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FROBENIUS MONOIDAL FUNCTORS OF DIJKGRAAF–WITTEN

CATEGORIES AND RIGID FROBENIUS ALGEBRAS

SAMUEL HANNAH, ROBERT LAUGWITZ, AND ANA ROS CAMACHO

Abstract. We construct a separable Frobenius monoidal functor from ZpVect
ω|

H

H q to ZpVectωGq

for any subgroup H of G which preserves braiding and ribbon structure. As an application, we

classify rigid Frobenius algebras in ZpVectωGq, recovering the classification of étale algebras in these

categories by Davydov–Simmons [J. Algebra 471 (2017)] and generalizing their classification to

algebraically closed fields of arbitrary characteristic. Categories of local modules over such algebras

are modular tensor categories by results of Kirillov–Ostrik [Adv. Math 171 (2002)] in the semisimple

case and Laugwitz–Walton [IMRN 2022, Issue 20 (2022)] in the general case.
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1. Introduction

1.1. Motivation. Algebraic structures play an important role in the study of conformal field

theory (CFT) and topological field theory (TFT). A key structure in these applications are modular

categories, i.e., non-degenerate ribbon categories [KL01,Shi19]. In rational CFT, modular fusion

categories appear as categories of representations over a vertex operator algebra (VOA) [Hua08]

while modular fusion categories are utilized to construct 3d TFTs of surgery type [RT91,Tur94],

and appear in the classification of 3d TFTs [BDSPV15].

Generalizations of part of the theory and applications of modular fusion categories to low-

dimensional topology have been obtained for non-semisimple (i.e., not necessarily semisimple)

modular categories. These constructions include equivalent characterizations of modularity conditions

[Shi19], mapping class group actions and modular functors [FSS19,LMSS23,SW21], and partially

defined non-semisimple TFTs [KL01, DRGG`22]. In general, it is still open whether the non-

semisimple braided categories of representations of a logarithmic conformal field theories are

modular [HLZ12, Len21]. A first example of modular categories obtained from groups are the

Dijkgraaf–Witten (DW) categories ZpVectωGq associated to a finite group G and a 3-cocycle ω on G

[DPR90]. These categories are only semisimple if the characteristic of k does not divide |G| and

equivalent to representations of certain lattice VOAs.

In this paper, we focus on the study of (Frobenius) algebras in modular categories. On the one hand,

modules over such algebras describe boundary conditions of the associated rational CFT associated

to a certain VOA [FRS02,FFRS06]. On the other hand, given a VOA, its possible extensions are in

a one-to-one correspondence with commutative algebras in its category of representations [HKL15].

This result extends to vertex operator superalgebras [CKM17]. These results give us motivation for

classifying algebra objects in ZpVectωGq. Many categories of representations of a VOA are pointed

fusion categories, like the case of, e.g., lattice VOAs coming from an even, integral lattice (here,

G “ Λ˚{Λ is the discriminant form of the lattice, note that this G is abelian) [DL93,Len21]. In

this sense, an important family of vertex operator algebras are the holomorphic ones, those whose

category of representations is simply Vect. Given a certain group G, one can take the so-called

orbifold of a holomorphic VOA, see e.g. [Moe16,DRX17]. Its category of representations will be

then equivalent to ZpVectωGq [McR21].

Given a commutative algebra A in a braided tensor category C one defines a braided tensor

category ReplocC pAq of local modules [Par95,Sch01,KO02,LW23]. Such categories of local modules

have been of particular interest in the mathematical physics literature, see e.g. [FRS02,FFRS06]. For

instance, categories of local modules relate the representations of a VOA to those of its extensions

[KO02,HKL15,CKM17]. Given a rigid Frobenius algebra (i.e., a connected commutative special

Frobenius algebra) in C, it was shown that the rigid monoidal category ReplocC pAq of local modules

is again modular (see [KO02] in the semisimple case, and [LW23] in the general case). Such rigid

Frobenius algebras were classified for the semisimplification of Uqpsl2q-modules [KO02], for the

Drinfeld center of modules over a finite group [Dav10,LW23], and for DW categories ZpVectωkGq in

char k “ 0 [DS17].

In the present paper, we construct Frobenius monoidal functors. Given two monoidal categories

C and D, a Frobenius monoidal functor F : C Ñ D comes with a choice of natural transformations

µV,W : F pV q b F pW q Ñ F pV bW q, νV,W : F pV bW q Ñ F pV q b F pW q,
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which make F a lax and oplax monoidal functor and satisfy compatibility conditions which are

analogue to those of a product and coproduct of a Frobenius algebra. While any monoidal

functor is, in particular, Frobenius monoidal, for general Frobenius monoidal functors, like those

considered in this paper, F pV q bF pW q and F pV bW q are not isomorphic. However, any Frobenius

monoidal functor sends Frobenius algebras in C to Frobenius algebras in D. Frobenius monoidal

functors have recently appeared in different contexts in the quantum algebra literature, see e.g.

[FHL23,MMP`22,Yad22]. Here, we construct Frobenius monoidal functors to categories of the

form ZpVectωGq. These functors are separable, so that F pV b W q is naturally a direct summand

of F pV q b F pW q, and compatible with braidings whence they preserve connected commutative

Frobenius algebras. We apply these functors to classify rigid Frobenius algebras in ZpVectωGq for a

field of arbitrary characteristic.

Algebra objects in VectωG were classified up to equivalence of the associated VectωG-module

categories and representatives are given by twisted group algebras ApN, κq associated to a normal

subgroup N and a 2-cocycle κ such that dκ “ ω|N [Ost03,Nat17], see also [MMP`22] for explicit

Frobenius algebra structures on these algebras. In this paper we find conditions for the existence of

lifts of these twisted group algebras to rigid Frobenius algebras in ZpVectωGq in terms of homological

algebra data building on results of [DS17]. To these central lifts of the twisted group algebra

ApN, κq one can then associated tensor categories of representations whose centers are given by

local modules.

1.2. Statements of results. Let k be an algebraically closed field of arbitrary characteristic. We

fix a finite group G, with a subgroup H, and a 3-cocycle ω on G and prove the following result.

Theorem 1 (See Proposition 3.9, Proposition 3.10). There is a separable Frobenius monoidal functor

I : ZpVect
ω|H
H q Ñ ZpVectωGq. This tensor functor I is compatible with braidings and preserves ribbon

twists.

Using the Frobenius monoidal functors I, we classify rigid Frobenius algebras in ZpVectωGq

generalizing results by Davydov–Simmons [DS17] to the non-semisimple case. In fact, all rigid

Frobenius algebras in ZpVectωGq are of the form A “ IpBq for some subgroup H of G, and

B “ BpN, κ, εq a rigid Frobenius algebra in ZpVect
ω|H
H q with dimkB1 “ 1. Such algebras B

are parametrized by certain elements ε ‘ κ of the second cohomology group rH2
TotpH,N, k

ˆq of

a truncated total complex p rF ‚
TotpH,N, k

ˆq, dTotq which computes the group cohomology of the

semi-direct product H ⋉N , described in Appendix A.3 and [DS17, Appendix A].

The following result recovers, and extends to arbitrary characteristic, the classification of connected

étale algebras in ZpVectωGq in [DS17, Theorem 3.15].

Theorem 2 (See Theorem 3.29). Every connected étale algebra in ZpVectωGq is isomorphic to one

of the form ApH,N, κ, ǫq, for some choice of data H,N, γ, ǫ, where:

‚ H is a subgroup of G, with N a normal subgroup of H.

‚ κ : N ˆN Ñ k
ˆ is a function satisfying dpκq “ ω|N .

‚ ǫ : H ˆN Ñ k
ˆ is a function such that dTotpε‘ κq “ τ ‘ γ ‘ ω.

‚ The compatibility ǫpn,mq “ κpnmn´1,nq
κpn,mq holds for all n,m P N .

Every such connected étale algebra has trivial twist and is a rigid Frobenius algebra if and only if

|N | ¨ |G : H| ‰ 0 P k
ˆ.
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We provide explicit formulas for the Frobenius algebras ApH,N, κ, ǫq in Lemma 3.28.

An interpretation of Theorem 2 is that the algebras BpN, κ, ǫq are lifts of the twisted group

algebras ApN, κq in Vect
ω|H
H to the center ZpVectωHq. These twisted group algebras were used to

classify indecomposable module categories over VectωH [Ost03,Nat17] and are separable Frobenius

algebras [MMP`22]. Our results show that lifts of these algebras to the center along the forgetful

functor are parametrized by functions ǫ : H ˆN Ñ k
ˆ satisfying the conditions from Theorem 2.

The category of local modules Reploc
ZpVectωGqpAq over a rigid Frobenius algebra A as in Theorem 2 is

a modular category by [LW23, Theorem 4.12] and [KO02, Theorem 4.5] in the semisimple case. In

fact, [DS17, Theorem 3.16] shows that such modular categories are equivalent as ribbon categories to

ZpVectωH{N q, for a 3-cocycle ω on H{N such that its pullback to H via the quotient homomorphism

is equivalent to ω|H .

In Section 3.6 we classify all rigid Frobenius algebras in ZpVectωGq, for an odd dihedral group

G “ D2m`1, up to isomorphism of algebras in ZpVectωGq rather than up to equivalence of their

categories of local modules.

The paper is structured as follows. In Section 2, we recall the necessary background on (non-

semisimple) modular categories, algebraic structures in ribbon categories, and local modules,

concluding with a brief review of DW categories. Section 3 contains the results of the paper, starting

with a discussion on DW categories associated to quotient groups, followed by the construction of

the Frobenius monoidal functors, and the classification of rigid Frobenius algebras in DW categories.

In Appendix A, we include basic definitions from group cohomology and several cocycle identities

used througout the text.

1.3. Acknowledgements. S. H. is supported by Engineering and Physical Sciences Research

Council. R. L. was supported by a Nottingham Research Fellowship. A. R. C is supported by

Cardiff University.

2. Background

2.1. Modular tensor categories. Throughout this paper, we fix ❦ to be an algebraically closed

field of arbitrary characteristic.

In this section, we collect some basic definitions, see e.g. [EGNO15] for details. A monoidal

category C consists of a tuple pC,b,✶, α, λ, ρq where C is a category, b : C ˆ C Ñ C is a bifunctor,

✶ P Ob pCq, αX,Y,Z : pX b Y qbZ Ñ XbpY b Zq is a natural isomorphism for each X,Y, Z P Ob pCq,

and λX : ✶ bX Ñ X and ρX : X b ✶ Ñ X are natural isomorphisms for all X P Ob pCq, satisfying

coherence axioms (pentagon and triangle). A functor F : C Ñ D between two monoidal categories

is a monoidal functor if there exist natural isomorphisms

µF : F pXq bD F pY q Ñ F pX bC Y q, 1
D Ñ F p1Cq,

satisfying certain coherence conditions, see [EGNO15, Definition 2.4.1].

A monoidal category is called rigid if it comes equipped with left and right dual objects — that

means, for every X P Ob pCq there exists respectively an object X˚ P Ob pCq with evaluation and

coevaluation maps evX : X˚ bX Ñ ✶ and coevX : ✶ Ñ X bX˚, as well as an object ˚X P Ob pCq

with evaluation and coevaluation maps revX : X b ˚X Ñ ✶ and ĆcoevX : ✶ Ñ ˚X bX satisfying in

both cases the usual conditions. If a rigid monoidal category comes equipped with isomorphisms

jX : X Ñ X˚˚ natural in X P Ob pCq and satisfying that jXbY “ jX b jY , then it is called pivotal.
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The quantum dimension of an object X in a pivotal category is the composition qdimj pXq :“

evX˚ pjX b IdX˚q coevX P EndC p✶q.

A ❦-linear abelian category C is locally finite if, for any two objects V,W P Ob pCq, HomC pV,W q

is a finite-dimensional ❦-vector space and every object has a finite filtration by simple objects.

Further, we say C is finite if C is equivalent to a category of finite-dimensional modules over a

finite-dimensional k-algebra. A tensor category is a locally finite, rigid, monoidal category such the

the tensor product is ❦-linear in each slot and the monoidal unit is a simple object of the category.

A monoidal category C is called braided if it comes equipped with natural isomorphisms cX,Y : Xb

Y Ñ Y b X, for all X,Y P Ob pCq, called the braiding, that are compatible with the monoidal

structure of the category. This means, the braiding satisfies the so-called hexagon identities for any

three objects X,Y, Z P Ob pCq:

X b pY b Zq
cX,Y bZ

// pY b ZqX
αY,Z,X

((

pX b Y q b Z

αX,Y,Z

66

cX,Y bIdZ ((

Y b pZ bXq

pY bXq b Z
αY,X,Z

// Y b pX b Zq

IdY bcX,Z

66

pX b Y q b Z
cXbY,Z

// Z b pX b Y q
α´1

Z,X,Y

((

X b pY b Zq

α´1

X,Y,Z

66

IdXbcY,Z ((

pZ bXq b Y

X b pZ b Y q
α´1

X,Z,Y
// pX b Zq b Y

cX,ZbIdY

66

An example of a braided category is that of the Drinfeld center (or monoidal center, or simply

center) of a monoidal category C. Its objects are pairs
`
X, cX

˘
where X P Ob pCq and cXV : X bV Ñ

V bX (for any V P Ob pCq) is a natural isomorphism called the half-braiding satisfying that:

cXV bW “
`
IdV b cXW

˘ `
cXV b IdW

˘
.

The braiding of this category is given by cpX,cXq,pY,cY q :“ cXY .

A ribbon category is a braided tensor category C together with a ribbon twist, i.e., a natural

isomorphism θX : X Ñ X which satisfies

θXbY “ pθX b θY qcY,XcX,Y , θ1 “ Id1, pθXq˚ “ θX˚ .(2.1.1)

A tensor functor F : C Ñ D between ribbon categories C,D with ribbon twists θC , θD is a ribbon

tensor functor if it commutes with the ribbon structures in the sense that F pθCV q “ θD
F pV q. If F is

part of an equivalence of categories, then C and D are equivalent as ribbon categories.

In order to define modular tensor categories, we require the notion of non-degeneracy of a braided

category. We say that an object X centralizes another object Y of C if

cY,XcX,Y “ IdXbY .
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A braided finite tensor category C is non-degenerate if the only objects X that centralize all objects

of C are of the form X “ 1
‘n [EGNO15, Section 8.20]. Equivalently, C is non-degenerate if and

only if it is factorizable, i.e., there is an equivalence of braided monoidal categories ZpCq » Crev ⊠ C,

where Crev is C as a tensor category, but with reversed braiding given by the inverse braiding

[Shi19]. If C is a fusion category (i.e., a semisimple finite tensor category) then the above notion of

non-degeneracy is equivalent to the commonly used condition that the S-matrix is non-singular. A

key definition for this paper is the concept of modular category that allows for using general finite

tensor categories which are not necessarily non-semisimple.

Definition 2.1 ([KL01,Shi19]). A braided finite tensor category is modular if it is a non-degenerate

ribbon category.

2.2. Frobenius algebras in tensor categories. In this section, let C “ pC,b,✶, α, λ, ρq be a

pivotal finite tensor category.

Definition 2.2. (a) An algebra in C is a triple pA,m, uq, with A P Ob pCq, and m : AbA Ñ A

(multiplication), u : ✶ Ñ A (unit) being morphisms in C, satisfying unitality and associativity

constraints:

mpmb IdAq “ mpIdA bmqαA,A,A, mpub IdAq “ λA, mpIdA b uq “ ρA.

