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Summary

This thesis focuses on the development of computational approaches to quantify

the observations of semiconductor surfaces with Low-Energy Electron Microscopy

(LEEM). The real-time surface imaging with LEEM gives us dynamical observations

with a suitable temporal and spacial resolution that is difficult to achieve with

other microscopy techniques. It allows us to track surface structural dynamics on a

nanoscopic scale and characterise them using Computer Vision methods.

We monitor the surface of GaAs (001), where we observe a stable coexistence

between the (6× 6) and c(8× 2) surface phases, as well as a metastable coexistence

of those phases during growth. Using the LEEM imaging of the surface dynamics,

we are then able to extract previously inaccessible parameters for the two phases.

Through Computer Vision methods and computational algorithms, we develop data

pipelines that enable the required accuracy and throughput in the analysis of our

imaging data. With that, we extract fundamental surface parameters, such as the

entropy and stress difference, as well as the step edge energy between the (6×6) and

c(8× 2) phases. We use these insights to clarify the long-standing stability question

of the (6× 6) phase and to explain the observed behaviour of the two phases.

Furthermore, we use Machine Learning and Deep Learning techniques to develop

an approach that streamlines the analysis of the complex and abstract imaging data

from the Convergent Beam Low-Energy Electron Diffraction (CBLEED) technique.

We show the high accuracy and performance of the developed models in finding sur-

face structural parameters with sub-angstrom accuracy based on CBLEED images.
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Chapter 1

Introduction

The quality and precision of semiconductor fabrication with fine-tunable prop-

erties is crucial to the innovation-driven technological industry, with III-V semicon-

ductors, in particular, attracting a lot of attention in the past decades. From that,

Gallium Arsenide (GaAs)-based semiconductors have emerged as some of the most

widely used in the industry, due to the material’s wide and direct band gap and high

electron mobility. These properties allow applications which range from high-power

optical devices such as diodes, lasers, and solar cells to noise-free signal amplification

devices and fast electronics. An important role of GaAs in this domain is its use

as a substrate for the growth of more complex III-As materials, such as GaAlAs,

InGaAs, InGaNAs, as well as nanostructures, such as quantum dots, quantum wells

and nanowires. One of the most widely used techniques for the fabrication of these

structures is Molecular Beam Epitaxy (MBE), which allows for the required control

and purity of growth.

In MBE, the substrate is held at Ultra-High Vacuum (UHV) conditions at back-

ground pressures below 10−9 Torr at all times. The growth commences as materials

are evaporated at high temperatures from sources to produce particle beams to-

wards the substrate surface. The particles reach the substrate and interact to form

a thin film epitaxial layer, bonded in a crystalline lattice. This growth process can

be precisely controlled by adjusting the beam flux and substrate temperature and

achieves significant purity in the grown material. These experimental conditions

have an impact not only directly on the newly grown structures, but also on the

substrate surface, which, in turn, has influence on the growth dynamics (Krzyzewski
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& Jones, 2008; Ohtake et al., 2013; Ohtake et al., 2014). With that in mind, knowl-

edge of the surface behaviour at practical growth conditions and during growth is

important towards the quality and properties of newly formed structures.

Cardiff University hosts one of the most suitable instruments to allow tracking

of the surface behaviour during such epitaxial growth - the LEEM-MBE system. It

combines the surface sensitive and non-destructive Low-Energy Electron Microscopy

(LEEM) with an MBE chamber, allowing the real time in-situ non-scanning imag-

ing of a semiconductor surface in growth conditions and during growth. The system

focuses on III-As semiconductors, as the MBE chamber is equipped with Gallium,

Indium and Arsenic sources. Its use of LEEM is very suitable for monitoring crys-

talline surfaces, such as the GaAs surface, and capturing the MBE growth process

on them. LEEM provides means of real time in-situ monitoring of semiconduc-

tor surfaces with high spacial and temporal resolution. The low energy electrons

provide a structural sensitivity that returns detailed information on the surface re-

construction, allowing high contrast between the surface phases. With an atomic

resolution perpendicular to the surface plane and a resolution down to 5 nm in the

surface plane, LEEM also provides detailed information on surface morphological

structures, such as atomic steps and defects, and is ultimately able to capture the

small-scale surface dynamics during growth.

To build on the knowledge of the GaAs surface behaviour during growth, this

thesis focuses on monitoring and analysing the high-temperature GaAs(001) surface

both at growth conditions and during growth using Cardiff’s LEEM-MBE system.

Recent observations by Zheng et al., 2019 with the LEEM-MBE system have already

provided significant insights on the surface phases on GaAs. At high temperatures

in the range of 530 − 580 °C, the predominantly observed surface phases are the

Ga-rich (6 × 6) and c(8 × 2) phases, which create high contrast in LEEM imaging

and enable a detailed view on the surface dynamics.

The main topic in the thesis is the outstanding uncertainty concerning the sta-

bility of the (6 × 6) and its role in surface dynamics at these high temperature

conditions (Ohtake, 2007), which is still not well understood despite the GaAs(001)

surface phases being generally well researched (Ohtake, 2008). To shed light on

these uncertainties, we monitor, describe and quantify the interactions between the

Chapter 1 Matyo Ivanov 11
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(6 × 6) and c(8 × 2) phases. We build on the insights on their dynamics during

evaporation processes, recently observed through the LEEM-MBE system and de-

tailed by Hannikainen et al., 2019. We introduce Computer Vision (CV) methods

to enable a quick and automated analysis of the substantial amount of gathered

microscopy images, which push the precision of measurements to their limit and

showcase the capabilities of the LEEM technique. The applied approaches allow the

direct quantification of surface properties and fundamental parameters. In addition,

we introduce a Deep Learning (DL) approach to enable the practical application of

an emerging LEEM diffraction technique.

This thesis presents these contributions in the following structure.

In Chapter 2, the background information underpinning the research carried

out in the thesis is outlined. Section 2.1 gives the theoretical basics for the GaAs

surface. It provides the fundamentals of phase coexistence, which is needed for

the work presented in the rest of the thesis. Stable phase coexistence is covered

in subsection 2.1.1 and coexistence during growth is covered in subsection 2.1.2.

In Section 2.2, the LEEM microscope is described and the important interactions

behind LEEM imaging are outlined. Section 2.3 introduces the basics of Machine

Learning and Deep Learning needed for their application in microscopy imaging.

In Chapter 3, we show one of the main results in the thesis - the observation of

phase coexistence and the resulting fundamental parameters that can be extracted

from these measurements. We use the analytical approach developed by Hannon and

Tromp, 2003 and create a processing pipeline of CV and computational methods

to extract the needed information from the raw microscopy images with optimal

precision, to feed to the analysis and extract fundamental surface parameters.

In Chapter 4, we detail the measurements of growth near a Gallium droplet. We

image growth on a flat trail over time, giving us a spectrum of conditions along the

trail over time. We apply CV methods to automate the data gathering from the

images and use it to extract surface parameters.

In Chapter 5, we develop an Machine Learning (ML) method for the automated

analysis of abstract and convoluted diffraction patterns, associated with a novel con-

vergent beam diffraction technique in LEEM. The aim of the method is to streamline

the adoption of the technique by enabling a quick analysis, which reduces overall

12 Chapter 1 Matyo Ivanov
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computational costs and can be applied in real-time during experiments.

