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FROBENIUS MONOIDAL FUNCTORS OF DIJKGRAAF-WITTEN
CATEGORIES AND RIGID FROBENIUS ALGEBRAS

SAMUEL HANNAH, ROBERT LAUGWITZ, AND ANA ROS CAMACHO

ABSTRACT. We construct a separable Frobenius monoidal functor from Z (Vect;‘H ) to Z(Vects)
for any subgroup H of G which preserves braiding and ribbon structure. As an application, we
classify rigid Frobenius algebras in Z(Vects ), recovering the classification of étale algebras in these
categories by Davydov—Simmons [J. Algebra 471 (2017)] and generalizing their classification to
algebraically closed fields of arbitrary characteristic. Categories of local modules over such algebras
are modular tensor categories by results of Kirillov—Ostrik [Adv. Math 171 (2002)] in the semisimple
case and Laugwitz—Walton [IMRN 2022, Issue 20 (2022)] in the general case.
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1. INTRODUCTION

1.1. Motivation. Algebraic structures play an important role in the study of conformal field
theory (CFT) and topological field theory (TFT). A key structure in these applications are modular
categories, i.e., non-degenerate ribbon categories [KLO01,Shil9]. In rational CFT, modular fusion
categories appear as categories of representations over a vertex operator algebra (VOA) [Hua08]
while modular fusion categories are utilized to construct 3d TFTs of surgery type [RT91, Tur94],
and appear in the classification of 3d TFTs [BDSPV15].

Generalizations of part of the theory and applications of modular fusion categories to low-
dimensional topology have been obtained for non-semisimple (i.e., not necessarily semisimple)
modular categories. These constructions include equivalent characterizations of modularity conditions
[Shil9], mapping class group actions and modular functors [FSS19,LMSS23, SW21], and partially
defined non-semisimple TFTs [KLO1, DRGG122]. In general, it is still open whether the non-
semisimple braided categories of representations of a logarithmic conformal field theories are
modular [HLZ12, Len21]. A first example of modular categories obtained from groups are the
Digkgraaf-Witten (DW) categories Z(Vect(:) associated to a finite group G and a 3-cocycle w on G
[DPR9I0]. These categories are only semisimple if the characteristic of k does not divide |G| and
equivalent to representations of certain lattice VOAs.

In this paper, we focus on the study of (Frobenius) algebras in modular categories. On the one hand,
modules over such algebras describe boundary conditions of the associated rational CFT associated
to a certain VOA [FRS02,FFRS06]. On the other hand, given a VOA, its possible extensions are in
a one-to-one correspondence with commutative algebras in its category of representations [HKL15].
This result extends to vertex operator superalgebras [CKM17]. These results give us motivation for
classifying algebra objects in Z(Vecty:). Many categories of representations of a VOA are pointed
fusion categories, like the case of, e.g., lattice VOAs coming from an even, integral lattice (here,
G = A*/A is the discriminant form of the lattice, note that this G is abelian) [DL93,Len21]. In
this sense, an important family of vertex operator algebras are the holomorphic ones, those whose
category of representations is simply Vect. Given a certain group G, one can take the so-called
orbifold of a holomorphic VOA, see e.g. [Moel6, DRX17]. Its category of representations will be
then equivalent to Z(Vecty) [McR21].

Given a commutative algebra A in a braided tensor category C one defines a braided tensor
category Rep'C"C(A) of local modules [Par95,Sch01,KO02,LW23]. Such categories of local modules
have been of particular interest in the mathematical physics literature, see e.g. [FRS02,FFRS06]. For
instance, categories of local modules relate the representations of a VOA to those of its extensions
[KO02, HKL15,CKM17]. Given a rigid Frobenius algebra (i.e., a connected commutative special
Frobenius algebra) in C, it was shown that the rigid monoidal category Rep'(?C(A) of local modules
is again modular (see [KOO02] in the semisimple case, and [LW23] in the general case). Such rigid
Frobenius algebras were classified for the semisimplification of U, (slz)-modules [KO02], for the
Drinfeld center of modules over a finite group [Dav10,LW23], and for DW categories Z(Vecti;) in
chark = 0 [DS17].

In the present paper, we construct Frobenius monoidal functors. Given two monoidal categories
C and D, a Frobenius monoidal functor F': C — D comes with a choice of natural transformations

pyw: FV)QF(W) - FVW), vyw: F(VOW) - F(V)® F(W),
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which make F' a lax and oplax monoidal functor and satisfy compatibility conditions which are
analogue to those of a product and coproduct of a Frobenius algebra. While any monoidal
functor is, in particular, Frobenius monoidal, for general Frobenius monoidal functors, like those
considered in this paper, F(V)® F(W) and F(V ® W) are not isomorphic. However, any Frobenius
monoidal functor sends Frobenius algebras in C to Frobenius algebras in D. Frobenius monoidal
functors have recently appeared in different contexts in the quantum algebra literature, see e.g.
[FHL23, MMP*22 Yad22]. Here, we construct Frobenius monoidal functors to categories of the
form Z(Vecty,). These functors are separable, so that F/(V ® W) is naturally a direct summand
of F(V)® F(W), and compatible with braidings whence they preserve connected commutative
Frobenius algebras. We apply these functors to classify rigid Frobenius algebras in Z(Vect¢) for a
field of arbitrary characteristic.

Algebra objects in Vect? were classified up to equivalence of the associated Vectf-module
categories and representatives are given by twisted group algebras A(N, k) associated to a normal
subgroup N and a 2-cocycle k such that d k = wl|y [Ost03,Nat17], see also [MMP*22] for explicit
Frobenius algebra structures on these algebras. In this paper we find conditions for the existence of
lifts of these twisted group algebras to rigid Frobenius algebras in Z(Vect) in terms of homological
algebra data building on results of [DS17]. To these central lifts of the twisted group algebra
A(N, k) one can then associated tensor categories of representations whose centers are given by
local modules.

1.2. Statements of results. Let k be an algebraically closed field of arbitrary characteristic. We
fix a finite group G, with a subgroup H, and a 3-cocycle w on GG and prove the following result.

Theorem 1 (See Proposition 3.9, Proposition 3.10). There is a separable Frobenius monoidal functor

I: Z(VectE'H) — Z(Vect). This tensor functor I is compatible with braidings and preserves ribbon
twists.

Using the Frobenius monoidal functors I, we classify rigid Frobenius algebras in Z(Vect{)
generalizing results by Davydov—Simmons [DS17] to the non-semisimple case. In fact, all rigid
Frobenius algebras in Z(Vectg) are of the form A = I(B) for some subgroup H of G, and
B = B(N,k,e) a rigid Frobenius algebra in Z(Vect;}'H) with dimgB; = 1. Such algebras B
are parametrized by certain elements € @ x of the second cohomology group f]%ot(H , N, k*) of
a truncated total complex (ﬁ’%ot(H , N, k™), drot) which computes the group cohomology of the
semi-direct product H x N, described in Appendix A.3 and [DS17, Appendix A].

The following result recovers, and extends to arbitrary characteristic, the classification of connected
étale algebras in Z(Vecty,) in [DS17, Theorem 3.15].

Theorem 2 (See Theorem 3.29). Every connected étale algebra in Z(Vects) is isomorphic to one
of the form A(H, N, k,¢€), for some choice of data H, N,~, €, where:

e H is a subgroup of G, with N a normal subgroup of H.

e k: N x N — k* is a function satisfying d(k) = w|y-

e c: Hx N —Kk* is a function such that drot(e B K) = 7Dy D w.
e The compatibility e(n,m) = W;LM holds for alln,m e N.

(n,m)
Every such connected étale algebra has trivial twist and is a rigid Frobenius algebra if and only if

IN|-|G: H| #0ekX.
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We provide explicit formulas for the Frobenius algebras A(H, N, k, €) in Lemma 3.28.
An interpretation of Theorem 2 is that the algebras B(N, k,€) are lifts of the twisted group

algebras A(N, k) in Vect;fl,IH to the center Z(Vect};). These twisted group algebras were used to
classify indecomposable module categories over Vect?; [Ost03,Nat17] and are separable Frobenius
algebras [MMP*22]. Our results show that lifts of these algebras to the center along the forgetful
functor are parametrized by functions e: H x N — k* satisfying the conditions from Theorem 2.

The category of local modules Replngectg )(A) over a rigid Frobenius algebra A as in Theorem 2 is
a modular category by [LW23, Theorem 4.12] and [KO02, Theorem 4.5] in the semisimple case. In
fact, [DS17, Theorem 3.16] shows that such modular categories are equivalent as ribbon categories to
Z(Vecty; / ~ ), for a 3-cocycle W on H/N such that its pullback to H via the quotient homomorphism
is equivalent to w|.

In Section 3.6 we classify all rigid Frobenius algebras in Z(Vect¢), for an odd dihedral group
G = Dam41, up to isomorphism of algebras in Z(Vect¢:) rather than up to equivalence of their
categories of local modules.

The paper is structured as follows. In Section 2, we recall the necessary background on (non-
semisimple) modular categories, algebraic structures in ribbon categories, and local modules,
concluding with a brief review of DW categories. Section 3 contains the results of the paper, starting
with a discussion on DW categories associated to quotient groups, followed by the construction of
the Frobenius monoidal functors, and the classification of rigid Frobenius algebras in DW categories.
In Appendix A, we include basic definitions from group cohomology and several cocycle identities
used througout the text.

1.3. Acknowledgements. S. H. is supported by Engineering and Physical Sciences Research
Council. R. L. was supported by a Nottingham Research Fellowship. A. R. C is supported by
Cardiff University.

2. BACKGROUND

2.1. Modular tensor categories. Throughout this paper, we fix k to be an algebraically closed
field of arbitrary characteristic.

In this section, we collect some basic definitions, see e.g. [EGNO15] for details. A monoidal
category C consists of a tuple (C,®, 1, a, A, p) where C is a category, ®: C x C — C is a bifunctor,
1eOb(C),axyz: (XQY)®Z - X®(Y ® Z) is a natural isomorphism for each X,Y, Z € Ob (C),
and Ay: 1® X — X and px: X ® 1 — X are natural isomorphisms for all X € Ob (C), satisfying
coherence axioms (pentagon and triangle). A functor F': C — D between two monoidal categories
is a momnoidal functor if there exist natural isomorphisms

pl FX)@P F(Y) - F(X@CY), 17— F(°),

satisfying certain coherence conditions, see [EGNO15, Definition 2.4.1].

A monoidal category is called rigid if it comes equipped with left and right dual objects — that
means, for every X € Ob (C) there exists respectively an object X* € Ob (C) with evaluation and
coevaluation maps evy: X*® X — 1 and coevy: 1 — X ® X*, as well as an object *X € Ob (C)
with evaluation and coevaluation maps évy: X ® *X — 1 and coevy: 1 — *X ® X satisfying in
both cases the usual conditions. If a rigid monoidal category comes equipped with isomorphisms
jx: X — X** natural in X € Ob (C) and satisfying that jxgy = jx ® jy , then it is called pivotal.
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The quantum dimension of an object X in a pivotal category is the composition qdim; (X) :=
evx# (jx ®ldx=)coevy € Ende (1).

A k-linear abelian category C is locally finite if, for any two objects V, W € Ob (C), Hom¢ (V, W)
is a finite-dimensional k-vector space and every object has a finite filtration by simple objects.
Further, we say C is finite if C is equivalent to a category of finite-dimensional modules over a
finite-dimensional k-algebra. A tensor category is a locally finite, rigid, monoidal category such the
the tensor product is k-linear in each slot and the monoidal unit is a simple object of the category.

A monoidal category C is called braided if it comes equipped with natural isomorphisms cxy : X ®
Y > Y ®X, for all XY € Ob(C), called the braiding, that are compatible with the monoidal
structure of the category. This means, the braiding satisfies the so-called hexagon identities for any
three objects X,Y, Z € Ob (C):

QY RZ) — _(vyez)X
(XRY)® Y®(Z®X)
m . s
YOX)®Z—"2 . YQ(X®Z)
XQV)®Z 7 70 (X®Y)
XRY®Z) (Z®X)RY
IM ;(lz m
X®(Z®Y) (X®2Z)QY

An example of a braided category is that of the Drinfeld center (or monoidal center, or simply
center) of a monoidal category C. Its objects are pairs (X, cX) where X € Ob(C) and ¢iy : X ®V —
V ® X (for any V € Ob(C)) is a natural isomorphism called the half-braiding satisfying that:

c€§®W = (Idy ®C)Vf,) (c%f ® ldw) .

The braiding of this category is given by ¢(x .x) (v,ev) := cé(.
A ribbon category is a braided tensor category C together with a ribbon twist, i.e., a natural
isomorphism fx : X — X which satisfies

(2.1.1) 9X®y = (9)( ®(9y)CY7XcX,y, 9]1 = |d]1, (9_)()* = (9)(*.

A tensor functor F': C — D between ribbon categories C, D with ribbon twists 6, 6P is a ribbon
tensor functor if it commutes with the ribbon structures in the sense that F(65) = 01143(\/)' If Fis
part of an equivalence of categories, then C and D are equivalent as ribbon categories.

In order to define modular tensor categories, we require the notion of non-degeneracy of a braided
category. We say that an object X centralizes another object Y of C if

cyxexy = ldxgy.



6 SAMUEL HANNAH, ROBERT LAUGWITZ, AND ANA ROS CAMACHO

A braided finite tensor category C is non-degenerate if the only objects X that centralize all objects
of C are of the form X = 19" [EGNO15, Section 8.20]. Equivalently, C is non-degenerate if and
only if it is factorizable, i.e., there is an equivalence of braided monoidal categories Z(C) ~ C* X C,
where C™ is C as a tensor category, but with reversed braiding given by the inverse braiding
[Shil9]. If C is a fusion category (i.e., a semisimple finite tensor category) then the above notion of
non-degeneracy is equivalent to the commonly used condition that the S-matrix is non-singular. A
key definition for this paper is the concept of modular category that allows for using general finite
tensor categories which are not necessarily non-semisimple.

Definition 2.1 ([KLO01,Shil9]). A braided finite tensor category is modular if it is a non-degenerate
ribbon category.