(b) A coalgebra in C is a triple pC,∆, εq, where C P Ob pCq, and ∆: C Ñ CbC (comultiplication)

and ε : C Ñ ✶ (counit) are morphisms in C, satisfying counitality and coassociativity

constraints:

αC,C,Cp∆ b IdCq∆ “ pIdC b ∆q∆, pεb IdCq∆ “ λ´1
C , pIdC b εq∆ “ ρ´1

C .

(c) A Frobenius algebra in C is a tuple pA,m, u,∆, εq, where pA,m, uq is an algebra and pA,∆, εq

is a coalgebra so that

pmb IdAqα´1
A,A,A pIdA b ∆q “ ∆m “ pIdA bmqαA,A,A p∆ b IdAq .

Remark 2.3. Alternatively, a Frobenius algebra in C is a tuple pA,m, u, p, qq, where pA,m, uq is

an algebra, p : AbA Ñ ✶ and q : ✶ Ñ AbA are morphisms in C satisfying an invariance condition,

p pIdA bmqαA,A,A “ p pmb IdAq, and the ‘snake’ equations. To convert from pA,m, u, p, qq to

pA,m, u,∆, εq in the previous definition, take ∆ :“ pmb IdAqα´1
A,A,A pIdA b qq ρ´1

A and ε :“ p pub

IdAqρ´1
A . On the other hand, to convert from pA,m, u,∆, εq to pA,m, u, p, qq, take p :“ εAmA and

q :“ ∆AuA, cf. [FS08].

Definition 2.4. (a) An algebra A in C is indecomposable if it is not isomorphic to a direct sum

of non-trivial algebras in C.

(b) An algebra A in C is connected (or haploid) if dim❦HomC p✶, Aq “ 1.

(c) An algebra A in C is separable if there exists a morphism ∆1 : A Ñ A b A in C so that

m∆1 “ IdA as maps in C with

pIdA bmqαA,A,A

`
∆1 b IdA

˘
“ ∆1m “ pmb IdAqα´1

A,A,A

`
IdA b ∆1

˘
.

(d) A Frobenius algebra pA,m, u,∆, εq in C is special if m∆ “ βAIdA and εu “ β1 Id✶ for

nonzero βA, β1 P ❦ˆ.

(e) If C is braided with braiding c, we call an algebra A in C commutative if mcA,A “ m.
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(f) A separable commutative algebra in C is also called an étale algebra.

Recall that a ribbon category C is, in particular, pivotal with pivotal structure j discussed, for

example, in [LW23, Section 2.5].

Proposition 2.5 ([LW23, Proposition 3.12]). The following statements are equivalent for a connected

commutative algebra A in a ribbon category C with twist θ.

(a) A is separable with dimjA ‰ 0 and θA “ IdA;

(b) A is a special Frobenius algebra;

(c) A admits a morphism ε : A Ñ 1 such εu “ Id1, εm is non-degenerate, dimjpAq ‰ 0, and

θA “ IdA;

If A satisfies the equivalent conditions from Proposition 2.5 then we say that A is a rigid Frobenius

algebra. If C is semisimple, the conditions in (c) on a connected commutative algebra in C recover

the definition of a rigid C-algebra used in [KO02] to show that the category of local modules are

semisimple. We recall a version of this result which holds even if C is not semisimple in Theorem 2.14.

2.3. Frobenius monoidal functors. In this section, we recall the definition of a Frobenius

monoidal functor and include basic results about such functors perserving algebraic structures in

tensor categories. Let C and D be two monoidal categories.

Definition 2.6. A lax monoidal functor from C to D consists of:

‚ A functor F : C Ñ D,

‚ A natural transformation µV,W : F pV q b F pW q ÝÑ F pV bW q, and

‚ A morphism η : 1 ÝÑ F p1q

for any V,W P Ob pCq, subject to the compatibility conditions:

pF pUq b F pV qq b F pW q
αF pUq,F pV q,F pW q

//

µU,V bIdF pW q

��

F pUq b pF pV q b F pW qq

IdF pUqbµV,W

��

F pU b V q b F pW q

µUbV,W

��

F pUq b F pV bW q

µU,V bW

��

F ppU b V q bW q
FpαU,V,W q

// F pU b pV bW qq

1 b F pUq
ηbIdF pUq

//

λF pUq

��

F p1q b F pUq

µ1,U

��

F pUq F p1 b Uq
F pλU q

oo

F pUq b 1

IdF pUqbη
//

ρF pUq

��

F pUq

µU,1

��

F pUq F pU b 1q
F pρU q

oo

(2.3.1)

We will denote the lax monoidal structure as pµ, ηq.

Definition 2.7. An oplax monoidal functor from C to D consists of:

‚ A functor F : C Ñ D,

‚ A natural transformation νV,W : F pV bW q ÝÑ F pV q b F pW q and

‚ A morphism ǫ : F p1q ÝÑ 1,
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for any V,W P Ob pCq, subject to compatibility conditions analogous to those of lax monoidal 2.3.1,

but with their arrows reversed. We will denote the oplax monoidal structure as pν, ǫq.

Definition 2.8. A Frobenius monoidal functor F : C Ñ D between two monoidal categories C, D

is a bilax monoidal functor, i.e., comes with a lax monoidal structure pµ, ηq, and an oplax monoidal

structure pν, ǫq, where

µV,W : F pV q b F pW q ÝÑ F pV bW q, νV,W : F pV bW q ÝÑ F pV q b F pW q,(2.3.2)

η : 1 ÝÑ F p1q, ǫ : F p1q ÝÑ 1,(2.3.3)

for any objects V,W of C, satisfying the additional compatibility conditions

F pV q b F pW b Uq
IdF pV qbνW,U

//

µV,WbU

��

F pV q b pF pW q b F pUqq

α´1

F pV q,F pW q,F pUq
��

F pV b pW b Uqq

F pα´1

V,W,U
q

��

pF pV q b F pW qq b F pUq

µV,W bIdF pUq

��

F ppV bW q b Uq
νV bW,U

// F pV bW q b F pUq

(2.3.4)

F pV bW q b F pUq
νV,W bIdF pUq

//

µV bW,U

��

pF pV q b F pW qq b F pUq

αF pV q,F pW q,F pUq

��

F ppV bW q b Uq

F pαV,W,U q

��

F pV q b pF pW q b F pUqq

IdF pV qbµW,U

��

F pV b pW b Uqq
νV,WbU

// F pV q b F pW b Uq

(2.3.5)

We say that a Frobenius monoidal functor is separable if for any objects V,W of C,

µV,W ˝ νV,W “ IdF pV bW q.(2.3.6)

For details on these definitions see e.g. [AM10, Section 3.5].

We are also interested in compatibility conditions of Frobenius monoidal functors with braidings.

Denote a braided monoidal category by pC, cq. Given two braided monoidal categories pC, cq and

pD, dq, a braided lax monoidal functor is a lax monoidal functor F : C Ñ D which in addition

satisfies:

F pXq b F pY q

µX,Y

��

dF pXq,F pY q
// F pY q b F pXq

µY,X

��

F pX b Y q
F pcX,Y q

// F pY bXq

for any X,Y P Ob pCq. The notion of braided oplax monoidal functor is analogous to this one. We

note that (braided lax/oplax) Frobenius monoidal functors preserve algebraic structures in the

respective categories.

Proposition 2.9. Let F : C Ñ D be a Frobenius monoidal functor.
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(a) If A is a (co)algebra in C, then F pAq is a (co)algebra in D. In fact, F restricts to a functor

F : AlgpCq Ñ AlgpDq, and a functor F : CoAlgpCq Ñ CoAlgpDq.

(b) If A is a Frobenius algebra in C, then F pAq is a Frobenius algebra in D. In fact, F restricts

to a functor F : FrobAlgpCq Ñ FrobAlgpDq.

(c) If F is, in addition, separable and ǫ ˝ η ‰ 0 and A a special Frobenius algebra in C, then

F pAq is a special Frobenius algebra in D.

Definition 2.10. Take A :“ pA,mA, uAq, an algebra in C. A right A-module in C is a pair pM,ρM q,

where M P C, and ρM :“ ρAM : M bA Ñ M is a morphism in C so that

ρM pρM b IdAq “ ρM pIdM bmAqαM,A,A and rM “ ρM pIdM b uAq.

A morphism of right A-modules in C is a morphism f : M Ñ N in C so that fρM “ ρN pf b IdAq.

Right A-modules in C and their morphisms form a category, which we denote by CA. The categories

AC of left A-modules pM,λM :“ λAM : A b M Ñ Mq and ACA of A-bimodules in C are defined

likewise.

It follows that given a Frobenius monoidal functor F , or, any lax monoidal functor, and an

algebra A in C, F induces a functor F : AC Ñ F pAqD. Similar statements hold for left modules, and

right/left comodules where an oplax monoidal functor is needed.

2.4. Local modules. In the following, we recall local modules over commutative algebras in a

braided category C [Par95,Sch01,KO02,LW23].

Definition 2.11. Let RepCpAq denote the category whose objects are pairs pV, arV q P CA, and

morphisms are morphisms in CA. We define alV as

alV :“ arV cA,V : Ab V
„
Ñ V bA ÝÑ V.(2.4.1)

With this, pV, alV q is a left module in C. As A is commutative, the actions arV , a
l
V commute,

pV, alV , a
r
V q becomes an A-bimodule in C, and RepCpAq is viewed as a full subcategory of A-BimodpCq

this way.

The category RepCpAq is monoidal as follows. Given two objects V,W in RepCpAq, their tensor

product V bA W is defined to be the coequalizer

V bAbW

arV bIdW
--

IdV balW

11 V bW // V bA W,(2.4.2)

which is an object in RepCpAq with the right A-module structure given by arV bAW “ IdV b arW . The

unit object is the A-bimodule A in C. This way, RepCpAq is a monoidal subcategory of A-BimodpCq.

Definition 2.12 ([Par95, Definition 2.1]). A right A-module pV, arV q in C is called local if

arV “ arV cA,V cV,A.

The category of such local modules is denoted by ReplocC pAq.

The category ReplocC pAq is a monoidal subcategory of RepCpAq, and ReplocC pAq is braided. The

braiding on ReplocC pAq is obtained from the braiding c in C which descends to the relative tensor

products of two local modules. The algebra A is trivializing if ReplocC pAq » Vect.
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The definition of the monoidal category RepCpAq extends to the case when D is a not necessarily

braided monoidal category and pA, cq is a commutative algebra in the Drinfeld center ZpDq with

half-braiding c “
 
cX : X b V

„
Ñ V bX

(
XPD

, see [Sch01, Section 4].

Definition 2.13. Let pA, cq be a commutative algebra in ZpDq. Define RepDpA, cq to be the

category of right modules over A in D and monoidal structure given as in Equation (2.4.2) with the

left A-action defined by alV :“ arV cV for pV, arV q a right A-module in D.

We will subsequently denote RepDpA, cq by RepDpAq when there is no confusion about which

half-braiding is used. We recall that by [Sch01, Corollary 4.5], the center ZpRepDpAqq is equivalent

to Reploc
ZpDqpAq as a braided monoidal category. A special case of this result of interest occurs when

C is already a braided monoidal category and we consider A` “ pA, cA,´q P ComAlgpZpCqq. Then

Schauenburg’s result gives an equivalence of braided monoidal categories between ZpRepCpA`qq

and Reploc
ZpCqpA

`q.

Categories of local modules are a source of modular tensor categories, both in the semisimple

case [KO02, Theorem 4.5] and the non-semisimple case [LW23, Theorem 4.12]. For this, recall that

a rigid Frobenius algebra in a ribbon category C is a connected commutative algebra satisfying the

equivalent conditions of Proposition 2.5.

Theorem 2.14. If C is a modular tensor category and A is a rigid Frobenius algebra in C, then the

category ReplocC pAq of local modules over A in C is also modular.

Let D be a finite tensor category and pA, cq a rigid Frobenius algebra in ZpDq. The following

lemma involves the left adjoint U to the forgetful functor RepDpAq Ñ D and follows as in [LW23,

Lemma 4.5].

Lemma 2.15. The functor U : D Ñ RepDpAq which sends X to XbA with right A-module structure

given by multiplication in A is a faithful dominant tensor functor.

Powerful invariants of finite tensor categories are the Frobenius–Perron dimension FPdimpDq and

FPdimDpXq for objects X in D [EGNO15, Section 4.5]. The above Lemma 2.15 implies that

(2.4.3) FPdim
`
RepDpAq

˘
“

FPdimpDq

FPdimDpAq
.

This follows from [EGNO15, Lemma 6.2.4] as in [LW23, Lemma 4.5]. Hence, as FPdimpZpDqq “

FPdimpDq2 by [EGNO15, Theorem 7.16.6],

(2.4.4) FPdim
`
Reploc

ZpDqpAq
˘

“
FPdimpDq2

FPdimDpAq2
,

see also [DMNO13, Corollary 4.1]. If the category D possesses a quasi-tensor functor F to Vect,

then FPdimDpXq “ dimkF pXq for any object X in D [EGNO15, Proposition 4.5.7].

2.5. Dijkgraaf–Witten categories. In this section, we give an explicit description of the Dijkgraaf–

Witten (DW) categories ZpVectωGq associated to a group G and a 3-cocycle ω of [DPR90] via the

structure of twisted Yetter–Drinfeld modules following [Maj98, Proposition 3.2].

Let G be a finite group with a 3-cocycle ω P C3pG, kˆq, see Equation (A.2.1). Associated to

this data, we define the category VectωG of G-graded k-vector spaces with associativity isomorphism

given by

αppvg b whq b ukq “ ω´1pg, h, kqvg b pwh b ukq,
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where vg, wh, uk are G-homogeneous elements of degrees g, h, k, respectively. We observe that

if φ : G Ñ G1 is an isomorphism of groups such that ω and φ˚pω1q define the same element in

H3pG, kˆq, then VectωG and Vectω
1

G1 (and hence their centers) are equivalent as monoidal categories

(respectively, braided monoidal categories) [EGNO15, Section 2.6].

Lemma 2.16. If ω, ω1 P C3pG, kˆq are equivalent, then any choice of µ P HompG2, kˆq such that

dpµqω1 “ ω defines an equivalence of monoidal categories

Tµ : Vect
ω
G Ñ Vectω

1

G

which is the identity as a functor with monoidal structure given by

µTkg ,kh “ µpg, hqIdkgh : Tµpkgq b Tµpkhq Ñ Tµpkghq,

where kg denotes the 1-dimensional vector space concentrated at degree g.

Next, define the category of Yetter–Drinfeld (YD) modules over kG twisted with respect to ω.

Such a twisted YD module has a G-grading (or, equivalently, a kG-coaction)

V “
à

dPG

Vd,

a morphism

aV : kGb V Ñ V, g b v ÞÑ g ¨ v,

which satisfies the twisted kG-module condition that acting twice on the module is given by

(2.5.1) h ¨ pk ¨ vdq “ τph, kqpdqhk ¨ vd,

where τph, kqpdq is defined in terms of the 3-cocycle ω as follows:

τph, kqpdq :“
ωph, k, dqωphkdphkq´1, h, kq

ωph, kdk´1, kq
(2.5.2)

and vd denotes a homogeneous element of V of degree d. The action and G-grading satisfy the

YD compatibility condition that action with h P G on the d-th component vd P Vd will bring the

component to the conjugated degree by h, namely h ¨vd P Vhdh´1 . Morphisms of twisted YD modules

are maps of G-graded k-vector spaces φ that commute with the twisted actions in the sense that

g ¨ φpvq “ φpg ¨ vq.