Chapter 6 rounds up this thesis by outlining the conclusions from the presented

work.

The author of the thesis has contributed to these results by gathering a significant

portion of the used LEEM imaging data and has some contributions toward the

formulation of the analysis for it. However, the author’s main effort was aimed

towards developing the CV, ML and other computational techniques and processing

pipelines for the analysis of the imaging data.

Chapter 1 Matyo Ivanov 13



Chapter 2

Background and fundamentals

2.1 Surface Phases

As in all crystals, the atoms in the bulk of the Gallium Arsenide (GaAs) (001)

semiconductor form a well-defined lattice structure and their positions are periodic

and predictable. They are arranged in the common zinc-blend structure, as shown

in Figure 2.1. However, going out of the bulk of a finite crystal, the surface atoms

Figure 2.1: The bulk structure in GaAs (001). The GaAs unit cell (left) and the forming

of a Zinc-Blende structure (right).

cannot stay in their bulk configuration, as they will not be able to fully saturate

their bonds, leaving energetically unfavourable ”dangling bonds”. In response to

this, the surface atoms rearrange in complex reconstructions to lower their energy.

14
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These reconstructions, or phases, vary with the applied external conditions in a

well-known and controllable manner to achieve the lowest accessible surface en-

ergy. This is determined by the formation energy of a phase - the excess energy of

the surface atoms compared to the bulk atoms in the crystal. The surface phases

can vary with conditions, as supplying extra energy to the surface atoms through

pressure or temperature increases their mobility and gives them access to more con-

figurational possibilities, which might result in a lower formation energy and thus

- in a more stable and favourable surface phase. The surface stability is explored

through theoretical Density Functional Theory (DFT) calculations to find the most

favourable reconstructions, in which the surface is expected to be found at certain

sets of conditions (Ohtake, 2008).

The surface reconstructions consist of repeated structures of atomic arrange-

ments - unit cells. The unit cells are usually identified through Wood’s notation,

with respect to the lattice vectors a and b of the bulk unit cell. In that notation, a

reconstruction will be denoted by (m × n), indicating its size through multiples of

the lattice vectors m and n. For example, a (2×1) reconstruction would imply that

the surface unit cell is twice as long as the (1 × 1) bulk unit cell in one dimension

but the same in the other. Additionally, surface structures with unit cells of the

same size can have additional atoms in their centres, which alters their unit cell.

For example, a surface structure which is the same as a (2 × 2) cell, but with an

extra atom in its centre will have a 45 degree rotated symmetry with respect to the

bulk and be denoted as a (
√

2×
√

2)R45. To save the complexity of describing such

cells, they are instead denoted as centered, so the (
√

2×
√

2)R45 simply becomes a

c(2× 2). Similarly, to describe arbitrary variations of the structure of the same unit

cell, they are denoted by appending symbols α, β, γ..., indicating specific rotations

or arrangements of that unit cell.

A common way to describe the surface phases and illustrate the most stable

configurations is to use the formation energies of the phases to construct phase

diagrams against the chemical potential of the surface. In GaAs (001), this is the

relative Gallium chemical potential of the surface with respect to the bulk Ga phase

at 0 K - ∆µGa. A more negative ∆µGa corresponds to an As-rich surface, while

∆µGa getting closer to 0 means a Ga-rich surface. The phase diagram for the

Chapter 2 Matyo Ivanov 15
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GaAs(001) surface is shown in Figure 2.2. In practice, the change in the chemical

potential is achieved with changes in experimental conditions such as an external

material flux or temperature change. The diagram points towards the accepted

c(4× 4)β ↔ β2(2× 4)↔ c(8× 2) phase transition, as calculated with DFT.

Figure 2.2: Phase diagram of the GaAs(001) surface phases, adapted from Ohtake, 2008.

The phase transition is formed by the accessible phases - the ones with the lowest energy at a

certain chemical potential, as marked in green.

Even though considerable research effort has been invested in deriving this phase

transition (Ohtake, 2007, 2008; Pristovsek et al., 2003), a long standing question

is still left open (H. Xu et al., 2002). There has been experimental evidence of

the (6 × 6) phase occurring on the GaAs (001) surface, even though it has been

theoretically shown to be unstable in all its possible atomic configurations (Ohtake,

2007). This suggests a discrepancy between the calculated and the observed phase

transition on the GaAs (001) surface. Recently, in-situ observations with the LEEM-

MBE system showed decisive evidence that the (6 × 6) phase is a prominent part

of the phase transition path in GaAs (001) (Niu et al., 2019; Zheng, Tersoff, et

al., 2016). Figure 2.3 shows the theoretical atomic configurations along the phase

transition path, as observed experimentally. Observations at different experimental
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conditions show the various ways the unexpected (6 × 6) manifests on the surface

- in a large temperature range, the (6 × 6) coexists with the c(8 × 2) in a stable

manner, going into a metastable coexistence at higher temperatures (Hannikainen

et al., 2019), as well as during epitaxial growth. To describe this behaviour and fill

the gap between theory and experimental observations, we first introduce the basics

of these phase coexistence behaviours, which serve as the foundation for the detailed

investigations of the stable coexistence in Chapter 3 and the metastable coexistence

during growth in Chapter 4 between the (6× 6) and c(8× 2) phases.

Figure 2.3: The atomic configuration of the observed phases on the GaAs (001) sur-

face. They can be trivially reached experimentally, mostly with variations in the temperature.

Adapted from Ohtake, 2008.

2.1.1 Phase Coexistence

The phase coexistence phenomenon was first suggested in an article by Marchenko,

1981, where it was considered that for two different crystal surface phases that do

not have the same surface stress it is possible to have coexistence - the two phases

are simultaneously present on the crystal surface with a sharp boundary between

Chapter 2 Matyo Ivanov 17
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them. This represents a first-order phase transition. Since then, some examples of

such behaviour during phase transitions have been shown on Si by applying exter-

nal stress (Men et al., 1988), controlling temperature (Hannon et al., 2002; Hibino

et al., 2004; Swiech et al., 2002), on GaAs(001) by controlling the pressure (Galitsyn

et al., 2007) and during epitaxial growth (Takagaki et al., 2006), as well as on other

materials (Kern et al., 1991; Zandvliet et al., 2004).

Figure 2.4: A diagram of the striped domains during a first-order phase coexistence on

straight and curved steps. (a) represents the model system, with straight steps and boundaries

in the same direction. It is the ideal case, for which the analysis is developed. (b) represents a

more natural and more variable curved step arrangement. Although it introduces some complexity,

this system is governed by the same surface effects.

Here, we utilise temperature as the main driving force behind the surface transi-

tions, where coexistence may be observed in a temperature range around the tran-

sition temperature T0 between two phases. The transition between the two phases

is gradual within a temperature range, due to the coexistence effect being benefi-

cial towards lowering the overall energy on the surface. To investigate the reason

that can happen, we explore the main contributors towards the surface energy dur-

ing that coexistence - the boundary creation Eboundary, free energy difference

Efree and elastic and electrostatic interactions Erelax.

