN model. 

PTR refers to the maximum completion time of the steelmaking order 
required by the customers. The variability of the PTR arises from order 
modifications, such as rush order arrival, order cancellation, and 
changes in due dates (either delays or advances) (Iglesias-Escudero 
et al., 2019; Xiong et al., 2022). In the steelmaking process, PTR is the 
direct factor that affects the to-be-selected make-span of the steelmaking 
plant, which directly impacts the temporal flexibility of the steel pro-
duction process. Trevino-Martinez et al. (2022) develop an 
energy-carbon footprint optimisation model for a single-machine 
scheduling problem, generating a schedule with a singular make-span. 
However, only considering a singular make-span leads to some critical 
problems. When the PTR is shorter than the predefined make-span, the 
obtained solution will be impractical in real-time production, while the 
flexibility of the steelmaking process is not fully utilised if the PTR is way 
longer than the predefined make-span. Therefore, well-distributed Par-
eto solutions are desirable to better leverage the temporal flexibility of 
the steelmaking process under different PTR scenarios. 

Additionally, by incorporating on-site renewable energy sources 
(RES) like photovoltaic (PV) and wind power, the plant’s sustainability 
and cost-effectiveness can be significantly enhanced (Chen et al., 2022). 
However, the batch production mode inherent in steelmaking poses 
challenges for efficient renewable energy utilisation due to poor time 
granularity. This issue stems from a misalignment of time scales between 
electricity prices (e.g., a 60-min interval in the UK (NORD, 2023)), RES 
predictions (e.g., a 30-min interval in the UK (National Grid, 2023a)), 
and the batch production of secondary steelmaking (e.g., a 35–85-min 
continuous operating interval (Castro et al., 2013)). To tackle the poor 
time granularity issue, Hadera et al. (2015) proposed a continuous-time 
model that incorporates on-site generation and potential grid sell-back 
options, aiming to optimize the daily production schedules and elec-
tricity purchases of a steel plant. The proposed solution scheme benefits 
from the exact timing of the tasks by the continuous-time scheduling 
representation. However, the limitation of the continuous-time model 
concerning computational performance poses challenges when applied 
to larger instances. Another method to improve the time granularity of 
the batch processes’ flexibility is to integrate the on-site flexible re-
sources, e.g., energy storage system (ESS) (Li et al., 2023), into the 
production scheduling model. To overcome the restriction of poor 
granularity on offering ancillary services due to discrete power changes 
by switching on/off the loading units, Zhang et al. (2018) propose a 
method for providing ancillary services by the combination of industrial 

loads, which can adjust their power consumption only in large discrete 
steps, and an on-site ESS, which provides the more granular power ad-
justments. Nonetheless, considering the distinctions between steel-
making and cement production processes, further research is needed to 
explore how energy storage can bolster flexibility in steel production. 
The above literature review indicates a significant lack of studies on the 
coordinated optimization of ESS and industrial processes to address the 
limitations of poor time granularity inherent in batch production. This is 
particularly evident when considering the distinct challenges associated 
with steelmaking processes. 

In this paper, we introduce a multi-objective scheduling model for a 
secondary steelmaking plant equipped with both RES and ESS, consid-
ering the variability in the PTR of steel production orders. Our model 
aims to minimise electricity costs, reduce indirect emissions, and 
accommodate variability in PTR, while simultaneously integrating 
critical steelmaking constraints to ensure operational safety and conti-
nuity. Since the PTR is an external factor that affects the make-span of 
the steelmaking plant, we transform the solving of the scheduling 
problem to the selection from Pareto solutions with different make- 
spans. We propose a what-if-analysis-based strategy coupled with the 
Normal Boundary Intersection (NBI) method to generate a series of 
evenly distributed Pareto solutions, which better leverage the temporal 
flexibility of the steelmaking process. Furthermore, to address the poor 
time granularity in the batch steelmaking process, we integrate the BESS 
into the demand response model to improve the time granularity of the 
steelmaking plant’s flexibility. Three major contributions of this paper 
are summarised as follows.  

1) With an extended RTN method, we present a multi-objective mixed 
integer linear program (MO-MILP) model that embeds critical 
steelmaking constraints, considering electricity cost minimisation, 
indirect emission reduction, and PTR variability.  

2) Considering the variability in PTR, we propose a what-if-analysis- 
based strategy to generate a series of Pareto optimal points tailored 
to different make-span scenarios. To yield evenly distributed Pareto 
optimal points, we introduce the Normal Boundary Intersection 
(NBI) method to the formulation of our proposed MO-MILP model, 
such that the electricity cost and emission are optimised for specified 
make-span scenarios.  

3) By integrating ESS into the demand response model, we improve the 
time granularity of the steelmaking plant’s flexibility, which is 
inherently limited by the batch steelmaking process. With the 
improved responsiveness, the RES self-consumption of the steel-
making plant is increased, and the electricity cost and emission are 
reduced. 

The remainder of this paper is organised as follows: Section 2 in-
troduces the model description, while Section 3 provides the mathe-
matical formulation of the proposed multi-objective scheduling model; 
Section 4 describes the what-if-analysis-based strategy coupled with the 
NBI method for obtaining representative optimal solutions. A case study, 
including the test system description and result and discussion, is pro-
vided in Section 5. Finally, Section 6 summarises the conclusion and 
future research. 

