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Summary 

Kidney cancer is the 7th most common cancer type in the UK, with around 

13,300 new cases diagnosed every year, accounting for 4% of new cancer 

cases and 3% of all cancer deaths. Renal cell carcinoma (RCC) is the most 

common form of kidney cancer, of which clear cell renal cell carcinoma (ccRCC) 

is the most common and aggressive subtype, making up around 75% of cases. 

All RCC is resistant to chemotherapy and radiotherapy, so surgery is the gold 

standard treatment for early-stage disease. Late-stage disease however has 

limited treatment options, with poor response rates and high risk of relapse 

observed with immunotherapy. Therefore, new immune checkpoint therapeutic 

targets are urgently required. 

Engagement of CD200 with its receptor is an immunosuppressive immune 

checkpoint which is overexpressed in several cancer types, enabling immune 

evasion and disease progression. CD200 is subject to ectodomain shedding, 

creating a functionally active soluble form known as sCD200. In this thesis, we 

characterise CD200 expression in normal kidney and RCC tissue, then examine 

its relationship firstly with proteases to establish their role in CD200 ectodomain 

shedding, and secondly with tumour-infiltrating immune cells to determine its 

effect on the anti-tumour immune response. We examined expression of 

ADAM9, ADAM17 and ADAM28 in combination with CD200, with high numbers 

of double positive cells present throughout ccRCC tumour tissue. ADAM9 was 

found to have a novel role in CD200 ectodomain shedding, resulting in a dose-

dependent increase in sCD200 presence in our cell line experiments. CD200 

expression was found to significantly alter RCC immune infiltrate compared to 

normal kidney, and we characterised a ccRCC-specific ‘high effector T cell’ 

immune signature which was associated with poor prognosis. Finally, we 

showed that both CD200 and sCD200 are able to protect tumour cells against 

NK cell-mediated cytotoxic activity. Taken together, this data shows that 

blockade of CD200 may be a potential therapeutic option for RCC patients.  
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1. Introduction 

1.1 Cancer and the immune system 

The observation that tumours often arise at sites of chronic inflammation, and that a 

relationship exists between the immune system and cancer development, was first 

made by Virchow in the 19th century (Gonzalez et al. 2018). This idea was however 

overlooked until a century later, when Dvorak showed that that immune cells infiltrate 

cancer tissue, and that carcinogenesis and inflammatory conditions share many 

common developmental pathways, later defining cancer as a “wound that does not 

heal” (Korniluk et al. 2017). Today, it is accepted that chronic inflammation is one of 

the critical hallmarks of cancer (Hanahan and Weinberg 2011). Research during the 

past two decades has demonstrated that inflammatory immune cells play essential 

roles in cancer-related inflammation at all disease stages, with infiltrating immune 

cells possessing both pro- and anti-tumour properties. Furthermore, we now know 

that the immune system plays a key role in cancer development from early 

neoplastic transformation to metastatic dissemination, with significant impact on 

clinical outcomes.  

Normal anti-infection or wound healing immune responses are temporary, as 

demonstrated by the transient appearance and disappearance of immune cells 

throughout the immune response. However, during cancer development, the immune 

response is long term and low-grade, similar to that observed in chronic inflammation 

(Singh et al. 2019). This inflammatory environment leads to development of an 

immunosuppressive tumour microenvironment (TME), alongside production of 

growth factors and angiogenic factors which encourage tumour cell survival, disease 

progression, metastasis and immune evasion (Labani-Motlagh et al. 2020). The 

chronic inflammation demonstrated in cancer development is associated with many 

lifestyle and environmental risk factors, the most common of which include tobacco 

smoking (linked with development of at least 15 cancer types), dietary factors such 

as consumption of processed food and red meat (3 cancer types), alcohol 

consumption (7 cancer types), obesity (13 cancer types) and persistent bacterial 

infections, such as Helicobacter Pylori and Human papilloma virus which are linked 

with stomach and cervical cancer respectively (Bosch et al. 2002; Walser et al. 2008; 

Singh et al. 2019).  
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Inflammation can also contribute to the progression of cancer hallmark capabilities 

through the tumour-promoting effects of tumour-infiltrating immune cells. These cells 

supply active molecules such as growth factors and pro-angiogenic factors into the 

TME, resulting in the occurrence of significant cancer hallmark events such as 

epithelial-to-mesenchymal transition (EMT) and activation of extracellular matrix 

(ECM) modifying enzymes, enabling tumour growth, invasion and metastasis 

(Newton and Dixit 2012; Fedele and Melisi 2020). Inflammatory immune cells can 

also release reactive oxygen species into the TME, providing mutagenic signals to 

increase the genetic instability within the tumour cell genome, conferring a selective 

advantage to tumour cell subclones resulting in population growth and domination of 

the local tissue environment (Yao and Dai 2014). Together, this combination of 

inflammation and increased genetic alterations, alongside other hallmark capabilities, 

drive tumour progression by enabling tumour cell survival, proliferation and 

metastasis.  

In contrast, the acute inflammatory responses observed during key immune events 

such as pathogen clearance and allograft rejection, are seemingly able to induce 

tumour cell death (Aguirre et al. 2019). Modulation of these responses are 

associated with tumour development, making cancer, alongside infection and 

cardiovascular disease, one of the three main causes of death following organ 

transplantation (Chapman et al. 2013). The clinically induced immunosuppression 

required to prevent allograft and transplant rejection leads to a significantly increased 

risk of cancer development, especially in the lung, liver and kidney. This tumour 

development is thought to be associated with the loss of immune surveillance, the 

concept of active detection and eradication of malignant cells by the immune system 

(Aguirre et al. 2019). Therefore, seemingly contradictorily, tumour growth may be 

initiated by stimulation of a robust and chronic immune response, however the 

process of tumour development itself induces an active anti-tumour response which 

must be evaded to enable disease establishment and progression. A number of 

strategies are employed by tumour cells to avoid immune cell recognition and 

elimination, allowing them to evade immune attack and become established as 

clinically detectable disease, a concept which has now been recognised as a further 

hallmark of cancer (Hanahan and Weinberg 2011). Therefore, to understand the pro- 

and anti-tumour roles of immune cells and the underlying basis of cancer cell 
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immune evasion, it is essential to understand how tumour cells and immune cells 

interact with each other.  

 

1.1.1 The immune system 

The immune system is a highly complex interactive network of lymphoid organs, 

cells, proteins and cytokines which protects the host from a wide range of foreign 

antigens including bacteria, microbes, viruses, toxins, as well as the body’s own 

mutated cells (Nicholson 2016). Cells of the immune system are derived from 

common myeloid and lymphoid progenitors and can be broadly split into two “lines of 

defence”: innate and adaptive immunity. Differentiation of immune cells from 

haematopoietic stem cells is illustrated in Figure 1.1.  

Innate immunity is the first line of defence against intruding pathogens and is a non-

specific, antigen-independent mechanism which can be induced quickly upon 

encountering an antigen (Marshall et al. 2018). Cells of the innate immune system 

are largely of myeloid origin and include granulocytes (basophils, eosinophils, 

neutrophils and mast cells), dendritic cells (DCs) and macrophages, while natural 

killer (NK) and innate lymphoid cells (ILCs) form the lymphoid arm of innate 

immunity. The innate immune response is able to recognise mutated or defective 

cells through recognition of the loss of “self” antigens, meaning the inhibitory signal 

provided by healthy cells to immune cells is lost, allowing the innate immune system 

to attack the mutated cell (Kubelkova and Macela 2019). Innate immunity has no 

immunologic memory and is therefore unable to recognise the same pathogen 

should the body be exposed to it again in future. Conversely, adaptive immunity is 

specific, antigen-dependant and has capacity for immunologic memory, enabling the 

host to mount a rapid and efficient immune response upon subsequent re-exposure 

to an antigen. 

The adaptive immune system is comprised of subsets of T and B lymphocytes, 

which following antigen presentation from cells of the innate immune system, can 

generate differentiated populations of antigen-specific effector cells (Chaplin 2010). 

The adaptive immune system has “memory”, where following a successful immune 

response, a population of memory cells remain in the tissue, providing a quick and 

effective antigen-targeted response upon future re-exposure to the same antigen. 
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Innate and adaptive immunity are complementary to each other and are not mutually 

exclusive mechanisms of host defence, therefore defects in either system can result 

in host vulnerability to infection.  

 

 

The innate and adaptive immune responses can be further divided in to type 1 and 

type 2 categories, creating a specific and highly protective response to a wide variety 

of antigens. Type 1 immune responses are pro-inflammatory and are induced 

against intracellular microbes such as bacteria, protozoa and viruses. This response 

is characterised by the presence of the pro-inflammatory cytokines interferon-g (IFN-

g) and tumour necrosis factor (TNF), and the immune response is comprised of type 

1 cluster of differentiation-4 (CD4)+ helper T cells (Th1), NK cells and CD8+ 

Figure 1.1 Haematopoietic stem cell differentiation into innate and adaptive immune cells 
Classical model of differentiation from bone marrow-derived haematopoietic stem cells which 
differentiate firstly into either myeloid or lymphoid progenitor cells. After production by the myeloid 
progenitor cells, megakaryocyte-erythrocyte progenitors produce platelets, while granulocyte-
macrophage progenitors produce granulocytes (mast cells, basophils, neutrophils and eosinophils), 
macrophages and dendritic cells (DCs). Macrophages further differentiate into M1 and M2 
macrophages. Lymphoid progenitor cells differentiate into natural killer (NK) cells, B cells, which 
differentiate further into plasma cells, and subsets of T cells: CD8+ cytotoxic T cells and CD4+ helper 
T cells, which further differentiate into regulatory T cells (Tregs), Th17, Th2 and Th1 cells. The innate 
immune system is primarily comprised of cells from myeloid origin, NK cells and DCs, while the 
adaptive immune system is primarily comprised of T and B cells. Created in Biorender.com.  
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cytotoxic T cells (CTLs) (Spellberg and Edwards 2001). Type 2 immune responses 

protect against large extracellular parasites, while regulating type 1-associated 

inflammation to prevent overactivation and maintain metabolic homeostasis. Type 2 

immune responses are comprised of type 2 CD4+ helper T cells (Th2), mast cells, 

basophils, eosinophils and macrophages, while the overall response is characterised 

by the expression of the cytokines interleukin-4 (IL-4), IL-9 and IL-13 (Koyasu and 

Moro 2011). Chronic inflammation is associated with an imbalance of type 1 and 

type 2 immune responses and the release of various pro-inflammatory and 

oncogenic mediators including IL-2, IL-6, TNF, growth factors and cytokines, 

resulting in an inflammatory environment which can promote tumorigenesis (Qu et al. 

2018; Basu et al. 2021). Th17 cells also play a key role in chronic inflammation, and 

their over expression accompanied by IL-17 results in tissue inflammation, also 

associated with tissue destruction, autoimmunity and vascular activation (Miossec 

and Kolls 2012). 

 

1.1.2 Innate immune cells 

1.1.2.1 Granulocytes 

Granulocytes have a dense granule content within their cytoplasm, and the four main 

cell types: basophils, eosinophils, neutrophils and mast cells, are derived from a 

common granulocyte-macrophage progenitor. These cells are produced in large 

numbers at initiation of the innate immune response, however they are generally 

short lived (Alberts et al. 2002).  

Basophils account for less than 1% of peripheral blood leukocytes and play a role in 

allergy response and host response to parasites after pathogen associated 

molecular pattern (PAMP) activation (Nakanishi 2010). Basophils contain basophilic 

granules and express the allergen- and parasite-responsive high-affinity 

immunoglobulin (IgE) receptor FcεR. Basophils are also the only circulating 

lymphocytes which contain histamine upon activation (Borriello et al. 2017). 

Basophils can also be induced to secrete cytokines to promote and regulate the 

adaptive immune response, and so could act as a link between the innate and 

adaptive immune systems (Min et al. 2006).  
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Eosinophils represent ~1% of circulating leukocytes and provide host responses to 

parasitic infections and allergens. These cells are characterised by large secretory 

granules containing growth factors, proteases, cytokines and enzymes and which 

are released by degranulation during active infection. Eosinophils express a large 

number of surface markers and can release cytokines including IL-10 and IL-4 to 

allow regulation of both the innate and adaptive responses (Long et al. 2016). 

Neutrophils account for 50-70% of all circulating leukocytes and are microbicidal first 

responder cells during acute immune responses that phagocytose pathogens in 

response to PAMPs or damage-associated molecular patterns (DAMPs) (Kraus and 

Gruber 2021). Neutrophils can also modulate the immune response by production of 

cytokines to recruit other immune cells to the site of inflammation (Li et al. 2019). 

Tissue-resident mast cells have a number of features unlike other granulocytes, in 

that they are present in tissues throughout the body, are long-lived and regulate a 

number of normal functions including vasodilation and vascular homeostasis. 

Alongside this they also have key roles in innate and adaptive immune responses, 

allergic and anaphylactic responses and immunity against parasites and toxins such 

as venoms (Krystel-Whittemore et al. 2016). Upon activation, mast cells employ a  

wide spectrum of methods to include a protective immune response against 

microbial and viral pathogens including phagocytosis, production of reactive oxygen 

species and antimicrobial peptides and release of granular and secreted mediators 

(Urb and Sheppard 2012).  

 

1.1.2.2 Monocytes 

Monocytes are mononuclear phagocytic cells which make up 5-10% of the peripheral 

immune cell population, with substantial pools in the lung and spleen that can be 

mobilised on demand (Ginhoux and Jung 2014). Monocytes are crucial for an 

effective immune response against pathogens and have a number of adhesion and 

chemokine cell surface receptors to recognise pathogens and enable migration from 

the blood to sites of infection or injury. Once recruited to tissues, monocytes mediate 

direct antimicrobial activity and can also enter lymph nodes while promoting adaptive 

immune responses alongside modulation of the inflammatory response by secretion 

of cytokines including Il-6, IL-1b and TNF (Agarwal et al. 1995). Monocytes further 
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differentiate into macrophages or dendritic cells (DCs), following stimulation by 

cytokines and/or microbial molecules (Chiu and Bharat 2016). 

 

1.1.2.3 Macrophages 

Macrophages are a heterogenous family of myeloid cells which have a number of 

roles in homeostasis and physiological processes, alongside vital duties in pathogen 

destruction, tissue repair and remodelling, clearance of cellular debris and regulation 

of the adaptive immune response (Zhang et al. 2021). Macrophages are generally 

split into two distinct differentiation states: the classically activated type 1 

macrophage (M1) and the alternatively activated type 2 macrophage (M2). Cells in 

the naïve, undifferentiated (M0) state have been historically thought to be precursors 

for M1 or M2 differentiation with no specific function, however have since been found 

to have prognostic relevance, with high levels associated with poor outcome in 

various cancer types and so M0 macrophages may have a currently unexplored role 

in tumorigenesis (Zhang et al. 2022). M1 macrophages are polarised by Th1 

cytokines including TNF and INF-g, and express pro-inflammatory cytokines such as 

IL-1b, IL-6, IL-12 and TNF, alongside their role in antigen presentation to T 

lymphocytes to initiate an adaptive immune response. M2 macrophages are 

polarised by Th2 cytokines such as IL-4 and IL-13, and produce anti-inflammatory 

cytokines such as IL-10 and transforming growth factor beta (TGF-b), which 

suppress Th1-mediated inflammation and promote tissue remodelling and wound 

healing through production of matrix metalloproteinases (MMPs) and pro-angiogenic 

factors (Mills 2012; Martinez and Gordon 2014). 

 

1.1.2.4 Dendritic cells  

DCs are a heterogenous group of highly plastic cells arising from both myeloid and 

lymphoid progenitors, which exist in the blood and both lymphoid and non-lymphoid 

tissues. Myeloid dendritic cells are the most potent inducers of CD4 T cell activation 

and are central to the regulation of immune responses, while lymphoid dendritic cells 

have roles in maintaining tolerance. DCs have traditionally been divided into two 

discrete subtypes: conventional and non-conventional DCs including plasmacytoid 

DCs (Kushwah and Hu 2011). Conventional DCs be further divided into migratory 
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and lymphoid DCs. Migratory DCs migrate from peripheral tissues to lymphoid 

organs, while lymphoid DCs reside in the lymphoid organs and lack migratory 

function. Migratory DCs are found in the skin, lung, intestinal tract, liver and kidneys, 

while lymphoid DCs remain in lymphoid organs including the nodes, spleen and 

thymus. Non-conventional DCs are distinguished from conventional DCs by their 

unique ability to secrete high amounts of IFN in response to viral infections. These 

DCs have key roles in maintenance of peripheral tolerance as well as in induction of 

the autoimmune response. 

DCs are responsible for initiating antigen-specific immune responses and have key 

roles in regulation of the immune response by forming a link between the microbial-

sensing features of the innate immune system to the highly specific adaptive immune 

response (Mellman 2013). In response to danger signals such as microbes, 

inflammatory cytokines and tissue damage, immature DCs migrate towards the site 

of infection where they engulf antigens by phagocytosis, following which maturation 

occurs transforming them into professional antigen presenting cells (APCs). Mature 

DCs then migrate to the lymph nodes where they present their antigens to T cells to 

induce naïve T cell activation and effector differentiation, thereby initiating the 

adaptive antigen-specific immune response (Patente et al. 2019). 

 

1.1.2.5 Natural killer cells  

NK cells make up around 5-15% of circulating lymphocytes in healthy individuals, 

however these levels are significantly altered in the development of many diseases 

(Liu et al. 2021b). NK cells arise from a common lymphoid progenitor and mature in 

the bone marrow and secondary lymphoid organs including the lymph nodes and 

tonsils (Abel et al. 2018). In contrast to CD8+ cytotoxic T cells which require prior 

antigen exposure to initiate an immune response, NK cells invoke a cytotoxic 

response without the requirement for prior sensitisation, and are able to recognise 

and rapidly eliminate infected and mutated cells. NK cells are the first line of immune 

defence in the innate immune system, during which they also release 

immunoregulatory cytokines to promote an inflammatory response and the 

recruitment and activation of other immune cells (Schleinitz et al. 2010). 
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NK cells can be divided into subpopulations based on their expression of CD56, an 

isoform of neural cell adhesion molecule (NCAM) which mediates homotypic 

adhesion, and CD16 (FcgIII). The five NK subsets commonly observed in healthy 

individuals are: (1) CD56bright CD16−, (2) CD56bright CD16dim, (3) CD56dim CD16− 

(rare), (4) CD56dim CD16bright, and (5) CD56− CD16bright (rare) (Poli et al. 2009). 

CD56dim cells are the most common subtype of NK cells in peripheral blood and 

secrete low amounts of cytokines, however they have significantly higher cytolytic 

capacity compared to CD56bright cells due to their greater expression of cytolytic 

granules, perforin and granzymes (De Maria et al. 2011). Conversely, CD56bright 

cells, which make up the majority of the NK population found in secondary lymphoid 

organs, secrete large amounts of cytokines upon activation, including IL-10, IL-13, 

IFN-γ and TNF, 13 (Moretta 2010; Wagner et al. 2017). 

 

1.1.2.5i NK cell regulation 

Due to the ability of NK cells to implement an immediate cytotoxic response upon 

detection of virus-infected or neoplastic cells without prior sensitisation, NK cell 

activity is tightly regulated by numerous highly specific inhibitory and activating 

receptors to protect healthy cells from attack (Zwirner and Ziblat 2017). 

NK cells carry out their effector response through two mechanisms dependant on the 

presence or absence of infected cell surface ligands for their specific receptors; 

degranulation of cytolytic granules containing granzymes and perforin, or induction of 

death-receptor mediated apoptosis by secretion of cytokines such as tumour-

necrosis factor related apoptosis-inducing ligand (TRAIL) and proteins such as Fas 

ligand (FasL) (Piersma and Brizić 2022). NK cells can express a wide range of 

activating and inhibitory receptors in various combinations, allowing response to a 

large range of stimuli and multiple layers of regulation (Sivori et al. 2019).  

 

1.1.2.5ia Inhibitory receptors  

The interaction of inhibitory receptors with their specific ligands of either major 

histocompatibility complex (MHC) class I molecules, otherwise known as the human 

leukocyte antigen (HLA) system, or non-MHC molecules, is essential for the 

regulation of NK cell effector functions and protection of normal cells from 
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inappropriate cytotoxic attack. The two major classes of inhibitory receptors are killer 

cell immunoglobulin-like receptors (KIR) and CD94- natural killer group 2 member A 

(NKG2A) heterodimers. KIRs are type I transmembrane glycoproteins which 

recognise HLA-A/B/C expression, while NKG2A are type II transmembrane receptors 

with a C-type lectin-like scaffold, recognising only HLA-E (Campbell and Purdy 

2011). Mature NK cells express at least one type of inhibitory receptor for self HLA 

antigens, with only very few peripheral blood NK cells lacking these receptors in an 

anergic state (Sivori et al. 2019). Inhibitory receptor ligands are expressed by most 

healthy cells to prevent NK cell activation and protect them from destruction, as 

shown in Figure 1.2a. A list of inhibitory NK cell receptors and their ligands can be 

found in Table 1.1 
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Both KIRs and NKG2A inhibitory receptors contain an immunoreceptor tyrosine-

based inhibitory motif (ITIM) (I/VxYxxL/V) in the cytoplasmic domain. Upon 

interaction with their ligand, the ITIM is phosphorylated by a Src family kinase 

resulting in the recruitment and activation of tyrosine phosphatase Src homology 

region 2 domain-containing phosphatase-1 (SHP-1) and SHP-2 (Campbell and 

Purdy 2011). Recruitment of SHP-1 and SHP-2 leads to NK cell inhibition by 

dephosphorylation of critical tyrosine phosphoproteins that initiate activation  

receptor signalling, resulting in inhibition of cytokine production, degranulation and 

NK cell proliferation (Kumar 2018). This inhibition is temporary, and the NK cell can 

Figure 1.2 Engagement of NK inhibitory and activating receptors 
NK cell regulation by inhibitory and activating receptors. (A) Expression of MHC class I ligands by 
healthy cells induces immune tolerance by engaging with NK cell inhibitory receptors, while dampening 
activating signals. (B) Cells which have lost MHC class I expression (“missing self”) no longer provide 
inhibitory signals to NK cells and so are susceptible to NK cell attack. (C) Stress-induced 
overexpression of activating ligands override inhibitory signals leading to “induced-self” NK activation. 
(D) Antigen-specific antibodies bind to CD16 to initiate antibody-dependant cytotoxicity (ADCC). 
Adapted from Vivier et al 2012 and Morvan and Lanier 2016. Created in Biorender.com. Abbreviations: 
MHC, major histocompatibility complex, NK, Natural killer cell. 
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be activated upon subsequent interaction with a target cell lacking the specific 

inhibitory receptor ligands.   

 

 

 

1.1.2.5ib Activating receptors  

NK cells can be classed as resting or activated, based on their activity and 

expression of inhibitory and activating receptors. Activated NK cells are able to carry 

out lysis of target cells, however even prior to their activation, resting NK cells are 

not completely unresponsive, but their functions are more tightly regulated than NK 

cells which have been fully activated by IL-2 (North et al. 2007). Resting NK cells are 

less active and are generally less able to carry out their lytic functions compared to 

IL-2-activated NK cells (Bryceson et al. 2006).  

NK cell activation requires two conditions to be met: firstly, target cells must not 

express MHC class I molecules, utilising the “missing self” hypothesis, that NK cells 

Table 1.1 Inhibitory NK cell receptors and their ligands 

Abbreviations: AIRM1, adhesion inhibitory receptor 1, CD, cluster of differentiation, HLA, human 
leukocyte antigen, KLRG1, killer cell lectin-like receptor G1, LAIR1, leukocyte-associated 
immunoglobulin-like receptor 1, LILR, leukocyte immunoglobulin-like receptor, LLT-1, lectin-like 
transcript 1, NKR-P1A, NK receptor P1A, TIGIT, T cell immunoreceptor with immunoglobulin and 
ITIM domains. 
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preferentially kill cells with reduced or aberrant expression of MHC class I antigens, 

as shown in Figure 1.2b (Zamora et al. 2015). Secondly, the same cells must 

express ligands for NK cell activating receptors, which are upregulated on 

transformed or virally infected cells (Tremblay-Mclean et al. 2019). NK cells express 

a wide range of activating receptors, which, like the inhibiting receptors, are 

expressed in combination and have a range of ligands enabling widespread initiation 

of NK effector functions. Activating receptors include CD16, CD314, NKG2D, CD226 

(DNAM-1), CD244 (2B4), members of the CD158 (KIR) family that carry a short 

cytoplasmic tail (KIR2DS and KIR3DS) and CD94 (NKG2C), among others (Zwirner 

and Ziblat 2017). A further group of activating receptors are the natural cytotoxicity 

receptors (NCRs) CD335 (NKp46), CD336 (NKp44) and CD337 (NKp30), which are 

potent inducers of NK cytotoxicity and have key roles in NK-mediated tumour cell 

immunosurveillance (Kumar 2018). A list of activating receptors and their ligands can 

be found in Table 1.2.  

The majority of activating receptors including CD16, NCRs and activating KIRs, 

signal through immune-receptor tyrosine-based activation motifs (ITAMs) within their 

cytoplasmic domains (Medjouel Khlifi et al. 2022). Within the ITAM, tyrosine residues 

interact with gamma chains of the high affinity IgE receptor FcεRI (FcεRI-γ), zeta 

chains of CD3 (CD3-ζ) and DNAX activation protein of 120kDa (DAP12) 

transmembrane proteins to form homo- and hetero-dimer signalling subunits. 

Engagement of these receptors results in the subsequent phosphorylation of the 

ITAM tyrosine by Src family members, followed by binding of the tyrosine kinases 

SYK and zeta-chain-associated protein kinase 70 (ZAP-70) (Medjouel Khlifi et al. 

2022). Signalling through a number of pathways is then initiated, including via the 

mitogen-activated protein kinase/extracellular signal-related kinase (MAPK/ERK) and 

phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathways to regulate gene 

transcription (Lanier 2008). 

Other groups of activating receptors lacking ITAMs signal through alternative 

mechanisms upon interaction with their ligands. NKG2D is a type II transmembrane 

receptor which has no ITAM, and instead forms a hexamer receptor complex with 

two DAP10 homodimer signalling units. Upon interaction with its ligand, the p85 

subunit of PI3K and the son of sevenless homolog 1–vav guanine nucleotide 

exchange factor 1-growth factor receptor bound protein 2 (Sos-1-Vav1-Grb2) 
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complex are recruited to the phosphorylate motif in the DAP10 domain (Medjouel 

Khlifi et al. 2022). NKG2D is an important immunosurveillance receptor which 

responds to stress-induced ligand overexpression on virally infected and transformed 

cells (Figure 1.2c). Activation of this receptor leads to the downstream activation of 

Guanosine-5'- triphosphate (GTP)ases, ERK, Akt and signal transducer and 

activator of transcription 5 (STAT5), promoting NK cell target adhesion and 

immunological synapse (IS) formation (Upshaw et al. 2006).  

A further alternative method of activation receptor induction is that employed by 

CD16 (FcγRIIIA), which initiates antibody-dependant cell-mediated cytotoxicity 

(ADCC) through recognition of the constant Fc portion of IgG antibodies bound to 

specific antigens displayed on infected or transformed cells (Figure 1.2d). Following 

this engagement, the release of cytotoxic granules results in tumour cell death, 

alongside release of proinflammatory cytokines such as IFN-g and chemokines 

which leads to the recruitment and activation of further tumour-infiltrating immune 

cells to increase the cytotoxic response (Yeap et al. 2016). NK cell expression levels 

of CD16A have been positively correlated with the cytotoxic potency of NK cells, and 

levels are downregulated in the tumour microenvironment (TME) of many cancer 

types, contributing to NK cell dysfunction (Medjouel Khlifi et al. 2022).  
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1.1.2.5ii NK cell activity 

An activating NK cell IS is formed following the interaction of an NK cell with a target 

cell which both express activating stress-response ligands but lack inhibitory MHC 

class I ligands. Formation of an IS induces target cell death either through direct lysis 

caused by degranulation of lytic molecules, or target cell death receptor ligation 

(Orange 2008). NK cell degranulation and is used as an indirect measure of NK cell 

cytotoxic activity and the process can be divided into four major stages: (1) 

Formation of the IS between NK cell and target cell, followed by reorganisation of the 

actin cytoskeleton, (2) Polarisation of the microtubule organising centre (MTOC) and 

secretory lysosome towards the IS, (3) Docking of the secretory lysosome with the 

NK plasma membrane and (4) Fusion of the secretory lysosome with the plasma 

Table 1.2 Activating NK cell receptors and their ligands 

Abbreviations: AICL, activation-induced C-type lectin, BAT-3, HLA-B-associated transcript 3, 
HA, hemagglutinin, HLA, human leukocyte antigen, HSPG, heparan sulphate proteoglycan, 
MIC, MHC class I polypeptide-related sequence, PVR, polo virus receptor, ULBP, UL16 
binding protein.   
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membrane and release of lytic granules containing perforin, granzymes, TRAIL, 

granulysin and anti-microbial peptides into the target cell (Paul and Lal 2017). 

Perforin polymerises and forms pores in the cell membrane, facilitating the entry of 

granzymes into the target cell where they activate caspase molecules leading to the 

induction of apoptosis. NK cells can also induce apoptosis via the extrinsic pathway 

through the expression of FasL and TRAIL on their cell membrane, which interact 

with the death receptors Fas and TRAIL-R respectively on target cells. This 

interaction leads to ligation and formation of the death-inducing signalling complex 

with subsequent activation of death signalling via the caspase cascade (Sordo-

Bahamonde et al. 2020).  

NK cells are also effective producers of chemokines and pro-inflammatory cytokines 

which recruit other innate cells to the site of inflammation, such as neutrophils, 

macrophages and DCs, alongside other myeloid and lymphoid cells (Abel et al. 

2018). These cytokines include TNF, IFN-g, IL-5, IL-10, and granulocyte/monocyte 

colony-stimulating factor (GM-CSF). Production of chemokines such as IL-8, 

chemokine (C-C motif) ligand 3 (CCL3), CCL4 and CCL5 are essential to mediate 

antiviral, antibacterial and antitumour activity. Additionally, the activity of NK cells is 

also susceptible to influence from cytokines produced by other immune cells (Paul 

and Lal 2017).  

 

1.1.3 Adaptive immune cells  

Cells of the adaptive arm of the immune system arise from a common lymphoid 

progenitor in the bone marrow and differentiate into subsets of either T or B cells, 

depending on where the maturation occurs.  

 

1.1.3.1 B lymphocytes 

B cells develop in the bone marrow within niches which provide the appropriate 

stimuli to allow B cell survival and differentiation into plasma cells, which 

subsequently produce antibodies, and have a key role in humoral immunity. B cells 

are continuously produced in the bone marrow (Chaplin 2010; Marshall et al. 2018). 

B cells are the major component of the humoral response in adaptive immunity. B 
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cells produce highly specific Ig antibodies which are capable of directly neutralising 

pathogens, but also have further roles in activation of the complement cascade and 

cytokine production (Hoffman et al. 2016). B cells can recognise antigens directly 

with no need for priming from APCs. B cells can however act as APCs for T cell 

activation and secrete cytokines to strengthen the innate and adaptive immune 

responses (Marshall et al. 2018). B cells develop from a common lymphoid 

progenitor in the foetal liver and bone marrow, following which, rearrangement of the 

IG heavy and light chain genes creates a complete surface IgM class Ig molecule 

(Shahaf et al. 2016). In association with Igα and Igβ, the IgM molecules form a 

unique B cell receptor (BCR). Immature IgM+ B cells then migrate to secondary 

lymphoid organs, where they differentiate into long-lived follicular (FO) B cells or 

marginal zone (MZ) B cells, based on the strength of their BCR signalling (Pillai and 

Cariappa 2009). Following specific antigen presentation by an APC and recognition 

by the BCR, B cells next undergo either a T cell-dependant or -independent 

activation process to differentiate into short-lived antibody-secreting plasma cells or 

long-lived memory B cells. Plasma cells produce large amounts of antibodies 

providing effective protection against pathogens, while long-term memory B cells 

“remember” antigens from past infections, enabling a rapid response upon re-

exposure to the same antigen. A third subtype, B1 cells, produce low affinity natural 

antibodies (nAbs) for regulation of tissue homeostasis in the absence of exogenous 

antigenic stimulation (Rodriguez-Zhurbenko et al. 2019). 

 

1.1.3.2 T lymphocytes 

T cells are responsible for cellular immunity and are derived from cells which migrate 

to the thymus, where they mature and differentiate into early thymic progenitors, 

before finally differentiating into functional T cells. In healthy adults, T cell numbers 

are maintained through division of mature T cells outside of the lymphoid organs 

(Chaplin 2010). T cells are responsible for many aspects of adaptive immunity, 

including responses to pathogens, allergens, and tumours, alongside maintenance of 

immunological memory and self-tolerance. T cell differentiation proceeds in a series 

of steps beginning with the migration of committed lymphoid progenitors from the 

bone marrow to the thymus, where they lose the potential to become B or NK cells 

and express a pre-T cell receptor (TCR), comprised of CD3, a non-rearranging pre-
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Ta chain and a rearranged TCR b-chain (Aifantis et al. 2001). Upregulation of CD4 

and CD8 co-receptors occurs following pre-TCR expression, resulting in their 

proliferation and upregulation, allowing transition of immature thymocytes from CD4-

CD8- double negative (DN) to the CD4+CD8+ double positive (DP) stage. At the DP 

stage, the pre-Ta chain is replaced with a rearranged TCR a-chain forming a 

complete ab TCR, which induces cell cycle progression and differential gene 

expression in developing T cells. DP cells can subsequently interact with 

endogenous peptides presented on MHC class I and II molecules within the thymus 

to determine differentiation into single-positive, CD4+ or CD8+ mature T cells, which 

then migrate into secondary lymphoid organs to execute their effector responses 

(Winandy et al. 1999).  

 

1.1.3.2i Antigen presentation 

The activation and differentiation of T cells is directly influenced by APCs of the 

innate immune system, and is crucial for initiation of the adaptive immune response, 

creating a link between the two systems (Gaudino and Kumar 2019). Upon 

encountering a pathogen, mature APCs (DCs, macrophages and B cells) 

phagocytose and internalise peptide fragments of the antigen, subsequently 

displaying those peptides bound to an MHC molecule on their membrane 

(Mantegazza et al. 2013). APCs next migrate into lymph nodes where they provide 

naïve T cells with the signals to stimulate differentiation and proliferation into 

antigen-specific T cells with a range of functions appropriate to the immunological 

challenge. T cells require two stimulatory signals to become fully activated, firstly the 

antigen-specific signal sent via the TCR, and secondly an additional co-stimulatory 

signal produced by the APC leading to full activation of the T cell, which is critical to 

sustain cell proliferation, differentiation into effector or memory status and avoid 

apoptosis (Frauwirth and Thompson 2002). MHC class I and II molecules are able to 

stimulate CD8+ and CD4+ T cells respectively and secure binding is essential to 

elicit a full immune response, with incomplete binding leading to apoptosis (Roche 

and Furuta 2015). Polarizing cytokine release from the APC is a further determinant 

of lymphocyte differentiation, with a number of possible outcomes depending on the 

cytokines present within the microenvironment (Willerslev-Olsen et al. 2013). The 

successful activation and differentiation of antigen-specific T cells leads to clonal 
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expansion of these differentiated cell populations as they migrate to the site of 

infection. Upon successful elimination of the pathogen, most T cells die, leaving 

behind a small proportion of memory T cells which are able to instigate a rapid 

immune response upon re-exposure to the same pathogen (Omilusik and Goldrath 

2017).  

 

1.1.3.2ii CD4+ T cells 

CD4+ T cells play a key role in the innate and adaptive immune responses. Due to 

their ability to assist B cells in antibody production, activation of innate immune cells, 

cytotoxic T cells and non-immune cells, enhancement of macrophage microbial 

activity and production of chemokines and cytokines to recruit innate immune cells to 

infection sites, Th cells enhance both the cellular and humoral immune responses 

(Luckheeram et al. 2012). Naïve CD4+ T cells are activated through antigen 

presentation by MHC class II molecules, following which differentiation into one of 

seven phenotypes depends on the complex network of specific cytokine signalling 

and transcription factors present in the microenvironment, followed by epigenetic 

modifications (Zhu et al. 2010). The seven lineages of CD4+ T cells are T helper 

(Th) 1, Th2, Th9, Th17, Th22, T follicular helper (Tfh) and regulatory T cells (Tregs), 

which are distinguishable by their individual functions and cytokine profiles 

(Golubovskaya and Wu 2016). 

Th1 cells are differentiated from naïve CD4+ cells in the presence of IL-12, IL-18 and 

IFN-g secreted by macrophages and activated DCs (Golubovskaya and Wu 2016). 

Th1 cells are key regulators of type 1 immunity through their production of pro-

inflammatory cytokines including IFN-g, IL-2 and TNF, which stimulates neighbouring 

macrophages and DCs to increase their phagocytic and antigen-presenting 

functions, therefore enhancing the immune response (Zhu et al. 2010). Th1 cells 

play a key role in the anti-cancer immune response as they directly kill tumour cells 

through release of cytokines which activate death receptors on the tumour cell 

surface (Knutson and Disis 2005).  

Th2 cells are induced by IL-2, IL-4, IL-25 and IL-33 produced by eosinophils and 

mast cells, and following differentiation are key mediators of type 2 immunity 

(Kasatskaya et al. 2020). Th2 cells induce immunoglobulin class switching to IgE 
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which activates other innate immune cells including mast cells and basophils, 

alongside secretion of IL-4, IL-5 and IL-13, which enhances the survival of B cells 

(Golubovskaya and Wu 2016).The role of Th2 cells in cancer development is 

unclear, with both pro- and anti-tumour roles reported (Ellyard et al. 2007), however 

Th2 cells are generally associated with a pro-tumour immune environment, tumour 

growth and metastasis. Th2 cells have been associated with cytokine release and T 

cell anergy, leading to the polarisation of M2 tumour-associated macrophages 

(Tokumaru et al. 2020), however direct evidence for cancer development in relation 

to the presence of Th2 cells has not been reported (Schreiber et al. 2021) 

Th9 cells, a relatively newly discovered subtype, are induced through the production 

of TGF-b and IL-4, and due to their secretion of IL-9 and pro-inflammatory cytokines, 

have roles in growth promotion of mast cells and robust anti-tumour responses. Th9 

cells also have further important roles in mucus production and eosinophil infiltration 

during allergic reactions (Chen et al. 2019). 

Th17 cells are induced by IL-6, IL-21, IL-23 and TGF-b and have key roles in 

mediating responses against extracellular bacteria and fungi through their production 

of inflammatory cytokines including IL-17, IL-22, IL-26, TNF and CCL20 (Tesmer et 

al. 2008). The role of Th17 in anti-tumour immunity is unclear and may depend on 

tumour type. It has been reported that IL-17 derived from Th17 cells was associated 

with increased angiogenesis and poor outcomes in colorectal carcinoma, however in 

melanoma, Th17 produced more effective anti-tumour responses than Th1 cells. 

Furthermore, Th17 cells were able to promote dendritic cell infiltration and antigen 

presentation, resulting in a strong CD8+ anti-tumour response in mouse melanoma 

models (Chen et al. 2020). 

Th22 cells are induced by IL-6 and TNF secreted from plasmacytoid DCs and have 

roles in skin inflammation and wound healing following their expression of IL-22, and 

CCR4, CCR6 and CCR10, which allow infiltration into the epidermis (Pan et al. 

2022). Th22 cells are generally associated with cancer progression and poor 

prognosis, and recent studies suggest that targeting the IL-22/IL-22R pathway could 

be a potential therapeutic target (Doulabi et al. 2022). 

Tfh cells are important mediators of B cell activity, with key roles in the differentiation 

of B cells into plasma cells and memory B cells, alongside the formation of germinal 
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centres. Tfh cells were first identified in the human tonsil, but are found throughout 

the germinal centres of secondary lymphoid tissues including the spleen and lymph 

nodes. Tfh cells are induced by the presence of IL-6, IL-12 and IL-21 and express 

the greatest quantity of co-stimulatory molecules and possess the TCRs with the 

highest antigen affinity of all Th subsets (Crotty 2019). Tfh cells produce IL-21, 

alongside expression of the co-stimulatory molecule CD40 which interacts with 

CD40-L on the B cell surface, to drive B cell proliferation. In the absence of Tfh cells, 

germinal centres do not form, resulting in loss of B cell-mediated antibody production 

(Stebegg et al. 2018). Due to their roles in regulation of B cells in both normal states 

and during development of diseases including cancer, this focus will examine Tfh 

cells as part of the normal and cancer-associated immune responses. Tfh cells are 

associated with unfavourable outcome in B-cell associated malignancies, while 

increased levels of Tfh cells are associated with better outcome in some solid tumour 

types, however the role of Tfh cells in cancer development is not yet well 

understood. The participation of Tfh cells in the anti-tumour response appears to be 

context-dependant and relies on the presence of various cytokines and interactions 

with other cells (Gutiérrez-Melo and Baumjohann 2023). This topic remains an 

activate research area, with Tfh cells thought to be a promising target to regulate 

cancer development either through the blockade of Tfh-associated B cell 

development in B-cell malignancies, or through boosting of the anti-tumour functions 

via the interaction of Tfh cells with CD8+ cytotoxic T cells (Niogret et al. 2021).  

 

1.1.3.2iii CD4+CD25+Foxp3+ regulatory T cells 

Regulatory T cells (Tregs) are a highly important subset of CD4+ cells, characterised 

by the nuclear expression of Forkhead box P3 (FoxP3), which maintain immune 

homeostasis by the active suppression of macrophages, DCs, B and T cells to limit 

inappropriate or excessive immune responses (Magg et al. 2012). FoxP3 is a critical 

regulator of Treg development, function and homeostasis and is essential for the 

suppressive function and activity of Tregs (Schmitt and Williams 2013). Tregs are 

primarily generated in the thymus (natural Tregs; nTregs), but can also be generated 

extrathymically at peripheral sites or generated in vitro from CD4+ T cells in the 

presence of TGF-β and IL-2 (induced Tregs, iTregs) (Shevach and Thornton 2014). 

nTregs are predominantly found in the lymph nodes and blood stream, and 
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constitutively express Foxp3, with key roles in providing tolerance to self-antigens. 

iTregs are found in barrier tissues and recognise foreign antigens with high affinity in 

states of chronic inflammation to control the inflammatory response (Schmitt and 

Williams 2013). Lack of functional Tregs results in a range of primary 

immunodeficiencies including immunodysregulation polyendocrinopathy enteropathy 

X linked (IPEX) syndrome, Omenn syndrome and hyper IgE syndrome, and so 

protocols to induce or restore Treg function have gained interest in recent years 

(Schmetterer et al. 2012).  

Due to their key role in regulation of immune responses, both in normal conditions 

and in the development of diseases including cancer, this thesis will examine the role 

of Tregs as part of the normal and cancer-associated immune responses. Tregs 

regulate the immune response and maintain immune homeostasis through a number 

of mechanisms depending on target cell type and activation status, as well as the 

location and cytokine and microorganism milieu of the immune reaction. Treg actions 

may occur either through the release of immunosuppressive cytokines such as IL-10, 

TGF-β and IL-35, metabolic disruption, induction of apoptosis and downregulation of 

co-stimulatory molecules on APCs such as DCs (Schmidt et al. 2012). 

 

1.1.3.2iv CD8+ cytotoxic T cells  

CD8+ T cells or are often referred to as cytotoxic T lymphocytes (CTLs) due to their 

main function of destroying infected or malignant cells in an antigen-dependant 

manner. Following recognition of MHC class I molecules presenting antigenic 

peptides, CD8+ T cells proliferate and differentiate into either CTLs or memory CD8+ 

T cells, and migrate to sites of infection (Cui and Kaech 2010).  

CTLs are highly cytotoxic, IL-2 dependant, and rapidly express TFN, IFN-g, 

granzymes and perforin upon antigen recognition and activation (Kelso et al. 2002). 

Following activation, CTLs use three major mechanisms to kill target cells: (i) via the 

interaction of FasL on CTLs with Fas on target cells, triggering the classical caspase 

cascade and subsequent apoptosis of the target cell, (ii) secretion of cytokines, 

primarily TNF and IFN-γ, to also trigger the caspase cascade resulting in Fas-

mediated apoptosis and increased MHC class I antigen presentation, and (iii) 

production and release of cytotoxic granules including perforin, to form a pore in the 
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cell membrane, and granzymes to degrade the target cell membrane and induce 

apoptosis followed by phagocytosis (Barry and Bleackley 2002). 

The other final product of CD8 cell differentiation is memory CD8+ T cells, which 

provide antigen-specific, long-term immunity against viral and bacterial agents. 

These cells are found in high numbers in peripheral tissues and are long-lived and 

maintained through IL-15 and IL-17-driven self-renewal, ready to rapidly respond to 

secondary infections (Turtle et al. 2009). Memory T cells exist in a “pro-growth” state, 

characterised by the mRNA expression of anti-viral cytokines, chemokines and 

cytotoxic proteins which allow them to expand and develop their effector functions 

faster than naïve CD8+ T cells to create a rapid and antigen-specific response 

(Samji and Khanna 2017).  
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1.1.4 The cancer-immunity cycle  

The generation of immunity to cancer is a cyclic process known as the cancer-

immunity cycle, which is self-propagating and leads to an accumulation of immune-

stimulatory factors that increase and broaden T cell responses. This cycle is 

characterized by inhibitory factors which result in immune regulatory feedback 

mechanisms that limit or stop development of immunity. The cancer-immunity cycle 

can be divided into seven major steps which begins with the release of antigens from 

the cancer cell and ends with the killing of cancer cells, releasing antigens to restart 

the cycle (Chen and Mellman 2013), as described in Figure 1.3. 

Figure 1.3 The cancer-immunity cycle 
The cancer-immunity cycle is a cyclic process of anti-tumour immune responses, beginning with 
tumour cell death and associated release of antigens (step 1). Antigens are presented to CTLs 
resulting in their priming and activation, following which the CTLs are trafficked to the tumour site 
where invasion occurs (steps 2-5). Tumour cells are recognised by the CTLs (step 6), and the cycle 
ends with tumour cell killing by CTLs resulting in the release of cancer cell antigens (step 7), which 
restarts the process. Adapted from Chen and Mellman 2013. Created in BioRender.com. 
Abbreviations: CTL, cytotoxic T lymphocyte, DC, Dendritic cell. 
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The first step in the cycle is the capture of cancer cell antigens by DCs, created 

through the loss of cellular regulatory processes and accumulation of genetic 

alterations. This step must be accompanied by immunogenic signals such as 

proinflammatory cytokines and factors released by dying cancer cells, otherwise 

peripheral tolerance to the tumour antigens may be induced and no T cell responses 

will be induced. In step 2, DCs present the tumour antigens to T cells on MHC class I 

and II molecules, resulting in the priming and activation of antigen-specific effector T 

cell responses (step 3). At this point, the nature of the immune response has been 

determined, with the critical balance between the ratio of effector T cells compared to 

Tregs being key to the outcome. The activated effector T cells next traffic to tumours 

through the blood vessels (step 4) and infiltrate the tumour bed (step 5), where they 

recognise and bind to cancer cells through their TCR and MHC class I-bound 

antigens (step 6), and the cancer cell is killed (step 7). Following cancer cell death, 

the release of additional tumour-associated antigens triggers step 1 of the process, 

restarting the cancer-immunity cycle (Chen and Mellman 2013). In cancer patients, a 

number of issues may cause the cycle to not complete correctly, including non-

detection of tumour antigens, incorrect recognition of antigens as self rather than 

foreign resulting in Treg-induced immunosuppressive responses rather than effector 

responses, or incomplete tumour infiltration (Motz and Coukos 2013). 

 

1.1.5 Cancer immunoediting 

Cancer immunoediting is the theory that the immune system is able to both constrain 

and promote tumour development. The theory proceeds through three key stages: 

elimination, equilibrium and escape (Dunn et al. 2004), represented in Figure 1.4. 

Throughout these three phases, tumour immunogenicity is edited by the adaptive 

immune system and edited tumours are able to escape the immune system resulting 

in unrestrained growth. 

 

1.1.5i Elimination 

The elimination phase is the classical concept of cancer immunosurveillance, where 

innate and adaptive immune cells are able to detect transformed cells that have 
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escaped intrinsic tumour suppression mechanisms such as p53, and eliminate them 

before they become clinically apparent (McCoach and Bivona 2018). These tumours 

cells express stress-induced molecules, cancer cell antigens such as MHC class I 

molecules and NKG2D ligands recognised by CTLs and NK cells, Fas and TRAIL-R, 

tipping the balance to an effective anti-tumour response resulting in the elimination of 

the cancer cells and the end of the immunoediting process (Mittal et al. 2014).  

 

1.1.5ii Equilibrium 

In the equilibrium phase, tumour cells which were not destroyed in the elimination 

phase enter a dynamic equilibrium where the tumour mass is controlled by 

immunologic mechanisms, however the tumour cells have not been destroyed (Dunn 

et al. 2004). Unlike the elimination stage, where both adaptive and innate immunity is 

involved, the equilibrium stage only involves the adaptive immune system. This 

equilibrium process can occur over a period of many years or even throughout the 

life of the host, however tumour cells at this stage may be highly genetically unstable 

and have high mutational burden. This, coupled with the selective pressure from the 

adaptive immune system, can select for tumour subclones with reduced 

immunogenicity that can evade immune recognition and subsequent destruction, 

tipping the balance towards immune escape and development of clinically apparent 

disease (Rojas-Domínguez et al. 2022). 

 

1.1.5iii Escape 

The escape stage is the final stage of immunoediting. By this stage, cancer cells 

have acquired significant beneficial genetic and epigenetic changes, allowing them 

to evade detection and elimination by the immune system and grow to present as 

clinically apparent disease. Escape from immune control is now recognised as one 

of the hallmarks of cancer (Hanahan and Weinberg 2011). These tumours exhibit 

unrestrained growth and are likely to be able to evade further innate and adaptive 

immune responses (Dunn et al. 2004). Mechanisms to enable tumour escape can be 

classified into three main types: (i) Loss or downregulation of tumour antigens and/or 

antigen-presenting mechanisms, in combination with reduction of co-stimulatory 

molecules resulting in reduced immune recognition and activation, (ii) Upregulation 
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of anti-cytotoxic mechanisms and (iii) Induction of an immunosuppressive TME 

through upregulation of suppressive immune cells such as Tregs, alongside 

production of anti-inflammatory cytokines and overexpression of inhibitory immune 

checkpoint ligands (Mittal et al. 2014).  

 

 

1.1.6 Mechanisms of immune escape 

Cancer cells are able to avoid immune destruction by a number of mechanisms 

including avoiding immune recognition and disabling effector cell function. These 

mechanisms allow escape from both the innate and adaptive immune responses, 

Figure 1.4 Cancer immunoediting 
The three phases of cancer immunoediting. (1) Healthy cells gain mutations and begin cancer development, (2) 
The immune system acts as an intrinsic tumour suppression mechanism to identify and eliminate tumour cells. 
Transformed cells express high levels of cell stress ligands and tumour antigens which can be recognised by 
both the innate and adaptive immune systems, following which they can be destroyed. If the immune system is 
unable to eliminate the transformed cells, surviving tumour cells may enter the equilibrium phase. If the immune 
system is able to successfully clear the tumour cells, the healthy cells remain as healthy tissue. (3) In the 
equilibrium phase, tumour cells are either chronically maintained in an equilibrium state by the adaptive immune 
system which prevents further growth, or selection for cells with poor immunogenicity creates a subpopulation 
which may acquire further mutations and tip the balance into the escape phase. (4) Poorly immunogenic and 
immunosuppressive cell variants escape immune control and become clinically detectable. Tumour cells use 
several mechanisms to escape immune control including decreased immune recognition, increased resistance 
to immune effector responses and generation of an immunosuppressive TME through recruitment of 
immunosuppressive cytokines. Adapted from Schreiber et al 2011. Created in BioRender.com. 
Abbreviations: MDSC, myeloid derived suppressor cell, MHC, major histocompatibility complex, NK, Natural 
killer cell, Treg, regulatory T cell.  
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enabling unrestricted tumour development and growth. Tumour cells are also able to 

induce and recruit immunosuppressive immune cells and cytokines within the TME 

to prevent an effective anti-tumour immune response. The identification of these 

various escape mechanisms have also formed the basis for the generation of 

immunotherapeutic strategies (Kim and Cho 2022).  

 

1.1.6.1 Decreased immune recognition 

The immune system is able to distinguish between malignant and normal cells based 

on the expression of MHC-antigen complexes displayed on their cell surface, which 

are recognised by antigen-specific T cells. One of the most common mechanisms to 

reduce tumour antigenicity and immune recognition is downregulation of MHC class I 

molecules, which can be done with no impairment to the cell’s survival or ability to 

grow and metastasise (Cornel et al. 2020). This downregulation has been described 

in 40-90% of human cancers and is an independent prognostic factor in many cancer 

types including breast, prostate and lung cancers, where this mechanism may also 

contribute to immunotherapy resistance (Taylor and Balko 2022). The loss of MHC 

class I molecules should in principle result in NK cell-mediated killing of these cells 

through the “missing self” hypothesis, however MHC class I negative tumours have 

not been reported to have a higher NK cell infiltration than those with normal 

expression. This implies utilisation of further mechanisms of immune evasion and 

reduction of NK anti-tumour activity, such as expression of inhibitory cytokines 

including TGF-b, which enable tumour cells to avoid “missing-self” surveillance by 

NK cells (Taylor and Balko 2022).  

 

1.1.6.2 Immune resistance 

Downregulation of cell surface antigens is a mechanism used by tumour cells to 

avoid immune cell detection and killing. These cells may also develop further 

resistance mechanisms to avoid the cytotoxic effects of effector immune cells. 

Resistance can develop through expression of anti-apoptotic molecules such as 

cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein (c-FLIP) and B 

cell lymphoma extra-large (BCL-XL), or through constitutive activation of pro-

oncogenic transcription factors such as STAT3. A further mechanism is through 
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downregulation and mutation of death receptors such as the TRAIL death receptor 5 

(DR5) and Fas, enabling cells to resist apoptosis induced by CTLs and NK cells 

(Vesely et al. 2011).  

1.1.6.3 Immunosuppressive TME 

Interactions between tumour cells and the surrounding TME are essential for tumour 

initiation, growth, invasion and metastasis. The TME is a complex heterogenous 

ecosystem comprised of the ECM, vasculature, endothelial cells, fibroblasts, the 

lymphatic system and infiltrating immune cells. Development of a locally 

immunosuppressive TME is a key mechanism for tumour cell evasion of innate and 

adaptive anti-tumour immune responses, with significant impact on patient survival 

and response to treatment (O’Donnell et al. 2018). The presence and activation 

status of immune cells infiltrating the TME, alongside their production of cytokines 

and chemokines, affect the balance between an anti- or pro-tumour TME (Labani-

Motlagh et al. 2020).  

Tumour secretion of regulatory cytokines, growth factors and proteases alter the 

phenotype of the immune infiltrate. This, alongside increased recruitment of 

immunosuppressive regulatory cells to the tumour site creates an 

immunosuppressive environment, reducing the effectiveness of the anti-tumour 

response (Baghban et al. 2020). TGF-b is a key mediator of this activity and is able 

to inhibit multiple stages of anti-tumour immunity simultaneously, including inhibition 

of DC activation and migration, direct inhibition of T cell and NK cell function and 

promotion of CD4+ cell differentiation in to Th2 and Tregs (Labani-Motlagh et al. 

2020). Vascular endothelial growth factor (VEGF) has also been reported to have 

immunosuppressive effects through inhibition of the function and interactions of T 

cells and DCs, reducing cytotoxicity of NK cells and preventing sufficient antigen 

uptake and presentation (Ribatti 2022). VEGF is also a critical factor for development 

of tumour angiogenesis, one of the hallmarks of cancer. Alongside increasing the 

tumour’s potential to survive and grow, establishment of new abnormal vasculature 

forms a physical barrier which prevents the trafficking of effector immune cells into 

the tumour (Geindreau et al. 2021). In addition to these agents, a number of 

inflammatory mediators present in the TME such as TNF-a, IL-6, IL-10, IL-12 and IL-

23 are able to contribute to cancer development, metastasis and immune evasion 
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through suppression of key immune cells such as macrophages and T cells, and so 

have become attractive targets for cancer treatments (Morris et al. 2022). 

 

1.1.6.4 Negative co-stimulatory pathways 

Immune cell activation is tightly regulated by a balance between co-stimulatory and 

co-inhibitory signals to avoid overactivation of the immune response, chronic 

inflammation and autoimmunity. For an immune cell to become activated, the 

balance of stimulatory and inhibitory signals, referred to as immune checkpoints, 

must favour the stimulatory signal. However, in cancer, the signal is often weighted 

towards the inhibitory signal, resulting in downregulation and inhibition of the 

required anti-tumour response. Immune regulation is mediated by immune cells 

including macrophages and Tregs, regulatory cytokines such as TGF-b, and immune 

checkpoints including cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), 

programmed death protein 1 (PD-1), T cell immunoglobulin and mucin domain-3 

(TIM3), T cell immunoglobulin and ITIM domain (TIGIT) and lymphocyte activation 

gene-3 (LAG3) (He and Xu 2020). In normal conditions, these mechanisms are able 

to maintain homeostasis, however tumour cells are able to enhance these regulatory 

mechanisms to enable immune escape and subsequent tumour growth (Marin-

Acevedo et al. 2018).  

Immune checkpoints are negative co-stimulatory pathways which are activated by 

interaction with their specific ligand. This interaction regulates the activation and 

function of T cells at various points in the immune response. The most well studied 

immune checkpoints are CTLA-4 and PD-1, however several others with roles in 

cancer development have been identified. CTLA-4, LAG3, TIM3 and TIGIT interact 

with their ligands during the T cell priming stage resulting in limited T cell activation, 

while PD-1 interacts with its ligand during the effector phase to regulate the activity 

of activated T cells (Dyck and Mills 2017). Ligation of these receptors results in ITIM 

inhibitory signalling, which can be inhibited by blocking antibodies preventing ligand-

receptor interactions. Several monoclonal antibody immune checkpoint inhibitors 

(ICIs) are now licenced to treat a number of solid and haematological malignancies, 

which aim restore the anti-tumour immune response by to reducing T cell 

suppression (He and Xu 2020).  
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1.1.6.4i CTLA-4 

One of the most well studied immune checkpoints is CTLA-4, the main role which is 

thought to be minimisation of normal tissue damage due to inappropriate immune 

responses (Verhagen et al. 2008). This interaction has however also been reported 

to inhibit IL-2 production in CD4+ lymphocytes, block T cell proliferation, induce 

TGF-b production and induce cell cycle arrest, allowing cancer development and 

immune evasion (Verhagen et al. 2008; Hannani et al. 2015). CTLA-4 is expressed 

exclusively on activated effector T cells and Tregs, and plays a key role in regulation 

of T cell activation during priming.  

In resting naïve T cells, CLTA-4 is an intracellular protein, which upon engagement 

of the TCR and the co-stimulatory signal CD28, is rapidly induced on the cell 

surface. Once expressed on the cell surface, CTLA-4 interacts with its ligands CD80 

(B7-1) and CD86 (B7-2) on APCs, in competition with the CD28 receptor. CTLA-4 

receptors bind with higher affinity and lower surface density to B7 ligands than CD28 

and therefore outcompete for B7 ligand binding (Wu et al. 1997). The resulting ratio 

of CD28:B7 to CTLA-4:B7 binding is the determining factor of T cell activation, as 

CTLA-4:CD80/CD86 binding does not produce a stimulatory signal and prevents T 

cell activation, resulting in anergy (Sansom 2000). If, however sufficient co-

stimulatory signalling can occur in the absence of CTLA-4, proliferation of T cells 

alongside increased cell survival and differentiation into effector or memory cells can 

take place. Conversely, Tregs constitutively express CTLA-4 and this is crucial for 

their immunosuppressive functions through sequestration of CD80 and CD86 

expression by APCs, preventing binding of effector T cells to APCs (Ha et al. 2019). 

 

1.1.6.4ii PD-1/PD-L1 

PD-1 is a cell surface receptor commonly expressed on T cells, B cells, NK cells and 

some myeloid cells, however it is best characterised in T cells where its expression 

is induced on the cell surface following antigen presentation. The interaction of PD-1 

with its ligands PD-L1 (B7-H1) and PD-L2 (B7-DC) has gained significance 

throughout recent years, with the approval of several checkpoint inhibitors in many 

cancer types. PD-1 ligands PD-L1/2 are expressed on a variety of cell types 
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including T cells, B cells, DCs and myeloid cells, however tumour cells can also 

express PD-L1 to inhibit anti-tumour T cell responses within the TME, and 

expression is associated with poor prognosis in many cancer types (Dyck and Mills 

2017). PD-L2 expression is restricted to APCs and is primarily expressed on DCs 

and monocytes, however depending on the microenvironment can also be induced 

on other cell types including macrophages  (Philips et al. 2020). PD-1 and PD-L1/2 

are members of the B7 family, which bind to their associated receptors on T and B 

cells to initiate downstream co-stimulatory or co-inhibitory signalling.  