Etotal = Eboundary + Efree + Erelax (2.1)

Let us consider a surface with a terrace size of Lw, where the phases appear in
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striped pattern, as illustrated in Figure 2.4, with one domain having a width of d,

the other domain - Lw − d. The boundary creation cost is an effect of dangling

bonds, local deformations and other factors along the boundaries between the two

phases (Alerhand et al., 1988). Denoting the cost per unit length as Cb and the

length of a boundary as Lb, the added boundary creation energy per unit area is

simply:

Eboundary =
Cb
Lb

(2.2)

The second term is a result of the free energy difference between the two phases

∆γ. It has a temperature dependence on the entropy difference ∆S between the

phases - ∆γ = ∆S(T − T0) , where T is the current temperature and T0 is the

temperature of equal coverage between the two phases. The energy contribution

from the free energy difference between the phases is then:

Efree = p
∆S(T − T0)

2
(2.3)

Here, p is the coverage parameter, defined as the fraction between the area of the

unfavourable phase Aunf and the total area Atotal:

p = (2
Aunf
Atotal

− 1) (2.4)

The elastic and electrostatic energy is a product of the stress difference and the

electrostatic fields at the phase boundaries, which cause local relaxation of the atoms

around the boundaries.

The stress difference at a non-relaxed phase boundary can be expressed as a

localised force ∆λ, equal to that difference.

Figure 2.5: A diagram of phase coexistence on a stepped surface.

In response to ∆λ, the atoms around the phase boundary relax. Phase coex-

istence is a direct consequence of elastic relaxation at phase boundaries.
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The total force distribution, in the plane of the surface, is expressed as (Müller &

Saúl, 2004):

~F (~x) = ∆λ
∑
n

(
δ
(
x−

(
nLw +

d

2

))
− δ
(
x−

(
nLw −

d

2

)))
(2.5)

In this expression, we find x = 0 in the middle of a stripe of width d. Here δ is

the delta function and Lw is the terrace width. This equation represents a sum

of the local forces, exhibited periodically only at the phase boundaries and steps,

with the force being zero inside the regions with a single phase. Neighbouring phase

boundaries posses opposing force monopoles ∆λ, which repel each other, forcing

equal spacing between boundaries. The resulting displacement field in response to

the force in equation 2.5 can then be calculated through:

ε(x) =
2(1− ν2)

πΥ

∫
F (x′)

x− x′
dx′ (2.6)

Here, Υ is Young’s modulus, ν is Poisson’s ratio. The elastic energy per unit area

is the work done by the force against the displacement field:

Eelastic =
1

2L2
w

∮
∆λεdA =

∆λ

Lw

∫
εdx =

2(1− ν2)∆λ
πΥLw

ln

(
Lw
πa

sin

(
πd

Lw

))
(2.7)

where a is a microscopic cut-off of the order of a unit cell size, which helps avoid

short-wavelength divergences, but is not impactful towards the final results. Details

on the derivation of equations 2.5, 2.6 and 2.7 can be found in Müller and Saúl,

2004. With Cλ =
(1− ν2)∆λ

πΥ
, the energy contribution from the elastic interactions

becomes:

Eelastic =
2Cλ
Lw

ln

(
Lw
πa

cos

(
πp

2

))
(2.8)

Here, the coverage parameter varies from p = −1 for full coverage of one phase

to p = 1 for full coverage of the other, and p = 0 for equal coverage.

The electrostatic fields are a result of the difference in work functions between

the two phases. The electrostatic energy has a similar form to equation 2.7:

Eelectrostatic =
1

L2
w

∮
dS

∫
v(~r − ~r′)

(
∆φ

4π

)2

dr′ (2.9)

Vanderbilt, 1992 shows that from the reciprocal space sum of energies for a

striped surface of alternating domains, the energy reduction is:

Eelectrostatic =
∆φ2

4π2Lw
ln

(
Lw
πa

cos

(
πp

2

))
(2.10)
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Then, defining a constant for electrostatic interactions as Cφ =
∆φ2

8π2
, the energy

due to electrostatic interactions becomes:

Eelectrostatic =
2Cφ
Lw

ln

(
Lw
πa

cos

(
πp

2

))
(2.11)

Now we can combine elastic and electrostatic interactions to describe the total

energy associated to the relaxation of atoms along the phase boundary (Hannon

et al., 2001):

Erelax =
2Cm
Lw

ln

(
Lw
πa

cos

(
πp

2

))
(2.12)

where Cm = Cλ + Cφ.

Putting back the contributions in equations 2.2, 2.3 2.12 into equation 2.1, the

total formation energy from these contributions per unit area becomes:

Etotal/A2 =
Cb
Lb

+ p
∆S(T − T0)

2
− 2Cm

Lb
ln

(
Lb
πa

cos
(pπ

2

))
(2.13)

Here, Lb is the length of a boundary. The coverage parameter p is the ultimate

balancing factor in this equilibrium of competing forces. Neighbouring boundaries

repel each other, forcing the phase boundary towards the middle of the terrace,

favouring equal coverage - p = 0. This is balanced by the free energy difference

∆γ = ∆S(T − T0), which forces a larger area for the energetically less-expensive

phase as the temperature goes further away from T0. This effect favours an imbalance

of the coverage and pushes p to 1 or −1. Overall, the elastic relaxation compensates

for the costs of boundary creation and maintaining an unfavourable phase with a

higher surface energy. These forces balance out at equilibrium and determine the

configuration of coexisting domains by setting the phase boundary’s overall position.

All these interaction energies at the boundary need to balance out in not only

where the boundary is, but what its shape is. The force monopoles at the phase

boundaries are driving the boundary towards compressing the phase with a larger

tensile surface stress than the other. This leads to temporary kinks, or fluctu-

ations of the boundary. They are enabled through a mass transport mechanism

along the boundaries, driven by a density difference between the phases. Entropy

gained through having a more random wandering boundary shape would also aid
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the boundary fluctuations. This is countered by the cost of boundary creation,

which pushes the boundary towards the shortest possible variant and favours a

straight boundary, thus reducing the amplitudes of fluctuations. The repulsion be-

tween force monopoles at neighbouring boundaries also pushes towards a straight

boundary (N. C. Bartelt et al., 1992; Hannon & Tromp, 2003).

The energy cost of creating a small deformation is governed by the boundary

stiffness β̃. It is defined as the energy cost of introducing a bend to the boundary

and combines the cost of increasing the boundary length and the cost of changing

its orientation, giving:

β̃ = β(θ) +
∂2β

∂θ2
(2.14)

for some θ rotation. We consider the 1D profile of a boundary y(x), with y = 0

being the reference straight boundary, and x running along that reference. Then, as

a result of the boundary stiffness, the energy change, associated to creating a small

offset in the boundary from y = 0 is given by (Hannon & Tromp, 2001; Jeong &

Williams, 1999):

∆E =

∫
β̃

2

(
∂y

∂x

)2

dx (2.15)

The quadratic dependency of the energy change ∆E to the step deformation gradient

(∂y/∂x) suggests that smaller fluctuations, possessing a larger (∂y/∂x), would decay

much quicker. To utilise this result, it is natural to look at the Fourier transform of

the boundary profile y(x, t):

yq(t) =
1

N

∑
x

y(x, t) exp(−iqx) (2.16)

In that transformation, the short-wavelength modes would be expected to have

smaller amplitudes. This relationship is shown experimentally in many systems

(Ondrejcek et al., 2003; Ondrejcek et al., 2005; Ondrejcek et al., 2002, 2004) and,

as suggested by equation 2.15, follows a quadratic relationship between the mean

squared amplitude |yq(q)|2 and the wave number q:

〈|yq(q)|2〉 =
kBT

Lbβq2
(2.17)

The repulsion between neighbouring steps and boundaries adds to the energy

change in a deviation from y = 0 along the boundary. That repulsion can be
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modelled as a quadratic potential, in analogy to a simple harmonic oscillator (N. C.