2. Model description 

2.1. Role of the proposed model in current industrial information 
management systems 

Our multi-objective scheduling model is designed to be integrated 
into the current information management systems of industrial plants, as 
illustrated in Fig. 1. In line with industrial standards, such as the ISA-95 
standard (International Society of Automation (ISA), 2020), the plant’s 
existing information management systems consist of the enterprise re-
sources planning (ERP) layer, the manufacturing execution system 
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(MES) layer, and the process control system (PCS) layer (Harjunkoski 
et al., 2014). 

From top to bottom, the ERP layer manages plant resources and 
operations, including inventory, procurement, sales, and finance. It 
generates production orders based on customer demands, which are 
then executed in the MES and PCS layer. The ERP layer also receives 
information from the MES layer to inform enterprise-level decision- 
making, such as production status and inventory levels. 

The MES layer acts as the intermediary between the ERP and the PCS 
layers. Within the MES layer, our core decision-making process occurs, 
optimising a multi-objective schedule through a structured workflow 
that encompasses steelmaking process representation, decision-making, 
and decision dispatch stages. Once the optimal results are determined, 
they are converted into control signals within the MES layer and dis-
patched to the PCS layer. These control signals dictate the start time for 
all production units, the operation schedule of the ESS and electricity 
exchange with the grid, effectively coordinating the production pro-
cesses and energy management. 

The PCS layer is responsible for monitoring and controlling the 
actual production processes. It collects real-time data from sensors and 

equipment, such as electricity meter reading data, and operation pa-
rameters of all equipment (e.g., temperature and pressure inside the 
steelmaking units, power flow, state of charge of the ESS, etc.), to ensure 
that the production processes are running smoothly and within specified 
parameters. The PCS layer also receives control signals from the MES 
layer to adjust the operation of production units as needed. 

2.2. Characteristics of the steelmaking process 

The steelmaking process, as illustrated in Fig. 2, consists of four 
stages: electric arc furnace (EAF), argon oxygen decarburisation (AOD), 
ladle furnace (LF), and continuous casting (CC). In the EAF stage, the 
raw material is melted into molten metal. The AOD stage is responsible 
for purifying the molten metal and reducing its carbon content. The LF 
stage further refines the metal and transfers it to the CC stage, where it is 
cast into various shapes, such as slabs. To meet customer requirements, 
the final products have different characteristics, including grade, width, 
and thickness (Zhang et al., 2017). Generally, the plant involves parallel 
equipment and various critical production-related constraints (Harjun-
koski and Sand, 2008). Each stage of the steel manufacturing process has 

Fig. 1. Integration of the multi-objective scheduling model into the industrial information management system.  

Fig. 2. A typical secondary steelmaking process.  
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specific energy requirements and consumption patterns. The batch 
production mode, characterised by the processing of heat, which refers 
to a batch of molten metal, often leads to poor time granularity, thereby 
diminishing demand flexibility. 

The main difficulty of the scheduling of the steelmaking process 
primarily stems from the large number of discrete variables in the model 
(Zhang et al., 2017). To model and optimise the scheduling of steel-
making plants, the RTN is widely used because of the reduced compu-
tational complexity and the negligible differences in the final solution 
compared to the solutions of more rigorous models, which take a 
significantly longer time to run. The RTN formulations of the steel-
making critical constraints are detailed in prior studies (Castro et al., 
2013; Zhang et al., 2017). Our study extends RTN formulations by 
including grid-related indirect emissions and then incorporates them 
into our multi-objective scheduling model. 

2.3. RTN-based representation of the steelmaking process 

The RTN, as illustrated in Fig. 3, serves as an effective tool for rep-
resenting the steelmaking process through the delineation of “re-
sources”, “tasks”, and “networks”. The “resources” encompass various 
production entities, such as equipment units, intermediate and final 
products, as well as utilities like electricity consumption (EC) and car-
bon emissions (CE). The resource set R is depicted in Eq. (1). 

R={EAFs,AODs,LFs,CC1,CC2}

∪
{

EAs
h,EAd

h,ALs
h,ALd

h,LCs
h,LCd

h ,Hh
⃒
⃒h∈H

}

∪{EC,CE}
(1)  

where H is the set of heats to produce; {EAFs,AODs, LFs,CC1,CC2}

represents equipment units in the four stages; {EAs
h, EAd

h,ALs
h,ALd

h, LCs
h,

LCd
h} indicates the set of intermediate products distinguished by their 

locations as either the starting point or destination of a corresponding 
transfer, which is marked with superscripts s or d, respectively; Hh 
represents the set of final products; and {EC,CE} represents the set of 
utilities like EC and CE. 

The tasks in the proposed model represent the operation activities 
performed during the steelmaking process. There are seven types of 
tasks: the first three operational tasks {Eh,Ah, Lh|h∈ H} corresponding 
to each of the first three stages, the casting tasks Cg,u for the CC stage 

executed by the caster unit u for each casting campaign group g, and the 
three transfer tasks {EAh,ALh, LCh|h∈ H} between these stages. The set 
of tasks is denoted by N, as given in Eq. (2). 

N = {Eh,Ah, Lh,EAh,ALh,LCh|h ∈ H}

∪
{

Cg,u
⃒
⃒g ∈ G, u ∈ U

} (2)  

where G = {G1,G2,⋯,Gg} and U = {CC1,CC2} are the sets of casting 
campaign groups and available casters, respectively. 