2.2. Frobenius algebras in tensor categories. In this section, let C = (C,®, 1,a, A, p) be a
pivotal finite tensor category.

Definition 2.2. (a) An algebra in C is a triple (A, m,u), with A€ Ob(C), and m: AQ A — A
(multiplication), u: 1 — A (unit) being morphisms in C, satisfying unitality and associativity
constraints:

m(m®Ida) = m(lda @ m)aa 4,4, m(u®ldy) = A4, m(ldg ® u) = pa.

(b) A coalgebra in C is a triple (C, A, €), where C € Ob (C), and A: C — C®C (comultiplication)
and €: C — 1 (counit) are morphisms in C, satisfying counitality and coassociativity
constraints:

acec(A®lde)A = (lde®A)A,  (e®Ide)A =", (do®e)A = pgl.

(c) A Frobenius algebra in C is a tuple (A, m, u, A, ), where (A, m,u) is an algebra and (A, A, ¢)
is a coalgebra so that

(m®Ida) o’y 4 (1da®A) = Am = (lda®@m) aaa4 (A®Ida).

Remark 2.3. Alternatively, a Frobenius algebra in C is a tuple (A, m,u,p,q), where (A, m,u) is
an algebra, p: AQ A — 1 and ¢q: 1 > A® A are morphisms in C satisfying an invariance condition,
p(lda®@m)aasaa = p(m®Ida), and the ‘snake’ equations. To convert from (A, m,u,p,q) to
(A,m,u, A, ¢) in the previous definition, take A := (m®ld4) a;}A’A (lda®¢q) pyt and e :=p (u®
IdA)pZI. On the other hand, to convert from (A, m,u, A, ) to (A, m,u,p,q), take p := ea4my4 and
q:= Ajguy, cf. [FS08].

Definition 2.4. (a) An algebra A in C is indecomposable if it is not isomorphic to a direct sum
of non-trivial algebras in C.
(b) An algebra A in C is connected (or haploid) if dimxyHomg¢ (1, A4) = 1.
(¢) An algebra A in C is separable if there exists a morphism A’: A - A® A in C so that
mA’ = 1d4 as maps in C with

(Ida®@m)aaaa (A ®lds) = A'm = (m®Ida)ay'y 4 (lda®@A").

(d) A Frobenius algebra (A,m,u,A,¢) in C is special if mA = fulds and eu = B Idy for
nonzero B4, 31 € k*.
(e) If C is braided with braiding ¢, we call an algebra A in C commutative if mcy a4 = m.
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(f) A separable commutative algebra in C is also called an étale algebra.

Recall that a ribbon category C is, in particular, pivotal with pivotal structure j discussed, for
example, in [LW23, Section 2.5].

Proposition 2.5 ([LW23, Proposition 3.12]). The following statements are equivalent for a connected
commutative algebra A in a ribbon category C with twist 6.

(a) A is separable with dim;A # 0 and 64 = lda;

(b) A is a special Frobenius algebra;

(c) A admits a morphism e: A — 1 such eu = Idy, em is non-degenerate, dim;(A) # 0, and
0a =1da;

If A satisfies the equivalent conditions from Proposition 2.5 then we say that A is a rigid Frobenius
algebra. If C is semisimple, the conditions in (c) on a connected commutative algebra in C recover
the definition of a rigid C-algebra used in [KO02] to show that the category of local modules are
semisimple. We recall a version of this result which holds even if C is not semisimple in Theorem 2.14.

2.3. Frobenius monoidal functors. In this section, we recall the definition of a Frobenius
monoidal functor and include basic results about such functors perserving algebraic structures in
tensor categories. Let C and D be two monoidal categories.

Definition 2.6. A laxz monoidal functor from C to D consists of:

e A functor F': C - D,
¢ A natural transformation pyw: F(V)Q F(W) — F(V® W), and
e A morphism n: 1 — F(1)

for any V, W € Ob (C), subject to the compatibility conditions:

YR (U),F(V),F(W)
_—

(FU)F(V))®F (W) FU)@F (V)@ F(W))

pu,v®IdF ) i lldp(u@uv,w
FURV)®F (W) FU®F (VW)

- i lw,vw
231 Fwevyew) — " pwewew)

1QF(U) " py@FU) FU)e1—2" . p @)

AF(U) l i#n,u PF(U) l \LMM
F(U) PO paeu) F(U) " rwet)

We will denote the lax monoidal structure as (u,n).

Definition 2.7. An oplax monoidal functor from C to D consists of:
e A functor F': C — D,
¢ A natural transformation vy : F(VQW) — F(V)® F(W) and
e A morphism e: F(1) — 1,
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for any V, W € Ob (C), subject to compatibility conditions analogous to those of lax monoidal 2.3.1,
but with their arrows reversed. We will denote the oplax monoidal structure as (v, €).

Definition 2.8. A Frobenius monoidal functor F: C — D between two monoidal categories C, D
is a bilax monoidal functor, i.e., comes with a lax monoidal structure (x,7n), and an oplax monoidal
structure (v, €), where

(232)  pw: FV)@FW) — FV@W),  war: F(VOW) — F(V)® F(W),
(2.3.3) n: 1 — F(1), e: F(1) — 1,
for any objects V, W of C, satisfying the additional compatibility conditions

ldpvy®vw,u

F(V)® F(W®U) F(V)® (F(W)® F(U))
MV,W@UJ( i%%w,nww(w
(2.3.4) FV®(W®U)) (F(V)® F(W))® F(U)
F(aV}WU)J( iltv,vv@'dF(U)
F(VOW)eU) — 2" _ p(vew)® F(U)
F(V @ W)@ F() 22 (p(v) @ F(W)) © F(U)
#V@W,U\L iO‘F(V)qF(W)vF(U)
(2.3.5) F(VeW)®U) F(V)® (F(W)® F(U))
F(av,w,u)l ildF(V)(&UIW,U
FVRWeU)) — Y _ pvy®@ F(W®U)

We say that a Frobenius monoidal functor is separable if for any objects V, W of C,

(2.3.6) pvw o vvw = ldpwvgw).

For details on these definitions see e.g. [AM10, Section 3.5].

We are also interested in compatibility conditions of Frobenius monoidal functors with braidings.
Denote a braided monoidal category by (C,c). Given two braided monoidal categories (C, c) and
(D,d), a braided lax monoidal functor is a lax monoidal functor F': C — D which in addition

satisfies:
d
FX)®F(Y) — "= F(Y)®F (X)
HX,Y\L l,uy,x
F(ex,y)
F(X®Y) F(Y®X)

for any X,Y € Ob (C). The notion of braided oplax monoidal functor is analogous to this one. We
note that (braided lax/oplax) Frobenius monoidal functors preserve algebraic structures in the
respective categories.

Proposition 2.9. Let F': C — D be a Frobenius monoidal functor.
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(a) If Ais a (co)algebra in C, then F(A) is a (co)algebra in D. In fact, F restricts to a functor
F: Alg(C) — Alg(D), and a functor F': CoAlg(C) — CoAlg(D).

(b) If A is a Frobenius algebra in C, then F(A) is a Frobenius algebra in D. In fact, F restricts
to a functor F': FrobAlg(C) — FrobAlg(D).

(c) If F is, in addition, separable and e on # 0 and A a special Frobenius algebra in C, then
F(A) is a special Frobenius algebra in D.

Definition 2.10. Take A := (A, m4,u4), an algebra in C. A right A-module in C is a pair (M, ppr),
where M € C, and py := p]‘?/[: M ® A — M is a morphism in C so that

pm(pyv ®1da) = par(ldar @ ma)anraa and 7y = par(ldyr @ ua).

A morphism of right A-modules in C is a morphism f: M — N in C so that fpy = py(f ®1d4).
Right A-modules in C and their morphisms form a category, which we denote by C4. The categories
AC of left A-modules (M, \py := )\ﬁ: A® M — M) and ACy of A-bimodules in C are defined
likewise.

It follows that given a Frobenius monoidal functor F', or, any lax monoidal functor, and an
algebra A in C, F' induces a functor F': 4C — p(4)D. Similar statements hold for left modules, and
right /left comodules where an oplax monoidal functor is needed.

2.4. Local modules. In the following, we recall local modules over commutative algebras in a
braided category C [Par95,Sch01, KO02, LW23].

Definition 2.11. Let Repy(A) denote the category whose objects are pairs (V,aj,) € Ca, and
morphisms are morphisms in C4. We define a%, as

(2.4.1) ay i=dcay: AQV SVRA—V.

With this, (V, aﬁ/) is a left module in C. As A is commutative, the actions a}"/,alv commute,

(V,dl,, a,) becomes an A-bimodule in C, and Repe(A) is viewed as a full subcategory of A-Bimod(C)
this way.

The category Reps(A) is monoidal as follows. Given two objects V, W in Rep.(A), their tensor
product V ®4 W is defined to be the coequalizer

ay,@ldw

(2.4.2) VQAQW VW —= Vi W,

Idv®alW

which is an object in Repy(A) with the right A-module structure given by aygw = ldv ®ay,. The
unit object is the A-bimodule A in C. This way, Reps(A) is a monoidal subcategory of A-Bimod(C).

Definition 2.12 ([Par95, Definition 2.1]). A right A-module (V,af,) in C is called local if
ay; = ay CAV CV,A-
The category of such local modules is denoted by Rep'c‘x(A).

The category RepS°(A) is a monoidal subcategory of Repg(A), and Repg®(A) is braided. The

braiding on Rep'(?c(A) is obtained from the braiding ¢ in C which descends to the relative tensor

products of two local modules. The algebra A is trivializing if Repg©(A) ~ Vect.
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The definition of the monoidal category Reps(A) extends to the case when D is a not necessarily
braided monoidal category and (A, c) is a commutative algebra in the Drinfeld center Z(D) with
half-braiding ¢ = {cX: XQVS5STV® X}XeD, see [Sch01, Section 4].

Definition 2.13. Let (A,c¢) be a commutative algebra in Z(D). Define Repp(A4,c) to be the
category of right modules over A in D and monoidal structure given as in Equation (2.4.2) with the
left A-action defined by a!, := af,cy for (V,a%,) a right A-module in D.

We will subsequently denote Repp(A,c) by Repp(A) when there is no confusion about which
half-braiding is used. We recall that by [Sch01, Corollary 4.5], the center Z(Repp(A)) is equivalent
to Replgip) (A) as a braided monoidal category. A special case of this result of interest occurs when
C is already a braided monoidal category and we consider A" = (A4,ca ) € ComAlg(Z(C)). Then
Schauenburg’s result gives an equivalence of braided monoidal categories between Z(Repg(A™))
and Rep?%c) (A1).

Categories of local modules are a source of modular tensor categories, both in the semisimple
case [KO02, Theorem 4.5] and the non-semisimple case [LW23, Theorem 4.12]. For this, recall that
a rigid Frobenius algebra in a ribbon category C is a connected commutative algebra satisfying the
equivalent conditions of Proposition 2.5.

Theorem 2.14. If C is a modular tensor category and A is a rigid Frobenius algebra in C, then the

category Rep'é’c(A) of local modules over A in C is also modular.

Let D be a finite tensor category and (A4, ¢) a rigid Frobenius algebra in Z(D). The following
lemma involves the left adjoint U to the forgetful functor Repp(A) — D and follows as in [LW23,
Lemma 4.5].

Lemma 2.15. The functor U: D — Repp(A) which sends X to X®A with right A-module structure
given by multiplication in A is a faithful dominant tensor functor.

Powerful invariants of finite tensor categories are the Frobenius—Perron dimension FPdim(D) and
FPdimp(X) for objects X in D [EGNO15, Section 4.5]. The above Lemma 2.15 implies that
FPdim(D)
~ FPdimp(A)’
This follows from [EGNO15, Lemma 6.2.4] as in [LW23, Lemma 4.5]. Hence, as FPdim(Z(D)) =
FPdim(D)? by [EGNO15, Theorem 7.16.6],

(2.4.3) FPdim(Repp(A))

FPdim(D)?
~ FPdimp(A)2’
see also [DMNO13, Corollary 4.1]. If the category D possesses a quasi-tensor functor F' to Vect,
then FPdimp(X) = dimgF'(X) for any object X in D [EGNO15, Proposition 4.5.7].

(2.4.4) FPdim (Rep'S{p) (4))

2.5. Dijkgraaf—Witten categories. In this section, we give an explicit description of the Dijkgraaf-
Witten (DW) categories Z(Vect¢:) associated to a group G and a 3-cocycle w of [DPR90] via the
structure of twisted Yetter—Drinfeld modules following [Maj98, Proposition 3.2].

Let G be a finite group with a 3-cocycle w € C3(G,k*), see Equation (A.2.1). Associated to
this data, we define the category Vect¢: of G-graded k-vector spaces with associativity isomorphism
given by

a((vg @ wp) @ ug) = W™ (g, hy k)vg ® (wp, @ uy,),
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where vg, wy, us, are G-homogeneous elements of degrees g, h, k, respectively. We observe that
if ¢: G — G’ is an isomorphism of groups such that w and ¢*(w’) define the same element in
H3(G,k*), then Vect?: and Vect‘é”, (and hence their centers) are equivalent as monoidal categories
(respectively, braided monoidal categories) [EGNO15, Section 2.6].

Lemma 2.16. Ifw,w’ € C3(G,k*) are equivalent, then any choice of u € Hom(G?,k*) such that
d(p)w’ = w defines an equivalence of monoidal categories

T, : Vectd — Vect¥,
which is the identity as a functor with monoidal structure given by

Ngg,kh = u(g, h)ldkgh : Tu(kg) ® Tu(kh) - T,u(kgh)7
where ky denotes the 1-dimensional vector space concentrated at degree g.

Next, define the category of Yetter—Drinfeld (YD) modules over kG twisted with respect to w.
Such a twisted YD module has a G-grading (or, equivalently, a kG-coaction)
V= (—D Vi,
deG
a morphism
ay: kGRV -V, gRv+—g-v,
which satisfies the twisted kG-module condition that acting twice on the module is given by
(2.5.1) h-(k-vg) =7(h,k)(d)hk - vg,
where 7(h, k)(d) is defined in terms of the 3-cocycle w as follows:
h, k,d)w(hkd(hk)™t, h, k)
w(h, kdk=1 k)
and vy denotes a homogeneous element of V' of degree d. The action and G-grading satisfy the
YD compatibility condition that action with h € G on the d-th component vy € V; will bring the
component to the conjugated degree by h, namely h-vg € Vj,g,-1. Morphisms of twisted YD modules
are maps of G-graded k-vector spaces ¢ that commute with the twisted actions in the sense that
g-9(v) = 9(g-v).