Bartelt et al., 1990):

V (y) = cy2 (2.18)

For that confining potential, the step distribution is a Gaussian shape:

P (x) =
1√
2πσ

exp

(
− x2

2σ2

)
(2.19)

Where σ is the standard deviation of the Gaussian, given by N. C. Bartelt et al.,

1992 to be:

σ2 =
kBT√

8cβ̃
(2.20)

If we consider the confining potential as the main driving force behind the boundary

position in equation 2.1, we can obtain an expression for the confining constant.

Keeping in mind that the confining potential is per unit length, from equation 2.18,

the confining constant c becomes:

c =
1

2

∂2(LbE)

∂d2
(2.21)

Differentiating, we get:

c =

(
π

Lb

)2

Cm

(
1 + tan2 pπ

2

)
(2.22)

If we consider the fluctuations when the coverage of the two phases is equal,

p = 0, for the width of the Gaussian distribution, for the variance σ2 we get:

σ2 =
kBTLb

2π(2β̃Cm)
1
2

(2.23)

The fluctuations distribution is directly accessible from experiments and, if we

know the boundary stiffness β̃, gives a direct measurement of the elastic and

electrostatic interactions constant Cm.

2.1.2 Coexistence in Growth

The knowledge of how a surface exhibits phase coexistence is valuable in practice,

as the quality of the grown material is directly linked with the quality and uniformity
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of the substrate surface - growing on the appropriate surface reconstruction can be

impactful. If one wants to grow in a region of conditions where a stable phase

coexistence would appear, as described above, a logical workaround to avoid the

extra complexity of the two phases on the surface is to move away from the conditions

just enough so that only one of the two phases remains on the surface and grow there.

Despite everything, in such a situation the surface can still exhibit phase coexistence

between the two phases during the deposition itself.

To understand this phenomenon, lets explore a newly formed small circular island

on a flat surface during growth. It can be thought of as a growing circular terrace

with a height of one atomic layer, bound by a step. As we have seen in Section

2.1.1 above, interactions at phase boundaries and steps can help in stabilising a less

favourable surface phase (Plass et al., 2001). As is observed in the experiments

Figure 2.6: A diagram demonstrating the evolution of a step island containing an

unfavourable phase (Phase 2).

conducted in Chapter 4 during MBE growth deposition, the less favourable phase

appears on these newly formed islands. The islands continue growing until the less

favourable phase gives way to the main phase of the surface, as depicted in Figure

2.6.

The system can be described through the probability per unit area and time ρ

that the favourable phase nucleates on the unfavourable, at which point we lose one

of the unfavourable domains. The probability distribution for the phase transfor-

mation inside an island is derived by Hannikainen et al., 2019 as:

f(R) = ρ
πR2

ν
exp

(
− ρπR3

3ν

)
(2.24)

The probability is dependent on the radius of the island R and the step velocity
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during growth ν, which is experimentally found and shown to be constant over time

in Chapter 4. This yields the average domain radius upon phase transformation

through 〈R〉 =
∫∞
0
Rf(R)dR. The average domain radius upon transformation is

then:

〈R〉 = Γ(4/3)−1
(

3ν

πρ

) 1
3

(2.25)

where Γ is the Gamma function. The nucleation probability parameter ρ is de-

pendent on the energy barrier of nucleating the new phase Ebarrier and follows the

Arrhenius form:

ρ = ρ0 exp

(
− Ebarrier

kBT

)
(2.26)

Here, ρ0 is the initial number of domains, kB is the Boltzmann constant and T

is the temperature on the surface. The energetics of a circular island, covered by

the unfavourable phase are similar to the form of Equation 2.13 in Section 2.1.1

previously. In a dilute regime, where the unfavourable phase is pronouncedly the

minority phase in the coexistence, different nucleating islands do not interact with

each other and we can focus on the energetics of a single island. The total energy

for an island of radius R sums up the contributions in 2.1 and is given by Ng and

Vanderbilt, 1995:

Etotal/island = 2πRCb + πR2∆γ − 2πRCm ln

(
4R

ae2

)
(2.27)

Even though the form is similar to the stripe pattern case, there are differences

for each of the energetic contributions in the growth island energetics that are worth

noting. The first term represents the boundary creation cost. In the circular island

case, the length of the boundary grows as the unfavourable domain grows. This

leads to a linear increase to the boundary creation cost, in contrast to the approxi-

mately constant boundary creation cost of the stripe pattern case. Concerning the

second term, the difference in free energies ∆γ in the case of growth additionally

incorporates a contribution from the flux of atoms. The effect of the supersaturation

on the surface due to the external flux introduces a change in the chemical poten-

tial µ and is equivalent to changing the local free energy difference by an amount

∆N(µ− µc), where ∆N is the difference in reconstruction atoms in the two phases

and µc is the chemical potential at the phase transition. In other words, the presence

of extra atoms favours the phase whose reconstruction incorporates a larger number
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of atoms. In the third term, which accounts for the elastic interactions, there is a

lack of periodicity, as illustrated in Figure 2.7. This leads to a monotonic decay of

the elastic interactions as the island radius R increases.

Figure 2.7: A diagram of the elastic interactions in a step island containing an un-

favourable phase.

The barrier energy is when the island grows enough that the minority phase be-

comes unstable towards the majority phase. In other words, Ebarrier = Etotal/island(R
′)

at some radius R′, where ∂Etotal/island/∂R = 0. When this is used to express the nu-

cleation probability in Equation 2.26, this type of coexistence during growth

can be described through the domain radii upon transformation 〈R〉 with

Equation 2.25.

2.2 Low-energy electron microscopy (LEEM)

Low-Energy Electron Microscopy (LEEM) belongs to the family of cathode lens

electron microscopy, where the sample itself is used as a cathode, emitting the

electrons out of which the image is formed. LEEM does that through the effect of

elastic backscattering - the reflection of an electron beam from the crystal surface

without loss of energy. LEEM is designed to study the structure and morphology

of surfaces, thin-films and surface-based nanostructures with high temporal and

spacial resolution. This is possible due to the low energy of the electrons, which

limits their penetration depth and makes LEEM very surface-sensitive. The nature

of the interaction between the electron beam and the surface enables high contrast

between different structures and reconstructions on a crystalline surface, enabling

the detailed imaging of surface dynamics in situ. It is a sample-preserving technique,

which opens up its application to beam-sensitive materials (Bauer, 2014).
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2.2.1 Low energy electrons

LEEM uses electrons with energies in the range of 0−100 eV, with the de Broglie

wavelength of electrons with such energies being of the order of a few Å. This

wavelength is similar to X-ray wavelengths, and is comparable to typical atomic

separations in solids. For this reason, the elastic scattering of the electrons off

the crystalline surface enables diffraction in LEEM imaging. This provides a great

advantage, as LEEM is able to tap into both real space and reciprocal space.