The network component of the RTN framework captures the re-
lationships and dynamics between tasks and resources. The network 
flowchart in Fig. 3 indicates the relationships between each task and its 
related resources. Processing tasks exhibit continuous interaction with 
EC and CE resources, while their interaction with other resources is 
discrete. Continuous interaction implies consistent consumption or 
generation of resources throughout a task’s duration. Conversely, 
discrete interaction signifies interactions that occur at specific, distinct 
time points during the task. 

The discrete-time representation is utilised in the RTN model (Pan-
telides, 1994). As illustrated in Fig. 4, the discrete-time formulation 
corresponds to a uniform time grid, consisting of T slots with a specific 
length δ (min) spanning 24 h. The time grid starts from t = 1 and ends 
t = T. The processing time for all tasks is rounded to a multiple of δ. 
Specifically, the duration of the task n, measured in the number of time 
slots, is calculated by Eq. (3). 

τn =⌈dn / δ⌉ (3)  

where dn is the processing duration of the task n measured in minutes; ⌈ 
.⌉ is the rounding up operator. 

The dynamics between tasks and resources are associated with an 
interaction parameter μr,i,θ for each task i ∈ N, representing the amount 
of resource r consumed or generated by the task i at a specific relative 
time slot θ − th after the start of the task i with the value set { − 1,0, 1}. 

The interaction parameters for the decarburisation task processed in 
the AOD unit with its interactive resources are illustrated in Fig. 5. The 
processing duration of the decarburisation task is assumed to be 80 min, 
and the slot length δ is assumed to be 30 min. Hence, the duration of the 
decarburisation task in the number of time slots can be calculated by Eq. 
(3), and the task spans three time slots. Note that there are three 
different references for time: t is the index for the uniform time grid; θ is 

Fig. 3. Representation of the secondary steelmaking process using resource-task-network framework.  
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the relative time index related to the start of the task i, Time represents 
the actual hour of the day. The discrete-time formulation assumes that 
the task can only start at the beginning of the time slot but end anywhere 
within the time slot (Pantelides, 1994). This rounding error caused by 
the discrete-time formulation might underestimate the potential flexi-
bility gained from scheduling, which, however, can be alleviated by 
using a finer time grid while increasing the computational complexity 
(Zhang et al., 2017). 

In Fig. 5, the decarburisation task AODh of heat h interacts with re-
sources EAh

d, AOD, ALh
s, EC and CE. We assume that the decarburisation 

task AODh starts at t = 6, intermediate product resource EAh
d is then 

reduced by one as the task consumes the intermediate product generated 
by the previous stage; meanwhile, the equipment resource AOD is also 
reduced by one as the operation unit is occupied at this time. After the 
decarburisation process is done, AOD is increased by one as the 

decarburisation equipment unit is freed up; meanwhile, the intermedi-
ate product resource ALh

s is increased by one to promote the execution 
of the following transfer. Throughout the process, EC is continuously 
consumed, while CE is continuously generated. This CE is a product of 
the EC and the region carbon intensity ctt at time slot t. Note that the 
electricity consumption and carbon emissions for the final time slot are 
less than the previous two slots because the task finishes early before the 
end of that slot (Zhang et al., 2017). 

3. Mathematical formulation 

With the extended RTN method, we present a MO-MILP model of the 
multi-objective scheduling of a steelmaking plant. This model embeds 
critical steelmaking constraints, ESS operation constraints and power 
balance constraints, considering electricity cost reduction, indirect 
emission reduction, and PTR variability. 

Fig. 4. Discrete-time representation of the RTN model with a uniform time grid.  

Fig. 5. Illustration of interaction parameters for a decarburisation task.  
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3.1. Constraints 

3.1.1. Critical steelmaking-related constraints 

3.1.1.1. Resource balance constraints. The resource balance constraints 
manage the interaction between each resource and its relevant tasks 
over the time grid by Eq. (4). 

Rr,t = Rr,t− 1 +
∑

i

∑τi

θ=0
μr,i,θIi,t− θ∀t ∈ T, r ∈ ℝ¬{EC,CE} (4)  

where Rr,t denotes the value of resource r at the time slot t, which is 
computed as its preceding value Rr,t− 1 adjusted by the quantity produced 
or consumed by all tasks; μr,i,θ represents the interaction quantity be-
tween resource r and task i at the θ − th time slot since the start of the 
task i. Here, T is the set of all time slots, while R¬{EC,CE} is the set of all 
resources excluding resources of EC and CE. 

The resources in Eq. (4) purposely exclude EC and CE as they are 
calculated individually for each time slot, thereby eliminating any 
propagation effects from the preceding time slot. The resource balance 
constraints for resources EC and CE are determined by Eq. (5). 

Πr,t =
∑

i

∑τi

θ=0
μr,i,θIi,t− θ ∀t ∈ T, r ∈ ℝ{EC,CE} (5)  

where Πr,t denotes the value of resources r (e.g. EC and CE) at the time 
slot t. 

3.1.1.2. Task execution constraints. To ensure immediate execution of 
transfer tasks, intermediate products produced by its preceding pro-
cessing tasks are set to 0, as defined by Eq. (6). Additionally, Eq. (7) 
ensures that final products must be ready for delivery by the final time 
slot by making the resource value of the final product equal to 1. For the 
first three stages, task execution constraints, as detailed in Eq. (8), 
stipulate that each heat is processed exactly once within the scheduling 
horizon. Transfer of all intermediate products occurs only once as 
defined by Eq. (9). Finally, for each group g in the final stage, Eq. (10) 
mandates that each group undergoes processing exactly once by any unit 
u from the available casters, validated by ensuring that the sum of all 
processing task variables over the time horizon and all potential casters 
equal 1. 