We note that the map τ can be derived from [Wil08, 1.3.3] or [Maj98, Proposition 3.2] where

right twisted modules are used. It can be interpreted as a 2-cocycle on an appropriately defined

groupoid [Wil08].

There is a tensor product of twisted YD modules, which can be defined as the usual tensor

product of graded vector spaces: given two such V and W , the d-th graded component of V bW ,

for d P G, is given by

pV bW qd “
à

d“ab

Va bWb.

The module action will be given by

(2.5.3) h ¨ pvd b vf q “ γphqpd, fqph ¨ vd b h ¨ vf q,

with d, f P G and where

γphqpd, fq :“
ωph, d, fqωphdh´1, hfh´1, hq

ωphdh´1, h, fq
(2.5.4)
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We check that the tensor product of twisted YD modules is well defined.

Lemma 2.17. The tensor product of two twisted YD modules is itself a twisted YD module.

Proof. We need to check that

h ¨ pk ¨ pvd b vf qq “ τ ph, kq pdfqhk ¨ pvd b vf q .

This condition is equivalent to the equality:

γ pkq pd, fq γ phq
`
kdk´1, kfk´1

˘
τ ph, kq pdq τ ph, kq pfq “ τ ph, kq pdfq γ phkq pd, fq .(2.5.5)

which is proven in the Appendix, Lemma A.3. �

Lemma 2.18. The tensor product gives twisted YD modules the structure of a monoidal category.

Proof. The tensor product should be compatible with the monoidal structure morphisms (associator

and unitors) of the category of twisted YD modules that we are working on. Since in this category

the unitors are the identity this is clear, but for the case of the associator (following the opposite

convention of [EGNO15]), given by: αkg ,kg1 ,kg2 “ ω´1pg, g1, g2qIdkgbkg1 bkg2 , we need to check that:

α
`
h ¨

`“
kg b kg1

‰
b kg2

˘˘
“ h ¨

`
α
`“
kg b kg1

‰
b kg2

˘˘
. Substituting the pertinent definitions, this

equality amounts to:

(2.5.6)

ω´1phgh´1, hg1h´1, hg2h´1qγphqpgg1, g2qγphqpg, g1q “ γphqpg, g1g2qγphqpg1, g2qω´1pg, g1, g2q

which is proven at the Appendix, Lemma A.2. �

Lemma 2.19. For two twisted YD modules V,W , there is a braiding given by

cV,W : V bW Ñ W b V

vg b wh ÞÑ g ¨ wh b vg.

Proof. First, cV,W is a morphism of twisted G-modules by the identity

(2.5.7) γpkqpg, hqτpkgk´1, kqphq “ γpkqpghg´1, gqτpk, gqphq,

which holds by repeated use of the 3-cocycle condition A.2.1 with entries

- g1 “ kghg´1k´1, g2 “ k, g3 “ gk´1, g4 “ k,

- g1 “ k, g2 “ ghg´1, g3 “ gk´1, g4 “ k,

- g1 “ k, g2 “ gk´1, g3 “ khk´1, g4 “ k,

- g1 “ k, g2 “ gk´1, g3 “ k, g4 “ h,

The fact that c´1
V,W is also a morphism of twisted G-modules corresponds to the identity

(2.5.8) γpkqpg, hqτpkh´1k, kqpgq “ γpkqph, h´1ghqτpk, h´1qpgq.

The braiding axioms are equivalent to the equalities;

ωpg, hkh´1, hq “ ωpg, h, kqωpghkh´1g´1, g, hqτpg, hqpkq´1

ω´1pghg1 , g, kq “ ω´1pg, h, kqω´1pghg´1, gkg´1, gqγpgqph, kq

both of which hold by Definitions 2.5.2 and 2.5.4 respectively. �

The following proposition can be found, working with right twisted actions, in [Maj98, Section 3].
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Proposition 2.20. There is an equivalence of braided monoidal categories between ZpVectωGq and

the category of twisted YD modules over G with respect to ω, with reverse braiding.

Proof. We only sketch the proof here. To an object pV, cq in ZpVectωGq, one associates the morphism

aV : kGbV Ñ V defined by aV “ pIdV b εqc´1
kG, where kG “

À
gPG kg is the direct sum of all simple

G-graded modules and εpgq “ 1 for all g P G. It follows from the tensor prodct compatibility of c´1,

that aV is a twisted G-action. Since c´1 is a morphism in VectωG, the YD compatibility between

coaction and twisted action follows. Conversely, a twisted G-action aV on V can be extend to an

inverse half-braiding on an object X in VectωG by setting

c´1
X pxd b vq :“ aV pd, vq b xd,

for all xd P Xd, v P V . One verifies that these assignments extend to an equivalence of braided

tensor categories. �

We require ZpVectωGq to have a ribbon structure (which thus induces a pivotal structure). A

ribbon structure can be obtained from [Shi23, Theorem 5.4]. For this, we choose, in the notation of

[LW22, Section 3.2], the object V “ 1, which is a square root of the distinguished invertible object

D “ 1 of VectωG, together with the identity V b V ˚˚ “ D “ 1, and σV,X : X Ñ X˚˚ the monoidal

natural isomorphism identifying an object with its double dual. This way, VectωG is spherical and,

hence, ZpVectωGq is a ribbon category. This gives the following result.

Proposition 2.21. For a twisted YD module V , define

θV : V Ñ V, θV pvdq “ d ¨ vd,

for vd P Vd. Then θV defines a ribbon twist which makes ZpVectωGq a ribbon category.

Proof. We have to check that θ satisfies Equation (2.1.1). One checks that the first condition listed

there is equivalent to the cocycle identity

γpdfqpd, fq “ τpdfd´1, dqpdqτpd, fqpfq.

Using the definitions in Equations (2.5.4) and (2.5.2), this identity is equivalent to the cocycle

condition of ω, cf. Equation (A.2.1) with g1 “ dfdf´1d´1, g2 “ dfd´1, g3 “ d, g4 “ f . The condition

θ1 “ Id1 is clear, while pθV q˚ “ θV ˚ follows from the fact that if tviu is a homogeneous basis for V

with dual basis tfiu, then tfiu is a homogeneous basis and vi P Vg if and only if fi P Vg´1 . �

3. Results

Throughout the section, we assume that k is an algebraically closed field of arbitrary characteristic.

3.1. Dijkgraaf–Witten categories of quotient groups via local modules. In this section,

we derive a general result on categories of local modules for algebras given by Rp1q, which is a

commutative algebra pRp1q, cq in ZpCq for R the right adjoint of a tensor functor, using results of

[BN11,EGNO15]. We specify this general result to DW categories of quotient groups.

Proposition 3.1. Let C,D be tensor categories with a k-linear, exact, monoidal functor L : C Ñ D

that has a right adjoint R : D Ñ C which is faithful and exact. Then there is a tensor equivalence

D » RepCpRp1q, cq and a braided tensor equivalence between ZpDq and Reploc
ZpCqpRp1qq.
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Proof. Set A :“ Rp✶q. This is a commutative algebra in ZpCq. By [BN11, Proposition 6.1]

there is a tensor equivalence D Ñ RepCpAq for the monoidal category from Definition 2.13. By

[Sch01, Corollary 4.5], we have that ZpRepCpAqq is tensor equivalent to Reploc
ZpCqpAq. By combining

these two results yields the second claimed equivalence. �

We would like to be able to apply this result to the categories C “ Vectω
1

G and D “ VectωH .

By [EGNO15, Section 2.6], any monoidal functor L : Vectω
1

G Ñ VectωH corresponds to a group

homomorphism l : G Ñ H such that ω1, l˚ω are equal in H3pG, kˆq, with respect to some µ : GˆG Ñ

k
ˆ, i.e., ω1 “ pdµql˚ω. Thus, on the simple objects of VectωG, the functor L is given by kg ÞÑ klpgq.

If we combine this characterization with the adjunction condition, we get that a functor

R : VectωH Ñ Vectω
1

G is right adjoint to L if it satisfies, on the simple objects, that

HomVectωG
pkg, Rpkhqq – HomVectωH

pLpkgq, khq – HomVectωH
pklpgq, khq.

The functor defined, for a an object V “
À

hPH Vh, by

RpV q “
à

gPG

RpV qg, where RpV qg :“ Vlpgq, @g P G.

and, for a morphism f :
À

h Vh Ñ
À

hWh in VectωH , by

Rpfqpvgq “ fpvgq P Wlpgq “ RpW qg, for vg P Vlpgq “ RpV qg, g P G,

satisfies the above condition of being a right adjoint to L.

Assume that V is a twisted YD module. Now, RpV q has the structure of a twisted YD module with

action induced by the module action in ZpVectωHq, defined on Vg “ Vlpgq, g P G, by k¨vlpgq :“ lpkq¨vlpgq,

for vlpgq P Vg and k P G, where on the right hand side vk P Vlpkq is regarded as a vector in RpV q.

Lemma 3.2. The functor R : VectωH Ñ Vectω
1

G is always exact and faithful if and only if l : G Ñ H

is surjective.

In particular, we can apply the functor R to obtain an algebra

A :“ Rp✶q “
à

xPkerplq

kx

in Vectl
˚ω
G . As a k-vector space, A can be given a k-basis tex|x P kerplqu with

‚ multiplication given by exey “ µpx, yqexy,

‚ unit 1A “ e1.

By [BN11, Proposition 6.1], A is a commutative algebra in ZpVectωGq. Proposition 3.1 now implies

the following result.

Corollary 3.3. Given a surjective group homomorphism l : G Ñ H and a 3-cocycle ω P C3pH, kˆq.

Then there is an equivalence of braided tensor categories ZpVectωHq » Reploc
ZpVectl

˚ω
G q

pAq.

Example 3.4. Let G be a group, H be the trivial group t1u, with the cocycles ω, ω1 being

trivial. Using the trivial group homomorphism and Corollary 3.3, we get that Vectk “ ZpVectkq »

Reploc
ZpVectGqpAq, where A “ kG. Thus the group algebra kG P ZpVectGq is trivializing.
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Example 3.5. Let us take G to be an abelian group, with H a subgroup. Then H is isomorphic

to some quotient of G, H – G{N . We can thus take l : G Ñ H – G{N to be the quotient map,

resulting in A :“ Rp✶q being defined as an algebra in ZpVectωGq, with Ag “ k when g P N , and the

zero vector space otherwise, i.e., A is the group algebra kN . Thus ZpVectωG{N q » Reploc
ZpVectω

1
G q

pkNq

For a general subgroup H of G, we cannot directly apply Corollary 3.3 as there may not be a

group homomorphism from G to H.

3.2. The induction functor. Let G be a group with a 3-cocycle ω P C3pG, kˆq. For a subgroup

H of G, we denote by ω|H the restriction of ω to H3. We denote the category of H-graded vector

spaces twisted by ω|H simply by VectωH .

In this section, we define a functor

I : ZpVectωHq Ñ ZpVectωGq

and show that this functor is Frobenius monoidal. In objects, this functor is defined for any

V P ZpVectωHq as V ÞÑ I pV q :“ ❦Gb V , with relations:

ghb vd “ τpg, hqpdq´1g b h ¨ vd, for g P G, h, d P H.(3.2.1)

The kG-coaction is given by

δ pg b vdq :“ gdg´1 b g b vd.(3.2.2)

Lemma 3.6. I pV q has the structure of a YD module with action: g ⊲ pk b vdq :“ τpg, kqpdqgkbvd.

Proof. First, we check that the coaction is compatible with the comultiplication, namely that

p∆ b Idq δ “ pId b δq δ. Here,

p∆ b Idq δ pg b vdq “ p∆ b Idq
`
gdg´1 b g b vd

˘
“ gdg´1 b gdg´1 b g b vd,

pId b δq δ pg b vdq “ gdg´1 b pg b vdq “ gdg´1 b gdg´1 b g b vd.

Both sides agree.

Next, the YD condition requires that for any g, k P G, d P H, the composition

g b pk b vdq ÞÑ pg b gq b pk b vdq ÞÑ τ pg, kq pdq g b pgk b vdq

ÞÑ τ pg, kq pdq g b gkdk´1g´1 b pgk b vdq ÞÑ τ pg, kq pdq gkdk´1 b pgk b vdq

needs to be equal to

g b pk b vdq ÞÑ pg b gq b kdk´1 b pk b vdq ÞÑ τ pg, kq pdq gkdk´1 b pgk b vdq ,

which match.

For the defined map to be a twisted action, we require that, for any g, h, k P G, d P H:

g ⊲ ph ⊲ pk b vdqq “ τpg, hqpkdk´1qgh ⊲ pk b vdq .

By expanding both sides using the proposed action, this is equivalent to requiring that

τph, kqpdqτpg, hkqpdqghk b vd “ τpg, hqpkdk´1qτpgh, kqpdqghk b vd.

This equality holds by Lemma A.1. �
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We claim that the functor I defined above is op-lax monoidal with natural transformation

νV,W : I pV b V q Ñ I pV q b I pW q ,

g b pvd b wf q ÞÑ γ pgq pd, fq pg b vdq b pg b wf q ,(3.2.3)

with γ as defined in Equation 2.5.4, for any d, f P H, and V,W P Ob pZpVectωHqq. The counit is

given by

(3.2.4) Ip1q Ñ 1, g b 1 ÞÑ 1.

Lemma 3.7. The natural transformation ν equips the functor I with an op-lax monoidal structure.

Proof. Let k P G and V,W P Ob pZpVectωHqq. For νV,W to be a morphism of YD modules, we require

that

νV,W pk ⊲ pg b pvd b wf qqq “ k ⊲ pνV,W pg b pvd b wf qqq.

We compute that

νV,W pk ⊲ pg b pvd b wf qqq “ γpkgqpd, fqτpk, gqpdfqpkg b vdq b pkg b wf q,

k ⊲ pνV,W pg b pvd b wf qqq “ γpgqpd, fqk ⊲ ppg b vdq b pg b wf qq

“ γpkqpgdg´1, gfg´1qγpgqpd, fqpk ⊲ pg b vdq b k ⊲ pg b wf qq

“ τpk, gqpdqτpk, gqpfqγpkqpgdg´1, gfg´1qγpgqpd, fqpkg b vdq b pkg b wf q.

The two expressions are equal by Lemma A.3, so νV,W is indeed a morphism of twisted YD modules.

To check the conditions of an op-lax monoidal functor, we need to verify that, for any objects

V,W,U P ObpZpVectωHqq, the following morphisms IppV b W q b Uq Ñ IpV q b pIpW q b IpUqq are

equal:

pIdIpV q b νW,U qνV,WbUIpαV,W,U q “ αIpV q,IpW q,IpUqpνV,W b IdIpUqqνV bW,U

Evaluating on a vector pg b ppvd b wf q b uhqq in IppV bW q b Uq, we compute

pIdIpV q b νW,U qνV,WbUIpαV,W,U qpg b ppvd b wf q b uhqq “

“ γpgqpf, hqγpgqpd, fhqω´1pd, f, hqppg b vdq b ppg b wf q b pg b uhqqq,

αIpV q,IpW q,IpUqpνV,W b IdIpUqqνV bW,U pg b ppvd b wf q b uhqq “

“ ω´1pgdg´1, gfg´1, ghg´1qγpgqpd, fqγpgqpdf, hqppg b vdq b ppg b wf q b pg b uhqqq.