The interaction of PD-1 with its ligands suppresses T cell proliferation and survival by 

reducing IFN-g, TNF and IL-2 production and inhibiting anti-apoptotic gene 

production (Bardhan et al. 2016). If signalling through PD-1 and the TCR occurs in 

the same T cell, this leads to a further reduction in T cell activation as PD-1 

signalling prevents phosphorylation of key TCR signalling components (Mizuno et al. 

2019). Chronic antigen exposure such as that found in chronic infection or cancer 

development can result in persistent PD-1 expression on T cells, which upon ligation 

with PD-L1/2 results in anti-tumour T cell anergy and exhaustion and this is 

associated with poor prognosis in many cancer types (Leite et al. 2015). 

 

1.1.6.4iii Immune checkpoint inhibitors  

Immune checkpoint inhibitors (ICIs) targeting CTLA-4 and PD-1/PD-L1 have shown 

good success when used as first- or second- line therapies in several cancer types, 

including melanoma, renal cell carcinoma (RCC), non-small cell lung cancer  

(NSCLC), bladder cancer and head and neck carcinoma (Monteiro et al. 2023). A list 

of ICIs and their approved uses can be found in Table 1.3. ICIs are monoclonal 

antibodies which aim to restore T cell function, inhibit Treg activity and reverse T cell 

exhaustion to promote natural anti-tumour immunity (Dyck and Mills 2017). In cancer 

types with high levels of immune infiltration in their TME, evidence of re-invigoration 

of anti-tumour immunity upon treatment with ICIs has led to their approval with high 

levels of success (Maleki Vareki 2018). 
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1.1.6.4iiia Anti-CTLA-4 antibodies 

Ipilimumab, a fully humanised IgG1a anti-CTLA-4 monoclonal antibody (mAb) was 

the first ICI to be approved by the FDA in 2011 for treatment of metastatic and/or 

unresectable melanoma. Significant improvements in overall survival were observed 

of up to 10 years in some patients during clinical trials and Ipilimumab is now also 

approved as an adjuvant therapy for melanoma patients following surgical resection 

to reduce the risk of disease relapse (Eggermont et al. 2016). It is unclear exactly 

how ipilimumab induces an anti-tumour response, however blocking CTLA-4 is 

thought to enhance the T cell priming phase, promoting activation and proliferation of 

effector T cells, and simultaneously reducing Treg-mediated suppression of T cell 

responses.  

Despite the promising long-term responses observed in some patients, the broad 

and non-specific activation of the immune system created by CTLA-4 blockage is 

associated with a substantial risk of immune-related adverse reactions, reported in 

over 80% of patients during clinical trials, with grade 3 or higher reactions reported in 

10-26% of treated patients (Fellner 2012). These reactions which range from rashes, 

and endocrinopathies to gastrointestinal problems are consistent with the induced 

disruption in immune homeostasis characterised by the clonal expansion and 

activation of new T cell clones, which are normally prevented by CTLA-4-mediated 

control of CD80 and CD86 signalling (Fecher et al. 2013).  This high level of toxicity 

has reduced the use of Ipilimumab as a single agent treatment, favouring use in 

combination with anti-PD-1 ICIs to enhance the anti-tumour response. 

 

1.1.6.4iiib Anti-PD-1/PD-L1 antibodies  

Anti-PD-1 or anti-PD-L1 antibodies have shown great successes in reducing tumour 

growth, and a number of anti-PD-1 ICIs are now approved for treatment of many 

cancer types (Table 1.3). These treatments target the T cell effector phase to restore 

function to exhausted T cells, resulting in increases in CD8+ T cytotoxic T cell levels 

and tumour infiltration, ultimately creating an increase in the CD8:Treg ratio and 

restoring anti-tumour responses (Liu et al. 2021a). Pembrolizumab, a humanised 

highly specific IgG4 mAb approved for use in advanced or unresectable melanoma, 

was the first PD-1 ICI to be approved. Due to the successes found in melanoma 
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treatment, Pembrolizumab has since also been approved for use in in the treatment 

of PD-1+ metastatic NSCLC, chemotherapy-resistant head and neck squamous cell 

carcinoma (SCC) and relapsed classical Hodgkin lymphoma (Fessas et al. 2017). 

Nivolumab is a similar PD-1 IgG4 humanised mAb which has been approved for use 

in several cancer types including RCC, melanoma and NSCLC. PD-L1 inhibitors 

such as Atezolizumab, Durvalumab and Avelumab are also highly effective in the 

treatment of several cancer types. These treatments provide highly targeted 

inhibition of PD-L1, while still allowing interaction of PD-1 with PD-L2 to maintain 

self-tolerance and prevent overactivation of the immune system (Ai et al. 2020).  

As PD-1/PD-L1 signalling is typically restricted to the TME, unlike the global effects 

and high incidence of side effects observed with CTLA-4 ICIs, PD-1 ICIs cause lower 

levels of side effects. Combination therapies of CTLA-4 and PD-1 ICIs have shown 

good success rates, however the combination of inhibitors working in both the 

priming and effector phases can lead to a significant increase in adverse effects 

including rash, gastrointestinal effects and thyroiditis (Somekawa et al. 2022). This 

combination therapy does however significantly increase treatment efficacy, with the 

two treatments working synergistically in different locations and at different phases, 

and so combination treatment of ipilimumab and nivolumab has been approved for 

several cancer types including RCC, NSCLC, melanoma and colorectal cancer 

(Vafaei et al. 2022).  

 

1.1.6.4iv Alternative immune checkpoints 

The success of CTLA-4 and PD-1 ICIs for the treatment of various cancer types has 

led to interest in identification of further alternative checkpoints in the hope of 

discovering future therapeutic single or combination ICI opportunities. Well 

characterised checkpoints being actively researched for clinical use include LAG3 

(Huo et al. 2022), TIM3 (Acharya et al. 2020) and TIGIT (Harjunpää and Guillerey 

2020), however these ICIs are yet to be approved for patient use. A further immune 

checkpoint that has been studied in relation to cancer immune evasion is CD200. 
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Table 1.3 Approved ICIs for the treatment of cancer.  

Adapted from Robert 2020, Lao et al. 2022 and Shiravand et al. 2022.  

Drug Cancer type Indication 
CTLA-4 inhibitors 

Ipilimumab Melanoma ・Monotherapy for metastatic and unresectable disease 
・ Adjuvant therapy for surgically resectable high-risk disease 

PD-1 inhibitors 

Nivolumab 

Melanoma ・Monotherapy for metastatic and unresectable disease 
・ Adjuvant therapy for surgically resectable high-risk disease 

NSCLC ・Metastatic disease that has progressed following chemotherapy 
SCLC ・Metastatic disease that has progressed following chemotherapy 

Head and neck SCC ・Recurrent/metastatic disease that has progressed following chemotherapy 
Bladder cancer ・Adjuvant therapy for high-risk patients after surgical resection 

RCC ・Metastatic disease 
Hepatocellular carcinoma ・Second line for patients who have previously received kinase inhibitors 

Hodgkin lymphoma ・Second line following relapse after autologous hematopoietic stem cell transplantation 

Colorectal cancer ・Second line following previous treatment and metastatic disease 

Pembrolizumab 

Melanoma ・Adjuvant therapy following complete resection when lymph node involvement is present 

NSCLC ・Metastatic disease irrespective of PD-L1 expression 
SCLC ・Metastatic disease 

Head and neck SCC ・Monotherapy for PD-L1 expressing tumours 
・Combination first-line therapy for unresectable metastatic disease 

Bladder cancer ・Monotherapy for high risk, non-muscle invasive tumours 
Hodgkin lymphoma ・Relapsed/refractory classical Hodgkin lymphoma 

Stomach and oesophageal 
cancer 

・Recurrent locally advanced or metastatic disease 
・Adjuvant therapy for non-surgically resectable tumours 
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Abbreviations: NSCLC, non-small cell lung cancer, RCC, renal cell carcinoma, SCC, squamous cell carcinoma, SCLC, small cell lung cancer. 
 

Atezolizumab 

NSCLC 
・Adjuvant therapy following resection and chemotherapy where >1% PD-L1 tumour expression 
・First line for high PD-L1 expressing metastatic disease and with no EFGR or ALK mutations 
・Metastatic disease that has progressed following chemotherapy 

SCLC ・First line combination therapy for advanced disease 
Hepatocellular carcinoma ・Combination therapy for unresectable metastatic disease 

Melanoma ・Combination therapy for BRAF V600-mutated unresectable or metastatic disease 

Urothelial bladder cancer ・Locally advanced or metastatic PD-L1 expressing disease or is not eligible for chemotherapy 

Durvalumab 
NSCLC ・Unresectable advanced disease which has not progressed on chemotherapy or radiotherapy 

SCLC  ・First line combination therapy for advanced disease 

Avelumab 

Merkel cell carcinoma  ・Metastatic disease 

Urothelial bladder cancer  ・Advanced or metastatic disease which has not progressed on first line chemotherapy 

RCC  ・First line treatment for advanced disease 

Cemiplimab SCC  ・Locally advanced or metastatic disease where resection or radiotherapy are not possible  

Combined CTLA-4 and PD-1 inhibitors 

Ipilimumab and 
Nivolumab 

Melanoma  ・Metastatic or unresectable disease 
RCC  ・First line treatment for intermediate and poor-risk advanced and metastatic disease 

Colorectal cancer  ・Metastatic disease that has progressed on other treatments 

NSCLC  ・First line treatment for metastatic disease with >1% PD-L1 tumour expression and no EGFR or ALK 
mutations 
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1.2 The CD200 immune checkpoint 

1.2.1 CD200 

CD200, (also known as OX-2), is a type 1 transmembrane glycoprotein related to the 

B7 family of receptors. This protein is comprised of two Ig-like domains and has a 

single transmembrane domain with a short, 19 amino acid intracellular domain 

(Hatherley et al. 2013). Due to its short cytoplasmic domain, CD200 has no known 

signalling motif and so functions through interaction with a receptor, known as 

CD200R (Liu et al. 2016). CD200 expression was first characterised in rats as a 41- 

to 47-kDA cell surface glycoprotein (McCaughan et al. 1987). Expression patterns 

have since been found to be well conserved in humans and found on a variety of 

both haematopoietic and non-haematopoietic cells including B cells, some subsets of 

activated T cells, neurons, endothelial cells, epithelial cells, DCs and thymocytes 

(D’Arena et al. 2020).  

Constitutive expression of CD200 is controlled by two positive regulatory domains 

(PDR1 and PDR2) within the core promotor region. PDR1 contains important 

transcriptional binding sites for CCAAT/Enhancer-binding Protein beta (C/EPBβ), 

which is a critical factor for both constitutive and inducible CD200 expression 

(Kotwica-Mojzych et al. 2021). Inducible CD200 expression is also regulated through 

IFN-g and TNFa, mediated by the nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-κB) pathway, STAT1 and  interferon-regulatory factor-1 (IRF-1) 

(Pontikoglou et al. 2016). CD200 expression is also induced by p53 and activated 

caspases as DCs undergo apoptosis, indicating an immunoregulatory signal that 

leads to apoptosis-associated immune tolerance (Rosenblum et al. 2004).  

 

1.2.2 CD200 receptor 

CD200 receptor (CD200R) has a similar structure to CD200, containing two Ig 

domains, however the cytoplasmic domain is longer inferring potential capacity for 

signalling through a cellular signalling domain (Ngwa and Liu 2019). CD200R 

expression is restricted to cells of myeloid lineages, some populations of activated T 

cells, B cells and NK cells (Kawasaki and Farrar 2008). CD200R is expressed on 

both CD4+ and CD8+T cells, with higher expression observed on CD4+ T cells. The 

broad distribution of CD200 but immunologically restricted expression of CD200R is 
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consistent with a specific and controlled immunoregulatory function for this 

interaction. 

Like CD200, CD200R was firstly identified in rats and five isoforms of CD200R (1-5) 

are currently known. CD200R1 is however the only functional CD200 receptor 

identified in humans with a 52% and 53% amino acid homology with mouse and rat 

CD200R respectively (Kotwica-Mojzych et al. 2021). In rodents, the CD200R2-5 

isoforms were found to have short, non-signalling cytoplasmic tails which may 

function through ligand binding, however their roles are not clearly characterised and 

these alternate forms are not thought to be present in humans  (Wright et al. 2003; 

Hatherley et al. 2005).  

 

1.2.3 CD200:CD200R signalling  

The specificity of CD200:CD200R binding was initially determined using an anti-

CD200R antibody, where binding affinity was found to be ~0.5μM (Wright et al. 

2003). Unlike other inhibitory receptors, CD200R does not signal through an ITIM 

and instead contains an NxPY sequence in its cytoplasmic domain which acts as a 

binding site for proteins with a phosphotyrosine-binding (PTB) domain (Wright et al. 

2003). Phosphorylation at Y286 and Y297 are critical for CD200R function, while 

phosphorylation at Y289 is non-essential. Following phosphorylation at Y286 and 

Y297, recruitment of inhibitory adapter proteins downstream of tyrosine kinase 1 

(Dok1) and Dok2 occurs, which subsequently bind SHIP and Ras p21 protein 

activator (RasGAP), resulting in inhibition of Ras/MAPK pathway activation (Kotwica-

Mojzych et al. 2021) (Figure 1.5). siRNA knockdown has shown that the 

Dok2:CD200R interaction is essential for initiation of CD200R signalling, while 

knockdown of SHIP or Dok1 has no effect (Mihrshahi et al. 2009). Instead, Dok1 is 

thought to form a complex with CT10 sarcoma oncogene cellular homologue-like 

(CrkL) to create a feedback loop around Dok2 and RasGAP, negatively regulating 

CD200R signalling (Mihrshahi and Brown 2010).  

The CD200:CD200R interaction is critical for maintaining immune homeostasis 

through regulation of self-tolerance and avoiding inappropriate overactivation of the 

immune response. CD200 has been most well studied in the central nervous system 

(CNS), where it is mostly expressed on neurons, but also other cell types including 
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astrocytes and oligodendrocytes (Kojima et al. 2016). CD200 interacts with CD200R, 

sending inhibitory signals to prevent pro-inflammatory microglial activation. Loss of 

CD200 results in an accumulation of activated inflammatory microglia, promoting 

neuroinflammatory disease development. Conversely, in mice with spontaneous 

mutations resulting in neuronal CD200 overexpression, decreased microglial 

activation and increased protection against axonal injury are observed (Walker and 

Lue 2013). 

  

 

 

1.2.4 Immunosuppressive activities of CD200  

The first evidence of an immunosuppressive role for CD200 was generated from 

C57B/6 CD200-/- mice (Hoek et al. 2000). Whilst these mice were normal in 

appearance with normal lifespan and fertility, comparisons with WT mice revealed 

Figure 1.5 Downstream CD200R signalling following CD200 binding 
Following ligand binding (1), phosphorylation of key CD200R tyrosine residues results in 
recruitment of Dok1 and Dok2 (2). Inhibitory effectors SHIP and RasGAP are subsequently 
recruited and work together to reduce downstream signalling via the Ras/MAPK pathway and 
suppress immune function (3). Created in BioRender.com. 
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significantly higher numbers of CD11b+ myeloid cells paired with significant 

increases in the granulocyte and activated macrophage populations. Enlarged lymph 

nodes with significantly increased levels of activated macrophage and microglia 

aggregates were also observed. As the absence of CD200 was found to result in an 

increase in myeloid cells, which express CD200R, it was hypothesized that CD200-/- 

mice exist in a state of persistent myeloid activation due to the loss of CD200-

mediated control (Rijkers et al. 2008). Ligation of myeloid cell CD200R has been 

shown to inhibit degranulation and inflammatory cytokine release by myeloid cells 

including mast cells, monocytes and macrophages, alongside reduced histamine 

release from basophils (Gorczynski 2001; Jenmalm et al. 2006). The differential 

expression of CD200R on T and B cell subsets also suggests the CD200:CD200R 

interaction may also be a direct regulator of lymphoid cell function (Gorczynski 

2012). CD200 has a range of roles in both normal processes including bone 

development and homeostasis, infection response, transplant acceptance and 

reproductive biology, and pathologies including neuroinflammation, autoimmune and 

allergic disorders and cancer growth (Gorczynski 2012; Zhao et al. 2019). 

 

1.2.4i Autoimmunity 

CD200-mediated myeloid cell control has been studied in CD200-/- mice, where 

increased susceptibility to the development of autoimmune diseases such as 

collagen-induced arthritis (CIA) and experimental autoimmune encephalomyelitis 

(EAE), a murine model of multiple sclerosis, was found (Valente et al. 2017). 

C57BL/6 mice are usually resistant to CIA development, however CD200-/-  mice and 

CD200R-Ig-treated mice developed severe arthritis with high CD68+ macrophage 

infiltration of the synovial joints, which is characteristic of CIA development (Hoek et 

al. 2000). High inflammatory macrophage infiltration was also observed in advanced 

EAE disease models and blockade of the CD200:CD200R interaction resulted in an 

increased infiltration of T lymphocytes (Meuth et al. 2008). Both the CIA and EAE 

models are dependent upon the effects of antigen-specific T cells, however as no 

dysregulation of T cell activity was present in either model, these effects on myeloid 

cells and macrophage regulation appear to be a direct effect of CD200-mediated 

signalling in the prevention of autoimmunity (Hoek et al. 2000). 



 

41  

 

1.2.4.ii Transplant tolerance 

Mouse models with systemic overexpression or infusion of CD200-Fc protein 

demonstrated tolerance of skin, renal and cardiac transplants (Gorczynski et al. 

2013; Oweira et al. 2019). CD200-induced allograft tolerance was also associated 

with an increase in infiltrating Tregs and a shift from type 1 to type 2 CD4+ Th cell 

cytokine production. Combined, these immune changes resulted in inhibition of T cell 

proliferation and CTL induction, suggesting a role for CD200 signalling in the 

generation of tolerogenic T cell responses (Gorczynski 2001; Vaughan et al. 2020).  

 

 

1.2.5 CD200 expression in cancer  

The first indications of a role for CD200 in cancer development came from studies 

using transplanted EL4 thymoma cells in C57BL/6 mice. In these studies, mice 

generated a graft vs leukaemia response resulting in tumour cell rejection. Mice 

treated with  a soluble form of CD200 were found to have increased tumour growth 

and inhibited immune responses, resulting in increased mortality rates compared to 

control mice (Gorczynski 2001). CD200 has since been implicated in a number of 

haematological malignancies including multiple myeloma (MM), lymphocytic 

leukaemia (CLL) and acute myeloid leukaemia (AML), and solid cancers such as 

melanoma, breast, prostate, lung, renal and ovarian (Holmannová et al. 2008; 

Moreaux et al. 2008; Twito et al. 2013a). 

 

1.2.5.1 CD200 and cancer stem cells  

Tumours are composed of a heterogenous population of differentiated cells and 

cancer stem cells (CSCs), which have long term self-renewal capacity and the ability 

to evade immune detection and elimination (Gay et al. 2016). CD200 has been 

identified on CSCs in combination with other CSC surface makers such as CD44 

and CD133 in several cancer types including glioblastoma, breast and prostate 

(Kawasaki et al. 2007). CD200 expression was found to be expressed approximately 

three-fold higher in CSCs compared to non-CSCs, suggesting that CD200 may serve 

as a marker for CSC populations (Kawasaki and Farrar 2008). Comparison of 
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CD200 expression compared to the associated normal samples can be found in 

Figure 1.6. 

Additionally, in basal cell carcinoma (BCC), a rare population of CD200 expressing 

cells was found to have significantly greater tumour initiating properties compared to 

CD200- CSCs. This rare population accounted for only 1.63 ± 1.11% of BCC cells 

but was able to initiate tumour growth from as few as 10,000 cells in vivo, while 

CD200- cells were unable to form tumours (Colmont et al. 2013). Furthermore, 

CD200 is a marker of human hair follicle bulge stem cells which reside in an 

“immune privileged” site where cells are protected from inflammation and immune 

attack (Ohyama et al. 2006). Due to the roles of CD200 in normal cell immune 

tolerance and tumour immunity combined with its CSC expression, it is hypothesised 

that CD200 plays a key role in cancer development and ability of tumour cells to 

evade immune detection (Jung et al. 2015).
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Figure 1.6 CD200 expression in solid cancers compared to associated normal tissue 
Log2 transcript count per million (TPM) CD200 expression data taken from The Cancer Genome Atlas (TGCA) programme, compared to normal healthy samples. CD200 
expression is increased in KIRC and KIRP compared to normal kidney tissue. 
Adapted from https://tcia.at/expression#CD200. 
Abbreviations: BLCA, bladder urothelial carcinoma, BRCA, breast invasive carcinoma, CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma, CRC, 
colorectal carcinoma, GBM, glioblastoma multiforme, HNSC, head and neck squamous cell carcinoma, KICH, kidney chromophobe, KIRC, kidney renal clear cell 
carcinoma, KIRP, kidney renal papillary cell carcinoma, LIHC, liver hepatocellular carcinoma, LUAD, lung adenocarcinoma, LUSC, lung squamous cell carcinoma, OV, 
ovarian serous cystadenocarcinoma,  PAAD, pancreatic adenocarcinoma, PRAD, prostate adenocarcinoma, SKCM, skin cutaneous melanoma, STAD, stomach 
adenocarcinoma, THCA, thyroid carcinoma, UCEC, uterine corpus endometrial carcinoma.  
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1.2.5.2 CD200 expression in haematological malignancies 

1.2.5.2i Acute myeloid leukaemia 

CD200 expression has been well studied in AML, where cells have been shown to 

overexpress CD200 which is associated with poor prognosis and increased risk of 

relapse (Khan et al. 2020). A number of immunosuppressive effects have been 

reported in relation to AML CD200 expression, including reduced cytotoxicity of 

effector immune cells and increased Treg frequency (Coles et al. 2012). High CD200 

expressing patients were found to have alterations in both the adaptive and innate 

immune responses. Suppression of  type 1 CD4+ memory T cells and CD8+ CTLs 

was observed in the high CD200 expressing group and was found to be due to the 

direct interaction between tumour CD200 and CD200R on patient T cells (Coles et 

al. 2012). Changes observed in the innate compartment included a significant 

reduction in NK cell frequency and a reduction in the frequency of CD56+CD16+ 

cytolytic NK cells, alongside a reduction in NCR expression (NKp30, NKp44 and 

NKp46) on all NK cell subpopulations. NK cell degranulation and IFN-g responses to 

tumour cells were also significantly reduced in high CD200 expressing patients 

(Coles et al. 2011). Blockade of CD200:CD200R signalling was found to restore both 

memory T cell and NK cell function, demonstrating a direct role for CD200-mediated 

immunosuppression in AML and also indicating a potential therapeutic target (Coles 

et al. 2011).  

 

1.2.5.2ii Chronic lymphocytic leukaemia  

CD200 is expressed on the surface of CLL cells. However, unlike AML, expression 

does not correlate with any other clinical parameter and is found at all disease 

stages, suggesting that early upregulation of expression has a function in CLL 

development (D’Arena et al. 2020). In vitro studies have shown that in CLL, 

expression of CD200 is related to an increase Treg levels, suppression of T cell 

proliferation and response to tumour antigens, and polarisation of cytokines to Th2   

(Mora et al. 2019; D’Arena et al. 2020). Further evidence for the role of 

CD200:CD200R signalling in CLL was reported following simultaneous injection of 

CD200+/CD200- CLL cells and peripheral blood mononuclear cells (PBMCs) into 
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mice, where CD200 expressing tumours were not inhibited. Treatment with an anti-

CD200 antibody resulted in inhibited tumour growth, alongside an increase in 

activated cytotoxic CD8+ T cells and IFN-g production (Kretz-Rommel et al. 2007). 

 

1.2.5.3 CD200 expression in solid cancers 

1.2.5.3i Breast cancer  

CD200 is well studied in breast cancer and is of interest as expression appears to 

have a bidirectional role in tumour development and metastasis. The pro-tumour role 

for CD200 was first established in mice transplanted with the EMT6, low CD200-

expressing breast cancer cell line (Gorczynski et al. 2010). Following transplantation, 

tumour CD200 expression significantly increased upon immune challenge compared 

to immunocompromised mice, alongside increases in infiltrating CD8+ effector T 

cells (Curry et al. 2017). This immune pressure resulted in selection for CD200 

expression and associated tumour growth and metastasis to the lymph nodes. 

Treatment with anti-CD200 mAbs resulted in reduction in tumour growth and 

improved anti-tumour effector responses (Gorczynski et al. 2010). 

Conversely, during use of the highly aggressive 4THM cell line in a CD200R-/- mouse 

model, CD200 overexpression was found to be associated with reduced tumour 

growth and metastasis (Erin et al. 2015). In this study, primary tumour growth and 

metastasis to the lung and liver were significantly greater in the CD200R-/- mice 

compared to the CD200tg models. Decreased numbers of infiltrating CD8+ effector T 

cells were also observed, alongside heightened neutrophil infiltration, and increased 

inflammatory cytokine production. In this model, tumour associated chronic 

inflammation resulted in tumour progression and therefore, through suppression of 

the immune responses, a CD200-mediated anti-tumour effect was observed.  

 

1.2.5.3ii Skin cancer 

Melanoma cells express CD200 in melanocytic lesions and expression correlates 

with progression from nevi to melanoma, however much like in breast cancer, 

conflicting roles for CD200 signalling have been reported. CD200 expression on 

melanoma cells is associated with a reduction of type 1 cytokines and T cell 

proliferation which can be reversed by blockade of CD200 signalling (Siva et al. 
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2008). Conversely, CD200 expression on B16 melanoma cells was found to 

significantly inhibit tumour growth and metastasis and increase numbers of CD4+ 

and CD8+ T cells, resulting in prolonged survival (Talebian et al. 2012).  

It is currently unclear why CD200 expression can have both pro- and anti-tumour 

roles in solid tumours but is only pro-tumorigenic in haematological cancers, where 

expression is generally associated with poor outcomes. Further study into the 

complexities of CD200 signalling may provide insights into the dual roles of CD200 in 

tumour development and allow clinical exploitation of the beneficial anti-tumour 

effects.  

 

1.2.6 CD200 as a therapeutic target   

Samalizumab is a humanised monoclonal antibody developed to bind CD200 and 

block its interaction with CD200R. This mAb has an Ig constant G2/G4 region which 

prevents ADCC of CD200+ immune cells (Mahadevan et al. 2019). Due to the strong 

evidence for the role of CD200 in the growth and immune evasion of several cancer 

types, this mAb is thought to be a promising immune checkpoint inhibitor for anti-

cancer therapies. Phase I human clinical trials in CLL and MM patients  

(NCT00648739) used safety, identification of maximum tolerated dose and 

pharmacokinetics as primary end points. Secondary end points were salizumab 

binding to CD200, pharmacodynamic effects on circulating tumour cells and 

leukocyte subsets, and clinical responses. A dose-dependent decrease in CLL cell 

CD200 expression was observed, alongside reductions in CD200+CD4+ T cells. 

Decreased tumour burden was observed in 70% of CLL patients, where one patient 

achieved a durable partial response and 16 out of 23 patients had stable disease. 

Disease progression was however observed in all MM patients, with few changes 

observed in the immune infiltrate (Mahadevan et al. 2019). These results combined 

mild to moderate adverse effects and a good safety profile indicate potential 

successes for samalizumab as a clinically useful CD200 checkpoint inhibitor in CLL.  

 
1.3 Ectodomain shedding 

Ectodomain shedding is the mechanism of proteolytic cleavage of cell surface 

molecules resulting in the loss of extracellular domains, leading to the release of a 
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soluble form into the extracellular microenvironment. This mechanism is involved in a 

variety of normal processes including cell survival, growth factor signalling, cell 

adhesion and control of inflammation (Clark 2014). Ectodomain shedding also has 

further important roles in control of immune responses by regulating the release of 

cytokines, cytokine receptors, chemokines and many membrane anchored 

immunoregulatory molecules (Wong et al. 2016). Conversely, increased ectodomain 

shedding due to increased protease activity is a key pathological process seen in 

many diseases including cancer, Alzheimer’s disease and multiple sclerosis. An 

imbalance of protease activity can lead to substantial tissue damage, so precise 

regulation by protease inhibitors is essential for homeostasis (Hadler-Olsen et al. 

2011).  

 

1.3.1 Families of proteases 

Proteases were first grouped into 84 families in 1993 (Rawlings and Barrett 1993), 

which are now further subdivided into four main broad subgroups based on their 

catalytic mechanisms: serine, cysteine, aspartyl and metalloproteases. Serine and 

cysteine proteases pair a proton-withdrawing group with the amino acid residue at 

the active site to promote nucleophilic attack on the peptide bond. Aspartyl proteases 

and metalloproteases however activate a water molecule which serves as the 

nucleophile, rather than using a functional group of the enzyme itself (López-Otín 

and Bond 2008). Proteases link their catalytic domains to specialised functional 

molecules or domains to provide substrate specificity, modify their activation 

properties, set their cellular localisation, and edit their level of sensitivity to 

endogenous inhibitors. As proteases carry out irreversible hydrolytic reactions, their 

functions must be tightly regulated to avoid inappropriate activation. Protease 

activation is controlled by several mechanisms including regulation of gene 

expression, post-translational modifications such as glycosylation, proteolysis and 

activation of inactive zymogens (López-Otín and Bond 2008).  

 

1.3.1.1 MMPs 

Matrix metalloproteinases (MMPs), also known as matrixins, are found in the 

extracellular environment where they have roles in the degradation of matrix and 
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non-matrix proteins, morphogenesis, wound heading, tissue repair and response to 

injury. MMPs were first described in 1949 (Gersh and Catchpole 1949) as 

depolymerizing enzymes which facilitate tumour growth by making connective tissue 

stroma. The roles of MMPs in other biological processes were later discovered when 

in 1962, an MMP collagenase was found to be responsible for tadpole tail resorption 

(Gross and Lapiere 1962). Subsequent MMP research has developed significantly, 

with MMPs now known to be implicated in a wide range of normal and pathological 

processes in humans, viruses, bacteria, plants and animals (Laronha and Caldeira 

2020).  

Humans have 23 types of MMPs (MMP-1 to MMP-23), which are part of a family of 

multidomain zinc-dependant endopeptidases (Drahansky et al. 2016). Each MMP 

has a different substrate, however they can be subdivided according to their 

substrate specificity into collagenases, gelatinases, stromelysins, metrilysins, 

membrane-type MMPs (MT-MMPs) and other MMPs. The active sites of MMPs are 

zinc-dependant and highly conserved, with three histidine residues bound to catalytic 

zinc. MMPs are comprised of a variable length signal N-terminal peptide which 

targets the peptide for section, a pro-domain (around 80 amino acids) which keeps 

the protease inactive until removed, a catalytic domain (around 160 amino acids), 

with a zinc ion comprised of 5 b-sheets, three a-helices and three calcium ions, a 

linker of variable length (14-69 amino acids) which comprises the “hinge region”, a 

hemopexin-like domain (around 210 amino acids) characterised by four b-propellers 

and an additional transmembrane domain with a small cytoplasmic C-terminal 

domain (only present in MMP-14, -15, -16 and -24) (Laronha and Caldeira 2020) 

(Figure 1.7).   
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The primary biological function of MMPs is degradation of ECM proteins, 

glycoproteins, membrane receptors, cytokines and growth factors, however they are 

also involved in a number of biological processes including tissue repair and 

remodulation, cell proliferation and differentiation, embryogenesis, angiogenesis, 

apoptosis and wound healing (Löffek et al. 2011). The catalytic mechanism at the 

MMP active site during proteolysis has been well characterised in recent years. 

Hydrolysis of the peptide bond begins with a nucleophilic attack by the water and 

zinc molecules on the carbonyl carbon of the substrate. Proton transfer to the amine 

nitrogen occurs through the glutamic acid residue, promoting a gem-diol reaction 

intermediate with a tetrahedral geometry. The substrate is then broken down and the 

water molecule is released. The peptide is now stabilized at the active site due to the 

interaction between N-terminal residues and the S1′ pocket, and by new hydrogen 

bonds formed between the N-terminal, glutamate and water. The two key steps in 

this catalytic process are the structural rearrangement of the active site and the fate 

of the two obtained peptides (Laronha and Caldeira 2020). 

Figure 1.7 Matrix metalloproteinases and a disintegrin and matrix metalloproteinases structure 
The typical structure of an MMP is a prodomain with a furin cleavage site, a catalytic 
metalloproteinase domain with fibronectin type II repeats), a linker peptide and a hemopexin domain 
(except for MMP-7, -26 and -23), a linker peptide, a transmembrane domain and cytoplasmic tail or 
glycosylphosphatidylinositol (GPI) anchor. Common ADAM structure is a prodomain, a cleavage site 
for a furin or furin-like proprotein convertase, a metalloproteinase domain, a disintegrin domain, a 
cysteine-rich region, an EGF-like domain, a transmembrane domain (TMD) and a cytoplasmic tail. 
Adapted from Seals and Courtneidge, 2003 and Paulissen et al, 2009. Created in BioRender.com. 
Abbreviations: ADAM, a disintegrin and metalloproteinase, MMP, matrix metalloproteinase, TMD, 
transmembrane domain.     
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The expression and activities of MMPs are mediated by cytokines, growth factors, 

hormones and cell-cell and cell-matrix interactions. Activity is further regulated by 

activation of precursor zymogens and inhibition by endogenous inhibitors, the tissue 

inhibitors of metalloproteinases (TIMPs) (Nagase et al. 2006). The balance between 

MMP and TIMP levels is therefore essential for homeostasis of ECM remodelling, 

with an imbalance leading to significant tissue damage and disease development.  

Dysregulation of MMP activity leads to the progression of various pathologies 

resulting from tissue destruction, fibrosis and ECM weakening (Serra 2020). MMPs 

have also been implicated in the pathology of a number of diseases including 

arthritis, degenerative brain diseases, chronic inflammation and cancer invasion and 

metastasis (Nagase et al. 2006; Laronha and Caldeira 2020). 

 
1.3.1.2 ADAMs 

The A Disintegrin and Metalloproteinase (ADAM) family of multidomain 

transmembrane proteins belongs to the metzincins superfamily of metalloproteases. 

The ADAM structure consists of a prodomain, a metalloprotease domain, a 

disintegrin domain, a cysteine-rich domain, an EGF-like domain, a transmembrane 

domain and a cytoplasmic tail (Seals and Courtneidge 2003) (Figure 1.7). Unlike 

MMPs, whose main function is remodelling of the ECM, ADAMs are implicated in 

“sheddase” activities, proteolysis, and cell adhesion. Roles for ADAMs have also 

been widely described in development, fertility, inflammation, immunity and 

neurodegenerative diseases (Chou et al. 2020b). The main substrates of ADAMs are 

the ectodomains of other transmembrane proteins, including precursor forms of 

growth factors and cytokines, growth factor and cytokine receptors, and adhesion 

molecules (Duffy et al. 2011). The ADAM family is comprised of around 40 gene 

members, however only 21 of these are believed to be functional in humans. Several 

methods of regulation control ADAM activity including gene expression, redistribution 

of sheddases and substrates along the plasma membrane, enzymatic inhibition and 

allosteric control, all of which are key to prevent inappropriate inactivation (Mishra et 

al. 2017).  

Altered ADAM expression has been implicated in various pathologies including 

rheumatoid arthritis and osteoarthritis, however their best documented roles are in 
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cancer formation and progression. A number of ADAMs including ADAM8, ADAM9, 

ADAM10, ADAM12, ADAM15, ADAM17 and ADAM28 have been described in 

cancer development, with expression generally associated with poor outcomes 

(Duffy et al. 2011; Mullooly et al. 2016) 

 

1.3.1.2.1 ADAM9 

ADAM9 is a membrane-anchored protein with a number of physiological functions 

including cell adhesion and the ectodomain shedding of a wide variety of cell surface 

proteins. ADAM9 has widespread tissue expression in various cell types and plays 

roles in a multitude of biological functions including wound healing, response to 

acute injury and myogenesis, as well as pathophysiological conditions including 

development of neurodegenerative diseases, inflammation, chronic obstructive 

pulmonary disease (COPD) and tumorigenesis (Chou et al. 2020b). The substrates 

of ADAM9 can be divided into three groups: (i) cytokines and their receptors, 

including CD40, TNF-a and IL-11 receptor, (ii) growth factors and their receptors, 

including pro-HB-EGF, GFG receptor 2 iiib and EphB4, and (iii) other molecules such 

as ADAM10, VEGFR2, Tie-2, angiotensin-1 converting enzyme, fibronectin and 

gelatin (Peduto 2009; Chou et al. 2020b). ADAM9 shares these substrates with a 

number of other ADAM family members including ADAM17 and ADAM10, however 

all ADAM family members have different biological functions, which could be due to 

unique amino acid combinations around the substrate cleavage site (Caescu et al. 

2009). Ectodomain shedding by ADAM9 initiates signalling through a number of 

pathways including the MAPK, EGFR/AKT pathway and AKT/NF-κB pathways, with 

a range of outcomes including tumour development (Haoyuan and Yanshu 2020; 

Zhou et al. 2020). Increasing evidence has associated ADAM9 with tumour biology, 

with overexpression found in several cancer types and correlated with tumour 

aggressiveness and poor prognosis, alongside the development of chemoresistance, 

angiogenesis and metastasis. ADAM9 expression has been implicated in the 

development of several cancer types including melanoma, lung, prostate, liver, 

breast, pancreatic, renal and brain cancers (Mochizuki and Okada 2007; Chou et al. 

2020b).  

Due to the widespread tissue distribution and roles in normal functions of ADAM9, 

drug design specifically targeting only cancer related ADAM9 is a significant 
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challenge. Fisetin, (3,3‘,4ʹ,7-tetrahydroxyflavone), a natural flavonoid widely found in 

plants has been proposed for use as an anti-ADAM9 agent in cancer treatments due 

to its ability to phosphorylate ERK1/2, therefore reducing ADAM9 protein and mRNA 

levels via the ERK1/2 pathway (Chen et al. 2015). Fisetin has been shown to halt 

migration and invasion of cancer cells in vitro, however this is yet to be clinically 

approved for cancer treatment (Imran et al. 2021). 

 

1.3.1.2.2 ADAM17  

ADAM17 is the most widely studied family member due to its role in ectodomain 

shedding of the inflammatory cytokine TNF-a from its precursor product, and 

therefore ADAM17 is also known as TNF-a converting enzyme (TACE). ADAM17 is 

essential for normal development and loss of expression can lead to diminished 

immune responses and other complications including sepsis development. ADAM17 

activity is regulated at multiple levels, however overactivation can occur through 

signalling through several pathways including ERK/MAPK, p38 MAPK and PKC, 

alongside activation through binding of iRhom2, which is essential for trafficking of 

ADAM17 to the cell membrane (Adrain et al. 2012). The sheddase activity of 

ADAM17 has been shown to significantly increase upon cell activation (Mishra et al. 

2017). Aside from TNF-a, the other main substrates of ADAM17 include the 

precursor forms of the EGFR/HER ligands, amphiregulin and HB-EGF. Following 

activation from their inactive precursor forms, downstream signalling occurs resulting 

in increased cell proliferation, migration, invasion and metastasis. Therefore, via 

increased EGFR/HER signalling, ADAM17 is strongly implicated in cancer 

development and progression (Mullooly et al. 2016). ADAM17 overexpression has 

been reported in various cancer types including hepatocellular carcinoma, NSCLC, 

RCC and oesophageal squamous cell carcinoma and correlates with poor outcomes 

(Peng et al. 2018; Saad et al. 2019). ADAM17 has been widely studied as a 

therapeutic target in many cancer types using selective low molecular weight 

inhibitors and mAbs. The widespread distribution of ADAM17 and wide number of 

substrates has caused difficulties drug development with high numbers of side 

effects and poor clinical trial outcomes, meaning ongoing drug development is 

required to enhance specificity and efficacy (Calligaris et al. 2021). The newest non-
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zinc-binding synthetic inhibitors which exploit iRhom2 to specifically target ADAM17 

on immune cells are an exciting development which may allow selective targeting of 

inflammatory ADAM17 activities (Giese et al. 2021). 

 

1.3.1.2.3 ADAM28 

ADAM28 is widely expressed in normal lymphoid tissues including the lymph nodes, 

spleen and stomach. Expression in non-lymphoid tissues including the pituitary 

gland, trachea and lung has also been observed but not well characterised. ADAM28 

has a wide range of biological functions, including tooth and muscle development, 

neurogenesis and cell-cell interactions. Substrates of ADAM28 include IGF-1, 

connective tissue growth factor (CTGF) and von Willebrand factor, cleavage of which 

leads to apoptosis of cancer cells within blood vessels (Miyamae et al. 2016). 

ADAM28 overexpression has been associated with cancer cell proliferation, survival 

and migration as well as metastasis. Conversely, in some cancer types ADAM28 

expression has been associated with strong protective effects against metastatic 

dissemination (Hubeau et al. 2020). ADAM28 is overexpressed in several cancer 

types including breast cancer, pancreatic cancer and NSCLC, with positive 

correlations with cancer cell proliferation, chemoresistance and tumour progression 

(Wei et al. 2019). 

 

1.3.1.3 TIMPs 

Tissue inhibitors of metalloproteinases (TIMPs) were originally characterised as 

inhibitors of MMPs, however their scope of inhibition has now been found to also 

include ADAMS and ADAMTSs (Di Carlo 2014). TIMPs are key regulators of ECM 

degradation and cell surface molecule shedding through control of ectodomain 

shedding. There are four homologous members of the TIMP family (TIMP1-4), all of 

which are capable of inhibiting all known MMPs, however the efficacy of their 

inhibition can vary, with some TIMPs having greater inhibitory strength than others. 

TIMP3 is primarily responsible for the inhibition of ADAMs and ADAMTSs, however 

all TIMPs can also inhibit all ADAM variants to some degree (Arpino et al. 2015). 

Reactivity for weaker inhibitory reactions can be increased by switching of amino 

acids, truncation of the C-terminal domain or mutations within the TIMP to increase 
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the affinity for specific MMPs (Nagase et al. 2006). TIMPs interact with MMPs and 

ADAMs at multiple active sites, allowing selective inhibition of different groups of 

proteases depending on their substrate specificity.  

The balance between protease expression and TIMP regulation is vital for 

homeostasis. Proteases process many biologically active proteins such as cytokines 

and chemokines, alongside their roles in cell surface protein cleavage, as part of 

their regulatory roles in ECM turnover and maintenance of the local tissue 

environment. Dysregulation of TIMP inhibition can therefore result in development of 

a variety of diseases in combination with degradation of the ECM. TIMPs also have a 

number of their own biological functions independent of their interaction with 

proteases, including regulation of cell growth and differentiation, cell migration and 

roles in anti-angiogenic and anti- and pro-apoptotic processes (Brew and Nagase 

2010). 

 

1.3.2 Ectodomain shedding of CD200 

Many cell surface molecules with inflammatory and immunoregulatory functions can 

also be found as a functionally active soluble form in serum. Soluble forms of cell 

surface proteins can be generated by alternative mRNA splicing, release from the 

cell surface in exosomes or through ectodomain shedding. CD200 is subject to 

ectodomain shedding, creating a soluble form (sCD200) which is believed to play a 

functional role in a number of pathologies including proliferative diabetic retinopathy, 

type 2 diabetes and several cancer types (Twito et al. 2013a; Xu et al. 2015; D’arena 

et al. 2021). CD200 ectodomain shedding can occur on cells of epithelial and 

lymphocyte origin, under both resting and activated conditions. The exact cleavage 

site(s) on CD200 remain to be elucidated, however in studies using Hek293 cells 

which were stably transfected with CD200R, it was demonstrated that sCD200 

detected in CLL did not contain the cytoplasmic CD200 domain, however it did retain 

the functional extracellular domain which allows binding to, and phosphorylation of, 

CD200R (Wong et al. 2016). In diabetic retinopathy patients, sCD200 levels were 

found to be significantly higher than healthy individuals, whilst in haematological 

cancers such as CLL, patient serum sCD200 levels were found to correlate with 

disease aggressiveness and tumour burden (Twito et al. 2013a; Xu et al. 2015; 

D’arena et al. 2021). It is currently unknown which proteases are responsible for the 
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ectodomain shedding of CD200, however ADAM28 and ADAM17 have been shown 

to be involved in this process in CLL (Twito et al. 2013b; Wong et al. 2016). 

However, as a wide range of physiological stimuli can induce ectodomain shedding 

by different proteases, the full mechanism has not yet been elucidated and other 

proteases may also be involved in this process in both CLL and other cancer types. 

sCD200 has been shown to be biologically active as it is still able to bind and 

phosphorylate CD200R. This interaction triggers downstream functions via CD200R 

and may play a role in normal functions and pathological conditions, however it is 

currently unknown if activation of the sCD200-CD200R pathway occurs with the 

same efficiency as when membrane CD200 interacts with CD200R (Wong et al. 

2016). Our group has previously shown that the presence of sCD200 following 

ectodomain cleavage by MMP3 and MMP11 results in modulation of the immune 

response and apoptosis of NK cells in BCC (Morgan et al. 2022). Research to further 

characterise this process and determine the effect of sCD200 in other CD200 

expressing cancer types is required.  

One cancer type demonstrating overexpression of CD200 is renal cell carcinoma 

(RCC), the most common form of kidney cancer. CD200 expression in RCC has 

been identified through immunohistochemical staining and at the protein and mRNA 

levels in several studies (Moreaux et al. 2008; El Hanbuli et al. 2021), however the 

functional role of CD200 expression in RCC has not been fully explored. 

 

1.4 Kidney anatomy 

The human kidney is divided into two sections: the inner medulla and the outer 

cortex, each distinguished by the cell types and structures within them.  

The inner medulla is composed of a tubular system, which can be subdivided by the 

epithelial cell structure of the tubules which form each part of the loops. The outer 

cortex is composed of a further complicated convoluted tubule system and the renal 

corpuscles, which form the functional filtration units of the kidney. The renal 

corpuscle is the main blood filtering component of the nephron, consisting of a knot 

of capillaries, known as the glomerulus, surrounded by the proximal end of the renal 

tubule comprised of a double walled glomerular capsule known as the Bowman’s 

capsule. 
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Urine formation has three main steps: glomerular filtration, reabsorption and 

secretion, which ensure that only waste and excess water are removed from the 

body while most water is reabsorbed. Each kidney contains over 1 million nephrons 

with a renal corpuscle containing a glomerulus, a network of capillaries surrounded 

by the Bowman’s capsule. As blood flows through the glomerulus, blood pressure 

pushes water and solutes from the capillaries into the capsule through a filtration 

membrane which allows water and small solutes to pass through but blocks blood 

cells and large proteins. This filtrate moves into the proximal convoluted tubule 

where ions, water and nutrients are reabsorbed, toxins are removed, and filtrate pH 

is altered. The filtrate then moves through the descending and ascending loop of 

Henle where further water and ions are reabsorbed. The resulting filtrate contains 

waste as well as other substances including essential ions, amino acids and small 

proteins, and this flows into the distal convoluted tubule, where further water and 

vital nutrients are reabsorbed into capillaries, and waste and hydrogen ions are 

secreted out the renal tubule, finally forming urine. Urine flows into the collecting duct 

and passes out of the kidney into the bladder and ureter for excretion.  

The renal tubules form around 90% of the renal cortex and are subdivided into the 

proximal convoluted tubule, thin descending limb of Henle, thick ascending limb of 

Henle, distal convoluted tubule, connecting tubule, and collecting duct which are 

histologically distinguishable. Kidney and nephron anatomy is shown in Figure 1.8.  
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Cells of the proximal tubules stain more intensely eosinophilic than those the 

comprising distal tubules, with nuclei spaced further apart. The proximal convoluted 

tubule is lined by a simple cuboidal epithelium with each cell having a brush border 

of microvilli to increase the efficiency of reabsorption, which is often visible in 

histological staining. The distal convoluted tubule is also lined by a simple cuboidal 

epithelium but does not have a brush border. The lumens of distal tubules commonly 

appear smaller, but rounder and more open than those of the proximal tubules, 

which commonly have an irregular or star shaped lumen. As the proximal convoluted 

tubule is considerably longer than the distal convoluted tubule, a typical section of 

the renal cortex includes many more profiles of proximal tubules than of distal 

tubules. 

Figure 1.8 Kidney and nephron anatomy 
The kidney is made up of two main parts, the outer cortex and the inner medulla. Blood enters 
through the renal artery and is subjected to filtration in the cortex through the capillaries of the 
glomerulus, following which the filtrate is subject to further filtration as it moves through the 
proximal convoluted tubule, out of the cortex into the medulla where it travels through the 
descending and ascending limbs of the loop of Henle, then back into the cortex to finally pass 
through the distal convoluted tubule. After water and essential ions have been reabsorbed by 
the tubules, the end product urine enters the collecting duct where it enters the urethra and is 
excreted by the body. Figure created with BioRender.com. 
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The filtrate next moves into the  loop of Henle which is composed of simple 

squamous epithelial cells and connects the proximal convoluted tubule to the distal 

convoluted tubule. The loop travels out of the cortex into the medulla where a 

concentration gradient of urea is formed as filtrate travels down the descending limb, 

allowing passive reabsorption of water. After travelling this length, the filtrate turns 

the ‘u’ shaped portion of the loop and travels up the thin ascending limb where 

sodium chloride diffuses out into the surrounding tissues along the concentration 

gradient. Finally in the thick ascending limb, further salts can be removed if required, 

before the filtrate moves on into the distal part of the convoluted tubule as a 

concentrated urine end product, which moves though the collecting ducts into the 

renal pelvis for excretion. The collecting ducts are formed of intercalated cells and 

principal cells, specialised epithelial cells associated with the regulation of acid-base 

homeostasis and sodium reabsorption. 

 

1.5 Kidney cancer 

Kidney cancer is the 7th most common cancer in the UK, with approximately 13,100 

new cases diagnosed per annum (Kidney Cancer UK). Over the last decade, the UK 

incidence of kidney cancer has risen by 36%. While survival rates have increased in 

recent years, the 10-year survival rate remains at only around 52% (Cancer 

Research UK). The average 5-year survival rate for early stage kidney cancer is 

around 85%, however it is substantially lower in late stage disease where 

metastases are present, averaging at only around 12% (Office for National 

Statistics).   

The risk of developing kidney cancer is associated with a number of clinical, 

environmental and genetic factors. Lifestyle factors such as cigarette smoking, 

alcohol consumption, hypertension and obesity are somewhat controllable, however 

environmental factors such as exposure to asbestos, petroleum products and 

ionizing radiation are less so (Petejova and Martinek 2016). Hereditary diseases 

such as Von Hippel-Lindau disease, autosomal dominant polycystic kidney disease, 

acquired cystic kidney disease and Birt-Hogg-Dubé syndrome also increase the risk 

of kidney cancer development by providing a genetic basis for the disease (Ayerbes 

et al. 2008; Pastore et al. 2015).  
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Kidney cancer symptoms are non-specific and therefore hinder diagnosis. A 

combination of flank pain, palpable abdominal mass, and gross haematuria was 

previously thought to be symptomatic of kidney cancer, however it is now accepted 

that this combination is rare (6–10% of presentations), and is only detectable at 

advanced stage (Pastore et al. 2015). Over 60% of patients are diagnosed during 

treatment or imaging for an unrelated condition, so due to this around 36% of 

patients are diagnosed at stage III or IV (Vasudev et al. 2020).  

 

1.5.1 Kidney cancer subtypes 

Kidney cancers can be subdivided into one of twelve subtypes now recognized by 

the World Health Organization classification of tumours of the urinary system (Lopez-

Beltran et al. 2018). 90% of kidney cancers are renal cell carcinomas (RCC), of 

which 70% are the most aggressive clear cell (ccRCC) subtype. The remainder of 

cases comprise of papillary (pRCC, 10% of RCCs), chromophobe (chRCC, 5% of 

RCCs), benign tumours such as oncocytoma and other much rarer or unclassified 

subtypes (15% of all RCCs combined) (Farber et al. 2017), as shown in Figure 1.9. 

 

 

 

1.5.1i Clear cell renal cell carcinoma 

Clear cell renal cell carcinoma (ccRCC or KIRC) is the most common RCC subtype. 

ccRCC has a distinctive histological structure, characterised by the presence of lipid-

Figure 1.9 Cells of origin for RCC subtypes 
The cells of origin for RCC are the proximal convoluted tubule, which gives rise to ccRCC and pRCC, 
the distal convoluted tubule, which gives rise to chRCC, and the collecting duct, which gives rise to 
rarer RCC subtypes such as renal medullary cell carcinoma. Created in BioRender.com. 
Adapted from Dizman, 2020. 
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rich clear cells with large cytoplasmic space, arranged in “nests” surrounded by 

delicate “chicken-wire” vasculature. Macroscopically, the tumour has variable 

degrees of necrosis, haemorrhage and cystic degeneration (Muglia and Prando 

2015). The cell of origin for ccRCC is thought to be the epithelium of the proximal 

convoluted tubules of the renal cortex (Figure 1.9) (Ishihara et al. 2020). ccRCC is a 

highly metabolic cancer type, with higher levels of aerobic glycolysis found in ccRCC 

compared to other RCC subtypes. This is likely due to mutations in genes which 

control metabolism, including von Hippel-Lindau (VHL) in the hypoxia pathway, 

mammalian target of rapamycin (mTOR), and mesenchymal epithelial transition 

factor (MET) in the PI3K/AKT/mTOR pathway, resulting in high incidence of the 

Warburg Effect in ccRCC (Qi et al. 2021). Other common ccRCC mutations include 

SET domain containing-2 (SETD2), BRCA1-associated protein-1 (BAP1) and 

polybromo-1 (PBRM1), which are all key tumour suppressor genes located on 

chromosome 3p, in close proximity to VHL (Liu et al. 2020). These mutations are 

associated with late tumour stage, poor differentiation and prognosis and are 

currently being explored to determine how these mutations affect response to 

targeted therapy in ccRCC (D’Avella et al. 2018). 

 

1.5.1ii Papillary renal cell carcinoma 

Papillary renal cell carcinoma (pRCC or KIRP) is the second most common RCC 

subtype and generally has a slightly better prognosis than ccRCC (Farber et al. 

2017). pRCC can occur sporadically or as a familial condition. pRCC presents as two 

subtypes: Type 1 (basophilic) and Type 2 (eosinophilic), which are histologically 

distinguishable and are associated with significantly different outcomes. Type 1 

pRCC presents a single layer of basophilic cells on the basal membrane with small, 

clear cytoplasm and hyperchromatic nuclei. Type 2 pRCC presents with papillae 

covered with cells with highly granular eosinophilic cytoplasm, with prominent 

nucleoli in areas of necrosis. Type 2 pRCC usually presents as a high grade tumour, 

associated with metastasis and so is associated with worse prognosis than Type 1 

pRCC (Muglia and Prando 2015). Like ccRCC, pRCC is thought to originate from the 

epithelium of the proximal convoluted tubule (Figure 1.9) (Ishihara et al. 2020). 

Similarly to ccRCC, mutations in MET, CDKN2A, SETD2, BAP1 and mTOR are all 
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characteristic features of pRCC development alongside chromosomal number 

changes (Angori et al. 2022). 

 

1.5.1iii Chromophobe renal cell carcinoma  

Chromophobe renal cell carcinoma (chRCC or KICH) is the third most common RCC 

subtype and is less aggressive than the other two common subtypes. Of the three 

subtypes, chRCC has best prognosis due to low rates of metastasis and is often 

curable by surgery alone (D’Avella et al. 2020). Histologically, chRCC is a 

homogenous tissue which presents as large pale cells with reticulated cytoplasm and 

a perinuclear halo (Muglia and Prando 2015). Unlike ccRCC and pRCC which arise 

from the proximal convoluted tubule, chRCC is thought to originate from the 

epithelium of the distal convoluted tubule (Figure 1.9) (Casuscelli et al. 2019). 

Common mutations found in chRCC development include PTEN, PT53 and mTOR 

(Garje et al. 2021). 

 

1.5.2 Aetiology 

RCC can develop due to lifestyle choices or genetic predisposition. Smoking is the 

most well studied lifestyle factor linked to RCC development, which is a dose-

dependent and reversible risk factor, most commonly associated with white males 

(Reigle et al. 2021). Obesity, hypertension, chronic renal failure, and diabetes have 

also been defined as significant risk factors. Men are twice as likely to develop RCC 

compared to females and it is more common in patients ages 55-74, in developed 

regions such as Europe and North America and in areas with lower socioeconomic 

status (Kabaria et al. 2016).  

Several genomic changes have been characterised in RCC development, including 

oncogenic mutations, metabolism pathway alterations and epigenetic reprogramming 

(Lopez-Beltran et al. 2018). The most common genetic alteration is a loss -of-

function mutation in the tumour suppressor von Hippel-Lindau (VHL) gene, which 

regulates the hypoxia response pathway via hypoxia inducible factors (HIFs), 

promotes tumour cell survival in a hypoxic environment and is central to RCC 

development (Cowey and Rathmell 2009). Around 95% of ccRCC patients have a 

deletion in the short arm of chromosome 3p which contains VHL and other 



 

62  

commonly mutated genes in RCC development (Padala and Kallam 2022). Around 

4% of RCCs are associated with hereditary conditions and these familiar forms of 

RCC develop at an earlier age (Petejova and Martinek 2016). 

 

1.5.2.1 Von-Hippel Lindau gene 

VHL is a tumour suppressor gene with a key role in ccRCC development which is 

altered in around 90% of cases, through either a sporadic or a familial manner (Nabi 

et al. 2018). VHL disease is the most common cause of inherited RCC, however it is 

rare and not well understood. Tumours associated with VHL disease develop in an 

autosomal-dominant fashion in patients who are born with one inactivated copy of 

VHL. For tumorigenesis, the “two-hit” hypothesis describes how a loss of function 

deletion or mutation in the remaining functional VHL allele results in loss of 

production of the functional protein product of the VHL gene, pVHL. Under normal 

conditions, pVHL forms complexes with other proteins including cellulin 2 and 

elongin B and C, forming the VBC complex. This complex is responsible for 

degradation of several intracellular proteins including hypoxia-inducible factor-1 

alpha (HIF1a) and -2 (HIF2a), which bind DNA to serve as transcription factors for 

upregulation of several growth factors including VEGF, PDGFB and TGFa. These 

growth factors play key roles in vascularization of aggressive tumours with VHL gene 

alterations (Swiatek et al. 2020). In normal conditions, HIF1a and HIF2a are 

hydroxylated on proline residues and bind pVHL to polyubiquinate the HIF, targeting 

it for proteasomal degradation. In the absence of pVHL or in hypoxic conditions in 

both VHL disease related and somatic RCC development, HIF1a and HIF2a are not 

hydroxylated and subsequently accumulate in the cell where they form dimers with 

HIF1b. The dimers then migrate to the nucleus where they act as transcription 

factors for VEGF, PDGFB, TGFA and ECM proteins, resulting in increased 

angiogenesis, cell proliferation, glucose and lipid metabolism and cell cycle 

progression (Nabi et al. 2018; Kim et al. 2021). As VHL is inactivated in most 

sporadic RCCs, this partly explains the high vascularity seen in most RCC tumours 

(Baldewijns et al. 2010). 
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1.5.2.2 The mammalian target of rapamycin signalling pathway 

The mTOR pathway is one of the most commonly deregulated pathways in human 

cancers, and is a key factor in RCC development (Faes et al. 2021). The mTOR 

pathway is responsible for regulation of the cell cycle, cell growth, differentiation and 

tumour progression and is a therapeutic target in several cancer types (Nabi et al. 

2018). The mTOR-PI3K pathway is initiated by growth factor binding to the cell 

surface, resulting in activation of the phosphatidylinositol-3-kinase (PI3K) protein, 

which in turn activates mTOR. Activated mTOR creates mTOR complexes 1 and 2 

(mTORC1 and mTORC2), which phosphorylate P70S6K and 4E-BP1/eukaryotic 

translation initiation factor 4E (4E-BP1/eIF4E). Phosphorylated P70SK migrates to 

the nucleus and initiates coding for the HIFA protein resulting in production of 

angiogenic proteins. Phosphorylated 4E-BP1 regulates the effects of oncogenic Akt 

signalling resulting in mRNA translation, cell growth and tumour progression (Clark 

2009; Miricescu et al. 2021). Genetic mutations leading to constitutive activity of 

mTOR increase the risk of RCC metastasis and angiogenesis. Therefore, mTOR 

inhibitors have been widely trialled in RCC treatment, however they have failed to 

provide long-term benefits, indicating that RCC tumours do not depend solely on the 

mTOR pathway for survival (Faes et al. 2021). 