REAs
h ,t
=RALs

h ,t
= RLCs

h ,t
= 0 ∀h ∈ H (6)  

RHh ,|T| = 1 ∀h ∈ H (7)  

∑

t∈T

IiEAFh ,t
=

∑

t∈T

IiAODh ,t
=

∑

t∈T

IiLFh ,t = 1 ∀h ∈ ℍ (8)  

∑

t∈T

IiEAh ,t
=

∑

t∈T

IiALh ,t
=

∑

t∈T

IiLCh ,t
= 1 ∀h ∈ H (9)  

∑

u∈U

∑

t∈T

IiCg,u ,t = 1 ∀g ∈ G, u ∈ U (10)  

3.1.1.3. Transfer time constraints. To mitigate potential product quality 
degradation caused by adverse cooling effects, transfer time constraints 
are also considered. These constraints apply particularly to intermediate 
products (e.g., wEA, wAL and wLC), as excessive cooling might necessitate 
costly reheating. Transfer time is considered independent of specific 
heats and equipment units, while a maximum allowable transfer time (e. 
g., WEA, WAL and WLC) is defined to preclude cooling effects. Accord-
ingly, the combined transfer and waiting time for intermediate products 
are constrained to an upper bound, as enforced by Eq. (11). 

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

δ
∑

t∈T

REAd
h ,t
+ wEA ≤ WEA ∀h ∈ ℍ

δ
∑

t∈T

RALd
h ,t
+ wAL ≤ WAL ∀h ∈ ℍ

δ
∑

t∈T

RLCd
h ,t
+ wLC ≤ WLC ∀h ∈ ℍ

(11)  

where 
∑

t∈T

REAd
h ,t

, 
∑

t∈T

RALd
h ,t 

and 
∑

t∈T

RLCd
h ,t 

denote the total time slots during 

which intermediate products wait before proceeding to the next pro-
cessing stage while δ symbolising the length of each time slot. 

3.1.2. ESS operation constraints 
Battery energy storage systems (BESS) are considered, and the 

related operation constraints are presented below. 

3.1.2.1. State dynamics constraints. These constraints, detailed in Eq. 
(12), relate to the energy stored in the BESS and the charging/dis-
charging power across two consecutive time slots, considering both 
charging and discharging efficiencies. 

EB,t =

⎧
⎪⎨

⎪⎩

EB, t− 1 −
PB,t⋅Δt

ηDis. , if PB,t > 0

EB, t− 1 − PB,t⋅Δt⋅ηCh. , if PB,t ≤ 0
, t ∈ T (12)  

where EB,t represents the energy stored in the BESS at the time t, Δt is the 
time interval, ηCh. and ηDis. are the charging and discharging efficiencies 
of the BESS. PB,t denotes the power of the BESS; when PB,t > 0, it in-
dicates discharging, and vice versa. 

3.1.2.2. State of charge constraints. The state of charge (SoC) is defined 
as Eq. (13). To prevent the BESS from being over-charged or over- 
discharged, the SoC limit constraints are defined as Eq. (14). 

SoCt =
EB,t

ECap.
B

, t ∈ T (13)  

SoCMin ≤ SoCt ≤ SoCMax , t ∈ T (14)  

where ECap.
B indicates the capacity of BESS; SoCMin and SoCMax are the 

lower and upper bounds of SoC, respectively. 
Additionally, to ensure that the SoC at the end of the day remains the 

same as the SoC at the beginning of the day, the constraint is enforced as 
Eq. (15). 

SoC|T| = SoC1 (15)  

where |T| indicates the final time slot of the day. 

3.1.2.3. Power capacity constraints. The power capacity limit is 
enforced by Eq. (16). 

PMin
B ≤PB,t ≤ PMax

B , t ∈ T (16)  

where PMin
B and PMax

B are the lower and upper bounds of the BESS power 
capacity, respectively. 

3.1.3. Power balance constraints 
Power balance constraints ensure the balance of the electricity 

consumed and generated, as shown in Eq. (17). Additionally, the power 
exchange with the utility grid is bounded, as enforced by Eq. (18). 

PEL,t =PU,t + PB,t + PPV,t + PWT,t , t ∈ T (17)  

PMin
U ≤

⃒
⃒PU,t

⃒
⃒ ≤ PMax

U , t ∈ T (18)  

where PEL,t represents the electricity consumption of the steel plant at 
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the time slot t; PU,t denotes the amount of electricity purchased from the 
utility grid, where PU,t > 0 represents buying electricity from the utility 
grid, and vice versa; PPV,t and PWT,t are electricity generated by solar 
panels and wind turbines, respectively; PMax

U and PMin
U represent the 

upper and lower bounds of the transmission capacity of the power line 
between the steel plant and the utility grid. 

3.2. Multi-objective functions 

3.2.1. Make-span objective 
The make-span objective aims to minimise the overall production 

completion time Makespan, as defined in Eq. (19). Typically, the make- 
span is determined by the completion time of the last group processed in 
the continuous casters. However, due to the uncertainty of which group 
will finish last, we constrain the make-span to be greater than or equal to 
the completion time for all potential scenarios of group completion, as 
shown in Eq. (20) (Castro et al., 2013). 