We note that the map 7 can be derived from [Wil08, 1.3.3] or [Maj98, Proposition 3.2] where
right twisted modules are used. It can be interpreted as a 2-cocycle on an appropriately defined
groupoid [Wil08].

There is a tensor product of twisted YD modules, which can be defined as the usual tensor
product of graded vector spaces: given two such V' and W, the d-th graded component of V& W,
for d € G, is given by

(2.5.2) r(ho k) (d) =

d=ab
The module action will be given by
(255.3) b (0a®vg) = (W) (d, f)(h-va® - vy),
with d, f € G and where
w(h,d, f)w(hdh= ', hfh=1 h
(25.4) 1) (d, f) = DD )

w(hdh=, h, f)
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We check that the tensor product of twisted YD modules is well defined.
Lemma 2.17. The tensor product of two twisted YD modules is itself a twisted YD module.
Proof. We need to check that
he (k- (va®uy)) = 7 (h, k) (df) bk - (va @ ).
This condition is equivalent to the equality:
(255)  7(k) (d: £)y () (kb k k) 7 (hy k) (d) 7 (k) (F) = 7 (hy k) (df)  (hK) (d, ).
which is proven in the Appendix, Lemma A.3. O

Lemma 2.18. The tensor product gives twisted YD modules the structure of a monoidal category.

Proof. The tensor product should be compatible with the monoidal structure morphisms (associator
and unitors) of the category of twisted YD modules that we are working on. Since in this category
the unitors are the identity this is clear, but for the case of the associator (following the opposite
convention of [EGNO15]), given by: Ok ke = w (g, g/,g”)ldkg®kg,®kg,,, we need to check that:
16" (h . ([kg ® kg/] ® kgu)) =h- (a ([kg ®]kg/] ®]kgu)). Substituting the pertinent definitions, this
equality amounts to:

(2.5.6)
w ™ (hgh™t hg' bt hg" W)y (h) (99, 9")v(h) (9. 9') = v(h)(9.9'9")v(h) (g g )w ' (9,9, d")
which is proven at the Appendix, Lemma A.2. O

Lemma 2.19. For two twisted YD modules V, W, there is a braiding given by
cvw: VW =WV
Vg @ wp, — g - wp & vyg.
Proof. First, cy,w is a morphism of twisted G-modules by the identity

(2.5.7) v(k)(g, h)(kgk™ k) (h) = 7(k)(ghg ™", 9)7 (k. g) (),
which holds by repeated use of the 3-cocycle condition A.2.1 with entries

g1 =kghg k™Y, go =k, g3 = gk™', ga = k,
-g1="k,g2=ghg™" g5 =gk™}, gs =k,
- g1 = k’ g2 = gk_la g3 = khk_la g4 = ka
g1 =k, go =gk, g3 =k, gs=h,
The fact that c(/lw is also a morphism of twisted G-modules corresponds to the identity

(2.5.8) (k) (g, h)7(kh™ k. k)(9) = (k) (h, A~ gh)7 (k. h™1)(9)-

The braiding axioms are equivalent to the equalities;
w(g, hkh™", h) = w(g, h, k)w(ghkh™ g~", g, h)7(g, h) (k)"
W™ (ghg',9.k) = w™ (g, h, k)w™ (ghg ™", gkg ™", 9)v(9) (h, k)
both of which hold by Definitions 2.5.2 and 2.5.4 respectively. O

The following proposition can be found, working with right twisted actions, in [Maj98, Section 3].
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Proposition 2.20. There is an equivalence of braided monoidal categories between Z(Vects) and
the category of twisted YD modules over G with respect to w, with reverse braiding.

Proof. We only sketch the proof here. To an object (V,¢) in Z(Vect?), one associates the morphism
ay: kG®V — V defined by ay = (Idy ®¢)c, 2, where kG = D, e kg is the direct sum of all simple
G-graded modules and £(g) = 1 for all g € G. It follows from the tensor prodct compatibility of ¢=*,
that ay is a twisted G-action. Since ¢!
coaction and twisted action follows. Conversely, a twisted G-action ay on V can be extend to an

inverse half-braiding on an object X in Vect{, by setting
cx (22 ®v) := ay(d,v) ® 4,

for all z4 € Xg4,v € V. One verifies that these assignments extend to an equivalence of braided
tensor categories. ]

is a morphism in Vect?, the YD compatibility between

We require Z(Vectg:) to have a ribbon structure (which thus induces a pivotal structure). A
ribbon structure can be obtained from [Shi23, Theorem 5.4]. For this, we choose, in the notation of
[LW22, Section 3.2], the object V' = 1, which is a square root of the distinguished invertible object
D =1 of Vecty, together with the identity V@ V** = D = 1, and oy x : X — X** the monoidal
natural isomorphism identifying an object with its double dual. This way, Vect is spherical and,
hence, Z(Vect) is a ribbon category. This gives the following result.

Proposition 2.21. For a twisted YD module V', define
Oy:V -V, Ov (va) = d - vq,
forvg e Vy. Then 0y defines a ribbon twist which makes Z(Vect$) a ribbon category.

Proof. We have to check that 6 satisfies Equation (2.1.1). One checks that the first condition listed
there is equivalent to the cocycle identity

Wdf)(d, f) = T(dfd",d)(d)7(d, f)(f)-

Using the definitions in Equations (2.5.4) and (2.5.2), this identity is equivalent to the cocycle
condition of w, cf. Equation (A.2.1) with g; = dfdf ~'d~!,go = dfd~', g3 = d, g4 = f. The condition
01 = Idy is clear, while (6y)* = 0y« follows from the fact that if {v;} is a homogeneous basis for V'
with dual basis {f;}, then {f;} is a homogeneous basis and v; € V if and only if f; € V1. O

3. RESULTS

Throughout the section, we assume that k is an algebraically closed field of arbitrary characteristic.

3.1. Dijkgraaf-Witten categories of quotient groups via local modules. In this section,
we derive a general result on categories of local modules for algebras given by R(1), which is a
commutative algebra (R(1),¢) in Z(C) for R the right adjoint of a tensor functor, using results of
[BN11,EGNO15]. We specify this general result to DW categories of quotient groups.

Proposition 3.1. Let C, D be tensor categories with a k-linear, exact, monoidal functor L: C — D
that has a right adjoint R: D — C which is faithful and exact. Then there is a tensor equivalence
D ~ Repe(R(1),¢) and a braided tensor equivalence between Z(D) and Replg%c)(R(]l)).
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Proof. Set A := R(1). This is a commutative algebra in Z(C). By [BN11, Proposition 6.1]
there is a tensor equivalence D — Repg(A) for the monoidal category from Definition 2.13. By
[Sch01, Corollary 4.5], we have that Z(Rep.(A)) is tensor equivalent to Repgic) (A). By combining
these two results yields the second claimed equivalence. O

We would like to be able to apply this result to the categories C = Vect“é’ and D = Vecty,.
By [EGNO15, Section 2.6], any monoidal functor L: Vect‘é/ — Vect%; corresponds to a group
homomorphism I: G — H such that «’, [*w are equal in H3(G, k), with respect to some p: G x G —
k*, i.e., w = (dp)l*w. Thus, on the simple objects of Vect§, the functor L is given by k, — ki (g)-

If we combine this characterization with the adjunction condition, we get that a functor
R: Vecty; — Vect"é/ is right adjoint to L if it satisfies, on the simple objects, that

Homvectg (]kg, R(kh)) = HomvectngI (L(kg),kh) = HomvectngI (kl(g))kh)'
The functor defined, for a an object V.= @,y Vi, by

R(V) = G—%R(V)g, where R(V), := Vj
ge

and, for a morphism f: @, Vj, - @, W}, in Vecty;, by

g) Vge G.

R(f)(vg) = f(Ug) € VVl(g) = R(W)97 for Vg € W(g) = R(V)ga g€ G7

satisfies the above condition of being a right adjoint to L.

Assume that V is a twisted YD module. Now, R(V') has the structure of a twisted YD module with
action induced by the module action in Z(Vecty;), defined on V; = Vj(y), g € G, by k-vy(g) := I(k)-vy
for vy(4) € Vy and k € G, where on the right hand side vy € V(3 is regarded as a vector in R(V').

g)

Lemma 3.2. The functor R: Vect}, — Vect“é, is always exact and faithful if and only if l: G — H
18 surjective.

In particular, we can apply the functor R to obtain an algebra

A:=R1)= P ke

zeker(l)

in Vect;. As a k-vector space, A can be given a k-basis {e,|z € ker(l)} with

o multiplication given by eyey, = p(x, y)esy,
e unit 14 = e;.

By [BN11, Proposition 6.1], A is a commutative algebra in Z(Vect¢:). Proposition 3.1 now implies
the following result.

Corollary 3.3. Given a surjective group homomorphism l: G — H and a 3-cocycle w € C3(H,k>).
Then there is an equivalence of braided tensor categories Z(Vecty;) ~ Replgzvectl*w)(A).

G
Example 3.4. Let G be a group, H be the trivial group {1}, with the cocycles w,w’ being
trivial. Using the trivial group homomorphism and Corollary 3.3, we get that Vecty = Z(Vecty) ~
Replgivectc)(A), where A = kG. Thus the group algebra kG € Z(Vectq) is trivializing.
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Example 3.5. Let us take G to be an abelian group, with H a subgroup. Then H is isomorphic
to some quotient of G, H =~ G/N. We can thus take [: G — H =~ G/N to be the quotient map,
resulting in A := R(1) being defined as an algebra in Z(Vect¢), with A; = k when g € N, and the
: : : w ~ loc
zero vector space otherwise, i.e., A is the group algebra k/N. Thus Z(VectS / ~N) = Rep P (Vect“é’)(kN )
For a general subgroup H of G, we cannot directly apply Corollary 3.3 as there may not be a
group homomorphism from G to H.

3.2. The induction functor. Let G be a group with a 3-cocycle w € C3(G,k*). For a subgroup
H of G, we denote by w|,; the restriction of w to H 3. We denote the category of H-graded vector
spaces twisted by wl|, simply by Vect$.

In this section, we define a functor

I: Z(Vectyy) — Z(Vectd)

and show that this functor is Frobenius monoidal. In objects, this functor is defined for any
Ve Z(Vecty) as V — I (V) := kG ®V, with relations:

(3.2.1) gh®uvg = 7(g,h)(d) g ®h - vy, for ge G, h,d e H.

The kG-coaction is given by

(3.2.2) §(g®vg) := gdg™' ® g ®vg.

Lemma 3.6. I (V) has the structure of a YD module with action: g > (k® vgq) := 7(g,k)(d)gk®vg.

Proof. First, we check that the coaction is compatible with the comultiplication, namely that

(A®Id)d = (ld®d)d. Here,
(ARId) 6 (g®vq) = (A®Id) (9dg ' ® g@va) = gdg™' @ gdg™' ® g ® va,
(Id®6) 6 (9®va) = 9dg * @ (9@ vq) = gdg ™ @ gdg™' ® g ® va.

Both sides agree.
Next, the YD condition requires that for any g,k € G, d € H, the composition

IR (k®vg) — (9®g) ® (k®vq) — 7 (g,k) (d) g ® (gk @ vq)
— 7 (g, k) (d) g® ghdk ™ g7 ® (gk @ va) — 7 (g, k) (d) gkdk™" ® (gk ® vq)
needs to be equal to
9@ (k®va) = (9®9) @kdk™ @ (k®va) — 7 (g, k) (d) gkdk™" ® (gk ® vq) ,

which match.
For the defined map to be a twisted action, we require that, for any g,h, ke G,d e H:

g> (h> (k®wug)) = (g, h)(kdk ) gh > (k@vg) .
By expanding both sides using the proposed action, this is equivalent to requiring that
7(h, k)(d)T(g, hk)(d)ghk @ vg = (g, h)(kdk 1) (gh, k)(d)ghk ® vg.
This equality holds by Lemma A.1. O
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We claim that the functor I defined above is op-lax monoidal with natural transformation
vww: I(VRV)—->IV)I (W),
(3.2.3) 9® (va®@wy) =7 (9) (d, ) (9@ va) ® (9 ®wy) ,
with 7 as defined in Equation 2.5.4, for any d, f € H, and V,W € Ob (Z(Vect};)). The counit is
given by
(3.2.4) I(1) - 1, g®1— 1.

Lemma 3.7. The natural transformation v equips the functor I with an op-lax monoidal structure.

Proof. Let k € G and V,W € Ob (Z(Vect};)). For vy to be a morphism of YD modules, we require
that

vvw (k> (9 ® (va @ wy))) = k > (vvw (g ® (va @ wy))).
We compute that
vvw (k> (9 ® (va @ wy)))
k> (rvw (9 ® (va ®@wy)))

v(kg)(d, f)7(k, 9)(df ) (kg @ va) ® (kg ® wy),

Y(9)(d, )k > ((9 @ va) ® (9 @ wy))

(k) (gdg™", 99~ )(9)(d, [)(k > (9@ va) @k > (9 @ wy))

7(k, 9)(d)7(k, 9)(/)v(k)(gdg ™", gf g )v(9)(d, f) (kg ® va) ® (kg @ wy).

The two expressions are equal by Lemma A.3, so vy is indeed a morphism of twisted YD modules.