 

1.5.2.3 Other pathways 

The most commonly mutated genes in RCC are the tumour suppressors PBRM1, 

BAP1 and SETD2, all of which are found on the same chromosome as VHL, 

chromosome 3p, within a 50Mb distance (Hsieh et al. 2018). This chromosome is 

lost in approximately 90% of sporadic ccRCCs, so deletion of this region results in 

simultaneous one-copy loss of four key tumour suppressors, resulting in vulnerability 

to tumour development following loss of the second allele (Brugarolas 2013).  

Loss of PBRM1 results in enrichment of pathways associated with cell motility and 

cytoskeleton development, however its role in tumorigenesis is unclear. In some 

reports, PBRM1 loss has been associated with a less immunogenic TME and 

upregulated angiogenesis, however conversely in some reports, PBRM1 loss has 
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been associated with extended progression free survival (PFS) (Carril-Ajuria et al. 

2020; Liu et al. 2020).  

BAP1 loss occurs in around 10-15% of ccRCC cases and is associated with 

upregulation of PI3K signalling and an increase in mTOR activation (Gulati et al. 

2022). SETD2 loss is associated with ccRCC recurrence and poor prognosis, 

however the full effect of this loss remains to be explored (González-Rodríguez et al. 

2020). These genes, alongside others within the mTOR, PI3K/ARK and VEGF 

pathways, have potential for use as both RCC biomarkers and drug targets, however 

research continues in these areas (Garje et al. 2018; Lopez-Beltran et al. 2018). 

 

1.5.3 Disease staging 

Cancer staging is used to determine the extent of disease development and make 

decisions on treatment course. RCC staging is completed using the American Joint 

Committee on Cancer (AJCC) TNM system, which classifies tumours based on the 

size of the tumour (T), lymph node involvement (N) and presence of metastasis (M) 

(Table 1.4) (Swami et al. 2019).  

 

Table 1.4 RCC TNM staging according to AJCC 8th Edition 
Adapted from Swami et al. 2019. 

 

Combined, the TNM staging is used to calculate an overall disease stage of I-IV 

(Table 1.5). Diagnosis at early stage I and II, before the tumour grows outside of the 

kidney, is strongly associated with better outcomes, with 88.3% of patients surviving 
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five years following diagnosis when diagnosed at stage I, compared to 14% when 

diagnosed at stage IV (Cancer Research UK). 

 

 

 

1.5.4 Detection and diagnosis 

Current National Institute for Health and Care Excellence (NICE) guidelines 

recommend that a patient aged over 45 presenting to the GP with blood in the urine 

(haematuria) without, or after treatment for, a urinary tract infection is to be sent to a 

suspected cancer pathway referral for urine cytology (NICE, 2019). However, many 

diseases other than RCC, including urinary tract or bladder infections, bladder 

cancer, and benign kidney conditions such as kidney stones can cause haematuria 

(Bagnall 2014). Conversely, not all kidney cancer cases present haematuria until the 

cancer is advanced and has metastasised, meaning that this symptom alone cannot 

be used as a definitive diagnostic test, particularly not for early stage diagnosis 

(Sugimura et al. 2001; Pastore et al. 2015). Upon GP referral, first line imaging for 

suspected RCC includes CT, PET and MRI scans, however each scan type has its 

own limitations and again cannot be relied on alone for complete diagnosis. If 

imaging reveals a renal mass or cyst, a kidney biopsy may then be taken for 

classification and grading, however controversy exists around the risky and intrusive 

nature of a kidney biopsy, as the mass may be benign and therefore not require 

removal (Sahni and Silverman 2009). Improvements in image-guided equipment and 

Table 1.5 RCC stages based on TNM classification. 
Adapted from the American Cancer Society (2019). 
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percutaneous biopsies have made improvements surrounding these issues (Caoili 

and Davenport 2014), however development of biomarkers is necessary to identify 

patients who are at risk of RCC development at an early stage, without the need for 

unnecessary surgery.  

 

1.5.4.1 Biomarkers  

Biomarkers are useful tools for early disease detection, diagnosis, prognosis, 

measurement of treatment response and disease screening, however discovery of 

reliable biomarkers for RCC has proven to be a challenging area. Kidney cancers 

are genetically diverse with variable prognoses and response and recurrence rates, 

so biomarker research in these areas is vital to stratify patients to allow informed 

choices to be made regarding treatment decisions and improve patient outcomes 

(Marchioni et al. 2021). 

RCC diagnoses are often unclear, with controversy around the current lack of 

standardised practices for pathology, particularly in how tumours are classified in to 

a particular subgroup (Warren and Harrison 2018). Immunohistochemistry (IHC) is 

the most commonly used technique in RCC pathology; however, this technique is 

semiquantitative and is dependent on a range of variables including choice of 

antibody, antibody concentration, fixation techniques, interpretation, and stratification 

criteria, alongside inconsistencies in specimen handling and other technical 

procedures. Therefore, identification of molecular markers in body fluids which can 

be standardised as biomarkers to aid diagnosis, prognosis and treatment choices 

are urgently required (Corrò and Moch 2018; Rossi et al. 2018). 

Urine presents the ideal sample to develop diagnostic and prognostic tools for RCC 

and possesses many unique advantages over other sample types. It is readily 

accessible, easily obtained, non-intrusive to the patient, available in large amounts 

and may easily be stored and re-tested. With the use of appropriate biomarkers, 

urine testing could be used from early suspicion of disease and diagnosis, 

throughout treatment and during follow up to monitor the progress of the patient and 

determine the progression of the disease. Currently the only available urine test is for 

detection of haematuria, however this test has low sensitivity and specificity for RCC, 

and so is not used widely as a screening tool (Rossi et al. 2018). Various molecules 
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have been studies for use as RCC biomarkers, including the use of chemokines 

(Zeng et al. 2020), serum biomarkers (Silva et al. 2018) and circulating tumour DNA 

(ctDNA) (Farber et al. 2017), however no single biomarker has yet been found which 

can specifically and sensitively detect RCC. Use of the exosomal proteins 

Aquaporin-1 (AQP-1) and Perilipin-2 (PLIN2) as urinary biomarkers have had some 

success, levels of which have been shown to increase significantly in RCC and 

decrease by 80% after tumour removal (Morrissey and Kharasch 2013). Urinary 

AQP1 and PLIN2 concentrations have also been shown to discriminate between 

RCC subtypes, as they are elevated in patients with ccRCC and pRCC compared 

with other subtypes and control samples (Song et al. 2019). However, as testing has 

currently only been completed on small sample sizes, further trialling is required to 

see if this is an appropriately specific and sensitive biomarker. Other recent RCC 

biomarker studies have shown some promise in discrimination between RCC and 

healthy controls, with some even showing ability to distinguish between stages and 

grades, as listed in Table 1.6. Most published studies have however been based on 

retrospective data with small sample sizes and relatively short follow-up, hence there 

is limited data currently available on the sensitivity and specificity on these tests. 
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Abbreviations: Anti-PHD3 Ab,: Anti-hypoxia-inducible factor prolyl hydroxylase-3 antibody, AQP-1, 
Aquaporin-1, CAIX, Carbonic anhydrase IX, GGT, Gamma-glutamyl transferase, HC, Healthy control, 
hsCRP, High sensitivity C-reactive protein, Hsp27, Heat shock protein β1, KIM-1, Kidney injury 
molecule-1, M-65, intact form of CK18, MMPs, Matrix metalloproteinases, NGAL, Neutrophil 
gelatinase-associated lipocalin, NMP-22, Nuclear matrix protein-22, OPN, Osteopontin, PLIN2, 
Perilipin 2, RCC, renal cell carcinoma, TRAF-1, Tumour necrosis factor receptor-associated factor-1, 
SAA, Serum amyloid, TK1, Thymidine kinase 1, TRAIL, tumour necrosis factor-related apoptosis 
inducing ligand, TuM2-PK, Pyruvate kinase type M2. 

 

1.5.5 Immune evasion in RCC  

RCC is a highly immunogenic cancer type, with high levels of tumour infiltrating T 

cells present throughout tumour development (Heidegger et al. 2019). While some 

level of anti-tumour response is successfully carried out by the immune system, as 

RCC is still able to develop and metastasize in many cases, this indicates the ability 

of RCC tumours to evade immune anti-tumour responses through the process of 

immune evasion. RCC tumours are highly heterogenous and the complex TME 

Table 1.6 Potential RCC biomarkers and their clinical applications 
Adapted from Pastore et al, 2015 and Marchioni et al, 2021. 
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provides favourable conditions for immune escape. RCC cells can evade the 

immune system using various mechanisms including abnormal expression of MHC 

class I molecules, overexpression of immunosuppressive cells including Tregs to 

dampen immune responses, induction of immunosuppressive cytokine expression 

including IL-10 and TGF-b, and overexpression of angiogenic factors including 

VEGF to promote tumorigenesis and growth (Jian et al. 2021). A further mechanism 

used by RCC cells is induction of apoptosis in immune cells through expression of 

FasL (Olive et al. 1999). A widely studied mechanism of immune evasion in RCC is 

overexpression of immune checkpoints, including the PD-L1-PD-1 axis, wherein PD-

L1 inhibits PD-1 expressing CTLs and NK cells, and CTLA-4, which binds APCs, 

resulting in T cell inhibition (Wang et al. 2021a). These checkpoints have been 

exploited therapeutically by immune checkpoint inhibitors; however patient 

responses are generally poor. A less well studied immune checkpoint in RCC is 

CD200, which has been shown to be overexpressed in RCC (Moreaux et al. 2008), 

however the importance of this checkpoint in RCC development and its potential as 

a therapeutic target is currently unknown. 

 

1.5.6 Treatment 

The treatment course of kidney cancer is dependent on the disease stage, subtype 

and risk factors. Whilst surgery is still considered the gold standard treatment course 

in early-stage disease, the development of a wide range of therapeutic options has 

changed the landscape for RCC treatment for both early and advanced stage 

disease. The main challenge in RCC is chemotherapy resistance, found in all 

common subtypes, with only rare tumours such as transitional cell carcinoma and 

collecting duct carcinoma able to benefit from this treatment. Likewise, in most RCC 

patients, radiotherapy is only generally used for palliative symptom relief in 

unresectable or metastatic disease (Makhov et al. 2018). In recent years, the 

development of tyrosine kinase inhibitors (TKIs), angiogenesis inhibitors and ICIs 

has significantly increased the range of options for RCC treatment (Aldin et al. 2023). 

Targeted therapies against the VEGF and mTOR pathways have shown some 

success in RCC, however a high proportion of patients have been shown to relapse 

when single agent target therapies are used (Hsieh et al. 2017). Therefore, due to 

the large number of drugs now available, it is essential to use and combine the most 
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effective therapies while balancing improved outcomes against side effects and 

impact on quality of life.  

 

1.5.6.1 Surgery 

Radical or partial nephrectomy surgery is the gold standard treatment for localised, 

early stage RCC, which significantly increases long term overall survival rates to 

around 65% and can be curative in some cases. However, following nephrectomy for 

clinically localised disease, 20-40% of patients will still relapse, resulting in poor 

prognosis (Krabbe et al. 2014). In patients with advanced RCC, surgery is generally 

used only for palliative reduction of tumour burden and is rarely used to remove 

metastases, with 5 year survival rates of 5-25% (Krabbe et al. 2014). In these 

patients, other treatment options are generally considered, however in advanced 

disease, their use is aimed towards symptom control and palliative relief, rather than 

cure.   

 

1.5.6.2 Targeted therapies 

Due to the limited treatment opportunities presented when late-stage disease is 

diagnosed, selection of the correct treatment for the specific RCC subtype is 

important in selection of treatment for the greatest success rate. Many treatments 

and drug combinations have been trialled in late stage RCC, as is comprehensively 

described in (Sánchez-Gastaldo et al. 2017), however due to the wide genetic 

landscape of RCC, it is likely that different stages and subtypes will require different 

treatments. A number of comparative randomised controlled trials have been 

completed to review the outcomes of combinations of TKIs, angiogenesis inhibitors 

and ICIs, particularly in efforts to improve outcomes in patients with advanced 

disease. Due to the highly angiogenic nature of RCC development, several VEGFR 

TKIs including sunitinib, pazopanib, axitinib and cabozantinib have been developed 

to target and deactivate downstream pathways related to angiogenic processes 

(Hofmann et al. 2020). These drugs, alone or in combination with inhibitors of 

members of the mTOR pathway such as everolimus, are used for first- and second-

line treatments in treatment of localised and metastatic RCC. A list of RCC targeted 

and immunotherapies currently recommended by NICE can be found in Table 1.7.  
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Abbreviations: CTLA-4, Cytotoxic T-lymphocyte-associated protein 4, mTOR, Mammalian target of 
rapamycin, PD-1, Programmed cell death protein-1, PDGF, Platelet-derived growth factor, RTK, 
Receptor tyrosine kinase, VEGF, Vascular endothelial growth factor.  

 

1.5.6.3 Immunotherapies 

Prior to the development of targeted therapies, high-dose IL-2 was widely used in 

RCC treatment, however low complete response rates ranging from 20-33% and 

partial responses between 8-13% were generally observed (Amin and White 2014). 

Significant side effects are also associated with IL-2 treatment, which combined with 

low response rates, raised questions surrounding patient quality of life, leading to 

high interest in development of alternative treatment modalities.  

The development of immunotherapies has changed the face of RCC treatment over 

the past 20 years. The use of ICIs alone, or in combination, for CTLA-4 and PD-1 

showed promising results, as RCC is a highly immunogenic tumour with high levels 

of tumour-infiltrating lymphocytes, however resistance is commonly acquired to 

these treatments (Sánchez-Gastaldo et al. 2017). Combinations of ICIs with 

antiangiogenic drugs are currently being trialled to determine if this can overcome 

these resistance mechanisms.   

 

Table 1.7 NICE recommendations for RCC treatment 
Adapted from NICE Renal Cancer Overview, 2019. 
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1.5.6.3.1 PD-1 and CTLA-4 inhibitors 

PD-1 is expressed in RCC tumour subtypes, with expression reported in 23% of 

ccRCC tumours, 10% of pRCC and 5.6% of chRCC tumours (Deleuze et al. 2020). 

CTLA-4 is also expressed on 1-7% of RCC cells, and expression increases with 

tumour stage (Kahlmeyer et al. 2019). Targeting of PD-1 and CTLA-4 separately was 

found to promote low response rates and high levels of adverse effects (Yang et al. 

2007), however combination trials have found some durable responses in advanced 

patients which have not responded to other treatments. Nivolumab is a fully human 

IgG4 monoclonal antibody which is specific for PD-1 (Hanna 2019). RCC patients 

were used in the CheckMate 214 phase I study of nivolumab in combination with 

ipilimumab, an anti-CTLA4 antibody, where favourable responses and toxicity 

profiles were observed (Motzer et al. 2018). Treatment with these drugs in the 

subsequent CheckMate 219 phase III trial however found no improvement in disease 

free survival compared to placebo, and four deaths were attributed to the treatment 

(Motzer et al. 2023). Despite these poor trial results, nivolumab is approved for first-

line treatment in combination with ipilimumab in intermediate/poor risk previously 

untreated advanced RCC, and as a second-line treatment alone in previously treated 

RCC (NICE, 2019).  

The KEYNOTE-564 phase III trial however found significant improvements in 

disease free survival in RCC patients treated with pembrolizumab, another anti-PD-1 

antibody, compared to placebo (Choueiri et al. 2021). Based on these outcomes, 

pembrolizumab has also recently been approved for use as an adjuvant 

monotherapy following nephrectomy, with or without metastatic lesion resection 

(NICE, 2022).  

 

1.5.6.3.3 Combination therapies 

The range of RCC treatments is wide and guidance for urologists is unclear. First- 

and second-line therapy decisions are based on a vast range of clinical and genetic 

factors; however, treatment directions are not clear cut. Poor results on monotherapy 

TKI and targeted therapies has led to interest in combination therapies to tackle both 

the angiogenic and immune response angles of RCC development. Whilst the 

results of recent immunotherapy trials such as KEYNOTE-564 have found some 
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success (Rassy et al. 2020), the poor successes of others such as CheckMate 219 

indicate that further trials need to be completed to improve outcomes for RCC 

patients by combining immunotherapies with targeted therapies.  

 

1.5.6.3.3i Immunotherapy and angiogenesis inhibitors 

Angiogenesis via the VEGF pathway is a key factor for RCC growth and 

development. Whilst anti-angiogenic TKIs are already used in RCC management as 

monotherapies (Table 1.7), as RCC is a highly immunogenic cancer type, additional 

implementation of immunotherapies could further improve outcomes in patients with 

advanced disease. TKIs are currently only administered as monotherapies as an 

alternative strategy as a first-line treatment if the patient cannot tolerate or undergo 

immunotherapy. Second-line TKI therapy can then be considered following TKI 

monotherapy if combination therapies are unsuitable (Rini et al. 2008). Combination 

targeted therapy and immunotherapy trials have been ongoing for many years; 

however, success rates are generally low. The phase I CheckMate 016 study 

combined nivolumab with either the TKIs sunitinib or pazopanib, however both TKI 

combinations caused high-grade toxicities, limiting future development of either 

combination regimen (Amin et al. 2018). Combination therapy using bevacizumab, a 

monoclonal antibody targeting VEGF, and interferon, also showed a significant 

improvement in PFS compared to interferon monotherapy in the CALGB 90206 trial, 

however high levels of toxicity are also found in this combination of therapies (Rassy 

et al. 2020). Trials of immunotherapy and TKI combinations are ongoing, including 

the COSMIC-313 trial which showed superior efficacy when combining nivolumab, 

ipilimumab and cabozantinib, however again toxicity was a concern (Gebrael et al. 

2023). Further combination treatments including pembrolizumab, lenvantinib and 

belzutifan in the MK-6482-016 trial (CT NCT04976634) are currently being 

investigated, with a 2026 study end date. Furthermore, Combinations of axitinib plus 

pembrolizumab (KEYNOTE-426) and axitinib plus avelumab (JAVELIN RENAL 101) 

have shown improved outcomes when used as first-line treatment in advanced 

disease (Rassy et al. 2020). This highlights the complexities of RCC treatment and 

difficulties facing health care providers of RCC patients, however further research is 

still required to define the appropriate treatment course for each individual patient.   
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1.6 Hypothesis and aims  

RCC is a highly immunogenic cancer type, however only a subset of patients shows 

durable responses to treatments due to primary and acquired resistance 

mechanisms, such as the overexpression of immune checkpoint molecules. The 

identification of new immune checkpoints involved in RCC development and 

progression may provide opportunities for therapeutic intervention.  

The immune checkpoint CD200 is overexpressed by cancer cells to evade immune 

attack and promote tumour growth. CD200 is overexpressed by several 

haematological and solid cancer types including RCC. 

We hypothesise that CD200 expression will significantly alter the immune infiltrate of 

the tumour, including an upregulation of immunosuppressive Tregs and dysfunction 

of effector T and NK cells. As CD200 is subject to ectodomain shedding, we 

hypothesise that the overexpression of proteases observed in cancer and the 

subsequent increased abundance of the soluble form of CD200 may also have 

effects on immune activity and affect patient outcomes. Blockade of CD200 

signalling and ectodomain shedding therefore has potential to reactivate anti-tumour 

T cell responses and reduce immunosuppression in RCC, reinvigorating the natural 

anti-tumour response. 

 

Aims 

1. Characterise CD200 expression in normal kidney and RCC tumours  

i. Bioinformatic analysis of publicly available data sets. 
ii. Immunofluorescent staining of patient-derived tissue samples. 

 

2. Characterise immune infiltrate in RCC 
i. Determine the immune infiltrate of ccRCC, pRCC and chRCC compared to 

normal kidney. 
ii. Determine the effect of CD200 expression on immune cell infiltration. 

 

3. Define the enzymatic mechanism for ectodomain shedding of CD200. 

i. Characterise proteases involved in RCC compared to normal kidney. 
ii. Determine the expression pattern of key proteases in RCC tissue. 
iii. Determine whether proteases have a role in CD200 ectodomain shedding. 
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4. Determine the biological activity of RCC CD200 and soluble CD200. 

i. Determine if CD200 and sCD200 can block NK cell killing of tumour cells. 



 

 

 

 

 
 
 

Chapter 2: Materials 
and Methods 
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2. Materials and Methods 

2.1 Human tissue samples 

Normal human tonsil, stomach and kidney samples were obtained from US Biomax, 

Zyagen. Kidney cancer tissue microarrays (TMAs) were obtained from the Wales 

Cancer Bank (WCB project numbers 22/008 and 20/019). Normal human skin 

sections were obtained following a protocol approved by the local independent 

research ethics committee (09/WSE/02/01). 

 

2.2 Immunofluorescence (IF) 

Paraffin embedded tissue sections were heated at 60°C for 30 minutes to facilitate 

dewaxing, followed by submersion in Xylene (10 minutes x 2). Slides were then 

rehydrated by submersion in the following solutions: 100% ethanol (5 minutes x 2), 

95% ethanol (5 minutes x 1), 70% ethanol (5 minutes x 1) followed by a wash in 

phosphate-buffered saline (PBS) (5 min x 1). Sections were then incubated in citrate 

buffer (8 mM sodium citrate, pH 6.0) or trisaminomethane ethylenediaminetetraacetic 

acid (TRIS EDTA) Buffer (10 mM Tris-HCl, 1 mM disodium EDTA, pH 8.0) for antigen 

retrieval, dependant on the antibody used as per manufacturer’s instructions. Slides 

were then heated in a pressure cooker in a microwave at full power (750 W, 10 

minutes), then allowed to cool to room temperature (RT). After drying, an ImmEdge 

PAP pen (Vector Laboratories) was used to draw a hydrophobic barrier around the 

sample. Non-specific binding was blocked by incubation with 10% donkey serum 

(Sigma-Aldrich) in PBS for 1 hour at RT. Specimens were then washed in PBS (5 

min x 4) and primary antibodies diluted with 5% donkey serum in PBS were added 

and left for overnight incubation at 4°C. A summary of primary antibodies used can 

be found in Table 2.1.  
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Table 2.1 Primary antibodies used for immunofluorescence 

 

Sections were washed 4 times in PBS Tween-20 (0.05%) for 5 minutes and 

incubated at RT for 1 hour in the dark with the appropriate fluorescence-conjugated 

secondary antibodies, as listed in Table. 2.2, diluted at 1:500 in 1:1 volume PBS and 

BlockAidTM (Thermo Fisher Scientific), with 1μl of 20μg/ml DAPI for nuclear staining.  

 

Table 2.2 Secondary antibodies used for immunofluorescence  

 

Specimens were washed 4 times in PBS Tween-20 (0.05%) for 5 minutes and a 

coverslip was mounted over the tissue using Vectashieldâ mounting medium 

(Vector Laboratories). Slides were then stored at 4°C. Fluorescent images were 

acquired using a DM6000B upright fluorescence microscope (Leica Microsystems), 

or Olympus SLIDEVIEW VS200 slide scanner at 40x magnification. Image analysis 

was performed using ImageJ (National Institutes of Health) or QuPath software 
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(Bankhead et al. 2017). Secondary antibody specificity was confirmed using positive 

and negative controls in the absence of primary antibody.  

 

2.2.1 Staining quantification using QuPath  

QuPath was used to determine the staining strength of CD200 and ADAM proteases. 

TMA cores firstly were defined using the TMA dearrayer tool and the cells in each 

core were detected using the cell detection feature based on DAPI expression, using 

all default conditions aside from the intensity threshold which was set to 15000.  

To confirm the accuracy of the automated staining detection, cells were counted 

manually in small areas of different TMA cores (n=15) and compared to the result 

from the detection. Representative cell detection and manual counting vs automated 

detection correlation is shown in Figure 2.1. 

Figure 2.1 Cell detection based on nuclear DAPI expression and validation by manual 
counting  
(A) Nuclear DAPI staining throughout the TMA core, (B) Automated cell detection based on 
nuclear DAPI expression, (C) Pearson correlation analysis found a very strong correlation 
between the manual and automated detection, with a r2 value of 0.964, p <0.0001 (n=15). 
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Areas of damaged tissue, artifacts or non-tumour tissue were next annotated and set 

to the Ignore* classification to be removed from subsequent analysis. CD200, 

ADAM9, ADAM17 or ADAM28 cell intensity classifications were next defined using 

the cell intensity classification tool by firstly selecting the appropriate measurement 

according to the staining’s location and channel, then three thresholds were defined 

to characterise weak (1+), moderate (2+) and strong (3+) staining for each channel, 

from which a H-score was automatically calculated by QuPath using the following 

calculation: 

 

H-score = [1 x (% of 1+ cells) + 2 x (% of 2+ cells) + 3 x (% of 3+ cells)] 

 

Any cells annotated as Ignore* were removed from the final H-score number. To 

validate the automated detection and confirm correct thresholding, the number of 

cells in small tissue areas (n=15) were again manually counted and compared to 

those found by the automated detection. Representative CD200 staining intensity 

detection and comparison of manual vs automated scoring can be found in Figure 

2.2. 
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Figure 2.2 Detection of CD200 expression detection using automated cell detection and 
validation by manual counting 
(A) CD200 staining throughout the TMA core. An artifact is highlighted in yellow and set to the Ignore* 
classification to be excluded from analysis (B) Automated CD200+ cell detection based on three 
staining intensity thresholds. 1+ cells are highlighted in yellow, 2+ cells are highlighted in orange and 
3+ cells are highlighted in red. Negative cells are highlighted in blue. Pearson correlation analysis 
found a very strong correlation between the manual and automated detection of (C) weak CD200+ 
cells, r2 0.990, (D) moderate CD200+ cells r2 0.957 and (E) strong CD200+ cells, r2 0.965. All 
relationships were p <0.0001 (all n=15). 
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Manual counting vs detection validation was also carried out in the same way for 

ADAM9, ADAM17 and ADAM28 for weak, moderate and strong staining, as shown 

in Figure 2.3. 

 

 

 

2.2.2 Immune cell quantification using QuPath 

TMAs were dearrayed and cells were detected as previously described by nuclear 

DAPI expression using QuPath. As double or triple positive staining for cell surface 

markers was used to identify immune cells, single measurement classifiers were 

Figure 2.3 ADAM9, ADAM17 and ADAM28 expression validation using manual counting vs 
automated detection 
ADAM proteases were detected using three thresholds to categorise weak, moderate and strong 
staining. Pearson correlation analysis was used to calculate the strength of the relationships. (A) 
Weak ADAM9 staining, r2 0.992, (B) Moderate ADAM9 staining, r2 0.966, (C) Strong ADAM9 staining, 
r2 0.950, (D) Weak ADAM17 staining, r2 0.947, (E) Moderate ADAM17 staining, r2 0.940, (F) Strong 
ADAM17 staining, r2 0.980, (G) Weak ADAM28 staining, r2 0.920, (H) Moderate ADAM28 staining, r2 

0.892, (I) Strong ADAM28 staining, r2 0.921, all p <0.0001. 
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firstly created with positive and negative thresholds for each channel using the 

appropriate area and channel filters. Composite classifiers were then created to 

combine the single measurement classifiers to determine positive immune cells with 

positive double- or triple staining. The combination of staining defining each immune 

cell type is shown in Table 2.3. Absolute immune cell positivity was determined as 

the number of positive cells per mm2, while relative immune cell positivity was 

calculated as the immune cell percentage of CD45+ cells within the core. 

 
Table 2.3 Antibody combinations for immune cell staining 

 

 

 

To validate the automated detection classifiers, manual counting of each cell type 

was completed at various sections of tissue (n=15) and cell numbers were compared 

to the automated detections as previously described. Comparison of manual 

counting vs automated detection for each cell type can be found in Figure 2.4. 
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Figure 2.4 Immune cell staining validation using manual counting vs automated 
detection  
Immune cells within small tissue areas were manually counted and cell numbers 
compared to the detected numbers. Pearson correlation analysis was used to compare 
the detections of (A) CD45+ cells, r2 0.998, (B) CD3+ cells, r2 0.994, (C) CD4+ T helper 
(Th) cells, r2 0.999, (D) CD8+ cytotoxic T lymphocytes (CTLs), r2 0.998, (E) Tregs, r2 0.934 
and (F) NK cells, r2 0.986. All relationships were p <0.0001.  
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2.3 Cell culture 

The ccRCC cell lines A498, CAKI2, UMRC2, UMRC3, UOK121 and UOK143 were 

obtained from our group’s previous PhD student Elise Rees. The HK2 cell line was a 

kind gift from Dr Chantal Colmont, Cardiff University. Cultures were regularly tested 

for the presence of mycoplasma. All cell culture products are from Gibco unless 

otherwise stated. 

2.3.1 Characterisation of cell lines  

For use in functional analysis and RNA sequencing, six ccRCC cell lines, A498, 

CAKI2, UMRC2, UMRC3, UOK121 and UOK143, and one normal kidney cell line, 

HK2 were used. All cells were cultured according to ATCC recommendations and 

RNA was assessed and all samples were found to be of high quality with ab RNA 

integrity number (RIN) of 10.  

A498 is a widely used RCC cell line and is part of the NCI-60 cancer cell line panel, 

a group of 60 cell lines widely used by the National Cancer Institute for the screening 

of novel cancer therapies (Shoemaker 2006). A498 has mutated VHL (Trotta et al. 

2018), however the p53 status has been reported to be both mutated (Brodaczewska 

et al. 2016) and wild type (WT) (Leroy et al. 2014). Adherent cell culture of A498 

appears to be consistent with ccRCC tissue, with visible nests of epithelial cells with 

clear cytoplasm. The CAKI2 cell line is VHL WT (Pasha et al. 2019), p53 WT 

(Warburton et al. 2005), and does not express HIF-2a (Brodaczewska et al. 2016). 

CAKI2 was established from a primary kidney tumour and has an epithelial 

morphology in adherent culture. UMRC2 and UMRC3 are both part of the European 

Collection of Authenticated Cell Cultures (ECACC) and have mutated VHL (Wykoff 

et al. 2004). UMRC2 is thought to have mutated p53 (Cho et al. 2016), however the 

p53 status of UMRC3 is unknown. Both cell lines are established from metastatic 

primary renal adenocarcinoma and are able to produce clear cell tumours in athymic 

nude mice xenografts (Barton Grossman et al. 1985). UOK121 and UOK143 are 

both cell lines from sporadic ccRCC, and both have one hyper-methylated and one 

silent copy of VHL (Kuzmin et al. 1999; Alleman et al. 2004). UOK121 has high p53 

expression (Brodaczewska et al. 2016), however the p53 status for UOK143 is 

unknown. UOK121 has no expression of HIF-1a, however UOK143 expresses 

normal levels of both HIF-1a and HIF-2a (Sourbier et al. 2012). HK2 is an 
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immortalised normal kidney cell line derived from the proximal convoluted tubule, 

which retains the functional characteristics of in vivo proximal tubules and primary 

proximal tubule cultures (Ryan et al. 1994). Cell line characteristics are summarised 

in Table 2.4. 

 
Table 2.4 Cell line characteristics 

 

2.3.2 Maintenance of cell lines 

2.3.2.1 Adherent cells  

A summary of the growth media and CO2 conditions used for each cell line is 

summarised in Table 2.5.  

Adherent cell lines were grown in T75 flasks containing 15ml of the appropriate 

media in a New Brunswick Galaxy 170s CO2 incubator (Eppendorf) set to the correct 

atmosphere at 37°C. To sub-culture, once cells reached 80-90% confluency, media 

was aspirated and cells were washed using PBS at RT. Cells were detached from 

the flask using 5ml of either Verseneä 0.48mM EDTA solution or Trypsin (0.05%) 

then incubated at 37°c for 5 minutes, or until the cells became detached. 8ml of 

media containing foetal bovine serum (FBS) was added to the cells to inhibit 

enzymatic activity and the cell suspension was transferred to a 15ml Falcon tubeä 

(Corning). Cells were then pelleted by centrifugation at 120xg for 5 minutes at RT 

then supernatant was either discarded or stored at -80°C if required for later use. 

The cell pellet was then re-suspended in fresh media and reseeded into flasks at the 

desired densities.  
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Table 2.5 Summary of cell lines used and their growth media and CO2 requirements 

 

 

2.3.2.2 Non-adherent cell culture 

2.3.2.2a Non-adherent flask cultures 

The NK92MI cell line was maintained in T175 flasks containing 25-35ml of media. 

Fresh media was added every 2-3 days to maintain cell confluency between 2x105 – 

1x106 cells/ml. When required, cells were removed into a 50ml Falcon tube and 

centrifuged at 120xg for 5 minutes, resuspended in fresh media and plated as 

required. 
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2.3.2.2b 3D cell culture 

Cells were seeded as single cell suspensions at 10 cells/μl into Nunclon Spheraä 

petri dishes (Thermo Fisher Scientific) in 3mL cell line respective serum-free defined 

media supplemented with 1μg/ml fibroblast growth factor-2 (FGF-2), 1μg/ml 

epidermal growth factor (EGF) and 20μg/ml B27. Spheres were allowed to grow for 

14 days before harvesting. 

 

2.3.3 Cryopreservation of cell lines 

Cell lines were prepared for cryopreservation in the same manner as sub-culturing; 

however, they were re-suspended in freezing medium following centrifugation. All 

cell lines were counted using a Via1-casette and NuceloCounterä (Chemotec). For 

the ccRCC cell lines, 1-2×106 cells/ml were frozen in 90% growth medium with 10% 

dimethyl sulfoxide (DMSO) cryoprotectant, while the NK92MI cells were prepared 

using CryoStor CD10ä (StemCell Technologies). Cells were transferred to 2ml 

cryovials, placed in a RT CoolCell Biocisionä cryopreservation container (Dutscher 

Scientific) and stored at -80°C overnight, before being transferred to liquid nitrogen 

(LN) storage. 

 

2.3.4 Thawing of cell lines 

Cells were removed from LN and played on dry ice before rapid thawing in a bead 

bath set to 37°C. Thawed cells were placed into a 15ml Falcon tube with 9ml of 

media and centrifuged at 120xg for 5 minutes. Supernatant was then removed, cells 

were resuspended in 1ml fresh media and transferred into T75 flasks containing 

14ml of media. 

 

2.3.5 Mycoplasma testing and treatment 

Monthly mycoplasma testing of all cell lines was carried out using the Promocellä 

PCR Mycoplasma Test Kit. 1ml of cell culture supernatant was transferred to a 

microcentrifuge tube and spun at 500xg for 5 minutes to form a pellet. The 



 

83  

supernatant was then transferred to a fresh tube and centrifuged at 14,000xg for 15 

minutes. The supernatant was then discarded, and the pellet resuspended in 100µl 

of DNA free water. 

Lyophilised master mix was rehydrated by adding 23µl of rehydration buffer and 2µl 

of sample was added to each test reaction tube. For the positive control, 23µl of 

rehydration buffer and 2µl of DNA free water was used. For the negative control 23µl 

of rehydration buffer was used and 2µl of fresh cell culture media added to ensure all 

sample volumes were 25µl. Tube contents were mixed by flicking the tube and left to 

dissolve for 5 minutes at RT. The tubes were placed in a BioRad T100ä 

Thermocycler and set at the program described in Table 2.6. 

 
Table 2.6 Thermocycler program for mycoplasma PCR testing   

 

 

A 1.5% agarose gel containing 10μl Safeviewä nucleic acid stain (NBS Biologicals) 

was set with a 5mm comb. Reaction tubes were vortexed prior to electrophoresis. 

8µl of each sample was loaded per lane with a 1kbp ladder and electrophoresis was 

run for 25 minutes at 100V, or until the samples had run to 2-3cm. The gel was 

imaged using the ChemiDoc MP Imaging Systemä (BioRad) and bands were 

evaluated using the accompanying ImageLabä software (BioRad). A mycoplasma 

positive sample is classed as a band between 265-278 bp, and the mycoplasma-

positive control sample shows a distinct band at 270 bp. The negative control shows 

a band at 479 bp and as an internal control, should appear in every lane to show a 

successful PCR reaction has taken place. 

Positive cultures were found during preliminary testing before use in any 

experiments. Cell lines were treated for 14 days with Plasmocinä (Invivogen). 

Successful treatment was confirmed by repeating the PCR test after 1 passage post-
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treatment. Batches of confirmed mycoplasma-negative cell lines were frozen for 

future use and infected cells were discarded. 

 

2.3.6 Cell line transduction  

2.3.6a GFP+ CD200+ and CD200- HeLa and ccRCC cells 

Complementary DNA for CD200 was provided by IMAGE consortium (clone ID 

5299899) and subsequently subcloned into the PINCO retroviral expression vector 

which co-expresses green fluorescent protein (GFP) from an internal 

cytomegalovirus (CMV) promoter (both kindly gifted from Alex Tonks, School of 

Medicine, Cardiff University). Phoenix packaging cells were transfected with either 

PINCO-CD200-GFP (CD200+) or PINCO-GFP (CD200-) using calcium phosphatase 

precipitation and cultured in DMEM +10% FBS +2% 200mM L-glutamine and 20U/ml 

Gentamicin. 8 ml of media was added onto sub-confluent cultures and the viral 

media was harvested by centrifugation at 450xg for 10 mins after incubation for 48 

hours at 37 ̊C. 1.8x106 cells were plated in a 24 well plate and retrovirally transduced 

by incubation with 500μl of retroviral supernatant for 24 hours. Cells were then 

washed twice with PBS to remove any trace of the virus before being left to grow for 

2 weeks in their respective media prior to flow cytometric sorting for GFP+ cells. 

GFP+ cells were then expanded and CD200 expression was confirmed in the cell 

lines by flow cytometry and western blot.  

 

2.3.6b Fluorescence-activated cell sorting 

Cells were dissociated from flasks using 5ml Verseneä, centrifuged for 5 minutes at 

120xg, resuspended in fresh media and counted. 10x106 cells were placed into a 

fluorescence-activated cell sorting (FACS) tube, centrifuged and washed with 1ml 

FACS buffer comprising of PBS with 10% FBS and 0.1% sodium azide. Cells were 

then centrifuged to create a pellet and resuspended in 500μl of FACS buffer and 

passed through a 70μm cell strainer. A control sample of untreated GFP-negative 

cells was used for gating, and GFP+ cells were sorted directly into 96 well plates at 

1x104 cells/well. The populations were then expanded and transferred into T75 

flasks. 
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2.4 Cell line co-culture experiments 

2.4.1 Tumour cell line and NK cell co-culture 

Cells were removed from flasks as described and plated in 96 well plates at a 

density of 5000 cells/well and left to adhere overnight. The following day, 

supernatant was removed, adherent cells were washed with PBS and NK cells were 

added at the desired effector:target (E:T) ratio in a total volume of 100µl of NK media 

or CD200+ cell line supernatant/well. Blank wells contained NK media only and 

control wells contained tumour cells only in NK media. Plates were incubated at 

37°C for 4 hours following which the supernatant and NK cells were removed by 

vigorous washing with PBS. The impact of the NK cells on tumour cell viability was 

then assessed using the Cell-Titre Gloâ assay. 

 

2.4.2 Cell Titre-Glo 

Cell viability was determined using the Cell Titre-Gloâ (CTG) assay (Promega), a 

luminescence-based assay which quantifies the number of metabolically active cells 

in a sample through detection of ATP. Equal amounts of CTG and media were 

added to wells following co-culture and plates were covered with foil and mixed on 

an orbital shaker for 2 minutes at RT to induce cell lysis. Following incubation in the 

dark for 10 minutes, a CLARIOstarä plate reader (BMG Labtech) was used to read 

luminescence at 560/590nm. Wells containing media and CTG only were used as 

blanks to which the sample readings were corrected, and cell viability of treated vs 

untreated cells was calculated. 

 

2.4.3 ADAM9 overexpression assay 

Cells were removed from flasks as described, counted and 750,000 cells were 

seeded into 6 well plates in 2mL total volume of serum-free media (SFM). Cells were 

left to adhere to the plate for 24 hours then Recombinant Human ADAM9 Protein 

(R&D Systems) was added to each well at a concentration of 0.5, 1 or 2µg/ml and 

left for 24 hours. Cells were then counted again, and supernatant was collected, 

centrifuged at 120xg for 5 minutes at 4°C then transferred to Pierce™ Protein 

Concentrator tubes (Thermo Fisher Scientific) and centrifuged at 4000 rpm for 1-2 
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hours at 4°C until around 1.5ml remained. Supernatant was either used straight 

away or stored at -80°C until required. 

 

2.4.4 ADAM9 siRNA  

Cell lines were removed from flasks as described, counted and 80,000 cells were 

seeded into 6 well plates in 2ml total volume of regular media and left for 24 hours to 

adhere to the plate. After 24 hours the media was removed, cells washed with PBS 

and 2ml of SFM supplemented with 10µl of lipofectamine and ADAM9 siRNA (L-

004504-00-0005, Horizon, DharmaconÔ) at a concentration of 800nM, diluted in 

Opti-MEMä was added to each well. Control wells contained non targeting (NT) 

siRNA (D-001810-10-20, Horizon, DharmaconÔ). Cells were left for 72 hours, 

following which protein and RNA were collected as described in section 2.7.1 and 

2.6.1 respectively, and confirmation of knockdown was completed via western blot 

and qRT-PCR. Supernatant was collected for later use in ELISA.  

 

2.5 ELISA 

2.5.1 Collection of cell supernatant 

Cells were grown to 70-80% confluency, after which the media was removed, cells 

were washed with PBS and replaced with 15ml fresh media or SFM for 48 hours. 

After 48 hours, the number of cells was counted and the media was collected into a 

Falconä tube and centrifuged for 5 minutes at 120xg, following which the 

supernatant was transferred into a Pierceä 3K MWCO (Thermo Fisher) disposable 

ultrafiltration concentration tube and centrifuged for 1-2 hours at top speed 

(34,000xg), until around 1.5ml of media remained (10x concentration). Concentrated 

media was used straight away or stored at -80°C for future use.  

 

2.5.2 sCD200 ELISA  

Soluble CD200 in cell culture supernatant was quantified using a CD200 sandwich 

ELISA performed using a Human CD200 ELISA Kitä (Abcam, ab267806). 
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Supernatant was collected and prepared as described. Seven standards were 

prepared starting at 2000 pg/mL, using serial dilutions of recombinant human CD200 

in Sample Diluent NS. Using the 96 well plate pre-coated with monoclonal antibody 

included with the kit, 50μl of the CD200 standards or supernatant samples and 50μl 

of Antibody Cocktail were directly plated in triplicate and left to incubate at RT for 1 

hour on a plate shaker set to 400 rpm. Each well was washed with 3 x 350μl Wash 

Buffer PT, and after the last wash the plate was inverted and tapped gently against 

clean paper towels to remove excess liquid. 100μl of TMB Development Solution 

was added to each well and the plate was incubated in the dark at RT for 10 min on 

a plate shaker set to 400 rpm. Colour development was stopped with 100μl of Stop 

Solution and the absorbances of each well were measured at 450nm using a 

CLARIOstarä microplate reader (BMG Labtech). sCD200 concentration was 

determined using a standard curve derived from the CD200 standards, with each 

supernatant absorbance corrected against untreated samples of the cell line’s 

respective culture media.  

 

2.5.3 ADAM9 ELISA 

Soluble ADAM9 (sADAM9) in cell culture supernatant was quantified using an 

ADAM9 sandwich ELISA performed using a Human CD200 ELISA Kit (Abcam, 

ab193690). Supernatant was prepared as previously described and reagents were 

prepared according to manufacturer’s instructions. Seven standards were prepared 

starting at 4800 pg/mL, using serial dilutions of recombinant human ADAM9 in Assay 

Diluent B. Using the 96 well plate pre-coated with monoclonal antibody included with 

the kit, 100μl of the ADAM9 standards or supernatant samples were added to each 

well, plate was covered and left to incubate for 2.5 hour at 4°C with gentle shaking.   

Each well was washed 4 times with 300μl 1x Wash Buffer, and after the last wash 

the plate was inverted and tapped gently against clean paper towels to remove 

excess liquid. 100μl of the prepared detection antibody was next added to each well 

and left to incubate for 1 hour at RT with gentle shaking. Wells were washed as 

previously described and 100μl of prepared 1x HRP-Streptavidin solution was added 

to each well and left to incubate for 45 minutes at RT with gentle shaking. Wells were 

washed as previously described then 100μl of TMB one-step substrate reagent was 
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added to each well and left to incubate for 30 minutes at RT in the dark with gentle 

shaking. 50μl of stop solution was added to each well and the plate was read 

immediately using a CLARIOstarä microplate reader (BMG Labtech) at 450nm. 

sADAM9 concentration was determined using a standard curve derived from the 

ADAM9 standards, with each supernatant absorbance corrected against untreated 

samples of the cell line’s respective culture media.  

 

2.6 RNA analysis 

2.6.1 RNA Extraction  

Cells in culture were counted and 1-2 x 106 cells were collected for RNA extraction. 

Cells were detached using Verseneä or Trypsin, pelleted by centrifugation at 120xg 

for 5 minutes and RNA was isolated using the Qiagen RNeasy Plus Mini Kitä 

(Qiagen, UK) as per the manufacturer’s instructions. RNA concentration was then 

determined using a NanoDrop 2000ä spectrophotometer (Thermo Scientific). 

 

2.6.2 RNA preparation for sequencing 

The quality of the extracted RNA was assessed using the Agilent RNA 6000 Nano 

kitä, which can assess RNA quality quantitatively within the range of 25- 500 ng/μl of 

total RNA. The Nano chips were run on the Agilent 2100ä Bioanalyzer according to 

manufacturer’s guidelines. RNA integrity was assessed on the 28S/18S rRNA ratio 

amongst several other characteristics of the RNA electropherogram trace, to 

generate an RNA Integrity Number (RIN). High quality RNA requires a minimum RIN 

of ≥ 6.8, concentration ≥ 20ng/µL and a 29S to 18S rRNA ratio of ≥ 2. 

 

2.6.3 RNA Sequencing (RNAseq) 

RNA sequencing was performed by Novogene (Cambridge, UK). 

 

2.6.3.1 Library construction and sequencing  

Library preparation and sequencing was completed by Novogene. Messenger RNA 

(mRNA) was purified from total RNA using poly-T oligo-attached magnetic beads. 



 

89  

After fragmentation, the first strand of complementary DNA (cDNA) was synthesized 

using random hexamer primers, and the second cDNA strand was created using 

either dTUP for directional libraries or dTTP for non-directional libraries. Both were 

then subjected to end repair, A-tailing, adapter ligation, size selection, amplification 

and purification, with an additional step of USER enzyme digestion for the directional 

library. The libraries were then checked with Qubit and real-time PCR for 

quantification and size distribution was checked using a bioanalyzer. Quantified 

libraries were then pooled, and clustering of the index-coded samples was 

performed, followed by sequencing on the Illumina PE150 platform with 20M reads, 

where paired-end reads were generated. 

 

2.6.3.2 Quality control  

Raw read data of fastq format was processed through in-house perl scripts, and 

clean reads were obtained by removing reads containing ploy-N, adapter and low-

quality data.  

 

2.6.3.3 Mapping to reference genome 

An index of the reference genome was built, and paired-end clean reads were 

aligned using Hisat2 v2.0.5.  

 

2.6.3.4 Quantification of gene expression level 

Read numbers mapped to each gene were counted using featureCounts v1.5.0-p3. 

Fragments Per Kilobase of transcript sequence per Million base pairs sequenced 

(FPKM) was then calculated based on the length and read counts mapped for each 

gene. FPKM considers the effect of sequencing depth, gene length and read count 

at the same time, and is the most commonly used technique for estimation of gene 

expression level.  
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2.6.3.5 Differential expression analysis 

Read counts were firstly adjusted using edgeR by one scaling normalised factor. 

Differential expression analysis of two conditions was performed using the edgeR R 

package (3.22.5). P values were adjusted using the Benjamini and Hochberg method 

and significance cut offs were set at 0.05. Absolute fold change values of -2 and +2 

were also set as thresholds for significance to create lists of differentially expressed 

genes (DEGs). 

 

2.6.3.6 Gene set enrichment analysis (GSEA) 

GSEA is a powerful computational tool to determine if a predefined gene set shows 

significant differences between two biological states (Mootha et al. 2003; 

Subramanian et al. 2005). Gene lists were prepared by ranking from high to low fold 

change value between the two samples in question and loaded into GSEA. Gene 

sets were downloaded from the MSigDB molecular signatures database 

(http://www.gsea-msigdb.org/gsea/msigdb/index.jsp). Gene lists were then tested 

against the gene sets to determine if they were enriched at the top or bottom of the 

list and create an overall enrichment score (ES). 

 

2.6.3.7 Ingenuity Pathway Analysis (IPA) 

QIAGEN IPA is a powerful tool for network generation, pathway analysis, pathway 

activation prediction and comparison of RNAseq data sets (QIAGEN Inc., 

https://digitalinsights.qiagen.com/IPA) (Krämer et al. 2014). Raw gene lists were 

uploaded to IPA and expression core analysis was completed based on expression 

log ratio, using set cut offs of -2 and +2 log2 fold change and padj <0.05. 

Comparison analysis was then completed using the core analysis for each cell line to 

compare canonical pathways and diseases and functions in each data set. 

 

2.6.4 Preparation of cDNA for Quantitative Analysis  

cDNA synthesis was performed using the Quantitect Reverse Transcription Kitä 

(Qiagen, UK) in 0.2ml PCR tubes as per manufacturer’s guidelines. A BioRad T100ä 

Thermocycler was used following the conditions outlined in Table 2.7. 



 

91  

 

Table 2.7 cDNA synthesis thermocycler conditions  

 

 

2.6.5 Quantitative real-time polymerase chain reaction (qRT-PCR)  

Pre-designed TaqManä primer/probes were obtained from Applied Biosystems, as 

listed in Table 2.8.  

Table 2.8 Taqman probes used in qRT-PCR 

 

Reactions were run using the TaqMan Universal Master Mixä (Applied Biosystems) 

according to the manufacturer’s guidelines with a final volume of 15µl for 96-well 

plates or 10µl for 384-well plates. Housekeeping genes (GAPDH and β-actin) were 

used as a reference gene for each plate run. All reactions were run in three technical 

triplicates. All reactions were run on the QuantStudio 7 Flex Real-Time PCR 

systemä (Applied Biosystems), according to the cycling conditions listed in Table 

2.9. QuantStudio software was used to run and analyse experiments, and gene 

expression analysis was completed using the 2ΔΔCt method to calculate fold change 

relative to housekeeping genes, and arbitrary units were calculated for analysis of 

expression levels. 
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Table 2.9 qRT-PCR cycling conditions on QuantStudio 7  

 

 

2.7 Protein analysis 

2.7.1 Protein extraction 

Cells were detached as previously described, counted and the required number of 

cells were pelleted by centrifugation at 200xg for 5 minutes, supernatant was 

removed, and the pellet was resuspended in 100µl radioimmunoprecipitation assay 

(RIPA) buffer per 1 x 106 cells. The composition of RIPA buffer can be found in Table 

2.10. The suspension was then incubated on ice for 30 minutes, following which the 

pellet was mechanically disrupted by pipetting and left on ice for a further 30 minutes 

before centrifugation at 10,000xg for 10 minutes at 4°C. 

 
Table 2.10 RIPA buffer composition 

 

 

2.7.2 Protein quantification 

Protein concentration was calculated using the Pierceä bicinchoninic acid (BCA) 

assay (ThermoFisher). Samples were diluted 1:2 in RIPA buffer and 15µl was added 
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in duplicate alongside standards of bovine serum albumin (BSA) at known 

concentrations of 5, 25, 50, 125 and 250µg/ml to a clear, flat bottomed 96 well plate 

(Corning). BCA working reagent was made of 50 parts reagent A to 1 part reagent B, 

and 200µl was added to each well. The plate was covered and incubated at 37°C for 

30 minutes, following which the absorbance of the plate was measured at 562nm 

using a CLARIOstarä plate reader (BMG Labtech). Control wells containing RIPA 

buffer and working reagent were used as blanks, with all samples corrected against 

the values of these wells. A standard curve was generated from the BSA standards, 

and the concentration of the protein samples was calculated from the curve 

equation.  

 

2.7.3 Western Blotting  

A list of all solutions required for western blotting can be found in Table 2.11. Protein 

samples were diluted in RIPA buffer to equal concentrations (10-20ug of protein), 

following which 5μl Laemmli buffer (4x) was added and made up to 20μl total volume 

with RIPA buffer. Samples were then heated at 95°C for 4 minutes on a heating 

block and centrifuged to collect the sample at the bottom of the tube. TGXTM 

FastCastä premixed acrylamide solutions (BioRad) were used to cast 1.5mm gels. 

20μL of prepared samples were loaded into the wells in addition to a molecular 

weight marker (PageRuler Plusä, ThermoFisher) and empty wells were loaded with 

20μl RIPA and Laemmli buffer (4x). The gels were run in a 10% sodium dodecyl 

sulphate (SDS) buffer at 200V until the desired marker separation was achieved. 

The Trans-Blot® TurboTM Transfer System (BioRad) was used to transfer to a 

polyvinylidene difluoride (PDVF) membrane. After washing in tris-buffered saline with 

0.1% Tween (TBST), membranes were incubated with gentle agitation in blocking 

buffer of 10% BSA or skimmed milk in TBST for 1 hour at RT. Following incubation 

and washing in TBST, membranes were incubated in the desired primary antibody 

(see Table 2.12) diluted in 5% BSA or skimmed milk according to manufacturer’s 

instructions in TBST and incubated overnight at 4°C on a roller. The following day, 

the membrane was washed for 4 x 5 minutes in TBST before incubating with 

horseradish peroxidase (HRP)-conjugated secondary antibody diluted in 5% BSA or 

skimmed milk in TBST for 1 hour at RT (see Table 2.13). Membranes are washed 
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again for 4 x 5 minutes in TBST before antibody binding was detected by incubating 

Lumina Forteä chemiluminescence reagent (Millipore) on the membrane for 30-60 

seconds (less for endogenous controls) and membrane transferred to the ChemiDoc 

MP Imaging Systemä (BioRad) where chemiluminescence was detected and 

imaged. Membranes were then stripped using Restore™ Western Blot Stripping 

Buffer (Thermo Fisher), washed in TBST, blocked and re-probed to detect another 

protein of interest or endogenous control. Western blot data was quantified by 

densitometry, using ImageLabä software (BioRad), where the pixel density in the 

selected lanes was quantified and compared. 

 
 
Table 2.11 Solutions required for western blotting  

 

Table 2.12 Primary antibodies used in western blotting  
 

 

Table 2.13 Secondary antibodies used in western blotting 
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2.8 Bioinformatic analysis 

2.8.1 Acquisition of publicly available RNAseq data sets  

The Cancer Genome Atlas (TCGA) kidney renal clear cell carcinoma (KIRC), 

papillary (KIRP) and chromophobe (KICH) Firehose Legacy data sets were 

downloaded from https://gdac.broadinstitute.org/. The Illimminahiseq-rnaseqv2- 

RSEM_genes_normalised data files were used for analysis, consisting of RNAseq by 

expectation-maximisation (RSEM) gene-normalised RNAseq data for 537, 323 and 

113 patients respectively. Corresponding patient clinical data was acquired from 

https://www.cbioportal.org/, including age, sex, race histological classification, TNM 

stage, OS time and status, PFS time and status and tumour laterality.  

 

2.8.2 CIBERSORTx: Estimation of infiltrating immune cell fractions 

CIBERSORTx (Cell type Identification By Estimating Relative Subset Of unknown 

RNA Transcripts), available at https://cibersortx.stanford.edu/, is a deconvolution 

algorithm that uses the LM22 gene set to analyse the relative expression of 547 

genes to predict the proportion of 22 infiltrating immune cell types (Newman et al. 

2019). The cell types analysed by LM22 include naïve and memory B cells, plasma 

cells, CD8+ T cells, naïve CD4+ T cells, memory resting CD4+ T cells, memory 

activated CD4+ T cells, Tregs, T follicular helper cells, gamma-delta T cells, resting 

and activated NK cells, M0, M1 and M2 macrophages, resting and activated dendritic 

cells, resting and activated mast cells, eosinophils, and neutrophils. The normalised 

Firehose Legacy RCC data sets were uploaded to CIBERSORTx with batch 

correction enabled to minimise cross-platform variation, as the LM22 gene set was 

generated from microarray and the Firehose sets were generated through RNAseq. 

Permutations for significance was set at 500 and significant results with p<0.05 were 

selected for further analysis.  

 

2.9 Statistical analysis 

Statistical analyses were performed using Graphpad Prism 9 software. Normality 

tests were run on each group of data and differences between 2 groups were 

analysed using unpaired t-tests on normally distributed data and Mann-Whitney U 

https://gdac.broadinstitute.org/


 

96  

tests on data that was not normally distributed. When comparing more than 2 

groups, a one-way analysis of variance (ANOVA) was used to compare the group 

means with the Kruskal-Wallis multiple comparisons test used to compare the mean 

of each column with the mean of every other column. Post-tests were carried out as 

appropriate using the FDR method or Dunn’s multiple comparisons test. Logrank 

analysis was used to compare differences between Kaplan-Meier survival curves. 

Correlation analysis was completed using the Pearson correlation coefficient for 

normally distributed data and Spearman correlation analysis for nonparametric data. 

Hazard ratios (HR) and their 95% confidence intervals were calculated using the Cox 

Proportional Hazards Regression main effects model. Principal Component Analysis 

(PCA) was completed using immune cell estimations generated by CIBERSORTx as 

variables and was based on parallel analysis. Statistically significant differences are 

marked on graphs as * = p < 0.05, ** = p < 0.01, *** = p < 0.001 and **** = p < 

0.0001. 
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3. Characterising RCC CD200 expression and ectodomain shedding 

Ectodomain shedding is the mechanism of proteolytic cleavage of cell surface 

molecules, leading to the release of an active soluble form into the extracellular 

microenvironment. Ectodomain shedding has many functions involving the regulation 

of expression and function of cell surface molecules, and a wide variety of cellular 

and physiological processes including growth factor signalling, inflammation and cell 

survival (Clark 2014). After proteolytic cleavage, the released ectodomain can have 

a separate function of its own while the remaining transmembrane peptide may be 

internalised by endocytosis or be subject to further cleavage, commencing further 

internal signalling cascades (Mochizuki and Okada 2007; Clark 2014).  

CD200 is susceptible to ectodomain shedding, creating a soluble form known as 

soluble CD200 (sCD200) (Wong et al. 2016). CD200 has gained interest in our 

group as the interaction of CD200 with its receptor, CD200R, acts as an immune 

checkpoint which is utilised by cancer cells to evade the immune system allowing 

cancer progression (Morgan et al. 2022). CD200 overexpression has been observed 

in many cancer types, and expression correlates with increased tumour burden, 

disease aggressiveness, disease stage and altered immune infiltrate in several 

cancer types. sCD200 has also been shown to be able to activate CD200R, however 

if the activation is as efficient as the full length membrane-bound form is currently 

unknown (Wong et al. 2016). 

The proteases responsible for CD200 ectodomain shedding have not been fully 

established, however ADAM28 (Twito et al. 2013b; Wong et al. 2016) and ADAM17 

(Wong et al. 2016) have been shown to be involved in this process in CLL, while our 

group has also shown that MMP3 and MMP11 are involved in this process in basal 

cell carcinoma (Morgan et al. 2022). Other proteases may however also be involved 

in this process. 

 

Hypothesis  

We hypothesise that multiple proteases are involved in CD200 ectodomain 

shedding, resulting in increased sCD200 levels in RCC. We also hypothesise that 

RCC CD200 in combination with protease expression will adversely affect prognosis.  
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Aims of this chapter 

1. Determine which sheddases are overexpressed in RCC using literature search 

and RNA sequencing of RCC cell lines. 

2. Establish CD200 and protease co-expression in RCC tissue samples using 

immunofluorescent staining. 

3. Determine if proteases contribute to CD200 ectodomain shedding using sCD200 

ELISA. 
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3.1 Characterising CD200 expression in kidney tissue 

CD200 expression has been previously described on the endothelium of kidney 

glomeruli (Colmont et al. 2013), however expression has not been previously 

described in other parts of the kidney. 

We studied CD200 expression using immunofluorescent (IF) staining on RCC tissue 

microarrays (TMAs), containing a total of 99 paraffin-embedded tissues of RCC 

patients. Of the 99 samples, 69 were ccRCC, 10 were chRCC, 12 were pRCC and 8 

were normal kidney, with a range of different disease stages (I-IV) and tumour, node 

and metastasis (TNM) status (T1-3, M0-M1 and N0-N1) for each subtype. The 

CD200 staining intensity for each core was calculated using a threshold scoring 

system to divide positive cells into low, moderate or high intensity groups to provide 

an overall H-Score, as described in section 2.2.1 of the materials and methods 

chapter. We then analysed the CD200 expression strength in each core and the 

relationship between this expression and (i) RCC subtype, (ii) disease stage, (iii) age 

at operation and (iv) sex.  
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3.1.1 CD200 antibody optimisation 

We firstly determined the specificity of the CD200 antibody by staining human skin, 

where CD200 has been shown to be a marker for the hair follicle bulge (Coles et al. 