These two expressions are equal by A.2.

The unitality condition is easily verified, using γpgqpd, 1q “ γpgqp1, dq “ 1. �

The functor I is also lax monoidal with the structural natural transformation

µV,W : IpV q b IpW q Ñ IpV bW q.

This map µV,W sends a vector pg b vdq b pk bwf q to zero unless g´1k P H . If gH “ kH we can use

Equation (3.2.1) to replace pg b vdq b pk b wf q by a vector of the form pg b vdq b pg b w1q, with w1

having degree g´1kfk´1g. Hence, it suffices to describe the image of µV,W on vectors of the form

pg b vdq b pg b wf q, with g P G and vd, wf homogeneous vectors of degrees d in V and f in W ,

respectively.

µV,W ppg b vdq b pg b wf qq “ γpgqpd, fq´1g b pvd b wf q.(3.2.5)
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In addition, we define the unit of this lax monoidal structure by

(3.2.6) u : 1 Ñ Ip1q, 1 ÞÑ
ÿ

i

gi,

where tgiuiPI is a set of representatives for the left cosets of H in G, i.e. G “
š
i

giH.

Lemma 3.8. The natural transformation µ equips the functor I with a lax monoidal structure.

Proof. First, we check that µV,W is a well-defined morphism of twisted YD modules over G. For

k, g P G and V,W P Ob pZpVectωHqq, we require that

µV,W pk ⊲ ppg b vdq b pg b wf qqq “ k ⊲ pνV,W ppg b vdq b pg b wf qqq.

We compute that

k ⊲ pνV,W ppg b vdq b pg b wf qqq “ τpk, gqpdfqγpgqpd, fq´1kg b pvd b wf q,

µV,W pk ⊲ ppg b vdq b pg b wf qqq “

“ γpkgqpdfq´1τpk, gqpdqτpk, gqpfqγpkqpgdg´1, gfg´1qkg b pvd b wf q.

These two expressions are equal by Lemma A.3, so µV,W is a morphism of twisted YD modules.

Now we have to check the defining diagrams of a lax monoidal structure. Firstly, consider three

objects V,W,U in ZpVectωHq. We need to check that the following morphisms pIpV q b IpW qq b

IpW q Ñ IpV b pW b Uqq are equal:

µV,WbU pIdIpV q b µW,U qαIpV q,IpW q,IpUq “ IpαV,W,U qµV bW,U pµV,W b IdIpW qq.

It suffices to check this for vectors of the form ppg b vdq b pg b wf qq b pg b uhq. We compute

µV,WbU pIdIpV q b µW,U qαIpV q,IpW q,IpUqpppg b vdq b pg b wf qq b pg b uhqq “

“ γ´1pgqpd, fhqγ´1pgqpf, hqω´1pgdg´1, gfg´1, ghg´1qg b pvd b pwf b uhqq,

IpαV,W,U qµV bW,U pµV,W b IdIpW qqpppg b vdq b pg b wf qq b pg b uhqq

“ γ´1pgqpd, fqγ´1pgqpdf, hqω´1pd, f, hqg b pvd b pwf b uhqq.

The two expressions are equal by A.2.

The unitality conditions for I are easily verified, using γpgqpd, 1q “ γpgqp1, dq “ 1. �

Proposition 3.9. The functor I : ZpVectωHq Ñ ZpVectωGq is a separable Frobenius monoidal functor.

Proof. The claim that I is a Frobenius monoidal functor follows from checking the diagrams in

Definition 2.8. This can be tested on vectors of the form gi b vd P IpV q, where tgiu is a set of left

coset representatives. Commutativity of both diagrams amounts to the condition in Lemma A.2.

Finally, I is a separable Frobenius monoidal functor as, clearly, µV,W νV,W “ IdIpV bW q. �

Proposition 3.10. The functor I is both a braided lax monoidal and braided oplax monoidal functor

and preserves the ribbon structure.

Proof. We start by checking that the lax monoidal structure given by µ is compatible with the

braiding. First, we need to check that we can restrict to vectors of the form pg b vdq b pg b wf q.

Consider the composition IpcV,W qµV,W . By our earlier discussion, this is zero on all vectors not

of the proposed form. For µW,V cIpV q,IpW q on a generic vector in IpV q b IpW q, we get that

µW,V cIpV q,IpW qppg b vdq b pk b wf qq “ µW,V ppgdg´1
⊲ pk b wf qq b pg b vdqq



18 SAMUEL HANNAH, ROBERT LAUGWITZ, AND ANA ROS CAMACHO

“ τpgdg´1, kqpfqµW,V ppgdg´1k b wf qq b pg b vdqq

Now this term is non-zero only when kgd´1 P H, which is equivalent to requiring g´1k P H. Hence

we can restrict to vector to be of the proposed form and compute

µW,V cIpV q,IpW qppg b vdq b pg b wf qq “ µW,V ppgdg´1
⊲ pg b wf qq b pg b vdqq

“ τpgdg´1, gqpfqµW,V ppgdb wf q b pg b vdqq

“ τpgdg´1, gqpfqτpg, dqpfq´1µW,V ppg b d ¨ wf q b pg b vdqq

“ τpgdg´1, gqpfqτpg, dqpfq´1γpgqpdfd´1, dq´1g b pd ¨ wf b vdq,

IpcV,W qµV,W ppg b vdq b pg b wf qq “ γpgqpd, fq´1IpcV,W qpg b pvd b wf qq

“ γpgqpd, fq´1g b pd ¨ wf b vdq.

The two expressions are equal by using Equation (2.5.4) and Equation (2.5.2).

The braided oplax monoidal condition follows similarly. We compute that

νW,V IpcV,W qpg b pvd b wf qq “ νW,V pg b pd ⊲ wf b vdqq

“ γpgqpdfd´1, dqppg b d ⊲ wf q b pg b vdqq,

cIpV q,IpW qνV,W pg b pvd b wf qq “ γpgqpd, fqcIpV q,IpW qppg b vdq b pg b wf qq

“ γpgqpd, fqppgdg´1
⊲ pg b wf qq b pg b vdqq

“ τpgdg´1, gqpfqγpgqpd, fqppgdb wf qq b pg b vdqq

“ τpg, dqpfq´1τpgdg´1, gqpfqγpgqpd, fqppg b d ⊲ wf q b pg b vdqq.

Again, these expressions are equal by Equation (2.5.4) and Equation (2.5.2).

Further, IpθV q “ θIpV q with the ribbon structure defined in Remark 3.30. Indeed, we compute

that

θIpV qpg b vdq “ gdg´1
⊲ pg b vdq

“ τpgdg´1, gqpdqgdb vd

“ τpgdg´1, gqpdqτpg, dqpdq´1g b d ¨ vd

“ g b d ¨ vd “ IpθV qpg b vdq,

where the second-to-last equality uses Equation (2.5.7) with k “ g, g “ d, h “ d. �

Corollary 3.11. If A is an algebra (respectively, coalgebra or Frobenius algebra) in ZpVectωHq, then

IpAq is an algebra (respectively, coalgebra or Frobenius algebra) in ZpVectωGq. Moreover, if A is

commutative (respectively, cocommutative) in ZpVectωHq, then IpAq is commutative (respectively,

cocommutative) in ZpVectωGq.

Example 3.12. The tensor unit 1 is a commutative and cocommutative Frobenius algebra in

ZpVectωHq. Hence, Ip1q :“ AH inherits these properties. Explicitly, AH is spanned as a k-vector

space by tδgH |g P Gu subject to the relations that δgH “ δkH if and only if g´1k P H. Further, AH

is a twisted YD module via

k ¨ δgH “ δkgH , δpδgHq “ 1 b δgH .
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The multiplication and unit are given by

δgHδkH “

#
δgH , if g´1k P H,

0, otherwise,
1AH

“
ÿ

i

δgiH ,

for tgiu a set of H-coset representatives. The comultiplication and counit

∆AH
pδgHq “ δgH b δgH , εAH

pδgHq “ 1

make AH a commutative and cocommutative Frobenius algebra in ZpVectωGq. We note that, since

AH has trivial G-grading, the braiding is simply given by ab b ÞÑ bb a, for all a, b P AH .

Consider the category RepVectωG
pAHq from Definition 2.13. We fix a set of coset representatives

tgiu of H in G such that g1 “ 1 and denote the corresponding basis of AH by tδgiu. We can now

define a functor

T : VectωH Ñ RepVectωG
pAHq, T pV q “ AH b V, T pfq “ IdAH

b f,

where AH b V is a kG-comodule via the coaction

δpδgi b vq “ gi|v|g´1
i b pδgi b vq,

and a right AH -module via

pδi b vq ¨ δj “ δi,jpδi b vq.

Next, consider the canonical isomorphisms µTV,W appearing in

pAH b V q b pAH bW q Ñ pAH b V q bAH
pAH bW q

µT
V,W

ÝÝÝÑ AH b pV bW q,

which is given by

µTV,W ppδgi b vq b pδgi b wqq “ γpgiqp|v|, |w|q´1δi,jδgi b pv b wq.

Lemma 3.13. The functor T is monoidal.

Proof. First, we check that µTV,W is obtained as factorization over the relative tensor produt bAH
as

stated and becomes an isomorphism. Further, the coherence diagram making T a monoidal functor

follows from Lemma A.2. �

We will see in Proposition 3.16 below that this functor gives an equivalence of tensor categories

when |G : H| ‰ 0.

3.3. Local modules over coset algebras. In this section, we prove that the functor I from Sec-

tion 3.2 induces an equivalence of braided monoidal categories between ZpVectωHq and Reploc
ZpVectωGqpAHq,

where AH “ Ip1q – kpG{Hq is the algebra of functions on left cosets of H in G.

Lemma 3.14. For any object V in ZpVectωHq, IpV q is a right local module over the algebra AH

from Example 3.12. The right action is given by

arIpV q : IpV q bAH Ñ IpV q, pg b vq ¨ δkH “

#
g b v, if k´1g P H,

0, otherwise.
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Proof. The fact that IpV q is a right AH “ Ip1q-module follows from Proposition 2.9(c) and

Lemma 3.8.

We check that IpV q is a local module. By applying the braiding twice, we obtain

cAH ,IpV qcIpV q,AH
ppg b vdq b δkHq “ cAH ,IpV qpδgdg´1kH b pg b vdqq “ pg b vdq b δgdg´1kH

Applying the right action gives us

pg b vdq b δgdg´1kH “

#
g b vd, if k´1gd´1 P H,

0, otherwise.

As d P H, this is exactly the result of applying the right action only. �

The following result is independent of the choice of ribbon structure for ZpVectωGq and we may

use the ribbon structure from Proposition 2.21.

Lemma 3.15. Assume |G : H| P k
ˆ. Then the algebra AH from Example 3.12 is a rigid Frobenius

algebra in ZpVectωGq.

Proof. The trivial algebra 1 is a commutative Frobenius algebra in ZpVectωHq. Hence, AH “ Rp1q

is a commutative Frobenius algebra in ZpVectωGq by Corollary 3.11. The comultiplication and counit

are given by

∆AH
pδgHq “ δgH b δgH , εAH

pδgHq “ 1.

We first check that AH is a connected algebra. Indeed, as AH is concentrated in G-degree 1, it is

a G-module and HomZpVectωGqp1, AHq Ď pAHqG. The latter space of G-invariant elements in AH is

one-dimensional since AH is given by functions on a transitive G-set. Now, we compute that

mAH
∆AH

pδgHq “ δgHδgH “ δgH , εAH
p1AH

q “ |G : H|.

Since, by assumption, |G : H| P k
ˆ, AH is a rigid Frobenius algebra of dimension dimjpAHq “ |G : H|,

cf. Proposition 2.5. �

Proposition 3.16. Assume |G : H| P k
ˆ. The functor T from Lemma 3.13 induces an equivalence

of tensor categories from VectωH to RepVectωG
pAHq.

Proof. We first check that T is fully faithful. For this, we note that every object X in RepVectωG
pAHq

has a direct sum decomposition X “ ‘iX
i, where Xi is the image of the action of the idempotent

δgi P AH . Any morphism of AH -modules preserves this direct sum decomposition. Thus, for given

objects V,W in VectωH , a morphism f : T pV q Ñ T pW q and any v P V ,

fpgi b vq “ gi b gpvq

for a unique vector gpvq P W . The mapping g : V Ñ W preserves the H-grading since conjugation by

gi is bijective. Thus, f “ T pgq and T is full. Further, T is faithful as the tensor product p´q bk AH

is faithful.

Now, VectωG is a finite tensor category and, as AH a rigid Frobenius algebra by Lemma 3.15

provided that |G : H| ‰ 0, RepVectωGpAHq is a finite tensor category by [LW23, Corollary 4.21]. We

conclude that T : VectωH Ñ RepVectωG
pAHq is a fully faithful tensor functor. Now, Equation (2.4.3)

specifies to

FPdim
`
RepVectωG

pAHq
˘

“
FPdimpVectωGq

FPdimpAHq
“

|G|

dimkpAHq
“

|G|
|G|
|H|

“ |H| “ FPdimpVectωHq.
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Thus, [EGNO15, Proposition 6.3.3] implies that T gives an equivalence. �

Next, we will extend the equivalence of VectωH and RepVectωG
pAHq to Drinfeld centers and local

modules using the functor I from Section 3.2.

Lemma 3.17. The functor I induces a monoidal functor from ZpVectωHq to Reploc
ZpVectωGqpAHq, the

category of local modules over AH . This functor is a ribbon functor if |G : H| P k
ˆ.

Proof. By Lemma 3.14, it is clear that I induces a functor I : ZpVectωHq Ñ Reploc
ZpVectωGqpAHq. The

tensor product of X,Y P Reploc
ZpVectωGqpAHq is the relative tensor product X bAH

Y defined in

Equation 2.4.2, with the left action given by alW :“ arW cAH ,W . In IpUq bAH
IpV q, this gives us that

pg b udq b pl b veq “ 0 if and only if gH ‰ lH, for non-zero ud, ve.

This suggests that

IpUq bAH
IpV q “ IpUq b IpV q{S, with S “ spanktpg b udq b pl b vf q|l´1g R Hu.

In order to be compatible with the twisted YD module and local module structure, we need S to

be a subobject in Reploc
ZpVectωGqpAHq. To see this, we first note that S is G-graded as

δppg b udq b pl b vf qq “ gdg´1lf l´1 b
`
pg b udq b pl b vf q

˘

gives a G-homogeneous spanning set. Secondly, S is closed under the twisted G-action. This follows

as

k ⊲ ppg b udq b pl b vf qq “ γpkqpgdg´1, lf l´1qτpk, gqpdqτpk, lqpfqpkg b udq b pkl b vf q P S

because pklq´1pkgq R H if and only if l´1g R H. Finally, S is closed under the right action of AH

since

ppg b udq b pl b vf qq ¨ δkh “

#
pg b udq b pl b vf q, if kH “ lH,

0, else,

is clearly in S. Hence S is a subobject.

As a consequence of this quotient, the op-lax monoidal structure from Lemma 3.7 extends to

ν̄U,V : IpU b V q ÝÑ IpUq bAH
IpV q,

g b pud b uf q ÞÑ γpgqpd, fqpg b udq b pg b vf q,

also giving an op-lax monoidal structure.