The reflection during elastic backscattering off of a crystalline surface occurs

at certain discrete diffraction angles, which are determined by Bragg’s condition,

requiring constructive interference between backscattered electrons. Since the elec-

trons are elastically backscattered, they must also satisfy the requirement for con-

servation of momentum. These discrete Bragg angles can be practically observed as

the reciprocal space diffraction imaging - the places where bright spots are allowed

to form on a diffraction image, as they are focused to the same image spots by

the microscope’s optical system. Bragg’s condition can be visualised through the

construction of the Ewald sphere. With the shallow penetration depth of the low

energy electrons, we can simplify the construction of the Ewald sphere to account

for just two dimensions, assuming the low energy electrons only ’see’ the first atomic

layer of a surface. An electron of energy E will have a momentum of:

~k =
2π

h

√
2meE

where h is Planck’s constant and me is the electron mass. This momentum

must be conserved throughout the interaction. We can split the total momentum

into components ∆ ~k⊥ and ∆~k‖, perpendicular and in-plane of the surface. As a

consequence, If, for example, the electron gains an angle of deflection, as permitted

by Bragg’s condition, it will gain an in-plane component of its momentum ∆~k‖,

which must be compensated by a reduction in its surface-perpendicular component

∆ ~k⊥, so that the magnitudes of the momenta before and after interaction remain

the same and only the direction of momentum changes:

‖~ki‖ = ‖ ~kf‖ = ‖~k‖‖+ ‖ ~k⊥‖

The size of the sphere corresponds to the energy of the incident electrons. The

reciprocal lattice is extended by building imaginary rods at the reciprocal atomic
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spacing of the surface. The crossing points between the Ewald sphere and imaginary

rods are where diffracted electron beams are allowed to reflect. This translational

symmetry parallel to the surface dictates that ~k‖ can only change in multiples of the

lattice vector upon reflection. As a consequence, the diffraction pattern spacings

observed in the Low-Energy Electron Diffraction (LEED) pattern are equivalent to

a lattice vector on the surface and the constants of a unit cell can thus be directly

determined. A diagram illustrating the construction of the Ewald sphere on top of

a crystalline surface is shown if Figure 2.8.

Figure 2.8: A diagram of the construction of the Ewald sphere. (a) The sphere is

constructed on top of the reciprocal surface, where the incident beam falls. The Ewald sphere

represents Bragg’s condition. The reciprocal lattice is extended with imaginary rods, built at the

reciprocal atomic spacing. Where the rods cross the sphere, the diffraction conditions are met (b)

and beams will form a diffraction spot (c).

This construction suggests that the visible diffraction spots remain constant

28 Chapter 2 Matyo Ivanov



Computational methods for quanifying surface structure and dynamics with LEEM

with changes in electron energies. However, in practice we observe modulations in

diffraction spots as we vary the electron energy, due to the finite, but multiple layer

penetration of the electrons. This can be represented by modulations in the rods in

the Ewald sphere construction, as shown in Figure 2.9. In practice, we observe this

modulation when we vary the electron beam energy and diffraction spot intensities

change due to the Ewald sphere growing and shrinking and passing through the rod

modulations.

Figure 2.9: A diagram of the Ewald sphere for a finite penetration depth of electrons.

A more comprehensive description of diffraction pattern formation is achieved

with the paradigms of multiple elastic scattering and the Bloch wave approach (Flege

& Krasovskii, 2014; Hove & Moritz, 2022; Krasovskii, 2004).

The strong surface sensitivity of the low energy electrons leads to the main

two contrast mechanisms of the LEEM microscope - phase contrast and diffraction

contrast (Bauer, 2014; Flege et al., 2012).

Phase contrast occurs due to variations in the morphology of the sample, which

cause spacial phase shifts to the electron waves without otherwise affecting their

amplitude. A common observation due to this effect is a surface step, where the

height difference around the step causes the phenomenon (Altman et al., 1998). As

the electron wavelengths in LEEM are of the order of atomic layer thicknesses, they

are also of the order of surface step heights. The phase shift φ is then directly

dependent on the path length difference d and the electron wavelength λ:

φ =
2πd

λ
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Phase contrast then originates from the interference of the electron waves, reflected

from the opposite sides of a step. Practically, a range of phase shifts can be sampled

by varying the electron energy.

Diffraction contrast, also known as amplitude or reflectivity contrast, occurs due

to the difference in reflectivity of different structures on the sample surface. It

is observed as a spacial variation of electron intensity after reflection from different

surface reconstructions and structures and is sensitive to the incident electron energy.

It is due to the unique sets of diffraction peaks, caused by different structures with

different lattice and structure factors.

2.2.2 The LEEM imaging system

Figure 2.10: A diagram of the Elmitec LEEM-III with its key components labelled. The

Illumination column contains three Condenser Lenses (CL), who’s job is to deliver a well-shaped,

collimated and coherent beam to the sample. An illumination aperture at the end of the Illumi-

nation column allows the limiting of the beam size and shape, as it reaches the sample. The beam

passes through a beam splitter in the middle of the apparatus, which deflects the incident beam

towards the sample and the relfected beam towards the imaging column. The imaging column

uses a Transfer Lens (TL), a Field Lens (FL), an Intermittent Lens (IL) and two Projective Lenses

(P1, P2) to focus and scale the image formed by the objective lens onto a Multi-Channel Plate,

followed by a camera.
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The basic setup of a LEEM instrument is illustrated in Figure 2.10. It follows

similar design patterns to Transmission Electron Microscopy (TEM) instruments,

controlling the electron beam with electromagnetic lenses, which are aligned by

deflectors. The setup can be broadly divided into three sections. The beam is

produced by an electron gun and it initially passes through the Illumination column,

which serves to collimate and control the beam shape, as it reaches the sample.

Then, the beam passes through a beam splitter and an immersion objective lens to

deflect the beam towards the sample, focus it and slow it down. After the electrons

interact with the sample, they go through an Imaging column, which focuses the

reflected beam to form a high resolution image. Beam apertures are placed at the

end of the Illumination column to control the beam size as it reaches the sample,

and in the Imaging column, where the reciprocal image is formed, to filter out

diffraction spots and enable different LEEM imaging modes, which are detailed in

Section 2.2.3 below. The pressures throughout the LEEM system are maintained in

the Ultra-High Vacuum (UHV) order range using ion pumps.

The design of the LEEM itself has historically posed several challenges before the

technique could become a routine reality. To minimise the effects of imperfections in

the lenses or alignment, the beam passes by the microscope lens setup at 20 k eV, and

to achieve the low electron energies in the order of several eV, it must be decelerated

with rates of about 10 k eV mm−1. This is achieved with the electrostatic immersion

objective lens, which places the sample in a strong electrostatic field, as shown in

Figure 2.11.

As the beam is reflected back from the sample, it tracks back its previous path.