2011), as shown in Figure 3.1.  

 

 

 
  

Figure 3.1 Optimisation of CD200 IF staining in human hair follicles 
Representative images of CD200 staining in human skin hair follicles, an area known to be rich 
in CD200 expression, with positive staining found in the bulge cells to confirm the specificity of 
the antibody. Samples with no primary antibody were used as controls to confirm the staining 
(data not shown).  
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3.1.2 Characterising CD200 expression in normal kidney 

Having confirmed the specificity of our antibody, we next examined CD200 

expression on normal kidney within each kidney structure.  

 

3.1.2.1 CD200 expression in the renal corpuscle 

CD200 expression was firstly studied in the renal corpuscle and surrounding 

proximal tubules, as shown in Figure 3.2. 

Weak to moderate CD200 expression was observed on the endothelial capillary 

network within the glomerulus, with no staining overserved on the mesangial cells or 

podocytes. Weak staining was also observed on the simple squamous epithelial cells 

Figure 3.2 Representative CD200 staining within the renal corpuscle and surrounding 
tubules.  
Staining for immunofluorescent CD200 and DAPI followed by H+E. Weak to moderate staining 
was found throughout the glomerular capillaries, with no staining observed on mesangial cells. 
Strong expression was observed on the surrounding proximal tubules. Scale bar represents 50 
µm. 
Abbreviations: BC Bowman’s capsule, GL Glomerulus, PT Proximal tubule 
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of the Bowman’s capsule. Strong CD200 expression was however observed on the 

attached and surrounding sections of proximal convoluted tubule.  

 

3.1.2.2 CD200 expression in the distal and proximal convoluted tubules 

To further study the CD200 expression within the proximal convoluted tubule 

compared to the other parts of the tubule system, we next looked at a different area 

of normal kidney tissue which comprised of sections of both proximal and distal 

convoluted tubule, as shown in Figure 3.3. 

CD200 expression was noted on both the proximal and distal convoluted tubules, 

however expression was noticeably stronger in the proximal tubules. The proximal 

convoluted tubule is the site where around 65% of the filtrate’s water and ions are 

Figure 3.3 Representative CD200 staining within the proximal and distal convoluted 
tubules  
Staining for immunofluorescent CD200 and DAPI followed by H+E. CD200 expression was 
present in both tubule types, however expression was stronger in the proximal tubules, 
discernible by their microvilli brush border, compared to the distal convoluted tubule which lacks 
a brush border and so has a more open, unobstructed lumen. Scale bar represents 50 µm. 
Abbreviations: DT Distal convoluted tubule, PT Proximal convoluted tubule. 
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reabsorbed, and so the cells have an apical brush border to increase their 

reabsorption surface area which makes the lumen appear filled, which is a useful 

way to distinguish the proximal tubule from the other tubules. The cells of the 

proximal tubule also stain strongly eosinophilic and as the cells are large, when 

sectioned it can appear that there are less nuclei present than in other parts of the 

tubules, allowing for further distinction from the other tubule types. Conversely, the 

distal convoluted tubule appears smaller with an empty lumen as the cells have no 

brush border, with weaker eosinophilic staining and a higher number of nuclei 

apparent within a section. Generally, a lower number of distal convoluted tubules 

appear within a tissue section as the tubule is shorter than the proximal tubule and is 

less convoluted. Weak CD200 expression was noted in all distal convoluted tubules 

measured. 

The strong CD200 expression observed in the proximal convoluted tubules is of 

interest to us, as the epithelium of the proximal convoluted tubule has been reported 

to be the cell of origin for clear cell (ccRCC) (Verma and Molitoris 2015) and papillary 

(pRCC) renal cell carcinomas (Muglia and Prando 2015), the two most common 

subtypes. The third most common RCC subtype, chromophobe (chRCC), is reported 

to originate from the distal convoluted tubule (Ozcan et al. 2014). Later in this 

chapter we will investigate whether the strong CD200 expression found on the 

proximal convoluted tubules in normal kidney is carried through into ccRCC and 

pRCC tissue, and if chRCC CD200 expression remains lower throughout disease 

development after originating from the distal convoluted tubule.  
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3.1.2.3 CD200 expression in the loop of Henle and collecting ducts 

CD200 expression was next examined on the loop of Henle and collecting ducts, as 

shown in Figure 3.4.  

 

Weak CD200 expression was observed throughout the loop of Henle, however low 

to zero expression was found in the collecting ducts. This data shows that CD200 

expression appears to gradually reduce with increased distance from the renal 

corpuscle, with strong expression observed in the proximal convoluted tubules, 

moderate expression found in the loop of Henle, moderate expression in the distal 

convoluted tubule and weak to no expression in the collecting ducts.  

Figure 3.4 Representative CD200 staining within the collecting ducts and loop of Henle  
IF staining for CD200 and DAPI followed by H+E. Weak CD200 expression was observed in the 
collecting ducts, with moderate expression noted in the loop of Henle.  Collecting ducts are 
distinguishable by their pale cytoplasm and prominent lateral border, while the flat epithelial cells 
of the loop of Henle form a thin descending limb and thick and thin ascending limb. Scale bar 
represents 20µm. 
Abbreviations: CD Collecting duct, LH Loop of Henle.  
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3.1.2.4 CD200 staining quantification 

To quantify what we have observed, CD200 staining H-scores were next calculated 

for each kidney structure, as shown in Figure 3.5. H-scores of 0-99 were counted as 

weak expression, 100-199 were counted as moderate expression and 200-300 were 

counted as strong expression.  
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CD200 H-scores were compared for each normal kidney structure, where the 

strongest scores were found in the proximal convoluted tubule and glomerulus 

(Figure 3.5a). Weak to moderate H-scores were also observed in the distal 

convoluted tubules, however the scores were found to be significantly lower than 

those in the proximal tubules (85.37 ± 44.31 vs 166.1 ± 54.19, p = <0.001). The 

lowest CD200 H-scores were found in the collecting ducts and loop of Henle, both of 

Figure 3.5 CD200 H-score comparison in normal kidney structures 
(A) Comparison of CD200 H-score between normal kidney structures revealed reduced 
CD200 expression in cells furthest along the tubule system. All measurements were n=10 
except glomeruli which were n=4 due to tissue availability. H-scores were compared using 
ANOVA, where *, **, *** and **** represent p<0.05, <0.01, <0.001 and <0.0001 respectively. 
(B) CD200 expression appears to reduce along the length of the nephron, with expression 
significantly lower in structures within the medulla compared to the cortex.  
Created in Biorender.com. 
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which are found in the medulla, opposed to the other structures which are within the 

renal cortex. Interestingly, the collecting duct, which is at the end of the nephron 

system, was found to have significantly lower CD200 H-scores compared to the 

glomerulus (2.14 ± 4.82 vs 111.4 ± 37.82, p = <0.001) and proximal convoluted 

tubules (2.14 ± 4.82 vs 166.1 ± 54.19, p= <0.001) which are at the start of the 

nephron tubule system, as demonstrated in Figure 3.5b. 

This data shows that in normal kidney, CD200 expression is strongest in the 

proximal convoluted tubules, the cell of origin for ccRCC and pRCC. CD200 is still 

present in the distal convoluted tubules, the cell of origin for chRCC, however levels 

were found to be significantly lower. We next aimed to establish CD200 expression 

in RCC tissue by determining if the expression we have observed in normal kidney is 

carried through into the tumour, and if so, whether the expression level is changed.  

 

3.1.3 Characterising CD200 expression in RCC  

3.1.3.1 CD200 expression in RCC subtypes 

Using TMAs comprising of 62 ccRCC, 17 pRCC, 10 chRCC and 8 normal kidney 

samples, we next aimed to characterise CD200 expression in RCC subtypes using 

IF staining. Representative weak, moderate and strong CD200 staining in each 

subtype can be seen in Figure 3.6-3.8, however none of the chRCC samples were 

found to have strong staining.  
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Figure 3.6 Representative weak, moderate and strong CD200 staining in ccRCC TMA cores with corresponding H+E staining 
H-scores <100 were classed as weak staining, H-scores from 100-199 were classed as moderate staining and 200-300 were classed as 
strong. 
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Figure 3.7 Representative weak, moderate and strong CD200 staining in pRCC TMA cores with corresponding H+E staining 
H-scores <100 were classed as weak staining, H-scores from 100-199 were classed as moderate staining and 200-300 were classed 
as strong. 
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Figure 3.8 Representative weak and moderate CD200 staining in chRCC TMA cores with corresponding H+E staining 
H-scores <100 were classed as weak staining and H-scores from 100-199 were classed as moderate staining. No chRCC 
samples exhibited strong staining with a H-score over 200. 
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CD200 H-scores were calculated as previously described between the RCC 

subtypes, as shown in Figure 3.9.  

CD200 H-score was found to be consistent between the subtypes, however the 

TMAs contained a much larger number of ccRCC samples (n=53) compared to 

pRCC (n=14) and chRCC (n=10). The strongest mean staining was observed in 

ccRCC, however the three subtypes had similar means and range of H-scores 

within the samples. 

 
 

 

 

Figure 3.9 CD200 H-scores in RCC subtypes 
H-scores for all samples were compared by RCC subtype. Mean CD200 H-score was highest in 
ccRCC, with the lowest mean H-score observed in chRCC. A Kruskal-Wallis test followed by 
Dunn’s multiple comparisons test was used to compare the groups, however no significant 
differences were found between the subtypes. 
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3.1.3.2 CD200 expression by TNM status 

Having determined that CD200 expression is strongest in ccRCC, we next 

compared CD200 H-score by patient TNM status to determine if any changes in 

expression are observed. We next compared H-scores by tumour, node and 

metastasis status in RCC as a whole and within the subtypes as shown in 

Figure 3.10. T4 samples were only available in ccRCC. 

Figure 3.10 CD200 expression in RCC subtypes by TNM status 
(A) CD200 H-score in all RCC, ccRCC, pRCC and chRCC were compared by tumour status. T4 
samples were only available in ccRCC. (B) CD200 H-score in ccRCC samples compared by 
node status. All pRCC and chRCC samples were NX/N0 status, (C) CD200 H-score in ccRCC 
and pRCC compared by metastasis status. All chRCC samples were MX/M0 status. Analyses 
was completed using a Kruskal-Wallis test followed by Dunn’s multiple comparisons test; 
however, no significant differences were found. 
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Figure 3.11 CD200 expression by age at operation and sex 
CD200 H-score was compared against patient age and sex in: (A) All RCC, (B) ccRCC, (C) 
pRCC, (D) chRCC by age. (E) All RCC and subtypes by sex. A-D: Analysis was completed 
using a Kruskal-Wallis test followed by Dunn’s multiple comparisons test; however, no 
significant differences were found between any group. E: Analysis was carried out using a 
Mann-Whitney test to compare male and female samples within each subtype, however no 
significant differences were found. 
 

Sex 
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CD200 H-score was found to generally increase with T stage in all RCC, ccRCC 

and chRCC (Figure 3.10a), however expression was found to generally 

decrease with increased T stage in pRCC. No significant differences were 

observed between the stages in any of the subtypes, however this could be due 

to the small sample sizes within in each group. We next examined node 

involvement (Figure 3.10b), which was only present in our pRCC samples. 

Node status did not appear to have an effect on CD200 H-score, with no 

differences observed between the NX/N0, N1 or N2 groups, however again 

these are very small sample sizes and further research is required. No samples 

with N1 or N2 status were available for pRCC or chRCC. Metastasis status had 

no effect on CD200 H-score in ccRCC (Figure 3.10c), however in pRCC, an 

increase appears to be present in the M1 sample compared to the M0/MX 

group, however as this is only one sample further research on this would be 

required. No samples with M1 status in chRCC were available in our TMAs. 

 

3.1.3.3 CD200 expression by age and sex 

As TNM status did not appear to have a significant effect on CD200 H-score, 

we next examined the samples by patient characteristics to determine if any 

changes in CD200 expression could be associated with a certain characteristic. 

We firstly investigated CD200 H-score in our samples by patient age at 

operation and sex, as shown in Figure 3.11. 

 

In RCC as a whole (Figure 3.11a), CD200 H-score was consistent across all 

age groups with no significant changes observed. H-score was also consistent 

across all groups in ccRCC (Figure 3.11b), where the highest score was found 

in the 30-39 group, however this was a very small sample size. All other groups 

had consistent expression with no significant differences observed between 

them. pRCC H-score was more variable between the groups (Figure 3.11c), 

with low expression observed in the 30-30 and 80-89 age groups, however 

again these were very small sample sizes. CD200 H-score in chRCC (Figure 

3.11d) was found to be consistent amongst the small number of samples which 

fell into three age groups, however a slight, not significant increase in average 
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H-score was observed with increased age. This data could be improved by 

increasing sample number as many groups only contained one sample, 

however it appears that age does not have any meaningful effect on CD200 H-

score in any RCC subtype. As age does not appear to have any effect on 

CD200 H-score in our data set, we next examined the samples by patient sex 

(Figure 3.11e). Analysis of CD200 H-score by patient sex revealed no 

significant differences in score between male and female patients in RCC as a 

whole or in any of the subtypes. 

 

3.1.3.4 CD200 expression summary 

We have shown that CD200 is expressed in all three RCC subtypes studied, 

with expression intensity found to be highest overall in ccRCC compared to 

pRCC and chRCC. From our studies on normal kidney, we found that CD200 

expression is strongest on the cells of the proximal convoluted tubule, from 

which ccRCC and pRCC originate, and this expression appears to carry through 

into tumour expression with moderate levels observed in all samples from both 

subtypes. CD200 expression was also found on the distal convoluted tubule in 

the normal kidney, the cell of origin for chRCC, however the mean expression 

was found to be significantly lower than that of the proximal tubule. This CD200 

expression again appears to carry through into the tumour, however 

interestingly the chRCC levels were found to be comparable to those observed 

in ccRCC and pRCC.  

No significant differences in CD200 expression level were found between the 

subtype TNM stages, however expression was observed to increase with 

increased tumour (T) stage when we examined RCC as a whole, in ccRCC and 

chRCC, while interestingly expression appeared to decrease with increased T 

stage in pRCC, however these groups had small n numbers and so further 

research is required to understand this observation. No changes were observed 

when splitting the samples into groups based on node (N) or metastasis (M) 

status, however again small n number in these groups limit this study. CD200 

expression was next examined by patient characteristics available from the 

clinical data associated with our TMAs, however no differences between groups 

were observed when examining the data by patient age at operation or sex, 
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implying that any differences observed in CD200 expression are likely to be 

associated with the tumour expression and not related to another characteristic. 

CD200 expression is summarised in Table 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Determining CD200 Expression in ccRCC Cell Lines 

Having demonstrated CD200 expression throughout both normal kidney and 

RCC tissue, we next examined CD200 expression in RCC cell lines for use in 

functional experiments and RNA sequencing.  

 

3.2.1 CD200 expression in ccRCC cell lines  

We firstly checked CD200 mRNA levels using qRT-PCR and protein expression 

using western blot in our cell lines, as shown in Figure 3.12. Transduced 

CD200+ and CD200- HeLa cell lines were used as positive and negative 

controls in the qRT-PCR and western blot analyses. 

Table 3.1 CD200 expression in overall RCC and RCC subtype TMA samples with mean 
expression and standard deviation. 

TNM Stage All RCC ccRCC pRCC chRCC
All - 120.80 ± 35.17 109.70 ± 66.24 108.20 ± 39.05
T1 112.40 ± 42.31 113.80 ± 41.02 120.30 ± 49.99 97.64 ± 45.79
T2 117.0 ± 48.09 124.20 ± 41.78 106.60 ± 83.29 106.0 ± 28.32
T3 118.80 ± 40.75 121.0 ± 29.50 101.60 ± 79.54 133.80 ± 56.96
T4 147.0 ± 12.78 147.0 ± 12.78 - -

N0/NX - 120.60 ± 35.99 - -
N1 - 113.70 ± 0.00 - -
N2 - 123.80 ± 20.30 - -

M0/MX - 121.40 ± 35.73 134.10 ± 53.43 -
M1 - 105.40 ± 0.51 204.40 ± 0.00 -

Mean ± SD
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In our ccRCC cell lines, CD200 mRNA and protein levels were found to be 

unexpectedly low. In qRT-PCR analysis (Figure 3.12a), low levels of mRNA 

expression were observed in all ccRCC cell lines, however the UMRC3 cell line 

was again found to have the highest levels out of all ccRCC samples tested. 

CD200+ and CD200- transduced HeLa cell lines were used as positive and 

negative controls in these experiments, where the HeLa+ cell line was found to 

have around 100x higher CD200 expression compared to UMRC3 and was 

significantly higher than all other samples tested with a p value of <0.0001. 

CD200 protein expression was also examined using whole cell lysates probed 

for CD200 expression using western blot (Figure 3.12b), where again all ccRCC 

cell lines were found to have very low expression levels, and only the HeLa+ 

Figure 3.12 Analysis of ccRCC cell line CD200 expression 
(A) RNA was extracted from six RCC cell lines, HK2 normal kidney cell line and CD200+ and 
CD200- transduced HeLa cell lines and CD200 gene expression was determined by qRT-PCR. 
Expression was normalised to β -Actin and CD200 expression was calculated according to the 
2^-delta Ct method and is shown as arbitrary units (AU). Differences in gene expression were 
calculated using a Kruskal-Wallis test followed by Dunn’s multiple comparison’s test, where all 
cell lines were found to have significantly lower expression compared to HeLa+ (all p <0.0001). 
(B) Whole cell lysate was extracted from the same cell lines and immunoblotted for CD200, 
representative image. (C) CD200 protein expression was normalised to GAPDH and CD200 level 
shown in arbitrary units (AU), all cell lines were found to have significantly lower expression than 
HeLa+ (all p <0.0001). Values were obtained from an average of 3 independent experiments.  
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positive control showing a clear band. Quantification of this blot (Figure 3.13c) 

revealed that the HeLa+ cell line expression was over 20x stronger than that 

observed in UMRC2, the highest expressing ccRCC cell line, with all other 

samples again showing significantly lower expression than HeLa+, p = <0.0001. 

 

3.2.2 2D vs 3D cell culture conditions 

2D cell culturing conditions have been shown less closely mimic physiological 

conditions compared to 3D conditions, with limited spatial organisation of 

receptors and interactions with neighbouring cells, therefore influencing gene 

expression and cellular behaviour (Takahashi et al. 2015). 3D cultures are 

thought to more closely resemble in vivo conditions and are therefore more 

physiologically relevant, allowing more meaningful study of biological 

mechanisms such as cell number monitoring, viability, morphology, proliferation 

migration and response to stimuli (Anton et al. 2015). Importantly, 3D cultures 

have also been shown to display a significantly different and more relevant 

genotype to an in vivo model compared to 2D monolayers (Kappelmann-Fenzl 

et al. 2021). To determine if the traditional 2D cell culture methods used could 

be contributing to the lack of CD200 expression in our cell lines, we next grew 

the ccRCC cell lines in 3D culture in non-adherent petri dishes over at 14-day 

time period to determine if CD200 mRNA and protein expression could be 

restored through this technique. A growth time lapse is shown in Figure 3.13.
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Figure 3.13 ccRCC cell lines grown in 2D and 3D culture 
Top panel: Representative image of ccRCC cell lines grown in normal 2D adherent cell culture conditions. Bottom panels: Cell lines were plated in non-adherent 3D 
culture at 10 cells/µl and allowed to grow for 14 days. Representative images were taken at day 3, 5, 7, 10, 12 and 14, after which point, RNA was extracted to 
measure CD200 mRNA levels. 
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Most cell lines were found to grow well in non-adherent culture and were able to 

form discernible spheres by days 5 to 7, however the CAKI2 and UOK143 cell 

lines did not appear to survive as well in these culture conditions. Following 14 

days in 3D culture, RNA was extracted from the spheres and was examined 

using qRT-PCR, as shown in Figure 3.14. 

 

 mRNA expression from the 3D cultured RCC cell lines revealed less 

expression than the 2D cell culture conditions, with all cell lines except UOK143 

and HeLa CD200+ showing zero CD200 mRNA. Interestingly, the UOK143 cell 

line was found to have a low mRNA reading of 1.262 AU in 2D culture, but was 

found to have almost 6-fold lower mRNA levels in the 3D culture conditions with 

just 0.213 AU, implying that this cell line may be the most impacted by the 

change in culture conditions. It should be noted however that this experiment 

was only n=1 due to time constraints, and so further repeats and optimisation 

may show differing results. 

Figure 3.14 CD200 qRT-PCR using mRNA from cell lines in 3D ccRCC culture 
RNA was extracted from six ccRCC cell lines grown in non-adherent 3D culture and HeLa 
CD200+ and CD200- HeLa cells grown in 2D culture for use as control, and CD200 gene 
expression was determined by qRT-PCR. Expression was normalised to β -Actin and CD200 
expression was calculated according to the 2^-delta Ct method and is shown as arbitrary units 
(AU). n=1. 
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3.2.3 CD200 transduction of ccRCC cell lines 

As neither 2D nor 3D culture was able to induce CD200 expression in our 

ccRCC cell lines, we next attempted to transduce our A498 cell line to introduce 

CD200 expression, as described in the methods section (Tonks et al. 2005), 

which our group has previously successfully completed to generate a CD200+ 

HeLa cell line. 

The A498 cell line was stably transduced either with a retrovirus co-expressing 

green fluorescent protein (GFP) under either an internal cytomegalovirus 

promoter as a CD200- control, or with the same retrovirus also containing 

CD200 DNA. After infection, cells were left to grow until they were 90% 

confluent in a T75 flask before sorting for GFP+ cells by fluorescence-activated 

cell sorting (FACS). Cells were gated on FSC and SSC to eliminate debris 

before FSC height and area gating was used to target single cells. Successfully 

transduced cells showed GFP positivity and dead cells were stained with DAPI 

and gated out, however unfortunately only a very low number of cells were 

found to be GFP+ and therefore successfully transduced. Due to these low 

numbers, a positive population could not be grown as the cells died in culture 

due to very low confluency. This transduction was attempted 3 times without 

success, so due to time constraints and virus availability we chose to only use 

our CD200+ HeLa cell lines for proof-of-concept experiments in the following 

experiments.  

 

3.3 RNA Sequencing 

RNA sequencing (RNAseq) data provides an unbiased data set showing the 

comparative level of RNA expression across cell lines, allowing examination of 

gene expression within signalling pathways to determine which genes are 

down- or upregulated compared to a control sample. We completed RNAseq on 

our six ccRCC cell lines using the normal kidney cell line (HK2) as control to 

determine which key genes are down- or upregulated in our ccRCC cell lines 

compared to normal kidney.  
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3.3.1 Comparison of ccRCC cell lines 

To determine how similar our cell lines are to each other, we firstly used 

principal component analysis (PCA) to separate the samples based on their 

gene expression, as shown in Figure 3.15. 

  

 

PCA reduces dimensionality in a data set and allows exploration of 

relationships between multiple variables, in this case gene expression. In this 

analysis we observed several similarities and differences between our cell lines. 

The scree plot (Figure 3.15a) shows that PC1 was able to account for around 

25% of variance between the groups, while PC2 was able to account for around 

18% of variance. Next, using PCA on PC1 and PC2 only (Figure 3.15b), we 

found that UMRC2, UOK143 and UMRC3 are most similar along the PC2 axis, 

while UMRC2, UOK121 and UOK143 appear to cluster together and are most 

similar along the PC1 axis. CAKI2, A498 and UMRC3 do not appear to cluster 

with the other cell lines and are separated along the PC1 axis, while UMRC3 is 

most different from all other cell lines and is separated along PC2 also.  

Figure 3.15 Principal component analysis of ccRCC cell lines 
(A) Scree plot, PC1 explains 25% of variation between the samples. (B) UMRC2, UOK143 and 
UMRC3 are most similar along the PC2 axis. UMRC2 and UOK143 are most similar along the 
PC1 axis. 
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To get a clearer picture of how different the cell lines are, we next created a 

heat map with our gene expression data and used hierarchical clustering to 

similarity, as shown in Figure 3.16.  

 

 

The hierarchical clustering shows variation in gene expression between all cell 

lines, however the clustering patterns show the most similarities between 

UMRC2 and A498 and between UOK121 and UOK143, with CAKI2 being the 

least closely clustered to any other cell line. The most strongly upregulated 

genes in each cell line, shown in red, appear to be different in each cell line, 

with more similarities between the groups seeming to come from the 

downregulated genes, represented in blue. 

Figure 3.16 Heat map of ccRCC cell line gene expression with hierarchical clustering 
UMRC2 was found to cluster most closely with A498, while UOK121 clustered most closely 
with UOK143. CAKI2 was found to be least similar to all other cell lines. Upregulated genes 
are shown in red and downregulated genes are shown in blue. 
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3.3.2 Comparison of ccRCC cell lines to normal kidney 

We have shown that our ccRCC cell lines have a number of similarities and 

differences in gene expression, so we next calculated which genes are 

differentially expressed in our ccRCC cell lines compared to the normal kidney 

HK2 cell line, which was used as a control cell line. Creation of a list of 

normalised, differentially expressed genes (DEGs), allows us to determine 

which genes are up- or downregulated compared to the normal kidney, creating 

log2 fold change and significance values. To investigate the range of our DEG 

list, we firstly plotted the DEGs from each ccRCC cell line in volcano plots to 

represent how many significantly up- or downregulated genes are found 

compared to normal kidney. To reduce the number of significant genes included 

in this analysis, we used a stringent adjusted p value (padj) cut off of <0.01 and 

log2 fold change value of £-2 or ³+2, as shown in Figure 3.17. 
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Figure 3.17 Volcano plots of significant ccRCC cell line vs HK2 DEGs 
Visualisation of ccRCC cell line differentially expressed genes compared to HK2 normal kidney 
cells. Cut offs were padj <0.01 (-log10 >1.3) and log2 fold change of  £-2 or ³+2. (A) A498 vs HK2 
(B) CAKI2 vs HK2 (C) UMRC2 vs HK2 (D) UMRC3 vs HK2 (E) UOK121 vs HK2 (F) UOK143 vs 
HK2. Red dots represent significantly downregulated genes and green dots represent significantly 
upregulated genes. Black dots represent non-significant genes. 
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These volcano plots reveal a high number of significant up- and downregulated 

genes in all ccRCC cell lines compared to the normal kidney samples, with the 

highest number of significant DEGs observed in A498 vs HK2. This data implies 

that the expression of a large number of genes are altered during ccRCC 

development compared to normal kidney, which may result in dysregulation of 

key pathways resulting in tumour progression.  

To determine which cellular functions are most strongly up- or downregulated in 

ccRCC compared to normal kidney, using Qiagen Ingenuity Pathway Analysis 

(IPA), we next examined the top 10 cellular functions in our 6 ccRCC samples 

compared to HK2, as shown in Figure 3.18. 

 

 

 

Figure 3.18 Heatmap of the top 10 cellular functions in ccRCC cell lines vs HK2 
Cut offs of padj 0.05 and log2 fold change of -2 and +2 were used to filter the diseases and 
functions which were up- or downregulated in our ccRCC cell lines vs HK2. The most 
upregulated functions were involving invasion, migration and movement of cells, while the most 
downregulated functions were those involving genes involved in lipid synthesis and cell 
movement of myeloid cells. UMRC2 showed the strong downregulation of all functions whereas 
all other cell lines showed upregulation in almost all functions. 
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Comparison of the most up- or downregulated functions in the 6 RCC cell lines 

revealed the most upregulated functions are related to invasion, movement and 

migration of cells in 5 of the 6 cell lines, which would be expected in cancer cell 

lines compared to normal kidney cells. Interestingly however, in the UMRC2 

samples, all of these functions were strongly downregulated. This result is 

unexpected as the UMRC2 cell line is reported to be developed from a patient 

with metastatic disease at the time of their nephrectomy, so it unclear why 

genes related to these functions are not upregulated as we have observed in 

the other cell lines.  

Having established the differences in key functions in our cell lines, we next 

wanted to examine if the key genes in the RCC developmental pathway are 

under- or overexpressed in our samples. Using gene set enrichment analysis 

(GSEA), we used ranked DEG lists to explore the Kyoto Encyclopaedia of 

Genes and Genomes (KEGG) Renal Cell Carcinoma gene set, a curated gene 

set comprising of 70 key RCC genes including tumour suppressors, oncogenes, 

cytokines and growth factors which have key roles in RCC development via the 

HIF1a pathway. The KEGG RCC pathway is represented in Figure 3.19. 

 

GSEA is a powerful tool for the interpretation of large data sets by comparing a 

ranked gene list to a gene set associated with a particular disease or biological 

process, creating an enrichment score (ES) which indicates the degree by 

which a gene set is overrepresented at the extremes of the ranked gene list. 

Figure 3.19 Pathway map of the KEGG renal cell carcinoma gene set. 
Key genes from the KEGG renal cell carcinoma gene set responsible for RCC development via 
the HIF1a pathway are highlighted in green. Dashed lines represent the pathway in the presence 
of VHL, resulting in ubiquitin mediated proteolysis. Solid lines represent the pathway in the 
absence of VHL resulting in accumulation of HIF1a and subsequent production of growth factors 
including vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF).  
Adapted from https://www.genome.jp/kegg-bin/show_pathway?hsa05211.  
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Using the KEGG renal cell carcinoma gene set represented in Figure 3.19, 

GSEA was able to create an ES for each cell line, as shown in Figure 3.20. 

 

 

Figure 3.20 GSEA enrichment plots using KEGG renal cell carcinoma gene set 
Ranked gene lists for each ccRCC cell line were run through GSEA to gain enrichment 
scores for key RCC genes which are overrepresented in the sample gene list. 
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Most genes which passed the threshold for core enrichment were negatively 

enriched in our ccRCC cell lines compared to the KEGG RCC gene set, 

resulting in a negative overall ES, as shown in Table 3.2. A high number of 

genes however also did not reach the cut off for core enrichment, resulting in a 

low overall number of genes which received an ES in all samples.  

 

 

In A498, 16 genes reached the core enrichment threshold, however all were 

negatively enriched, including HIF1a. In CAKI2, 18 genes reached core 

enrichment. 5 genes were positively enriched including VEGFC, while HIF1a 

was negatively enriched, however this is to be expected as this cell line has WT 

VHL status (Pasha et al. 2019). 11 genes reached core enrichment in UMRC2, 

9 of which were negative including members of the PI3K pathway and VEGFC. 

In this cell line, HIF1a and TGFβ were however found to be positively enriched, 

possibly indicating upregulation of the HIF1a pathway following VHL loss, while 

increased TGFβ has previously been associated with increased ccRCC 

aggressiveness and invasiveness (Sitaram et al. 2016). 14 genes reached core 

enrichment in UMRC3, with HIF1a, hypoxia inducible factor 3 (EGLN3) and 

PIK3R3 all positively enriched, indicating a hypoxic and pro-tumour 

environment. Only 4 genes reached core enrichment in UOK121, with VHL, 

TGFβ2 and TGFβ3 negatively enriched, and HIF1a positively enriched. This 

expression pattern indicates characteristic ccRCC upregulation of the HIF1a 

pathway resulting from inactive VHL, however via a different downstream 

pathway not including TGFβ, as we observed in UMRC2. Finally, in UOK143, 

Table 3.2 Normalised enrichment scores for RCC cell lines vs HK2 using the KEGG RCC 
gene set 
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both VHL and HIF1a were found to be negatively enriched, while only 3 genes 

reached core enrichment: TGFβ2, ARNT2 and EGLN3.  

This data shows significant differences between the gene expression in our 6 

ccRCC cell lines, most notably the differences in VHL and HIF1a expression 

and their resulting downstream effector genes, implying that selection of cell 

lines for in vitro cell line studies should be made with these differences in mind 

as outcomes may be significantly different. To examine this further, we next 

investigated the expression of genes at the end of the HIF1a pathway from the 

KEGG RCC pathway, to see if the end point genes involved in angiogenesis 

and disease progression are altered compared to normal kidney, as shown in 

Figure 3.21. 

 

This data shows significant downregulation of HIF1A in all 6 ccRCC cell lines 

compared to HK2, which is an unexpected result as increase of HIF1a is one of 

the main parts of the HIF1a pathway in ccRCC, however it has been reported 

that overaccumulation of HIF1α protein leads to inhibition of HIF1A gene 

expression (Swiatek et al. 2020). The vascular endothelial growth factor (VEGF) 

Figure 3.21 Log2 fold change expression levels of HIF1a pathway end point genes 
compared to HK2.   
RCC differentially expressed genes in the HIF1a pathway. Significance cut offs of -2 and 
+2 log2 fold change were not reached for all genes, however HIF1a was found to be 
significantly downregulated in all cell lines compared to HK2. VEGFA, VEGFB and VEGFC 
were upregulated in all ccRCC cell lines compared to HK2, however few reached 
significance. 
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signalling pathway is the main angiogenic pathway associated with ccRCC 

development, with VEGFA associated with shorter overall survival and 

progression free survival (Wierzbicki et al. 2019), while VEGFB and VEFC are 

associated with metastasis (Yang et al. 2015; Ndiaye et al. 2019). In this data 

we observed overall upregulation of VEGFA, VEGFB and VEGFC, however 

only VEGFC reached the significance cut off levels in CAKI2 and UMRC3 (Log2 

FC 2.126, padj = <0.001 and Log2 FC 2.291, padj <0.001 respectively). 

Overexpression of transforming growth factor-a (TGFa) and inactivation of 

TGFb is a common signature of tumour development in hepatocellular 

carcinoma (Baek et al. 2010), while in ccRCC, attenuation of the TGFb pathway 

results in cancer cell migration (Kubiczkova et al. 2012; Wang et al. 2022). Here 

we show general upregulation of TGFa in all cell lines except CAKI2 and 

downregulation of TGFb in all cell lines, however none of the samples reached 

the significance cut off. Platelet derived growth factor B (PDGFB) is another 

transcription factor involved in the HIF1a signalling pathway which promotes 

proliferation of mural cells surrounding the blood vessels during angiogenesis. 

The role of PDGFB in ccRCC has not been well studied, however it has been 

linked to better prognosis and inhibition of tumour growth (Wang et al. 2015). 

Our data shows significant downregulation of PDGFB in A498 and UMRC2 

(Log2 FC -4.870, padj = <0.001 and Log2 FC -2.205, padj = <0.001 

respectively), non-significant downregulation in CAKI2 and UMRC3 and non-

significant upregulation in UOK121 and UOK143. Carbonic anhydrase IX 

(CAIX) is a transmembrane metalloenzyme induced by the accumulation of 

HIF1a with several downstream effects including acidification of extracellular 

pH, increased tumour cell migration and loss of cellular adhesion. 

Overexpression of CAIX is an indictor or poor prognosis in many cancer types 

including breast, lung and bladder carcinomas, however conversely, low CAIX 

expression is an indicator of poor prognosis in ccRCC (Aldera and Govender 

2021). In our data we see significant downregulation of CAIX in CAKI2, UMRC3 

and UOK121 (Log2 FC -5.544, -3.089 and -4.289 respectively, all padj = 

<0.001) and non-significant downregulation in A498 and UMRC2. Interestingly 

however, we see significant upregulation of CAIX in UOK143 (Log2 FC 4.259, 

padj = <0.001). 
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This data begins to paint a picture of the general trends of HIF1a pathway 

endpoint gene upregulation in different ccRCC cell lines compared to the 

normal kidney. Upregulation of VEGF family members and TGFa resulting in 

angiogenesis and cell migration was observed, while downregulation of TGFb, 

PDGFB and CAIX indicates poor prognosis and tumour progression. We have 

observed general trends across the cell lines, however as each cell line has 

different mutations and characteristics it is difficult to discern which upstream 

differences in gene expression are responsible for the subtle differences 

between the downstream gene expression of each cell line. As CAKI2 is the 

only one of our ccRCC cell lines to be confirmed VHLWT, we next compared the 

gene expression between our 5 VHLmut cell lines compared to that of the CAKI2 

cell line by creating a new list of DEGs, with the same cut offs of -2/+2 Log2 fold 

change and padj value of <0.05. 

 

3.3.3 Comparison of ccRCC cell lines to CAKI2 

We firstly compared created a list of up- and downregulated DEGs in our 

VHLmut ccRCC cell lines compared to the VHLWT CAKI2 cell line, as shown in 

Figure 3.22. 
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Figure 3.22 Volcano plots of ccRCC cell line DEGs compared to CAKI2 
Visualisation of 5 VHLmut ccRCC cell line differentially expressed genes compared to the VHLWT 
CAKI2 cell line. Cut offs were padj <0.01 and log2 fold change of  £-2 or ³+2. (A) A498 vs CAKI2 
(B) UMRC2 vs CAKI2 (C) UMRC3 vs HK2 (D) UOK121 vs HK2 (E) UOK143 vs HK2. Red dots 
represent significantly downregulated and green dots represent significantly upregulated genes. 
Black dots represent non-significant (NS) genes. 
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Each of the 5 VHLmut ccRCC cell lines had a similar number of up- and 

downregulated DEGs when compared to CAKI2, however the majority of genes 

in each comparison did not reach the log2 fold change and/or padj value cut 

offs, indicating that only around 15-20% of all mapped genes are significantly 

differentially expressed in the presence or absence of a VHL mutation.  

CAKI2 is a commonly used cell line to study ccRCC, however as it does not 

harbour the characteristic VHL mutation observed in around 90% of ccRCC 

cases, this cell line can be used to compare the downstream effects of a WT 

sample against a VHL mutated sample. Functional VHL been shown to alter the 

characteristics of CAKI2 cells compared to other ccRCC cell lines in a number 

of ways, including loss of HIF2a, downregulation of glycolysis and alteration of 

signalling pathways relating to cellular growth and proliferation (Da 

Nagaprashantha et al. 2013). Using our DEG lists generated by comparing 

gene expression of the 5 other ccRCC cell lines against CAKI2, we compared 

the gene expression of the HIF1a pathway endpoint genes to determine if VHL 

expression alters gene expression in these pathways, as shown in Figure 3.23. 

 

Figure 3.23 Log2 fold change expression levels of HIF1a pathway end point genes in 
VHLmut ccRCC cell lines compared to VHLWT CAKI2.   
Significance cut offs of -2 and +2 log2 fold change were not reached for all genes, however 
VEGFA, TGFa and CAIX were found to be overexpressed compared to CAKI2 in all ccRCC 
cell lines. VEGFC and PDGFB were downregulated in most cell lines compared to CAKI2, 
however most samples did not reach the significance cut offs. 
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Analysis of key HIF1a pathway endpoint angiogenic genes in VHLmut ccRCC 

cell lines compared to the VHLWT CAKI2 cell line revealed significant changes in 

some genes. HIF1A was found to be significantly downregulated in UOK121 

and UMRC3 compared to CAKI2 (Log2 FC -3.901, padj = <0.001 and Log2 FC 

-2.097, padj = <0.0001 respectively) and generally downregulated in UMRC2 

and UOK143, however upregulation of HIF1A was observed in A498 compared 

to CAKI2. This general downregulation compared to CAKI2 may be due to the 

fact that as previously mentioned, overaccumulation of HIF1a protein can lead 

to reduced HIF1A gene expression, which would be expected when VHL is lost. 

In our cell lines vs HK2 analysis, CAKI2 was found to have the strongest 

downregulation of VEGFA out of the 6 ccRCC cell lines, and so it is 

unsurprising that all cell lines were found to have upregulation of VEGFA 

compared to CAKI2. High VEGFA mRNA and protein levels have been 

associated with shorter OS and PFS (Wierzbicki et al. 2019), and so while the 

VEGFA overexpression in our 5 ccRCC VHLmut cell lines do not reach the log2 

FC significance threshold, a clear general trend of upregulation of VEGFA is 

observed in VHLmut cell lines compared to the VHLWT CAKI2 cell line. No clear 

change is observed in VEGFB expression, however interestingly, VEGFC is 

strongly downregulated in UMRC2 compared to CAKI2 (Log2 FC -4.875, padj = 

<0.001), and weakly downregulated in the other cell lines, apart from UMRC3 

which showed slight upregulation. The UMRC2 cell line was also found to have 

significant downregulation of BAP1, p53, VEGFC and PDGFB compared to HK2 

implying an altered angiogenic signature in this cell line which varies from both 

normal kidney and from the VHLWT cell line. TGFa was found to be weakly 

upregulated in all cell lines compared to CAKI2, however this is expected as 

CAKI2 was the only cell line showing downregulation of this gene compared to 

HK2. TGFb was however found to be weakly upregulated in A498, UMRC2 and 

UOK143 compared to CAKI2, in line with reports that VHL is able to negatively 

regulate TGFb in ccRCC (Mallikarjuna et al. 2018). PDGFB expression 

compared to CAKI2 was split across the cell lines, with A498 showing 

significant downregulation (Log2 FC -4.292, padj = <0.001) and UMRC2 also 

showing weak downregulation, while UMRC3, UOK121 and UOK143 were 

found to be weakly upregulated compared to CAKI2. Functional VHL has been 
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shown to repress PDGFB expression (Rafty and Khachigian 2002), so the 

reason for the downregulation we observe in A498 and UMRC2 compared to 

CAKI2 is unclear, however protein expression may differ from the mRNA output. 

Finally, we show a significant upregulation in CAIX expression compared to 

CAKI2 in 4 out of the 5 VHLmut cell lines, with UOK121 showing only week 

upregulation. The strongest upregulation was however observed in UOK143 

(Log2 FC 9.810, padj = <0.001). Low CAIX expression is associated with the 

absence of VHL mutation (Pantuck et al. 2007), while high CAIX expression has 

been suggested as a biomarker for ccRCC treatment response and prognosis 

(Brookman-May et al. 2013). 

This data reveals a clear difference in angiogenic gene expression in VHLmut 

cell lines compared to VHLWT cells. VEGFA, TGFa and CAIX were found to be 

generally strongly upregulated in the VHLmut cell lines compared to the VHLWT 

cell line, while HIF1A, VEGFC and PDGFB were generally downregulated in the 

VHLmut cell lines.  
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3.3.4 CD200 gene expression in ccRCC cell lines 

CD200 gene expression was next examined by read count within the ccRCC 

cell lines, as shown in Figure 3.24. 

 

 

RNAseq read counts were used as a read out of gene expression, and we 

found that four out of the six ccRCC cell lines had a read count of zero. Of the 

cell lines which did have some CD200 gene expression, UMRC3 had the 

highest read count value, while A498 and HK2 were found to have very low 

counts. This data is in line with what we have previously observed of very low 

CD200 expression by qRT-PCR and western blot, so as previously discussed, 

this could be due to cell culture conditions, and alternative CD200+ cell lines will 

need to be used for functional and proof-of-concept experiments. 

 
  

Figure 3.24 CD200 read count in ccRCC RNAseq data 
CD200 read counts from the sequencing data were used as a read out of gene expression 
level. Zero read counts were found for four of the six ccRCC cell lines, while only two 
counts were found for the normal kidney HK2 sample. 
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3.4 Determining proteases involved in RCC development 

To firstly understand which proteases are already known to play a role in RCC 

development, we conducted a literature search. Many proteases have been 

reported to be involved in a range of RCC processes including cell adhesion, 

growth, epithelial-to-mesenchymal transition (EMT), invasion, migration and 

metastasis, a full list of which is found in Table 3.3.  

 
Table 3.3 Proteases known to be upregulated in RCC 

 

As our literature search revealed a large number of proteases which are 

involved in RCC development, we next aimed to narrow down this list using 

RNA sequencing to find proteases which are overexpressed in ccRCC 

compared to normal kidney. This would allow us to pinpoint more specific 

targets to investigate further in regard to their role in CD200 ectodomain 

shedding.  

 

3.4.1 Protease expression in RNAseq data 

The differences in gene expression we have already observed between our cell 

lines show the large variation in the ccRCC genetic landscape, however all cell 

lines were found to retain a large number of similar genes which are likely to be 
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essential for disease development and progression. As we are interested in 

which proteases are involved in the development and progression of ccRCC, 

we next examined our ccRCC cell line vs HK2 DEGs to determine which 

proteases are up- or downregulated compared to normal kidney, as shown in 

Table 3.4. 
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Table 3.4 DEG list of all proteases in ccRCC vs HK2 

    A498 CAKI2 UOK121 UOK143 UMRC2 UMRC3 

Gene ID Gene Name Log2 FC padj Log2 FC padj Log2 FC padj Log2 FC padj Log2 FC padj Log2 FC padj 

ENSG00000226469 ADAM1B -2.327 0.308 -1.057 0.721 1.978 0.000 0.857 0.696 0.119 1.000 -5.272 0.207 

ENSG00000069206 ADAM7 1.033 1.000         1.598 0.796 1.028 1.000     

ENSG00000151651 ADAM8 -0.872 0.172 -0.673 0.323 2.041 0.000 -1.414 0.020 -2.847 0.000 -0.637 0.428 

ENSG00000168615 ADAM9 5.309 0.000 4.259 0.000 3.910 0.000 4.033 0.000 5.477 0.000 4.913 0.000 

ENSG00000137845 ADAM10 0.667 0.242 0.183 0.814 1.178 0.025 0.071 0.969 -0.293 0.679 0.754 0.199 

ENSG00000073670 ADAM11 2.915 0.000 1.600 0.011 -0.423 0.704 1.224 0.075 1.069 0.150 0.550 0.609 

ENSG00000148848 ADAM12 5.433 0.000 4.928 0.000 3.327 0.000 5.655 0.000 0.757 0.226 -0.792 0.304 

ENSG00000143537 ADAM15 0.316 0.655 -1.588 0.001 -1.021 0.060 -0.828 0.144 -0.697 0.225 -0.813 0.157 

ENSG00000151694 ADAM17 0.052 0.994 0.184 0.814 -0.229 0.769 -0.580 0.355 -0.025 1.000 -0.840 0.141 

ENSG00000168619 ADAM18         7.109 0.001 6.258 0.034 11.863 0.000     

ENSG00000135074 ADAM19 2.618 0.000 0.907 0.122 7.109 0.001 0.732 0.241 -2.781 0.000 -0.455 0.572 

ENSG00000134007 ADAM20 -1.357 0.782 -4.687 0.473 1.227 0.400 -0.429 1.000 -1.362 0.789 -4.309 0.693 

ENSG00000259158 ADAM20P1 -4.029 0.671 -0.084 1.000 -4.633 0.489 0.684 1.000 -4.032 0.679 1.333 0.657 

ENSG00000139985 ADAM21 -3.051 0.072 0.392 0.790 0.021 1.000 1.050 0.320 0.120 1.000 1.386 0.208 

ENSG00000008277 ADAM22 1.985 0.000 -0.181 0.854 -1.675 0.328 0.209 0.814 -1.651 0.007 0.667 0.339 

ENSG00000114948 ADAM23 11.466 0.000 9.923 0.000 -0.989 0.134     11.057 0.000 7.793 0.000 

ENSG00000042980 ADAM28 3.842 0.000 3.319 0.000 0.021 1.000 -4.581 0.473 0.517 1.000 0.220 1.000 

ENSG00000197140 ADAM32 -0.172 1.000 -0.279 0.991 -0.514 0.730 -2.794 0.036 1.115 0.193 1.613 0.042 

ENSG00000154734 ADAMTS1 -0.179 0.812 1.899 0.000 2.664 0.000 2.261 0.000 0.852 0.122 3.129 0.000 

ENSG00000142303 ADAMTS10 3.601 0.000 1.064 0.073 -9.530 0.000 -3.386 0.000 -9.482 0.000 -9.191 0.000 

ENSG00000151388 ADAMTS12 1.574 0.001 -12.488 0.000 -4.246 0.000 -12.378 0.000 -12.384 0.000 2.389 0.000 

ENSG00000160323 ADAMTS13 1.871 0.000 1.961 0.000 0.059 1.000 0.667 0.345 -0.877 0.225 -0.573 0.526 
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    A498 CAKI2 UOK121 UOK143 UMRC2 UMRC3 

Gene ID Gene Name Log2 FC padj Log2 FC padj Log2 FC padj Log2 FC padj Log2 FC padj Log2 FC padj 

ENSG00000138316 ADAMTS14 -0.356 0.663 -0.673 0.323 -5.835 0.000 -0.014 1.000 -4.780 0.000 -3.522 0.000 

ENSG00000166106 ADAMTS15 2.698 0.000 -0.742 0.239 -1.509 0.006 0.306 0.691 2.023 0.000 -6.193 0.000 

ENSG00000145536 ADAMTS16 3.829 0.000 4.874 0.000 2.373 0.000 3.437 0.000 0.662 0.489 3.544 0.000 

ENSG00000140470 ADAMTS17 -5.554 0.117 -2.528 0.329 -5.604 0.137 -0.841 0.721 -5.557 0.122 -1.682 0.693 

ENSG00000140873 ADAMTS18 -0.802 1.000 -0.084 1.000 1.767 0.451 1.399 0.691 -0.807 1.000 -0.170 1.000 

ENSG00000087116 ADAMTS2 7.768 0.000 0.190 0.991 -6.809 0.004 -3.524 0.026 3.135 0.000 -6.473 0.014 

ENSG00000156140 ADAMTS3 -2.351 0.000 -1.234 0.018 -0.001 1.000 -1.584 0.002 -0.800 0.159 -0.617 0.325 

ENSG00000154736 ADAMTS5 -1.149 0.671 2.807 0.001 5.005 0.000 -5.294 0.206 -5.300 0.192 5.497 0.207 

ENSG00000049192 ADAMTS6 -4.253 0.000 -1.952 0.013 0.468 0.651 3.828 0.000 -3.701 0.000 5.716 0.000 

ENSG00000136378 ADAMTS7 3.436 0.000 0.982 0.092 -5.044 0.000 0.813 0.202 -0.964 0.127 3.139 0.000 

ENSG00000261143 ADAMTS7P3 1.591 0.782         1.999 0.628 4.703 0.458 -2.584 0.000 

ENSG00000218052 ADAMTS7P4 5.107 0.292 8.660 0.000 6.930 0.002 4.152 0.691 7.529 0.000 5.093 0.320 

ENSG00000163638 ADAMTS9 -1.669 0.001 -0.204 0.799 1.375 0.008 0.327 0.669 1.252 0.015 -3.629 0.000 

ENSG00000241158 ADAMTS9-AS1 -5.297 0.185 -1.355 0.691 0.497 0.927 1.954 0.090 7.027 0.000 -5.016 0.320 

ENSG00000241684 ADAMTS9-AS2 -2.089 0.001 -1.349 0.037 -0.697 0.361 -0.280 0.761 -0.489 0.519 0.230 0.812 

ENSG00000178031 ADAMTSL1 6.404 0.018     9.671 0.000 4.152 0.691 6.401 0.019 9.300 0.000 

ENSG00000156218 ADAMTSL3 0.817 0.584 4.020 0.000 7.103 0.000 5.985 0.000 3.055 0.000 7.299 0.000 

ENSG00000143382 ADAMTSL4 -1.143 0.043 1.642 0.001 0.853 0.155 -4.062 0.000 -1.424 0.010 0.430 0.584 

ENSG00000203804 ADAMTSL4-AS1 -0.802 1.000 -0.999 1.000 -0.897 1.000 -4.026 0.691 1.862 0.420 1.333 0.657 

ENSG00000185761 ADAMTSL5 0.439 0.511 -4.696 0.000 -0.173 0.861 -0.687 0.306 -2.597 0.000 1.561 0.003 

ENSG00000196611 MMP1 -8.941 0.000 -5.917 0.000 5.157 0.000 4.218 0.000 -0.452 0.628 -8.653 0.000 

ENSG00000137673 MMP7 -1.048 0.047 1.552 0.002 -4.395 0.000 2.833 0.000 -5.722 0.000 -6.733 0.000 

ENSG00000100985 MMP9 -6.148 0.000 -7.273 0.000 -3.325 0.000 -0.043 1.000 -5.596 0.000 -10.008 0.000 
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    A498 CAKI2 UOK121 UOK143 UMRC2 UMRC3 

Gene ID Gene Name Log2 FC padj Log2 FC padj Log2 FC padj Log2 FC padj Log2 FC padj Log2 FC padj 

ENSG00000166670 MMP10             6.853 0.000         

ENSG00000099953 MMP11 -2.938 0.000 0.890 0.130 -2.733 0.000 0.539 0.439 -3.676 0.000 -10.364 0.000 

ENSG00000137745 MMP13 -0.665 0.746 -5.877 0.082 -1.724 0.451 -1.059 0.623 -5.775 0.077 -1.899 0.693 

ENSG00000157227 MMP14 0.800 0.145 -7.490 0.000 1.749 0.000 0.486 0.471 -8.991 0.000 0.122 0.893 

ENSG00000102996 MMP15 -1.590 0.001 -3.100 0.000 -2.365 0.000 -2.663 0.000 -4.832 0.000 -3.694 0.000 

ENSG00000156103 MMP16 -5.051 0.000 1.207 0.029 0.537 0.467 -2.829 0.000 -4.268 0.000 -0.520 0.516 

ENSG00000198598 MMP17 -7.196 0.001 0.829 0.397 0.526 0.704 -7.192 0.001 0.677 0.496 -6.909 0.002 

ENSG00000123342 MMP19 1.242 0.463 -5.402 0.203 -5.347 0.215 -2.063 0.473 2.413 0.014 2.044 0.082 

ENSG00000087245 MMP2 -2.837 0.000 -9.197 0.000 -2.119 0.002 -4.935 0.000 -9.093 0.000 -8.802 0.000 

ENSG00000154485 MMP21 -4.029 0.671 -0.084 1.000 -4.077 0.704 -4.026 0.691 -4.032 0.679 -3.760 0.693 

ENSG00000215914 MMP23A 2.563 0.308     3.041 0.123 3.432 0.056         

ENSG00000189409 MMP23B 1.033 1.000 0.836 1.000 0.938 1.000 1.040 1.000 1.028 1.000     

ENSG00000125966 MMP24 0.626 0.288 -2.458 0.000 -3.553 0.000 0.487 0.473 -0.038 1.000 1.629 0.001 

ENSG00000126005 MMP24OS 2.942 0.000 2.897 0.000 2.216 0.000 2.991 0.000 2.670 0.000 4.388 0.000 

ENSG00000008516 MMP25 2.631 0.005 2.147 0.033 -2.167 0.488 1.250 0.487 2.354 0.018 1.783 0.140 

ENSG00000261971 MMP25-AS1 2.167 0.000 2.760 0.000 0.372 0.727 2.733 0.000 1.976 0.000 2.203 0.000 

ENSG00000271447 MMP28 -0.579 0.716 -3.179 0.013 -7.169 0.001 -3.884 0.006 -7.121 0.001 -6.832 0.004 
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Many proteases were found to be significantly up- or downregulated compared to the 

HK2 normal kidney control sample (padj =<0.05), with a log2 fold change value of £-

2 or ³+2. Volcano plots showing protease expression in each cell line are shown in 

Figure 3.25. ADAM9 was the only protease found to be significantly overexpressed 

consistently when compared to normal kidney, with a log2 fold change of ³+2 in 

every RCC sample, represented by a blue dot in each graph. 
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Figure 3.25 Volcano plots of proteases expressed in ccRCC cell lines vs HK2  
Visual representation of protease padj value and log2 fold change value. Volcano plots 
feature each ccRCC cell line vs HK2, filtered for ADAMs, MMPs and TIMPs. (A) A498 vs 
HK2 (B) CAKI2 vs HK2, (C) UMRC2 vs HK2, (D) UMRC3 vs HK2, (E) UOK121 vs HK2 (F) 
UOK143 vs HK2. Significant genes (padj <0.05) with a log2 fold change value of <-2 are 
highlighted in red, >2 are highlighted in green and ADAM9, which is significantly 
upregulated in every sample, is highlighted in blue.  
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Interestingly, ADAM17 was not found to be significantly up- or downregulated 

compared to the normal kidney HK2 sample in any of the cell lines, however 

ADAM28 was found to be significantly overexpressed in A498 and CAKI2 compared 

to HK2, (log2 fold change +3.842 and +3.319 respectively, padj=<0.05). 

This data indicates that ADAM17 is not found at significantly different levels in our 

ccRCC cell lines compared to normal kidney, and ADAM28 was only overexpressed 

in 2 out of 6 cell lines, so these proteases alone may not play substantial roles in the 

development of ccRCC. As ADAM9 was the only sheddase found to be significantly 

overexpressed in all 6 ccRCC cell lines compared to normal kidney, we chose to 

investigate ADAM9 further and to determine if it is involved in ccRCC development, 

and if it could have a role in CD200 ectodomain shedding. 

 
3.4.2 Validating protease expression in RCC cell lines 

To validate the expression of ADAM9, ADAM17 and ADAM28 observed in our 

RNAseq data in our ccRCC cell lines, we determined mRNA transcript expression 

using qRT-PCR and western blot analysis.  

 

3.4.2.1 Protease mRNA expression 

ADAM9 mRNA expression has been associated with tumour progression and 

prognosis in various cancer types, including in RCC (Fritzsche et al. 2008), while 

ADAM17 has also been shown to be overexpressed in many cancer types including 

RCC, with expression levels linked to increased tumour aggressiveness (Doberstein 

et al. 2013). ADAM28 has roles in metastasis and tumour progression in various 

cancer types, however its specific role in RCC development is yet to be elucidated 

(Mochizuki et al. 2012).  

 

3.4.2.1.1 ADAM9 mRNA expression 

To determine ADAM9 expression in our ccRCC cell lines, we firstly examined mRNA 

transcript expression. ADAM9 mRNA expression has been associated with higher 

ccRCC tumour grade, positive nodal status and metastasis (Fritzsche et al. 2008). 

Our 6 ccRCC and HK2 normal kidney cell lines were evaluated for ADAM9 
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expression, which was then compared to the read count data from our RNAseq 

analysis to determine if the levels were comparable, as shown in Figure 3.26. 

 
Figure 3.26 ADAM9 mRNA expression and read count level in RCC cell lines 
(A) RNA was extracted from six RCC cell lines, one normal kidney cell line and ADAM9 gene 
expression was determined by qRT-PCR. Expression was normalised to β -Actin and ADAM9 
expression was calculated according to the 2^-delta Ct method and is shown as arbitrary units (AU). 
Differences in gene expression were calculated using a Kruskal-Wallis test followed by Dunn’s 
multiple comparisons test, where * represents p <0.05 and ** represents p <0.01. n=3. (B) ADAM9 
read count data generated from RNA sequencing. 

 

High ADAM9 mRNA levels were found across our RCC lines, with very little 

expression found in the HK2 normal kidney cell line (Figure 3.26a). The highest 

average ADAM9 mRNA expression was found in the UMRC2 cell line, which was 

significantly higher than that found in the HK2 cell line (p=0.0018). The A498, CAKI2 

and UMRC3 cell lines were also found to have significantly higher mRNA levels 

compared to HK2 (p=0.0218, p=0.0100 and p=0.0160 respectively). 

Comparison of our RNAseq read count values found the highest figure was again 

observed in the UMRC2 cell line, with the lowest value found in the HK2 sample 

(Figure 3.26b). This pattern followed what we saw in our mRNA expression data, 

confirming that ADAM9 expression is significantly increased in all ccRCC cell lines 

compared to normal kidney. 
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3.4.2.1.2 ADAM17 mRNA expression 

ADAM17 is one of the most well studied sheddases in the ADAM family and 

expression is associated with poor outcome in ccRCC, where expression may have 

some use as a prognostic biomarker (Li et al. 2014a). We next examined ADAM17 

mRNA expression in our cell lines compared to our RNAseq read count data, as 

shown in Figure 3.27. 

 

ADAM17 mRNA expression was found to be consistently lower in all cell lines than 

what was observed ADAM9 (Figure 3.27a). The highest average ADAM17 mRNA 

levels were seen in the UMRC2 cell line, while the lowest values were found in the 

A498 cell line, which had significantly lower levels than the HK2 normal kidney 

samples (p=0.0095). 

Conversely, the highest read count figures were observed in the CAKI2 cell line 

(Figure 3.27b). We observed the lowest read count values in the UMRC3 cell line 

Figure 3.27 ADAM17 mRNA expression and read count level in RCC cell lines 
(A) RNA was extracted from six RCC cell lines, one normal kidney cell line and ADAM17 gene 
expression was determined by qRT-PCR. Expression was normalised to β -Actin and ADAM17 
expression was calculated according to the 2^-delta Ct method and is shown as arbitrary units 
(AU). Differences in gene expression were calculated using a Kruskal-Wallis test followed by 
Dunn’s multiple comparisons test, where ** represents p<0.01. n=3. (B) ADAM17 read count 
data generated from RNA sequencing. 
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and in this data the A498 read count figures are comparable to the other ccRCC cell 

line levels. 

ADAM17 read count figures were also lower overall than those observed for ADAM9, 

with around a 10-fold expression decrease found in all ccRCC cell lines, however a 

similar figure was also seen for the HK2 cell line.  

 

3.4.2.1.3 ADAM28 mRNA expression  

ADAM28 mRNA expression and read count data was next explored in our samples, 

as shown in Figure 3.28. ADAM28 has not been strongly associated with ccRCC 

with very little literature available linking the two, however expression has been 

previously reported in the CAKI2 cell line in association with increased apoptosis in 

cell line studies (Mochizuki et al. 2012). 