The natural transformation ν is in fact an isomorphism. To observe this, we define the morphism

ΛU,V : IpUq b IpV q ÝÑ IpU b V q,

pg b udq b pl b vf q ÞÑ

#
λpg, d, l, fqg b pud b g´1l ¨ vf q, if gH “ lH,

0, else,

where

λpg, d, l, fq “
1

τpg, g´1lqpfqγpgqpd, g´1lf l´1gq
.

For this morphism to be a morphism of YD modules, it needs the equality

λpg, d, l, fqτpk, gqpdg´1lf l´1gq “ γpkqpgdg´1, lf l´1qτpk, gqpdqτpk, lqpfqλpkg, d, kl, fq
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to hold, which follows straightforwardly from Lemma A.1 and Lemma A.3. As the kernel of this

morphism ΛU,V contains S, it induces a quotient morphism Λ̄U,V : IpUq bAH
IpV q Ñ IpU b V q in

ReplocVectωG
pAHq.

The morphism Λ̄U,V is inverse to νU,V . Indeed, we compute that

ν̄U,V Λ̄U,V ppg b udq b pl b vf qq “ λpg, d, l, fqν̄U,V pg b pud b g´1l ¨ vf qq

“ γpgqpd, g´1lf l´1gqλpg, d, l, fqppg b udq b pg b g´1l ¨ vf qq

“ τpg, g´1lqpfqγpgqpd, g´1lf l´1gqλpg, d, l, fqppg b udq b pl b vf qq

“ ppg b udq b pl b vf qq,

Λ̄U,V ν̄U,V pg b pud b vf qq “ γpgqpd, fqΛ̄U,V ppg b udq b pg b vf qq

“ λpg, d, g, fqγpgqpd, fqg b pud b vf q

“ g b pud b vf q.

Hence ν̄ is a natural isomorphism and thus I is a monoidal functor.

To see that I is a braided monoidal functor, consider the diagram

IpUq b IpV q //

cIpUq,IpV q

��

IpUq bAH
IpV q

ν̄U,V
//

c1
U,V

��

IpU b V q

IpcU,V q

��

IpV q b IpUq // IpV q bAH
IpUq

ν̄V,U
// IpV b Uq.

(3.3.1)

The left-most square commutes by definition of the braiding in Reploc
ZpVectωGqpAHq, and the perimeter

commutes by naturality. Hence the right-most square commutes, which is exactly the condition for

the functor I to be compatible with the braiding.

Now assume |G : H| P k
ˆ. Then as, by Lemma 3.15, AH is a rigid Frobenius algebra,

Reploc
ZpVectωGqpAHq is a ribbon category by [KO02,LW23]. To check compatibility with the twist, recall

that I is a ribbon functor to ZpVectωGq, see Proposition 3.10. Further recall the explicit form of the

ribbon twist θ̂V on categories of local modules over A “ AH from [LW23, Proposition 4.23],

θ̂V “ arV pθV b IdAqparV b IdAqpIdV b qq,

where d “ dimjpAq and q : 1 Ñ AbA is an inverse to the pairing p “ εAm. In the case of A “ AH ,

ppδgH b δkHq “

#
1, if g´1k P H

0, else
, q “

ÿ

i

δgiH b δgiH .

Thus, we can evaluate the twist IpV q, to obtain

θ̂V pgj b vdq “
ÿ

i

θIpV q

`ÿ

i

pgj b vdq ¨ δgiH
˘

¨ δgiH “ pgj b d ¨ vdq ¨ δgjH “ gj b d ¨ vd “ IpθV qpgj b vdq,

where we use the right AH -action on IpV q from Lemma 3.14, the twist from Remark 3.30, and

Proposition 3.10 in the final step. This proves that I is a ribbon functor to the category of local

modules over AH as claimed. �

The following result was proved in [DS17, Theorem 3.7]. We give a proof using the functor I

defined above.
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Theorem 3.18. The functor I defines an equivalence of monoidal categories between ZpVectωHq

and Reploc
ZpVectωGqpAHq.

Proof. We first show that I is faithful. On morphisms, I is given by the map

HomZpVectωHqpV,W q Ñ HomReploc
ZpVectω

G
qpAHqpkGb V, kGbW q, p ÞÑ Ippq “ IdAH

b p.

As this map is injective, seen, for example, by restricting to the subspace 1 b V of IpV q, we see that

I is faithful.

To prove that I is full, suppose q : kG bAH
V Ñ kG bAH

W is a morphism in ReplocVectωG
pAHq.

Then, for all g, k P G, v P V , we have

qpg b vq ¨ δkH “ qppg b vq ¨ δkHq “

#
qpg b vq, if k´1g P H,

0, otherwise.

We choose a set of coset representatives tgiu for H in G such that g1 “ 1. Using the above and

Equation (3.2.1), we see that the qpgi b vq is contained in the subspace gi b W of IpW q. Hence,

there exists a vector wi P W such that qpgi b vq “ gi b wi. However, q commutes with the twisted

left G-action, which implies that

gi b wi “ qpgi b vq “ qpgi ¨ p1 b vqq “ gi ¨ qp1 b vq “ gi ¨ p1 b w1q “ gi b w1.

Thus, wi “ w1 for all i. Hence, we obtain a k-linear map q1 : V Ñ W, v ÞÑ w1. This map satisfies

Ipq1q “ q, i.e.,

qpg b vq “ g b q1pvq P IpW q, @g P G, v P V.

By restricting to g P H, it follows that q1 : V Ñ W is a morphism of twisted YD modules over H.

This proves that I is full.

It remains to show that I is essentially surjective. For this, take a local module L P Reploc
ZpVectωGqpAHq.

The actions of the idempotent elements δgH of AH define a family of idempotent endomorphisms

eg : L Ñ L, l ÞÑ l ¨ δgH eg P EndZpVectωGqpLq.

Setting Li “ Impegiq gives a direct sum decomposition L “
À
i

Li. Here, we use that 1AH
“
ř
i

δgiH .

We now observe that l P Li if and only if gjg
´1
i ¨ l P Lj . In particular, l P L1 if and only if gil P Li.

Further, L1 is a submodule of L under the left twisted H-action. The assumption that L is a local

module implies that if ld P L1 has degree |l| “ d, then l “ l ¨ δdH . We can write d “ gih, with h P H ,

and find that l P Li. However, as the subspaces Li intersect trivially it follows that d P H . Thus, L1

correspond to an object in ZpVectωHq.

Using the twisted right G-action on L, we define a map

π : kGb L1 ÝÑ L, g b l ÞÑ g ¨ l.

The map π is surjective. Indeed, L1 is given by all elements of the form l ¨ δH , with l P L. Now,

gi

ˆ
pg´1

i lq

γpgiqpgi, |l|q
¨ δH

˙
“
τpgiqpgi|l|g

´1
i , 1q

γpgiqpgi, |l|q
pgipg

´1
i lqq ¨ pgiδHqq “

γpgiqpgi, |l|q

γpgiqpgi, |l|q
l ¨ δgiH “ l ¨ δgiH .

Thus, l ¨ δgiH is in the image of π and hence, for any l P L, l “
ř

i l ¨ δgiH P Impπq. It follows that

πpghb vdq “ pghql “ τpg, hqpdq´1gphlq “ τpg, hqpdq´1g b hvd.
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Thus, by Equation (3.2.1), π descents to a quotient map π : IpL1q Ñ L which is still surjective. The

right twisted action by g P G gives an isomorphism of vector spaces and hence dimpLiq “ dimpL1q

for all i. This shows that

dimL “ |G : H|dimkL
1 “ dimkIpL1q.

Thus, π is injective and hence gives an isomorphism IpL1q – L. �

Corollary 3.19. If |G : H| P k
ˆ, then the equivalence from Theorem 3.18 is an equivalence of

ribbon categories.

Proof. This statement is now a direct consequence of Theorem 3.18 and Lemma 3.17. �

Example 3.20. Let H “ t1u be the trivial subgroup of G. Then it follows that Reploc
ZpVectωGqpAt1uq »

Vectk, i.e., At1u is a trivializing algebra in ZpVectωGq provided that |G| P k
ˆ. In fact, for any subgroup

H of G with |G : H| P k
ˆ, we obtain ZpVectωHq as local modules over an algebra in ZpVectωGq. This

provides a correspondence between ribbon categories, cf. [FFRS06, Section 1.4].

3.4. The classification of rigid Frobenius algebras. In this section, we apply the Frobenius

monoidal functors from Section 3.2 in order to recover the classification of rigid Frobenius algebras

in ZpkG-Modq » ZpVectGq from [DS17, Theorem 3.15], and generalize this result to algebraically

closed fields of arbitrary characteristic. For the case of a trivial 3-cocycle ω “ 1, this recovers

[Dav10, Theorem 3.5.1], for char k “ 0, and [LW23, Theorem 6.14] for general algebraically closed

fields. In fact, as in [DS17], we obtain a classification of all connected étale algebras in ZpVectωGq

which turn out to have trivial twist and are, hence, rigid Frobenius algebras if their quantum

dimension is non-zero.

Notation 3.21 (Input data H,N, ω, κ, ǫ). Let H be a finite group with a 3-cocycle ω P H3pH, kˆq,

N ŸH a normal subgroup. Further, let κ : N ˆN Ñ k
ˆ satisfy

ωpn,m, kq “ κpn,mqκpm, kq´1κpnm, kqκpn,mkq´1, κpn, 1q “ κp1, nq “ 1,(3.4.1)

for all n,m, k P N . In addition, let

ǫ : H ˆN Ñ k
ˆ, ph, nq ÞÑ ǫhpnq

be a map satisfying, for all h, k P H and n,m P N , that

τph, kqpnq “
ǫhpknk´1qǫkpnq

ǫhkpnq
,(3.4.2)

γphqpn,mq “
ǫhpnmq

ǫhpnqǫhpmq
¨
κphnh´1, hmh´1q

κpn,mq
,(3.4.3)

κpnmn´1, nq “ ǫnpmqκpn,mq.(3.4.4)

In particular, the normalized condition on κ, along with (3.4.3) and (3.4.4) respectively, imply that

ǫhp1q “ 1, and ǫ1pnq “ 1.(3.4.5)

Remark 3.22. The maps ǫph, nq :“ ǫhpnq and κ define a normalized element ǫ‘κ in the truncated

total complex rF 2pH,N, kˆq, where H acts on N by conjugation, see Appendix A.3. Equations

(3.4.1)–(3.4.3) are equivalent to

(3.4.6) d2Totpǫ‘ κq “ τ ‘ γ ‘ ω,
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where τph1, h2, nq “ τph1, h2qpnq, γph, n1, n2q “ γphqpn1, n2q. In particular, the restriction of ω to

a 3-cocycle on N is trivial in H3pN, kˆq.

Now assume given a finite group G with a 3-cocycle ω P H3pG, kˆq. The isomorphism classes of

rigid Frobenius algebras in ZpVectωGq will be parametrized by the data in Notation 3.21 for H a

subgroup of G and the restriction of ω to H. We will denote such algebras by A “ ApH,N, κ, ǫq

in Theorem 3.29 below. These algebras A will be equal to IpBq for a rigid Frobenius algebra

B “ BpN, κ, ǫq in ZpVectωHq using the Frobenius monoidal functor I from Propositions 3.9 and 3.10.

Proposition 3.23 (Algebras BpN, κ, ǫq). Assume given a tuple pH,N, ω, κ, εq as in Notation 3.21.

Consider the k-vector space BpN, κ, ǫq with k-basis ten | n P Nu, and define

(i) h ¨ en “ ǫhpnqehnh´1, for h P H;

(ii) δpenq “ nb en, that is, en is homogeneous of degree n P H;

(iii) multiplication mB given by enem “ κpn,mq´1enm for all n,m P N ;

(iv) unit 1B “ e1.

Then BpN, κ, ǫq is a connected, commutative algebra in ZpVectωHq described as a twisted YD module.

The following is an analogue of [DS17, Proposition 3.11], [Dav10, Proposition 3.4.2].

Proposition 3.24. Recall the data from Notation 3.21. Let B be an étale algebra in ZpVectωHq

such that B1 “ k and dimjpBq ‰ 0. Then B is isomorphic as an algebra in ZpVectωHq to BpN, κ, ǫq

for N “ SupppBq “ th P H | Bh ‰ 0u.

Proof. As B is étale, it is commutative and separable by definition. Separability implies that the

restriction of the multiplication defines a non-degenerate pairing Bh b Bh´1 Ñ B1 “ k, e.g., by

Proposition 2.5. This implies that any non-zero element b P Bh is a unit in B. Thus, ab ‰ 0

in Bhk provided that a P Bh, b P Bk are non-zero. This shows that N “ SupppBq is a subgroup

of H. Further, N is a normal subgroup of H by the twisted YD condition. One argues as in

[Dav10, Lemma 3.4.1] that dimkBh ď 1 for any h P H.

Now, we can choose a k-basis tenunPN for B. Then, as dimkBh ď 1, the multiplication in B is

determined by scalars κpn,mq P k
ˆ satisfying

(3.4.7) enem “ κpn,mq´1enm, @n,m P N.

Further, the left kH-action is determined by scalars ǫhpnq P k
ˆ which satisfy

(3.4.8) h ¨ en “ ǫhpnqehnh´1 , @h P H,n P N.

Together with the given 3-cocycle ω this gives us a tuple pH,N, ω, κ, εq as in Notation 3.21, where it

follows from B being an algebra in ZpVectωHq that the conditions in Equations (3.4.1)–(3.4.4) hold.

In particular,

‚ Equation (3.4.1) corresponds to mB being associative and unital,

‚ Equation (3.4.2) corresponds to B being a YD module,

‚ Equation (3.4.3) corresponds to mB being a morphism of YD modules,

‚ Equation (3.4.4) corresponds to mB being commutative in ZpVectωHq.

This completes the proof. �
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Proposition 3.25. Assume that |N | P k
ˆ. The algebras B “ BpN, κ, ǫq defined in Proposition 3.23

are rigid Frobenius algebras in ZpVectωHq with coalgebra structure given by

∆Bpenq “
ÿ

mPN

κpm,m´1nq em b em´1n, εBpenq “ δn,1, for all n P N.

Proof. Consider the algebra B “ BpN, κ, ǫq. One readily verifies that the conditions in Notation 3.21

are sufficient to ensure that BpN, κ, εq is a commutative algebra in ZpVectωHq (cf. the bullet points

in the proof of Proposition 3.23).

It remains to check that such an algebra B in, in fact, a rigid Frobenius algebra. This is argued

as in [LW23, Proposition 6.12(2)]. First, B is connected since

HomZpVectωHqp1, Bq Ď HomkH-Comodp1, Bq Ď B1,

with the containing space being 1-dimensional.

Next, we define εB and check that it is indeed a morphism of twisted H-YD modules. Further,

one checks, using the map

q “
ÿ

nPN

κpn´1, nq

ωpn´1, n, n´1q
en b en´1

that the pairing p :“ εBmB : B bB Ñ 1 is non-degenerate. Then, the coproduct

∆Bpenq “
ÿ

mPN

κpm´1,mq

κpm´1, nq

ω´1pm,m´1, nq

ωpm´1,m,m´1q
em b em´1n

(3.4.1)
“

ÿ

mPN

κpm,m´1nq em b em´1n

is obtained from the multiplication and the pairing ε following Remark 2.3. This way, ∆B, εB make

B a coalgebra in ZpVectωHq.

In fact, the algebra and coalgebra structures satisfy the Frobenius conditions from Definition 2.2(3).