I

To check the conditions of an op-lax monoidal functor, we need to verify that, for any objects
V,W,U € Ob(Z(Vect};)), the following morphisms I(VO®W)QU) - I(V)® (I(W)® I(U)) are
equal:

(d;vy @ vwv)vwweuI(avwy) = arvyw) ) (vw @ di o)) vwew,u
Evaluating on a vector (¢ ® ((vg @ wy) ®up)) in I((V® W) ®U), we compute

(ldrvy @ vwu)vvweu I (av,wu) (9@ ((va @ wy) @ up)) =
=v(9)(f, )y (9)(d, fR)w™ (d, £, 1) (9 ® va) ® ((9 @ wy) ® (9 @ up))),
arw), 1wy, wvw @ ldioy)) vwew,u (g ® ((va @ wy) @up)) =
=w H(gdg™", 9fg", ghg™ ) (9)(d, F)v(9)(df, 1) (9 ® va) ® ((9 @ wy) ® (9 @ up)))-
These two expressions are equal by A.2.
The unitality condition is easily verified, using v(g)(d,1) = v(g9)(1,d) = 1. O
The functor I is also lax monoidal with the structural natural transformation
pyw: IV)QIW) - I(VW).

This map pyw sends a vector (¢ ®vg) ® (k@ wy) to zero unless g~ 'k € H. If gH = kH we can use
Equation (3.2.1) to replace (¢ ® v4) ® (k® wy) by a vector of the form (¢ ® vq) ® (¢ ® w'), with w’
having degree g 'k fk~1g. Hence, it suffices to describe the image of uy,w on vectors of the form
(9 ®vq) ® (9 ®wy), with g € G and vg, ws homogeneous vectors of degrees d in V' and f in W,
respectively.

(3.2.5) pvw ((9®@va) ® (g @wy)) = (9)(d, f) g ® (va @ wy).
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In addition, we define the unit of this lax monoidal structure by

(3.2.6) wl—I1), 11— g,
i
where {g;}icr is a set of representatives for the left cosets of H in G, i.e. G =[] ¢g;H.
i

Lemma 3.8. The natural transformation p equips the functor I with a lax monoidal structure.

Proof. First, we check that iy is a well-defined morphism of twisted YD modules over G. For
k,ge€ G and V,W € Ob (Z(Vecty;)), we require that

pvw (k> (g ®@va) ® (9 @wy))) = k> (vvw (g @ va) ® (9 @ wy))).
We compute that

ko> (vvw (9 ®va) ® (9@ wy))) = 7(k, 9)(df)(9)(d, f) kg ® (va @ wy),
pvw (k> ((9 ®va) @ (9 ®@wy))) =
= v(kg)(df) "7 (k, 9)(d)7(k, 9) (/)7 (k)(9dg ™", 9.9~ kg ® (va @ wy).
These two expressions are equal by Lemma A.3, so py,w is a morphism of twisted YD modules.
Now we have to check the defining diagrams of a lax monoidal structure. Firstly, consider three
objects V,W,U in Z(Vect};). We need to check that the following morphisms (I(V) ® I(W)) ®
I(W) - I(V®(WQU)) are equal:
pvweu (Idrvy ® pwu)arwyrw),(wy = Havwo)iveww (kv,w @ ldrm) ).
It suffices to check this for vectors of the form ((¢ ® vq) ® (¢ @ wyr)) ® (9 ® up). We compute
pv.weu (drvy @ pwu)arwy,iw),rw) (g @ va) ® (9@ wy)) ® (9 @up)) =
=7 Y9, fR)v () (s W) gdg ™ gf g™ ghg™ )9 ® (04 ® (wf @ un)),
Iavwu)vew,u (tvw @ 1drmw) (9 ®ve) ® (9@ wy)) @ (9 @ up))
=79, H)yH (9)(df, hw ™ (d, £,h)g ® (va ® (wy @ up)).
The two expressions are equal by A.2.
The unitality conditions for I are easily verified, using v(g)(d,1) = v(¢)(1,d) = 1. O
Proposition 3.9. The functor I: Z(Vecty;) — Z(Vectg) is a separable Frobenius monoidal functor.

Proof. The claim that I is a Frobenius monoidal functor follows from checking the diagrams in
Definition 2.8. This can be tested on vectors of the form g; ® vg € I(V'), where {g;} is a set of left
coset representatives. Commutativity of both diagrams amounts to the condition in Lemma A.2.
Finally, I is a separable Frobenius monoidal functor as, clearly, uy,wvvw = ldrvew)- ([l

Proposition 3.10. The functor I is both a braided lax monoidal and braided oplax monoidal functor
and preserves the ribbon structure.

Proof. We start by checking that the lax monoidal structure given by p is compatible with the
braiding. First, we need to check that we can restrict to vectors of the form (g ® v4) ® (9 ® wy).

Consider the composition I(cy,w )uy,w. By our earlier discussion, this is zero on all vectors not
of the proposed form. For uw,vcrvy 1wy on a generic vector in I(V) ® I(W), we get that

uwvery,owy (9 ®va) @ (k@ wy)) = pwy ((9dg ™ > (k@ wy)) ® (9 ®va))
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= 7(gdg™ " k) (f)wy ((9dg™ 'k ®@wy)) ® (9 @ va))

Now this term is non-zero only when kgd—' € H, which is equivalent to requiring ¢~ 'k € H. Hence
we can restrict to vector to be of the proposed form and compute

wwverywy (9 ®va) ® (g @ wy)) = pwy ((9dg™" > (9@ wy)) @ (9 @ va))
= 7(gdg™", 9)(f)pwv ((9d @ wy) ® (9 ® va))
m(g9dg™", 9)(N)7(g, ) () pwy (9@ d - wp) @ (9 @ va))
m(gdg™", 9)(f)m(g,d)(f) ' (9)(dfd™,d) " g ® (d - wy @ va),
I(evw)vw (g ®@va) ® (9@ wy)) = v(9)(d, )" I(cv,w)(9 @ (va @ wy))
= 7(9)(d, /)T g ® (d - wf @ vg)-

The two expressions are equal by using Equation (2.5.4) and Equation (2.5.2).
The braided oplax monoidal condition follows similarly. We compute that

vy I(cvw)(g ® (va @ wy)) = vwv (g @ (d > wy ®vq))
Yg)(dfd™, d)((9®@d > wy) ® (9 @ va)),
(@), ferwy,rw) (g ®va) ® (9 @ wy))
9)(d, /)((gdg™" > (9@ wy)) ® (9 ®va))
9dg~", 9)(H(9)(d, F)((gd @ wy)) ® (9 @ va))
9,d)(f) "' r(gdg™", 9)((9)(d, /(9@ d > wr) ® (9 ® va))-

Again, these expressions are equal by Equation (2.5.4) and Equation (2.5.2).
Further, I(6y) = 07y with the ribbon structure defined in Remark 3.30. Indeed, we compute
that

crvy i Pvw (9 ® (vg ® wf))

01(v)(9®@va) = gdg " > (9 ® v4)

7(gdg™", 9)(d)gd ® va

= 7(g9dg~", 9)(d)7(g9,d)(d) g ®@d - vy
=g®d-vg=1(0v)(g ®va),

where the second-to-last equality uses Equation (2.5.7) with k = g,g = d,h = d. U

Corollary 3.11. If A is an algebra (respectively, coalgebra or Frobenius algebra) in Z(Vecty;), then
I(A) is an algebra (respectively, coalgebra or Frobenius algebra) in Z(Vect). Moreover, if A is
commutative (respectively, cocommutative) in Z(Vectyy), then I(A) is commutative (respectively,
cocommutative) in Z(Vect).

Example 3.12. The tensor unit 1 is a commutative and cocommutative Frobenius algebra in
Z(Vecty). Hence, I(1) := Ap inherits these properties. Explicitly, Ay is spanned as a k-vector
space by {6,u|g € G} subject to the relations that 6,z = dxp if and only if g~k € H. Further, Ay
is a twisted YD module via

k - 5gH 5kgH7 5(59H) =1® 5gH~
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The multiplication and unit are given by

(SgH, if gflk' e H,

0, otherwise,

OgHOKH = { Ly = > 0g.0

for {g;} a set of H-coset representatives. The comultiplication and counit

AAH (59[{) = 5gH ®6gH7 SAH((SQH) =1

make Ay a commutative and cocommutative Frobenius algebra in Z(Vect). We note that, since
Ap has trivial G-grading, the braiding is simply given by a ® b — b ® a, for all a,be Ag.

Consider the category Repyec, (Ag) from Definition 2.13. We fix a set of coset representatives
{gi} of H in G such that g; = 1 and denote the corresponding basis of Ag by {d,,}. We can now
define a functor

T': Vecty; — RepVect“G’(AH>7 TV)=Ag®V, T(f)=I1da, ®f,
where Ag ® V is a kG-comodule via the coaction
3(dg, ®v) = gilv]g; ' ® (55, ® ),
and a right Ap-module via
(0; ®@v) - 05 = 6;j(0; ®v).

Next, consider the canonical isomorphisms ugw appearing in

T
(Ar@®V)® (A ®W) — (A5 ® V) ®a, (An @ W) " Ay @ (VR W),
which is given by
1w (85, ® 0) ® (85, @ w)) = (i) (0], [w])~10i30,, ® (v @ w).
Lemma 3.13. The functor T is monoidal.

Proof. First, we check that u‘T/W is obtained as factorization over the relative tensor produt ®4,, as
stated and becomes an isomorphism. Further, the coherence diagram making T a monoidal functor
follows from Lemma A.2. O

We will see in Proposition 3.16 below that this functor gives an equivalence of tensor categories
when |G : H| # 0.

3.3. Local modules over coset algebras. In this section, we prove that the functor I from Sec-
tion 3.2 induces an equivalence of braided monoidal categories between Z(Vectf;) and Replgzvecthé y(Ar),
where Ay = I(1) =~ k(G/H) is the algebra of functions on left cosets of H in G.

Lemma 3.14. For any object V in Z(Vecty;), I(V) is a right local module over the algebra Ap
from Example 3.12. The right action is given by

g®uv, ifklgeH,

0, otherwise.

ajon: IV)®Ax — I(V), (9®v) - dpn = {
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Proof. The fact that I(V) is a right Ay = I(1)-module follows from Proposition 2.9(c) and
Lemma 3.8.
We check that I(V) is a local module. By applying the braiding twice, we obtain

CApIVYCI(V), Ay (9 ®Va) ® Okr) = cap 1(v)(Ogag—1kr ® (9 ®va)) = (9 ® va) ® Sgag—1kH
Applying the right action gives us
gRug, ifk~'gdle H,

0, otherwise.

(g & Ud) ® 6gdg_1kH = {

As d € H, this is exactly the result of applying the right action only. ([l

The following result is independent of the choice of ribbon structure for Z(Vectg:) and we may
use the ribbon structure from Proposition 2.21.

Lemma 3.15. Assume |G : H| € k*. Then the algebra Ag from Ezample 3.12 is a rigid Frobenius
algebra in Z(Vects).

Proof. The trivial algebra 1 is a commutative Frobenius algebra in Z(Vect};). Hence, Ay = R(1)
is a commutative Frobenius algebra in Z(Vect) by Corollary 3.11. The comultiplication and counit
are given by

Any (0gm) = g8 ® dgh, €Ay (Ogr) = 1.
We first check that Ap is a connected algebra. Indeed, as Ap is concentrated in G-degree 1, it is
a G-module and Hom z(vects) (1, An) < (A )¢ The latter space of G-invariant elements in Ay is
one-dimensional since Ay is given by functions on a transitive G-set. Now, we compute that

magAay (Ogn) = Sgudgn = g, eay(la,)=1G: H|.

Since, by assumption, |G : H| € k*, Ay is arigid Frobenius algebra of dimension dim;(Ay) = |G : H|,
cf. Proposition 2.5. N

Proposition 3.16. Assume |G : H| € k*. The functor T from Lemma 3.13 induces an equivalence
of tensor categories from Vectf; to Repyecs, (Amr).

Proof. We first check that T is fully faithful. For this, we note that every object X in Repyec, (Apm)
has a direct sum decomposition X = @; X?, where X? is the image of the action of the idempotent

04, € Apr. Any morphism of Ap-modules preserves this direct sum decomposition. Thus, for given
objects V, W in Vect%;, a morphism f: T(V) — T(W) and any v € V,

flgi®v) = g: ®g(v)
for a unique vector g(v) € W. The mapping g: V' — W preserves the H-grading since conjugation by
g; is bijective. Thus, f = T(g) and T is full. Further, T is faithful as the tensor product (—) ®x Ag
is faithful.

Now, Vect, is a finite tensor category and, as Ag a rigid Frobenius algebra by Lemma 3.15
provided that |G : H| # 0, Repyecrs, (An) is a finite tensor category by [LW23, Corollary 4.21]. We
conclude that T': Vectf; — Repyecrs (Ap) is a fully faithful tensor functor. Now, Equation (2.4.3)
specifies to

_ FPdim(Vecty) |G| |G| : w
FPdlm(RepVectg(AH)) = FPdim (A7) = dims (An) =T = |H| = FPdim(Vect%;).
[H]
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Thus, [EGNO15, Proposition 6.3.3] implies that T gives an equivalence. ]

Next, we will extend the equivalence of Vect?; and RepVectg (Apr) to Drinfeld centers and local
modules using the functor I from Section 3.2.

Lemma 3.17. The functor I induces a monoidal functor from Z(Vecty;) to Replg‘(:vectué)(AH), the
category of local modules over Ag. This functor is a ribbon functor if |G : H| € k*.

Proof. By Lemma 3.14, it is clear that I induces a functor I: Z(Vecty;) — Replg?vectg)(AH). The
tensor product of X,Y € Replgﬁvect“c, )(AH) is the relative tensor product X ®4, Y defined in
Equation 2.4.2, with the left action given by a{/v = ajycay,w- In I(U)®a, I(V), this gives us that
(9®ug) ® (I ®v.) =0 if and only if gH # [H, for non-zero ug, ve.

This suggests that

I({U)®a,, I(V) = I(U)®I(V)/S, with S = span,{(g ® uq) ® (I @ vf)|[I"'g ¢ H}.