  

 

 

 

 

 

 

 

 

 



 

150  

 

ADAM28 mRNA expression was found to be substantially lower in all cell lines 

compared to both ADAM9 and ADAM17 (Figure 3.28a), a pattern which is also 

mirrored in our RNAseq read count data (Figure 3.28b). Very low expression was 

seen across all cell lines; however, the highest mRNA values were seen in the 

CAKI2 cell line which was found to be significantly higher than the HK2 normal 

kidney cell line (p<0.0001). The lowest expressing ADAM28 mRNA ccRCC cell lines 

were UOK143 and UOK121, both of which had lower expression than the normal 

kidney samples. 

Read count values followed similar patterns to the mRNA data with the A498 cell line 

showing the highest read count values while UOK143 again showed the lowest 

values. This data suggests that ADAM28 is present in very low levels in both RCC 

and normal kidney, however some cell lines have stronger expression than others. 

Therefore, due to its low levels, ADAM28 may play a less significant role than other 

proteases and may not be a major factor in ccRCC development. 

Figure 3.28 ADAM28 mRNA expression and read count level in RCC cell lines 
(A) RNA was extracted from six RCC cell lines and one normal kidney cell line. ADAM9 gene 
expression was determined by qRT-PCR. Expression was normalised to β -Actin and ADAM9 
expression was calculated according to the 2^-delta Ct method and is shown as arbitrary units 
(AU). Differences in gene expression were calculated using a Kruskal-Wallis test followed by 
Dunn’s multiple comparisons test, where **** represents p <0.0001. n=3 (B) Read count data 
generated from RNA sequencing.  
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This data has shown much higher expression levels of ADAM9 in our ccRCC cell 

lines compared to that of ADAM17 and ADAM28, with 4 out of 6 ccRCC cell lines 

also showing significantly higher expression than that found in the normal kidney 

HK2 cell line. Measurement of mRNA levels is an indication of gene expression, 

however this does not always translate into protein expression, so we next probed 

protein lysate from each cell line to determine expression of each protease by 

western blot analysis. 

 

3.4.2.2 Protease protein expression 

To determine whether the protease mRNA levels we have seen correlate with their 

expression at the protein level, whole protein lysate was extracted from each cell line 

and probed for ADAM9, ADAM17 or ADAM28 by western blot analysis.  
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3.4.2.2.1 ADAM9 protein expression 

We firstly examined ADAM9 protein expression in our cell lines to determine whether 

cell line protein expression correlates with mRNA levels, as shown in Figure 3.29. 

 

 

ADAM9 protein was found and high levels in all cell lines studied, including the HK2 

normal kidney cell line (Figure 3.29a). This is an unexpected result as the HK2 cell 

line was found to have minimal ADAM9 mRNA expression, however all the ccRCC 

cell lines showed high protein levels following normalisation to the relevant 

housekeeping gene (Figure 3.29b) which correspond to the high mRNA levels 

observed in our earlier study.  

Figure 3.29 Western blot analysis of ADAM9 protein expression 
Whole cell lysate was extracted from 6 ccRCC cell lines and the HK2 normal kidney cell 
line and immunoblotted for ADAM9. (A) Representative image. (B) Expression was 
normalised to a-tubulin and ADAM9 level shown in arbitrary units (AU). Values were 
obtained from an average of 3 independent experiments.  
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3.4.2.2.2 ADAM17 protein expression 

We next examined ADAM17 protein expression in our cell lines to determine whether 

cell line protein expression correlates with mRNA levels, as shown in Figure 3.30. 

 

 

Low levels of ADAM17 were found in all cell lines (Figure 3.30a), with similar protein 

expression observed across all ccRCC cell lines and the normal kidney cell line 

when normalised to the house keeping gene GAPDH (Figure 3.30b), mirroring what 

was found in our previous mRNA comparisons.   

Figure 3.30 Western blot analysis of ADAM17 protein expression 
Whole cell lysate was extracted from 6 ccRCC cell lines and the HK2 normal kidney cell line 
and immunoblotted for ADAM17. (A) Representative image. (B) Expression was normalised 
to GAPDH and ADAM17 level shown in arbitrary units (AU). Values were obtained from an 
average of 3 independent experiments.  
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3.4.2.2.3 ADAM28 protein expression 

Finally, we examined ADAM28 protein expression in our cell lines to determine 

whether cell line protein expression correlates with mRNA levels, as shown in Figure 

3.31. 

 

Western blot analysis showed that as was found at the mRNA level, the CAKI2 and 

A498 cell lines had the greatest ADAM28 protein expression, with the UOK143 and 

UOK121 cell lines having the lowest protein expression (Figure 3.31a). 

Normalisation to the GAPDH housekeeping gene confirmed the highest expression 

in A498 and CAKI2 (Figure 3.31b).   

Figure 3.31 Western blot analysis of ADAM28 protein expression 
Whole cell lysate was extracted from 6 ccRCC cell lines and the HK2 normal kidney cell 
line and immunoblotted for ADAM28. (A) Representative image. (B) Expression was 
normalised to GAPDH and ADAM28 level shown in arbitrary units (AU). Values were 
obtained from an average of 3 independent experiments.  



 

155  

3.5 Characterising protease expression in kidney tissue 

Having now validated our RNAseq results for ADAM9, ADAM17 and ADAM28, we 

next wanted to determine their staining patterns and expression strength within the 

normal kidney and patient-derived tumour tissue. 

 

3.5.1 Protease antibody optimisation 

We next aimed to determine expression of our proteases of interest, ADAM9, 

ADAM17 and ADAM28 within patient-derived TMAs. Expression of these proteases 

is strong in normal human stomach (Love et al. 2017a), so we firstly optimised the 

antibodies on this tissue to ensure accurate staining, as shown in Figure 3.32. 

 

 

As expected, strong membranous staining was found throughout the stomach tissue, 

with strong staining for all three proteases in the mucosa of the gastric pits and 

parietal cells. Control sections stained with no primary antibody were used to confirm 

the specificity of our antibodies. 

Figure 3.32 ADAM9, ADAM17 and ADAM28 staining optimisation on human stomach 
tissue 
Representative image of ADAM9, ADAM17 and ADAM28 staining (green). Staining was 
completed on human stomach tissue as positive control to check antibody specificity and no 
primary antibody controls were carried out to check for background fluorescence. 
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3.5.2 Characterising protease expression in normal kidney  

Having confirmed the specificity of our antibodies we next analysed the ADAM9, 

ADAM17 or ADAM28 expression strength by calculating H-scores for each core. We 

firstly examined the expression of the proteases in normal kidney structures, which 

have not been previously extensively studied in the literature. Strong ADAM9 

expression has been previously reported in normal kidney, with stronger expression 

noted in the proximal convoluted tubule compared to the distal tubule (Uhlén et al. 

2015). ADAM17 expression has been reported to be weak in normal kidney proximal 

tubule, glomerulus and podocytes (Fritzsche et al. 2008), while one study has shown 

weak ADAM28 expression in the collecting ducts of the normal kidney (Kato et al. 

2018).  

We firstly examined expression of ADAM9, ADAM17 and ADAM28 in the renal 

corpuscle, as shown in Figure 3.33. 

 

 

Weak ADAM9 expression was observed throughout the endothelial cells of the 

glomerulus capillary network, with no staining observed on the mesangial cells or 

Bowman’s capsule. Moderate to strong ADAM17 staining was observed throughout 

the glomerulus, with moderate staining found on the simple squamous epithelial cells 

of the Bowman’s capsule. Weak ADAM28 staining was observed throughout the 

renal corpuscle and surrounding tubules. 

Figure 3.33 ADAM9, ADAM17 and ADAM28 expression within the renal corpuscle 
Weak to negative ADAM9 and ADAM28 expression was observed throughout the 
glomerulus (green), with moderate to strong ADAM17 expression found throughout the 
glomerulus and Bowman’s capsule. DAPI is represented in blue. Scale bar represents 50µm. 
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We next studied the expression of these protease in the proximal and distal 

convoluted tubules, as shown in Figure 3.34. 

 

ADAM9 expression was found to be very strong in both the distal convoluted tubule 

and the proximal tubule. ADAM17 expression was found to be moderate in both the 

proximal and distal tubules, while ADAM28 expression was weak in both tubules. As 

ADAM9 and ADAM17 expression changed between the proximal and distal parts of 

the convoluted tubule, we next examined protease expression in the loop of Henle 

which connects the proximal and distal parts of the tubule, and the collecting duct, 

which is the last part of the tubule system, as shown in Figure 3.35. 

 

Figure 3.34 ADAM9, ADAM17 and ADAM28 expression within the proximal and distal 
convoluted tubules 
Moderate to strong ADAM9 and ADAM17 expression (green) was observed in the proximal 
tubules, while ADAM28 expression was found to be weaker. In the distal tubules, ADAM9 
and ADAM17 expression were again found to be strong, alongside weak ADAM28 
expression. DAPI is represented in blue. Scale bar represents 50µm. 

Figure 3.35 ADAM9, ADAM17 and ADAM28 expression in the loop of Henle and 
collecting ducts  
ADAM9 expression (green) was found to be very strong within the loop of Henle but absent 
in the collecting ducts. ADAM17 was only found to be weakly present on the lateral borders 
of the collecting ducts, and ADAM28 was absent from these tissues. DAPI is represented in 
blue. Scale bar represents 50µm. 
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ADAM9 expression was found to be moderate in the loop of Henle, but absent from 

the collecting ducts. ADAM17 was only found to be weakly expressed on the lateral 

borders of the collecting ducts but negative within the loop of Henle and core of the 

collecting ducts. ADAM28 expression was negative in both the loop of Henle and the 

collecting ducts.  

To quantify what we have observed, ADAM9, ADAM17 and ADAM28 staining H-

scores were next calculated for each kidney structure, as shown in Figure 3.36. H-

scores of 0-99 were counted as weak expression, 100-199 were counted as 

moderate expression and 200-300 were counted as strong expression.  

 

Figure 3.36 ADAM9, ADAM17 and ADAM28 H-score comparison in normal kidney 
structures. 
ADAM9, ADAM17 and ADAM28 H-scores were compared across normal kidney structures. All 
measurements were n=10 except glomeruli which were n=4 due to tissue availability. H-scores 
were compared using a Kruskal-Wallis test with Dunn’s multiple comparisons test. ADAM9 
expression was found to be strongest in the proximal tubule, while ADAM17 was highly 
expressed in both the proximal and distal tubules. ADAM28 expression was weak throughout all 
structures, with weak to zero expression found in all structures. 
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Comparison of protease H-score revealed differences in protease expression within 

each structure. In the glomeruli, ADAM17 was found to have the highest expression 

levels, with ADAM9 and ADAM28 both showing weak expression throughout the 

renal corpuscle. The proximal tubule was found to have the highest expression 

levels of ADAM9, which were significantly higher than the levels of ADAM28 in these 

structures (270.50 ± 23.08 vs 137.20 ± 65.01, p = <0.001). In the loop of Henle, 

ADAM9 H-score was also found to be significantly higher than ADAM17 (108.80 ± 

59.12 vs 14.13 ± 23.37, p = 0.001) and ADAM28 (108.80 ± 59.12 vs 20.31 ± 18.82, p 

= <0.001). In the distal tubule, both ADAM9 and ADAM17 were found to have high 

H-scores, with both found to be significantly higher than the expression of ADAM28 

(241.8 ± 39.72 vs 55.44 ± 51.67, p = 0.001 and 254.3 ± 56.17 vs 55.44 ± 51.67, p = 

0.008 respectively).  

Having now characterised protease expression in the structures of the normal 

kidney, we next aimed to determine the expression of these proteases in RCC. As all 

three proteases exhibited the strongest expression in the proximal convoluted 

tubules, the cell of origin for ccRCC and pRCC, we next wanted to see if this strong 

expression is carried through and expressed on tumour cells, where they may have 

a role in disease development or progression. ADAM9 and ADAM17 were also found 

to show strong expression on the distal convoluted tubule, the cell of origin for 

chRCC, however ADAM28 expression was found to be weak in this structure. 

 

3.5.3 Characterising protease expression in RCC tissue 

Having established ADAM9, ADAM17 and ADAM28 expression in normal kidney, we 

next examined the expression of these proteases in RCC TMA samples. We also 

investigated the relationship between protease expression and RCC subtype, TNM 

stage, patient age at operation and sex.  

 

3.5.3.1 ADAM9 expression  

ADAM9 expression has been previously observed in both normal kidney and RCC 

subtypes, with expression associated with higher tumour grade, positive nodal status 

and metastasis (Miyamae et al. 2016). Cytoplasmic and membranous staining was 

seen in all tumour types, with all samples of all RCC subtypes showing some level of 
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positivity. Representative weak, moderate and strong ADAM9 staining in ccRCC, 

pRCC and chRCC is shown in Figure 3.37. 

 

 

 

  

Figure 3.37 ADAM9 staining in RCC subtypes 
Representative weak, moderate and strong ADAM9 (green) in ccRCC, pRCC and chRCC TMA 
cores. DAPI is represented in blue. Weak staining is classed as H-score <100, moderate 
staining is classed as H-score 101-200 and strong staining is classed as H-score 201-300. 
Scale bar represents 200µm. 
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3.5.3.1.1 ADAM9 expression in RCC subtypes 

As before, ADAM9 H-score was calculated and was first examined by RCC subtype, 

as shown in Figure 3.38. 

 

 

Strong ADAM9 staining was seen in all RCC subtypes (Figure 3.38), however the 

average staining observed in chRCC and pRCC was higher than in ccRCC, with 

chRCC found to be significantly higher than ccRCC (177.3 ± 65.53 vs 99.67 ± 82.06, 

p=0.0301). This result is interesting as ADAM9 expression was strong in both the 

proximal convoluted tubule, the cell of origin for ccRCC and pRCC, and the distal 

convoluted tubule, the cell of origin for chRCC. This expression however appears to 

follow through into the chRCC tumour much more strongly than into the ccRCC and 

pRCC tumours.  

 

  

Figure 3.38 ADAM9 expression levels in RCC subtypes 
ADAM9 H-score was compared across RCC subtypes. ADAM9 H-score was found to be 
significantly higher in chRCC compared to ccRCC. Analysis was completed using a Kruskal-Wallis 
test with Dunn’s multiple comparisons test, where * represents p <0.05. 
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3.5.3.1.2 ADAM9 expression by TNM status 

We next aimed to determine if TNM status has any effect on ADAM9 expression, as 

shown in Figure 3.39. 

 

Figure 3.39 ADAM9 expression in RCC subtypes by TNM status 
ADAM9 H-score was compared by TNM status. (A) ADAM9 H-score in all RCC, ccRCC, pRCC 
and chRCC by tumour status. T4 samples were only available in ccRCC. (B) ADAM9 H-score in 
ccRCC samples by node stage. All pRCC and chRCC samples were NX/N0 status, (C) ADAM9 
H-score in ccRCC and pRCC by metastasis status. All chRCC samples were MX/M0 status. A-
B: Analysis was completed using a Kruskal-Wallis test and Dunn’s multiple comparison test, 
where * represents p<0.05. C: Analysis was completed using an unpaired t-test. 
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ADAM9 expression was found to be strongly influenced by tumour status in all RCC 

and in ccRCC (Figure 3.39a), where a gradual decrease in mean H-score was 

observed with increased T status. T1 was found to have significantly higher H-scores 

compared to T4 in all RCC (141.50 ± 74.41 vs 12.54 ± 9.05, p = 0.0290) and ccRCC 

(136.0 ± 74.05 vs 12.54 ± 9.05, p = 0.0381), however the most highly scoring 

individual samples were found in T2 and T3. A similar decrease in expression with 

increased T stage was observed in pRCC, however this was not found to be 

significant, possibly due to small sample size. Interestingly, an increase in ADAM9 

expression was observed with increased chRCC T status, however again due to 

small sample sizes, no significance was found. The only samples with node 

involvement in our TMAs were in ccRCC, with low ADAM9 expression observed in 

the N1 and N2 samples compared to the NX/N0 group (Figure 3.39b), however as 

only one sample was available for each of these groups, this would be interesting to 

repeat with an increased number of samples. Metastasis stage appeared to have no 

effect on ADAM9 H-score in ccRCC (Figure 3.39c), however an increase was 

observed in the M1 sample compared to MX/M0 in pRCC. This group however 

contained only one sample and this work should be repeated with a greater number 

of samples.  

 

3.5.3.1.3 ADAM9 expression by age and sex 

We next analysed the ADAM9 expression levels in our samples by patient age at 

operation and sex, as shown in Figure 3.40. 
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Figure 3.40 ADAM9 expression by age at operation and sex 
ADAM9 H-score was compared by patient age and sex. (A) All RCC, (B) ccRCC, (C) chRCC, (D) 
pRCC by age, (E) All RCC and subtypes by sex. A-D: Statistical analysis was completed using a 
Kruskal-Wallis test and Dunn’s multiple comparisons test. E: Analysis was completed using unpaired 
t-tests; however, no significance was found. 

Sex 
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ADAM9 H-score generally increased with advanced age in all RCC (Figure 3.40a) 

and in each subtype (Figure 3.40b-d), however no significant differences were found 

in ADAM9 H-score between any of the age groups. No changes were observed 

between male and female patients within all RCC or in any subtype (Figure 3.40e), 

implying that any differences observed in ADAM9 H-score between samples are 

likely due to expression in the tumour itself, rather than patient characteristics such 

as age or sex.  

 

3.5.3.1.4 ADAM9 expression summary 

We have observed varied ADAM9 staining throughout our TMA samples, with the 

strongest average staining found in chRCC. A significant disease in H-score was 

observed with increased tumour status in ccRCC and pRCC, and an increase in H-

score was associated with increased tumour status in chRCC. Neither node or 

metastasis status, nor patient characteristics such as age or sex were found to affect 

H-scores. ADAM9 H-scores are summarised in Table 3.5.  

 

Table 3.5 ADAM9 H-Score summary for RCC subtypes and stages 
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3.5.3.2 ADAM17 expression  

Having characterised ADAM9 expression in our TMA samples, we next aimed to 

establish ADAM17 expression in the same samples using serial TMA sections. 

ADAM17 has suggested as a biomarker for ccRCC, as expression correlates with 

poor prognosis (Fritzsche et al. 2008). We have already shown strong ADAM17 

expression in the glomerulus and proximal and distal convoluted tubules of our 

normal kidney samples, so we next aimed to determine if this expression is carried 

through into RCC. Representative IF staining images can be seen in Figure 3.41.   

 

Figure 3.41 ADAM17 staining in RCC subtypes 
Representative weak, moderate and strong ADAM17 staining (green) in ccRCC, pRCC and 
chRCC TMA cores. DAPI is represented in blue. Weak staining is classed as H-score <100, 
moderate staining is classed as H-score 101-200 and strong staining is classed as H-score 201-
300. Scale bar represents 200µm. 
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3.5.3.2.1 ADAM17 expression in RCC subtypes 

ADAM17 H-score was firstly compared between RCC subtypes, as shown in Figure 

3.42. 

 

3.5.3.2.2 ADAM17 expression by TNM status 

Mean ADAM17 expression was found to be highest in chRCC (Figure 3.42), which 

originates from the distal convoluted tubule, the structure which showed the highest 

ADAM17 expression in normal kidney. ADAM17 expression was also strong in the 

proximal convoluted tubule, the cell of origin for ccRCC and pRCC, however mean 

ADAM17 expression in these subtypes was found to be generally lower than chRCC. 

ccRCC samples were found to have varied ADAM17 expression strength, ranging 

from weak to very strong, so we next examined the samples by TNM status to 

determine if any clinical characteristic could be responsible for the differences in 

expression, as shown in Figure 3.43. 

Figure 3.42 ADAM17 expression levels in RCC subtypes 
ADAM17 H-score was compared between the 3 RCC subtypes. Analysis was completed using a 
Kruskal-Wallis test followed by Dunn’s multiple comparison test; however, no significant differences 
were found between the three groups. 
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As was found to be the case for ADAM9 expression, ADAM17 expression appears to 

be highly influenced by tumour status in ccRCC (Figure 3.43a). ADAM17 H-score 

was found to generally reduce with increased T stage in ccRCC, however the 

highest scoring individual samples were found in the T1-T3 groups. No clear link 

between T score and ADAM17 expression could be found in pRCC and chRCC, 

however these groups had a much smaller number of samples, and a correlation 

Figure 3.43 ADAM17 expression in RCC subtypes by TNM status 
ADAM17 H-score was compared between the samples by TNM status. (A) All RCC. 
ccRCC, pRCC and chRCC by tumour status. T4 samples were only available in ccRCC. 
(B) ccRCC samples by node stage. All pRCC and chRCC samples were NX/N0 status, (C) 
ccRCC and pRCC by metastasis status. All chRCC samples were MX/M0 status. A-
B:Analysis was completed using a Kruskal-Wallis test and Dunn’s multiple comparisons 
test. C: Analysis was completed using unpaired t-tests. however, no significant differences 
were found between any of the groups. 
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may be found if this study was repeated with a larger number of samples. Node 

status in our ccRCC samples appeared to correlate with reduced ADAM17 

expression (Figure 3.43b), with lower H-scores observed in the N1 and N2 samples 

compared to the NX/N0 group, however this would also need to be repeated with an 

increased number of samples. Metastasis status also appeared to relate to lower H-

scores in ccRCC (Figure 3.43c), where lower H-scores were observed in the M1 

group compared to the MX/M0 group, however this was not found to be the case in 

the pRCC M1 sample, which was higher than the mean of the pRCC MX/M0 group. 

Further repeats are required with a higher number of samples to characterise this 

expression pattern. 

 

3.5.3.2.3 ADAM17 expression by age and sex 

Having established the relationship between ADAM17 expression and sample 

clinical characteristics, we next examined our samples by patient characteristics of 

age at operation and sex, as shown in Figure 3.44. 
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Figure 3.44 ADAM17 expression by age at operation and sex 
ADAM17 H-score was compared by patient age and sex. (A) All RCC, (B) ccRCC, (C) pRCC, (D) 
chRCC by age, (E) All RCC and subtypes by sex. A-D: Statistical analysis was completed using a 
Kruskal-Wallis test and Dunn’s multiple comparison test. E: Analysis was completed using unpaired 
t-tests; however, no significance was found. 
 

Sex 
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ADAM17 expression was not found to be significantly influenced by patient age at 

operation in any of the RCC subtypes or all RCC (Figure 3.44a-d), however a 

general trend of increased H-score with increased age was observed. Patient sex 

was not found to significantly impact ADAM17 H-score (Figure 3.44e), however 

expression was generally found to be higher in females in ccRCC, but higher in 

males in pRCC and chRCC.  

 
3.5.3.2.4 ADAM17 expression summary 

We have shown a range of ADAM17 expression strength in our TMA samples, with 

the highest mean expression found in chRCC, but the strongest individual 

expression was found in ccRCC. No significant differences were found during 

analysis between RCC subtypes or TNM stages, however a general trend of 

decreasing ADAM17 expression was observed with increased tumour, node or 

metastasis status in ccRCC. Patient characteristics of age at operation and sex also 

showed no significant differences between groups, however a general trend of 

increased ADAM17 expression with increased age was observed in all subtypes, 

and females were found to have higher expression than males in pRCC and chRCC. 

ADAM17 expression is summarised in Table 3.6.  

Table 3.6 ADAM17 H-Score summary for RCC subtypes and stages  
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3.5.3.3 ADAM28 expression  

Having now characterised ADAM9 and ADAM17 expression in RCC, using a further 

serial TMA section we next aimed to establish ADAM28 expression in our samples. 

ADAM28 expression in RCC has not been well studied, however increased 

expression has been reported at the mRNA level in T1 status tumours (Li et al. 

2014a). Representative staining is shown in Figure 3.45. 

 

 

 

Figure 3.45 ADAM28 staining in RCC subtypes 
Representative weak, moderate and strong ADAM28 staining (green) in ccRCC, pRCC and 
chRCC TMA cores. DAPI is represented in blue. Weak staining is classed as H-score <100, 
moderate staining is classed as H-score 101-200 and strong staining is classed as H-score 201-
300. No moderate or strong staining was observed in chRCC. Scale bar represents 200µm. 
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3.5.3.3.1 ADAM28 expression in RCC subtypes 

We firstly investigated the expression of ADAM28 in RCC subtypes, as shown in 

Figure 3.46. 

 

 

Weak overall ADAM28 expression was observed throughout all TMA samples, 

however expression was found to be significantly higher in pRCC compared to 

ccRCC (86.27 ± 90.12 vs 39.72 ± 47.54, p = 0.0213). In the normal kidney, ADAM28 

expression was found to be strongest in the proximal convoluted tubule, the cell of 

origin for pRCC and ccRCC, however it appears this expression does not carry 

through into the tumour state in both RCC subtypes. 

 
  

Figure 3.46 ADAM28 expression in RCC subtypes 
ADAM28 H-score was compared across the 3 RCC subtypes. ADAM28 expression was found to 
be highest in pRCC compared to the other two subtypes. Analysis was completed using a 
Kruskal-Wallis test and Dunn’s multiple comparison test, where * represents p<0.05. 



 

174  

3.5.3.3.2 ADAM28 expression by TNM status 

We next examined if tumour TNM status has an effect on ADAM28 expression, as 

shown in Figure 3.47. 

 

 

 

Figure 3.47 ADAM28 expression in RCC subtypes by TNM status 
ADAM28 H-score was compared between samples by TNM status. (A) All RCC. ccRCC, pRCC 
and chRCC by tumour status. T4 samples were only available in ccRCC. (B) ccRCC samples by 
node stage. All pRCC and chRCC samples were NX/N0 status, (C) ccRCC and pRCC by 
metastasis status. All chRCC samples were MX/M0 status. A-B: Statistical analysis was 
completed using a Kruskal-Wallis test and Dunn’s multiple comparisons test, where * represents 
p<0.05. C: Analysis was completed using unpaired t-tests. 
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Figure 3.48 ADAM28 expression by age at operation and sex 
ADAM28 H-score was compared by patient age and sex. (A) All RCC, (B) ccRCC, 
(C) pRCC, (D) chRCC by age, (E) All RCC and subtypes by sex. A-D: Statistical 
analysis was completed using a Kruskal-Wallis test and Dunn’s multiple 
comparisons test. E: Analysis was completed using unpaired t-tests; however, no 
significance was found. 

Sex 
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ADAM28 H-score appears to be negatively correlated with tumour status in ccRCC 

and RCC as a whole (Figure 3.47a), with T1 found to have significantly higher levels 

of ADAM28 compared to T4 (51.00 ± 49.82 vs 1.842 ± 1.311, p=0.0290). 

Interestingly, an increase in ADAM28 H-score was observed with increased T status 

in pRCC and no effect was observed in chRCC, however these are very small 

sample numbers and further repeats with increased n numbers would make this data 

more robust. A decrease in ADAM28 expression was observed with increased node 

status (Figure 3.47b) and metastasis status (Figure 3.47c) in ccRCC, however again 

these differences were not found to be significant due to the small sample sizes. The 

M1 pRCC sample was however found to have a higher H-score compared to the 

MX/M0 group, which would need to be repeated with further samples to increase n 

numbers and determine the true strength of this relationship. 

 

3.5.3.3.3 ADAM28 expression by age and sex 

Having determined ADAM28 expression in our samples based on clinical 

characteristics, we next examined expression based on the patients characteristics 

of age at operation and sex, as shown in Figure 3.48. 

 

Weak ADAM28 expression was observed throughout all age groups, with no 

differences observed between any ages (Figure 3.48a-d). ADAM28 also did not 

appear to be influenced by patient sex (Figure 3.48e), with ccRCC and chRCC 

exhibiting similar mean expression in both sexes and only pRCC showing an 

increase in females compared to males, however only two samples were in this 

group and so further repeats with increased sample sizes would be required to 

confirm any relationship between sex and ADAM28 expression. 

 

3.5.3.3.4 ADAM28 expression summary 

ADAM28 expression was low throughout the TMA samples, but the highest overall 

expression was found in pRCC. As with ADAM9 and ADAM17, ADAM28 expression 

appears to be influenced by tumour status, with no effect observed with increased 

node or metastasis status, however increased sample sizes may show more 
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significant trends. Patient age at operation and sex also had no impact on ADAM28 

expression, so it is likely that any differences observed in ADAM28 expression 

between individual samples is down to the tumour itself rather than patient 

characteristics. ADAM28 expression is summarised in Table 3.7. 

 

Table 3.7 ADAM28 H-Score summary for RCC subtypes and stages 

 

 

3.6 Protease Correlations with CD200  

So far in this chapter we have established the staining intensity of CD200 and our 

proteases of interest, ADAM9, ADAM17 and ADAM28 in our TMA samples. As 

differences in expression were observed between samples, we next determined 

whether there was any correlation between CD200 staining intensity and protease 

staining intensity 
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3.6.1 ADAM9 and CD200 Correlations 

We firstly examined the relationship between ADAM9 and CD200 expression in our 

samples, firstly in all RCC and then by subtype, as shown in Figure 3.49. 

Weakly positive ADAM9 and CD200 correlations were observed in all RCC (Figure 

3.50a) and pRCC (Figure 3.50c), while a weak negative correlation was observed in 

ccRCC (Figure 3.50b). Interestingly, a strong positive correlation (r=0.6000) was 

observed between ADAM9 and CD200 in chRCC (Figure 3.50d), however this 

relationship was not found to be significant. 

Figure 3.49 Correlation of ADAM9 vs CD200 H-Score 
 (A) All RCC, (B) ccRCC, (C) pRCC, (D) chRCC. Correlations were calculated using 
Spearman’s rank correlation coefficient. 
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3.6.2 ADAM17 and CD200 Correlations 

We next investigated the relationship of ADAM17 with CD200 in our TMA samples, 

as shown in Figure 3.50. 

 

 

Weak negative correlations between ADAM17 and CD200 were observed in all RCC 

(Figure 3.50a) and pRCC (Figure 3.50c), while a weak positive correlation was found 

in ccRCC (Figure 3.50b). As we found in our previous study of ADAM9 with CD200, 

ADAM17 was found to strongly correlate with CD200 expression in chRCC (Figure 

3.50d), with a significant increase in ADAM17 expression associated with an 

increase in CD200 (r=0.9048, p=0.0046).  

Figure 3.50 Correlation of ADAM17 vs CD200 H-Score 
 (A) All RCC, (B) ccRCC, (C) pRCC, (D) chRCC. Correlations were calculated using 
Spearman’s rank correlation coefficient, where ** represents p <0.01. 
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3.6.3 ADAM28 and CD200 Correlations 

We finally investigated the relationship of ADAM28 with CD200 in our TMA samples, 

as shown in Figure 3.51. 

 

 

Weak positive correlations were observed between ADAM28 and CD200 in all RCC 

(Figure 3.51a), ccRCC (Figure 3.51b) and pRCC (Figure 3.51c), however a strongly 

positive correlation was found in chRCC (Figure 3.51d) which was also highly 

significant (r=0.9515, p=0.001).  

Figure 3.51 Correlation of ADAM28 vs CD200 H-Score 
 (A) All RCC, (B) ccRCC, (C) pRCC, (D) chRCC. Correlations were calculated using 
Spearman’s rank correlation coefficient, where *** represents p <0.001. 
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3.6.4 Protease and CD200 Correlation Summary 

We observed mostly weakly positive correlations between CD200 and our proteases 

of interest. This could imply that processes involving both CD200 and ADAMs in 

RCC development may result in increased expression of both, however the process 

behind this and link between the two is currently unclear. 

Weak correlations were observed between ADAM9 and CD200 in ccRCC and 

pRCC, possibly implying there is no strong link between their expression, however a 

strong relationship was observed in chRCC. 

Positive correlations were also seen between ADAM17 and CD200 in all subtypes, 

which were weak in ccRCC and pRCC, and a strong and significant relationship was 

observed between ADAM17 and CD200 in chRCC. 

A similar pattern of weak, positive correlations was observed between ADAM28 and 

CD200 expression in ccRCC and pRCC, and a very strong and significant 

relationship was observed in chRCC. 

This data implies that CD200 and protease expression is strongly linked in chRCC 

and is less so in ccRCC, pRCC and RCC as a whole.  
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3.7 Protease and CD200 double positive cells  

As we have now characterised CD200 and ADAM9, ADAM17 and ADAM28 

expression and determined correlations between their expression strengths, we next 

determined the number of cells in each sample which were positive for both CD200 

and our proteases of interest. The presence of both on the cell membrane in the 

same place may indicate that the two are able to interact, with the protease 

potentially placed where it could have a role in the ectodomain shedding of CD200. 

 

3.7.1 ADAM9 and CD200 double positive cells   

The number of cells which were positive for both CD200 and ADAM9 were identified 

within each core, representative staining can be seen in Figure 3.52. 

 

The number of double positive cells were firstly counted in each core for each RCC 

subtype and calculated as a percentage of the number of total cells in the sample, as 

shown in Figure 3.52.  

Figure 3.52 ADAM9 and CD200 double positive staining in RCC subtypes 
Representative staining of ADAM9 (green), CD200 (red) and DAPI (blue) staining in RCC 
subtypes. Scale bar represents 50µm. 
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ccRCC was found to have the highest mean percentage of ADAM9 and CD200 

double positive cells compared to normal kidney and the other RCC subtypes 

(Figure 3.53a). The lowest number of double positive cells was found in pRCC, and 

no relationship was found between ADAM9 and CD200 H-scores in this subtype, 

implying that a low number of cells express both and the level of their expression is 

not related to the other. 

When we examined the percentage of double positive cells by TNM tumour stage, 

we found that the percentage significantly increased with increased T stage in 

ccRCC (Figure 3.53b), with T4 having a significantly higher number than T1 (68.00 ± 

12.73 vs 29.83 ± 14.02, p = 0.0220) and T3 (68.00 ± 12.73 vs 18.37 ± 22.14, p = 

0.0476). Interestingly, chRCC was found to have the opposite effect with T3 

presenting a lower percentage of double positive cells than T1, however there was a 

small number of samples in this group. No trend was observed with T stage in 

pRCC, with T1 and T3 showing a similar percentage of double positive cells.  

Figure 3.53 ADAM9 and CD200 double positive cell percentage of all cells 
The percentage of cells which were positive for both ADAM9 and CD200 was calculated in 
(A) RCC subtypes. (B) By TNM tumour stage within subtypes. Analysis was carried out 
using a Kruskal-Wallis test and Dunn’s multiple comparison test, where * represents p 
<0.05. 
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3.7.2 ADAM17 and CD200 double positive cells  

The number of cells which were positive for both CD200 and ADAM17 was next 

examined. Representative double positive staining can be seen in Figure 3.54. 

 

The number of cells which were positive for both ADAM17 and CD200 and ADAM17 

were next counted in the RCC subtypes and split by tumour status, as shown in 

Figure 3.55. 

 

The percentage of double positive ADAM17 and CD200 cells was found to be very 

high across all the subtypes (Figure 3.55a), however the percentage in chRCC was 

significantly higher than ccRCC (88.13 ± 20.29 vs 66.47 ± 26.21, p = 0.0077).  

Figure 3.54 ADAM17 and CD200 double positive staining in RCC subtypes 
Representative staining of ADAM17 (green), CD200 (red) and DAPI (blue) staining in RCC 
subtypes. Scale bar represents 50µm. 
 

Figure 3.55 ADAM17 and CD200 double positive cell percentage of all cells 
The percentage of cells which were positive for both ADAM17 and CD200 was calculated in (A) 
RCC subtypes. (B) By TNM tumour stage within each subtype. Analysis was carried out using a 
Kruskal-Wallis test and Dunn’s multiple comparison test, where ** represents p<0.01. 
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Examination of ADAM17 and CD200 cell double positivity by TNM tumour status 

(Figure 3.55b), found a decrease in percentage with increased T stage in ccRCC, 

which is the opposite for what we observed for ADAM9 and CD200 double positivity. 

No pattern was observed for pRCC or chRCC, so this data could show that in 

ccRCC only, as T status increases, CD200 positive cells switch expression from 

ADAM17 to ADAM9 and this may have a role in tumour progression.  
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3.7.3 ADAM28 and CD200 double positive cells  

The number of cells which were positive for both CD200 and ADAM28 was next 

examined. Representative double positive staining can be seen in Figure 3.56. 

 

Having established the number of cells which are double positive for CD200 with 

ADAM9 or ADAM17, we next determined the number of cells which were positive for 

both CD200 and ADAM28, as shown in Figure 3.57.  

 

 

The percentages of ADAM28 and CD200 double positive cells were lower than those 

observed for ADAM9 and ADAM17 across the RCC subtypes (Figure 3.57a), 

however the percentage in chRCC was significantly higher than that found in ccRCC 

Figure 3.56 ADAM28 and CD200 double positive staining in RCC subtypes 
Representative staining of ADAM28 (green), CD200 (red) and DAPI (blue) staining in RCC 
subtypes. Scale bar represents 50µm. 

Figure 3.57 ADAM28 and CD200 double positive cell percentage of all cells 
The percentage of cells which were positive for both ADAM28 and CD200 was calculated in (A) 
RCC subtypes. (B) By TNM tumour stage within the subtypes. Analysis was carried out using a 
Kruskal-Wallis test and Dunn’s multiple comparisons test, where * represents p<0.05. 
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(31.40 ± 24.14 vs 17.23 ± 21.77, p = 0.0489). As with ADAM9 and ADAM17 

however, the correlation between ADAM28 and CD200 H-score was found to be 

strongest in chRCC, again implying that the highest number of ADAM28 and CD200 

double positive cells were found in chRCC, and their expression is likely to be of 

similar strength. A lower number of double positive cells is observed in ccRCC and 

pRCC, however the weak correlations observed previously imply that the strength of 

the expression level of ADAM28 and CD200 on these cells is unrelated. As was the 

case for ADAM17, when examining double positive cells by TNM tumour stage 

(Figure 3.57b), the percentage of double positive ADAM28 and CD200 cells was 

found to reduce with increased T status in ccRCC, with T2 found to have a 

significantly lower percentage of double positive cells compared to T1 (6.09 ± 7.73 

vs 25.15 ± 28.41, p = 0.0240). This effect was also observed in pRCC, with T1 found 

to have a significantly higher percentage of ADAM28 and CD200 double positive 

cells compared to T3 (32.00 ± 22.85 vs 48.00 ± 48.08, p = 0.0286).  

 
3.7.4 Protease and CD200 double positivity summary 

This data has shown that the percentage of double positive cells within a sample 

does not always correlate with the strength of the expression of either a protease or 

CD200. We have shown that the percentage of ADAM9 and CD200 double positive 

cells is highest in ccRCC, with a significant increase observed with increased TNM 

tumour status. As we have however already shown that there is no correlation 

between ADAM9 and CD200 H-scores in ccRCC, there appears to be no 

relationship between the number of cells which express both ADAM9 and CD200 

and the strength of their expression. This pattern was the opposite to what was 

observed in both the ADAM17 and ADAM28 analyses, where the percentage of 

double positive cells was significantly higher in chRCC compared to ccRCC. This is 

interesting as we have already shown a strong correlation between ADAM17 and 

ADAM28 H-Score with CD200 H-score, so in chRCC, the double positive cells may 

have similar expression levels of both the protease and CD200. In both ADAM17 

and ADAM28, percentage of double positive cells decreased with increased T stage 

in ccRCC, which again the opposite to what we observed in the ADAM9 analysis, 

implying that in ccRCC when T status increases, ADAM9 expression is expressed on 
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more CD200-expressing cells and ADAM28 and ADAM17 are expressed on less, 

however the strength of this expression may not be altered.  

This data shows that these ADAM proteases and CD200 are expressed in a similar 

area on RCC cells, with a high percentage of double positive cells in all samples. 

This is interesting as these, and we hypothesise that these ADAMs may be able to 

interact with CD200 to play a role in ectodomain shedding from the cell membrane, 

creating the soluble form sCD200. 

ADAM17 and ADAM28 have already been implicated in CD200 ectodomain 

shedding (Roemer et al. 2004b), however the ability of ADAM9 to cleave CD200 has 

not yet been investigated. As the number of ADAM9 and CD200 double positive cells 

significantly increases with ccRCC T stage, we next aim to investigate whether 

ADAM9 is able to cleave CD200 to create sCD200, and what effect this may have on 

ccRCC tumour progression.  

 
  



 

189  

3.8 Functional role of ADAM9 in CD200 ectodomain shedding 

To determine if ADAM9 is able to cleave CD200 in the process of ectodomain 

shedding, we established an ELISA assay to determine the level of sCD200 in cell 

line supernatant. As we have already determined that our RCC cell lines do not 

express CD200 at either the mRNA or protein level, we used our transduced 

CD200+ and CD200- HeLa cell lines to determine the normal amount of sCD200 

produced by 1 million cells in standard cell culture conditions. We then added 

ADAM9 peptide in incremental amounts and measured the resulting sCD200 levels 

in the CD200+ and CD200- HeLa supernatant by ELISA, as shown in Figure 3.58. 

 

 

 

sCD200 concentration was found to incrementally increase in line with ADAM9 

peptide concentration in CD200+ HeLa cells.  

As it appears that ADAM9 may have a role in the ectodomain shedding of CD200 

creating additional sCD200, we next used siRNA to knock down ADAM9 in the 

HeLa+ cells to establish if sCD200 production was reduced. Knock down was 

confirmed using western blot and qRT-PCR, and the CD200 ELISA was repeated on 

the siRNA treated samples, as shown in Figure 3.59. 

0 0.5 1 2
0

200

400

600

800

ADAM9 Concentration (µg/mL)

pg
 s

C
D

20
0 

pe
r 

10
^6

 c
el

ls

Figure 3.58 sCD200 ELISA on HeLa CD200+ supernatant to determine sCD200 
concentration after addition of ADAM9 peptide.  
sCD200 was found to incrementally increase with increased ADAM9 concentration. Statistical 
analysis was carried out using a Kruskal-Wallis test and Dunn’s multiple comparisons test, 
however no significant differences were found. n=3. 
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Figure 3.59 Confirmation of ADAM9 knockdown in HeLa CD200+ cells 
(A) ADAM9 mRNA expression by qRT-PCR (n=3), (B) ADAM9 protein expression by western 
blot (n=2). (C) sCD200 ELISA shows lower sCD200 levels in siRNA samples compared to those 
subjected to ADAM9 non-targeting (NT) siRNA (n=2). 
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Analysis of ADAM9 mRNA following treatment with siRNA confirmed knockdown 

after 72 hours compared to the non-targeting (NT) siRNA-treated and control 

samples (Figure 3.60a), and western blot confirmed protein knockdown compared to 

the NT siRNA treatment (Figure 3.60b). CD200 ELISA found a reduction in sCD200 

levels in the siRNA treated samples compared to the control, however possibly due 

to the small number of repeats, this change was not found to be significant.  

 

3.9 Discussion 

Ectodomain shedding is highly important in a wide variety of normal and pathological 

processes and is carried out on a diverse list of cell surface molecules including 

growth factors, cytokines and cell adhesion molecules. Ectodomain shedding can 

also be induced by a wide range of stimuli including phorbol esters, cytokines, 

growth factors and bacterial toxins resulting in liberation of biologically active 

ectodomains which can exhibit functions similar or distinct from their cell surface 

counterpart, with a wide range of potential downstream activation pathways. CD200 

has been shown to be subject to ectodomain shedding to create a functional soluble 

form (Twito et al. 2013b; Wong et al. 2016), however the proteases responsible have 

not been fully established. ADAM17 and ADAM28 have been implicated in this 

process in CLL (Twito et al. 2013b; Wong et al. 2016; Morgan et al. 2022), however 

their involvement has not been established in RCC.  

In this chapter we have identified three proteases of interest in RCC through a 

thorough literature search followed by investigation of RNAseq data. From the 

literature we identified 18 proteases which have roles in RCC development, including 

7 ADAMs and 11 MMPs, from which we identified ADAM17 and ADAM28 due to 

their reported roles in CD200 ectodomain shedding (Twito et al. 2013; Li et al. 2014) 

and association with ccRCC progression and prognosis (Wong et al. 2016). Next, 

using our RNAseq data from 6 ccRCC cell lines and one normal kidney cell line, we 

calculated DEGs to identify which ADAMs, MMPs and TIMPs were significantly up- 

or downregulated in our cell lines, however the only protease which was significantly 

upregulated in all 6 samples was ADAM9. ADAM17 was not found to be significantly 

upregulated in any of the 6 ccRCC cell lines, and ADAM28 was only found to be 

significantly upregulated in 2 cell lines, A498 and CAKI2. As ADAM9 has been 
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associated with tumour progression, increased disease stage and metastasis in 

ccRCC (Mitsui et al. 2006), we chose to examine this protease further to determine if 

it could have a role in CD200 ectodomain shedding. 

We validated our RNAseq data by using qRT-PCR and western blot, which mirrored 

our RNAseq read count data at the mRNA and protein level for ADAM9, ADAM17 

and ADAM28, however we discovered during this analysis that our RCC cell lines did 

not express CD200, with low or zero read counts observed in all qRT-PCR and 

western blot analyses. This result was troublesome as CD200 expression has been 

previously reported in RCC through immunohistochemical analyses on patient-

derived tumour tissue (Fritzsche et al. 2008), however this expression does not 

appear to translate into our cell lines. The use of 2D cell culturing techniques to 

replicate in vivo conditions is becoming increasingly controversial, with 3D cell 

culture thought to replicate the conditions of the body more closely. Differential gene 

and protein expression has been found between 2D and 3D culture in many cancer 

and non-cancer cell lines, resulting in behavioural changes in many cellular 

processes and drug responses, with up to 30% of genes found to be differently 

expressed between 2D and 3D cell lines (Love et al. 2017b; El Hanbuli et al. 2021). 

Cells grown in a traditional 2D monolayer receive an equal amount of nutrients and 

growth factors from the culture media, however this creates an unrealistic 

representation of healthy proliferating cells, as necrotic cells detach from the surface 

and are removed when media is changed. Cells in 2D culture are under constant 

stress and have been found to have a more flat and stretched morphology than they 

would appear in vivo, which can influence many cellular processes including 

proliferation, differentiation, protein and gene expression and apoptosis 

(Birgersdotter et al. 2005). 3D culture systems are however thought to mimic the in 

vivo environment more closely, allowing cell morphology to more closely resemble 

that naturally found in the body, in turn allowing more representative cell-cell 

interactions and cell-ECM interactions (Edmondson et al. 2014). 3D spheroids are 

comprised of cells in various stages of the life cycle, with healthy proliferating cells 

on the outer layers, the inner layers made of apoptotic and necrotic cells and the 

cells of the inner core in a quiescent or hypoxic state due to low oxygen and poor 

access to nutrients and growth factors and is thought to be more illustrative of a 

tumour or tissue setting. To determine if the lack of CD200 expression could have 
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therefore been due to the 2D cell culture conditions used with our ccRCC cell lines, 

we attempted to grow the cell lines in 3D suspension. All ccRCC cell lines did 

successfully form spheres and expanded well over a 14-day period, however 

subsequent qRT-PCR analysis found that CD200 expression was still not present in 

these cell lines. It is unclear why CD200 was not present in either 2D or 3D culture, 

however this could be a condition of cell culture in general or due to the lack of 

competition from other cells or immune cells. However, as CD200 expression has 

been demonstrated in RCC patient tissue (Gurski et al. 2017), we continued our 

investigations using patient-derived TMAs, which included normal kidney samples 

alongside ccRCC, pRCC and chRCC tissue samples.  

We observed consistent CD200 expression throughout the tumour section, whereas 

in the normal kidney, individual structures expressed different levels of CD200 

expression. In the normal kidney we observed a general CD200 expression gradient 

from the renal corpuscle down the convoluted tubules, with the lowest CD200 

expression observed in the collecting duct at the end of the nephron, with structures 

within the renal cortex showing higher CD200 expression compared to structures in 

the medulla. As the proximal convoluted tubules are thought to be the cell of origin 

for ccRCC and pRCC, and the distal convoluted tubules are the cell of origin for 

chRCC, we aimed to explore if this expression was carried through into the tumour 

state. Similar expression levels were observed in all three RCC subtypes, with a 

slightly higher mean expression found in ccRCC, where increased tumour status 

also resulted in a slight increase in CD200 expression. This trend was also found in 

chRCC, however a decrease in CD200 expression with increased T stage was found 

in pRCC. Having shown CD200 expression throughout the RCC tumours, we next 

aimed to characterise expression of our proteases of interest in serial sections of the 

same tissue. ADAM9 and ADAM17 expression were found to have the highest 

overall expression levels in chRCC, but were found at varying levels in ccRCC and 

pRCC. Expression was found to decrease with increased T stage in ccRCC and 

pRCC. ADAM28 was present in low levels throughout the samples but expression 

was highest in pRCC. H-score correlation analysis of each protease with CD200 

revealed a strong relationship between ADAM9, ADAM17 or ADAM28 with CD200 in 

chRCC, however weak relationships were observed between the two in other 

subtypes. These strong chRCC relationships could however be due to very small 
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sample size and should be made more robust with a further number of samples. 

Following this analysis, we studied the number of cells which were positive for both a 

protease of interest and CD200 within each sample, to determine if these proteases 

are positioned similarly on the cell membrane to be able to cleave CD200. We found 

the highest percentage of ADAM9 and CD200 double positive cells in ccRCC, which 

increased with T stage. Interestingly, the lowest number of ADAM17 or ADAM28 with 

CD200 double positive cells were found in ccRCC, and these number decreased 

with T stage. This may imply that as ccRCC disease progresses, the number of cells 

expressing both ADAM9 and CD200 increases, while the number of cells expressing 

ADAM17 or ADAM28 with CD200 decreases and so this balance may influence 

tumour progression. However, as the relationship between ADAM9 and CD200 H-

score was found to be weak although the number of double positive cells increases 

with T stage, the strength of their expression is likely unrelated to each other. A 

further step for this analysis could be optimisation of the staining protocol to allow 

examination of all three proteases on the same sample, to determine if expression is 

observed in the same location, however this was not possible for us to complete due 

to time constraints. 

Having established that ADAM17 or ADAM9 in combination with CD200 are often 

expressed on the same cells through RCC development, with high percentages of 

double positive cells observed within our samples, we aimed to determine if ADAM9 

could have a functional role in the ectodomain shedding of CD200 to create the 

soluble form, sCD200, in the same way as ADAM17. Using our transduced CD200+ 

HeLa cell line, we added active ADAM9 peptide then measured sCD200 levels in the 

supernatant using ELISA, where we found an incremental increase in sCD200 with 

increased ADAM9 concentration. To validate this further, ADAM9 siRNA was used to 

knock down ADAM9 expression and a decrease in sCD200 was observed compared 

to the control. This data implies a role for ADAM9 in the ectodomain shedding of 

CD200 and is a novel finding which has not been demonstrated previously in the 

literature. As ADAM9 has been shown to be overexpressed in both RCC and other 

cancer types including breast cancer and NSCLC (El Hanbuli et al. 2021), both of 

which have also been shown to overexpress CD200 (Shintani et al. 2004a; Zhou et 

al. 2020), an interesting future direction would be to complete this work using 
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CD200+ cell lines from these cancer types to determine if a similar effect is 

observed. 

3.10 Conclusions 

In this chapter we have shown that a number of proteases are expressed in RCC 

including ADAM9, ADAM17 and ADAM28, which we have shown to be present in 

tissues of all three RCC subtypes. We have shown that CD200 is not present in 

ccRCC cell lines, however it is expressed in patient-derived tumour tissue and 

normal kidney. CD200 expression appears to follow from the normal kidney cell of 

origin into the associated RCC tumour subtype, however CD200 expression was 

similar between all three subtypes studied. The percentage of cells which were 

double positive for both CD200 and a protease is associated with advanced disease 

stage, particularly ADAM9 and ADAM17. We have shown that ADAM9 is the most 

strongly overexpressed protease in ccRCC compared to normal kidney at the RNA 

and protein level and is appropriately placed on the cell membrane to be able to 

interact with CD200. Finally, we have shown that the presence of ADAM9 results in 

increased sCD200 levels in cell line supernatant, and that ADAM9 knock down 

decreases these levels, and so ADAM9 may have a novel role in CD200 ectodomain 

shedding in RCC. 
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4. Characterising RCC immune infiltrate and relationship with CD200 
expression 

The immune landscape of RCC is highly variable, with T cells and macrophages 

forming the key components of the tumour microenvironment, however their 

phenotypes, relationships to each other within this ecosystem and the resulting 

effects on clinical outcomes are yet to be fully defined. The full picture of how 

immune cells interact and what can alter the number of these cell types during 

disease progression is currently unclear. 

A further complication of the immune landscape is the presence of immune 

checkpoints which regulate and modulate the immune response. One such 

checkpoint, CD200, sends a unidirectional immunosuppressive signal to cells which 

express its receptor, CD200R. CD200:CD200R signalling has been shown to alter 

the TME and affect immune cell behaviour in various ways, including suppression of 

NK cell function and T-cell mediated responses, reduced infiltration of CD4+ and 

CD8+ T lymphocytes, induction of Tregs, M2 macrophages and tolerogenic dendritic 

cell phenotypes and switching of T cell phenotype from Th1 to Th2 (Minas and 

Liversidge 2006; Coles et al. 2011; Hayakawa et al. 2016; Aref et al. 2017; Xu et al. 

2018; Katoh and Katoh 2019).  

In the previous chapter, we have shown that CD200 expression is higher in RCC 

compared to normal kidney tissue, however it is not yet known how this change in 

CD200 expression affects the presence and activities of tumour infiltrating immune 

cells. 
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Hypothesis 

We hypothesise that immune cell infiltrate will be significantly different between RCC 

tumour and normal kidney samples, revealing meaningful trends between key 

immune cells to create a characteristic immune signature which relates to poor 

prognosis. We also hypothesise that significant changes in immune infiltrate will be 

seen with increased CD200 expression, which will also have an effect on prognosis. 

 

Aims of this chapter 

1. Estimate the immune cell composition from bulk RNAseq data of normal kidney 

and ccRCC tumours to determine differences in immune infiltrate and establish a 

characteristic immune signature which relates to poor prognosis. 

2. Use IF to determine the absolute and relative frequencies of CD45+, CD3+, 

CD4+, CD8+, FoxP3+ and CD56+ cells in TMA samples to confirm bioinformatic 

findings. 

3. Estimate and compare the immune composition of the 3 most common RCC 

subtypes to determine differences in immune infiltrate and relationship with 

prognosis 

4. Establish the effect of CD200 expression on ccRCC immune infiltrate to determine 

the relationship between tumour CD200 expression, immune cell infiltrate and 

patient prognosis. 
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4.1 Bioinformatic analysis of ccRCC RNAseq data sets 

As ccRCC is the most common RCC subtype and has high numbers of infiltrating 

lymphocytes, we firstly examined the immune infiltrate in this subtype.  

Publicly available ccRCC Firehose Legacy RNAseq data sets were downloaded from 

the Broad Institute website (https://gdac.broadinstitute.org/). Normal samples were 

separated from the RCC samples and checked for duplicates before uploading to 

CIBERSORTx as described in the methods section. Patient characteristics are 

displayed in Table 4.1. 

 

 

The ccRCC data set contained 537 samples with a median age of diagnosis of 61 

with a range of 26-90. 64% of the samples were from male patients, with over half of 

Table 4.1 Patient characteristics in the ccRCC Firehose Legacy data set 

https://gdac.broadinstitute.org/
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the samples (51%) being from stage I patients and the rest spread between stage II 

(11%), III (23%) and IV (15%). The most common tumour grade was T1a (26.4%), 

the most common node stage was N0 (45%) with 3% diagnosed as N1, and the 

most common metastasis stage was M0 (79%), with 15% defined as M1. 52.7% of 

tumours were right-sided, while 1 patient (0.2%) presented with bilateral tumours. 

87% of patients were white, while 10% were black/African American and 1% were 

Asian. Median overall survival (OS) for the ccRCC group was 47.78 months with a 

range of 0-149.05 months, while median disease-free survival (DFS) was 43.41 

months with a range of 0-1.33.84 months. At the end of the study, 67% of the 

patients were still alive. 92 normal patient samples were included; however, no 

characteristics were available. 

 
We firstly investigated the ccRCC survival data and compared patient outcomes by 
sex, age, race and primary tumour laterality, to determine if any differences in OS 
were observed, as shown in Figure 4.1. 

 

The survival curves for the male and female patients were similar (Figure 4.1a), with 

no significant differences found between the two, however male patients had a 

Figure 4.1 ccRCC overall survival curves by patient characteristics 
(A) Survival by patient sex, (B) Survival by patient age at operation, (C) Survival by patient race, 
(D) Survival by primary tumour laterality. Kaplan-Meier curves were compared using a Logrank 
test, where * represents p < 0.05 and *** represents p < 0.001. 

Survival by sex 
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longer median survival compared to female (116.75 months vs 90.41 months 

respectively). Patient age at operation made a large difference to survival outcome 

(Figure 4.1b) and the 40-49 age group curve was found to be significantly different to 

the 70-79 curve (p<0.001). No significant differences were found between the curves 

between race (Figure 4.1c), however the black or African American (AA) group was 

found to have the shortest median survival out of all of the groups (62.84 months). 

Interestingly, left-sided primary tumours were found to have a significantly worse 

overall survival compared to right-sided tumours (Figure 4.1d, median survival 76.97 

months vs 118.76 months, p=0.014), however the reason for this is unclear. 

ccRCC survival data was next compared by clinical characteristics of tumour, node 

and metastasis (TNM) status and overall disease stage, as shown in Figure 4.2. 

 

As expected, the survival curves for tumour status (Figure 4.2a) were significantly 

different between T1 and T3 and between T1 and T4 (both p<0.0001). The T4 group 

was found to have the lowest median survival of all groups of 6.77 months. The 

survival curve between node status N0 and N1 (Figure 4.2b) were also significantly 

Figure 4.2 ccRCC overall survival curves by clinical characteristics 
(A) Survival by tumour status, (B) Survival by node status, (C) Survival by metastasis, (D) 
Survival by overall stage. Kaplan-Meier curves were compared using a Logrank test, where **** 
represents p < 0.0001. 
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different from each other (p<0.0001), with N1 having a significantly lower median 

survival of 19.28 months compared to 90.41 months for the N0 group. The curves for 

metastasis status M0 and M1 (Figure 4.2c) were also significantly different from each 

other (p<0.0001), with a median survival of 23.29 months for the M1 group, however 

median survival could not be calculated for the M0 group as over 50% of patients 

were still alive at the end of the study. Overall stage curves (Figure 4.2d) were 

significantly different between stages I and III (p<0.0001) and between stage I and IV 

(p<0.0001). Stage IV was found to have the lowest median survival of all groups of 

23.39 months. 

This data shows that some patient characteristics such as age at operation and 

laterality of the primary tumour have a more significant effect on overall survival than 

others, such as patient sex or race. As expected, patients with a higher overall stage 

or TNM stage had a lower chance of survival, with stage III and IV showing the 

poorest overall survival outcomes and shortest median survival. 

Patient survival data was next compared using Cox proportional regression analysis 

by patient characteristics and TNM status to determine the hazard ratio (HR) and 

therefore risk factor associated with each status, using either the lowest or most 

common type as a reference level. A HR >1 is considered to be at greater risk, while 

a HR <1 is considered to be protective or less at risk. A HR of exactly 1 implies an 

equal risk in both groups. 

HRs were first calculated based on patient age, race, sex and tumour laterality, as 

shown in Figure 4.3.  
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Comparison of patient survival data by sex showed that females have a protective 

advantage compared to males (HR 0.983, 95% CI 0.709 to 1.353) however this was 

not found to be significant (Figure 4.3a). Increased age had a slightly increased risk 

compared to lower age (Figure 4.3b, HR 1.033, 95% CI 1.019 to 1.048). Comparison 

of race (Figure 4.3c) showed an increased risk for the Black/African American group 

compared to white (HR 1.239, 95% CI 0.5518 to 2.397), while interestingly the Asian 

group showed a slightly protective effect compared to white (HR 0.7795, 95% CI 

0.0440 to 3.554). Figure 4.3d shows an increased risk for a left-sided primary tumour 

compared to a right-sided tumour (HR 1.248, 95% CI 0.9186 to 1.699) however 

again this increase was also not found to be significant.  

 

Figure 4.3 Hazard ratios based on patient characteristics 
Hazard ratios (HR) were calculated using Cox proportional regression main effect analysis. (A) 
HR of female sex compared to male, (B) HR of increased age, (C) HR of black of African 
American or Asian compared to white, (D) HR of left primary tumour laterality compared to right.  

HR sex 
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HRs were next calculated based on clinical characteristics of tumour (T2-4), node 

(NX and N1) and metastasis (MX and M1) status compared to T1, N0 and M0 

respectively, as shown in Figure 4.4. 