Overall, it passes through the objective lens twice. The first pass focuses the beam

onto the sample, and the second pass forms a real image of the sample. The uni-

formity and strength of the electrostatic immersion field between the two passes

is a main factor in the overall performance of the microscope (Tromp, 2000). To

split the ”folded” beam into an incident and a reflected beam, a magnetic beam

separator, or the beam splitter, is designed to deflect the beams at opposing angles

in both directions (Tsuno et al., 1995), which in the case of the LEEM-III are 60◦

deflections.
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Figure 2.11: A schematic of the immersion objective lens, designed to both focus the

beam onto the sample through its magnetic lens, and slow the beam down between itself and the

sample through an electrostatic field. As the beam is sensitive to stray magnetic fields when it is

slow, the lens must isolate the magnetic field well.

2.2.3 LEEM Techniques

There are several different configurations of the LEEM instrument, which allow

imaging in different modes, each carrying its own benefits. Here, we give short

overviews of the main imaging modes the LEEM system provides.

Photoemission Electron Microscopy (PEEM) is a type of imaging, where light

sources, such as simple Hg lamps in standard LEEM instruments and syn-

chrotron based light sources in dedicated beamlines, are used to illuminate

the sample and excite photoelectrons. The tunability of light energy and po-

larisation enable powerful techniques, such as x-ray absorption spectroscopy

and angle-resolved photoemission spectroscopy.

For the work in this thesis, PEEM finds an important role in the initial align-

ment procedure of the instrument, where it allows the Imaging column lenses

to be aligned independently of the Illumination column.

Mirror Electron Microscopy (MEM) is an imaging mode, where the electrons

are given such little energy that they are stopped by the immersion field before

they reach the surface of the sample. Instead, they are reflected in front of
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the sample surface and only interact with its ’near-sample’ field. The reflected

electrons carry information on the surface morphology, creating contrast be-

tween surface objects. It is especially useful for imaging surfaces without a

crystalline structure, where topological information can still be gathered, de-

spite the inability to use other LEEM methods.

For the work in this thesis, this mode is used during the routine alignment of

the instrument and during surface preparation, before experiments begin.

LEED and micro-LEED (µLEED) allow the imaging of reciprocal space when

the lens configuration of the instrument is set to image the back-focal plane.

This LEED configuration produces diffraction patterns from a crystalline sam-

ple. When the illumination aperture is used to limit the beam to a small spot

on the sample surface, a µLEED diffraction pattern is produced only for that

spot. This method is used to track the surface structure and identify the

observed surface phases during experiments.

Bright Field (BF) and Dark Field (DF) imaging uses the instrument’s con-

trast aperture on the LEED pattern to isolate a single beam and produce

real-space images from only that specific reflection. If the selected beam is the

central (00) beam of the diffraction pattern, which usually has the strongest

intensity, we enter the BF imaging mode, while if another beam is isolated, we

enter the DF imaging mode. Both these imaging modes utilise the diffraction

contrast mechanism to create contrast between different surface structures and

phases and are the main imaging modes for the duration of most experiments.

While BF imaging produces more intensity and is able to produce higher qual-

ity images, DF enables the imaging of a selected single surface phase, resulting

in very high contrast imaging.

Other techniques bring improvements and unlock new possibilities in LEEM imag-

ing. The recently developed Selected Energy Dark Field Low-Energy Electron

Microscopy (SEDFLEEM) technique allows the optimisation of electron en-

ergy during DF imaging, resulting in discrimination of several phases when

imaging through common diffraction spots (Niu et al., 2019). Another newly

developed technique allows the analysis of I-V curves mapping of LEEM im-
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ages for the precise identification of different surface phases on the sample

surface (Masia et al., 2022).

2.2.4 Resolution Limits

While temporal resolution becomes important in some applications, such as in

Chapter 3, spacial resolution is generally one of the most important imaging con-

ditions in most experiments. The resolution of a LEEM instrument, such as the

LEEM-III, is limited mainly by chromatic aberrations, spherical aberrations and

diffraction limit (Altman, 2010; Bauer, 2014; Flege et al., 2012). These instru-

ment limitations also affect the contrast during image formation (Pang et al., 2009;

Yu et al., 2019). Usually, mirror-based methods are used to compensate spherical

and chromatic aberrations in aberration-corrected instruments (Tromp, 2019). The

LEEM instrument’s ultimate theoretical limit without extra correcting devices is

3− 8 nm, depending on the used electron source (Bauer, 2014; Tromp et al., 1998).

While mechanical and electrical instabilities can also have an impact on the resolu-

tion, they are usually negligible in well-designed instruments, compared to the main

three factors, which we describe shortly here.

Diffraction limit This effect arises in LEEM when using the contrast aperture.

The size of the aperture is the deciding factor here. A trade-off between a

small aperture size, which creates a small acceptance angle of the selected

beam and increases the diffraction limit, and a large aperture, which allows

other aberrations to dominate the resolution limits is necessary.

Chromatic aberrations are caused by the change of focal length with electron

energy variations. These variations are a result of the energy spread of the

electron gun. With the energy spread of the LaB6 electron gun (∆E ≈ 0.7eV ),

the Elmitec LEEM-III microscope resolution is limited to about 8 nm. Field

emission guns usually have a smaller energy spread, at the cost of lower imaging

intensity. Electrostatic tetrode mirror correctors can be used to compensate

for this effect and bring improvements in the instrument’s resolution (Tromp

et al., 2013).

Spherical aberrations are a result of the electrons travelling at an angle to the
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optical axes of lenses. The electrons in the beam would then be deflected

towards a slightly different focal point, causing image deterioration. This is

corrected with the alignment procedure, where the lens deflectors are adjusted

to make sure the beam is aligned to the optical axis of the instrument.

2.2.5 Advantages of LEEM

The LEEM microscope is one of a number of electron microscopies available.

However, it comes with its distinctive properties and brings key advantages that

make the data gathered by it unique and a valuable addition to surface science ob-

servations (Altman, 2010). Its benefits enable the monitoring of real-time dynamics

of crystal surfaces in-situ, in a variety of experimental conditions.

Surface sensitivity The low energy electrons have a very short penetration depth,

which is just 1-2 atomic layers at its minimum around 50 eV leads to the high

surface sensitivity of LEEM. The penetration depth at very low energies rises

to the orders of a few nm, enabling the probing of deeper layers, while also

experiencing a sharp increase in surface reflectivity, enabling short acquisition

times during experiments.

Structural sensitivity LEEM images with high contrast between surface struc-

tures and phases, due to phase and amplitude differences in reflected elec-

trons. The variation of electron wave amplitudes arises from their reflections

from parts of the surface with different reflection coefficients. These spacial

variations of the amplitude depend on the incident beam energy, and as a

result, contrast changes with electron energy variations. This effect is utilised

in BF and DF imaging.

Non-scanning The electrons in LEEM imaging arrive at the sample surface as a

collimated, coherent beam that illuminates a surface area simultaneously. The

resulting image is formed from information, gathered at the same time from

the surface. This ensures that any dynamical effects are truthfully recorded in

every image, whitout needing to account for scanning rates during imaging.