Min Makespan (19)  

Makespan ≥
∑

i∈Ng,u

∑

t∈T

IiCg,u ,t((t − 1)δ + τiδ − setupu )

g ∈ G, u ∈ U

(20)  

where IiCg,u ,t is the binary variable indicating whether the task iCg,u starts 
at the time slot t; iCg,u represents the casting task of casting campaign 
group g processed by caster unit u; τi represents the length (in time slots) 
of the task i; setupu indicates the setup duration of caster unit u. 

3.2.2. Electricity and emission cost objective 

3.2.2.1. Net electricity cost objective. The net electricity cost objective is 
calculated by subtracting the revenue from selling electricity to the grid 
from the electricity purchase costs overall time slots. This objective 
function is represented in Eq. (21). 

Min CEL =
∑

t∈T

(
PG→I

t

ηT ⋅λBuy
t − PI→G

t ⋅ηT ⋅λSell
t

)

(21)  

{
PG→I

t = PU,t , if PU,t > 0
PI→G

t = − PU,t , if PU,t ≤ 0
t ∈ T (22)  

where CEL represents net electricity costs; PG→I
t indicates power flowing 

from the grid to the steel plant at time slot t; PI→G
t refers to power flowing 

from the steel plant to the grid; ηT is the efficiency of the transformer 
between the plant and the grid; λBuy

t is the electricity purchase price; λSell
t 

refers to the electricity price when exporting electricity to the grid. 

3.2.2.2. Indirect emission cost objective. Grid-related indirect emissions 
are monetised by multiplying the number of emissions by the carbon tax, 
as shown in Eq. (23). 

Min CEM = pct ∗
∑

t∈T

PG→I
t

ηT ⋅CICO2
t (23)  

where CEM indicates emission costs; pct represents the carbon tax; CICO2
t 

refers to the forecasted carbon intensity of the local power grid at time 
slot t. 

Therefore, the electricity and emission cost objective function CTC 
encompasses both the net electricity costs and indirect emissions costs, 
as formulated in Eq. (24). 

Min CTC = CEL + CEM (24)  

4. What-if-analysis-based strategy for representative optimal 
solutions 

In this section, we propose a what-if-analysis-based strategy coupled 
with the NBI method to our proposed MO-MILP formulation for gener-
ating a series of well-distributed optimal solutions, better leveraging the 
temporal flexibility of the steelmaking process. 

4.1. What-if-analysis-based strategy in the steelmaking scheduling 

In the steelmaking process, PTR is the direct factor that affects the to- 
be-selected make-span of the steelmaking plant, which directly impacts 
the temporal flexibility of the steel production process. Meanwhile, PTR 
is an external factor that is usually determined by the customers, and it 
serves as a prerequisite parameter of the optimal scheduling problem of 
the steelmaking plant. Thus, in our study, we consider the variability of 
PTR using “what-if” analysis, while the variability of other parameters is 
considered within the optimisation problem. 

We incorporate a “what-if” analysis into the MO-MILP problem, 
treating make-span minimisation as one of the objectives. Then, we 
solve the multi-objective scheduling optimisation problem to generate 
the Pareto solutions corresponding to different make-span scenarios. 
Upon addressing the multi-objective optimisation, we can identify the 
boundary of make-span: its minimal and maximal values. Then, the 
impact of different make-spans within the boundary on the other 
objective values of the multi-objective model along the Pareto front is 
analysed, aiming to pinpoint the minimum cost strategy under each 
make-span scenario. Considering the direct relationship between PTR 
and make-span, the above analysing process is equivalent to the “what- 
if” analysis of the variability of PTR. 

For the proposed multi-objective scheduling problem, we assume 
that minimising make-span objective is f1(χ) and minimising electricity 
and emission cost objective is f2(χ), as abstractly represented in Eq. (25), 
whose feasible region is Ω defined by a set of inequality constraints 
g(χ) ≤ 0 and equality constraints h(χ) = 0. 

Min {f1(χ), f2(χ)} χ ∈ Ω

s.t. g(χ) ≤ 0 ; h(χ) = 0
(25) 

By employing what-if analysis, we anticipate generating a series of n 
solutions f1(χ1), f1(χ2),⋯, f1(χn) adaptable to various PTR scenarios. 
where χ1, χ2,⋯, χn represents solutions on the Pareto front in multi- 
objective optimisation, and each corresponding f2(χ1), f2(χ2),⋯, f2(χn)

for χ1, χ2,⋯, χn is ensured the optimal cost for the specific PTR scenario. 
To ensure comprehensive coverage across possible PTR scenarios, 

it’s pivotal to get a uniform distribution of the Pareto optimal solutions 
to enhance the adaptability and responsiveness of the model when 
navigating variability in PTR. 

4.2. Pareto optimal solutions attainment using the NBI method 

The NBI method was introduced by Das and Dennis (1998) to iden-
tify uniformly distributed Pareto-optimal solutions for nonlinear 
multi-objective optimisation problems. Unlike the weighted-sum (WS) 
approach, which struggles to achieve a uniform distribution of 
Pareto-optimal solutions even with evenly spread weight vectors (Shu-
kla and Deb, 2007), the NBI method employs a scalarisation scheme that 
ensures that a consistent spread in parameters results in a nearly uniform 
distribution of points on the efficient frontier. Additionally, this method 
remains unaffected by the varying scales of different objective functions. 
The scalarisation scheme is briefly described in three steps: 1) Objective 
function normalisation; 2) Generation of evenly distributed points on 
the Utopia line; and 3) Pareto front attainment. 