 

Tumour status T2, T3 and T4 were compared to T1 and as expected, HR was found 

to increase with increased tumour stage, with T3 and T4 showing significantly 

increased risk compared to T1 (T3 HR 2.236, 95% CI 1.510 to 3.318, p=0.0400 and 

T4 HR 2.696, 95% CI 1.001 to 6.655, p<0.0001 respectively). N1 node status was 

also associated with a higher risk compared to N0 (HR 1.847, 95% CI 0.734 to 

4.158), however this difference was not found to be significant. Metastasis status MX 

(undetermined) and M1 were compared to M0, with M1 found to have a significantly 

higher hazard ratio compared to M0 (HR 4.365, 95% CI 3.186 to 5.934, p<0.0001).  

 

4.2 Estimation of ccRCC immune infiltrate compared to normal kidney 

Having determined which patient characteristics influence patient survival, we next 

aimed to characterise the ccRCC immune infiltrate to study whether changes in 

immune cell levels or relationships could be responsible for any effects on patient 

survival. We firstly estimated the immune infiltrate in ccRCC samples compared to 

peritumoral normal kidney tissue in both the full ccRCC data set and the 92 pairs of 

matched ccRCC samples with their associated normal samples, to determine if 

Figure 4.4 Hazard ratios based on clinical characteristics 
Hazard ratios (HR) were calculated using Cox proportional regression main effect analysis 
using T1, N0 and M0 as reference levels for comparison to the respective groups.  
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alternations in immune cell levels can influence disease progression and patient 

outcome.  

ccRCC Firehose RNAseq patient data was run through the CIBERSORTx 

deconvolution algorithm to determine the immune cell fractions in each sample using 

the LM22 data set. LM22 comprises of 547 genes which can accurately distinguish 

between human hematopoietic cell populations, providing infiltration proportions for 

22 cell types, namely naïve and memory B cells, plasma cells, CD8+ cytotoxic T 

lymphocytes (CTLs), naïve CD4+ T cells, resting and activated memory CD4+ T 

cells, CD4+ follicular helper T cells (Tfh), regulatory T cells (Tregs), gamma delta T 

cells, resting and activated natural killer (NK) cells, monocytes, M0, M1 and M2 

macrophages, resting and activated dendritic cells, resting and activated mast cells, 

eosinophils and neutrophils. A list of genes used to characterise immune cells can 

be found in supplementary table S1. 
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Principal component analysis (PCA) was firstly used to determine the similarities 

between the CIBERSORTx 22 cell type immune fractions of the ccRCC and normal 

patient sample groups (Figure 4.5) 

 

 

PCA found that the ccRCC group has the most variation through the PC1 axis, while 

the normal group has more variation within the PC2 axis. This implies that the 

immune fractions are different between the two groups, and so the overall immune 

infiltrate in ccRCC is likely to be somewhat different to that found in the normal 

samples.  

 

Figure 4.5 Principal component analysis of ccRCC immune cells compared to normal 
kidney 
Most variation was observed along the PC2 axis, with normal kidney spreading along the range 
of the PC2 axis, while the ccRCC samples spread mostly along the PC1 axis. 
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We next looked at each immune cell type from the LM22 set to determine which 

immune cell types are significantly altered in ccRCC compared to the normal kidney 

samples, as shown in Figure 4.6. 

 

Significant differences were found between the ccRCC and normal samples for 10 of 

the 22 immune cell types studied, with naïve B cells, plasma cells, memory resting 

CD4 T cells and activated NK cells all found to be significantly higher in normal 

kidney than in ccRCC (all p<0.0001). CD8 cytotoxic T cells, T helper cells, Tregs, 

resting NK cells, and M1 macrophages all found to be significantly higher in ccRCC 

compared to normal (all p<0.0001), as were M0 macrophages (p=0.0010).  

Figure 4.6 ccRCC vs normal kidney estimated immune cell fractions 
Each cell type was compared to normal kidney in the full ccRCC data set using a Mann-Whitney 
tests with the Benjamini-Hocherg method for FDR correction, where ** represents p <0.01 and 
**** represents p <0.0001.  
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To investigate these changes further, we next plotted the average log2 fold change 

of the ccRCC samples compared to the average normal result against the p values 

found previously to determine which immune cell types are the most significantly 

altered in the ccRCC samples compared to the normal samples (Figure 4.7). 

 

 

The thresholds for a cell type to be considered significantly altered in ccRCC 

compared to the normal samples were log2 fold change values of +1.2 or -1.2, and p 

values of p<0.05 (log10 1.3). 9 out of the 22 immune cell types studied were found to 

be significant using these stringent cut offs, which were naïve B cells (log2 FC = -

2.20 , log10 p = 54.73), plasma cells (log2 FC = -1.52, log10 p = 12.45), activated 

NK cells (log2 FC = -1.22, log10 p = 6.12), M1 macrophages (log2 FC = 1.49, log10 

p = 14.23), Tregs (log2 FC = 2.00, log10 p = 12.65), Follicular T helper cells (log2 FC 

= 3.21, log10 p = 12.99), cytotoxic T cells (log2 FC = 2.93, log10 p = 11.43), resting 

NK cells (log2 FC = 1.49, log10 p = 5.33) and M0 macrophages (log2 FC = 3.54, 

Figure 4.7 Comparison of ccRCC estimated immune infiltrate vs normal kidney 
Cut offs of -1.2 and +1.2 log2 fold change and -log10 p >1.3 were used to determine 
significance. 9 out of the 22 immune cells were found to be significantly up or down in ccRCC 
compared to normal kidney. Significant cell types are highlighted in red.  
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log10 p = 2.96). Although memory resting CD4 T cells were found to be significantly 

higher in normal kidney compared to ccRCC, this cell type did not meet the cut off for 

log2 fold change and so was not investigated further in this chapter. 

Having determined that these 9 immune cell types are significantly increased or 

decreased in ccRCC compared to what is found in normal kidney, we next 

determined the amount of variability within the samples between the two groups, as 

shown in Figure 4.8. 

 

Variability between the individual samples within both the ccRCC and normal groups 

was observed, however the clearest differences were seen between the ccRCC and 

normal groups, with the normal group showing notably higher amounts of naïve B 

cells compared to the ccRCC samples, which was expected as this cell type showed 

the strongest negative log2 fold change out of all the cell types in Figure 4.6. This 

shows that a degree of variability between samples is to be expected in both the 

ccRCC and normal groups which could be associated with individual patient 

characteristics. 

 

Figure 4.8 Visual representation of significant immune cell fraction between all ccRCC 
and normal kidney samples 
Each line represents an individual sample. Missing values are the immune cell types which 
were not found to be significant in previous analyses. General trends of immune cell 
expression were seen throughout the ccRCC samples; however, levels of several cell types 
were altered compared to normal kidney, most notably Naïve B cells which were much lower 
in ccRCC compared to normal kidney. 



 

218  

Having determined the overall trends for each cell type in the ccRCC and normal 

kidney groups, we next looked at each of our 9 significant cell types individually to 

examine the data within each group, firstly as the whole data set compared to 

normal, then within the matched pairs. We then examined the overall survival data 

for high and low levels of each immune cell type to determine any effect on patient 

outcome associated with this cell type. 

 

4.2.1 Cells of the innate immune system 

Our analysis has shown significant differences in the estimated immune fractions of 

M0 and M1 macrophages and NK cells, so we will now investigate these cell types 

more in depth to understand their effect on patient outcome.  

 

4.2.1.1 Macrophages 

We firstly looked at the estimated immune fractions of undifferentiated M0 and 

differentiated M1 macrophages, levels of which were both found to be significantly 

altered compared to normal in the CIBERSORTx data set. Interestingly, M2 

macrophages, which are generally considered to be cancer-associated 

macrophages, were not found to be significantly altered between the normal kidney 

and ccRCC groups as previously shown in Figure 4.6, so this cell type will not be 

studied in this section.  
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4.2.1.1.1 M0 macrophages 

We firstly determined the estimated immune fraction of M0 macrophages in the 

normal kidney compared to the full ccRCC dataset, within the matched pairs and 

survival analysis of low vs high M0 macrophage level, as shown in Figure 4.9. 

 

M0 macrophages were found to be significantly higher in ccRCC overall compared to 

normal kidney (Figure 4.9a, 0.030 ± 0.054 vs 0.002 ± 0.009, p<0.0001). Comparison 

Figure 4.9 M0 macrophages in the ccRCC dataset, matched pairs and survival analysis 
(A) Normal kidney vs ccRCC full data set, (B) Matched pair analysis, pairs higher in ccRCC 
are highlighted in red, those higher in normal kidney are in black, (C) Kaplan-Meier survival 
curves. Analysis was carried out using a Mann-Whitney test, Wilcoxon matched-pairs rank test 
and Logrank test respectively, where * represents p <0.05 and **** represents p <0.0001.  
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of the matched normal kidney and ccRCC pairs (Figure 4.9b) also showed that 52 

out of the 93 pairs of samples had higher M0 macrophage levels in ccRCC 

compared to normal kidney (0.029 ± 0.047 vs 0.002 ± 0.009, p<0.001). A weak 

negative correlation between the two groups was found (r=-0.137), however this was 

not found to be significant. Both samples had zero M0 macrophages in 29 of the 

pairs, therefore 11 pairs were found to have higher levels of M0 macrophages in 

normal kidney compared to ccRCC. Comparison of patient survival data was next 

used to determine if high or low levels of M0 macrophages had any effect on overall 

survival (Figure 3.9c). Interestingly, the high M0 macrophage group had a 

significantly shorter survival compared to the low M0 group (62.84 vs 92.97 months, 

p=0.0145). 
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4.2.1.1.2 M1 macrophages 

We next examined the levels of M1 macrophages in our datasets to determine the 

relationship of immune cell fraction and clinical outcome. 

Levels of M1 macrophages in the normal kidney were compared to the full ccRCC 

dataset, within the matched pairs and survival analysis of low vs high M1 

macrophage level, as shown in Figure 4.10. 

 

 

As we observed in M0 macrophages, in the full ccRCC dataset, M1 macrophage 

levels were significantly higher in ccRCC compared to normal kidney (Figure 4.10a, 

Figure 4.10 M1 macrophages in the ccRCC dataset, matched pairs and survival analysis 
A) Normal kidney vs ccRCC full data set, (B) Matched pair analysis, pairs higher in ccRCC are 
highlighted in red, those higher in normal kidney are in black, (C) Kaplan-Meier survival 
curves. Analysis was carried out using a Mann-Whitney test, Wilcoxon matched-pairs rank test 
and Logrank test respectively, where **** represents p <0.0001.  
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0.068 ± 0.028 vs 0.024 ± 0.017, p<0.0001). In the matched pair analysis, 81 out of 

the 93 pairs were found to be significantly higher in ccRCC compared to normal 

kidney (Figure 4.10b, 0.0673 ± 0.017 vs 0.024 ± 0.017, p<0.0001). A very weak 

positive correlation between the two groups was found (r=0.0525) which was not 

found to be significant. No significant effect on overall survival was found between 

the M1 macrophage high and low groups (Figure 4.10c), however the low M1 group 

was found to have a longer median survival compared to the high group (116.75 

months vs 92.97 months). 
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4.2.1.2 Natural Killer (NK) cells 

We next looked at the innate immune cells which have cytotoxic roles against tumour 

cells, NK cells.  

We firstly compared the estimated immune fraction of NK cells in the ccRCC data set 

compared to those in the normal kidney set. CIBERSORTx classes NK cells as 

either naïve, ‘resting’ NK cells which are in a quiescent state in the absence of 

activating signals, or ‘activated’ NK cells, following exposure to cytokines such as 

interleukin (IL)-, IL-12, IL-15, IL-18, IL-21 and IL-27. Upon resolution of inflammation, 

active NK cells return to the resting state, however chronic exposure to activating 

stimuli during viral infection, cytokine treatment or tumorigenesis can lead to NK cell 

exhaustion. Therefore, reversal of NK cell exhaustion is now a key goal in 

immunotherapy to boost antitumour immunity. 

 

The full ccRCC data set was firstly compared to the normal kidney data set to 

determine any significant differences in both resting and activated NK cells, as 

shown in Figure 4.11. 
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Comparison of the full ccRCC data set compared to normal kidney revealed that the 

estimated immune fraction of resting NK cells was significantly higher in the ccRCC 

group compared to the normal kidney group (Figure 4.11a, 0.044 ± 0.044 vs 0.015 ± 

0.0211, p<0.0001). Conversely, activated NK cells were found to be significantly 

higher in the normal group compared to the ccRCC data set (0.031 ± 0.028 vs 0.013 

Figure 4.11 Resting and activated NK cells in the ccRCC dataset, matched pairs and 
survival analysis 
(A) Normal kidney vs ccRCC full data set, (B) Matched pair analysis of resting NK cells, pairs 
higher in ccRCC are highlighted in red, those higher in normal kidney are in black, (C) Matched 
pair analysis of activated NK cells (D) Kaplan-Meier curves comparing high and low groups of 
activated and resting NK cells. Analysis was carried out using a Mann-Whitney test, Wilcoxon 
matched-pairs rank test and Logrank test respectively, where **** represents p <0.0001.  
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± 0.017, p<0.0001). Matched pair analysis of the resting NK cells found that 60 out of 

the 93 pairs had higher levels in ccRCC compared to normal kidney (Figure 4.11b, 

0.046 ± 0.046 vs 0.015 ± 0.021, p<0.0001), while 16 of the pairs were found to have 

zero values for both cell types. A significant weak positive correlation was also found 

between the two groups (r=0.2543, p=0.0072). Conversely, analysis of activated NK 

cells in the matched ccRCC and normal kidney samples found a higher estimated 

immune fraction in normal kidney compared to ccRCC, with 67 out of the 93 pairs 

reflecting this (Figure 4.11c, 0.031 ± 0.028 vs 0.010 ± 0.014, p<0.0001). 5 pairs were 

found to hold zero values for both cell types and a weakly positive correlation was 

also found between the two groups (r=0.1690), however this was not significant. 

These low levels of activated NK cells in the ccRCC samples are unexpected, as NK 

cells are the first line defence against tumour cells in the humoral immune response, 

so we would expect an increase in activated NK cells as the disease progresses. 

Kaplan-Meier analysis of overall survival data (Figure 4.11d) found no significant 

differences between the survival curves for resting NK cells, however median 

survival was higher in the low group compared to the high group (116.75 months vs 

90.41 months). Activated NK cell level also did not have a significant effect on 

survival, however median survival was again slightly longer in the low group 

compared to the high group (93.92 months vs 90.41 months).  

 

As we have observed unexpected results in the estimated immune fractions of 

activated and resting NK cells, we next explored the data further by splitting the full 

ccRCC dataset by stage to determine if there is a relationship between disease 

stage and levels of these cell types, as shown in Figure 4.12. 
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By splitting the ccRCC samples by stage, we found that the estimated immune 

fraction of both resting and activated NK cells are inversely altered by disease stage. 

Resting NK cells were found to significantly decrease with increased stage, with 

stage I showing a significantly higher fraction compared to stage IV (0.051 ± 0.047 

vs 0.029 ± 0.036, p = 0.0002). Conversely, activated NK cells were found to 

significantly increase with increased ccRCC stage, with stage IV showing 

significantly higher levels compared to stage I (0.016 ± 0.017 vs 0.012 ± 0.017, p = 

0.042). This data implies that the ccRCC NK immune response is somewhat 

dysfunctional, as the cytotoxic active NK cell response which should be the body’s 

first line defence against tumour cells appears to be delayed, and only begins to 

increase during late-stage disease. Interestingly however, the mean stage IV value 

for ccRCC was still found to be lower than the mean value for the normal kidney 

samples (0.0166 ± 0.0174 vs 0.0317 ± 0.0289).  

 

Figure 4.12 Estimated resting and activated NK immune fraction by ccRCC stage 
The full ccRCC data set was split into stage and resting and activated NK cell fraction 
were compared using a Kruskal-Wallis test with Dunn’s multiple comparisons test, where * 
represents p <0.05 and *** represents p <0.001. 
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To further understand the relationship of resting and activated NK cells within the 

same ccRCC sample, using Spearman’s correlation analysis we next determined the 

correlation between resting and activated NK cells within each sample, as shown in 

Figure 4.13. 

 

A moderately strong, significant negative correlation was found between the resting 

and activated NK cell fractions within each ccRCC sample (r=-0.5230, p<0.0001), 

implying that as the levels of one cell type goes up, the other goes down, which may 

be in indicator of the strength of the cytotoxic immune response.  

 

4.2.2 Cells of the adaptive immune system 

The estimated immune fraction of naïve B cells and plasma cells which are part of 

the humoral immune system, and follicular T helper, cytotoxic T cells and regulatory 

T cells (Tregs) which are part of the cellular immune system were all found to be 

significantly altered in our ccRCC samples compared to normal kidney. We next 

investigated these cell types further to understand their effect on ccRCC patient 

survival. 

 

  

Figure 4.13 Correlation of resting vs activated NK cells in each ccRCC sample 
Spearman correlation analysis found a moderately strong, significantly negative correlation 
between resting and activated NK cells (r=-0.523, p <0.0001). 
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4.2.2.1 B Cells 

In this section we will study the levels of naïve B cells and plasma cells within the 

ccRCC data set, as we have already found a significant difference in the levels 

compared to normal kidney. No significant difference was found between the levels 

of memory B cells in ccRCC and normal kidney, so these will not be studied in this 

section.  

 

4.2.2.1.1 Naïve B cells 

We firstly looked at the expression of naïve B cells in the whole ccRCC group 

compared to the whole normal kidney group, in matched pairs and in survival 

analysis, as shown in Figure 4.14.  
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Comparison of the full ccRCC data set showed that the estimated immune fraction of 

naïve B cells was significantly higher in normal kidney compared to ccRCC (Figure 

4.14a, 0.037 ± 0.040 vs 0.173 ± 0.053, p<0.0001). 90 out of the 92 matched pairs 

Figure 4.14 Naïve B cells in the ccRCC dataset, matched pairs and survival analysis 
(A) Normal kidney vs ccRCC full data set, (B) Matched pair analysis, pairs higher in ccRCC 
are highlighted in red, those higher in normal kidney are in black, (C) Kaplan-Meier survival 
curves. Analysis was carried out using a Mann-Whitney test, Wilcoxon matched-pairs rank 
test and Logrank test respectively, where **** represents p <0.0001.  
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were found to have higher levels of naïve B cells in normal kidney compared to 

ccRCC (Figure 4.14b, 0.173 ± 0.053 vs 0.034 ± 0.032, p = <0.0001), and a weak 

correlation was found between the two groups (r=-0.1377), however this was not 

significant. Kaplan-Meier analysis of overall survival data found no difference 

between the high and low groups of naïve B cells (Figure 4.14c). Median survival for 

the low group was 90.8 months, however median survival for the high group could 

not be calculated as more than 50% of patients were still alive by the end of the 

study. This may imply that high levels of naïve B cells could be beneficial to survival 

compared to low levels, and as the levels of naïve B cells were found to be 

significantly decreased compared to normal kidney, low levels of naïve B cells may 

contribute to ccRCC disease progression. 

 

4.2.2.1.2 Plasma cells 

We next looked at an example of differentiated B cells, plasma cells, in the ccRCC 

and normal samples to determine the differences in estimated immune fraction 

between the two groups.  
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As was the case for naïve B cells, the estimated immune fraction of plasma cells was 

found to be significantly higher in normal kidney compared to the whole ccRCC 

dataset (Figure 4.15a, 0.042 ± 0.033 vs 0.122 ± 0.055, p<0.0001). Within the 

Figure 4.15 Plasma cells in the ccRCC dataset, matched pairs and survival analysis 
(A) Normal kidney vs ccRCC full data set, (B) Matched pair analysis, pairs higher in 
ccRCC are highlighted in red, those higher in normal kidney are in black, (C) Kaplan-Meier 
survival curves. Analysis was carried out using a Mann-Whitney test, Wilcoxon matched-
pairs rank test and Logrank test respectively, where **** represents p <0.0001.  
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matched pair analysis (Figure 4.15b), 83 of the 92 pairs were also found to have 

higher levels of plasma cells in normal kidney compared to ccRCC (0.122 ± 0.055 vs 

0.041 ± 0.033, p = <0.0001). A very weak negative correlation was found between 

the two groups (r=-0.063) which was not found to be significant. No significant 

differences between the survival curves for the high and low plasma cell groups were 

found (Figure 14.5c). The median survival for the low group was 62.81 months, 

however the median could not be defined for the high group as over 50% of patients 

were still alive at the end of the study.  

 

4.2.2.2 T cells  

The estimated immune fractions of the key T cell types Tfh cells, CTLs and Tregs, 

were found to be significantly altered in ccRCC compared to normal kidney, so we 

next investigated these cell types in further detail to determine their role in ccRCC 

development and patient survival. Other, less common subtypes of T cells such as 

memory CD4+ T cells and gamma delta T cells also make up a part of the adaptive 

immune response, however as these cell types were not found to have significant 

differences between ccRCC and normal kidney, we have not studied these cell types 

in this section.  

 

4.2.2.2.1 Follicular T helper cells (Tfh) 

We next aimed to study the effect of Tfh levels in our ccRCC samples to determine 

their role in development and overall survival. 

We firstly looked at the estimated immune fraction of Tfh cells in our ccRCC and 

normal kidney data sets, matched pairs and survival analysis, as shown in Figure 

4.16.  
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Comparison of the full ccRCC data set compared to normal kidney revealed a 

significantly higher immune cell fraction of Tfh cells in ccRCC compared to normal 

kidney (Figure 4.16a, 0.0315 ± 0.0253 vs 0.0034 ± 0.0099, p<0.0001). Analysis of 

the matched ccRCC and normal kidney pairs also found this effect in 78 out of the 92 

pairs (Figure 4.16b, 0.0214 ± 0.0203 vs 0.0034 ± 0.0099, p<0.0001), where a weakly 

positive correlation was also found between the two groups (r=0.1723) however this 

relationship was not found to be significant. No significant differences were found 

between the survival curves for high or low levels of Tfh cells (Figure 4.16c), 

Figure 4.16 Tfh cells in the ccRCC dataset, matched pairs and survival analysis 
(A) Normal kidney vs ccRCC full data set, (B) Matched pair analysis, pairs higher in 
ccRCC are highlighted in red, those higher in normal kidney are in black, (C) Kaplan-
Meier survival curves. Analysis was carried out using a Mann-Whitney test, Wilcoxon 
matched-pairs rank test and Logrank test respectively, where **** represents p <0.0001.  
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however median survival was found to be higher in the Tfh low group compared to 

the high group (90.8 months vs 74.15 months).  

As Tfh levels have been shown to be associated with a good prognosis in some 

cancer types but with a poor prognosis in others, we next looked at Tfh cell level by 

ccRCC stage to determine if there was a relationship between immune cell fraction 

and disease stage, as shown in Figure 4.17. 

 

 

A significant increase in Tfh cell level was associated with increased Tfh cell stage, 

with both stage III showing significantly higher levels compared to stage I (0.0349 ± 

0.0249 vs 0.0265 ± 0.0235, p=0.0046), and stage IV compared to stage I (0.0413 ± 

0.029 vs 0.0265 ± 0.0235, p<0.0001). This data links to what we have observed in 

the survival analysis, where high Tfh levels were found to have a shorter median 

than the low group. 

Figure 4.17 Estimated Tfh immune fraction by ccRCC stage 
The full ccRCC data set of Tfh estimated immune fraction was split into stage and the 
groups were compared using a Kruskal-Wallis test with Dunn’s multiple comparison test, 
where ** represents p <0.01 and **** represents p <0.001. 
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As Tfh cells also play a key role in the activation of CD8+ cytotoxic T cells (CTLs), 

we next studied these cells in our samples to determine the role of these cells in 

ccRCC development and overall survival compared to normal kidney. 

 

4.2.2.2.2 Cytotoxic T cells (CTLs) 

As we have already shown an overexpression of Tfh cells in ccRCC compared to 

normal kidney and a resulting negative association with prognosis, we next aimed to 

determine the differences in estimated immune infiltrate of CTLs in ccRCC compared 

to normal kidney, and their effect on overall survival.  

 

We firstly looked at the levels of CTLs in the full ccRCC data set compared to the 

normal kidney, matched pairs and survival analysis, as shown in Figure 4.18. 
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The estimated CTL immune fraction was significantly higher in ccRCC compared to 

normal kidney (Figure 4.18a, 0.1284 ± 0.1099 vs 0.0167 ± 0.0233, p<0.0001), while 

73 out of the 92 pairs of ccRCC and normal kidney samples were found to be higher 

in the ccRCC group compared to the normal kidney group (Figure 4.18b, 0.1005 ± 

0.0948 vs 0.0167 ± 0.0233, p<0.0001). A weakly negative correlation was found 

Figure 4.18 CTLs in the ccRCC dataset, matched pairs and survival analysis 
(A) Normal kidney vs ccRCC full data set, (B) Matched pair analysis, pairs higher in ccRCC 
are highlighted in red, those higher in normal kidney are in black, (C) Kaplan-Meier survival 
curves. Analysis was carried out using a Mann-Whitney test, Wilcoxon matched-pairs rank 
test and Logrank test respectively, where **** represents p <0.0001.  
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between the two groups (r=-0.1473); however, this was not found to be significant. 

No significant differences between the survival curves were found for the high and 

low groups of CTLs (Figure 4.18c), however median survival was slightly longer in 

the low group compared to the high group (88.3 months vs 83.9 months). While this 

result is unexpected, as the anti-tumour immune response provided by the CTLs 

would be expected to increase survival, this may indicate a dysfunctional and/or 

exhausted CTL state in later disease stages resulting in an ineffective cytotoxic 

response, in line with what has been reported in previous studies (Nakano et al. 

2001).  

To determine if this could be the case, we next examined CTLs by ccRCC disease 

stage, as shown in Figure 4.19. 

As we observed in the stage analysis for the Tfh cells, CTL levels were also found to 

increase with stage, with stage III showing significantly higher levels than stage I 

(0.1420 ± 0.1184 vs 0.1065 ± 0.0933, p=0.0343) as did stage IV (0.1650 ± 0.1191 vs 

Figure 4.19 Estimated CTL immune fraction by ccRCC stage 
The full ccRCC data set of CTL estimated immune fractions was split into stage and 
groups were compared using a Kruskal-Wallis test and Dunn’s multiple comparison test, 
where * represents p <0.05 and *** represents p <0.001. 
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0.1065 ± 0.0933, p=0.0002). This may imply a dysfunctional and/or exhausted CTL 

state at a higher ccRCC disease stage. 

 

4.2.2.2.3 CD4:CD8 Ratio 

The CD4:CD8 ratio is used to determine the state of the immune system, with a ratio 

over 1 considered normal.  

As CIBERSORTx provides only immune fractions rather than absolute cell numbers, 

we were not able to calculate the CD4:CD8 ratio for our samples, however 

Spearman correlation analysis, Kaplan-Meier survival analysis and Cox proportional 

hazards regression was used to calculate the relationship between the immune 

fractions of the two cell types in each of the ccRCC samples, as shown in Figure 

4.20. 
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A significant strong positive correlation was found between Tfh cells and CTL (Figure 

4.20a, r=0.5937, p<0.0001), which implies that as Tfh levels increase, so do CTL 

levels. These increases would be expected to result in an overall increase of 

cytotoxic immune response and therefore implies a positive effect on prognosis. As 

Figure 4.20 Analysis of the CD4:CD8 ratio in ccRCC samples 
(A) Spearman correlation analysis found a strong, significant correlation between TfH CD4+ cells and 
CTL CD8+ cells within the same sample, r = 0.593, p <0.0001. (B) Logrank analysis of Kaplan-Meier 
curves found the Tfhhigh CTLhigh group had significantly shorter median survival compared to the Tfhlow 
CTLlow group, p = 0.014, * represents p <0.05. (C) Cox proportional hazards regression using the Tfhlow 
CTLlow group as baseline found the greatest increased risk in the Tfhhigh CTLhigh group. 

* 
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this has however not been the case when we have previously looked at both Tfh 

cells and CTLs separately, we next used survival analysis to compare overall 

survival statistics for combinations of high and low levels of these cell types (Figure 

4.20b). Median survival could only be calculated for the Tfhhigh CTLhigh group (median 

survival 75.53 months), the combination which had the worst survival outcome, as in 

the other groups more than 50% of patients were still alive by the end of the study. 

Survival curve comparison revealed that the only significant difference between any 

of the groups was that the Tfhhigh CTLhigh group had a significantly lower chance of 

survival compared to the Tfhlow CTLlow group (p=0.0145), which implies that both Tfh 

and CTL cells must be found at high or low levels to have a significant positive or 

negative prognostic impact. HRs for each combination were next determined using 

the Tfhlow CTLlow group as a baseline (Figure 4.20c). HRs above 1 indicate that this 

factor poses a risk to survival, and as expected, he Tfhhigh CTLhigh group was found 

to have the highest risk compared to the Tfhlow CTLlow group (HR 1.54, 95% CI 1.09 

to 2.17), closely followed by the Tfhhigh CTLlow group (HR 1.17, 95% CI 0.714 to 

1.92).  

 

4.2.2.2.4 Regulatory T cells (Tregs) 

We next investigated the effect of Treg levels on clinical outcome in our data set. 

We firstly looked at the levels of Tregs in the full ccRCC data set compared to the 

normal kidney, matched pairs and survival analysis, as shown in Figure 4.21. 
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The Treg estimated immune fraction was significantly higher in the full ccRCC data 

set compared to normal kidney (Figure 4.21a, 0.0360 ± 0.0265 vs 0.0089 ± 0.0135, 

p<0.0001), and 72 of the 92 matched pair samples were also found to have 

significantly higher levels of Tregs in ccRCC compared to normal (Figure 4.21b, 

Figure 4.21 Tregs in the ccRCC dataset, matched pairs and survival analysis 
((A) Normal kidney vs ccRCC full data set, (B) Matched pair analysis, pairs higher in ccRCC are 
highlighted in red, those higher in normal kidney are in black, (C) Kaplan-Meier survival curves. 
Analysis was carried out using a Mann-Whitney test, Wilcoxon matched-pairs rank test and 
Logrank test respectively, where **** represents p <0.0001.  
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0.0367 ± 0.0276 vs 0.0089 ± 0.0135, p<0.0001). A weakly positive but not significant 

correlation was also found between the two groups (r=0.1223). Analysis of the 

survival curves (Figure 4.21c) revealed a significant difference in overall survival, 

where the high Treg group is associated with a significantly shorter survival time 

compared to the low group (median survival 65.24 months vs 91.95 months, 

p=0.0123).  

As it has previously been reported that Treg infiltration increases with ccRCC stage, 

we also wanted to determine if this is the case for our samples, as shown in Figure 

4.22. 

A significant increase in Treg estimated immune fraction was found with increased 

ccRCC stage, with stage III showing significantly higher levels of Tregs compared to 

both stage I (0.0418 ± 0.0268 vs 0.0304 ± 0.0232, p=0.0002), and stage II (0.0418 ± 

0.0268 vs 0.0321 ± 0.0277, p=0.0486). Stage IV also had significantly higher Treg 

levels than both stage I (0.0479 ± 0.0301 vs 0.0304 ± 0.0232, p<0.0001) and stage II 

(0.0479 ± 0.0301 vs 0.0321 ± 0.0277, p=0.0032). 

Figure 4.22 Estimated Treg immune fraction by ccRCC stage 
The full ccRCC data set for Treg estimated immune fraction was split into stage and groups were 
compared using a Kruskal-Wallis test and Dunn’s multiple comparisons test, where * represents p 
<0.05, ** represents p <0.01, *** represents p <0.001 and **** represents p <0.0001. 
 



 

243  

 

4.2.2.2.5 CD8:Treg Ratio 

As we have already shown significant increases in estimated immune fraction of both 

CD8+ CTLs and Tregs in our ccRCC samples compared to normal kidney, we next 

aimed to determine if the CD8:Treg ratio has an effect on ccRCC outcome. As 

previously mentioned, CIBERSORTx is only able to calculate an estimated immune 

fraction rather than absolute cell number, so Spearman correlation analysis was 

used to determine a relationship between Tregs and CTLs, rather than calculating a 

ratio, as shown in Figure 4.23. 
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Figure 4.23 Analysis of the CD8:Treg ratio in ccRCC samples 
(A) Spearman correlation analysis found a moderately strong, significant correlation between CTL CD8+ 
cells Tregs within each sample, r = 0.463, p < 0.0001. (B) Logrank comparison of Kaplan-Meier survival 
curves found the CTLlow Treglow group had significantly higher median survival compared to the CTLhigh 
Treghigh group (p = 0.022) and the CTLlow Treghigh group (p <0.0001), * represents p < 0.05, **** represents p 
< 0.0001, (C) Cox proportional hazards regression using the CTLlow Treglow group as baseline found the 
greatest increased risk in the CD8low Treghigh group.  
 

* 

**** 
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Spearman correlation analysis found a significant, moderately strong positive 

correlation between the CTL and Treg groups (Figure 4.23a, r=0.4631, p<0.0001), 

implying that generally as levels of one cell type increases, so does the other. 

However, as this is not a perfect correlation, one cell type may increase more than 

the other which may have then an impact on the CD8:Treg ratio, resulting in an 

altered immune response. Based on this, we next examined if the CD8:Treg ratio 

has an impact on patient OS, and we compared the survival data for high and low 

groups of both cell types. The estimated immune fraction of CTLs compared to Tregs 

was found to have a significant impact on patient survival. The CTLlow Treghigh group 

had a shorter median survival compared to the CTLhigh Treghigh and the CTLhigh 

Treglow groups (45.27 months vs 71.94 months and 116.75 months respectively). 

Interestingly, although this group contained around half of the total number of 

samples, median survival was not able to be calculated for the CTL low Treg low 

group as over 50% of the patients were still alive by the end of the study. 

Comparison of the survival curves revealed that the CTLlow, Treglow group had a 

significantly better chance of survival compared to both the CTLhigh Treghigh group 

(p=0.0224) and the CTLlow Treghigh group (p<0.0001). HRs were then determined for 

each combination using the CTLlow Treglow group as a baseline, with the CTLlow 

Treghigh group showing the greatest HR (HR 3.8, 95% CI 2.26 to 6.4), followed by 

CTLhigh Treghigh (HR 2.26, 95% CI 1.23 to 4.14).  

We have already shown that the relationship between Tfh and CTLs as an indicator 

of CD4:CD8 ratio, and the relationship between CTLs and Tregs as an indicator of 

CD8:Treg ratio are associated with significant effects on patient overall survival. We 

next examined the relationships between all of our key immune cell types which 

were found to be significantly altered in ccRCC compared to normal kidney with each 

other.  

 

4.2.3 Immune cell hazard ratios and correlations 

In this chapter we have so far shown that 9 out of the 22 immune cell types 

calculated by CIBERSORTx have significantly altered estimated immune fractions in 

ccRCC compared to normal kidney, and that each of these has an effect on the 

overall immune infiltrate, patient survival and prognosis. 
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HRs for high levels of each cell type compared to low levels were generated to 

determine which cell types pose the greatest risk to survival, as shown in Figure 

4.24. 

 

 

High levels of M0 macrophages were found to incur the greatest risk to patient 

survival (Figure 4.24, HR 1.578, 95% CI 1.095 to 2.276), closely followed by Tregs 

(HR 1.510, 95% CI 1.047 to 2.180). As expected, the cell types with the lowest HRs 

were naïve B cells (HR 0.710, 95% CI 0.397 to 1.014) and plasma cells (HR 0.778, 

95% CI 0.522 to 0.862) in line with what we have previously discussed, where high 

levels of these cell types are considered normal and so impose a low risk to survival. 

Interestingly, high activated NK cells were found to have an increased risk (HR 

1.222, 95% CI .891 to 1.677) compared to resting NK cells which were found to be 

protective (HR 0.810, 95% CI 0.528 to 1.244), again showing the notable difference 

between the resting and activated state of NK cells.   

The anti-tumour immune response is highly complex as each immune cell type may 

interact with many others to produce either a direct effector response or to activate 

other cells to create a response, so we next wanted to see how our key cell types 

Figure 4.24 Hazard ratios for high levels of immune cells vs low levels 
Cox proportional hazard regression was used to calculate HR score for high levels of each 
immune cell type compared to low levels which were used as the baseline for each cell type. 
High levels of M0 macrophages were found to have the highest HR, closely followed by 
Tregs. 
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correlate together in both the normal kidney samples and in the ccRCC samples, as 

shown in Figure 4.25. 

 

 

Figure 4.25 Spearman correlations of 9 key immune cells in normal kidney and ccRCC. 
The estimated immune fraction for the 9 key immune cells within the normal kidney or ccRCC 
group were compared using Spearman correlation analysis. Red represents a positive 
correlation and blue represents a negative correlation. (A) Normal kidney correlations, (B) 
ccRCC correlations. r values are represented within each box. 
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Spearman correlation analysis of the 9 significant immune cell types of interest within 

the normal kidney and ccRCC dataset sets revealed obvious differences between 

the two datasets. Within the normal dataset (Figure 4.25a), the strongest positive 

correlations were found between naïve B cells and plasma cells (r=0.4796, 

p<0.0001) and between Tfh cells and Tregs (r=0.5165, p<0.0001). This result is 

expected as these positive relationships are important to maintain normal immune 

function while preventing autoimmunity. The strongest negative associations were 

found between naïve B cells and CTLs (r=-0.5653, p<0.0001) and between resting 

and activated NK cells (r=-0.5594, p<0.0001). As we have already shown that in 

normal kidney, estimated immune fractions of naïve B cells were significantly higher 

than in ccRCC, while CTLs are significantly lower, this relationship suggests a 

possible link between the levels of these two cell types in normal kidney.  

In the ccRCC samples (Figure 4.25b), the positive relationship between naïve B cells 

and plasma cells was found to be much weaker (r=0.1204, p=0.005), implying that 

the positive relationship is skewed, which was expected as we have already 

discussed a significant decrease in estimated immune fraction in both cell types in 

ccRCC compared to normal kidney. In the ccRCC samples, moderately strong 

positive relationships were found between our key T cell types with activated NK 

cells: Tfh cells (r=0.4217, p<0.0001), CTLs r=0.3384, p<0.0001), and Tregs 

r=0.3092, p<0.0001). Interestingly however, opposite but similar strength negative 

relationships found between these T cell types and resting NK cells: Tfh cells (r=-

0.4821, p<0.0001), CTLs r=-0.5370, p<0.0001), and Tregs r=-0.3081, p<0.0001), 

implying an overall negative correlation between resting NK cells and effector T cells. 

As was found in the normal samples, a moderately strong negative relationship was 

also found between resting and activated NK cells in the ccRCC samples (=-0.4865, 

p<0.0001), however interestingly this relationship was not quite as strong, once 

again showing that the relationships between these key immune cell types is 

different in the ccRCC disease state compared to that of normal kidney. 

As the strongest negative and positive correlations between the cell types appear to 

be between the effector T cells and resting and activated NK cells, we chose to focus 

on these cell types only going forward to determine what other patient characteristics 

may influence the estimated immune fraction of these cell types in ccRCC. 
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4.2.4 Immune cell fractions based on patient characteristics 

We have already shown that patient characteristics such as age, sex and tumour 

laterality can affect overall survival generally in our data sets, however we have not 

yet determined if these characteristics have any effect on immune infiltrate, which 

may contribute to the patient survival. We firstly looked at the estimated immune 

fraction of resting and activated NK cells, Tfh, CTL and Tregs by sex, to determine if 

any differences could be found, as shown in Figure 4.26. 

 

 

The estimated immune fractions for all cell types were found to be similar between 

males and females in all immune cell types, with no significant differences observed 

between the groups. This could however be due in part to the smaller number of 

female samples compared to the males (118 female vs 345 male). 

We next examined the immune cell fractions by patient age at operation to determine 

if any differences were apparent between the groups split by decade, as shown in 

Figure 4.27. 

Figure 4.26 Immune cells by patient sex 
The estimated immune fractions of the key 5 immune cells were compared by patient sex. 
Analysis was completed using a Mann-Whitney test; however, no significant differences 
were found between any of the groups. 
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No significant differences in estimated immune fraction were found between any of 

the age groups studied (Figure 4.27a-e). In our previous analysis, we found a 

significantly decreased chance of survival was associated with increased age, with 

Figure 4.27 Immune cells by patient age at operation 
(A) Resting NK cells by age at operation, (B) Activated NK cells, (C) Tfh cells, (D) CTLs, (E) 
Tregs. Analysis was completed using a Kruskal-Wallis test with Dunn’s multiple comparisons 
test; however, no significant results were found. 
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the 70-79 age group showing a significantly lower survival chance compared to the 

40-49 age group (Figure 4.1b), however this difference does not seem to be 

associated with the levels of NK, Tfh, CTL or Treg cells. 

As we have also shown that tumour laterality had a significant impact on patient 

survival, with left-sided tumours having significantly lower probability of survival 

compared to right-sided tumours (Figure 4.1d), we next looked at immune cells by 

tumour laterality to determine if any differences were present between these groups, 

as shown in Figure 4.28. 

 

As was the case for sex and age, no significant differences in immune cell level were 

found when comparing the left- and right-sided tumour groups, with the two groups 

having a similar number of samples (251 left-sided vs 281 right-sided).  

 

4.2.5 Characterising the ccRCC immune signature 

Combining all of the data from this chapter so far, we have found that samples with 

high Tfh cell, CTL, Treg and resting NK cell estimated immune fractions combined 

Figure 4.28 Immune cells by primary tumour laterality 
Estimated immune fraction for the key 5 immune cell type was compared by primary 
tumour laterality. Analysis between groups was completed using a Mann-Whitney test, 
however no significant differences were found between any groups. 
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with low fractions of activated NK cells were generally higher ccRCC stage and had 

shorter overall survival. We define this as a ‘high effector T cell’ immune signature 

due to the high levels of effector T cells present in these samples, compared to the 

opposite group which can be defined as the ‘low effector T cell’ signature group. We 

next aimed to determine what effect this high effector signature has on patient 

overall survival compared to the opposite low signature, which is more suggestive of 

the conditions found in normal kidney tissue, as shown in Figure 4.29. 

 

 

The high effector ccRCC immune signature was found to have a significantly lower 

survival chance compared to the low signature group (high group median survival 

65.05 months, however median survival unable to be calculated for the low group as 

over 50% of patients were still alive, p=0.0014). As we have already shown that all 

these cell types increase with advanced ccRCC stage, we can assume that this 

immune cell signature will also increase with stage, and so may have some use as a 

prognostic measure. 

 

As this analysis was completed using RNAseq data of whole ccRCC tumour 

samples, which may include non-tumour areas such as stroma and peritumoral 

normal tissue, our next aim was to investigate this immune signature using IF 

Figure 4.29 Survival analysis of the high effector immune signature compared to 
the low signature 
Logrank analysis of Kaplan-Meier survival curves found a significant difference between 
the two curves, with the high signature found to have a significantly shorter median 
survival compared to the low signature, p = 0.001. 
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staining of patient-derived ccRCC tumour tissue samples, to determine if a similar 

outcome is observed compared to what we have seen in this bioinformatic analysis. 

 

4.3 Defining the immune response in ccRCC patient tissue samples  

So far in this chapter we have used CIBERSORTx’s ‘digital cytometry’ platform as a 

novel way to estimate the immune fraction of 22 immune cell types using RNAseq 

data. This platform allows analysis of a large number of samples with direct 

comparisons between them, however as the results are calculated as an estimated 

immune fraction rather than absolute numbers, we next aimed examine how closely 

this resembles the actual immune composition of patient-derived tumour tissue and 

normal kidney using TMA samples, in which we are able to count absolute cell 

numbers. 

As we have already shown that the estimated immune fraction of NK cells, Tfh cells, 

CTLs and Tregs are significantly altered in ccRCC compared to normal kidney, and 

that levels of these cell types have been shown to be closely associated with clinical 

outcome, we next used double or triple IF staining for each cell type on ccRCC and 

normal kidney tissue, to determine the immune infiltrate of each of these cell types in 

each sample.  

 

4.3.1 TMA patient characteristics 

TMAs were acquired from the Wales Cancer Bank. The patient characteristics for the 

TMAs used can be found in Table 4.2. 
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The TMAs used included 10 normal kidney samples and 256 ccRCC patient 

samples, of which 61% were from male patients and the median age at operation 

was 63, with a range of 28-84. The most common tumour grades were T1 and T1b 

(both 21.5%), while the most common node grade was N0 (22.3%) with only 1 

sample found to be N1 or N2 (0.4%). None of the samples were found to be positive 

for metastasis, with 4% graded at M0 and all other samples graded as MX 

(unknown). Unfortunately, associated patient clinical outcome data was not available 

with our TMs, however ccRCC disease stage, TNM stage, age at operation and sex 

data was available and was used for comparison of immune cell levels between 

these groups. 

Table 4.2 TMA patient characteristics 
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4.3.2 Characterising the immune infiltrate in ccRCC samples 

Using QuPath to analyse IF stained TMAs, tumour tissue was firstly stratified into 

tumour or non-tumour areas, then overall cell detection was run by counting the 

number of DAPI-positive cells within each core, as described in the methods section. 

Next, positive thresholds were set for each stain and detection was run on the DAPI-

positive cells to determine the number of cells positive for each stain. 

 

4.3.2.1 CD45+ tumour infiltrating lymphocytes 

We firstly defined the number of tumour-infiltrating lymphocytes, characterised by the 

expression of the common leukocyte antigen, CD45. The number of CD45+ cells 

were counted (cells/mm2) and the positive cell percentage of the total cells within the 

sample was determined, as shown in Figure 4.30. 

 

 

Figure 4.30 CD45+ cell density and percentage of all cells in TMA cores by stage 
(A) CD45+ cells/mm2 in normal kidney tissue and ccRCC samples by stage, (B) CD45+ cell 
percentage of total cells in normal kidney and ccRCC tissue samples. Analysis was completed 
using a Kruskal-Wallis test with Dunn’s multiple comparisons test, where * represents p <0.05, 
** represents p <0.01 and **** represents p <0.0001. 
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CD45+ cell density was significantly higher in all ccRCC stages compared to normal 

kidney; however, no significant differences were found between the stages (Figure 

4.30a). CD45+ cell density was the most significantly increased at stage I compared 

to normal (962.8 ± 615.1 vs 326.9 ± 156.8, p<0.0001), however stage II was also 

significantly higher than normal (866.6 ± 681.7 vs 326.9 ± 156.8, p=0.0093), as was 

stage III/IV (688.5 ± 455.7 vs 326.9 ± 156.8, p=0.0244). 

The CD45+ percentage of DAPI+ cells was also significantly higher at all ccRCC 

stages compared to normal, however no significant differences were found between 

any stages (Figure 4.30b). Stage I again had the most significantly higher 

percentage of CD45+ cells compared to normal (67.76 ± 20.68 vs 10.1 ± 5.55, 

p<0.0001), followed by stage II (69.31 ± 16.06 vs 10.1 ± 5.55, p<0.0001), then stage 

III/IV (67.87 ± 21.29 vs 10.1 ± 5.55, p<0.0001).  

Interestingly, the density of CD45+ cells/mm2 was found to reduce as stage 

increased, however the positive percentage of all cells did not change. This may be 

due to the physical changes seen within the tissue structure as stage increases, as 

the cells become larger and large hollow “nests” characteristic of ccRCC tissue 

develop, meaning less cells are found within the sample overall, but a similar 

percentage of the cells are CD45 positive. 

The level of variation in lymphocyte density seen between the ccRCC stages and 

normal tissue implies that CD45+ ccRCC tumour immune infiltrate is significantly 

different to that found in normal tissue. While no significant changes in CD45+ 

lymphocyte density or percentage of overall cell number were found between the 

disease stages, the immune infiltrate for specific cell types when other cell surface 

markers are considered may still show significant changes by tumour stage. 
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4.3.2.2 CD3+ T cell infiltrate 

CD3 is a protein complex and T cell co-receptor which has roles in activating both 

Tfh and CTL cells, which is used as a T cell marker. The density of CD3+ cells 

(cells/mm2) and relative frequency (percentage of CD45+ cells) was next measured 

to determine each TMA core’s level of tumour infiltrating T cells, as shown in Figure 

4.31.  

 

 

All ccRCC samples had significantly higher densities of CD3+ cells/mm2 compared 

to the normal samples (Figure 4.31a). Stage I has the most samples within the 

group, and while there was a large amount of variation within the group, stage I had 

a significantly higher number of CD3+ cells compared to normal (496.3 ± 409.1 vs 

194.2 ± 124.4, p=0.003). Stage II showed no significant differences compared to 

stage I; however, it was again significantly higher compared to normal (538.4 ± 388.2 

vs 194.2 ± 124.4, p=0.007). Stage III/IV was found to have similar average CD3+ cell 

Figure 4.31 CD3+ cell density and percentage of CD45+ cells in TMA cores by stage 
(A) CD3+ cells/mm2 in normal kidney tissue and ccRCC samples by stage, (B) CD3+ cell 
percentage of CD45+ cells in normal kidney and ccRCC tissue samples. Analysis was 
completed using a Kruskal-Wallis test with Dunn’s multiple comparisons test, where * 
represents p <0.05, ** represents p <0.01 and *** represents p <0.001. 
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levels to stage I and II and the levels were also significantly higher than the normal 

samples (561.3 ± 408.6 vs 194.2 ± 124.4, p<0.001).  

High CD3+ percentages of CD45+ cells were found for all ccRCC samples, with a 

significant increase in all stages seen compared to normal (Figure 4.31b). As with 

the density measurements, stage I showed a high amount of variation within the 

group, but overall was significantly higher than the normal samples (63.06 ± 22.20 vs 

48.10 ± 13.90, p=0.029). Stage II was also found to be significantly higher than the 

normal samples (74.38 ± 21.54 vs 48.10 ± 13.90, p<0.001) as was stage III/IV (68.23 

± 24.20 vs 48.10 ± 13.90, p=0.002). As stages II and III/IV showed higher numbers 

of positive cells than stage I, this suggests that a higher number of T cells is 

associated with advanced stage disease, however these differences were not found 

to be significant.  

 

As previously discussed in this chapter, T cells are divided into two main subtypes 

depending on their expression of the cell surface markers CD4 and CD8. Having 

demonstrated that CD3+ T cell density and CD45+ cell frequency is altered between 

ccRCC disease stages and is also significantly different from normal tissue, we next 

investigated whether our previously identified CD4+ and CD8+ T cell subpopulations 

of interest demonstrated a similar change.  
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4.3.2.3 CD4+ T Helper cells (Th) 

In our previous bioinformatic analysis using CIBERSORTx, the only CD4+ T cell 

subset which could be calculated was the T follicular helper cell (Tfh), a specialised 

subset of CD4+ cells that are characterised by the expression of CXCR5 (Laurent et 

al. 2010), which we were not able to stain for in our analysis due to antibody 

availability. We therefore completed IF staining for a more generalised T helper (Th) 

cell population which we defined as CD45+ CD3+ CD4+ lymphocytes. 

Representative Th staining can be seen in Figure 4.32. 

 

 

We firstly looked at the density/mm2 and relative frequency of CD4+ Th cells within 

our ccRCC and normal tissue cores, where numbers of CD45+CD3+ CD4+DAPI+ 

cells were counted and quantified, as shown in Figure 4.33. 

 

 

Figure 4.32 Positive IF staining for CD4+ Th cells 
Positive immunofluorescent Th staining for CD45+CD3+CD4+DAPI+ immune cells in ccRCC 
tissue. Scale bar represents 5µm. 
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A significant decrease in Th cells/mm2 was observed with increased ccRCC stage 

(Figure 4.33a), with stage I showing significantly higher numbers of CD4+ Th cells 

than stage II (213.6 ± 214.2 vs 102.2 ± 142.6, p=0.036) and stage III/IV (213.6 ± 

214.2 vs 96.19 ± 129.5, p=0.0003). Almost all samples in stage II and II/IV had lower 

Th cell densities than normal kidney, however no significant differences were 

observed between the normal kidney samples and any ccRCC group. The Th cell 

frequency of CD45+ cells also showed a significant decrease with stage (Figure 

4.33b), with stage I showing a significantly higher frequency of CD45+ Th cells than 

stage III/IV (28.09 ± 19.53 vs 19.58 ± 17.50, p=0.025). The normal samples group 

was also generally higher than most ccRCC samples, however no significant 

differences were found.  

Th cell density and frequency was next assessed by patient sex and age at 

operation, to determine if these characteristics may have an impact on Th cell 

tumour infiltration, as shown in Figure 4.34. 

 

Figure 4.33 Th cell density and percentage of CD45+ cells in TMA cores by stage 
(A) Th cells/mm2 in normal kidney tissue and ccRCC samples by stage, (B) Th cell percentage of 
CD45+ cells in normal kidney and ccRCC tissue samples. Analysis was completed using a Kruskal-
Wallis test with Dunn’s multiple comparisons test, where * represents p <0.05 and *** represents p 
<0.001. 
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No significant differences in Th cell density or frequency were observed when the 

samples were split by patient sex (Figure 4.34a and b respectively) or by patient age 

at operation (Figure 4.34c and d respectively). A general decrease in Th cell density 

and frequency was observed with increased age at operation, however no significant 

differences were found between any of the groups, possibly due to the small n 

numbers in some of the groups. 

Figure 4.34 Th cell density and frequency of CD45+ cells by sex and age at operation 
(A) Th cell density/mm2 by sex, (B) Th cell frequency by sex, (C) Th cell density/mm2 by age at 
operation, (D) Th cell frequency by age at operation. Analysis was completed using a (A-B) a 
Mann-Whitney test or (C-D) a Kruskal-Wallis test with Dunn’s multiple comparisons test; however, 
no significant differences were found between any of the groups. 

Sex Sex 



 

262  

4.3.2.4 CD8+ Cytotoxic T Cells (CTLs) 

CTLs are defined as CD45+ CD3+ CD8+ lymphocytes, however unfortunately due to 

antibody availability, triple immunofluorescent staining was not possible, so CTLs 

were identified as CD45+ CD8+ DAPI+ cells. Representative CTL staining can be 

seen in Figure 4.35. 

 

 

We firstly counted the cell density/mm2 and frequency of CD45+ cells in our ccRCC 

samples, as shown in Figure 4.36. 

 

Figure 4.35 Positive IF staining for CD8+ CTL cells 
Positive CTL immunofluorescent staining for CD45+CD8+DAPI+ immune cells in ccRCC tissue. 
Scale bar represents 5µm. 
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Unlike what we have previously observed for the Th cells in our TMA samples, which 

showed a significant decrease in cell density, CD8+ CTLs showed a significant 

increase in cell density/mm2 with increased ccRCC stage (Figure 4.36a). A large 

amount of variation was observed within the sample groups, however cell 

density/mm2 was found to be significantly higher at all ccRCC stages compared to 

normal kidney (stage I 55.38 ± 76.90 vs 8.214 ± 6.887, stage II 56.18 ± 59.77 vs 

8.214 ± 6.887, stage III/IV 64.78 ± 94.62 vs 8.214 ± 6.887, all p<0.0001), however 

no significant differences were found between the ccRCC stages. 

Again, in contrast to what was seen for Th cell frequency, which decreased with 

increased ccRCC stage, CTL frequency of CD45+ cells showed a general increase 

with disease stage (Figure 4.36b), with all ccRCC stages again found to be 

significantly higher than normal kidney (stage I 23.39 ± 19.59 vs 4.24 ± 4.53, stage II 

22.66 ± 16.51 vs 4.24 ± 4.53, stage III/IV 24.46 ± 18.31 vs 4.24 ± 4.53, all p<0.0001), 

however no significant differences were found between stages. 

 

Figure 4.36 CTL cell density and percentage of CD45+ cells in TMA cores by stage 
(A) CTL cells/mm2 in normal kidney tissue and ccRCC samples by stage, (B) CTL cell percentage of 
CD45+ cells in normal kidney and ccRCC tissue samples. Analysis was completed using a Kruskal-
Wallis test with Dunn’s multiple comparisons test, where * represents p <0.05. 
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These results suggest that CD8+ CTL levels significantly increase in ccRCC 

compared to normal kidney, however there is not a significant change in CTL levels 

between ccRCC stages.   

CTL density and frequency was next assessed by patient sex and age at operation, 

as shown in Figure 4.37. 

 

 

Figure 4.37 CTL cell density and frequency of CD45+ cells by sex and age at 
operation 
(A) CTL cell density/mm2 by sex, (B) CTL cell frequency by sex, (C) CTL cell density/mm2 

by age at operation, (D) CTL cell frequency by age at operation. Analysis was completed 
using (A-B) a Mann-Whitney or (C-D) a Kruskal-Wallis test with Dunn’s multiple 
comparisons test; however, no significant differences were found between any of the 
groups. 

Sex Sex 
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No significant differences were observed in CTL density or frequency when the 

ccRCC samples were split by sex (Figure 4.37a and b respectively). No trend was 

observed in the density of CTL cells in samples when split by age at operation 

(Figure 4.37c), however a general increase in CTL frequency was observed with 

increased age at operation (Figure 4.37d). No significant differences were however 

found between any of the groups, possibly due to the small n numbers in some of 

the groups. 

 

4.3.2.5 CD4:CD8 Ratio 

The interactions between CD4+ and CD8+ T cells are crucial for normal immunity 

and this ratio is often used as a measure for overall immune system health. A 

CD4:CD8 ratio over 1 is considered normal, with the ratio often decreasing 

significantly in cancer, and so increasing this ratio back to normal levels is one of the 

main aims of immunotherapy. Having established the absolute numbers and 

percentage of CD45+ cells of both CD4+ Th and CD8+ CTLs, we next sought to 

determine the CD4:CD8 ratio within our samples, as shown in Figure 4.38. 

 

Figure 4.38 CD4:CD8 Ratio in normal kidney and ccRCC tissue samples 
The CD4:CD8 ratio was compared within the normal and ccRCC samples at stages I, II and 
III/IV. Analysis was completed using a Kruskal-Wallis test with Dunn’s multiple comparisons 
test; however, no significant differences were observed between any of the groups. 
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No significant differences in CD4:CD8 ratio were observed between any ccRCC 

stages or the normal samples, however all ccRCC stages generally had lower ratios 

than the normal samples (Figure 4.38). As expected, the normal samples were 

mostly within the normal range of over 1 (median 1.6, range 0.43 to 6.72). Stage I 

ccRCC had a large amount of variation within the group, but most samples were out 

of the normal range (median 1.0, range 0.01 to 6.78). Stage II also showed a range 

of variation within the group (median 1.1, range 0.19 to 5.51) as did stage III/IV 

(median 0.9, range 0.1 to 6.57). 

As we have only observed general trends when analysing CD4:CD8 ratio in samples 

as a group, correlation analysis was used to reveal the relationships between the 

density of CD4+ Th cells and CD8+ CTLs within each ccRCC sample and to 

determine the strength of these relationships, as shown in Figure 4.39. 

  

Figure 4.39 Correlation analysis of CD4 and CD8 cells in ccRCC samples 
Spearman correlation analysis was used to determine the strength of the relationships of CD4 
and CD8 cell density within each ccRCC sample. (A) All RCC, r = -0.019, (B) Stage I, r = 
0.064, (C) Stage II, r = 0.110, (D) Stage III/IV, r = -0.001.  
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Weak and moderate correlations between CD4+ and CD8+ cells were observed in 

the ccRCC samples; however, the strength of the relationships may have been more 

significant with a larger sample size. A very weak negative correlation was found 

between CD4 and CD8 cells when all ccRCC samples were analysed together (r=-

0.019, Figure 4.39a). Weak positive correlations were found between CD4 and CD8 

cells in ccRCC stage I (r=0.064, Figure 4.39b) and II (r=0.110, Figure 4.39c), 

however neither were found to be significant, and a very weak negative correlation 

was found in stages III/IV (r=-0.001, Figure 4.39d).  

As no strong relationships between CD4 and CD8 cells were observed at any 

ccRCC stage, this data may imply that these two T cell types do not directly 

influence the expression of the other. Instead, their expression may be influenced 

further by other cell types, such as Tregs, so we next examined the Treg 

density/mm2 and frequency of CD45+ cells in our TMA samples. 
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4.3.2.6 Tregs 

Tregs are defined as CD4+ CD25+ positive cells, however they are characterised by 

the expression of the nuclear transcription factor FoxP3, along with nuclear DAPI 

expression. Representative positive staining can be seen in Figure 4.40. 

 

 

We firstly calculated the Treg density/mm2 and frequency of CD45+ cells in our TMA 

samples, as shown in Figure 4.41. 

 

 

 

Figure 4.40 Positive IF staining for Tregs 
Positive Treg immunofluorescent staining for CD25+CD4+FoxP3+DAPI+ immune cells in 
ccRCC tissue. Only cells with fully nuclear FoxP3 were counted as Tregs. Scale bar represents 
5µm. 
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Significant increases in Treg cell density were found between ccRCC stages with 

increased stage (Figure 4.41a), with stage III/IV having significantly higher numbers 

of Tregs/mm2 than stage I (13.66 ± 13.52 vs 7.49 ± 10.44, p=0.001).  All ccRCC 

stages were also found to be significantly higher than normal, stage I (7.49 ± 10.4 vs 

2.16 ± 2.62, p=0.0168), stage II (8.45 ± 10.70 vs 2.16 ± 2.62, p=0.019), stage III/IV 

(13.66 ± 13.52 vs 2.16 ± 2.62, p<0.0001).  