In order to be compatible with the twisted YD module and local module structure, we need .S to
be a subobject in Replg?vectg)(AH). To see this, we first note that S is G-graded as

5((g®@ua) @ (1®vy)) = gdg ' 1fIT' ® ((9 @ ua) ® (@ vy))

gives a G-homogeneous spanning set. Secondly, S is closed under the twisted G-action. This follows
as

k> ((9®ua) ® (1®@vy)) = (k) (gdg ™ L) (k, g)(d)7(k, D) (f) (kg @ ug) ® (Kl ® vy) € S
because (kl)~!(kg) ¢ H if and only if I"'g ¢ H. Finally, S is closed under the right action of Ay
since

Quq)® (I ®vy), if kH =1H,
(9@ ug) @ (®vy)) - g, = {(()g ug) ® (I ®vyp), i

, else,

is clearly in S. Hence S is a subobject.
As a consequence of this quotient, the op-lax monoidal structure from Lemma 3.7 extends to

vy IU®V)—IU) Ay I(v),
I® (ug®uy) — v(g9)(d, f)(g ®uq) ® (g @ vy),

also giving an op-lax monoidal structure.
The natural transformation 7 is in fact an isomorphism. To observe this, we define the morphism

Apyv: IU)@I(V) — I(URV),

A(gvdalvf)g®(ud®g_1l'Uf)7 lngle,
0, else,

(9®ud)®<l®”f)'—’{

where
1

A 9, da la f = .
o) = e () oy 1T )
For this morphism to be a morphism of YD modules, it needs the equality

Ng, d, 1, f)T(k, g)(dg ' Lf1 g) = v(k)(gdg™ ", LfI" )7 (k, g)(d)T(k, D)(f)A(kg, d, kL, )
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to hold, which follows straightforwardly from Lemma A.1 and Lemma A.3. As the kernel of this
morphism Ay y contains S, it induces a quotient morphism Ay v : [(U) ®a,, I(V) - (U®V) in
Repl\c/)ecct“é (AH)
The morphism ]\Uy is inverse to 7y . Indeed, we compute that
vy Aoy (9@ ua) ® 1@ vy)) = g, d 1, f)roy (9 ® (ug® g~ 'l - vy))
1(9)(d, g LT A9, d, 1 (9 ®ua) © (9@ g ' - vy))
(9,97 D(H(9)(d g~ LI )M 9, . 1, ) (9 ® ua) @ (I @ vy))
= ((g ®Ud) (I ®wvy)),
Avy oy (9® (ua ®vy)) = 1(9)(d, f)Auv,y (9 ® ua) ® (9 @ vy))
= A9, d; 9, )(9)(d, [)g ® (ua ® vy)
= 9 ® (uqa @ vy).

Hence v is a natural isomorphism and thus I is a monoidal functor.

To see that I is a braided monoidal functor, consider the diagram

[U)@I(V) —— IU) @4, (V) 2 (U V)
(3.3.1) icrw),mf) iC’U,V \LI(CU,V)
I(V)QI(U) —= I(V)®a,, I(U) —> I(VQU).

The left-most square commutes by definition of the braiding in Rep'g,fvecté )(A i), and the perimeter
commutes by naturality. Hence the right-most square commutes, which is exactly the condition for
the functor I to be compatible with the braiding.

Now assume |G : H| € k*. Then as, by Lemma 3.15, Ay is a rigid Frobenius algebra,
Rep'g%vectg )(A 1) is a ribbon category by [KO02,LW23]. To check compatibility with the twist, recall
that I is a ribbon functor to Z(Vects), see Proposition 3.10. Further recall the explicit form of the
ribbon twist év on categories of local modules over A = Ay from [LW23, Proposition 4.23],

Oy = af(0y ®1d4)(a} ®1da)(Idy ® ),
where d = dim;(A) and ¢: 1 — A® A is an inverse to the pairing p = e 4m. In the case of A = Ay,

1, ifg ke H
p(0gn @ bm) = { / s 0= 0 ®gn

0, else

Thus, we can evaluate the twist I(V'), to obtain

Ov (g; ®va) 291(\/ Z 9 ®va) Ogirr) - Og,r = (95 ®d - va) - Sgyr = g ®d - va = 1(0v)(g; ® va),

where we use the right Ag-action on I(V) from Lemma 3.14, the twist from Remark 3.30, and
Proposition 3.10 in the final step. This proves that I is a ribbon functor to the category of local
modules over Ay as claimed. O

The following result was proved in [DS17, Theorem 3.7]. We give a proof using the functor I
defined above.
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Theorem 3.18. The functor I defines an equivalence of monoidal categories between Z(Vectyy)
and RepL%‘EVectué)(AH).

Proof. We first show that I is faithful. On morphisms, I is given by the map
HOmZ(VeCtUI:’I)(V, W) - HomReploc (AH)(kG®V7 ]kG@W), p > I(p) = IdAH ®p

Z(Vecté)
As this map is injective, seen, for example, by restricting to the subspace 1® V of I(V'), we see that
1 is faithful.
To prove that I is full, suppose ¢: kG ®4, V — kG ®4, W is a morphism in Rep'\‘,’gctz (Ap).
Then, for all g,k € G, v eV, we have

q(g®v), if k~lge H,

0, otherwise.

(g ®v) - ok = q((g Q@) - Opmr) = {

We choose a set of coset representatives {g;} for H in G such that g; = 1. Using the above and
Equation (3.2.1), we see that the ¢(g; ® v) is contained in the subspace g; ® W of I(W). Hence,
there exists a vector w; € W such that ¢(g; ® v) = g; ® w;. However, ¢ commutes with the twisted
left G-action, which implies that

i ®@w; =q(gi®v) =q(g;i- (1QV)) =g ¢(1®V) =g (1Qw1) = g @w;.

Thus, w; = wy for all 7. Hence, we obtain a k-linear map ¢’: V' — W, v — w;. This map satisfies
I(¢) =q, ie.,
a(g®v) =g@d'(v) e (W), VgeG,veV.
By restricting to g € H, it follows that ¢': V' — W is a morphism of twisted YD modules over H.
This proves that I is full.
It remains to show that I is essentially surjective. For this, take a local module L € Rep'gfvectg ) (Ag).
The actions of the idempotent elements 647 of Ay define a family of idempotent endomorphisms

€g' L—->L [I—1- 6gH €g € EndZ(Vect“é)(L)'

Setting L' = Im(e,,) gives a direct sum decomposition L = @ L. Here, we use that 14,, = >, dg, n-
i i

We now observe that [ € L? if and only if gjgi_1 -l e I7. In particular, [ € L' if and only if g;l € L’.
Further, L' is a submodule of L under the left twisted H-action. The assumption that L is a local
module implies that if [; € L' has degree |I| = d, then [ = [ - §457. We can write d = g;h, with h € H,
and find that [ € L. However, as the subspaces L intersect trivially it follows that d € H. Thus, L'
correspond to an object in Z(Vect$;).

Using the twisted right G-action on L, we define a map

T kG® L — L, gl —g-I.

The map 7 is surjective. Indeed, L; is given by all elements of the form [ -y, with [ € L. Now,

(') _ (e illlg, D),y (g (g ), o
” ('Y(Qi)(gia”) 6H> = (g D) om) =gyt der = e

Thus, [ - 64,p is in the image of 7 and hence, for any l € L, [ = >}, 1 - §4, 5 € Im(7). It follows that
(gh @ va) = (gh)l = 7(g,h)(d) " g(hl) = (g, h)(d) "9 ® hva.
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Thus, by Equation (3.2.1), 7 descents to a quotient map 7: I(L') — L which is still surjective. The
right twisted action by g € G gives an isomorphism of vector spaces and hence dim(L?) = dim(L")
for all ¢. This shows that

dimL = |G : H|dimgL' = dim I(L1).

Thus, 7 is injective and hence gives an isomorphism I(L!) = L. O

Corollary 3.19. If |G : H| € k*, then the equivalence from Theorem 3.18 is an equivalence of
ribbon categories.

Proof. This statement is now a direct consequence of Theorem 3.18 and Lemma 3.17. g

Example 3.20. Let H = {1} be the trivial subgroup of G. Then it follows that Replg%Vect“G’)(A{l}) ~
Vecty, i.e., Aqy) is a trivializing algebra in Z(Vect¢;) provided that |G| € k™. In fact, for any subgroup
H of G with |G : H| € k*, we obtain Z(Vect};) as local modules over an algebra in Z(Vectg:). This
provides a correspondence between ribbon categories, cf. [FFRS06, Section 1.4].

3.4. The classification of rigid Frobenius algebras. In this section, we apply the Frobenius
monoidal functors from Section 3.2 in order to recover the classification of rigid Frobenius algebras
in Z(kG-Mod) ~ Z(Vectg) from [DS17, Theorem 3.15], and generalize this result to algebraically
closed fields of arbitrary characteristic. For the case of a trivial 3-cocycle w = 1, this recovers
[Dav10, Theorem 3.5.1], for chark = 0, and [LW23, Theorem 6.14] for general algebraically closed
fields. In fact, as in [DS17], we obtain a classification of all connected étale algebras in Z(Vect#)
which turn out to have trivial twist and are, hence, rigid Frobenius algebras if their quantum
dimension is non-zero.

Notation 3.21 (Input data H, N,w, x,€). Let H be a finite group with a 3-cocycle w € H3(H,k*),
N <s H a normal subgroup. Further, let k: N x N — k* satisfy

(34.1) w(n,m, k) = k(n,m)k(m, k)" k(nm, k)r(n, mk) 1, k(n,1) = k(l,n) =1,
for all n,m,k € N. In addition, let
e: Hx N —>k*, (h,n)— ep(n)
be a map satisfying, for all h,k € H and n,m € N, that
en(knk™ )ex(n)

(3.4.2) T(h,k)(n) = ")
EpLN
__en(nm) k(hnh=t hmh=1)
(343) W(h‘) (n7 m) - €h<n)€h(m) H(n, m) )
(3.4.4) k(nmn™ n) = e,(m)k(n, m).

In particular, the normalized condition on x, along with (3.4.3) and (3.4.4) respectively, imply that
(3.4.5) en(1) =1, and €1(n) = 1.

Remark 3.22. The maps €(h,n) := €,(n) and x define a normalized element € @ « in the truncated
total complex F2(H, N,k*), where H acts on N by conjugation, see Appendix A.3. Equations
(3.4.1)—(3.4.3) are equivalent to

(3.4.6) A4 (e®R) =TOYDw,
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where 7(hy, ha,n) = 7(h1, ha)(n), v(h,n1,n2) = v(h)(ni,n2). In particular, the restriction of w to
a 3-cocycle on N is trivial in H3(N,k*).

Now assume given a finite group G with a 3-cocycle w € H3(G,k*). The isomorphism classes of
rigid Frobenius algebras in Z(Vecty,) will be parametrized by the data in Notation 3.21 for H a
subgroup of G and the restriction of w to H. We will denote such algebras by A = A(H, N, k,¢)
in Theorem 3.29 below. These algebras A will be equal to I(B) for a rigid Frobenius algebra
B = B(N,k,¢€) in Z(Vect};) using the Frobenius monoidal functor I from Propositions 3.9 and 3.10.

Proposition 3.23 (Algebras B(N, k,€)). Assume given a tuple (H, N,w, k,€) as in Notation 3.21.
Consider the k-vector space B(N, k, €) with k-basis {e, | n € N}, and define

() b en = en(m)enmnr, for he H;
(ii) d(en) = n® ey, that is, e, is homogeneous of degree n € H;
(iii) multiplication mp given by enenm = k(n,m) ten, for alln,me N;
(iV) unit 13 =e1.

Then B(N, k,€) is a connected, commutative algebra in Z(Vect$y) described as a twisted YD module.
The following is an analogue of [DS17, Proposition 3.11], [Dav10, Proposition 3.4.2].

Proposition 3.24. Recall the data from Notation 3.21. Let B be an étale algebra in Z(Vect?))
such that By =k and dim;(B) # 0. Then B is isomorphic as an algebra in Z(Vecty;) to B(N, K, €)
for N = Supp(B) ={h € H | By, # 0}.

Proof. As B is étale, it is commutative and separable by definition. Separability implies that the
restriction of the multiplication defines a non-degenerate pairing B, ® By-1 — B1 =k, e.g., by
Proposition 2.5. This implies that any non-zero element b € By, is a unit in B. Thus, ab # 0
in By provided that a € By, b € By are non-zero. This shows that N = Supp(B) is a subgroup
of H. Further, N is a normal subgroup of H by the twisted YD condition. One argues as in
[Dav10, Lemma 3.4.1] that dimyBj, < 1 for any h € H.

Now, we can choose a k-basis {e,}, . for B. Then, as dimBj, < 1, the multiplication in B is
determined by scalars x(n,m) € k™ satisfying

(3.4.7) enem = k(n,m) tenm, Vn,m € N.
Further, the left kH-action is determined by scalars e, (n) € k* which satisfy
(3.4.8) h-en=en(n)epnp—1, Vhe H,ne N.

Together with the given 3-cocycle w this gives us a tuple (H, N, w, k, £) as in Notation 3.21, where it
follows from B being an algebra in Z(Vect};) that the conditions in Equations (3.4.1)—(3.4.4) hold.
In particular,

e Equation (3.4.1) corresponds to mp being associative and unital,
e Equation (3.4.2) corresponds to B being a YD module,
e Equation (3.4.3) corresponds to mp being a morphism of YD modules,

Equation (3.4.4) corresponds to mp being commutative in Z(Vect%;).

This completes the proof. O
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Proposition 3.25. Assume that |N| € k*. The algebras B = B(N, k, €) defined in Proposition 3.23
are rigid Frobenius algebras in Z(Vecty;) with coalgebra structure given by

Ap(e,) = 2 w(m,m™ ) em ® €1, eplen) =0n1, forallne N.

meN

Proof. Consider the algebra B = B(N, k, €). One readily verifies that the conditions in Notation 3.21
are sufficient to ensure that B(N, k,¢) is a commutative algebra in Z(Vecty;) (cf. the bullet points
in the proof of Proposition 3.23).

It remains to check that such an algebra B in, in fact, a rigid Frobenius algebra. This is argued
as in [LW23, Proposition 6.12(2)]. First, B is connected since

Hom z (vecty;) (1, B) € Homkpg-comod (1, B) < B,

with the containing space being 1-dimensional.

Next, we define e and check that it is indeed a morphism of twisted H-YD modules. Further,
one checks, using the map

k(n=t,n
q= ), e ( >_1)en®en1

-1
= (n=1,n,n
that the pairing p :=egmp: B® B — 1 is non-degenerate. Then, the coproduct

AB(en) = Z

meN

K(m~

7m) w_l(mam_17n) (3-4.1) 2 :‘Q( 1

e €y = m,m n)e €ry—
k(m=1,n) w(m=1,m,m=1) m @ Cm-n 7 ) m @ em-tn

meN

is obtained from the multiplication and the pairing ¢ following Remark 2.3. This way, Ap, ep make
B a coalgebra in Z(Vect};).