4.2.1. Objective function normalization 
Considering the disparities in dimensions and magnitudes between 
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the objectives of minimising make-span and total costs, it is necessary to 
normalise each objective function, as indicated in Eq. (26). 

fi(χ) =
fi(χ) − fi(χi

∗)

fi
(
χj

∗
)
− fi(χi

∗)
i, j ∈ {1, 2}, i ∕= j (26)  

fi(χi
∗) = Min fi(χ) (27)  

where f1(χ1
∗) and f2(χ2

∗) represent the minimisation values obtained by 
individually optimizing f1(χ) and f2(χ) in Eq. (27); f2(χ1

∗) and f1(χ2
∗)

indicates the values of the other objective functions at χ1
∗ and χ2

∗; fi(χ)
represents the normalised value of the objective function. 

4.2.2. Well-distributed points generation 
As illustrated for a bi-objective case in Fig. 6, the line connecting the 

point A(f∗1(χ1
∗), f2(χ1

∗)) and B(f1(χ2
∗), f∗2(χ2

∗)) is referred to as the Uto-
pia line. The line AB is divided equally to get mk evenly distributed 
points. Any point Pk on this line is expressed as Eq. (28) according to the 
NBI method. 

Φβ=
[

f1(χ1
∗) f1(χ2

∗)

f2(χ1
∗) f2(χ2

∗)

][
β1
β2

]

(28)  

where Φ indicates the normalised payoff matrix defined in Eq. (29) 
considering Eq. (26); β = [β1, β2]

T is the parameterised vector corre-
sponding to different points on the Utopia line and satisfies constraints 
β1 + β2 = 1, β1,2 ∈ [0,1] . 

Φ=

[
f1(χ1

∗) f1(χ2
∗)

f2(χ1
∗) f2(χ2

∗)

]

=

[
0 1
1 0

]

(29)  

4.2.3. Pareto front attainment 
A point Qk corresponding to Pk can be expressed as Eq. (30): 

Qk =Φβ + Dkn (30)  

so that PkQk
̅̅̅→ is a vector that is perpendicular to the Utopia line, where 

n = [ n1 n2 ]
T
= [ − 1 − 1 ]

T is the normal unit vector to the Utopia line, 
starting from the point Pk and Dk indicates the distance between the 
points Qk and Pk. Eq. (30) can be equivalently expanded as Eq. (31) 
considering Eq. (28) and Eq. (29) (Roman and Rosehart, 2006): 

Qk =

[
f 1(χ k)

f 2(χ k)

]

=

[
f1(χ1

∗) f1(χ2
∗)

f2(χ1
∗) f2(χ2

∗)

][
β1
β2

]

+Dk

[
n1
n2

]

=

[
β2 − Dk
β2 − Dk

] (31)  

where, PkQk
̅̅̅→ is extended (by increasing Dk gradually from zero) to 

intersect the Pareto front at the point Qk, so that a Pareto optimal so-
lution (Qk) corresponding to Pk can be obtained. This can be obtained by 
solving the optimization problem below: 

Obj : Max Dk (32)  

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

f1(χk) = β2 − Dk
f2(χk) = β1 − Dk
β1 + β2 = 1, β1,2 ∈ [0, 1]
Constraints (4) − (18), (20), (22)

(33)  

where Qk can be calculated for each Pk obtained in Section 4.2.2, so that 
a total number of mk evenly distributed points can be obtained on the 
Pareto front. 

5. Case study 

In this paper, a test system of a secondary steel plant in South Wales, 
UK, is used for the case study, focusing on a daily scheduling problem. 
The description of the test system and associated cases are detailed 
below. 

5.1. Test system description 

Fig. 7 shows the electricity flow within the secondary steelmaking 
plant. Parameters corresponding to the steelmaking plant are drawn 
from (Castro et al., 2013). The layout of steelmaking equipment is 
structured in four stages, each with two parallel machines: two EAFs, 
two AODs, two LFs and two CCs. The first three stages feature identical 
equipment units, while the fourth varies due to different setup times. 
Notably, nominal power consumption and processing time remain un-
affected by heat specifics, as shown in Table 1 and Table 2, respectively. 
The setup times for the fourth-stage CCs are detailed in Table 3. Transfer 
times, encompassing both minimum and maximum intervals, are shown 
in Table 4. The complexity of the proposed model is intrinsically tied to 
the number of heats produced. In this case, we considered 12 heats to be 
produced within one day,. Each heat is affiliated with a distinct casting 
group, as detailed in Table 5. 

Locally, the plant is equipped with a 5 MW/20 MWh Li-ion BESS, a 
10 MW wind power system and a 10 MW PV system. The BESS model 
parameters are outlined in Table 6 (Ju et al., 2018), and per unit power 
outputs for RES generation are available in an online database (Pfen-
ninger and Staffell, 2016), which are depicted in Fig. 9. 

The time-varying electricity prices, presented in Fig. 8, are based on 
a profile of NORD POOL UK wholesale electricity prices (NORD, 2023), 
while the corresponding regional carbon intensity profile for the same 
day, illustrated in Fig. 9, is sourced from the carbon intensity API pro-
vided by the National Grid ESO (National Grid, 2023b). The carbon tax 
and the electricity price for export to the grid are set as £60/tCO2 and 
£20/MWh, respectively. 