Sample preserving The electrons arrive at the surface with very low energies

during LEEM imaging and it is therefore suitable for imaging beam-sensitive
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Parameter Elmitec LEEM-III limit

Max. Resolution 8− 10 nm

Max. Acquisition Time 20 fps

Min. Background Pressure 1× 10−10 Torr

Max. Sample Temperature 1200 °C

Table 2.1: A summary of our practical experimental condition limits with the Elmitec

LEEM-III.

surfaces. The effects of burning and charging samples are negligible, and there

are no effects on the surface dynamics, brought by the imaging.

The LEEM-III at Cardiff University is specifically designed to emulate the growth

conditions during Molecular Beam Epitaxy (MBE) growth of III-As materials. It is

equipped with a Gallium, Indium and Arsenic sources and can bring the samples to

more than 1200 °C. The experimental conditions limits are shown in Table 2.1.

2.3 Computer Vision for microscopy imaging data

The copious amounts of imaging data that the LEEM microscope produces open

a wide plain for analysis, the manual completion of which requires significant effort

and exposes the studies to errors and inconsistencies. For this reason, the data

analysis throughout the work presented in this thesis is approached with Computer

Vision (CV) algorithms and purpose-built data analysis pipelines, through which

the extraction of information becomes systematic, consistent and precise.

With the impressive advancements of Machine Learning (ML) and Deep Learning

(DL) algorithms in the domain of images, it is very tempting to solely focus on their

usage and forget about the decades worth of classical CV algorithms developed,

tested and established with time. However, even though the new State-Of-The-Art

(SOTA) algorithms have been shown to outperform the old generation in many CV

tasks, certain advantages still lie in the older methods. To begin with, traditional

CV methods are quick in simple tasks, since they have been incrementally improved

and optimised with time and are a good alternative to the complexity of training an

ML algorithm. Furthermore, the traditional algorithms are founded in mathematical

manipulations and as a result are more stable, predictable and explainable compared
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to their ML counterparts. Additionally, there are applications of traditional CV

methods, which have still not been clearly surpassed by ML and DL techniques

in fields, such as in image enhancement, object tracking, optical flow and image

stitching. Finally, certain weaknesses can emerge with the application of the ML and

DL approaches, such as lack of sufficient training data, or data labelling capabilities,

which can become a barrier. In such situations, traditional methods can still provide

a powerful solution. Overall, ML and DL methods have shown clear superiority

in many fields, but traditional CV methods still have a plethora of applications.

In this work, we make use of both approaches, depending on the tasks at hand.

For the purposes of preprocessing and object tracking in Chapters 3 and 4, we

construct pipelines of traditional CV algorithms, while for the more complex analysis

in Chapter 5, we utilise ML and DL approaches.

2.3.1 The use cases of traditional Computer Vision

LEEM imaging is powerful in its temporal and lateral resolution, which allows

observation of surface dynamics on a nanometer scale. However, the images nat-

urally come with inherent imperfections, which we address to improve the quality

of our observations. CV methods can become a powerful tool to mitigate imaging

limitations and enable a new level of precision in measurements, as well as to extract

new information from images (de Jong et al., 2020). In the following section, we

outline the building blocks of our CV pipelines that we use for preprocessing and

analysing our LEEM imaging data. The ’toolbox’ of algorithms was built in Python,

mainly using the implementations in scikit-image and OpenCV (Bradski & Kaehler,

2008; van der Walt et al., 2014).

Sample Drift

A frequently observed phenomenon during LEEM imaging is the imaged crys-

talline surface appearing to slowly move during imaging. This can be due to the

sample itself moving slowly as a result of small temperature variations, electrostatic

effects due to small sample charging, or outside disturbances during the experiment.

Similarly, the electron beam may drift due to some instabilities in the imaging sys-

tem, or variations in the chamber’s background pressure. In order to observe events
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over time, this drifting motion must be accounted for.

To address the issue, we use the scikit-image implementation of template match-

ing, followed by an applied translation function to our images. For a sequence of

images, a template is taken from the central regions of the first image and the best

match is sought using normalised cross-correlation of the Fourier transform convo-

lutions of the template and the second image (Briechle & Hanebeck, 2001; J. P.

Lewis, 1995). The normalized cross-correlation (NCC) function between a template

image T and a search image I at position (x, y) can be expressed mathematically

as:

N(x, y) =

∑
i,j

(Ti,j − µT )(Ii′,j′ − µI)√∑
i,j

(Ti,j − µT )2
√∑

i,j

(Ii′,j′ − µI)2
(2.28)

where µT and µI are the mean pixel intensities of the template and search images,

respectively. The corresponding pixel positions i′, j′ in the search image for the

template position (i, j) are given by i′ = i+ x and j′ = j + y.

With the best match coordinates, the subsequent image is aligned to the initial

one through a simple linear translation with a similarity transformation. This is

done iteratively for every pair of images sequentially.

Figure 2.12: Drift correction example on a set of images, gathered during a LEEM experi-

ment. The section lined in red is the part of the image that was matched to the previous template,

and used as a new template to be matched with a section of the next image. Due to the sequential

approach to alignment, where each frame is aligned to the previous one, instead of a fixed template,

imaging sequences with surface dynamics that gradually change the layout, such as in the given

example frames, can still be aligned well.
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Intensity Gradient

Another common effect is observing an intensity gradient, both spatially along

the image, and temporally, across subsequent frames. The gradients within a single

image are due to an uneven illumination of the electron beam on the surface and

larger Field Of View (FOV) imaging suffers more from this effect. The temporal

variations are due to instabilities in the electron beam source. These intensity

variations can be tackled with histogram equalisation methods, which balance the

images and increase contrast.

The simplest approach to unifying the intensities in the image data collected

throughout an experiment is to normalise it to a single intensity range of 0 to 1.

This is useful when most of the images are uniform and with high quality. It avoids

adding extra complexity to the pipelines, but due to its linearity, it suffers from

drawbacks in images with low quality or with limited saturation, where contrast may

be lost. It is used in the work in Chapter 4, where the imaging had no significant

noise or contrast limitations.

Applying histogram equalisation carries the extra benefit over linear normalisa-

tion of preserving the relative contrast of different objects and enhancing the overall

contrast in the image. It is agnostic of the image content, making it more useful over

larger and more varied image datasets. This ensures uniformity across subsequent

images. A further improvement comes with using adaptive histogram equalisa-

tion techniques, which treat different regions of the same image separately. Using

the further improved Contrast Limited Adaptive Histogram Equalization (CLAHE)

method carries the extra benefit of limiting the amplification of noise, making it

valuable for large datasets of noisy images with low contrast (Pizer et al., 1987).

It is used in the work in Chapter 3, where the images were taken on the limits

of the LEEM microscope’s capabilities. The three general approaches to intensity

equalisation are demonstrated with an example in Figure 2.13.
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Figure 2.13: Histogram equalisation examples of a LEEM image with a mild intensity gradi-

ent due to imperfect alignment. The linear normalisation (a) does not improve image contrast. The

global histogram equalisation (b) brings improvements of contrast, but suffers from over-saturation

due to the intensity gradient in the image. The CLAHE method (c) keeps the information in the

image, while still producing incremental improvements in the image contrast.

Noise reduction

Noise reduction is a fundamental task in image processing that aims to remove

unwanted noise from images while preserving important image features. There

are two broad categories of noise reduction methods: standard methods and edge-

preserving methods.