In fact, the algebra and coalgebra structures satisfy the Frobenius conditions from Definition 2.2(3).
Verifying that B is a special Frobenius algebra amounts to the computations that mpApg(e,) =
|N|ldg, and ep(1p) = 1. Hence, B is a rigid Frobenius algebra since |N| # 0. O

Remark 3.26. By forgetting the twisted YD module structure, we can view B(N,k,€) as a
special Frobenius algebra in Vect. The images under the forgetful functor are twisted group
algebras A(N, ) [Ost03,Nat17]. These twisted group algebras were used to classify indecomposable
Module categories over Vecty, by Ostrik and Natale, cf. [EGNO15, 9.7.2]. An explicit Frobenius
algebra structure for A(N,1) was given in [MMP*22, Proposition 5.7]. Under the identifications
n = g,m = gh and k = ¢!, the multiplication, unit and counit of B(N, k,¢) match those of of
A(N, ) up to normalisation. The coproduct formula for B(N, k, €) becomes
Ap(ey) = Z k(gh, h™") egn ® e
heN

Compared to that of A(N, ), the coproduct is the same, up to normalisation by 1/|N|. The
above results hence show that e: H x N — k* parametrize lifts of the algebras A(N, k) to rigid

Frobenius algebras B(N, k, €) in the center. Such a lift can only exist if €, k satisfy the conditions of
Notation 3.21.

We will now give an explicit description of the commutative Frobenius algebras A = I(B) in
Z(Vects), for B = B(N, k,€) as above. Note that Corollary 3.11 ensures that A is a commutative
Frobenius algebra, but we will see that it is, in fact, also a rigid Frobenius algebra.
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Definition 3.27 (A(H, N, k,¢€)). Let G be a group with w € C3(G,k*), a subgroup H of G, and a
tuple (N, k,¢) as in Notation 3.21. We define A = A(H, N, K, €) to be the commutative Frobenius
algebra I(B), for B = B(N, k,¢) from Proposition 3.25.
Further, we fix a coset decomposition G = | | g;H.
el
Lemma 3.28. Explicitly, we can describe the structure of A = A(H, N, k,€) as a Frobenius algebra
in Z(Vectd) as follows.

(a) A is the quotient k-vector space spanned by {aqg, | g € G,n € N}, subject to the relations
(3.4.9) aghn = 7(9, h)(n)_leh(n)ag’hnh—l, Vhe H.

(b) The twisted YD module structure is given by
(i) left kG-coaction given by 6(agn) = gng™' ® agn;
(i) twisted G-action given by k- agpn = T(k,g)(n)argn, for ke G.
(¢) The Frobenius algebras structure is given by the
(#ii) multiplication m 4 given by

agnagm = v(g)(n, m)ilﬁ(n’ m)ilagmmv

forge G andn,me N, and agpnaym, =0 if kH # gH ;
(tv) unit ug given by 14 = >, ag, 1;
iel

(v) coproduct A 4 given by

AA(GQJ”L) = 2 7(9) (m7 m_ln)’%(ma m_ln) agm & Qg m=1n>
meN
forallge G andne N;
(vi) counit 4 given by €a(agn) = dn1-

)

Proof. We set ag,, := g®e, € A = I(B). The relations on A in (3.4.9) are then derived from
Equation (3.2.1) using the twisted H-action from Proposition 3.23(i). This proves (a). To obtain
the formulas in (b) we apply the twisted YD module structure on A = I(B) from Lemma 3.6.

To find the Frobenius algebra structure on A displayed in (¢) we use Corollary 3.11. Thus,
computing multiplication and unit involves the lax monoidal structure of I, see Lemma 3.8. It
suffices to evaluate the product on elements a4 ,a4,m as a product agpag, = 0 if kH # gH. If
kH = gH we can find n’ such that aj, = a4, as argued before Lemma 3.8. We compute

Qgnlgm = 7(9)(”7 m)il(g Ken - em) = ’7(9)(”7 m)ilﬁ(na m)ilagﬂlm‘

The unit is given by k — A,1 — 14 = >, ; ® 1 = >}, ag, 1, using Equation (3.2.6). Finally, the
coproduct and unit are computed using the oplax monoidal structure on I(A) from Lemma 3.7, i.e.,
Ay =vp pI(Ap). This gives the claimed formulas. O

We obtain the following theorem generalizing [DS17, Theorem 3.15] to arbitrary characteristic.

Theorem 3.29. Let G be a finite group with w € C3(G,k>), a subgroup H of G and a tuple (N, k, )
as in Notation 3.21.
(a) If IN|- |G : H| € k*, then the algebra A = A(H, N, k,¢€) from Definition 3.27 is a rigid
Frobenius algebra in Z(Vectd) of dimension dim;(A) = |[N||G : H|.
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(b) Every connected étale algebra in Z(Vectdy) is of the form A(H, N, k,€), for some choice of
data H, N,~, € and has trivial twist 4.

(¢) Every rigid Frobenius algebra in Z(Vects) is isomorphic to one of the form A(H,N,k,e€),
for some choice of data H,N,~,e€ as above, with |N|-|G : H| e k*.

Proof. To prove Part (a), observe that A = A(H, N, k,¢€) is a commutative Frobenius algebra in
Z(Vect) by Corollary 3.11 and Proposition 3.25. It remains to check that A is connected and
special. First, A is connected since Hom z(vect, y(1,A) = (A1), the space of G-invariant elements
in the kG-module A;. This space is 1-dimensional as A; = k(G/H) and G acts by left translation.
Next, to see that A is special we compute maAa(ag,,) = |Nl|ag,n as in Proposition 3.25. Further,
€4(l4) = |G : H|ldy, and by assumption, both scalars |[N| and |G : H| are non-zero. Thus, A is a
rigid Frobenius algebra of the claimed quantum dimension.

To prove Part (b), assume A is a connected étale algebra in Z(Vect{:). Following the strategy
from [Dav10, Corollary 3.3.5], we consider the subalgebra A;. We note that A; is a subobject of A
in Z(Vects). The twisted kG-action on A restricts to an (untwisted) kG-module structure on A;.
Thus, A; corresponds to an algebra in the symmetric monoidal category of kG-modules. As the
braiding of A restricted to A1 ® A; is symmetric, A; is, in fact, a commutative algebra over k. Now,
A is separable by Proposition 2.5 and this implies that A; is also separable. Indeed, A; is also a
connected commutative algebra in Z(Vect{:) and as such it is separable if and only if the pairing
egm is non-degenerate, cf. [Dav10, Section 2.2] and [LW23, Section 3.3]. But non-degeneracy of
this pairing on A implies non-degeneracy of the restriction to A;. Hence, Ay is a connected étale
algebra in kG-Mod given that its G-grading is trivial. Viewing A as a k-algebra, it follows that
A; = k" for some n since A is algebraically closed. The primitive central idempotents of A; are a
G-set by restricting the kG-action on A;. Thus, using indecomposability of A, A; ~ k(G/H) is of
the form Ay from Example 3.12, for some subgroup H < G. This argument appears in [K002, 2.2.
Theorem)] in the semisimple case.

The multiplication of A restricts to a right action of A7 on A, which makes A a local module over
A using commutativity of A in Z(Vects). Thus, by the equivalence in Theorem 3.18, A =~ I(B)
for a connected étale algebra B in Z(Vecty;). Now, dimyB; =1 as

dimpA; > (dikal)(dim]kAH) = (dim]kBl)(dimkAl).

Thus, B is isomorphic, as an algebra in Z(Vect%;) to an algebra of the form B(N, k,¢€) by Proposi-
tion 3.24.

To prove Part (c), assume that A is any rigid Frobenius algebra in Z(Vect#), then A is connected
étale by Proposition 2.5. Thus, as in Part (b), A =~ A(H, N, k,¢) for some choice of data as in
Notation 3.21. We compute that

mala(agn) = Z agn = |Nlagn, eala =|G: N|.
meN
Hence,
dim;(B) = évpcoevp = egApmp(lp) = |N| - |G: N]|
computes the quantum dimension of B in Z(Vecty;), cf. [LW23, Equation (3.7)], independently of
choice of a pivotal structure for Z(Vect?;). Now, A is rigid Frobenius if |N| - |G: N| # 0. O
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Remark 3.30. Note that the classification results of this section do not depend on the choice of a
particular ribbon structure on Z(Vecty) and different choices of ribbon structures may be used in
Theorem 3.29. By default, we use the ribbon structure on Z(Vect{:) detailed in Proposition 2.21.

Corollary 3.31. Let A := A(H, N, k,€) be an algebra in Z(Vects) as defined in Definition 3.27
and assume |N|-|G : H| € k*. Then the category Rep'}.,g%Vect“é)(A) is a modular category.

Proof. By Theorem 3.29, A is a rigid Frobenius algebra. Hence, by [LW23, Theorem 4.12],

Rep'gfvecté )(A) is a modular category. Given a ribbon structure on Z(Vect), cf. Remark 3.30,

Repgﬁvectg)(A) is a ribbon category by [KO02, 1.17. Theorem] or [LW23, Proposition 4.18]. O

Note that if chark does not divide |G|, then Z(Vect{:) is semisimple (see e.g. [Rad12, Corollary
13.2.3]). Hence, in this case Rep'g,‘(:vecté )(A) is a modular fusion category.

Lemma 3.32. Assume given a datum (H, N, k,€) as in Notation 3.21.

(1) The algebra Ap is isomorphic to the subalgebra of A = A(H,N,k,€) generated by the
elements g® 1 as an algebra in Z(Vects:).

(2) The subalgebra generated by the elements 1 ® e, is isomorphic to B = B(N,k,€) as an
algebra in Z(Vect%y)

Proposition 3.33. Assume |N|-|G: H| € k*. The induced functor
I: Rep'é%?Vect“ﬁ)(B) - Rep'%?Vect“é)(A)’ V= I(V)
defines an equivalence of ribbon categories.

Proof. Using Proposition 3.10 and Corollary 3.11, I defines a functor

RepZ(Vect‘;’I) (B) - RepZ(Vect‘é) (A) :

The right A = I(B)-action is defined using the lax monoidal structure of I. As [ is a braided lax
monoidal functor, it preserves local modules.

Note that, as I is fully faithful, we know

I: Hom z(vecs) (V, V') — HomRengectg)(AH)(f(V),I(V/))
is fully faithful. Thus, we need to show that a morphism I(a): I(V) — I(V') is a morphism of
A-modules if an only if a: V' — V' is a morphism of B-modules. Indeed, if I(a) is a morphism of
A-modules,
IHa)(1®v) (1Rey)) =1®@a(v-e,) =1Qa(v) - ep,.
Thus, « is a morphism of B-modules. The converse implication is clear.

Now, by Lemma 3.32, we see that local A-module W is also a local Ag-module. Thus, by
Theorem 3.18, W =~ I(V) as an object in Replgfvectg)(AH), for some object V' in Z(Vecty;). By
construction, V = W', which is the image of the idempotent element 1 ® 1 € A. This idempotent is
central and hence defines an A-submodule which is also local. In particular, V' is a local B-module
in Z(Vecty;). We need to show that (V) = W as A-modules.

By 3.32, the Ay-module structure of both W and (V') are induced from the respective A-module
actions, p : W@ A — W,pr) : I(V)® A — I(V). Thus we have the following commutative
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diagram

IV)® A I(V) @ A 22 1(v)

| co b

WA >W®A—"sW.

The perimeter commutes as I(V) = W as Ag-modules, and the left square clearly commutes. As
the action is induced by the embedding of the subalgebra Ay into A, the right square commutes.
Thus I(V) =@ W as A-modules and the functor is essentially surjective.

The induced functor I is a monoidal functor, with the monoidal structure being inherited directly.
The functor I is compatible with braidings as braidings of local modules are induced from the
braidings of the underlying categories. Finally, as the functor I is compatible with the ribbon twist,
so is the induced functor on local modules, whose ribbon category structure is induced from that of
the underlying category, see the proof of Proposition 3.10. O

The above proposition shows that, up to equivalence of braided monoidal categories, it suffices
to consider the algebra objects B(N, k,€) in Z(Vecty)), i.e., it suffices to consider the case G = H.
The next proposition addresses when such algebras are isomorphic.

Proposition 3.34. Fiz H and w e H3(H,k*) and let (N, k,€) and (N',x',€') be tuples satisfying
the conditions of Notation 3.21. Then B = B(N,k,¢) and B’ = B(N',k',€') are isomorphic as
algebras in Z(Vecty;) if and only if €e ' @ 'k~ is zero in H2  (H, N,k*).

Proof. Assume that ¢: H — H' is an isomorphism of algebras in Z(Vect%;). Thus, dimA = dim A’
and hence |[N| = |N’|. Then ¢ is a morphism of twisted YD modules over H and, in particular, an
isomophism of G-graded vector spaces. This implies that N = N’ and ¢(e,,) = o(n)ey, for some
scalars o(n) € k*. Now, as ¢ is a morphism of algebras,

d(enem) = d(k(n,m) Ltepm) = k(n,m) to(nm)epm = o(n)o(m)'(n,m)  enm.
Thus, ¢ is a morphism of algebras if and only if

k' (n,m)  o(n)o(m)

k(n,m) o(nm)

k'k™t = 8% (o) as claimed.
Further, ¢ is a morphism of twisted YD modules. Thus,

$(h - en) = en(n)a(hnh™ eyt = € (n)a(n)epun-1 = h - d(en).
Thus, ¢ is a morphism of twisted YD modules if and only if
e, (n) _ o(hnh™1)
en(n) o(n)

This condition gives that e !¢/ = d%!(0). Combining, we see that

e K

(€@K) (edr)'=—®—
€ K

equals d& (o) and hence is zero in f[%ot(H , N, k*) as claimed. O
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Remark 3.35. For N <« H, consider the short exact sequence of groups
1-N5HSH/N - 1.
This induces, via pullback maps, an exact sequence of cochain complexes of abelian groups
0 — F*(H/N,k*) = F*(H,k*) 2> F*(N,k*) — 0,
implying that H*(H/N,k*) = ker H*(.*). Thus, any n-cocycle on f: H" — k* such that f|, =0
in H"(N,k*) is equal to a n-cocycle 7*w, where @ is a normalized n-cocycle on the quotient group
H/N up to coboundary. Thus, if (H, N,w, k,€) is a tuple as in Notation 3.21, then by Lemma 2.16

we can assume, without loss of generality, that w = 7*w. Then 7,~ are also trivial when restricted
to inputs from N. This follows since

ﬂ*w(hl,hg,hg) = w(ﬂ'(hl),ﬂ'(hg),ﬂ'(hg)) =1

as soon as one of the w(h;) = 1€ H/N, i.e., as soon as one of the h; € N. However, the definition
of v, 7 as elements of FN’Q(H , N, k*) involves at least one input from N. Thus, without loss of
generality, isomorphism classes of rigid Frobenius algebras B(N, k, €) are parametrized by elements
e®re H3 (H,N,k*).