The scheduling horizon spanned a 24-h production cycle, 
commencing from noon of the preceding day to noon of the subsequent 
day, divided into 96-time slots with each being 15 min. The test run is 
performed in Python with Gurobi Solver on a desktop powered by an 
Intel Core i7 processor and 16 GB RAM. 

5.2. Result and discussion 

5.2.1. Performance in enhancing cost-efficiency and clean production 
Three operating modes are studied to demonstrate the effectiveness Fig. 6. The scheme of the NBI method for a bi-objective problem.  
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of the proposed model and assess the impact of BESS incorporation: 

1) SO-FixSP: Single-objective production scheduling of fixed steel-
making process with the minimum make-span but without consid-
ering demand response. 

Fig. 7. The electricity flow within the secondary steel plant.  

Table 1 
Nominal power consumption [MW].  

Unit EAF1 EAF2 AOD1 AOD2 

Power 85 85 2 2 
Unit LF1 LF2 CC1 CC2 

Power 2 2 7 7  

Table 2 
Processing time [min].  

Unit/Heat 1–4 5–6 7–8 9–12 

EAF1 80 85 85 90 
EAF2 80 85 85 90 
AOD1 75 80 80 95 
AOD2 75 80 80 95 
LF1 35 45 20 45 
LF2 35 45 20 45 
CC1 50 60 55 60 
CC2 50 60 55 60  

Table 3 
Setup time [min].  

Unit CC1 CC2 

Setup time 70 50  

Table 4 
Transfer time [min].  

Stage EAF-AOD AOD-LF LF-CC 

Min transfer time 10 4 10 
Max transfer time 240 240 120  

Table 5 
Steel heat/group correspondence.  

Group G1 G2 G3 

Heat 1–4 5–8 9–12  

Table 6 
Parameters of the BESS model.  

Energy Capacity (MWh) Power Capacity (MW) ηCh./Dis. SoCMAX SoCMIN 

20 5 0.95 90% 10%  

Fig. 8. Day-ahead wholesale electricity price and associated carbon in-
tensity profiles. 
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2) MO-FlexSP: Multi-objective production scheduling of flexible steel-
making process exploring the trade-off between electricity and 
emission costs minimisation and make-span minimisation consid-
ering demand response.  

3) MO-FlexSP + BESS: Multi-objective production scheduling of flexible 
steelmaking process exploring the trade-off between electricity and 
emission costs minimisation and make-span minimisation consid-
ering coordinated demand response with BESS incorporation. 

Table 7 provides a comprehensive comparison between the SO-FixSP 
case and the MO-FlexSP + BESS case. This comparison is made under the 
conditions of a £60/ton carbon tax, focusing on several performance 
metrics, including electricity and emission costs, indirect emissions, and 
RES self-consumption rate. Compared with the SO-FixSP case, the MO- 
FlexSP + BESS case provides a series of optimal solutions corresponding 
to make-spans ranging from 785 min to 1430 min. For any make-span 
within this range, our proposed method provides a solution with 
improved performance. When the make-span reaches 1430 min, the 
steelmaking plant achieves the best performance improvement, 
including a 68.5% reduction in electricity and emission costs, an 83.5% 
decrease in indirect emissions, and a 12.1% increase in the RES self- 
consumption rate. 

Furthermore, to showcase the performance of the integration of BESS 
into the flexible steelmaking scheduling, as illustrated in Fig. 10, the 
integration of BESS in the MO-FlexSP + BESS case brings a downward 
shift of the Pareto front, indicating the lower total costs for all Pareto 
solutions due to the improvement of time granularity of steelmaking 
plant’s flexibility. A further 4.3% decrement in electricity and emission 
costs is achieved when the make-span is 1430 min. The primary reason 
for such enhancements can be attributed to the increased flexibility 
granularity provided by the BESS, reinforcing the premise that BESS 
integration is pivotal for both cost-efficiency and cleaner production in 
steelmaking scheduling. 

5.2.2. Performance in handling variability in processing time requirements 
To show the even distributions of solutions obtained by the NBI 

method, we compare the NBI method and the weighted sum (WS) 
method on the distributions of the obtaining optimal solutions of 
different numbers. As illustrated in Fig. 11, the solutions obtained by the 
WS method reveal an uneven distribution that predominantly centres 
around a narrow range of make-span values. There is a deficiency of 
suitable solutions to meet the PTR within the range of 785 –1320 min. 
For example, when the PTR is within 1300 min, the steelmaking plant is 
forced to select the solution corresponding to a make-span of 785 min, 
satisfying part of the temporal flexibility. On the contrary, our proposed 
method could provide a series of evenly distributed Pareto solutions, 
allowing the steelmaking plant to select the solution corresponding to a 
make-span of 1300 min, which brings £50,923 total cost savings. Simi-
larly, for make-spans ranging from 785 to 1320 min, the proposed 
method always provides an optimal solution that better leverages the 
temporal flexibility. 