Treg cell frequency of CD45+ cells also showed significant increases compared to 

normal kidney and with increased stage (Figure 4.41b). Stage III/IV was found to 

have a significantly higher percentage of CD45+ cells than normal tissue (3.30 ± 

2.11 vs 1.04 ± 1.22, p=0.0003). Significant differences were also found between the 

ccRCC stages, with stage III/IV having significantly higher frequencies than stage I 

(3.30 ± 2.11 vs 1.46 ± 1.73, p<0.0001) and stage II (3.30 ± 2.11 vs 1.579 ± 1.715, 

p=0.0052).  

Figure 4.41 Treg cell density and percentage of CD45+ cells in TMA cores by stage 
(A) Treg cells/mm2 in normal kidney tissue and ccRCC samples by stage, (B) Treg cell 
percentage of CD45+ cells in normal kidney and ccRCC tissue samples. Analysis was 
completed using a Kruskal-Wallis test with Dunn’s multiple comparisons test, where * 
represents p <0.05, ** represents p <0.01, *** represents p <0.001 and **** represents p 
<0.0001. 
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These results strongly suggest that Treg density and frequency are significantly 

higher than those found in normal kidney tissue and that the increased density and 

frequency of Treg cells is associated with more advanced disease. 

We next determined if patient characteristics of sex or age at operation have any 

impact on Treg density or frequency, as shown in Figure 4.42. 

 

Figure 4.42 Treg cell density and frequency of CD45+ cells by sex and age at 
operation 
(A) Treg cell density/mm2 by sex, (B) Treg cell frequency by sex, (C) Treg cell 
density/mm2 by age at operation, (D) Treg cell frequency by age at operation. Analysis 
was completed using (A-B) a Mann-Whitney or (C-D) a Kruskal-Wallis test with Dunn’s 
multiple corrections test, where * represents p <0.05 and ** represents p <0.01. 
 

Sex Sex 
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Tregs were the only immune cell type which showed significant differences between 

the male and female patient groups (Figure 4.42a and b). Male patients had 

significantly higher levels of Tregs than females in both the cell density (9.70 ± 11.57 

vs 6.61 ± 9.57, p=0.0115) and frequency of CD45+ cells (2.19 ± 2.07 vs 1.37 ± 1.62, 

p=0.0019). Comparison of Tregs by age at operation found a general decrease in 

cell density and frequency with increased age at operation, however no significant 

differences were found between any of the groups, possibly due to the small n 

numbers in some of the groups. 

 

4.3.2.7 CD8:Treg ratio 

The CD8:Treg ratio is a less commonly used but highly informative measure of the 

immune response within the tumour microenvironment. Low ratios (<1) have been 

associated with unfavourable outcome and poor response to chemotherapy, while 

high CD8:Treg ratios have been associated with positive chemotherapy response in 

breast cancer (Goda et al. 2022) and bladder cancer (Baras et al. 2016), however 

this ratio has not been characterised in ccRCC tissue. We next examined the 

CD8:Treg ratio in our samples, as shown in Figure 4.43. 

 

Figure 4.43 CD8:Treg ratio in normal kidney and ccRCC tissue samples 
Comparison of the CD8:Treg ratio within normal and ccRCC samples. Analysis was 
completed using a Kruskal-Wallis test with Dunn’s multiple corrections test; however, no 
significant differences were observed between any of the groups. 
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All sample groups were found to have a mean CD8:Treg of over 1 (Figure 4.43), with 

only a small number of all samples having a ratio below 1. The mean ratio was 

similar in the normal samples compared to the ccRCC samples (Normal ratio 2.532 ± 

2.37 vs stage I ratio 2.818 ± 2.253, stage II 2.590 ± 1.964 and stage III/IV ratio 2.954 

± 2.813), with no significant differences found between any of the groups.  

As most ccRCC samples were unexpectedly found to have a ratio over 1, we next 

used Spearman correlation analysis to further examine the relationships between the 

CD8 and Treg cells in each sample, as shown in Figure 4.44. 

 

 

A weak positive correlation was found in the ccRCC group as a whole (Figure 4.44a, 

r=0.0930). Similarly, weak positive relationships were also found in each ccRCC 

stage (Figure 4.44b-d, stage I r=0.0906, stage II, r=0.0485, stage III/IV, r=0.0088), 

however none of the relationships were found to be significant, implying that this 

Figure 4.44 Correlation analysis of CD8 and Treg cells in ccRCC samples 
Spearman correlation analysis was used to determine the strength of the relationships between 
Treg density and CD8 cell density within each ccRCC sample. (A) All RCC, r = 0.0930, (B) 
Stage I, r = 0.0906, (C) Stage II, r = 0.0088, (D) Stage III/IV, r = 0.0088.  
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ratio is not affected by disease stage and therefore other factors may have a more 

significant impact. 
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4.3.2.8 NK cells 

We finally quantified the number of NK cells in our TMA samples. NK cells are 

defined as CD45+ CD3- CD56+ lymphocytes, with CD56 considered the archetypal 

phenotypical marker of NK cells. In our previous CIBERSORTx analysis, NK cells 

were defined as either resting or activated NK cells, however due to the limitations of 

IF staining, where only a limited number of antibody combinations can be used, we 

were not able to stain for markers which may distinguish between the active and 

resting state of NK cells. Representative NK cell staining can be seen in Figure 4.45. 

 

 

 

 

 

Figure 4.45 Positive IF staining for NK Cells 
Representative positive NK immunofluorescent staining for CD45+CD56+DAPI+ immune cells 
in ccRCC tissue. Scale bar represents 5µm. 
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We firstly counted the NK cell density/mm2 and frequency of CD45+ cells in each 

sample, as shown in Figure 4.46. 

 

 

A large amount of variability within the stage groups was found in the density of NK 

cells/mm2 (Figure 4.46a). While a general trend of reduced cell density/mm2 was 

observed as stage increased, no significant differences were found between the 

stages. Stage I ccRCC was however found to have significantly higher numbers of 

NK cells/mm2 than the normal kidney samples (50.87 ± 63.32 vs 15.20 ± 16.92, 

p=0.0479).  

A similar pattern was seen in the NK cell frequency of CD45+ cells (Figure 4.46b), 

with a decrease seen as stage increased, however no significant differences were 

found between ccRCC stages. Normal kidney again had the lowest frequency of 

CD45+ cells and was significantly lower than the stage I (6.23 ± 4.78 vs 14.30 ± 9.67 

p=0.0019) and stage II (6.23 ± 4.78 vs 15.69 ± 9.63, p=0.0018) ccRCC sample 

groups.  

 

Figure 4.46 NK cell density and percentage of CD45+ cells in TMA cores by stage 
(A) NK cells/mm2 in normal kidney tissue and ccRCC samples by stage, (B) NK cell percentage 
of CD45+ cells in normal kidney and ccRCC tissue samples. Analysis was completed using a 
Kruskal-Wallis test with Dunn’s multiple corrections test, where * represents p <0.05 and ** 
represents p <0.01. 
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NK cell density and frequency was next assessed by patient sex and age at 

operation, as shown in Figure 4.47. 

 

 

No significant differences in NK cell density or frequency were found during 

comparison by sex (Figure 4.47 a and b respectively). A general decrease in NK cell 

density and frequency was observed with increased age at operation (Figure 4.47c 

Figure 4.47 NK cell density and frequency of CD45+ cells by sex and age at operation 
(A) NK cell density/mm2 by sex, (B) NK cell frequency by sex, (C) NK cell density/mm2 by age at 
operation, (D) NK cell frequency by age at operation. Analysis was completed using (A-B) a 
Mann-Whitney or (C-D) Kruskal-Wallis test with Dunn’s multiple correction test; however, no 
significant differences were found between any of the groups. 

Sex Sex 
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and d), however no significant differences were found between any of the groups, 

possibly due to the small n numbers in some of the groups. 

 

4.3.3 TMA sample correlation analysis 

Having now defined the Th, CTL, Treg and NK cell density/mm2 and frequency of 

CD45+ cells in each of our TMA cores, we next used Spearman correlation analysis 

Figure 4.48 Spearman correlations of immune cells in normal kidney and ccRCC TMA samples 
Spearman correlation analysis was used to calculate the relationships between the estimated immune 
fraction of the key 4 cell types with each other in (A) Normal kidney correlations and (B) ccRCC. Red 
represents a positive correlation; blue represents a negative correlation. r values are represented within 
each box. 
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to determine the relationships between each immune cell type in our samples, as 

shown in Figure 4.48. 

Within the normal kidney samples (Figure 4.48a), relationships between the T cell 

groups were found to be positive between NK cells and CTLs (r=0.390), between 

CTLs and Th cells (r=0.125) and very weakly between NK cells and Th cells 

(r=0.016), while Tregs had a negative relationship with NK cells (r=-0.403), Th cells 

(r=-0.273) and CTLs (r=-0.258). This implies that in normal kidney, Tregs are 

completing their required tasks of managing immune cell activation, as when Treg 

numbers increase, numbers of other T cell types reduce.  

In the ccRCC samples however(Figure 4.48b), the relationships of CTLs with Th and 

NK cells were found to change from the positive relationships seen in the normal 

kidney to negative relationships, (r=-0.212, p=0.0088 and r=-0.347, p<0.0001 

respectively), implying that these relationships may be an important characteristic of 

ccRCC compared to normal kidney. The negative relationships of Tregs with CTL 

and NK cells observed in normal kidney also change in the ccRCC samples, with 

both relationships becoming neutral and no effect observed (r=0.024 and r=0.011 

respectively), however the negative relationship between Treg and Th cells remains 

negative in both normal kidney and ccRCC (r=-0.242, p=0.0027). Interestingly, NK 

cells are the cell type which seem to be most strongly affected in ccRCC compared 

to normal kidney and is the only cell type where the relationships with all other cell 

types are changed either from positive to negative or vice versa.  
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4.4 Comparison of estimated immune fraction in RCC subtypes 

So far in this chapter, we have shown that the immune landscape of ccRCC is highly 

variable and differs significantly to that of normal kidney, with a significant impact on 

patient outcome. Using publicly available Firehose RNAseq datasets, we next chose 

to determine if there are any differences in immune composition between ccRCC 

and the other common renal cell carcinoma subtypes: pRCC and chRCC. Patient 

tissue was however not available for pRCC and chRCC, so in the same way we 

have previously completed the ccRCC bioinformatic analysis, we next analysed and 

ran pRCC and chRCC RNAseq data sets through CIBERSORTx to enable 

comparison of the estimated immune fractions and determine any differences 

between the subtypes. 

 

 

4.4.1 Patient characteristics in RCC subtype datasets 

Publicly available Firehose Legacy RNAseq data sets for ccRCC, pRCC and chRCC 

samples, with their associated patient clinical data, were examined in depth to 

estimate each subtype’s survival outcomes and predicted immune infiltrate using 

CIBERSORTx as previously described, to find differences and similarities between 

the subtypes. Table 4.3 contains the characteristics for each data set.  
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The three data sets differ significantly in size, in line with how common the subtypes 

are, with ccRCC consisting of 537 samples, pRCC having 286 samples (of which 75 

were Type 1 and 84 were Type 2) and the rarest subtype, chRCC, having only 66 

samples. In all of the data sets over half of the samples were from males with a 

median age of diagnosis of 61 for both ccRCC and pRCC and 50 for chRCC. The 

majority of samples in all subtype data sets came from low stage I or II tumours, with 

most tumour staging falling between T1a and T2. Most samples had a node stage 

classification of N0 or NX, and most samples had a metastasis stage of M0 or MX, 

with only 3% classified as M1 in both pRCC and chRCC. Primary tumour laterality 

was found to be almost even, with 47.1% left sided and 52.7% right sided tumours in 

Table 4.3 Patient characteristics in RCC subtype RNAseq datasets 
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ccRCC, with 1 sample from a bilateral patient (0.2%). In pRCC, 55% of tumours 

came from left sided and 44% came from right sided tumours, with 2 bilateral 

samples (1%). In chRCC, 45% came from left sided and 55% came from right sided 

tumours, with no bilateral samples included in the data set. Almost all samples in all 

subtypes came from white patients, with black or African American samples making 

up just 10% in ccRCC, 22% in pRCC and 6% in chRCC, and Asian patients making 

up just 1% in ccRCC, 2% in pRCC and 3% in chRCC. Most patients in the data sets 

were still alive at the time of data set publication, with 67% still alive in ccRCC and 

85% still alive in both the pRCC and chRCC sets.  
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4.4.2 Survival statistics  

Survival data for the three RCC subtype data sets was firstly compared to determine 

the percentage chance of overall survival and disease-free survival (DFS) for each 

and the differences between them, as shown in Figure 4.49.  

 

Comparison of the overall survival data available for the three RCC subtype datasets 

(Figure 4.49a) showed significant differences in the survival curves, with chRCC 

found to have the best overall survival chance compared to both pRCC (p=0.0294) 

and ccRCC (p<0.0001). pRCC also had a significantly better chance of survival than 

Figure 4.49 Overall survival and disease-free survival in the three RCC subtypes 
(A) OS was compared between ccRCC, pRCC and chRCC, (B) DFS was compared 
between the three subtypes. Logrank analysis was used to compare Kaplan-Meier survival 
curves, where * represents p < 0.05, ** represents p <0.01 and *** represents p <0.001.  
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ccRCC (p=0.0016). ccRCC median survival was 90.8 months, however median 

survival was not able to be calculated for pRCC or chRCC as over 50% of patients 

were still alive at the end of the study.  

Comparison of the disease-free survival data for the three RCC subtypes (Figure 

4.49b) also showed significant differences in the curves, again with chRCC having a 

significantly longer DFS than pRCC (p=0.0134) and ccRCC (p=0.0009). No 

significant difference was observed between the curves for pRCC and ccRCC.  

pRCC was found to have the lowest median DFS of 106.04 months, followed by 

ccRCC at 123.72 months while chRCC had the longest DFS of 151.84 months. 
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Survival data was next compared between the three subtypes by the patient 

characteristics of sex, primary tumour laterality, age (data not shown) and race (data 

not shown) as shown in Figure 4.50. 

 

Survival curve comparison found no significant differences between male and female 

patients for any subtype (Figure 4.50a), and again ccRCC was found to have the 

lowest chance of survival out of the three subtypes. Female ccRCC patients were 

found to have the lowest median survival of 90.41 months, while male ccRCC 

patients were found to have a median survival of 116.75 months. Median survival 

Figure 4.50 Overall survival by sex and laterality in RCC subtypes 
(A) OS was compared by sex in ccRCC, pRCC and chRCC, (B) OS was compared by primary tumour 
laterality in the three subtypes. Logrank analysis was used to compare Kaplan-Meier survival curves, 
where ** represents p <0.01. 

OS by Sex 
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was not able to be calculated for male or female pRCC or chRCC patients as over 

50% of patients were still alive by the end of the study. 

As previously shown earlier in this chapter, left-sided ccRCC tumours have a lower 

chance of survival compared to right-sided tumours, however no significant 

differences in survival curves were found when comparing tumour laterality in pRCC 

or chRCC (Figure 4/50b). Median survival could not be calculated for the pRCC and 

chRCC groups as over 50% of patients were still alive at the end of the study, 

however left-sided ccRCC tumours were found to have the lowest median survival or 

76.97 months, compared to right-sided tumours which had a median survival of 

118.76 months.  

Survival analysis was next completed for each subtype with age at operation split 

into decades (data not shown), and as expected, ccRCC was found to have the 

lowest median survival, with the 70-79 age group having the lowest median survival 

of all the groups studied of 64.52 months. This age group was also the most at risk in 

the other subtypes with a median survival of 71.35 months in chRCC and 76.58 

months in pRCC. The 80-89 age group was found to be at the next highest risk, with 

a median survival of 71.94 months in ccRCC and 88.17 months in pRCC. 

Survival analysis was lastly completed for OS by patient race (data not shown). 

ccRCC was found to have the lowest overall chance of survival, with the Black or 

African American group having the lowest median survival of 62.84 months, followed 

by the ‘other’ group of 84.23 months and the white group at 92.97 months. The Black 

or African American group was also found to have the lowest median survival in 

pRCC of 86.2 months, while no median survival statistics could be calculated for any 

of the chRCC groups as over 50% of patients were still alive at the end of the study.  

 

Finally, pRCC can be split into Type 1 and Type 2 depending on the tumour 

histologic and cytogenetic features, so we performed comparison of the survival 

curves for these groups to determine if there is an effect on outcome, as shown in 

Figure 4.51. 



 

286  

 

 

Type 2 pRCC was found to have a significantly lower chance of survival compared to 

Type 1 (p=0.0345), however median survival could not be calculated as over 50% of 

patients were still alive at the end of the study. 

 

Out of the 3 RCC subtypes, ccRCC was found to have a significantly lower median 

survival than both pRCC and chRCC, and is also unfortunately the most common 

subtype. This pattern was still found to be the case when patients were split by 

characteristics such as sex, primary tumour laterality, age at operation and race. To 

determine if tumour immune infiltrate could be a factor which contributes to 

prognosis, we next ran the three RNAseq datasets through CIBERSORTx to 

determine differences in the estimated immune composition and their impact on 

patient survival. 

 

4.4.3 Comparison of subtype estimated immune composition  

CIBERSORTx is used to estimate the immune composition of 22 immune cell types 

based on the LM22 gene set which comprises of 547 genes which can accurately 

distinguish between human hematopoietic cell populations including 7 T cell types, 

NK cells, plasma cells, B cells and myeloid subsets based on their gene expression 

Figure 4.51 Overall survival by pRCC type 
Logrank analysis was used to compare Kaplan-Meier survival curves between type 1 and 2 
pRCC patients, where * represents p <0.05. 
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profiles (GEPs). These GEPs are then transformed into the infiltrating immune cell 

proportions and the significant results (p<0.05) were selected for subsequent 

analysis. Following CIBERSORTx analysis, PCA was firstly run on the three sets of 

results to see how similar the CIBERSORTx results were, as shown in Figure 4.52. 

 

 

PCA showed that ccRCC and pRCC are mostly spread over the same PC1 axis, 

while chRCC was spread more over the PC2 axis. This implies that ccRCC and 

pRCC will have a more similar immune composition to each other than to chRCC 

and so could result in differences in the immune landscape. To explore this further, 

we next compared the CIBERSORTx results for each cell type between the 

subtypes, as shown in Figure 4.53. 

 

Figure 4.52 Principal component analysis of the estimated immune infiltrate of the three 
RCC subtypes 
PCA was used to compare the estimated immune fraction data for the three RCC subtypes. 
ccRCC and pRCC were found to spread most widely along the PC1 axis, while chRCC spread 
along the PC2 axis. 
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Comparison between the three RCC subtypes revealed significant differences 

between many immune cell types.  

In ccRCC, levels of CTLs, Tfh cells, gamma delta T cells, resting NK cells, 

monocytes and M1 macrophages were all found to be significantly higher than those 

in pRCC (all p<0.0001). Conversely, levels of memory B cells, activated NK cells, M0 

macrophages M2 macrophages and resting mast cells were all found to be 

significantly higher in pRCC compared to ccRCC (all p<0.0001). No significant 

differences were found between naïve B cells, plasma cells, naive CD4 T cells, 

memory activated or resting memory CD4 T cells, Tregs, resting or activated 

dendritic cells, activated mast cells, eosinophils or neutrophils.  

Comparison of the ccRCC vs chRCC datasets also found significant differences 

between some immune cell types. In ccRCC, CTLs, memory resting CD4 T cells, Tfh 

cells and M1 macrophages were all found to be significantly higher than chRCC (all 

p<0.0001). Tregs (p=0.0008) and gamma delta T cells (p=0.0052) were also 

significantly higher in ccRCC compared to chRCC. Levels of naïve B cells, plasma 

cells, activated NK cells, activated dendritic cells were all significantly higher in 

chRCC compared to ccRCC (all p<0.0001), as were resting mast cells (p=0.0072). 

Figure 4.53 Comparison of RCC subtype estimated immune cell fractions 
All 22 CIBERSORTx cell types were compared between the three RCC subtypes using a Mann-
Whitney test with Dunn’s multiple correction test. Significant differences were observed between 
many groups, as described in the text of section 4.4.3. 
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No significant differences were found between memory B cells, naïve CD4 T cells, 

activated memory CD4 T cells, resting NK cells, monocytes, M0 and M2 

macrophages, resting dendritic cells, activated mast cells, eosinophils and 

neutrophils. 

Finally, comparison of the pRCC and chRCC datasets found that in pRCC, CTLs, 

resting memory CD4 T cells and M2 macrophages were all significantly higher than 

in chRCC (all p<0.0001). Tregs (p=0.0099), M0 macrophages (p=0.0050) and 

resting mast cells (p=0.0002) were all also significantly higher in pRCC compared to 

chRCC. In chRCC however, naïve B cells, plasma cells, resting NK cells, and 

activated dendritic cells were all significantly higher than in pRCC (all p<0.0001), as 

were activated NK cells (p=0.0007) and monocytes (p=0.0012). No significant 

differences were found between memory B cells, naïve CD4 T cells, activated 

memory CD4 T cells, Tfh cells, gamma delta T cells, resting dendritic cells, activated 

mast cells, eosinophils and neutrophils. 

 

This data confirms what we have already shown in our previous ccRCC analysis, 

which is the subtype with the worst prognosis, that the levels of Tfh cells, CTLs, 

resting NK cells and Tregs are all higher than the other subtypes, while also having 

the lowest level of activated NK cells. This data suggests that our characteristic high 

effector T cell immune signature is unique to ccRCC and correlates with poor 

prognosis. Conversely, chRCC was found to have the best prognosis and showed 

the opposite immune signature to ccRCC, presenting the lowest levels of Th, CTL 

and Tregs with the highest level of activated NK cells, however the only outlier was 

the level of resting NK cells which was interestingly similar to the levels found in 

ccRCC. 

 

4.5 Discussion 

In this chapter we have investigated the immune infiltrate in ccRCC compared to 

normal kidney, between the three most common RCC subtypes and by ccRCC 

tumour CD200 expression by bioinformatic analysis, IF staining and functional co-

culture assays. We have found significant differences in the levels of key immune 

cells and have found strong links to patient survival in relation to a characteristic high 
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effector T cell immune signature, which is altered further in relation to CD200 

expression. 

We firstly examined the survival data of a publicly available RNAseq dataset by 

patient and clinical characteristics to determine if any characteristics predispose a 

patient to shorter overall survival. Unsurprisingly, increased patient age and 

advanced TNM status were related to shorter survival times, however interestingly, 

primary tumour laterality was also shown to be an important characteristic, with left-

sided tumours resulting in a significantly shorter overall survival compared to right-

sided or bilateral tumours. This effect may be due to embryonic differences, 

anatomical differences, blood supply, lymphatic drainage or relationship to other 

organs, and has been observed in other studies (Guo et al. 2019). Metastasis status 

was found to be the greatest risk factor to patient survival, with an M1 status 

resulting in a 4-fold increased hazard ratio compared to an M0 status.  

Next, estimated immune fraction for the 533 ccRCC samples and 93 normal kidney 

samples was calculated using CIBERSORTx, an online “digital cytometry” 

deconvolution algorithm which is able to compare large numbers of samples, 

providing an estimated immune fraction for 22 immune cell types. Significant 

differences were observed in the immune fraction of 10 of the 22 immune cell types 

between ccRCC and normal kidney. However, after further stringent analysis 

comparing log2 fold change and p value, only 9 immune cells were determined to be 

significantly over- or under expressed, and therefore classed as key immune cells, 

namely: naïve B cells, plasma cells, M0 and M1 macrophages, T follicular helper 

(Tfh) cells, cytotoxic T cells (CTLs), Tregs, activated NK cells and resting NK cells.  

Tumour associated macrophages are a major cell type within the TME and play a 

critical role in both tumour development and the differentiation of T cells into their 

final effector states. M0 macrophages are naïve and are able to differentiate into M1 

or M2 phenotypes depending on the cytokines and chemokines they are exposed to, 

while M1 macrophages are differentiated and have roles in antigen presentation and 

inflammation. M0 and M1 macrophages were both found to be significantly over 

expressed in ccRCC compared to normal kidney, with high levels of M0 

macrophages significantly reducing overall survival compared to low levels, however 

the level of M1 macrophages had no effect on survival. The significant increases of 

both M0 and M1 macrophages in ccRCC compared to normal kidney may indicate 
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an important role for these cells in ccRCC disease progression and prognosis, as 

high M0 macrophage levels have been implicated in ccRCC metastasis development 

(Yaohai et al. 2020), however the presence of M1 macrophages is generally 

associated with positive outcome. 

We next examined NK cells within our samples, where we found that the 

predominant NK phenotype is resting, whereas in the normal kidney, the active NK 

phenotype is significantly more prominent. This result was unexpected, as NK cells 

are the first line of defence against tumour cells in the humoral immune response, so 

an increased active, cytotoxic NK phenotype would be expected in a ccRCC disease 

state. This may be the case for a number of reasons, including lack of exposure to 

activating cytokines or tumour cell immune evasion, or a result of NK cell exhaustion, 

which results in decreased cytolytic activity leading to decreased levels of cytolytic 

molecules such as granzymes and perforin, IFN-g and CD107a (Bi and Tian 2017; 

Sun et al. 2017). We have shown that the levels of activated NK cells increase with 

advanced disease stage, however interestingly, the levels remained lower than those 

found in the normal kidney samples. Survival was not significantly impacted by high 

or low levels of resting or activated NK cells, however the highest median survival 

was found in the low resting NK cell group, which we found was generally correlated 

with the high activated NK cell group. This indicates that the NK cell immune 

response is significantly altered in a ccRCC state compared to the normal kidney, 

leaning towards a resting, rather than an active phenotype. This dysfunctional NK-

mediated humoral immune response may result in a reduction of overall cytotoxic 

ability, as resting NK cells do not produce the cytokines required to activate T cells 

and other parts of the anti-tumour response in the adaptive immune system, 

therefore resulting in disease progression.  

Through our subsequent analyses we have shown high fractions of naïve B cells in 

normal kidney compared to ccRCC, implying that high levels of this cell type may be 

beneficial compared to low levels, however no significant change was observed 

between the two groups in our survival analysis. High estimated fractions of plasma 

cells were also present in normal kidney compared to ccRCC, which were also found 

to be protective compared to low levels, but not significant. The significant decrease 

in both naïve B cells and plasma cells found in ccRCC compared to normal kidney 

may imply that these cell types are highly affected during ccRCC development, and 
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that low levels of B cell-derived APCs could be a characteristic signature of ccRCC. 

These changes may have downstream effects including changes in activation of 

other immune cell types including T cells, leading to a highly altered immune cell 

landscape within the TME. However, as T Helper cells also secrete cytokines to 

trigger naïve B cell differentiation into plasma cells, ccRCC-related T cell dysfunction 

could also be a cause for the low plasma cell levels observed. IL-2 produced by T 

cells is an essential requirement for naïve B cell differentiation into plasma cells, so 

cancer-related dysfunction of T cells resulting in reduced production of IL-2 may be 

responsible for high numbers of naïve B cells, however a link between ccRCC and 

plasma cell myeloma has already been established (Syler et al. 2021) which may 

also explain the high numbers of plasma cells found in ccRCC.  

ccRCC is a highly immunogenic cancer type, with the highest T cell infiltration score 

out of all TCGA cancer types studied (Wang et al. 2021b) and this is associated with 

prognosis and chemotherapy response rates. The ccRCC TME is highly 

immunosuppressive, resulting in T cell dysfunction and reduced cytotoxic ability, 

which has been shown to correlate with tumour grade (Kawashima et al. 2020).  

We next examined each key cell type in our samples. Tfh cell levels, which have key 

roles in driving differentiation and proliferation of B cells resulting in potent antibody-

driven immunity, however their role in the anti-tumour response is less clear. The 

estimated immune fraction of Tfh cells was significantly higher in both the full ccRCC 

data set and within the matched pair samples compared to normal kidney. We found 

a significant increase in Tfh level with increased ccRCC stage, however survival 

analysis found that median OS was around 19% longer in the low Tfh cell group 

compared to the high group. A significant decrease in plasma cell fraction was found 

in ccRCC compared to normal kidney, with low levels of plasma cells also correlating 

with lower median OS, so this may imply that although the levels of Tfh cells are 

increased in ccRCC, they may be dysfunctional as they do not appear to be driving B 

cells to proliferate and differentiate into plasma cells as would be expected. These 

high ccRCC Tfh cells levels could imply an activated immune response, as activated 

Tfh cells in turn activate other effector T cell types, and we found that these levels 

significantly increased with ccRCC overall stage, with stage IV showing significantly 

higher levels than stage I.  
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We next examined CTLs, responsible for key anti-tumour responses following 

activation, to invoke a specific and targeted cytotoxic immune response. As 

expected, we found a significantly higher estimated immune fraction in ccRCC 

compared to the normal kidney, with a significant increase found with increased 

disease stage and stage IV was significantly higher than stage I. Interestingly 

however, this increase in CTL level does not correlate with a better prognosis, with 

the low CTL group showing a 5% longer median survival time compared to the high 

CTL group. As we have previously found for Tfh cells, this increased CTL level but 

apparent inability to halt tumour progression may imply a dysfunctional and/or 

exhausted CTL state in higher disease stage, possibly resulting in impaired cytokine 

and cytotoxic granule production resulting in reduced tumour cell killing. The 

relationship between Tfh cells and CTLs was examined as a measure of the 

CD4:CD8 ratio. A CD4:CD8 ratio of less than 1 would be considered abnormal and is 

generally associated with a dysfunctional immune response in cancer, other 

diseases and during viral or bacterial infection. Ratios under 1 are commonly found 

in HIV (Castilho et al. 2022) and can be prognostic in some cancer types including 

triple-negative breast cancer (Wang et al. 2017), lung cancer (Clifford et al. 2017) 

and cervical cancer (Sanif and Nurwany 2019). This ratio has also been shown to be 

indicative of response to treatment in RCC, where increases in CD4:CD8 ratio have 

been found to follow IFN treatment (Hernberg et al. 1997). 

While a ratio based on absolute cell numbers was not able to be calculated for our 

samples as CIBERSORTx is only able to compute the relative immune fraction not 

the absolute cell number, we did find a strong positive correlation between levels of 

Tfh cells and CTLs, showing that as one cell type increases so does the other, which 

would equate to a ratio close to 1. The increased levels of these two cell types 

should imply an activated and effective cytotoxic anti-tumour response, however 

comparison of survival curves for combinations of high and low Tfh and CTLs, we 

found that the high Tfh, high CTL group had the worst prognosis out of all possible 

combinations. This group also had an increased hazard ratio of 1.5 compared to the 

low group. This implies that although high levels of Tfh cells and CTLs are present in 

the ccRCC TME, they are dysfunctional and are not providing an effective anti-

tumour response, and in fact seem to reduce probability of survival, so high levels of 

both cell types could have use as a prognostic measure.  
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We next investigated the estimated immune fraction of immunosuppressive Tregs, 

which control immune responses by CD4+ and CD8+ T cells to prevent 

autoimmunity and maintain homeostasis. In disease states including various cancer 

types, Treg levels increase and inhibit anti-tumour immune responses resulting in 

disease progression. We observed a significant increase in ccRCC Tregs compared 

to normal kidney, with a significant increase in relation to increased ccRCC stage. 

We observed a significant decrease in OS with high Tregs compared to low levels, 

implying that Treg levels are important in overall disease progression and therefore 

may also be able to be used as a prognostic factor. As we have however also shown 

a significant increase in both CD4+ Tfh cell and CD8+ CTL levels with increased 

ccRCC disease stage, this may imply that in ccRCC, Tregs do not necessarily stop 

differentiation of T cells into CD4+ and CD8+ effector cells and rather may contribute 

to their dysfunction, resulting in an ineffective overall cytotoxic immune response. 

We next analysed the relationship between CD8+ CTLs and Tregs as an indicator of 

the CD8:Treg ratio. The CD8:Treg ratio is less commonly used than the CD4:CD8 

ratio, however it is still a highly informative way to study the state of the immune 

system and can be used as a measure of the cytotoxic to inhibitory immune cell 

ratio. Decreases in CD8:Treg ratio have been shown to correlate with poor prognosis 

in various cancer types, including ovarian (Curiel et al. 2004), lung (Clifford et al. 

2017) and breast (Solis-Castillo et al. 2020), however this had previously not been 

established for ccRCC. We have shown a moderately strong positive correlation 

between the CTL and Treg immune fractions in our ccRCC dataset, however this 

was not a perfect correlation and so one cell type may increase disproportionally 

compared to the other, resulting in a change in the CD8:Treg ratio. We have also 

shown that changes in the CTL and Treg fraction have a significant effect OS, with 

the low CTL, high Treg group, which would equate to a low CD8:Treg ratio. This 

group had the shortest median survival compared to all other combinations and a 4-

fold increased risk compared to the low CD8, low Treg group which had the best 

probability of survival. Here we have shown that the estimated immune fractions of 

all of these T cell types, which were found to be significantly altered compared to 

normal kidney, have significant effects on patent survival and may hold prognostic 

value in ccRCC. This presents exciting opportunities for potential therapeutic 

interventions to alter levels of these immune cells to promote an appropriate anti-

tumour response.  
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This data is interesting as even though the estimated immune fraction of Tregs was 

also found to be significantly higher in ccRCC compared to normal kidney, the fact 

that levels of other T cell types were also very high suggests that these effector T 

cells are dysfunctional and unable out their defined roles, potentially due to an 

altered immune landscape and tumour-mediated immune evasion. 

The ccRCC CIBERSORTx data was next split into groups based on patient 

characteristics of sex, age or primary tumour laterality, however no significant 

differences in estimated immune fraction of resting or activated NK cells, Tfh cells, 

CTLs or Tregs were observed. This result is interesting as we have previously shown 

that both age and tumour laterality have a significant effect on patient overall 

survival, however we have now shown that these patients characteristics do not 

appear to be related to the levels of these key immune cells. This data therefore 

implies that the significant differences we have observed in the levels of these key 

immune cells between the ccRCC and normal kidney groups are more likely to be 

due to the presence of the tumour rather than any other general patient 

characteristic. 

Overall, using this data set we have found that the changes in key immune cell level 

in ccRCC compared to normal kidney have an impact on OS, with low levels of 

activated NK cells and high levels of effector T cells found to significantly reduce the 

probability of survival and resulting in a poor prognosis. Based on this data, we can 

characterise a characteristic ccRCC immune signature associated with poor 

prognosis comprising of high levels of Tfh cells, CTLs, Tregs and resting NK cells, 

with low levels of activated NK cells. As we have also shown that levels of these 

cells increase with advanced ccRCC stage, this signature may also have some 

prognostic value.  

As this analysis was completed using RNAseq data of whole ccRCC tumour 

samples, which may include non-tumour areas such as stroma and peritumoral 

normal tissue, our next aim was to investigate this key immune signature using IF 

staining of patient-derived ccRCC tumour tissue samples, to determine if a similar 

outcome was observed compared to what was found in the bioinformatic analysis. A 

limitation of this study was that patient survival data was not available for the TMA 

samples and so we were unable to calculate the effect of immune cell infiltration on 

patient survival, however we were still able to determine if the same high effector T 
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cell signature that we observed in our bioinformatics analysis was present in the 

tissue samples. 

We firstly established that CD45+ cell density and frequency of all cells was 

significantly higher in all ccRCC stages compared to normal kidney, as was the case 

for CD3+ T lymphocytes, showing as expected, that overall ccRCC tumour immune 

infiltrate is significantly higher than normal kidney, and increases as disease 

progresses. A significant decrease in Th cell density and frequency of CD45+ cells 

was found with increased ccRCC stage, which was different to the results of our 

bioinformatic analysis, where a significant increase in estimated immune fraction was 

found with increased stage, however as CIBERSORTx is only able to calculate the 

estimated immune fraction of CD4+ T follicular helper (Tfh) cells, a specialised 

subset of Th cells which are characterised by the presence of CXCR5, which we 

were not able to stain for, these results are not directly comparable, but imply that 

the expression of subsets of CD4+ cells are also altered by ccRCC disease state. 

This issue highlights one of the limitations of IF staining, where only a limited number 

of markers can be used due to antibody availability and so in this case only 3 

markers could be analysed, whereas CIBERSORTx enables a large number of 

markers to be easily used to specifically characterise cells based on the expression 

of multiple genes. This is a limitation of the study and may mean that although we 

have shown bioinformatically that the immune fraction of Tfh cells is estimated to 

increase with ccRCC stage, our absolute and relative cell numbers of Th cells gained 

from our IF staining reveals that different subtypes of CD4+ T cells may be altered 

differently by ccRCC stage. Further study would be required to characterise the 

levels of all T cell subsets. 

A significant increase in cell density and frequency of CTLs was found with 

increased ccRCC stage, in line with what was observed in our CIBERSORTx 

bioinformatic analysis. This should imply an activated anti-tumour immune response; 

however, it is unclear whether these increased numbers of CTLs are functional and 

therefore able to execute the full cytotoxic response against tumour cells. To 

determine the overall state of the immune response in our samples, the CD4:CD8 

ratio was calculated, where all ccRCC stages were found to have an average ratio of 

around 1, while the average normal ratio was 1.6. This implies that although the 

CD4:CD8 ratio does not generally change throughout ccRCC disease progression 
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and there is no clear correlation between the absolute numbers of CD4+ Th and 

CD8+ CTL cells in ccRCC, the ratios are clearly different to those observed in 

normal kidney tissue. This may suggest that the factors in the TME which predispose 

naïve T cells to differentiate into CTLs are present in higher levels than those 

required for differentiation into Th cells, resulting in an abnormal ratio in ccRCC, 

altering the immune infiltrate within the TME compared to normal kidney. Again, 

these results do not however directly correlate with what we observed in our analysis 

of the CD4:CD8 cell relationship using our CIBERSORTx estimated immune fraction 

data, where correlation analysis found a significant positive relationship between 

CD4 and CD8 cells, however the actual ratio could not be calculated for this data as 

CIBERSORTx data only provides an estimated immune fraction rather than an 

absolute number, and as previously discussed CIBERSORTx is only able to provide 

data for Tfh cells while we are staining for general CD4+ Th cells.  

A significant increase in both cell density and frequency of Tregs was observed in 

ccRCC compared to normal kidney, and between ccRCC stages, which mirrors what 

we have already found in our bioinformatic analysis. Interestingly, Tregs were also 

the only cell type to show any significant difference between sex, with male patients 

having significantly higher density and frequency of Tregs compared to female 

patients, however the reason for this is unclear. As Tregs are able to suppress T cell 

responses, these high numbers of Tregs may explain the low numbers of Th cells 

observed in our TMA samples, however they may also be responsible for 

dysfunction of the Th and CTL cells creating an ineffective cytotoxic response. The 

CD8:Treg ratio was next calculated with no change in ratio observed between 

normal kidney and ccRCC, or between ccRCC stages, which may imply that the high 

numbers of CD8+ CTL cells found in our samples, which increase with ccRCC 

disease stage, increase at the same rate as the numbers of Tregs found in most of 

the samples. However as previously discussed, the CTLs present may be 

dysfunctional and unable to carry out the cytotoxic response as expected. As the 

patient survival data was unfortunately unavailable for these samples, we are unable 

to determine if these high CD8:Treg ratios are helpful to OS or response to 

chemotherapy, as has been shown in other cancer types, so this would be 

something to establish in future research.  
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A significant increase in cell density and frequency of NK cells was found in stage I 

ccRCC compared to normal kidney, however these levels decreased with increased 

ccRCC stage. A limitation with IF staining is the limitations due to antibody 

availability and combinations, meaning that we were not able to determine if these 

NK cells were resting or activated to correspond with our bioinformatic data, however 

this would again be an interesting area of future research. The biggest changes in 

correlation relationships were found between the NK cells with the other cell types, 

all of which switched from negative or positive relationships in normal kidney to the 

opposing relationship in ccRCC, implying that NK cells are the most deregulated cell 

type in ccRCC, and this may be a key factor in ccRCC disease progression.  

Overall, this data shows that the complicated relationships between the various 

types of T cells are altered between normal kidney and ccRCC, and therefore may 

have an important impact on the overall cytotoxic immune response, with dysfunction 

and impairment of T cell responses apparent in ccRCC, resulting in disease 

progression. As patient survival data was unfortunately not available with our TMA 

samples, we are unable to determine if the alterations in ccRCC immune infiltrate we 

have observed compared to normal kidney have an impact on patient survival, 

however this would be an interesting direction for future research.  

The common RCC subtypes have histological and genetic differences alongside 

significantly different clinical characteristics and prognosis. ccRCC is the most 

common and most aggressive subtype, where common gene mutations including 

MF12 and APOB result in a predisposition to metastasis, however infiltration of 

immune cells including T cells and NK cells has been associated with increased 

aggressiveness and poor prognosis (Puzanov 2022). The immune landscape of 

ccRCC has been previously described, (Wang et al. 2021b; Saad et al. 2022), 

however this has been much less widely studied in pRCC and chRCC.  

We used the same Firehose Legacy RNAseq data sets for the pRCC and chRCC 

subtypes to examine their estimated immune fraction, which was found to vary 

significantly between each RCC subtype, a factor which may contribute to the 

varying OS and DFS outcomes observed between the subtypes. chRCC had the 

best OS and DFS, while ccRCC having the worst outcomes, as expected. Variation 

in immune infiltrate adds to the already complex landscape of RCC and may 

increase the difficulty of treating RCC with immunotherapy, as each subtype may 



 

299  

require a different, targeted treatment course. While individual samples may differ, 

group comparisons between RCC subtypes showed more similarities in immune 

infiltrate between ccRCC and pRCC, with the most significant changes in immune 

cell levels found between ccRCC and chRCC groups and the pRCC and chRCC 

groups. The similarity in ccRCC and pRCC could be in line with other similarities 

found between the two subtypes due to the two reportedly having the same cell of 

origin, the epithelium of the proximal convoluted tubule, while chRCC originates from 

the distal renal tubule. The sample size for chRCC was however the smallest out of 

the three (ccRCC n=512, pRCC n=291, chRCC n=91), so this should be taken into 

consideration when directly comparing the groups. ccRCC was found to have 

significantly higher levels of CTLs compared to pRCC and chRCC. ccRCC also had 

the lowest levels of activated NK cells, with a high level of resting NK cells, as also 

observed in pRCC. ccRCC was also found to have the highest levels of Tregs out of 

the three subtypes, resulting in an overall proinflammatory tumour microenvironment 

with reduced cytotoxic capacity. Naïve B cells and plasma cells were found to be 

significantly higher in chRCC compared to ccRCC and pRCC. Interestingly, chRCC 

was found to have the highest levels of activated dendritic cells out of the 3 

subtypes, yet the lowest levels of CTL and Tfh cells. This implies that some B cells 

may not be activated in chRCC and so antigen presentation could be carried out by 

activated dendritic cells instead. In combination with the low levels of Tfh cells 

present to assist in B and T cell activation, this may result in a proinflammatory 

environment with low activation of cytotoxic T cell responses. As we have previously 

found in our ccRCC analysis, in pRCC and chRCC, no significant differences were 

found between any of the subtypes for naïve CD4 T cells, activated memory CD4 T 

cells, activated mast cells, eosinophils or neutrophils, so levels of these cell types 

may not be changed between the subtypes. Overall, this data implies that ccRCC 

has a significantly different immune signature to the other common subtypes, pRCC 

and chRCC. This is interesting as ccRCC has a significantly worse prognosis with 

the lowest OS statistics out of the three subtypes, so this implies that levels of RCC 

immune infiltrate are highly important in disease progression and prognosis. 

Therefore, the characteristic high effector T cell signature comprised of high Tfh 

cells, CTLs, Tregs and resting NK cells is uniquely found in ccRCC and not the other 

subtypes. 



 

300  

4.6 Conclusions 

In this chapter, we have shown both using bioinformatic analysis of large RNAseq 

data sets and IF staining of patient derived tissue samples, that the RCC tumour 

immune infiltrate is significantly altered compared to that of normal kidney, with 

detrimental effects on patient survival. We have been able to define a characteristic 

ccRCC immune signature associated with poor prognosis, consisting of high levels 

of Th cells, CTLs, Tregs and resting NK cells, with low levels of activated NK cells. 

This signature was found to have significantly poorer prognosis compared to the 

opposite low levels of each of these cells. 
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5. Characterising RCC Immune Infiltrate by CD200 Expression 

5.1 Analysis of ccRCC datasets by CD200 expression 

In the previous chapter we established the survival statistics and bioinformatically 

quantified the immune fraction of both ccRCC and other RCC subtypes. In this 

chapter, we determine if expression of cell surface immune checkpoints such as 

CD200 can alter the immune infiltrate of a ccRCC tumour. Earlier in this thesis we 

showed a significant increase in CD200 expression in ccRCC compared to normal 

kidney, as well as significant differences in immune infiltrate in ccRCC compared to 

normal kidney. We next aimed to determine if these altered levels of immune 

infiltrate could be related to CD200 expression. The interaction of CD200 with its 

receptor, CD200R is an immune checkpoint which regulates immune responses and 

has been implicated in the pathogenesis of several cancer types by contributing to 

tumour cell immune evasion. Increased CD200 expression has been found in many 

cancer types including multiple myeloma, testicular cancer and chronic lymphocytic 

carcinoma, with overexpression also reported in RCC (Moreaux et al. 2008). When 

we examined CD200 expression in normal kidney and RCC subtype tumour tissue, 

we found significant differences in expression level. As the strongest expression was 

found in our ccRCC samples, our next aim was to determine whether CD200 

expression influenced the composition of the ccRCC immune cell infiltrate using both 

bioinformatic analysis of RNAseq data and IF staining of patient derived tissue 

samples. 

 

5.1.1 Patient characteristics by CD200 expression 

We firstly split the results of our ccRCC CIBERSORTx analysis into groups of weak 

(lower quartile), moderate (middle two quartiles) and strong (top quartile) CD200 

gene expression, and determined if patient or clinical characteristics correlate with 

changes in CD200 expression and patient clinical outcome. Patient characteristics 

by CD200 expression can be found in Table 5.1. 
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Table 5.1 ccRCC patient characteristics by CD200 expression 
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To firstly check the levels of CD200 expression within the ccRCC dataset, we looked 

at the CD200 gene expression by ccRCC stage compared to normal kidney and 

TNM status, as shown in Figure 5.1.  

 

 

All ccRCC stages were found to have significantly higher CD200 expression 

compared to normal kidney (Figure 5.1a, stage I 841.0 ± 460.5 vs 234.7 ± 133.0, 

p<0.0001, stage II 942.9 ± 512.6 vs 234.7 ± 133.0, p<0.0001, stage III 960.4 ± 525.9 

vs 234.7 ± 133.0, p<0.0001, stage IV 666.1 ± 569.9 vs 234.7 ± 133.0, p=0.0290), 

with a gradual increase in expression observed from stage I to III, with a decline in 

expression found at stage IV, however this was not significant compared to the other 

groups. CD200 levels were consistent between tumour grades T1-3, with a decrease 

Figure 5.1 CD200 expression by ccRCC stage and TNM status 
(A) CD200 expression in normal kidney and ccRCC samples by stage, (B) CD200 expression in TNM 
tumour stages 1-4, (C) CD200 expression in TNM node stages 0-1, (D) CD200 expression in TNM 
metastasis status 0-1. Analysis was completed using (A-B) a Kruskal-Wallis with Dunn’s multiple 
corrections tests or (C-D) a Mann-Whitney test, where * represents p <0.05 and **** represents p 
<0.0001. 
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again observed at T4 (Figure 5.1b), however this group had a much smaller n 

number compared to the others. A slight decrease in CD200 expression was found 

in node grade N1 compared to N0 (Figure 5.1c), and a slight increase in expression 

was found in metastasis grade M1 compared to M1 (Figure 5.1d), however no 

differences were found to be significant.  

 

CD200 expression was next compared by patient characteristics of sex, age at 

operation, race and primary tumour laterality, as shown in Figure 5.2. 

 

No difference was found in CD200 expression between male and female patients 

(Figure 5.2a), and a general trend of decreased expression was found with 

Figure 5.2 CD200 expression by patient characteristics 
(A) CD200 expression by sex, (B) CD200 expression by age at operation (C) CD200 
expression by race (D) CD200 by primary tumour laterality. Analysis was completed using a 
Kruskal-Wallis test with Dunn’s multiple corrections test, where ** represents p <0.01. 
 

Sex 



 

307  

increased patient age (Figure 5.2b), however there was no significant differences 

observed between any of the groups. 87% of this cohort were white and this group 

was found to have the highest CD200 expression, which was significantly higher 

than the black/African American (AA) group (Figure 5.2c, 920.0± 497.9 vs 674.7 ± 

415.8, p=0.0019). No differences were found between right-or left-sided primary 

tumours (Figure 5.2d), while only 1 patient had bilateral tumours, which interestingly 

had lower CD200 expression than the average of the other groups.  

From this data we can determine that the only clinical characteristic which 

significantly alters CD200 expression is ccRCC stage, where increased expression 

was observed in ccRCC compared to normal kidney, and a gradual increase was 

observed between stages I-III. Interestingly, race was the only patient characteristic 

which affected CD200 expression, as white patients were found to have higher levels 

of CD200 compared to other races. It is unclear from this data alone whether CD200 

expression is detrimental to survival as its expression increases in ccRCC compared 

to normal kidney and with ccRCC stage, or protective, as the highest levels were 

found in the white patients, which had the best overall survival chance of all the 

races compared.  
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5.1.2 Survival analysis by CD200 expression 

The weak, moderate and strong CD200 expression groups were compared to 

determine if overall CD200 expression has any impact on overall survival and 

disease-free survival, as shown in Figure 5.3. 

 

In this data set, the weak CD200 expression group was found to have the shortest 

median survival (Figure 5.3a, median survival 74.11 months), followed by strong 

expression (84.23 months). Moderate CD200 expression was found to have the best 

Figure 5.3 Overall survival and disease-free survival by CD200 expression 
Logrank analysis was used to compare Kaplan-Meier survival curves in the three CD200 
expression groups for (A) overall survival and (B) disease-free survival, where * represents p 
<0.05 and ** represents p <0.01. 
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median survival (116.75 months) and was significantly better than the weak group 

(p=0.0277). Disease-free survival was however found to be significantly shorter in 

the strong CD200 expression group (Figure 5.3b, median survival 77.27 months) 

compared to both the moderate and weak groups (p=0.0033 and p=0.0258). Median 

survival could however not be calculated for these groups as over 50% of patients 

were still alive at the end of the study. 

This data suggests that while the level of CD200 expression does have an impact on 

OS, it is interesting that very high or low levels appear to correlate with a reduced 

chance of survival compared to a moderate expression level. Interestingly, CD200 

expression seems to have a more profound effect on DFS, with the strong group 

having the lowest chance of survival compared to the weak and moderate groups. 

 

To determine if CD200 influences ccRCC immune cell infiltrate and if so, if this 

contributes to the changes in survival outcome we have observed, we next studied 

our previous ccRCC CIBERSORTx estimated immune fraction data calculated 

earlier in this chapter, split by patient CD200 gene expression.   
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5.2 Estimation of ccRCC immune infiltrate based on CD200 expression 

We next examined the CIBERSORTx results for our key effector immune cell 

signature of Tfh, CTL, Treg and NK cells and compared them between the weak, 

moderate and strong CD200 groups, as shown in Figure 5.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No significant changes were observed between the levels of any cell types between 

the three expression groups. A slight increase in resting NK cell level was observed 

with increased CD200 expression, with the highest numbers found in the strong 

group compared to moderate and weak groups, while the opposite was found for 

activated NK cells, which reduced with increased CD200 expression.  

 

  

Figure 5.4 Key effector cells by CD200 expression 
Estimated immune fraction for our key effector cells was compared between the weak, 
moderate and strong CD200 expression groups. Analysis was completed using a Kruskal-Wallis 
test with Dunn’s multiple correction tests. No significant differences were observed between any 
groups. 
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5.2.1 CD200 and immune cell correlations 

Spearman correlation analysis was next used to determine the relationship between 

each cell type and CD200 expression, as shown in Figure 5.5. 

 

A very weak negative correlation was found between CD200 and Tfh cells (Figure 

5.5a, r=-0.0042) and Tregs (Figure 5.5c, r=-0.0585), while a weak positive 

correlation was found between CD200 and CTLs (Figure 5.5b, r=0.0228) and resting 

NK cells (Figure 5.5d, r=0.0756). The only significant correlation found with CD200 

Figure 5.5 Immune cell correlations with CD200 
Spearman correlation analysis was used to determine the relationship of ccRCC tumour CD200 
with the estimated immune fraction of (A) CD4+ Tfh cells r = -0.0042, (B) CD8+ CTLs, r = 
0.0228, (C) Tregs, r = -0.0585, (D) Resting NK cells, r = 0.0756 and (E) Activated NK cells, r = 
0.1149, p = 0.0079. 
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was in activated NK cells, where a weakly negative correlation was observed (Figure 

5.5e, r=-0.1149, p=0.0079).   
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5.2.2 Immune cell correlations by CD200 expression 

We next analysed the relationships of our key effector immune cells with each other 

within the weak, moderate and strong CD200 expression groups, as shown in Figure 

5.6. 

Figure 5.6 Immune cell correlations within CD200 expression groups 
Spearman correlation analysis was used to determine the relationships of the estimated 
immune fractions of key effector cells with each other within the (A) Weak, (B) Moderate 
and (C) Strong CD200 expression groups. Red represents a positive correlation while blue 
represents a negative correlation. r numbers are represented within each box. 
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In the weak CD200 expression group (Figure 5.6a), resting NK cells were found to 

have significant moderate strength negative relationships with all of the other cell 

types: Tfh (r=-0.513, p<0.0001), CTL (r=-0.520, p<0.0001), Tregs (r=-0.252, 

p=0.003) and activated NK cells (r=-0.346, p=0.0001). All other cell types were found 

to have positive relationships with each other, with Tfh and CTLs having the 

strongest positive relationship (r=-0.585, p<0.0001).  

In the moderate correlation group (Figure 5.6b), resting NK cells were again to have 

moderate strength negative relationships with all other cell types, however the 

relationships were more negative with CTLs (r=-0.590, p<0.0001), Tregs (r=-0.366, 

p<0.0001)  and activated NK cells (r=-0.527, p<0.0001), however the relationship 

has become less negative with Tfh cells ((r=-0.462, p<0.0001). Again, Tfh and CTLs 

were found to have the strongest positive relationship (r=-0.601, p<0.0001).  

In the strong CD200 expression group (Figure 5.6c), the relationship between resting 

NK cells and Tfh had remained around the same as the moderate group (r=-0.495, 

p<0.0001), while the relationships with CTLs (r=-0.493, p<0.0001), Tregs (r=-0.211, 

p=0.014) and activated NK cells (=-0.509, p<0.0001) became less negative than the 

moderate group. The relationship between Tfh and CTLs also became less positive 

(r=0.585, p<0.0001). 

As the biggest changes in immune cell relationships appear to occur within the 

moderate group and the weak and strong groups seem to have similar relationship 

profiles for each cell type, this implies that a moderate level of CD200 expression 

has the strongest effect on immune infiltrate. As the moderate group was found to 

have the best chance of overall survival and disease-free survival (Figure 4.56), we 

can expect that the immune profile found in the moderate group may be the most 

beneficial level of immune infiltrate to improve patient chance of survival. From 

Figure 4.58, we can see that the only significant difference in immune composition 

for any of the cell types was found in CTLs, which had significantly higher levels in 

the moderate CD200 expression group compared to the weak and strong expression 

groups.  
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5.2.3 Overall survival by CD200 expression and immune cell fraction 

To determine if CD200 expression and high or low levels of each immune cell type 

had a significant effect on patient outcome, we next examined each set of patient 

survival data, as shown in Figure 5.7. A list of p values can be found in 

supplementary tables S2-S6. 

The weak CD200 expression, high Tfh group was found to have the shortest median 

survival (Figure 5.7a, median survival 69.15), while the moderate CD200, high Tfh 

group was found to have the longest median survival (92.97 months). In the strong 

CD200 expression group however, the low Tfh group was found to have a longer 

median survival compared to the high group (85.45 months vs 75.53 months). 

Figure 5.7 Overall survival by CD200 expression and immune cell level 
Logrank analysis was used to compare Kaplan-Meier survival curves between the weak, moderate or 
strong CD200 expression groups and high or low levels of (A) Tfh cells, (B) CTLs, (C) Tregs, (D) 
Activated NK cells or (E) Resting NK cells. A list of p values for each graph can be found in 
supplementary tables S2-S6. 
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In the CTL groups (Figure 5.7b), the strong CD200, high CTL group was found to 

have the shortest median survival (53.58 months), which was also found to be 

significantly lower than the strong CD200, low CTL group (p=0.0065). The longest 

median survival was found in the weak CD200, high CTL group, which was also 

found to be significantly longer than the weak CD200, low CTL group (118.76 

months vs 74.11 months, p=0.0116). The moderate CD200, high CTL group also 

had a high median survival rate of 116.75 months, however the moderate CD200, 

low CTL group median survival could not be calculated for comparison as over 50% 

of the patients were still alive at the end of the study. Comparison of the moderate 

CD200, high CTL and strong CD200, high CTL group curves revealed that the 

moderate CD200 group had a significantly better survival outcome than the strong 

CD200 expression group (p=0.0032). 

The weak CD200, high Treg group was found to have the shortest median survival 

(Figure 5.7c, median survival 53.42 months), which was significantly lower than that 

of the weak CD200, low Treg group (p=0.0308). The longest median survival was 

found in the strong CD200, high Treg group (median survival 90.8 months), however 

this was very similar to that of the strong CD200, low Treg group (median survival 

84.23 months).  

Comparison of the activated NK cell groups showed the shortest median survival 

was in the strong CD200, low activated NK cell group (Figure 5.7d, median survival 

62.81 months), while the longest median survival was found in the moderate CD200, 

low activated NK cell group (median survival 116.75 months), and the survival 

curves were found to be significantly different between these two groups (p=0.0119). 

Median survival was not able to be calculated for the moderate CD200, high 

activated NK cell group. The weak CD200, activated NK cell low and high groups 

both had low median survival outcomes of 69.15 months and 74.11 months 

respectively.  

Conversely, in the resting NK cell analysis (Figure 5.7e), the shortest median 

survival was found in the weak CD200, low resting NK group (median survival 69.15 

months), followed by the weak CD200, high resting NK cell group (median survival 

74.11 months). The longest median survival was found in the moderate CD200, low 

resting NK group (median survival 116.75 months) and again, the median survival 

was not able to be calculated for the moderate CD200, high resting NK cell group. 



 

317  

The median survival for the strong CD200, high and low resting NK cell groups were 

similar (85.45 months vs 75.53 months respectively).   

Overall, this data implies that CD200 expression strength, in combination with some 

immune cell types, has an effect on overall patient survival. In some combinations 

however, CD200 expression strength was the most important factor, as OS stayed 

the same between some of the low and high immune cell groups. 

Moderate CD200 expression most commonly resulted in the best outcomes, which 

were found in in combination with high Tfh cells, low activated NK cells and low 

resting NK cells. Weak CD200 expression was found to have the shortest median 

survival times in combination with low Tfh, high Tregs and low resting NK cells, but 

the best median survival in combination with high Tfh cells. Strong CD200 

expression resulted in poor median survival in combination with high CTL and low 

activated NK cell levels, however the best median survival was in combination with 

high Treg levels. 

 

We finally compared the high effector T cell signature to the low signature in relation 

to weak, moderate and strong CD200 expression to determine the effect on survival, 

as shown in Figure 5.8. 

 

Figure 5.8 Survival analysis comparing the high and low immune signature in combination 
with CD200 expression.  
Logrank analysis was used to compare Kaplan-Meier survival curves between the groups of weak, 
moderate or strong CD200 expression in combination with the high or low immune signature. The low 
signature had a significantly better survival chance compared to the high signature in the weak 
CD200 group (p = 0.044) and the strong CD200 group (p = 0.032). The high signature moderate 
CD200 group was also found to have a significantly better chance of survival compared to the high 
signature strong CD200 expression group (p = 0.015). 
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Survival analysis found significant differences between the high and low signature 

groups and between the CD200 expression groups. Comparison of the high and low 

signatures within the weak, moderate and strong CD200 expression groups found 

that within the weak CD200 expression group, the low effector signature had a 

significantly better survival chance compared to the high effector signature (90.41 

months vs 73.16 months, p = 0.0444), and the same effect was also found within the 

strong CD200 expression group (90.41 months vs 32.06 months, p = 0.0325). No 

significant differences were found between the high and low effector groups in the 

moderate CD200 expression group. Next, comparison of the survival curves of the 

high effector signature groups with weak, moderate and strong CD200 expression 

found that the only significant differences between the groups was between the high 

signature moderate and strong CD200 expression groups, where the moderate 

group was found to have a significantly longer median survival compared to the 

strong group (92.97 months vs 33.06 months, p = 0.0151).  