As a special case, by Corollary 3.3 we have that A = R(1) is an algebra in Z(Vect¢) such that
Repz(veets) (A) ~ Z(Vecth/N). We observe that A = B(N,1,1) where k and € are trivial (i.e.,
constant functions with value 1 € k*). As all conditions in Notation 3.21 are trivial for this data, A
is a rigid Frobenius algebra in Z(Vect?), cf. Lemma 3.15.

Davydov—Simmons prove the following result on local modules over the Frobenius algebras studied
in this section.

Theorem 3.36 ([DS17, Theorem 3.16]). Let A be a rigid Frobenius algebra as in Theorem 3.29 and
n: H — H/N the quotient homomorphism. Then there exists a 3-cocycle w € C3(H/N,k*) such
that ™ = w|y and an equivalence of ribbon categories between Z(Vecth/N) and Repgfvecté)(/l).

Proof (sketch). Using Proposition 3.33 and Remark 3.35 it suffices to show that Repgzvectﬂ*m) (B) is

_ H

equivalent to Z(Vect‘}}/N), for B = B(N, k,€) an algebra as in Proposition 3.23. [DS17] produce a
braided monoidal functor from the latter category to a category of YD-compatible H/N-modules and
comodules involving further cocycle data from F*(H/N, H/N,k*). It is then shown in [DS17, Propo-
sition A.1] that any such deformed monoidal category, when braided, is equivalent to Z(Vecty / N)-
The proof does not rely on the assumption chark = 0. ]

As by [Sch01], Z(Repyecty (4)) = Rep'g%vectué )(A) one can ask if the equivalences of Theorem 3.36
stems from an equivalence of the monoidal categories Vect% IN and Repvectw*w(A), see Definition 2.13.
G

To the knowledge of the authors, this remains an open question in general, but see Proposition 3.38
below for the case of trivial cocycle data x @ €, and Section 3.6 for the case of odd dihedral groups.

3.5. Special cases. The following corollary expresses two extreme cases of Corollary 3.31, when N
is as large or as small as possible. For this, we recall the Frobenius—Perron dimension FPdim(C)
of a finite tensor category C [EGNO15, Section 4.5] and objects within it, see Section 2.4. It is
well-known that

FPdim(Vectg) = FPdim(Vect?) = |G| and FPdim(Z(Vecty)) = FPdim(Vect2)? = |G|2.



32 SAMUEL HANNAH, ROBERT LAUGWITZ, AND ANA ROS CAMACHO

It follows from [LW23, Corollary 4.21] that
_ G _ =P
FPdimz(vects)(A)2 N2

FPdim (ReplgEVect“é) (A))

using that Z(Vect?) is non-degenerate [EGNO15, Proposition 8.6.3]. Here, in order to compute
FPdim Z(Vectg)(A)7 we use the forgetful quasi-tensor functor Z(Vects) — Vect. In fact,

ey
[H|
using [EGNO15, Proposition 4.5.7] in the first equality and the basis ag, , of A in the second equality.

FPdimZ(Vect“é) (A) = dim]k(A)

Moreover,
G _ |G||H]

FPdim (Repz (vects) (A)) = dimi(A) INT

Note that this shows that the categories Repz(vects)B(N, K, €) and Repz(vecs)A(H, N, k,€) are
inequivalent if G # H.

Corollary 3.37. Let A:= A(H, N, k,¢€) be an algebra in Z(Vectg) as defined in Definition 3.27.
(a) Then A is trivializing, i.e. Rep'gfvectué)(A) ~ Vect, if and only if N = H.
(b) If N = {1}, then Rep'gfvecté)(A) and Z(Vecty;) are equivalent ribbon categories.

Proof. With the above computations of FP dimensions, this follows as in [LW23, Corollary 6.18],
where Part (b) uses the equivalence in Theorem 3.18. u

Next, we consider the special case when s and e are both trivial.

Proposition 3.38. Let N <« H < G be subgroups with |[N|-|G : H| € k* and w € C3(G,k>)
such that w|y = 7w for a 3-cocycle W of H/N. Then the equivalence of tensor categories T from
Proposition 3.16 induces an equivalence of tensor categories between Repyecrs (A(H, N, 1,1)) and

Vect -

Proof. Denote B = B(N,1,1) and A = A(H,N,1,1). Then T'(B) = A as algebras in Vecty, via the
algebra morphism that sends dy, ® €, to ag, n. Moreover, both T'(B) and A have the same G-grading.
Thus, T induces an equivalence of categories

T: RepVeCt‘I’fI (B) - RepVect“é (A)

Explicitly, a right B-module V' in Vect}; is mapped to the right A-module, defined on the G-graded
vector space T' (V) = Ay ® V' with right A-action given by

a7y (8, @ ) ® (85, ®n)) = T(alp) i, (39, ® V) ® (3, @ 1))
i j
= 7 (0 ® (v - ).
v(gi)([vl,n)
We will equip this functor with a monoidal structure induced from ,u‘:C,W in Lemma 3.13. This way,
M\T/,W is a morphism of right A-modules. Here, we regard T'(B) =~ A as a commutative algebra in

Z(Vect) with the twisted YD module structure defined in Lemma 3.28. Explicitly, we compute
the half-braiding ¢? of A with T(W), cf. Proposition 2.20, as

Cé(w)((‘sgi ®n) ® (dg; ®w) = (Jg; ®w) ® (gj\wl‘lgjl +(0g, ® 1))
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= 7(gjlwl ™" g; ", 9:) (n)7(gr, B)(n) ™" (8g; @ w) ® (85, ® hnh ™),

where g satisfies gj\wlflgj_lgi =grhegrH, ie., h = gk_lgj\wlflgj_lgi € H. Thus, we find that the
left T(B)-action is given by
a7y (0, @) ® (89, ® w)) = alpyary ) (g, ® ) ® (85, @ w))
= T(ap)npweru) (65 @n) @ (6, ® w))
gl gy g0 ()
- 7(gk, h)(n)
. 7(g;lwl gy, 9i) (n)
P rlge, () "1 (g7) (jwl, hnk=T)
Y 7(gilw|g; ' 9i)(n)
" 7(9i, [w[ 71 (n)y(gs) ([w], [w] = n|w])
~ s B, ® - ful )
Here, we used that if k = j then h = |w|™! gj_lgi € H which implies that g; = g; in the second
equality. The last equality follows from Equation (2.5.8).

Now, we check that ,LL‘T/M, descents to a morphism T'(V) ®4 T(W) — T(V ®p W). This follows
by comparing

iy wore ey (ldray @ alT(W))((((SQi ®v) ® (dg; ®n)) @ (Ig), ® w))

Cwlalvlat ama=t. alwla—1) -1
~el |g§<;,f>j<ngf|w’|§]k| ) (5 © ) @5 (8, ® (- ol )
:5¢,j5j,kw(9i|v\9{1,gmgi_lvgzww’gi_l)*l
Y(gi) (n, [w])v(gs) ([v], n|wl)
A2 0ij0jkw o], n, [w]) ™!
Y(g:)([v], )y (gs) (vl [wl)
_ 0;,50; k
Y(gi)([v],m)v(g:)([v[n, [w])
=1 (@l 1y @ ldrw)) ((Jg, ® 0) ® (g, ® 1)) ® (g, @ w)),
where the second-last equality uses the compatibility condition of the relative tensor product V&g W.
Now, the induced morphism i,y : T(V) ®a T(W) — T(V ®p W) is directly checked to be an
isomorphism. Coherence of ;! with associators follows as in Proposition 3.16. Thus, we have shown
that T' gives an equivalence of tensor categories between Repyecyw (B) and Repyecs (A4).
Finally, B = R(1) for the right adjoint functor R used in Corollary 3.3. Thus, Vect‘;’I/N is
equivalent to Repyecrs (B) by [BN11, Proposition 6.1]. Composing these two tensor equivalences
proves the claim. g

T(GE)M%7W((591' ®w) ® (bgy, ® h”h_l))

(6gj ® (w - hnh_l))

(dg; ® (w - |w| ™ n|w]))

(39, ® (v®p (w - [w] ™ n|w]))

(dg; ® (v®p (w - [w[ ™ n|wl]))

(0g: ® (v- 1 ®p w))

3.6. Examples for odd dihedral groups. In this section, we provide a full list of isomorphism
classes of rigid Frobenius algebras (or, connected étale algebras) in Z(Vect?) in the case when G is
an odd dihedral group and w any 3-cocycle valued in k = U(1) < C. Moreover, we determine the
tensor categories of representations of these algebras.
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Let G = Doy, 11, the dihedral group of odd degree 2m + 1 with presentation

2m+1

(s,r|s* =T —e, st =1 's).

Notation 3.39. Consider g € G = Dop,11. We will write g in terms of the group generators, namely
g = 89919 where gg € {0,1} and g1 € {—m,—m + 1,....,m — 1, m}.

We are going to use classify the rigid Frobenius algebras in Z(Vect). By Theorem 3.29, these
rigid Frobenius algebras are of the form A(H, N, k,€) as defined in Definition 3.27.

First, we determine the 3-cocycle w: G x G x G — U(1). By [dWP95, 3.2.8], there are 4m + 2
independent 3-cocycles classes in H3(G, U(1)), parametrised by p € {0,1,...,4m + 1}. The explicit
formula for the 3-cocycle wy, is, for a,b,c € G, given by

. m 2
(3.6.1) wp(a,b,c) :=exp ((Q;ﬂﬂ)z ((—1)%Fe0qy ((—1)0by + ¢y — [(—=1)0by + e1]) + EFD aoboco))-

Here, the rectangular bracket reduces the quantity modulo 2m + 1 in the range {—m, ..., m}. We
thus observe that (—1)%b; + ¢; — [(—=1)by + ¢1] = 1(2m + 1) for [ € {—1,0,1}. This allows us to
simplify the above formula to

(3.6.2) wp(a,b,c) 1= exp ((22723{)1) ((fl)bOJrCOal(l + (2m27+1)a0b000)>.

By Remark 3.22, we need to find values for p such that w), is trivial when restricted to a normal
subgroup N <« H € G. We now discuss the possible choices of H, N.

The subgroups of the odd degree dihedral group Dy, 11 are split into two types; either a dihedral
subgroup of odd degree D(3p,11)/4, O a cyclic group of the form Zo,,41)/q = (r?y. Here, d is a
divisor of 2m + 1. The normal subgroups of D, +1 are exactly the group itself, or the subgroups of
cyclic form. Thus, we get three cases;

o H="Z0mn1)/a: N = Lom)/df)
* H = D@mi1)/ds N = Z(2m+1))(df)
e H=N=Donyi1)4

where f is a divisor of (2m + 1)/d. For ease of notation, we shall set
x:= (2m+1)/d, and y = (2m + 1)/(df).

We shall now determine for which values of p, the cocycle w, will become trivial when restricted to
N in each case.

Lemma 3.40. In the cases such that N = Zm1)/df) wp|n is trivial when p = 0 mod (2m +
1)/(df).

Proof. When we restrict to N, we can have that gg = 0, g1 = dfgs for all g € N, where g2 €
{-(v—1)/2,—(y+1)/2,...,(y — 3)/2, (y — 1)/2}. Thus w, becomes

- pld)
wp|Zy (a,b,c) = exp (2m (gmfff)).

We require this restriction to be trivial for all values of ag,l. This occurs only when p =0 mod y.
There are 2df-choices of p in the applicable range. O

Lemma 3.41. In the case such that N = D (9, 11)/d, Wp|N s trivial when p=0 mod (2m + 1)/d.
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Proof. When considering g € N, we observe that g1 = dgs, where g2 € {—(x—1)/2,—(x+1)/2, ..., (x—
3)/2,(z —1)/2}}. Thus we get that

(3.6.3) wp|p, (@, b, c) = exp ((22:;_{?) ((_1)bo+coa2(l + (2?;1)%[)000))-

It can now be seen that this 3-cocycle is trivial everywhere on H only when p =0 mod z. Thus

there are 2d-choices for p. ]

From these lemmas, we are now in a position to classify all rigid Frobenius algebras in Z (Vect}u)”2 m+1)’
where p =0 mod y for some divisors d|(2m + 1) and f|z, by finding all possible data for &, e.

Lemma 3.42. In all cases, k is a trivial 2-cocycle in H*(N,U(1)).

Proof. By Equation (3.4.1), s is a 2-cocycle on N. In the case that N = Z,, [dWP95, 2.3.14] gives
us that H?(Z,,U(1)) = {0}, so & is trivial up to coboundary.