Verifying that B is a special Frobenius algebra amounts to the computations that mB∆Bpenq “

|N |IdB, and εBp1Bq “ 1. Hence, B is a rigid Frobenius algebra since |N | ‰ 0. �

Remark 3.26. By forgetting the twisted YD module structure, we can view BpN, κ, ǫq as a

special Frobenius algebra in VectωG. The images under the forgetful functor are twisted group

algebras ApN,ψq [Ost03,Nat17]. These twisted group algebras were used to classify indecomposable

Module categories over VectωG by Ostrik and Natale, cf. [EGNO15, 9.7.2]. An explicit Frobenius

algebra structure for ApN,ψq was given in [MMP`22, Proposition 5.7]. Under the identifications

n “ g,m “ gh and κ “ ψ´1, the multiplication, unit and counit of BpN, κ, ǫq match those of of

ApN,ψq up to normalisation. The coproduct formula for BpN, κ, ǫq becomes

∆Bpegq “
ÿ

hPN

κpgh, h´1q egh b eh´1

Compared to that of ApN,ψq, the coproduct is the same, up to normalisation by 1{|N |. The

above results hence show that ǫ : H ˆ N Ñ k
ˆ parametrize lifts of the algebras ApN, κq to rigid

Frobenius algebras BpN, κ, ǫq in the center. Such a lift can only exist if ǫ, κ satisfy the conditions of

Notation 3.21.

We will now give an explicit description of the commutative Frobenius algebras A “ IpBq in

ZpVectωGq, for B “ BpN, κ, ǫq as above. Note that Corollary 3.11 ensures that A is a commutative

Frobenius algebra, but we will see that it is, in fact, also a rigid Frobenius algebra.
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Definition 3.27 (ApH,N, κ, ǫq). Let G be a group with ω P C3pG, kˆq, a subgroup H of G, and a

tuple pN, κ, εq as in Notation 3.21. We define A “ ApH,N, κ, ǫq to be the commutative Frobenius

algebra IpBq, for B “ BpN, κ, εq from Proposition 3.25.

Further, we fix a coset decomposition G “
Ů
iPI
giH.

Lemma 3.28. Explicitly, we can describe the structure of A “ ApH,N, κ, ǫq as a Frobenius algebra

in ZpVectωGq as follows.

(a) A is the quotient k-vector space spanned by tag,n | g P G,n P Nu, subject to the relations

agh,n “ τpg, hqpnq´1ǫhpnqag,hnh´1 , @h P H.(3.4.9)

(b) The twisted YD module structure is given by

(i) left kG-coaction given by δpag,nq “ gng´1 b ag,n;

(ii) twisted G-action given by k ¨ ag,n “ τpk, gqpnqakg,n, for k P G.

(c) The Frobenius algebras structure is given by the

(iii) multiplication mA given by

ag,nag,m “ γpgqpn,mq´1κpn,mq´1ag,nm,

for g P G and n,m P N , and ag,nak,m “ 0 if kH ‰ gH;

(iv) unit uA given by 1A “
ř
iPI
agi,1;

(v) coproduct ∆A given by

∆Apag,nq “
ÿ

mPN

γpgqpm,m´1nqκpm,m´1nq ag,m b ag,m´1n,

for all g P G and n P N ;

(vi) counit εA given by εApag,nq “ δn,1.

Proof. We set ag,n :“ g b en P A “ IpBq. The relations on A in (3.4.9) are then derived from

Equation (3.2.1) using the twisted H-action from Proposition 3.23(i). This proves (a). To obtain

the formulas in (b) we apply the twisted YD module structure on A “ IpBq from Lemma 3.6.

To find the Frobenius algebra structure on A displayed in (c) we use Corollary 3.11. Thus,

computing multiplication and unit involves the lax monoidal structure of I, see Lemma 3.8. It

suffices to evaluate the product on elements ag,nag,m as a product ag,nak,n “ 0 if kH ‰ gH. If

kH “ gH we can find n1 such that ak,n “ ag,n1 as argued before Lemma 3.8. We compute

ag,nag,m “ γpgqpn,mq´1pg b en ¨ emq “ γpgqpn,mq´1κpn,mq´1ag,nm.

The unit is given by k Ñ A, 1 ÞÑ 1A “
ř

i gi b 1 “
ř

i agi,1, using Equation (3.2.6). Finally, the

coproduct and unit are computed using the oplax monoidal structure on IpAq from Lemma 3.7, i.e.,

∆A “ νB,BIp∆Bq. This gives the claimed formulas. �

We obtain the following theorem generalizing [DS17, Theorem 3.15] to arbitrary characteristic.

Theorem 3.29. Let G be a finite group with ω P C3pG, kˆq, a subgroup H of G and a tuple pN, κ, εq

as in Notation 3.21.

(a) If |N | ¨ |G : H| P k
ˆ, then the algebra A “ ApH,N, κ, ǫq from Definition 3.27 is a rigid

Frobenius algebra in ZpVectωGq of dimension dimjpAq “ |N ||G : H|.
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(b) Every connected étale algebra in ZpVectωGq is of the form ApH,N, κ, ǫq, for some choice of

data H,N, γ, ǫ and has trivial twist θA.

(c) Every rigid Frobenius algebra in ZpVectωGq is isomorphic to one of the form ApH,N, κ, ǫq,

for some choice of data H,N, γ, ǫ as above, with |N | ¨ |G : H| P k
ˆ.

Proof. To prove Part (a), observe that A “ ApH,N, κ, ǫq is a commutative Frobenius algebra in

ZpVectωGq by Corollary 3.11 and Proposition 3.25. It remains to check that A is connected and

special. First, A is connected since HomZpVectωGqp1, Aq “ pA1qG, the space of G-invariant elements

in the kG-module A1. This space is 1-dimensional as A1 “ kpG{Hq and G acts by left translation.

Next, to see that A is special we compute mA∆Apag,nq “ |N |ag,n as in Proposition 3.25. Further,

εAp1Aq “ |G : H|Id1, and by assumption, both scalars |N | and |G : H| are non-zero. Thus, A is a

rigid Frobenius algebra of the claimed quantum dimension.

To prove Part (b), assume A is a connected étale algebra in ZpVectωGq. Following the strategy

from [Dav10, Corollary 3.3.5], we consider the subalgebra A1. We note that A1 is a subobject of A

in ZpVectωGq. The twisted kG-action on A restricts to an (untwisted) kG-module structure on A1.

Thus, A1 corresponds to an algebra in the symmetric monoidal category of kG-modules. As the

braiding of A restricted to A1 bA1 is symmetric, A1 is, in fact, a commutative algebra over k. Now,

A is separable by Proposition 2.5 and this implies that A1 is also separable. Indeed, A1 is also a

connected commutative algebra in ZpVectωGq and as such it is separable if and only if the pairing

ε7m is non-degenerate, cf. [Dav10, Section 2.2] and [LW23, Section 3.3]. But non-degeneracy of

this pairing on A implies non-degeneracy of the restriction to A1. Hence, A1 is a connected étale

algebra in kG-Mod given that its G-grading is trivial. Viewing A as a k-algebra, it follows that

A1 – k
n for some n since A is algebraically closed. The primitive central idempotents of A1 are a

G-set by restricting the kG-action on A1. Thus, using indecomposability of A, A1 – kpG{Hq is of

the form AH from Example 3.12, for some subgroup H ď G. This argument appears in [KO02, 2.2.

Theorem] in the semisimple case.

The multiplication of A restricts to a right action of A1 on A, which makes A a local module over

A1 using commutativity of A in ZpVectωGq. Thus, by the equivalence in Theorem 3.18, A – IpBq

for a connected étale algebra B in ZpVectωHq. Now, dimkB1 “ 1 as

dimkA1 ě pdimkB1qpdimkAHq “ pdimkB1qpdimkA1q.

Thus, B is isomorphic, as an algebra in ZpVectωHq to an algebra of the form BpN, κ, ǫq by Proposi-

tion 3.24.

To prove Part (c), assume that A is any rigid Frobenius algebra in ZpVectωGq, then A is connected

étale by Proposition 2.5. Thus, as in Part (b), A – ApH,N, κ, εq for some choice of data as in

Notation 3.21. We compute that

mA∆Apag,nq “
ÿ

mPN

ag,n “ |N |ag,n, εA1A “ |G : N |.

Hence,

dimjpBq “ revBcoevB “ εB∆BmBp1Bq “ |N | ¨ |G : N |

computes the quantum dimension of B in ZpVectωHq, cf. [LW23, Equation (3.7)], independently of

choice of a pivotal structure for ZpVectωHq. Now, A is rigid Frobenius if |N | ¨ |G : N | ‰ 0. �
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Remark 3.30. Note that the classification results of this section do not depend on the choice of a

particular ribbon structure on ZpVectωGq and different choices of ribbon structures may be used in

Theorem 3.29. By default, we use the ribbon structure on ZpVectωGq detailed in Proposition 2.21.

Corollary 3.31. Let A :“ ApH,N, κ, ǫq be an algebra in ZpVectωGq as defined in Definition 3.27

and assume |N | ¨ |G : H| P k
ˆ. Then the category Reploc

ZpVectωGqpAq is a modular category.

Proof. By Theorem 3.29, A is a rigid Frobenius algebra. Hence, by [LW23, Theorem 4.12],

Reploc
ZpVectωGqpAq is a modular category. Given a ribbon structure on ZpVectωGq, cf. Remark 3.30,

Reploc
ZpVectωGqpAq is a ribbon category by [KO02, 1.17. Theorem] or [LW23, Proposition 4.18]. �

Note that if char k does not divide |G|, then ZpVectωGq is semisimple (see e.g. [Rad12, Corollary

13.2.3]). Hence, in this case Reploc
ZpVectωGqpAq is a modular fusion category.

Lemma 3.32. Assume given a datum pH,N, κ, ǫq as in Notation 3.21.

(1) The algebra AH is isomorphic to the subalgebra of A “ ApH,N, κ, ǫq generated by the

elements g b 1 as an algebra in ZpVectωGq.

(2) The subalgebra generated by the elements 1 b en is isomorphic to B “ BpN, κ, ǫq as an

algebra in ZpVectωHq

Proposition 3.33. Assume |N | ¨ |G : H| P k
ˆ. The induced functor

I : Reploc
ZpVectωHqpBq Ñ Reploc

ZpVectωGqpAq, V ÞÑ IpV q

defines an equivalence of ribbon categories.

Proof. Using Proposition 3.10 and Corollary 3.11, I defines a functor

RepZpVectωHqpBq Ñ RepZpVectωGqpAq.

The right A “ IpBq-action is defined using the lax monoidal structure of I. As I is a braided lax

monoidal functor, it preserves local modules.

Note that, as I is fully faithful, we know

I : HomZpVectωHqpV, V
1q Ñ HomReploc

ZpVectω
G

qpAHqpIpV q, IpV 1qq

is fully faithful. Thus, we need to show that a morphism Ipαq : IpV q Ñ IpV 1q is a morphism of

A-modules if an only if α : V Ñ V 1 is a morphism of B-modules. Indeed, if Ipαq is a morphism of

A-modules,

Ipαqpp1 b vq ¨ p1 b enqq “ 1 b αpv ¨ enq “ 1 b αpvq ¨ en.

Thus, α is a morphism of B-modules. The converse implication is clear.

Now, by Lemma 3.32, we see that local A-module W is also a local AH -module. Thus, by

Theorem 3.18, W – IpV q as an object in Reploc
ZpVectωGqpAHq, for some object V in ZpVectωHq. By

construction, V “ W 1, which is the image of the idempotent element 1 b 1 P A. This idempotent is

central and hence defines an A-submodule which is also local. In particular, V is a local B-module

in ZpVectωHq. We need to show that IpV q – W as A-modules.

By 3.32, the AH -module structure of both W and IpV q are induced from the respective A-module

actions, ρW : W b A Ñ W,ρIpV q : IpV q b A Ñ IpV q. Thus we have the following commutative
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diagram

IpV q bAH
�

�

//

π

��

IpV q bA
ρIpV q

//

π

��

IpV q

π

��

W bAH
�

�

// W bA
ρw

// W.

The perimeter commutes as IpV q – W as AH -modules, and the left square clearly commutes. As

the action is induced by the embedding of the subalgebra AH into A, the right square commutes.

Thus IpV q – W as A-modules and the functor is essentially surjective.

The induced functor I is a monoidal functor, with the monoidal structure being inherited directly.

The functor I is compatible with braidings as braidings of local modules are induced from the

braidings of the underlying categories. Finally, as the functor I is compatible with the ribbon twist,

so is the induced functor on local modules, whose ribbon category structure is induced from that of

the underlying category, see the proof of Proposition 3.10. �

The above proposition shows that, up to equivalence of braided monoidal categories, it suffices

to consider the algebra objects BpN, κ, ǫq in ZpVectωHq, i.e., it suffices to consider the case G “ H.

The next proposition addresses when such algebras are isomorphic.

Proposition 3.34. Fix H and ω P H3pH, kˆq and let pN, κ, ǫq and pN 1, κ1, ǫ1q be tuples satisfying

the conditions of Notation 3.21. Then B “ BpN, κ, ǫq and B1 “ BpN 1, κ1, ǫ1q are isomorphic as

algebras in ZpVectωHq if and only if ǫ1ǫ´1 ‘ κ1κ´1 is zero in rH2
TotpH,N, k

ˆq.

Proof. Assume that φ : H Ñ H 1 is an isomorphism of algebras in ZpVectωHq. Thus, dimA “ dimA1

and hence |N | “ |N 1|. Then φ is a morphism of twisted YD modules over H and, in particular, an

isomophism of G-graded vector spaces. This implies that N “ N 1 and φpenq “ σpnqen, for some

scalars σpnq P k
ˆ. Now, as φ is a morphism of algebras,

φpenemq “ φpκpn,mq´1enmq “ κpn,mq´1σpnmqenm “ σpnqσpmqκ1pn,mq´1enm.

Thus, φ is a morphism of algebras if and only if

κ1pn,mq

κpn,mq
“
σpnqσpmq

σpnmq

κ1κ´1 “ B0,1pσq as claimed.

Further, φ is a morphism of twisted YD modules. Thus,

φph ¨ enq “ ǫhpnqσphnh´1qehnh´1 “ ǫ1
hpnqσpnqehnh´1 “ h ¨ φpenq.

Thus, φ is a morphism of twisted YD modules if and only if

ǫ1
hpnq

ǫhpnq
“
σphnh´1q

σpnq
.

This condition gives that ǫ´1ǫ1 “ d0,1pσq. Combining, we see that

pǫ1 ‘ κ1q ¨ pǫ‘ κq´1 “
ǫ1

ǫ
‘
κ1

κ

equals d1Totpσq and hence is zero in rH2
TotpH,N, k

ˆq as claimed. �
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Remark 3.35. For N ŸH, consider the short exact sequence of groups

1 Ñ N
ι

ÝÑ H
π
ÝÑ H{N Ñ 1.