By increasing the number of Pareto points on the Pareto front, we can 
yield solutions with finer make-span resolution. As shown in Fig. 12, 
with 21 solutions, the proposed method allows the steelmaking plant to 
select the solution corresponding to a make-span of 1265 min, which 
brings a further £2579 total cost savings than the case with 11 solutions. 
In summary, Pareto solutions obtained by the NBI method provide a 
comprehensive evenly distributed representation of the trade-off be-
tween electricity and emission costs versus make-span, with a tangible 
decrease in costs from £81,444 to £26,899 as the make-span extends 
from 785 to 1430 min. 

In general, the evenly distributed optimal solutions with better 
granularity in make-span are used in the proposed what-if-analysis- 

Fig. 9. RES generation per unit.  

Table 7 
Comparisons of electricity and emission costs and RES self-consumption among 
the SO-FixSP and MO-FlexSP + BESS cases (carbon tax = £60/ton).  

Index Make- 
span/ 
min 

Electricity and 
emission costs/£ 

Emissions/ 
tCO2e 

RES self- 
consumption rate 

SO-FixSP 785 81,688 339.6 45.5% 
MO- 

FlexSP 
+ BESS 

785 80,590 335.5 46.8% 
835 73,873 301.1 48.9% 
889 67,496 261.5 51.5% 
935 60,439 220.7 53.4% 
985 53,722 178.3 55.9% 
1045 47,855 151.2 55.5% 
1103 41,818 135.3 55.3% 
1164 36,037 112.8 57.9% 
1231 30,766 87.3 60.2% 
1312 26,684 61.8 56.8% 
1430 25,746 56.1 57.6%  

Fig. 10. Comparison of optimal solutions of the MO-FlexSP case and the MO- 
FlexSP + BESS case. 

Fig. 11. Comparison of solution distribution obtained by the WS and NBI 
method (11 optimal solutions). 
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based strategy for providing representative optimal solutions, enabling 
the plant operator to adjust to changing order urgencies by choosing the 
most suitable schedules from the provided optimal solutions set when 
navigating variability in PTR for enhancing the adaptability and 
responsiveness of model. 

5.2.3. Sensitivity analysis of the carbon tax 
Since the carbon tax affects the value of the cost objective, it is 

necessary to conduct sensitivity analyses of the carbon tax. We design 
two cases where Min EL-EM refers to the minimisation of electricity and 
emission costs, while Min EL refers to the minimisation of electricity cost 
only. We separately discuss the impact of the carbon tax on the elec-
tricity and emission costs and the indirect emissions. 

Fig. 13 displays a comparison of electricity and emission costs of two 
cases. From the results, we can observe that Min EL-EM save more on 
total costs compared to Min EL as the carbon tax increases. Fig. 14 shows 
the sensitivity of the indirect emission to carbon tax for two cases, where 
Min EL is insensitive to the increase of carbon tax, with a constant in-
direct emissions of about 77 tCO2e. On the contrary, in Min EL-EM, the 
production scheduling is responsive to carbon taxes, resulting in a 
decreasing pattern in indirect emissions as the carbon tax increases. The 
most significant drop appears when the carbon tax moves from 0 to 60 in 
the unit of £/tCO2e, while the indirect emissions remain almost constant 
as the carbon tax increases from 60 to 160. 

We can obtain the following insights: 1) with a given electricity 
price, the increase in carbon tax will motivate the steelmaking plant to 
consider emissions in their scheduling; 2) as the electricity price in-
creases, the carbon tax needs to correspondingly increase to keep an 

economic impact on the production scheduling of the plant. 

6. Conclusion and future research 

This paper set out to develop a multi-objective scheduling model for 
a steelmaking plant integrated with RES and ESS, considering the vari-
ability in the PTR of steel production orders. Firstly, the MO-MILP model 
is established based on the extended RTN formulations. Then, the what- 
if-analysis-based strategy coupled with the NBI method is proposed to 
generate a series of evenly distributed Pareto optimal points tailored to 
different make-span scenarios. Finally, the BESS is integrated to further 
improve the time granularity of the steelmaking plant’s flexibility. 

The results of the numerical simulations indicate that our proposed 
method can provide a series of evenly distributed Pareto optimal points 
tailored to different make-span scenarios. Meanwhile, the proposed 
scheduling model can reduce the electricity and emission costs by 
68.5%, reduce indirect emissions by 83.5%, and increase the on-site RES 
self-consumption rate by 12.1%. Furthermore, the integration of BESS 
brings a downward shift of the Pareto front, indicating the improvement 
of time granularity of the steelmaking plant’s flexibility. With the 
improved responsiveness, a further 4.3% decrement in electricity and 
emission costs is achieved. Considering continuous investment cost 
reduction and the prevalence of RES and ESS, more and more steel-
making plants will install these facilities. This paper sheds light on the 
cooperation between the steelmaking process and clean energy sources, 
implying its great relevance to the development of a cleaner steel in-
dustry in the future. 

Prospective improvements of our work include: first, the proposed 
method relies on the accurate prediction of some parameters such as RES 
generation. Although the existence of prediction errors might compro-
mise the performance of the obtained solutions, they can be mitigated by 
developing rescheduling strategies. Thus, we will focus on developing an 
intra-day rescheduling strategy for the steelmaking plant considering 
the realisation of the above-mentioned uncertain factors. Furthermore, 
some parameters are selected based on experience, such as the ESS ca-
pacity and the amount of Pareto solutions. Although the effectiveness of 
the proposed method does not deteriorate, an optimal parameter se-
lection method is helpful to guide its real-world deployment, which will 
be another future work. 
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