In the case that N = D,, we shall use the dual Universal Coefficient Theorem [Wei%4, 3.6.5] to
calculate the relevant cohomology group;

H*(D,,U(1)) = Hom(Hs(D,,Z),U(1)) ® Ext},(H(Ds, Z), U(1)).
By [Wei94, 6.8.5], the involved homology groups are Ho(D,,Z) =~ {0}, Hi(Dy,Z) = Zs. We get that
H*(D,,U(1)) = Exty(Zo, U(1)) = {0}
where the last isomorphism follows from [Wei94, Corollary 3.3.11]. Thus & is again trivial up to

coboundary. 0

To begin determining €, we note that when N = Z, we can use Equation (3.6.1) to calculate that,
for h,ge H and a,be N:

L 9),

and thus 7(h, g)(n) = 1 = y(h)(n,m). We also get this result when H = N = D,, as wy, is trivial
everywhere by construction.
Thus, the conditions € must satisfy from Notation 3.21 is now

wp(a,h,g) =1 =wy(h,a,b), wp(h,g,a) = wp(h, gag™

(3.6.4) en(gng")eg(n) = eng(n)
(3.6.5) en(n)ep(m) = ep(nm)
(3.6.6) en(m) =1,

as well as €;(1) = 1.

Equation (3.6.5) states that, for any h € H, ¢, is a l1-cocycle valued in C*(N,U(1)), where
N acts trivially on U(1). There are no non-trivial 1-coboundaries in this construction and so
CY{N,U(1)) = HY(N,U(1)).

We shall now determine the value of € in all three cases.

Lemma 3.43. When H = N = D(9,41)/q; € 15 the trivial function € : H x N — U(1).
Proof. Follows immediately from Equation (3.6.6) as H = N. O

Lemma 3.44. When H = Z(om41)/ds N = Z(2m+1)/(df), € 8 a 1-cocycle in H'(H,N) = N.
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Proof. As H is abelian, Equation (3.6.4) becomes

(3.6.7) en(n)eg(n) = epg(n)
and thus € is a 1-cocycle in H'(H, H*(N,U(1))), where H acts trivially.
By [dWP95, 2.3.13], H'(Z,,U(1)) = Z,, and so € € H'(H, N). We then use [Wei94, 3.6.5, 3.3.11,
6.2.3] to calculate that
HY(Zy, Zy) = Hom(Zy, Zy) = Z,,

where the last isomorphism follows as y divides x. O
Lemma 3.45. When H = D3y 41)/a, N = Z2m+1))(df), € 18 a trivial 1-cocycle in H'(H,N).

Proof. We first note that we can construct a Zs-grading on H by forming the quotient group
H/Zopm+1 = Zo. When h € H is in the 0-graded component (i.e, in Zgy,+1), it is clear that
Equation (3.6.4) becomes Equation (3.6.7).

When h € H is in the 1-graded component, Equation (3.6.4) becomes

Gh(”_l)eg(”) = €ng(n).
By setting g = 1, we observe that ¢;,(n) = ¢,(n~!). Thus, Equation (3.6.4) becomes Equation (3.6.7)

once more. Thus, e € H'(H, H'(N,U(1))), where H acts trivially, and as in the previous lemma,
HY(Z,,U(1)) = Z,. We then use [Wei94, 3.6.5, 3.3.11, 6.8.5] to calculate that

HY(Dy,Z,) = Hom(Zy,Z,) = {0},

with the last isomorphism following as ¥ is odd and so N = Z, contains no non-identity elements of
order 2. Thus € is trivial in H'(H,Zy,). O

We have thus found all rigid Frobenius algebras in Z (Vect“l))”2 m+1)’ up to isomorphism of algebras,
proving the following proposition.

Proposition 3.46. Let G = Dop,11, the dihedral group of odd degree 2m + 1, and let d, f be a pair
of not necessarily proper divisors of 2m + 1 and (2m + 1)/d respectively.

Then, whenever p =0 mod (2m + 1)/(df), there exists rigid Frobenius algebras Z(Vect%imﬂ) of
the form A(D(om+1)/d Zm+1)/df)> 1, 1) and A(Zam+1)/a> Lem+1))df), € 1), where € is a 1-cocycle
in H' (Zom1)/a> Ziom+1)/(a) = Liom+1)/(df)-

Additionally, there is a trivializing rigid Frobenius algebra of the form A(D(2p+1)/a> D2m+1)/d> 1, 1)
in Z(Vect“g(% ) whenever p=0 mod (2m + 1)/d.

n+1)
This completely classifies all rigid Frobenius algebras in categories of the form Z(Vectg”), up to

an isomorphism of algebras in Z(Vectgp).

Explicitly, these algebras have the structure of a C-vector space with C-basis {ag,|g € G,n € N}
subject to the relations
Aghn = €n(N)ag pnp-1, Yhe H
and with the following YD module and algebra structures in their respective categories Z (Vectjfl”);
(i) G-action: k- ag, = aggn, for k € G;
(ii) G-coaction: d(ayn) = gng=* ® agn;
(iii) Multiplication: agnagm = agnm for g€ G and n,m e N, and agpnap, =0 if kH # gH.
(iv) Unit: 14 = >, ag, 1

iel
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(v) Coproduct: Ay(agn) = X en Ggm ® Ag.m—1ns for all g € G and n € N,

(vi) Counit: e4(agn) = dn,1-

We note that all of these algebras are images of group algebras kN under the functor I, with the
subgroup H governing the resulting algebra multiplication in Z (Vectgp )

Furthermore, for all of the cases where € is trivial, we can utilise Proposition 3.38 to determine
their categories of representations when viewed as objects in Vectgp7 up to tensor equivalence.
Explicitly;

o For A = A(D(am1)/a Zizm+1)/(df)» 1, 1), Repyeepen (A) = Vect ;

o For A = A(Z(am+1)/a» Lam+1)/(df): & 1)s Repyeeeor (A) = Vecj‘if;

e For A= A(D(2m+1)/da D(2m+1)/d7 1, 1), Repvectuép (A) =~ Vect°{"0} = Vectc.
Even if € is non-trivial in the second case, since « is trivial, the categories Rep,,, ot (A) do not depend
on €, only their associativity isomorphisms does, which, in any case, corresponds to a 3-cocycle on
Zy. By Remark 3.35, we obtain all possible 3-cocycles of Dy and Zy as W, up to coboundary.

Note that by [Sch01], the corresponding categories of local modules in Z(Vect¢) are equivalent to
the Drinfeld centers Z(Vect, f), respectively, Z(Vect? f) in the first two cases (see Theorem 3.36),
and we recover the fact that the case H = N = D(9,,11)/q gives a trivializing algebra in the third
case.

APPENDIX A. GROUP COHOMOLOGY

A.1. Definitions. Here, we collect basic definitions from group cohomology used in the text, see
e.g., [Ben98, Section 3.4], [Bro94, Chapter III)!. Let G be a group, the bar resolution is the complex

L IG R TG O 7 @, G L 72G' @5, 26 95 7.,

where ZG" ®yz Z.G is a right ZG-module via right multiplication. As an ZG-module, ZG™ Q7 Z.G
is freely generated by n-tuples (gi,...,gn). The differential is the ZG-module homomorphism
determined by

n—1

O™ (g1s- - gn) = (1) (g2, gn) + D5 (=1 (g1se - GiGints e Gn) (91, Gn-1)gn-
i=1

Given a right ZG-module A, we obtain the cochain complex F'*(G, A) on abelian groups of functions
F"(G,A) = Fun(G", A) with differentials
MY FY G ) PG A) . Fie, A) Y PG Ay
where d" is obtained by composing with ¢,,,1 under the identification
Homzq(ZG" ®z ZG, A) = Fun(G™, A) = F"(G, A),

where the latter is simply the Z-module of maps G™ — A. Explicitly, the differential d = d" is given
on a map w: G" — A by

(A1)
n—1 '

dw(gO) cee agn) = (_1)n+1w(glv cee 7971) + Z (_1)%*10\}(90’ s 9iGi4 1, - 7971) + w(QO) LIRS agn—l) *Gn,
i=0

IThese references typically use left module conventions.
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where - denotes the action of G on A. In practice, we often use the G-module A = k* (or U(1)),
with trivial G-action. In this case, we use multiplicative notation. We denote C™(G, A) := ker(d")
for the space of n-cocycles and the n-th cohomology group is

H™Y(G,A) := C"(G,A)/Imd" .
For example, a 3-cocycle with values in k* satisfies Equation (A.2.1).
A.2. 3-cocycle identities. Let w: G — k* be a 3-cocycle in group cohomology (computed using
the bar resolution). The 3-cocycle condition on w is
(A.2.1) w (9192, 93, 94) W (91, 92, 9394) = w (91, 92, 93) w (91, 9293, 94) w (92, g3, 94) -

We assume that w is normalized, i.e., w(g, h,k) = 1 as soon as one of the entries is the identity of
G. In what follows we provide proofs for several identities we have used along the way involving
cocycles, 7 (as defined in Equation 2.5.2) and v (as defined in Equation 2.5.4).

Lemma A.1. The map 7(h,k)(d) satisfies
(A.2.2) 7(h, k) (d)7(g, hk)(d) = 7(gh, k)(d)7(g, h)(kdk™"), Vg,h,k,deG.

Proof. This equation follows from repeatedly applying the 3-cocycle condition A.2.1 with the
following entries:

-91=9,92="h,93=Fk, gs =d,
-g1=9,92=h, g3=kdk™", g4 =k,
-91=49, 92 = hkdkilhilv gs = hv g4 = kv

- g1 =ghkdk™'h7lg" g2 =g, g3 =h, g = k, O
Lemma A.2. The map v(h)(g,g’) is related to the 3-cocycle w(g,q’,q") via the following identity:
(A.2.3) ()99, 9" () (g,9")  _ ~(h)(g,9'g")v(P)(g', ")

- w(hgh=, hg'h=1, hg"h~1) w(g. 9, 9") '

Proof. This equation follows from applying the 3-cocycle condition A.2.1 several times with the
following entries:

-g1=h,92=9,935=9,91=49",

- g1=hgh™', go = hg'h™", g5 = hg"h™", g4 =,

- g1=hgh™!, ga="h, g3 =4, gs=g", and

- g1=hgh™!, go=hg'h™!, g =h, ga = g". O

Lemma A.3. The maps 7(h,k)(d) and v(k)(d,g) are related via the following identity:
(A24) (k) (dg)y(h) (kdk™ kgk™) 7 (h,k) (d) 7 (h, k) (9) = T (h, k) (dg) 7 (hk) (d, g)

Proof. Proving this equality amounts to apply the 3-cocycle condition A.2.1 with the following set
of entries:

- .gl:hag2:k7g3:dag4:gv

- g1 = h7 g2 = kdk_17 gs = kgk_lv g4 = ka

- g1 = hkd(hk)_la g2 = hkg(hk;)_lv g3 = ha g4 = ka

-g1=h, g2 =kdk™', g5 =k, g1 = g,

- g1 = hkd(kh)™', ga = h, g3 = k, g4 = g, and

- g1 = hkd(hk)™", ga = h, g3 = kgk™", g1 = k. O
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A.3. Cohomology of crossed products of groups. Let H, G be groups together with a left
action of H on G by group automorphisms, i.e., H — Aut(G),h — (g — "g). Then we can form
the crossed product G x H, which is G x H as a set with multiplication given by

(91, k1) - (92, h2) = (91" g2, hiho).
Let A be a right ZG-module. Then F™(G, A) = Fun(G™, A) becomes a right H-module with action
(f - B)(g1s- - gn) = F(gr, o gn).
Following [DS17, Appendix A], define a double complex
F»™(H,G, A) = Fun(H",Fun(G™, A)) = F"(H,F™(G, A)).
The two differentials are denoted by
dmm: F*™(H,G, A) — F""V™(H G, A), ™™ F»(H,G,A) — F"""Y(H,G, A),

where

(@ (N)(has - hn) = d*(f(ha, . hn)).
The differentials commute, i.e. d»™ gnm = gntlm qnm making F**(H, G, A) a double complex.
Hence, one can consider the associated truncated double complex

n—1
F”Fot(Hv G, A) = @ Fn_m(H7 G7A)7
1=0

n(f) = dVTE(F) 4+ (=1)ienE(F),  for fe FMTH(H, G, A) with i < n.

We will typically denote an element f € ﬁi’”_i(H, G,A) c F} (H,G,A) by a function f: H' x
Gt — A.
Letting G x H act on A via the surjective homomorphism G x H — G, the untrucated total
complex
n
Fi(H,G,A) = P F" " (H,G,A)
i=0
is quasi-isomorphic to the complex F*(G x H, A) computing group cohomology, see [HS53].
Several cocycles considered in this paper have interpretations as elements of the truncated total
complex Frp, with A =k*.

Example A.4. We now let a subgroup G act on itself via conjugation, while G acts on k> trivially,
using multiplicative notation. Consider a triple
TWw)=T®yQwe FP1@F2 @ F*? = F3_ (G, G, k%),

with ¥(h1, g1, 92) = V(h1)(g1, 92) and 7(h1, h2, 91) = 7(h1, h2)(g1) defined in Equation (2.5.2) and
Equation (2.5.4). Then T'(w) is a 3-cocycle in the totalized complex C3, (G, G, k*) if and only if
the following conditions hold

(A.3.1) d*(r) =1 — Lemma A.1,
(A.3.2) N rydM2(y) =1 — Lemma A.3,
(A.3.3) ()7t d%(w) =1 — Lemma A.2,
(A.3.4) "3 (w) =1 — Equation (A.2.1).
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Example A.5. Let N < H be a normal subgroup and let H act on N by conjugation. We consider
2-boundaries in the complex F (H, N,k*). These can be parametrized by pairs

e@re FY1@F%? = F2 (H,N,k*).

The total differential has three components, namely

dO’Z(F.’,)
d%\ot(ﬁ &) I{) = dl’l(E) &) W(E) @ 60’2(/€).

Explicit formulas for the components are derived from

61’1€(h1, ni, nz) =

[AM10]

[BDSPV15]

[Ben9s|

[BN11]
[Bro94]
[CKM17]
[Dav10]
[DL93]
[DMNO13]
[DPRYO]
[DRGG*22]

[DRX17]
[DS17]

[AWPY5]

[EGNO15]

E(hl, hgnlhgl)e(hg, nl)
€(h1ha,n1) ’
Ii(hlnlhl_l, hlnghl_l)

k(n1,n2)

dl’1 E(hl, hg, 77,1) =

e(hl, nl)e(hl, ng)

d*? k(hy,n1,n9) =
e(h1,n1n2) (1, 1, m2)

i

k(n1,m1)k(ning, ng)
k(n1,nang)k(ng, ng)

ao’Qﬂ(nla na, n?)) =
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