This induces, via pullback maps, an exact sequence of cochain complexes of abelian groups

0 Ñ F ‚pH{N, kˆq
π˚

ÝÝÑ F ‚pH, kˆq
ι˚

ÝÑ F ‚pN, kˆq Ñ 0,

implying that H‚pH{N, kˆq “ kerH‚pι˚q. Thus, any n-cocycle on f : Hn Ñ k
ˆ such that f |N “ 0

in HnpN, kˆq is equal to a n-cocycle π˚ω, where ω is a normalized n-cocycle on the quotient group

H{N up to coboundary. Thus, if pH,N, ω, κ, ǫq is a tuple as in Notation 3.21, then by Lemma 2.16

we can assume, without loss of generality, that ω “ π˚ω. Then τ, γ are also trivial when restricted

to inputs from N . This follows since

π˚ωph1, h2, h3q “ ωpπph1q, πph2q, πph3qq “ 1

as soon as one of the πphiq “ 1 P H{N , i.e., as soon as one of the hi P N . However, the definition

of γ, τ as elements of rF 2pH,N, kˆq involves at least one input from N . Thus, without loss of

generality, isomorphism classes of rigid Frobenius algebras BpN, κ, ǫq are parametrized by elements

ǫ‘ κ P H̃2
TotpH,N, k

ˆq.

As a special case, by Corollary 3.3 we have that A “ Rp1q is an algebra in ZpVectωGq such that

RepZpVectωGqpAq » ZpVectωH{N q. We observe that A “ BpN, 1, 1q where κ and ǫ are trivial (i.e.,

constant functions with value 1 P k
ˆ). As all conditions in Notation 3.21 are trivial for this data, A

is a rigid Frobenius algebra in ZpVectωGq, cf. Lemma 3.15.

Davydov–Simmons prove the following result on local modules over the Frobenius algebras studied

in this section.

Theorem 3.36 ([DS17, Theorem 3.16]). Let A be a rigid Frobenius algebra as in Theorem 3.29 and

π : H Ñ H{N the quotient homomorphism. Then there exists a 3-cocycle ω P C3pH{N, kˆq such

that π˚ω “ ω|H and an equivalence of ribbon categories between ZpVectωH{N q and Reploc
ZpVectωGqpAq.

Proof (sketch). Using Proposition 3.33 and Remark 3.35 it suffices to show that Reploc
ZpVectπ

˚ω
H q

pBq is

equivalent to ZpVectωH{N q, for B “ BpN, κ, ǫq an algebra as in Proposition 3.23. [DS17] produce a

braided monoidal functor from the latter category to a category of YD-compatible H{N -modules and

comodules involving further cocycle data from rF ‚pH{N,H{N, kˆq. It is then shown in [DS17, Propo-

sition A.1] that any such deformed monoidal category, when braided, is equivalent to ZpVectωH{N q.

The proof does not rely on the assumption char k “ 0. �

As by [Sch01], ZpRepVectωGpAqq – Reploc
ZpVectωGqpAq one can ask if the equivalences of Theorem 3.36

stems from an equivalence of the monoidal categories VectωH{N and Rep
Vectπ

˚ω
G

pAq, see Definition 2.13.

To the knowledge of the authors, this remains an open question in general, but see Proposition 3.38

below for the case of trivial cocycle data κ‘ ǫ, and Section 3.6 for the case of odd dihedral groups.

3.5. Special cases. The following corollary expresses two extreme cases of Corollary 3.31, when N

is as large or as small as possible. For this, we recall the Frobenius–Perron dimension FPdimpCq

of a finite tensor category C [EGNO15, Section 4.5] and objects within it, see Section 2.4. It is

well-known that

FPdimpVectGq “ FPdimpVectωGq “ |G| and FPdimpZpVectωGqq “ FPdimpVectωGq2 “ |G|2.
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It follows from [LW23, Corollary 4.21] that

FPdim
`
Reploc

ZpVectωGqpAq
˘

“
|G|2

FPdimZpVectωGqpAq2
“

|H|2

|N |2
,

using that ZpVectωGq is non-degenerate [EGNO15, Proposition 8.6.3]. Here, in order to compute

FPdimZpVectωGqpAq, we use the forgetful quasi -tensor functor ZpVectωGq Ñ Vect. In fact,

FPdimZpVectωGqpAq “ dimkpAq “
|G||N |

|H|
,

using [EGNO15, Proposition 4.5.7] in the first equality and the basis agi,n of A in the second equality.

Moreover,

FPdim
`
RepZpVectωGqpAq

˘
“

|G|2

dimkpAq
“

|G||H|

|N |
.

Note that this shows that the categories RepZpVectωHqBpN, κ, ǫq and RepZpVectωGqApH,N, κ, ǫq are

inequivalent if G ‰ H.

Corollary 3.37. Let A :“ ApH,N, κ, ǫq be an algebra in ZpVectωGq as defined in Definition 3.27.

(a) Then A is trivializing, i.e. Reploc
ZpVectωGqpAq » Vect, if and only if N “ H.

(b) If N “ t1u, then Reploc
ZpVectωGqpAq and ZpVectωHq are equivalent ribbon categories.

Proof. With the above computations of FP dimensions, this follows as in [LW23, Corollary 6.18],

where Part (b) uses the equivalence in Theorem 3.18. �

Next, we consider the special case when κ and ǫ are both trivial.

Proposition 3.38. Let N Ÿ H ď G be subgroups with |N | ¨ |G : H| P k
ˆ and ω P C3pG, kˆq

such that ω|H “ π˚ω for a 3-cocycle ω of H{N . Then the equivalence of tensor categories T from

Proposition 3.16 induces an equivalence of tensor categories between RepVectωG
pApH,N, 1, 1qq and

VectωH{N .

Proof. Denote B “ BpN, 1, 1q and A “ ApH,N, 1, 1q. Then T pBq – A as algebras in VectωG via the

algebra morphism that sends δgi ben to agi,n. Moreover, both T pBq and A have the same G-grading.

Thus, T induces an equivalence of categories

T : RepVectωH pBq Ñ RepVectωG
pAq.

Explicitly, a right B-module V in VectωH is mapped to the right A-module, defined on the G-graded

vector space T pV q “ AH b V with right A-action given by

arT pV qppδgi b vq b pδgj b nqq “ T parBqµTV,Bppδgi b vq b pδgj b nqq

“
δi,j

γpgiqp|v|, nq
pδgi b pv ¨ nqq.

We will equip this functor with a monoidal structure induced from µTV,W in Lemma 3.13. This way,

µTV,W is a morphism of right A-modules. Here, we regard T pBq – A as a commutative algebra in

ZpVectωGq with the twisted YD module structure defined in Lemma 3.28. Explicitly, we compute

the half-braiding cA of A with T pW q, cf. Proposition 2.20, as

cAT pW qppδgi b nq b pδgj b wq “ pδgj b wq b pgj |w|´1g´1
j ¨ pδgi b nqq
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“ τpgj |w|´1g´1
j , giqpnqτpgk, hqpnq´1pδgj b wq b pδgk b hnh´1q,

where gk satisfies gj |w|´1g´1
j gi “ gkh P gkH , i.e., h “ g´1

k gj |w|´1g´1
j gi P H. Thus, we find that the

left T pBq-action is given by

alT pW qppδgi b nq b pδgj b wqq “ arT pW qc
A
T pW qppδgi b nq b pδgj b wqq

“ T parBqµTB,W c
A
T pW qppδgi b nq b pδgj b wqq

“
τpgj |w|´1g´1

j , giqpnq

τpgk, hqpnq
T parBqµTN,W ppδgj b wq b pδgk b hnh´1qq

“ δj,k
τpgj |w|´1g´1

j , giqpnq

τpgk, hqpnq´1γpgjqp|w|, hnh´1q
pδgj b pw ¨ hnh´1qq

“ δi,j
τpgi|w|´1g´1

i , giqpnq

τpgi, |w|´1qpnqγpgiqp|w|, |w|´1n|w|q
pδgi b pw ¨ |w|´1n|w|qq

“
δi,j

γpgiqpn, |w|q
pδgi b pw ¨ |w|´1n|w|qq.

Here, we used that if k “ j then h “ |w|´1g´1
j gi P H which implies that gi “ gj in the second

equality. The last equality follows from Equation (2.5.8).

Now, we check that µTV,W descents to a morphism T pV q bA T pW q Ñ T pV bB W q. This follows

by comparing

µTV,WαT pV q,T pBq,T pNqpIdT pV q b alT pW qqpppδgi b vq b pδgj b nqq b pδgk b wqq

“
δj,kωpgi|v|g´1

i , gjng
´1
j , gk|w|g´1

k q´1

γpgjqpn, |w|q
µTV,W ppδgi b vq bB pδgj b pw ¨ |w|´1n|w|qqq

“
δi,jδj,kωpgi|v|g´1

i , ging
´1
i , gi|w|g´1

i q´1

γpgiqpn, |w|qγpgiqp|v|, n|w|q
pδgi b pv bB pw ¨ |w|´1n|w|qq

A.2
“

δi,jδj,kωp|v|, n, |w|q´1

γpgiqp|v|, nqγpgiqp|v|n, |w|q
pδgi b pv bB pw ¨ |w|´1n|w|qq

“
δi,jδj,k

γpgiqp|v|, nqγpgiqp|v|n, |w|q
pδgi b pv ¨ nbB wqq

“µTV,W parT pV q b IdT pW qqpppδgi b vq b pδgj b nqq b pδgk b wqq,

where the second-last equality uses the compatibility condition of the relative tensor product V bBW .

Now, the induced morphism µTV,W : T pV q bA T pW q Ñ T pV bB W q is directly checked to be an

isomorphism. Coherence of µT with associators follows as in Proposition 3.16. Thus, we have shown

that T gives an equivalence of tensor categories between RepVectωH
pBq and RepVectωH

pAq.

Finally, B “ Rp1q for the right adjoint functor R used in Corollary 3.3. Thus, VectωH{N is

equivalent to RepVectωH
pBq by [BN11, Proposition 6.1]. Composing these two tensor equivalences

proves the claim. �

3.6. Examples for odd dihedral groups. In this section, we provide a full list of isomorphism

classes of rigid Frobenius algebras (or, connected étale algebras) in ZpVectωGq in the case when G is

an odd dihedral group and ω any 3-cocycle valued in k “ Up1q Ď C. Moreover, we determine the

tensor categories of representations of these algebras.
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Let G “ D2m`1, the dihedral group of odd degree 2m` 1 with presentation

xs, r|s2 “ r2m`1 “ e, sr “ r´1sy.

Notation 3.39. Consider g P G “ D2m`1. We will write g in terms of the group generators, namely

g “ sg0rg1 , where g0 P t0, 1u and g1 P t´m,´m` 1, ...,m´ 1,mu.

We are going to use classify the rigid Frobenius algebras in ZpVectωGq. By Theorem 3.29, these

rigid Frobenius algebras are of the form ApH,N, κ, ǫq as defined in Definition 3.27.

First, we determine the 3-cocycle ω : GˆGˆG Ñ Up1q. By [dWP95, 3.2.8], there are 4m` 2

independent 3-cocycles classes in H3pG,Up1qq, parametrised by p P t0, 1, ..., 4m` 1u. The explicit

formula for the 3-cocycle ωp is, for a, b, c P G, given by

(3.6.1) ωppa, b, cq :“ exp
´

2πip
p2m`1q2

`
p´1qb0`c0a1pp´1qc0b1 ` c1 ´ rp´1qc0b1 ` c1sq ` p2m`1q2

2 a0b0c0
˘¯
.

Here, the rectangular bracket reduces the quantity modulo 2m` 1 in the range t´m, ...,mu. We

thus observe that p´1qc0b1 ` c1 ´ rp´1qc0b1 ` c1s “ lp2m ` 1q for l P t´1, 0, 1u. This allows us to

simplify the above formula to

(3.6.2) ωppa, b, cq :“ exp
´

2πip
p2m`1q

`
p´1qb0`c0a1pl ` p2m`1q

2 a0b0c0
˘¯
.

By Remark 3.22, we need to find values for p such that ωp is trivial when restricted to a normal

subgroup N ŸH Ď G. We now discuss the possible choices of H,N .

The subgroups of the odd degree dihedral group D2m`1 are split into two types; either a dihedral

subgroup of odd degree Dp2m`1q{d, or a cyclic group of the form Zp2m`1q{d – xrdy. Here, d is a

divisor of 2m` 1. The normal subgroups of D2m`1 are exactly the group itself, or the subgroups of

cyclic form. Thus, we get three cases;

‚ H “ Zp2m`1q{d, N “ Zp2m`1q{pdfq

‚ H “ Dp2m`1q{d, N “ Zp2m`1q{pdfq

‚ H “ N “ Dp2m`1q{d

where f is a divisor of p2m` 1q{d. For ease of notation, we shall set

x :“ p2m` 1q{d, and y :“ p2m` 1q{pdfq.

We shall now determine for which values of p, the cocycle ωp will become trivial when restricted to

N in each case.

Lemma 3.40. In the cases such that N “ Zp2m`1q{pdfq, ωp|N is trivial when p ” 0 mod p2m `

1q{pdfq.

Proof. When we restrict to N , we can have that g0 “ 0, g1 “ dfg2 for all g P N , where g2 P

t´py ´ 1q{2,´py ` 1q{2, ..., py ´ 3q{2, py ´ 1q{2u. Thus ωp becomes

ωp|
Zy

pa, b, cq “ exp
´
2πi pldfa2

p2m`1q

¯
.

We require this restriction to be trivial for all values of a2, l. This occurs only when p ” 0 mod y.

There are 2df -choices of p in the applicable range. �

Lemma 3.41. In the case such that N “ Dp2m`1q{d, ωp|N is trivial when p ” 0 mod p2m` 1q{d.
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Proof. When considering g P N , we observe that g1 “ dg2, where g2 P t´px´1q{2,´px`1q{2, ..., px´

3q{2, px´ 1q{2uu. Thus we get that

(3.6.3) ωp|Dxpa, b, cq “ exp
´

2πipd
p2m`1q

`
p´1qb0`c0a2pl ` p2m`1q

2d a0b0c0
˘¯
.

It can now be seen that this 3-cocycle is trivial everywhere on H only when p ” 0 mod x. Thus

there are 2d-choices for p. �

From these lemmas, we are now in a position to classify all rigid Frobenius algebras in ZpVect
ωp

D2m`1
q,

where p ” 0 mod y for some divisors d|p2m` 1q and f |x, by finding all possible data for κ, ǫ.

Lemma 3.42. In all cases, κ is a trivial 2-cocycle in H2pN,Up1qq.

Proof. By Equation (3.4.1), κ is a 2-cocycle on N . In the case that N “ Zy, [dWP95, 2.3.14] gives

us that H2pZy, Up1qq – t0u, so κ is trivial up to coboundary.

In the case that N “ Dx, we shall use the dual Universal Coefficient Theorem [Wei94, 3.6.5] to

calculate the relevant cohomology group;

H2pDx, Up1qq – HompH2pDx,Zq, Up1qq ‘ Ext1ZpH1pDx,Zq, Up1qq.

By [Wei94, 6.8.5], the involved homology groups are H2pDx,Zq – t0u, H1pDx,Zq – Z2. We get that

H2pDx, Up1qq – Ext1ZpZ2, Up1qq – t0u

where the last isomorphism follows from [Wei94, Corollary 3.3.11]. Thus κ is again trivial up to

coboundary. �

To begin determining ǫ, we note that when N “ Zy we can use Equation (3.6.1) to calculate that,

for h, g P H and a, b P N :

ωppa, h, gq “ 1 “ ωpph, a, bq, ωpph, g, aq “ ωpph, gag´1, gq,

and thus τph, gqpnq “ 1 “ γphqpn,mq. We also get this result when H “ N “ Dx, as ωp is trivial

everywhere by construction.

Thus, the conditions ǫ must satisfy from Notation 3.21 is now

ǫhpgng´1qǫgpnq “ ǫhgpnq(3.6.4)

ǫhpnqǫhpmq “ ǫhpnmq(3.6.5)

ǫnpmq “ 1,(3.6.6)

as well as ǫhp1q “ 1.