This data shows that both the high effector T cell signature of high Tfh cells, CTLs, 

Tregs and activated NK cells with low resting NK cells compared to the opposite low 

effector signature, and the level of CD200 expression, have a significant effect on 

patient overall survival, with the combination of high effector signature and strong 

CD200 expression found to have the lowest median survival out of all of the groups. 

The moderate CD200 expression, low effector signature group was found to have 

the best survival outcome, although this was the only group where median survival 

could not be calculated as over 50% of patients were still alive at the end of the 

study. 
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5.3 Defining ccRCC immune response in patient tissue samples by CD200 
expression 

 

5.3.1 TMA core CD200 expression 

Having determined the effect of weak, moderate and strong CD200 expression in our 

CIBERSORTx data, we next determined the effect of CD200 expression on patient 

tissue using serial sections of the same TMAs we have already used earlier in this 

chapter. Using IF we stained for CD200 expression in our tissue samples and 

assigned each sample a H-score which corresponds to the weak (H-score 0-99), 

moderate (H-score 100-199) and strong (H-score 200-300) expression cut offs we 

have previously used for our bioinformatic analysis.  

CD200 H-scores in the ccRCC and normal kidney samples can be seen in Figure 

5.9. 

 

As expected from our RNAseq data, CD200 expression was significantly higher at all 

ccRCC stages compared to normal kidney (stage I 133.1 ± 68.31 vs 67.80 ± 34.31 

Figure 5.9 CD200 H-score in normal kidney and ccRCC TMA cores 
CD200 H-score was examined across normal kidney and ccRCC stages I, II and III/IV. Analysis was 
completed using a Kruskal-Wallis test with Dunn’s multiple comparisons test, where ** represents p 
<0.01 and **** represents p <0.001. 
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p<0.0001, stage II 128.2 ± 64.60 vs 67.80 ± 34.31, p=0.0012, stage III/IV 136.5 ± 

72.80 vs 67.80 ± 34.31, p<0.0001), however no significant changes were observed 

between the ccRCC disease stages.  

 

5.3.2 TMA immune infiltrate by CD200 expression 

We next split the immune cell density/mm2 and frequency of CD45+ cell data 

calculated for each TMA sample from earlier in this chapter by CD200 expression. 

  

5.3.2.1 CD45+ tumour infiltrating lymphocytes 

The TMA samples were split by weak, moderate and strong CD200 expression to 

determine if CD200 intensity has any effect on CD45+ cell density/mm2 and 

percentage of all cells, as shown in Figure 5.10.  

 

A general decrease in CD45+ cell density/mm2 was found with increased CD200 

expression (Figure 5.10a), however an increase in the percentage of CD45+ cells 

within the total cell number was observed with increased CD200 expression (Figure 

5.10b). This implies that in samples with higher CD200 expression there were 

generally less CD45+ cells, however with increased CD200 there was less CD45- 

cells in the sample so there was a higher percentage found. This may be due to the 

Figure 5.10 CD45+ cell density and frequency of all cells by CD200 expression 
(A) CD45+ cell density/mm2, (B) Frequency of CD45+ of all cells within the TMA core. Analysis 
was carried out using a Kruskal-Wallis test with Dunn’s multiple comparisons test, however no 
significant differences between groups were observed.  
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fact that as ccRCC disease progresses, changes in the tissue structure are observed 

and a characteristic “nest” structure develops, within which large hollow gaps with no 

cells are found throughout the sample. These “nests” therefore reduce the total 

number of cells visible within our samples, so in this case it appears that higher 

numbers of nests are associated with higher CD200 expression, there are therefore 

less cells are present within the sample.  

 

5.3.2.2 CD3+ T cell infiltrate 

We next calculated the CD3+ T cell density/mm2 and percentage of CD45+ cells 

within our weak, moderate and strong CD200 expression groups, as shown in Figure 

5.11. 

 

The highest average number of CD3+ cells/mm2 was found in the moderate CD200 

expression group (Figure 5.11a), however no significant differences were found 

between the three groups. High frequencies of CD3+ cells were found in all CD200 

expression groups, and generally the mean CD3+ percentage of CD45+ cells 

increased with CD200 expression (Figure 5.11b). The highest mean frequency was 

Figure 5.11 CD3+ cell density and frequency of CD45+ cells by CD200 expression 
(A) CD3+ T cell density/mm2, (B) Frequency of CD45+ cells within the TMA core. Analysis was 
carried out using a Kruskal-Wallis test with Dunn’s multiple comparisons test, however no 
significant differences between groups were observed.  
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found in the strong CD200 expression group, however again no significant 

differences were found between the groups.  

 

5.3.2.3 CD4+ T Helper cells (Th) 

Having determined the pattern of CD3+ T cell infiltrate in our weak, moderate and 

strong CD200 expression groups, we next aimed to split the numbers of our key 

immune cells of interest by their CD200 expression, to determine any effect on 

density/mm2 and percentage of CD45+ cells. We firstly examined the numbers of 

CD4+ T helper (Th) cells within our TMA samples, as shown in Figure 5.12. 

 

The highest average Th cells/mm2 (Figure 5.12a) and frequency of CD45+ cells 

(Figure 5.12b) were both observed in the intermediate group, with no significant 

differences found between any of the groups. 

 

Figure 5.12 Th cell density and frequency of CD45+ cells by CD200 expression 
(A) CD4+ Th cell density/mm2, (B) Th frequency of CD45+ cells within the TMA core. Analysis 
was carried out using a Kruskal-Wallis test with Dunn’s multiple comparisons test, however no 
significant differences between groups were observed.  
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5.3.2.4 CD8+ Cytotoxic T cells (CTLs) 

We next split our CTL results of density/mm2 and percentage of CD45+ cells by 

CD200 expression, as shown in Figure 5.13. 

 

A general increase in CTL density/mm2 was observed with increased CD200 

expression (Figure 5.13a), however no significant differences were found between 

the groups. The frequency of CD45+ cells was however ground to be significantly 

higher in the strong group compared to the moderate group (Figure 5.13b, 24.84 ± 

13.85 vs 17.57 ± 13.03, p=0.0038).  

 

  

Figure 5.13 CTL cell density and frequency of CD45+ cells by CD200 expression 
(A) CD8+ CTL density/mm2, (B) CTL frequency of CD45+ cells within the TMA core. Analysis 
was carried out using a Kruskal-Wallis test with Dunn’s multiple comparisons test, where ** 
represents p <0.01. 
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5.3.2.5 CD4:CD8 ratio 

We next calculated the CD4:CD8 ratio for our samples to determine if CD200 

expression has any effect on the ratio, as shown in Figure 5.14. 

 

The CD4:CD8 ratio was found to be very similar in the weak and moderate CD200 

expression groups, however the strong group was found to have significantly higher 

ratios than the moderate group (2.294 ± 2.066 vs 1.363 ± 1.435, p=0.0328), which is 

as expected as the numbers of CTLs in Figure 4.67a remain similarly low in all 

groups while the Th cells observed in Figure 4.66a  are found to be at higher 

numbers which would increase this ratio within the same sample.  

 

 

 

 

 
  

Figure 5.14 CD4:CD8 ratio by CD200 expression 
The CD4:CD8 ratio was examined within the weak, moderate and strong CD200 expression 
groups. Analysis was completed using a Kruskal-Wallis test with Dunn’s multiple comparisons 
test, where * represents p <0.05. 
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5.3.2.6 Tregs 

We next investigated the Treg density/mm2 and frequency of CD45+ cells in our TMA 

samples as shown in Figure 5.15. 

 

 

Tregs appear to be the cell type most influenced by CD200 expression, with 

significantly higher cell density/mm2 found in the strong CD200 group compared to 

both the moderate (15.50 ± 14.35 vs 6.61 ± 9.30, p=0.0001) and weak groups (15.50 

± 14.35 vs 8.09 ± 10.67, p=0.0013, Figure 5.15a). Treg frequency of CD45+ cells 

also showed a similar pattern, with the strong group again showing significantly 

higher percentage of CD45+ cells compared to the moderate (Figure 5.15b, 2.64 ± 

1.85 vs 1.83 ± 2.11, p=0.0057) and weak (2.64 ± 1.85 vs 1.60 ± 1.76, p=0.0034) 

groups. 

Figure 5.15 Treg cell density and frequency of CD45+ cells by CD200 expression 
(A) Treg density/mm2, (B) Treg frequency of CD45+ cells within the TMA cores. Analysis was 
carried out using a Kruskal-Wallis test with Dunn’s multiple comparisons test, where ** 
represents p <0.01, *** represents p <0.001 and **** represents p <0.0001. 
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5.3.2.7 CD8:Treg ratio 

We next calculated the CD8:Treg ratio to determine if CD200 expression has an 

overall effect on this ratio in our samples, as shown in Figure 5.16. 

 

 

As expected, due to the low Treg/mm2 numbers observed, the CD8:Treg ratio was 

found to increase with CD200 expression (Figure 5.16), with the highest ratios found 

in the strong CD200 expression group, however no significant differences were 

found between the three groups. An increased CD8:Treg ratio is generally 

associated with better prognosis, so as we found an increase in CD200 expression 

with advanced ccRCC stage, this this ratio alone may not be a complete indicator of 

prognosis and this data may need to be taken into consideration alongside the 

activity of other immune cells. 

 
  

Figure 5.16 CD8:Treg ratio by CD200 expression 
The CD8:Treg ratio was examined within each ccRCC core by weak, moderate and strong 
expression of CD200. Analysis was completed using a Kruskal-Wallis test with Dunn’s multiple 
comparisons test; however, no significant differences were found between the groups. 
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5.3.2.8 NK cells  

We next split the NK cells/mm2 and frequency of CD45+ cells in our TMAs by their 

CD200 expression, as shown in Figure 5.17. 

 

 

NK cell density/mm2 was found to significantly increase with CD200 expression 

(Figure 5.17a), with the strong group found to have significantly higher numbers of 

NK cells than the weak group (76.45 ± 103.5 vs 27.91 ± 37.67, p=0.0013), as was 

also found to be the case for the moderate group compared to the weak group 

(53.49 ± 66.37 vs 27.91 ± 37.67, p=0.0030). 

A similar pattern was found in the frequency of CD45+ cells (Figure 5.17b), with the 

strong group again having the highest percentage of CD45+ cells and was 

significantly higher than the weak group (17.03 ± 8.74 vs 10.63 ± 8.78, p=0.0002). 

The moderate group was also found to have significantly higher percentages of 

CD45+ cells compared to the weak group (14.39 ± 10.53 vs 10.63 ± 8.67, p=0.0310).  

 

Figure 5.17 NK cell density and frequency of CD45+ cells by CD200 expression 
NK cell density and frequency were examined in the weak, moderate and strong CD200 
expression groups. (A) NK density/mm2, (B) NK frequency of CD45+ cells within the TMA cores. 
Analysis was carried out using a Kruskal-Wallis test with Dunn’s multiple comparisons test, 
where * represents p <0.05, ** represents p <0.01 and *** represents p <0.001. 
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5.3.3 Immune cell correlations by CD200 expression 

We have now shown that the density and frequency of each of our key immune cell 

types is either increased or decreased as a result of changes in CD200 expression. 

To next investigate the relationships of these immune cells with each other within the 

CD200 expression groups, we next used Spearman correlation analysis in the weak, 

moderate and strong CD200 expression groups, as shown in Figure 5.18. 

 

Spearman correlation analysis revealed that ccRCC CD200 expression has a 

significant impact on the relationships of immune cells with each other. In the weak 

CD200 expression group (Figure 5.18a), we observed that NK cells and CTLs have 

Figure 5.18 Immune cell correlations within the weak, moderate and strong CD200 expression 
groups 
Spearman correlation analysis was used to compare the relationships of estimated immune fractions of 
key immune cells within the (A) Weak, (B) Moderate and (C) Strong CD200 expression groups. Red 
represents a positive correlation while blue represents a negative correlation. r values are represented 
within each box. 
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a moderately strong negative relationship (r=-0.568, p=0.001) while NK cells and Th 

cells have a moderate positive relationship (r=0.384, p=0.027) and a moderate 

negative but not significant relationship with Tregs (r=-0.306). Th and CTL cells were 

found to have a weak negative relationship which was not found to be significant (r=-

0.231). 

These relationships were found to alter in the moderate CD200 expression group 

(Figure 5.18b), where the NK and CTL relationship became less negative (r=-0.421, 

p=0.020). The relationship between Th and CTLs however became more negative 

and was now found to be significant (r=-0.385, p=0.036). The relationship of NK cells 

with Th cells became less positive and no longer significant (r=0.238), while the NK 

and Treg relationship became weakly positive (r=0.092).  

In the strong CD200 expression group (Figure 5.18c), the relationship between CTLs 

and NK became less negative again (r=-0.378) and the relationship between Th and 

CTLs was now found to be strongly negative (r=-0.712, p=0.017). The relationship 

between NK cells and Th cells was now less positive (r=0.099) and with Tregs was 

now found to be moderately positive but still not significant (r=0.414). 

This data shows the most obvious change between the CD200 expression groups is 

in the relationship between Th and CTL cells, which became much more negative 

with increased CD200 expression. This data fits with the significant increase in CTL 

relative frequency we observed in the strong CD200 expression group compared to 

the moderate and weak group. The relationship between NK cells and Tregs was 

found to change from a negative relationship in the weak expression group to a 

moderately positive relationship in the strong CD200 group, which again ties in with 

our previous data due to the significant increase in cell density and frequency we 

have already observed in the strong CD200 expression groups for these cell types.  

This data shows that CD200 expression may not only affect the number of immune 

cells present in a sample, but also may have a significant effect on the overall 

immune infiltrate within a sample and the interactions of each immune cell type, 

resulting in a strongly altered TME with reduced cytotoxic capacity, potentially 

resulting in ccRCC disease progression.  
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To understand this relationship further, we next carried out in vitro tumour and NK 

cell co-culture experiments in the presence of CD200 to determine the effect of 

CD200 on NK cell cytotoxic ability.  

 

5.4 Determining the effect of CD200 on NK cell cytotoxic ability 

5.4.1 Cytotoxic assessment of NK cells  

We next aimed to explore how the interaction of membrane-bound CD200 and 

sCD200 with CD200R-expressing NK cells affects their activity and cytotoxic 

abilities. For these studies, we used the CD200R+ NK92MI cell line (Rees 2020), an 

IL-2 independent cell line derived from the NK92 cell line by transfection, which is 

highly cytotoxic towards a variety of malignant target cells (Tam et al. 1999). Using 

tumour and NK cell co-culture assays, we aimed to determine the cytotoxicity of NK 

cells with varying CD200 levels against different tumour cell lines.  
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5.4.1.1 A498 tumour cell killing by NK92MI cells  

We firstly aimed to determine the ability of the NK92MI cells to act on CD200- 

tumour cells by using the ccRCC cell line, A498. The CD200R+ NK cells and 

CD200- A498 cells were incubated together for 4 hours at different effector:target 

ratios, followed by counting of the number of live cells at the end of the time period to 

determine the percentage of tumour cell death, as shown in Figure 5.19. 

 

 

 

 

 

 

 

 

 

 

 

 

 

A significantly higher percentage of tumour cell death was observed at effector:target 

ratios. Cell death was significantly higher compared to the 2:1 ratio at the 5:1 ratio 

(56.67 ± 5.03 vs 82.67 ± 5.51, p <0.0001) and the 10:1 ratio (87.73 ± 9.50 vs 56.67 ± 

5.03, p=0.018). This data strongly suggests that increased numbers of NK cells have 

a greater cytotoxic response, and so NK cells may benefit from ‘strength in 

numbers’. The 10:1 and 5:1 effector:target ratios were found to have very high 

tumour cell death percentages, however at lower ratios the cell death rate is still 

substantial compared to the control samples. 

 

Figure 5.19 Cell death following A498 and NK cell co-culture 
A498 and NK cells were incubated together for 4 hours at various effector:target ratios before 
counting the number of live cells and calculating percentage of cell death. Results are 
averages of 3 wells, and each experiment was completed a minimum of 3 times. Analysis 
was completed using Kruskal-Wallis test with Dunn’s multiple comparisons test, where * 
represents p <0.05 and **** represents p <0.0001. 
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5.4.1.2 HeLa CD200+ and CD200- tumour cell killing by NK92MI cells  

As we have shown that the NK92MI cell line is able to effectively kill A498 CD200- 

tumour cells, we next examined this effect using our CD200+ transduced HeLa cell 

line. Using the same co-culture conditions, we co-cultured CD200+ and CD200- 

HeLa cells with the NK92MI cells at different effector:target ratios to determine the 

effect of CD200 on tumour cell killing, as shown in Figure 5.20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tumour cell killing was reduced in the CD200+ HeLa cell line compared to the 

CD200- HeLa cell lines at all effector target ratios, with a significant difference in 

percentage of tumour death found at the 2:1 ratio (CD200+ 36.33 ± 2.51 vs CD200- 

87.00 ± 4.58, p=0.001).  A step wise increase in percentage of tumour cell death was 

observed with increased NK cell to tumour cell numbers in both the CD200- and 

CD200+ conditions.  

Figure 5.20 Cell death following HeLa CD200+ and CD200- cells with NK cell co-culture 
CD200+ and CD200- HeLa cells were co-cultured with NK92MI cells were incubated together for 4 hours 
at various effector:target ratios before counting the number of live cells and calculating percentage of cell 
death. Results are averages of 3 wells, and each experiment was completed a minimum of 3 times. 
Analysis was completed using an unpaired t-test, where ** represents p <0.01. 
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5.4.1.3 Tumour cell killing in the presence of sCD200+ supernatant 

We have shown so far that the presence of membrane bound CD200 on the surface 

of CD200+ HeLa cells is able to protect the cell from killing by NK cells, however we 

have also shown in the previous chapter that CD200 can be cleaved from the cell 

surface creating the functionally active soluble form, sCD200. We next aimed to 

establish if sCD200 is able to protect tumour cells from NK cell killing, as shown in 

Figure 5.21. 

 

  

Figure 5.21 Cell death following A498 and HeLa CD200- cell co-culture with NK cells in the 
presence of CD200+ and CD200- cell line supernatant 
(A) CD200- HeLa cells were incubated with NK cells in the presence of supernatant (SN) taken 
from CD200+ and CD200- HeLa cells at various effector:target ratios. Data was not available for 
the 1:1 ratio. (B) CD200- A498 cells were incubated with NK cells in the presence of SN taken from 
CD200+ and CD200- HeLa cells at various effector:target ratios. Results are averages of 3 wells, 
and each experiment was completed a minimum of 3 times. Analysis was completed using an 
unpaired t-test, where * represents p <0.05. 
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HeLa CD200- tumour cell killing was reduced in the presence of sCD200+ 

supernatant compared to the sCD200- supernatant (Figure 5.21a), with the 

percentage of tumour killing found to be significantly lower in the sCD200+ condition 

at the 5:1 ratio compared to the sCD200- condition (40.33 ± 13.61 vs 77.33 ± 16.50, 

p=0.0401). This data shows that sCD200 is still able to block tumour cell killing by 

NK cells in comparable levels to membrane bound CD200. A498 cell killing was also 

reduced in the presence of sCD200+ supernatant (Figure 5.21b), however the 

effects do not appear to be as strong as those observed in the HeLa cell line, with 

only small reductions found in tumour cell death in the sCD200+ conditions 

compared to the sCD200- conditions, while more cell death was actually observed in 

the sCD200+ condition for the 2:1 effector target ratio.  
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5.5 Discussion 

In this chapter we have investigated the relationship of ccRCC immune infiltrate to 

tumour CD200 expression by bioinformatic analysis, IF staining and functional co-

culture assays.  

We found that CD200 was significantly overexpressed at all ccRCC stages 

compared to normal kidney, however the only patient characteristic which resulted in 

any significant change in CD200 expression was race, where the white group had 

significantly higher CD200 expression than the black/African American group, 

however the reasons and implications of this are unclear. Interestingly, survival 

analysis of the weak, moderate and strong CD200 expression groups found that the 

moderate expression group had significantly better OS and DFS compared to the 

weak and strong groups, implying that prognosis is worse when CD200 expression is 

low or high. As we found that CD200 expression as significantly increased in all 

ccRCC stages compared to normal kidney, we can determine that CD200 is 

associated with ccRCC disease progression and patient survival, however no 

significant changes in expression level were associated with stage or TNM status. 

Analysis of the three CD200 expression groups revealed a general increase in our 

key effector T cells and a general reduction of activated NK cells with increased 

CD200 expression. This effect is interesting as this data implies that CD200 can 

affect ccRCC immune infiltrate and this effect also appears to be related to the 

expression strength. CTLs were significantly higher in the moderate CD200 group 

compared to the weak group, and so CTLs may have a role in the protective effect 

seen in the moderate CD200 group. With increased CD200 expression, the 

relationships of resting NK cells with Tfh cells, CTLs and Tregs were all found to 

become less negative, while the relationship of activated NK cells with these cell 

types also became more positive. Positive relationships were found between all cell 

types except for resting NK cells which were found to have significant negative 

correlations with the other cell types, including activated NK cells. This data suggests 

that estimated immune fraction is not strongly correlated with CD200 expression, 

however the relationship of the immune cells with each other is changed by the 

strength of CD200 expression and the strongest relationships are found when 

CD200 expression is moderate.  
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Taking all of this data into consideration, we next compared OS statistics for patient 

groups of weak, moderate or strong CD200 expression in combination with low or 

high levels of each immune cell. We found significant differences between these 

groups, implying that CD200 expression has an effect on immune cell infiltration and 

therefore patient survival. Moderate CD200 expression most commonly resulted in 

the best outcomes, particularly when found in in combination with high Tfh cells, low 

activated NK cells and low resting NK cells. Interestingly, weak CD200 expression 

was found to have the shortest median survival times in combination with low Tfh, 

high Tregs and low resting NK cells, but the best median survival in combination with 

high Tfh cells. Strong CD200 expression resulted in poor median survival in 

combination with high CTL and low activated NK cell levels, however the best 

median survival was in combination with high Treg levels.  

Survival analysis combining our high effector T cell signature with CD200 expression 

level found that a low effector signature combined with moderate CD200 expression 

had the best outcome, while a high effector signature combined with strong CD200 

expression had the shortest median survival times. This indicates that both immune 

infiltrate and CD200 expression level have a significant impact on patient survival. As 

none of the immune cells were found to correlate directly with CD200 expression 

level, this may imply that additional factors are responsible for the changes found in 

both the immune infiltrate and CD200 expression level, however the two factors do 

combine to influence each other with a resulting effect on patient survival. CD200 

expression therefore may have a significant effect on the relationships of NK cells 

with other immune cell types and could be responsible for the unexpected high levels 

of resting NK cells and low levels of activated NK cells found previously in this 

chapter. As increased CD200 expression is associated with positive relationships 

between NK cells and the key effector T cell types, we can determine that ccRCC 

CD200 expression has an important role of regulation of the NK antitumour response 

and therefore could be responsible for dysregulation of the ccRCC overall immune 

response, resulting in disease progression and patient survival.  

CD200 IF staining was next completed on serial sections of the same TMAs and the 

patients were again split into weak, moderate and strong expression groups based 

on their CD200 H-score. Cell density and frequency of Th cells was not found to alter 

with CD200 expression; however, CTL cell density was found to generally increase 
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with increased CD200 expression, and CTL percentage of CD45+ cells was found to 

significantly increase in the strong CD200 group compared to the weak group. This 

is interesting as we have already discussed how the ccRCC CTL cytotoxic response 

is increased at a late disease stage, but may be dysfunctional resulting in a poor 

anti-tumour immune response. This result is mirrored in our CD4:CD8 ratio analysis, 

where a significant increase in ratio was again observed between the moderate and 

strong CD200 expression groups, with a mean ratio in the strong group of 2.29, 

which would be generally considered a protective ratio with a positive prognosis. 

Treg cell density and frequency of CD45+ cells were significantly higher in the strong 

CD200 groups compared to the weak and moderate groups. This result is interesting 

as Treg tumour infiltrate has positive prognostic effects in some cancer types but 

negative prognostic outcome in others. As CD200 levels were higher in ccRCC 

compared to normal kidney, and Tregs are found to increase significantly with 

CD200 expression, in combination with what we observed in our bioinformatic 

survival analysis, we can determine that increased Treg infiltration in ccRCC is 

detrimental to patient survival and may be the cause of T cell dysregulation 

throughout the ccRCC tumour, resulting in a poor cytotoxic response.  

CD8:Treg ratio increased with CD200 expression, which again is generally 

associated with a positive effect on prognosis, however as we suspect the CD8+ 

CTLs are dysfunctional, this ratio may not actually be protective. NK cell density and 

frequency of CD45+ cells were next examined by CD200 expression, where a 

significant increase in both cell density and frequency was seen with increased 

CD200 expression. Our group has already shown that CD200 is able to dysregulate 

NK cytotoxic function and cause apoptosis in other cancer types (Morgan et al. 

2022), so it is likely that this increased NK cell expression is dysfunctional and 

ineffective as the primary anti-tumour response.  

To examine this further, we next used cell line co-culture experiments comprising of 

incubation of CD200- A498 ccRCC cells and transduced CD200+ and CD200- HeLa 

cells with the functionally active CD200R+ NK92MI cell line at various effector:target 

ratios. The NK cell line was effectively able to kill a high percentage of the CD200- 

A498 and HeLa- cell lines, however this killing was significantly reduced in the 

CD200+ HeLa cell line. We next investigated if functionally active sCD200, created 

by proteolytic cleavage from the cell membrane, is also able to protect tumour cells 
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from NK cell cytotoxic activity. In the presence of sCD200+ cell line supernatant, 

HeLa CD200- cell killing was reduced, implying the protective effect of CD200 is still 

present in the soluble form, however the effect is less strong. Interestingly, A498 

cells were found to be less protected by the presence of sCD200 and this may 

indicate that some cell lines are more susceptible to NK cell killing than others, even 

in the protective presence of CD200 and sCD200. This could be due to varying 

expression of other immune checkpoints and cell surface proteins; however further 

research would be required to establish this. 

This data is highly interesting as it shows a protective effect of CD200 against NK 

mediated cell killing, which is also carried through into the soluble form after 

ectodomain shedding, however CD200 expression alone does not appear to be 

enough to fully stop tumour killing by NK cells. The protective effect of CD200 may 

also vary according to cancer type, and the strength of expression may depend on 

disease stage and other patient and clinical characteristics, so this would be an 

interesting direction for future research. A further direction would be to study this 

effect in a naturally CD200 positive cell line to confirm the same effect. 

 

5.6 Conclusions 

CD200 expression was found to be significantly higher in ccRCC compared to 

normal kidney, with differences in key immune cell expression levels relating to 

CD200 expression strength. A further combined signature of strong CD200 

expression with high levels of our key immune cells resulted in the worse prognosis 

compared to both groups with lower CD200 expression and low levels of the key 

immune cells. This data presents interesting opportunities for both anti-CD200 and 

anti-immune cell interventions, potentially with scope to improve patient survival.  
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6. General Discussion 
Tumour immune evasion is a well-studied mechanism of cancer progression, which 

occurs through a variety of mechanisms (Wang et al. 2021a). In recent years, the 

interaction between tumours and cells of the immune system, combined with the 

ability of immune checkpoints to supress anti-tumour immune responses and 

immune evasion, have become of great interest for the development anti-cancer 

therapeutics (Kim and Cho 2022). Under normal physiological conditions, immune 

checkpoints protect against autoimmunity and an overactive immune response 

through the maintenance of immune homeostasis. However, overexpression of 

immune checkpoints such as PD-1 and CTLA-4 is regularly observed in cancer, 

enabling immune escape and tumour progression (Jian et al. 2021). CD200, in 

combination with its receptor, CD200R, is a further example of an immune 

checkpoint which is overexpressed by several types of cancers, including RCC, to 

evade anti-tumour immune responses (Moreaux et al. 2008; Love et al. 2017a; El 

Hanbuli et al. 2021). CD200 overexpression results in modulation of the immune 

infiltrate within the TME, creating an immunosuppressive environment and an overall 

dysfunctional anti-tumour immune response (Talebian et al. 2021). This 

dysfunctional TME has been shown to affect several types of key anti-tumour 

immune cells in several ways, including the inefficient function and apoptosis of NK 

cells (Morgan et al. 2022) and reduced cytotoxic capacity of CD3+ T cells (Shah et 

al. 2022). 

The development of immune checkpoint inhibitors (ICIs) targeting the CTLA-4 and 

PD-1/PD-L1 axis has revolutionised immunotherapy-based cancer treatments in 

recent years (He and Xu 2020). ICI interruption of immunosuppressive signalling and 

co-inhibitory T-cell signalling can reinvigorate natural anti-tumour immunity, however 

in some highly immunogenic cancer types such as RCC, overall results are generally 

modest with little improvement in OS and DFS (Papathanassiou et al. 2022). Rates 

of relapse and disease progression are also high due to acquired secondary 

resistance mechanisms within the TME (Jenkins et al. 2018). Therefore, 

identification of additional immune checkpoints to be used to generate multi-modality 

immunological therapies could greatly improve the success of ICI therapies in RCC.  
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CD200 is subject to ectodomain shedding, creating the functionally active soluble 

form, sCD200, however the full mechanism and proteases involved in this 

mechanism have not yet been fully established. Elevated protease activity has been 

reported in many cancer types including RCC, and overexpression of both active 

MMP and ADAM protease family members, and inhibitory TIMPs, is generally 

associated with poor prognosis (Fritzsche et al. 2008; Gao et al. 2022; Shou et al. 

2022). ADAM17 and ADAM28 have been shown to have roles in CD200 ectodomain 

shedding in CLL (Twito et al. 2013a; Wong et al. 2016), while MMP3 and MMP11 

were found to contribute to this process in BCC (Morgan et al. 2022). It is however 

unknown if these proteases alone, or alongside others, carry out this process in 

other CD200-overexpressing solid tumours such as RCC. From a clinical 

perspective, CD200 overexpression is interesting as it is feasible that following 

ectodomain shedding, sCD200 may reside in the urine in elevated levels compared 

to that of normal kidney. This may present an opportunity to detect sCD200 in RCC 

patient urine for potential use as a diagnostic biomarker. 

 

In this thesis, RCC CD200 expression was examined, following which key proteases 

were established and their role in the ectodomain shedding of CD200 was explored. 

The role of CD200 in RCC immune evasion was then studied to determine if tumour 

CD200 expression has an effect on immune infiltrate and patient survival.  

Using bioinformatics, patient samples and in vitro immune cell experiments we have 

shown that:  

(i) CD200 is overexpressed in RCC tumours compared to normal kidney, with the 

strongest expression found in the ccRCC subtype. 

(ii) Numerous proteases are overexpressed in RCC development, however ADAM9 

is most strongly overexpressed in ccRCC.  

(ii) ADAM9 can cleave CD200 from the cell surface creating the soluble form, 

sCD200. 

(iv) Tumour CD200 expression alters the infiltrating immune cell composition. Strong 

CD200 expressing tumours demonstrated a characteristic signature of increased 

numbers of CTLs, Th cells, Tregs and resting NK cells which correlated with poor 

prognosis. 
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(v) Membrane-bound CD200 and sCD200 can both protect tumour cells from killing 

by CD200R+ NK cells. 

Taken together, these results suggest that CD200 expression by RCC tumour cells 

may be a mechanism of immune evasion utilised for disease progression. ADAM9 

overexpression may also result in increased CD200 cleavage, so therefore, 

preventing ADAM9 mediated CD200 ectodomain shedding in combination with 

blocking CD200 signalling may represent a novel therapeutic opportunity in ccRCC. 

 

6.1 CD200 expression in normal kidney and RCC tumours 

There is currently little information in the literature regarding the expression of 

CD200 in normal kidney and in RCC, with most available information based only on 

RNAseq or microarray analysis of patient-derived tumours. As CD200 is however 

expressed on kidney glomeruli (D’Arena et al. 2020), endothelial cells and epithelia 

of the convoluted tubules (Love et al. 2017a), the cells of origin for the most common 

RCC subtypes, one aim of this thesis was to characterise CD200 expression 

throughout the normal kidney and in RCC tumours. Examination of CD200 

expression using IF staining revealed significant previously unreported differences in 

expression location and strength in the main structures of the normal kidney. The 

strongest expression was found on structures of the renal cortex, namely the 

glomerulus and proximal and distal convoluted tubules. Significantly lower 

expression was observed on the structures of the medulla: the loop of Henle and the 

collecting duct. Interestingly, we found significantly stronger CD200 expression on 

the cells of the proximal convoluted tubule compared to the distal tubule, alongside a 

general decrease in CD200 expression strength with increased distance along the 

nephron. As most previous reports of CD200 expression in normal kidney are from 

bulk RNAseq samples, this finding is important as CD200 expression is not uniform 

throughout the kidney, and so depending on the anatomical area of the sample used, 

the resulting levels of CD200 expression may vary significantly. CD200 staining of 

RCC tumours found that average overall CD200 expression was found to be similar 

between ccRCC, pRCC and chRCC, which was an unexpected result as CD200 

expression on the proximal convoluted tubule, the cell of origin for ccRCC and 

pRCC, was significantly higher than the expression on the distal convoluted tubule, 
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the cell of origin for chRCC. This data indicates that CD200 expression is increased 

generally in the development of RCC and so may have a beneficial effect on disease 

progression due to its roles in tumour cell immune evasion, however the strength of 

the resulting tumour expression does not appear to be related to the expression 

strength on the originating cell. CD200 expression strength was also not found to be 

associated with TNM status or patient characteristics such as patient age or sex, 

suggesting that any differences in CD200 expression strength are related to the 

tumour only.  

To date, CD200 expression has not been reported in the literature in any RCC cell 

line, however, as CD200 staining was observed throughout ccRCC tumour tissue, 

we expected that established ccRCC cell lines would express CD200. Surprisingly, 

no CD200 expression was observed in any ccRCC cell lines at the mRNA or protein 

level. While this result was unexpected, there are several reasons why this may the 

case. Increased RCC CD200 has been previously reported in microarray analysis 

carried out using patient-derived tumours instead of cell lines (Lenburg et al. 2003), 

so we consider that this difference in expression could be due to differences in the 

overall gene and protein expression found in cultured cell lines as opposed to that of 

patient-derived tumour samples. In recent years, the use of cell lines for research 

and drug development has become less favourable, with unexpected gene and 

protein expression of long-term cell cultivations just one common issue. Cell culture 

techniques however still remain the first line methodology for initial experimentation 

due to the ease, speed and low cost of cell line use (Birgersdotter et al. 2005). 

Genetic drift and altered gene expression in long term cultures have become well-

known issues, with one report showing that 106 protein-coding genes were found in 

their cell lines but not tissues, while 1787 genes were found in the tissues but never 

in cell lines, many of which were associated with differentiated cells in specialized 

tissues or subcompartments of tissues, which are not represented in the cell line 

panels (Uhlén et al. 2015). Many reports (Edmondson et al. 2014; Kapałczyńska et 

al. 2018; Jensen and Teng 2020) have also raised further questions around the 

physiological relevance of 2D culture, where cell lines are allowed to grow in perfect 

atmospheric conditions with easy access to nutrients, with no competition or 

interference from other cell types. Cells in 2D culture have been shown to have 

altered morphology (Breslin and O’Driscoll 2016), resulting in abnormal cell 
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behaviours and resulting expression of cell surface proteins and receptors. To 

resolve this issue, 3D culture techniques have been continually developed and are 

now thought to be significantly more physiologically relevant and representative of 

conditions within a tumour. Importantly, cells in 3D culture have been shown to retain 

their correct morphology, and when grown in a sphere, the outer cells are able to 

easily access nutrients and oxygen, while the layers of the inner core become 

increasingly hypoxic (Bhattacharya et al. 2020). To determine if the 2D culture 

conditions used to grow our cell lines could have therefore affected CD200 

expression, we grew RCC cell lines in 3D non-adherent culture. Of our 7 cell lines, 

only A498 (Rausch et al. 2021) and CAKI2 (Maliszewska-Olejniczak et al. 2019) had 

been previously reported to grow in 3D culture, however we managed to grow 

spheres in all cell lines to some extent over a 14-day period. qRT-PCR on the 

resulting sphere mRNA however again found no CD200 expression in any cell line. It 

is unclear why CD200 was not expressed in these cell lines in either 2D or 3D 

culture conditions, however as CD200 is an immune checkpoint, as no immune cells 

or other competing cell types were present to interact with these cells, CD200 

expression may not be necessary in these conditions. Furthermore, a lack of cell line 

CD200 expression has been previously reported in other cancer types, such as in a 

study by Shah et al. 2022, where 70% of patient-derived MM cells were found to 

express CD200, but no CD200 expression could be detected in 9 established MM 

cell lines at the protein or mRNA level. Therefore, this issue may be a widespread 

issue with cell line experiments in CD200-expressing tumour types, possibly 

requiring the use of other naturally CD200-expressing cell lines or genetic 

manipulation of cell lines to force CD200 expression in vitro. RNAseq was completed 

using RNA from the RCC CD200-negative cell lines, however as expected, the read 

count for CD200 in all cell lines was very low or zero. While this is a limitation of this 

study, we have already shown using IF that CD200 is expressed throughout RCC 

tumours and so a transduced HeLa CD200+ cell line was used instead for proof-of-

concept experiments, which could be repeated in future work on a CD200+ RCC cell 

line if one can be made available, or in other naturally CD200-expressing cancer 

types.  
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6.2 Protease expression in normal kidney and RCC tumours 

Ectodomain shedding is the mechanism of proteolytic cleavage of cell surface 

molecules leading to the release of an active soluble form of the molecule into the 

extracellular microenvironment, with roles in both normal and pathological processes 

(Shirakabe et al. 2017). Protease expression is dysregulated in many diseases, with 

overexpression frequently observed in cancer, impacting pathophysiology and drug 

responses (Miller et al. 2017). Many ADAM species including ADAM8, ADAM9, 

ADAM10, ADAM12, ADAM15, ADAM17, ADAM19 and ADAM28 have been shown 

to be overexpressed in various cancer types including RCC, ovarian, NSCLC and 

breast cancer (Mochizuki and Okada 2007; Mullooly et al. 2016; Ueno et al. 2018; 

Gao et al. 2022), with overexpression leading to increased cell growth and invasion 

(Mochizuki and Okada 2007). The precise mechanisms in cancer development and 

full range of substrates have however not yet been fully established.  

In RCC, a number of proteases have previously been associated with tumour 

development and poor outcome including MMP2, ADAM8, ADAM9, ADAM17, 

ADAM19 and ADAM28 (Roemer et al. 2004a; Mochizuki and Okada 2007; Fritzsche 

et al. 2008; Lipe et al. 2011; Erin et al. 2017), however their full list of substrates has 

not been fully elucidated. One of the aims of this thesis was to determine which 

proteases are involved in RCC development and the ectodomain shedding of 

CD200. The exact cleavage site of CD200 remains to be elucidated, however 

ADAM17 and ADAM28 have been reported to have roles in CD200 ectodomain 

shedding in CLL (Twito et al. 2013a; Wong et al. 2016), while MMP3 and MMP11 

contribute to this process in BCC (Morgan et al. 2022). It is however unknown if 

these proteases alone, or alongside others, carry out this process in other CD200-

overexpressing solid tumours such as RCC. Completion of a thorough literature 

search found 18 proteases with reported roles in RCC, with a range of functions 

including cell adhesion, growth, migration and metastasis. From this list we extracted 

ADAM17 and ADAM28 which have been implicated in both RCC development and 

CD200 ectodomain shedding (Twito et al. 2013a; Wong et al. 2016). In our ccRCC 

cell line RNAseq data, ADAM9 was found to be the only consistently overexpressed 

protease in all ccRCC samples. Interestingly, ADAM17 expression was not 

significantly altered compared to normal kidney and ADAM28 was found to be 
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upregulated in just 2 of the 6 ccRCC samples. ADAM9 has been strongly 

implemented in cancer progression and aggressiveness in a wide range of cancer 

types including breast, lung, ovarian, prostate cancer and RCC (Shintani et al. 

2004b; Mochizuki and Okada 2007; Fritzsche et al. 2008; Zhou et al. 2020). CD200 

has not yet been examined as a potential substrate for ectodomain cleavage by 

ADAM9, however as the substrates for many ADAMs overlap, we chose to examine 

this further. 

IF staining was used to examine the cellular expression of ADAM9, ADAM17 and 

ADAM28 in normal kidney tissue. As was observed for CD200, expression strength 

and distribution varied between normal kidney structures. Interestingly, ADAM9 

expression was strong throughout the proximal and distal convoluted tubules with 

the strongest mean expression in the proximal tubules, in a similar expression 

pattern to that previously observed for CD200. ADAM17 expression was similar to 

that of ADAM9, while ADAM28 expression was weak throughout the normal kidney 

structures. RCC staining found overall ADAM9 expression was highest in chRCC. 

This result was unexpected as the strongest expression in normal tissue was found 

in the proximal convoluted tubules, the cell of origin for ccRCC and pRCC. No 

previous associations between ADAM9 and chRCC have been reported, as most 

protease research has focussed on ccRCC, however this data may indicate that 

strong ADAM9 expression is more advantageous for chRCC development compared 

to other subtypes. Interestingly, ADAM9 expression was found to significantly 

decrease with increased ccRCC tumour stage, however node or metastasis status 

had no effect on expression, which could imply that ADAM9 expression is necessary 

for initial development of ccRCC. ADAM9 and ADAM17 have been shown to share a 

number of substrates (Mochizuki and Okada 2007) and are expressed in similar 

levels and locations, however their biological roles are different and may be related 

to their unique substrates. Both ADAM9 (Chou et al. 2020a) and ADAM17 (Li et al. 

2014b) have been implicated ccRCC, which metastasises early in disease 

progression (Lieder et al. 2017), and so this could be a reason for this strong 

expression of both proteases at the early stage, with a decrease in expression 

observed with increased disease stage. ADAM28 expression was strongest in 

pRCC, which interestingly was significantly higher than that observed in ccRCC, 

which shares the same cell of origin. ADAM28 has not been widely studied in RCC, 
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however it has also been implicated in the development of metastasis (Mochizuki et 

al. 2012). The low expression observed throughout the TMA samples however 

implies that ADAM28 is not a key protease in RCC development and may only play a 

small role in disease progression.  

The highest number of ADAM9 and CD200 double positive cells was found in 

ccRCC and was found to significantly increase with tumour status. This result is 

interesting as ADAM9 expression to significantly decreased with increased tumour 

status, implying that although less cells are positive for ADAM9 in the higher ccRCC 

stages, a high percentage of the ADAM9 positive cells were also positive for CD200. 

Conversely, high numbers of ADAM17 and CD200 positive cells were observed in all 

RCC subtypes, however chRCC was found to have a significantly higher mean 

percentage of double positive cells compared to ccRCC. chRCC had the highest 

overall ADAM17 expression out of the three subtypes, however it appears that a high 

percentage of ADAM17 positive cells in all subtypes also express CD200. As 

expected, the number of ADAM28 and CD200 double positive cells was the lowest of 

the three proteases, as ADAM28 expression was generally low in all three subtypes. 

Taken together, this data implies that ADAM9 and ADAM17 are both expressed on a 

high number of CD200 expressing RCC cells, while ADAM28 is only expressed on a 

small percentage of CD200 expressing cells. These findings are important as we 

have shown for the first time that ADAM9, ADAM17 and CD200 appear to be placed 

in a similar location on the cell membrane in RCC tissue. As ADAM17, which has 

been shown to have a role in CD200 ectodomain shedding (Twito et al. 2013a), 

shares a high number of substrates with ADAM9, we hypothesised that ADAM9 

could also have a role in CD200 ectodomain shedding.  

Addition of active ADAM9 peptide to CD200+ HeLa cells found a dose-dependent 

increase in sCD200 level in supernatant via ELISA. Furthermore, siRNA knock down 

of ADAM9 revealed a slight reduction in sCD200 concentration in the supernatant. 

This data presents a novel role for ADAM9 in CD200 ectodomain shedding, however 

a limitation of this study is that this was not completed in an RCC cell line. An 

important future direction would be to repeat this experiment in a CD200+ RCC cell 

line, and also in other naturally CD200+ cell lines to determine if this cleavage 

occurs in other cancer types. These experiments could also be repeated using 

ADAM17 peptide and siRNA to determine if ADAM17 carries out CD200 ectodomain 
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shedding in RCC. A further interesting future direction to complete would be triple IF 

staining for ADAM9, ADAM17 and CD200 within RCC tumours to determine if a high 

percentage of cells are triple positive, or if CD200 positive cells tend to overexpress 

either ADAM17 or ADAM9 to enable disease progression.  

A further exciting further direction for this would be to use this work in a clinical 

application through study of sCD200 concentration in RCC patient urine, in 

conjunction with tumour biopsy data of CD200, ADAM9 and ADAM17 expression 

and patient outcome data. If urine sCD200 levels are found to increase in RCC 

compared to normal samples, and if the effect is disease stage-dependant, this could 

present an opportunity for a new, non-invasive urine biomarker with potential 

prognostic roles.  

 

6.3 CD200 expression alters RCC immune infiltrate 

RCC tumours induce a strong immune response and are heavily infiltrated by 

myeloid cells and CD4+ and CD8+ T cells, which are associated with high tumour 

grade and shorter OS (Kawashima et al. 2020). High levels of Tregs are also present 

within the RCC TME (Díaz-Montero et al. 2020), creating an immunosuppressive 

environment where cytotoxic effector cells are likely to be dysfunctional and unable 

to carry out their normal anti-tumour functions. The complexity and composition of 

the RCC immune landscape arises from the interaction of several factors including 

tumour mutational burden, RCC subtype, tumour histology and acquired 

mechanisms of immune evasion including the expression of immune checkpoints 

(Hanna 2019; Díaz-Montero et al. 2020; Wang et al. 2021b). One of the aims of this 

project was to determine the effect of RCC tumour CD200 expression on tumour 

immune infiltrate and patient outcomes. 

The CIBERSORTx algorithm was used to calculate estimated immune infiltrate in 

publicly available large RCC tumour data sets compared to normal kidney. 

Significant differences in the levels of 9 out of the 22 cell types examined were 

found, with naïve B cells, plasma cells and activated NK cells found to be 

significantly higher in normal kidney compared to ccRCC, and M0 and M1 

macrophages, Tregs, Tfh cells, CTLs and resting NK cells found to be significantly 

higher in ccRCC compared to normal kidney. This data showed a clear trend of 
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decreased B cells and increased T cells between the normal and ccRCC samples, 

indicative of a suppressed effector T cell response. However, the significant increase 

in resting NK cells and decrease in activated NK cells observed in ccRCC was 

unexpected, as NK cells are the first line defence against tumour cells in the humoral 

immune response (Ziblat et al. 2021). Resting NK cells have decreased cytotoxic 

activities due to lack of target cell interaction with their activating receptors (Bryceson 

et al. 2006), implying that the usual cytotoxic NK cell response is dysregulated in 

ccRCC. ccRCC is associated with a high T cell infiltrate, with high levels of CD4+ Tfh 

cells and CD8+ CTLs previously described (Wang et al. 2021b) and associated with 

poor prognosis (Su et al. 2021). In our data, both Tfh and CTLs were found to have 

significantly higher levels in ccRCC compared to normal kidney, and both cell types 

also significantly increased with disease stage. While generally protective in normal 

circumstances with key roles in maintenance of immune homeostasis, high levels of 

Tregs have also been previously observed in ccRCC and are associated with poor 

prognosis (Wang et al. 2021b), and we also observed a significant increase in Treg 

level with increased ccRCC stage. The combination of high levels of Tfh cells and 

CTLs, and high CTLs and Tregs were found to have the worst OS outcomes 

compared to any other combination. High levels of Tfh cells, CTLs and Tregs have 

been previously reported to result in disease progression and poor prognosis in 

ccRCC (Griffiths et al. 2007; Mier 2019; Kawashima et al. 2020), however the high 

levels of resting NK cells and low levels of activated NK cells observed in our 

samples is a key finding and implies disruption of normal cytotoxic NK responses in 

early stage ccRCC. Correlation analysis found a clear set of significant positive 

relationships was observed within the ccRCC samples between Tfh cells, CTLs, 

Tregs and activated NK cells, with negative relationships between all cell types and 

resting NK cells. This result was not found in the normal kidney samples and 

reinforces the notion that these key effector cells are dysfunctional, but together 

contribute to disease progression in a manner which is not found in the normal 

kidney state. From this data, we were able to propose a ccRCC-specific “high 

effector cell” immune signature comprised of high levels of Tfh cells, CTLs, Tregs 

and resting NK cells, in combination with low levels of activated NK cells. When 

compared to the opposite low group in survival analysis, patients with this signature 

were found to have a significantly lower chance of survival. This data not been 
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previously reported and is a key finding as this immune signature has clear 

prognostic significance.  

Analysis of RNAseq datasets allows us to study a large number of samples quickly 

and easily with associated clinical data, however a limitation of the work carried out 

so far is that the datasets used were obtained from bulk tumour samples, which may 

contain non-tumour tissue, stroma, tissue artefacts and surrounding normal tissue. 

Another limitation is that CIBERSORTx is only able to estimate immune fractions 

within a sample, rather than absolute cell number numbers, meaning absolute ratios 

such as the CD4:CD8 ratio cannot be calculated, which is widely used as a measure 

of immune system activity. Therefore, to make our current data more robust, double- 

or triple-IF staining was used on patient-derived ccRCC TMA samples for key 

immune cells. This staining allowed quantification of the number of each immune 

cells/mm2 and calculation of the relative frequencies of total CD45+ cells. As 

expected, levels of CD45+ and CD3+ cells were significantly increased in ccRCC 

compared to normal kidney, indicating an increased immune response. Interestingly 

however, in these samples, the density and frequency of CD4+ Th cells/mm2 

significantly reduced with tumour stage, which is the opposite to what was observed 

in our CIBERSORTx data. A further significant limitation of CIBERSORTx is that not 

all possible immune cell types can be calculated, and the only CD4+ cell type 

calculated is follicular T helper cells (Tfh), a specialised subset of T helper cells with 

key roles in B cell differentiation and development of germinal centres. Another 

limitation of this study is that IF is limited by antibody availability and combinations, 

meaning that we could only classify CD45+CD3+CD4+ cells as T helper (Th) cells. 

Therefore, this outcome is different from the bioinformatic result due to the different 

sets of markers used. As expected from the literature (Wu et al. 2021), a significant 

increase in CD8+ cell density was observed with increased ccRCC stage. As in this 

study we calculated Th cells and CTLs/mm2, we could calculate the CD4:CD8 ratio, 

which was decreased in ccRCC compared to normal kidney, indicative of an 

abnormal immune response and associated with poor prognosis (McBride and 

Striker 2017). Treg density and frequency also significantly increased with ccRCC 

stage, indicating an increasingly immunosuppressive TME with advanced disease 

stage. Interestingly, this was the only cell type found to be affected by patient sex, 

with females found to have significantly less Treg cell density and frequency 
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compared to males, an observation which has been only previously noted in 

adolescent studies and may be due to differences in lipoprotein metabolism and 

hormones (Robinson et al. 2019). Finally, a significant increase in NK cell density 

and frequency was found compared to normal kidney, however another limitation of 

this IF study is that we are unable to determine if these NK cells were resting or 

activated. Unfortunately, patient clinical data was not available with our TMA 

samples and so survival analysis could not be completed on this data to determine 

the effect of changed immune infiltrate in ccRCC, however taken in combination with 

the CIBERSORTx data which does provide full OS and DFS clinical data, we can 

conclude that there is a significant change in immune infiltrate in these key cell types 

in ccRCC compared to normal kidney, which is likely to have a significant effect on 

patient prognosis. 

Although the common RCC subtypes differ at both a genetic and histological level 

(Truong and Shen 2011; Muglia and Prando 2015), differences in immune infiltrate 

have previously been examined in only a small number of studies (Ricketts et al. 

2018; Díaz-Montero et al. 2020). The highest number of tumour-infiltrating T cells in 

the subtypes has been previously reported in ccRCC (Zhang et al. 2019), and were 

associated with poor prognosis. Comparison of survival data revealed that ccRCC 

has significantly shorter OS and DFS compared to the other two subtypes, with 

chRCC having the best overall outcomes. Examination of the immune infiltrate for 

the three subtypes found that ccRCC Tfh, CTL, resting NK cells and Treg levels 

were all higher than the other subtypes, while the level of activated NK cells was the 

lowest. This data suggests that the characteristic “high effector T cell” immune 

signature is unique to ccRCC and correlates with poor prognosis. Conversely, 

chRCC was found to have the best prognosis and showed the opposite immune 

signature to ccRCC, presenting the lowest levels of Tfh cells, CTL and Tregs with the 

highest level of activated NK cells. This implies that RCC subtype immune infiltrate is 

significantly related to patient outcome and that levels of these key immune cells 

within the TME could be a prognostic marker. 

While CD200 is known to generally alter tumour immune infiltrate through creation of 

an immunosuppressive TME (Kotwica-Mojzych et al. 2021), the effect of CD200 

expression on OS and levels of tumour infiltrating immune cells has not been 

previously reported in RCC. Interestingly, the weak CD200 expressing group had the 
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shortest median OS, while the moderate expression group had the longest OS. 

Conversely, the strong CD200 group was found to have the shortest DFS, while the 

moderate group was again found to have the longest DFS. This data implies that 

CD200 is implicated in both OS and DFS outcomes, but with opposing roles.  

The average immune fractions were found to change between the CD200 

expression groups, particularly CTLs, which may imply a protective effect of CTLs in 

the moderate CD200 expression group, with no other immune cell types significantly 

altered between any of the expression groups. A general trend of increased resting 

NK cells and decreased activated NK cells was observed with increased CD200 

expression. As CD200 expression generally increases between ccRCC stages I-III, 

where we would expect to see high levels of activated NK cells to indicate an active 

cytotoxic response, the increased resting NK cells we observed implies immune 

dysfunction. Survival analysis of high and low levels of each immune cell in 

combination with weak, moderate or strong CD200 expression revealed that 

moderate CD200 expression most commonly resulted in the best outcomes, when 

found in in combination with high Tfh cells, low activated NK cells and low resting NK 

cells. Taken together, this data suggests that CD200, in combination with some 

immune cell types has an important effect on overall patient survival, however in 

some cases, CD200 expression strength is the most important factor as OS stayed 

the same between some of the low and high immune cell groups.  

Importantly, comparison of survival data for the “high effector T cell” immune 

signature against the opposite signature, in combination with weak, moderate or 

strong CD200 expression found that the high effector, strong CD200 group was 

found to have the shortest OS. The moderate CD200 expression, low effector 

signature group was found to have the best survival outcome, and this was the only 

group where median survival could not be calculated as over 50% of patients were 

still alive at the end of the study. Taken together, this data is notable as it 

demonstrates the significant impact of CD200 expression on ccRCC immune 

infiltrate, with significant effects on patient outcomes.  
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6.4 Tumour CD200 expression causes CD200R+ NK cell dysfunction in vitro 

NK cells are potent cytotoxic innate immune cells, that unlike cytotoxic CD8+ T cells, 

can rapidly identify and kill transformed cells without the requirement for prior 

sensitisation (Kumar 2018). The NK cell anti-tumour response has been reported in 

many in vivo studies, which demonstrate that mice deficient in NK cells or with 

dysfunctional NK cell cells undergo greater tumour growth and increased metastasis 

(Vyas et al. 2023). However, despite NK cell infiltration into the RCC TME, tumours 

are still able to grow and so the role of NK cells in RCC development is not yet fully 

understood (Terrén et al. 2020). During RCC development, NK cells within the TME 

become dysfunctional and demonstrate diminished cytotoxicity, decreased 

responsiveness, and impaired viability, reduced degranulation and lower anti-tumour 

cytotoxicity (Xia et al. 2017; Ziblat et al. 2021). Interestingly, a similar dysfunctional 

NK cell phenotype is seen in AML and BCC patients with high tumour CD200 

expression (Coles et al. 2011; Morgan et al. 2022). ccRCC tumour CD200 

expression was found to be positively associated with the cell density and relative 

frequencies of NK cells in both our RNAseq and IF patient tissue studies, suggesting 

that CD200 expression may affect interacting NK cell function and viability. To 

explore the effects of tumour CD200 expression on interacting CD200R+ NK cells, in 

vitro models of NK cell activity were generated. In co-culture experiments on 

CD200+ HeLa cells, expression of CD200 demonstrated a protective role against 

NK92MI cytotoxicity, with CD200+ tumours demonstrating significantly improved 

viability. This protective effect was also observed when A498 and CD200- HeLa cells 

were co-cultured in the presence of CD200+ cell line supernatant, however to a 

lesser extent. This data suggests that evasion of NK cell cytotoxicity is CD200-

dependent, and that blocking CD200 signalling may be sufficient to prevent this 

immunosuppression. Following ectodomain shedding, sCD200 is still functionally 

active (Wong et al. 2016) and here we show it is still able to prevent NK cell killing, 

although to a lesser extent than membrane-bound CD200. An interesting future 

direction for this experiment would be to repeat using higher sCD200 concentrations 

to determine if this is a dose-dependent effect. 

This data shows that CD200 expression by CD200+ cancer cells can cause 

significant dysfunction in interacting CD200R+ NK cells by reducing their cytotoxic 

ability. This protects the CD200+ target cell from NK cell killing, resulting in 
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increased tumour cell viability, suggesting that CD200 signalling is an immune 

evasion mechanism utilised to prevent tumour cell death. Here we show for the first 

time that sCD200 is also able to exert these protective effects, potentially in dose-

dependent manner, however it is unknown if sCD200 is as effective as the 

membrane-bound form at activating CD200R (Wong et al. 2016), or if the 

membrane-bound form competes with sCD200 for CD200R binding. In this thesis we 

have shown a novel role for ADAM9 in CD200 ectodomain shedding, with the 

overexpression of ADAM9 observed in RCC potentially resulting in increased levels 

of sCD200 in the TME. This finding may indicate an indirect link between ADAM9 

expression and NK cell dysfunction via creation of sCD200, however this is just one 

piece of the puzzle and likely involves interactions with numerous other molecules 

and cell types. An interesting future direction for this work would include studies with 

longer timepoints, the use of CD200 blocking antibodies and experiments involving 

ADAM9+ cells or active peptide co-culture to fully determine the effect of CD200 

expression on NK cell dysfunction in RCC. To validate this data in RCC, these 

experiments could be repeated on a CD200+ RCC cell line, and in other naturally 

CD200+ cancer types. If tumour CD200 expression contributes to NK cell 

dysfunction, this represents a novel mechanism by which CD200 overexpression by 

tumour cells can evade NK cell cytotoxic attacks enabling tumour progression.  

 

6.5 Conclusions 

To conclude, in this thesis we have examined the protease expression in RCC 

tumours, their relationship with CD200 expression and potential roles in CD200 

ectodomain shedding. We have also studied RCC immune infiltrate and its 

relationship with CD200 in relation to patient outcomes. 

ADAM9 was found to be strongly overexpressed in ccRCC compared to normal 

kidney and alongside ADAM17, was found to be co-expressed with CD200 on a high 

percentage of RCC cells. ADAM9 was also found to have a novel role in CD200 

ectodomain shedding which has not been previously reported. Secondly, we 

examined the immune infiltrate in RCC tumours compared to normal kidney, where a 

characteristic ccRCC “high effector T cell” signature was determined which had a 

significant prognostic effect. The effect of tumour CD200 expression on immune cell 
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density and frequency was then determined, where both NK cells and 

immunosuppressive Tregs were found to positively correlate with CD200 expression, 

resulting in NK cell dysfunction. Finally, we examined the effect of membrane bound 

and soluble CD200 on the cytotoxic abilities of CD200R+ NK cells in vitro, where we 

found that both CD200 and sCD200 are able to protect tumour cells from NK cell 

killing. Taken together, we demonstrate a link between RCC tumour ADAM9 

overexpression, an increase in TME CD200 and sCD200 levels, and NK cell 

dysfunction, leading to a reduction in tumour cell killing and subsequent RCC 

disease progression. 
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7. Supplementary data 

 

Supplementary Table S1. Genes used to identify immune cells by CIBERSORTx 
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Supplementary Table S2. Survival curve comparison p values for high or low CTL levels by 
CD200 expression strength.  

 
 
 
  
Supplementary Table S3. Survival curve comparison p values for high or low Tfh levels by 
CD200 expression strength.  
 

Supplementary Table S4. Survival curve comparison p values for high or low Treg levels by 
CD200 expression strength.  
 



 

357  

 
  

Supplementary Table S5. Survival curve comparison p values for high or low activated NK cell 
levels by CD200 expression strength.  
 

Supplementary Table S6. Survival curve comparison p values for high or low resting NK cell 
levels by CD200 expression strength.  
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