Equation (3.6.5) states that, for any h P H, ǫh is a 1-cocycle valued in C1pN,Up1qq, where

N acts trivially on Up1q. There are no non-trivial 1-coboundaries in this construction and so

C1pN,Up1qq “ H1pN,Up1qq.

We shall now determine the value of ǫ in all three cases.

Lemma 3.43. When H “ N “ Dp2m`1q{d, ǫ is the trivial function ǫ : H ˆN Ñ Up1q.

Proof. Follows immediately from Equation (3.6.6) as H “ N . �

Lemma 3.44. When H “ Zp2m`1q{d, N “ Zp2m`1q{pdfq, ǫ is a 1-cocycle in H1pH,Nq – N .
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Proof. As H is abelian, Equation (3.6.4) becomes

(3.6.7) ǫhpnqǫgpnq “ ǫhgpnq

and thus ǫ is a 1-cocycle in H1pH,H1pN,Up1qqq, where H acts trivially.

By [dWP95, 2.3.13], H1pZy, Up1qq – Zy, and so ǫ P H1pH,Nq. We then use [Wei94, 3.6.5, 3.3.11,

6.2.3] to calculate that

H1pZx,Zyq – HompZx,Zyq – Zy,

where the last isomorphism follows as y divides x. �

Lemma 3.45. When H “ Dp2m`1q{d, N “ Zp2m`1q{pdfq, ǫ is a trivial 1-cocycle in H1pH,Nq.

Proof. We first note that we can construct a Z2-grading on H by forming the quotient group

H{Z2m`1 – Z2. When h P H is in the 0-graded component (i.e, in Z2m`1), it is clear that

Equation (3.6.4) becomes Equation (3.6.7).

When h P H is in the 1-graded component, Equation (3.6.4) becomes

ǫhpn´1qǫgpnq “ ǫhgpnq.

By setting g “ 1, we observe that ǫhpnq “ ǫhpn´1q. Thus, Equation (3.6.4) becomes Equation (3.6.7)

once more. Thus, ǫ P H1pH,H1pN,Up1qqq, where H acts trivially, and as in the previous lemma,

H1pZy, Up1qq – Zy. We then use [Wei94, 3.6.5, 3.3.11, 6.8.5] to calculate that

H1pDx,Zyq – HompZ2,Zyq – t0u,

with the last isomorphism following as y is odd and so N “ Zy contains no non-identity elements of

order 2. Thus ǫ is trivial in H1pH,Zyq. �

We have thus found all rigid Frobenius algebras in ZpVect
ωp

D2m`1
q, up to isomorphism of algebras,

proving the following proposition.

Proposition 3.46. Let G “ D2m`1, the dihedral group of odd degree 2m` 1, and let d, f be a pair

of not necessarily proper divisors of 2m` 1 and p2m` 1q{d respectively.

Then, whenever p ” 0 mod p2m` 1q{pdfq, there exists rigid Frobenius algebras ZpVect
ωp

D2m`1
q of

the form ApDp2m`1q{d,Zp2m`1q{pdfq, 1, 1q and ApZp2m`1q{d,Zp2m`1q{pdfq, ǫ, 1q, where ǫ is a 1-cocycle

in H1pZp2m`1q{d,Zp2m`1q{pdfq – Zp2m`1q{pdfq.

Additionally, there is a trivializing rigid Frobenius algebra of the form ApDp2m`1q{d, Dp2m`1q{d, 1, 1q

in ZpVect
ωp

Dp2m`1q
q whenever p ” 0 mod p2m` 1q{d.

This completely classifies all rigid Frobenius algebras in categories of the form ZpVect
ωp

G q, up to

an isomorphism of algebras in ZpVect
ωp

G q.

Explicitly, these algebras have the structure of a C-vector space with C-basis tag,n|g P G,n P Nu

subject to the relations

agh,n “ ǫhpnqag,hnh´1 , @h P H

and with the following YD module and algebra structures in their respective categories ZpVect
ωp

H q;

(i) G-action: k ¨ ag,n “ akg,n, for k P G;

(ii) G-coaction: δpag,nq “ gng´1 b ag,n;

(iii) Multiplication: ag,nag,m “ ag,nm for g P G and n,m P N , and ag,nak,n “ 0 if kH ‰ gH.

(iv) Unit: 1A “
ř
iPI
agi,1
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(v) Coproduct: ∆Apag,nq “
ř

mPN ag,m b ag,m´1n, for all g P G and n P N ;

(vi) Counit: εApag,nq “ δn,1.

We note that all of these algebras are images of group algebras kN under the functor I, with the

subgroup H governing the resulting algebra multiplication in ZpVect
ωp

G q.

Furthermore, for all of the cases where ǫ is trivial, we can utilise Proposition 3.38 to determine

their categories of representations when viewed as objects in Vect
ωp

G , up to tensor equivalence.

Explicitly;

‚ For A “ ApDp2m`1q{d,Zp2m`1q{pdfq, 1, 1q, Rep
Vect

ωp
G

pAq – VectωDf
;

‚ For A “ ApZp2m`1q{d,Zp2m`1q{pdfq, ǫ, 1q, Rep
Vect

ωp
G

pAq – VectωZf
;

‚ For A “ ApDp2m`1q{d, Dp2m`1q{d, 1, 1q, Rep
Vect

ωp
G

pAq – Vectωt0u “ VectC.

Even if ǫ is non-trivial in the second case, since κ is trivial, the categories Rep
Vect

ωp
G

pAq do not depend

on ǫ, only their associativity isomorphisms does, which, in any case, corresponds to a 3-cocycle on

Zf . By Remark 3.35, we obtain all possible 3-cocycles of Df and Zf as ω, up to coboundary.

Note that by [Sch01], the corresponding categories of local modules in ZpVectωGq are equivalent to

the Drinfeld centers ZpVectωDf
q, respectively, ZpVectωZf

q in the first two cases (see Theorem 3.36),

and we recover the fact that the case H “ N “ Dp2m`1q{d gives a trivializing algebra in the third

case.

Appendix A. Group cohomology

A.1. Definitions. Here, we collect basic definitions from group cohomology used in the text, see

e.g., [Ben98, Section 3.4], [Bro94, Chapter III]1. Let G be a group, the bar resolution is the complex

. . .ZGn bZ ZG
BnÝÑ ZGn´1 bZ ZG

Bn´1

ÝÝÝÑ . . . . . .ZG1 bZ ZG
B1ÝÑ ZG,

where ZGn bZ ZG is a right ZG-module via right multiplication. As an ZG-module, ZGn bZ ZG

is freely generated by n-tuples pg1, . . . , gnq. The differential is the ZG-module homomorphism

determined by

Bnpg1, . . . , gnq “ p´1qnpg2, . . . , gnq `
n´1ÿ

i“1

p´1qn´ipg1, . . . , gigi`1, . . . , gnq ` pg1, . . . , gn´1qgn.

Given a right ZG-module A, we obtain the cochain complex F ‚pG,Aq on abelian groups of functions

FnpG,Aq “ FunpGn, Aq with differentials

M
d0
ÝÑ F 1pG,Aq

d1
ÝÑ F 2pG,Aq . . . . . . Fn´1pG,Aq

dn´1

ÝÝÝÑ FnpG,Aq . . . ,

where dn is obtained by composing with Bn`1 under the identification

HomZGpZGn bZ ZG,Aq – FunpGn, Aq “ FnpG,Aq,

where the latter is simply the Z-module of maps Gn Ñ A. Explicitly, the differential d “ dn is given

on a map ω : Gn Ñ A by

(A.1.1)

dωpg0, . . . , gnq “ p´1qn`1ωpg1, . . . , gnq `
n´1ÿ

i“0

p´1qn´iωpg0, . . . , gigi`1, . . . , gnq `ωpg0, . . . , gn´1q ¨ gn,

1These references typically use left module conventions.
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where ¨ denotes the action of G on A. In practice, we often use the G-module A “ k
ˆ (or Up1q),

with trivial G-action. In this case, we use multiplicative notation. We denote CnpG,Aq :“ kerpdnq

for the space of n-cocycles and the n-th cohomology group is

HnpG,Aq :“ CnpG,Aq{ Imdn´1 .

For example, a 3-cocycle with values in k
ˆ satisfies Equation (A.2.1).

A.2. 3-cocycle identities. Let ω : G3 Ñ k
ˆ be a 3-cocycle in group cohomology (computed using

the bar resolution). The 3-cocycle condition on ω is

ω pg1g2, g3, g4qω pg1, g2, g3g4q “ ω pg1, g2, g3qω pg1, g2g3, g4qω pg2, g3, g4q .(A.2.1)

We assume that ω is normalized, i.e., ωpg, h, kq “ 1 as soon as one of the entries is the identity of

G. In what follows we provide proofs for several identities we have used along the way involving

cocycles, τ (as defined in Equation 2.5.2) and γ (as defined in Equation 2.5.4).

Lemma A.1. The map τph, kqpdq satisfies

(A.2.2) τph, kqpdqτpg, hkqpdq “ τpgh, kqpdqτpg, hqpkdk´1q, @g, h, k, d P G.

Proof. This equation follows from repeatedly applying the 3-cocycle condition A.2.1 with the

following entries:

- g1 “ g, g2 “ h, g3 “ k, g4 “ d,

- g1 “ g, g2 “ h, g3 “ kdk´1, g4 “ k,

- g1 “ g, g2 “ hkdk´1h´1, g3 “ h, g4 “ k,

- g1 “ ghkdk´1h´1g´1, g2 “ g, g3 “ h, g4 “ k, �

Lemma A.2. The map γphqpg, g1q is related to the 3-cocycle ωpg, g1, g2q via the following identity:

(A.2.3)
γphqpgg1, g2qγphqpg, g1q

ωphgh´1, hg1h´1, hg2h´1q
“
γphqpg, g1g2qγphqpg1, g2q

ωpg, g1, g2q
.

Proof. This equation follows from applying the 3-cocycle condition A.2.1 several times with the

following entries:

- g1 “ h, g2 “ g, g3 “ g1, g4 “ g2,

- g1 “ hgh´1, g2 “ hg1h´1, g3 “ hg2h´1, g4 “ h,

- g1 “ hgh´1, g2 “ h, g3 “ g1, g4 “ g2, and

- g1 “ hgh´1, g2 “ hg1h´1, g3 “ h, g4 “ g2. �

Lemma A.3. The maps τph, kqpdq and γpkqpd, gq are related via the following identity:

γ pkq pd, gq γ phq
`
kdk´1, kgk´1

˘
τ ph, kq pdq τ ph, kq pgq “ τ ph, kq pdgq γ phkq pd, gq .(A.2.4)

Proof. Proving this equality amounts to apply the 3-cocycle condition A.2.1 with the following set

of entries:

- g1 “ h, g2 “ k, g3 “ d, g4 “ g,

- g1 “ h, g2 “ kdk´1, g3 “ kgk´1, g4 “ k,

- g1 “ hkdphkq´1, g2 “ hkgphkq´1, g3 “ h, g4 “ k,

- g1 “ h, g2 “ kdk´1, g3 “ k, g4 “ g,

- g1 “ hkdpkhq´1, g2 “ h, g3 “ k, g4 “ g, and

- g1 “ hkdphkq´1, g2 “ h, g3 “ kgk´1, g4 “ k. �
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A.3. Cohomology of crossed products of groups. Let H, G be groups together with a left

action of H on G by group automorphisms, i.e., H ÞÑ AutpGq, h ÞÑ pg ÞÑ hgq. Then we can form

the crossed product G⋊H, which is GˆH as a set with multiplication given by

pg1, h1q ¨ pg2, h2q “ pg1
h1g2, h1h2q.

Let A be a right ZG-module. Then FnpG,Aq “ FunpGn, Aq becomes a right H-module with action

pf ¨ hqpg1, . . . , gnq “ fphg1, . . . ,
hgnq.

Following [DS17, Appendix A], define a double complex

Fn,mpH,G,Aq “ FunpHn,FunpGm, Aqq “ FnpH,FmpG,Aqq.

The two differentials are denoted by

dn,m : Fn,mpH,G,Aq Ñ Fn`1,mpH,G,Aq, Bn,m : Fn,mpH,G,Aq Ñ Fn,m`1pH,G,Aq,

where

pBn,mpfqqph1, . . . , hnq “ dnpfph1, . . . , hnqq.

The differentials commute, i.e. dn,m`1 Bn,m “ Bn`1,m dn,m making F ‚,‚pH,G,Aq a double complex.

Hence, one can consider the associated truncated double complex

rFn
TotpH,G,Aq “

n´1à

i“0

Fn´i,ipH,G,Aq,

dnTotpfq :“ dn´i,ipfq ` p´1qiBn´i,ipfq, for f P Fn´i,ipH,G,Aq with i ă n.

We will typically denote an element f P rF i,n´ipH,G,Aq Ď Fn
TotpH,G,Aq by a function f : H i ˆ

Gn´i Ñ A.

Letting G ⋊ H act on A via the surjective homomorphism G ⋊ H Ñ G, the untrucated total

complex

Fn
TotpH,G,Aq “

nà

i“0

Fn´i,ipH,G,Aq

is quasi-isomorphic to the complex F ‚pG⋊H,Aq computing group cohomology, see [HS53].

Several cocycles considered in this paper have interpretations as elements of the truncated total

complex rF ‚
Tot with A “ k

ˆ.

Example A.4. We now let a subgroup G act on itself via conjugation, while G acts on k
ˆ trivially,

using multiplicative notation. Consider a triple

T pωq “ τ ‘ γ ‘ ω P F 2,1 ‘ F 1,2 ‘ F 0,3 “ rF 3
TotpG,G, k

ˆq,

with γph1, g1, g2q “ γph1qpg1, g2q and τph1, h2, g1q “ τph1, h2qpg1q defined in Equation (2.5.2) and

Equation (2.5.4). Then T pωq is a 3-cocycle in the totalized complex C3
TotpG,G, k

ˆq if and only if

the following conditions hold

d2,1pτq “ 1 ðñ Lemma A.1,(A.3.1)

B2,1pτqd1,2pγq “ 1 ðñ Lemma A.3,(A.3.2)

B1,2pγq´1 d0,3pωq “ 1 ðñ Lemma A.2,(A.3.3)

B0,3pωq “ 1 ðñ Equation (A.2.1).(A.3.4)
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Example A.5. Let N ŸH be a normal subgroup and let H act on N by conjugation. We consider

2-boundaries in the complex rF ‚
TotpH,N, k

ˆq. These can be parametrized by pairs

ǫ‘ κ P F 1,1 ‘ F 0,2 “ F 2
TotpH,N, k

ˆq.

The total differential has three components, namely

d2Totpǫ‘ κq “ d1,1pǫq ‘
d0,2pκq

B1,1pǫq
‘ B0,2pκq.

Explicit formulas for the components are derived from

d1,1 ǫph1, h2, n1q “
ǫph1, h2n1h

´1
2 qǫph2, n1q

ǫph1h2, n1q
,

B1,1ǫph1, n1, n2q “
ǫph1, n1qǫph1, n2q

ǫph1, n1n2q
, d0,2 κph1, n1, n2q “

κph1n1h
´1
1 , h1n2h

´1
1 q

κpn1, n2q
,

B0,2κpn1, n2, n3q “
κpn1, n1qκpn1n2, n3q

κpn1, n2n3qκpn2, n3q
.
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