Standard Linear Translation-Invariant (LTI) methods, such as median filtering

and Gaussian smoothing, are simple and effective techniques for reducing noise in

images. Median filtering replaces each pixel with the median value of its neighbor-

hood, which loses the finer features on the surface, but reduces noise. Gaussian

smoothing convolves the image with a Gaussian kernel, which results in a smoother

image with reduced noise.

Edge-preserving methods, such as bilateral filtering and Non-Local Means (NLM)

filtering, are designed to preserve important image features while reducing noise.

Bilateral filtering takes into account both the spatial distance and the intensity dif-

ference between neighboring pixels when filtering the image. This allows the method

to preserve edges and other important image features while removing noise. NLM

filtering uses a similar approach, but instead of computing the intensity difference
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between neighboring pixels, it compares the similarity between patches of pixels in

the image. This allows the method to preserve texture and fine details while re-

moving noise. While the edge-preserving methods are able to reduce noise without

deteriorating image information, they are more computationally expensive and are

not suitable for real-time applications. Examples of the effects of some of the most

widely used denoising methods is shown in Figure 2.14.

Figure 2.14: Effect of different denoising filters on an example noisy LEEM image.

Gaussian: Convolution with a Gaussian kernel. The only LTI filter from the examples. Bilateral:

Averaging based on spacial closeness and intensity similarity. NLM: Averaging between local

pixels with similar surrounding patches. Wavelet: Thresholding small values in wavelet domain

and reconstructing. Total Variation (TV): Minimisation of the total variation of the image

gradient through optimising algorithms. Note that all denoising was done using scikit-image,

after CLAHE has been applied to the original image.

Thresholding

Image thresholding is a powerful tool when there is a profound contrast between

the objects of interest and the rest of the image. It is a mandatory step in most
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object detection and tracking methods, and is thus a necessary addition to the

preprocessing toolbox. While manual thresholding is error prone and unfeasible for

large and varied data, automatic thresholding is enabled by one of the most widely

used thresholding methods, introduced by Otsu, 1979. Otsu’s method outputs a

value for the threshold, such that it minimises the variance between the intensities

of the two groups of pixels it splits. This is expressed as:

σ2
intra(t) = w0(t)σ

2
0(t) + w1(t)σ

2
1(t)

where t is the threshold value, w0(t) and w1(t) are the probabilities of the two classes,

and σ2
0(t) and σ2

1(t) are the variances of the two classes. The goal of Otsu’s method

is to find the threshold value t∗ that minimizes the intra-class variance:

t∗ = argmin
0≤t≤T

(σ2
intra(t))

where T is the maximum gray-level value.

Once the threshold value t is determined, the image can be segmented into two

classes: pixels with gray-level values less than or equal to t belong to one class, while

pixels with gray-level values greater than t∗ belong to the other class.

Figure 2.15: Otsu thresholding example in a LEEM image.

Gradient-based Detection

Gradient-based detection methods are a common technique in computer vision

for detecting the edges in an image. These methods rely on computing the gradient

of the image, which represents the rate of change of the pixel intensities. Edges in
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an image correspond to areas of high gradient magnitude, where the pixel intensities

change rapidly.

The most common gradient-based edge detection method is the Sobel operator,

which applies a matrix derivative to both the horizontal and vertical directions of

the image:

horizontal =


−1 0 1

−2 0 2

−1 0 1

 vertical =


−1 −2 −1

0 0 0

1 2 1


The convolution with these two kernels over the image calculate its gradient in both

the horizontal and vertical directions. The gradient magnitude at each pixel is then

calculated as the Euclidean norm of the horizontal and vertical gradients. Pixels

with high gradient magnitude are considered to be part of an edge.

This basic approach, like other gradient-based operators, provides good results

in images with well-defined edges, but is susceptible to noise, which is why extra

preprocessing steps, such as denoising can be useful. This is why the more sophis-

ticated method of Canny edge detection has become a well-established algorithm,

as it incorporates both a denoising step before the application of a Sobel operator,

and edge connectivity checks after it, to facilitate a more robust detection (Canny,

1986).

2.3.2 Machine Learning and Deep Learning

Machine Learning (ML) is the part of the Artificial Intelligence field, which

implements algorithms able to learn and improve based on data, without the need

of explicit programming to complete a task. Deep Learning (DL) is a subset of ML,

where artificial neural networks are used for the same purpose, but are generally

larger and more computationally expensive to train. They are aimed at learning

and making predictions on larger and more complex datasets. Here, we refer to the

more traditional learning approaches, such as random forests, decision trees, gradient

boosting methods and support vector machines as the ML approaches and we refer

to algorithms and architectures based on Neural Networks as the DL approaches.

The progress in ML and DL methods in CV applications in the past decade

has enabled significant advancements in Materials Science and microscopy (Ede,
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2021a; Mueller et al., 2016; Ramprasad et al., 2017; von Chamier et al., 2021). The

field’s progress has allowed a plethora of data-driven applications in microscopy

imaging, such as data cleaning (Koho et al., 2016; Yang et al., 2018), analysis of

real space imaging and diffraction data (Aguiar et al., 2019; Xing et al., 2018), image

segmentation (Akers et al., 2021; Yao et al., 2020) and process automation (Ivanov

et al., 2020; Krull et al., 2020; Pinkard, 2019). ML and DL approaches usually

bring great improvements in accuracy and performance over standard CV methods,

and become indispensable when faced with a task that cannot be approached with

analytical solutions or an intuitive rule set.

In such cases, the usage of DL algorithms in particular can be thought of as

making a learned approximation to the solution function, which is defined as the

unknown function that takes the input and calculates the correct output. In practice,

when fed with data that describes an observed phenomenon in a large enough scope,

DL algorithms are able to learn generalisations of the data and approximate the

physical model that describes the phenomenon, based on the observed data. This

is why extra care must be taken in preparing the data, as to not bring biases to

the model and encompass as many variations of the observation as possible with

balanced representation in the dataset. In essence, the quality of the data dictates

the quality of the DL model.

Supervised and Unsupervised Learning

The learning approaches in ML and DL can be broadly classified into two types:

supervised and unsupervised learning, depending on whether the training dataset

comes labelled with the correct outputs for the task we want the algorithm to learn

to predict.

Labelled datasets are needed for supervised problems such as classification, where

the data needs to be categorised, or regression, where the correct output needs to be

approximated in a non-discrete space. It is especially useful in microscopy imaging

for tasks, where the data is simulated with known parameters, or is taken from exam-

ples that are well described and the variables are well controlled. Common examples

of such tasks are identification of images and diffraction patterns, classification of

particles, phases and structures.

44 Chapter 2 Matyo Ivanov



Computational methods for quanifying surface structure and dynamics with LEEM

On the other hand, in unsupervised learning, the algorithm is trained on an

unlabelled dataset, where the correct output is not known. The algorithm learns

to find patterns and structure in the data without any prior knowledge of what

the output should be. Both the learned outputs of the algorithms and the found

semantics in the data to achieve these outputs can be very useful. Common tasks

in microscopy imaging that rely on unsupervised learning are image clustering for

analysis, image segmentation, denoising and generation of microscopy imaging data.

Both ML and DL approaches are utilised in Chapter 5.

Machine Learning

Traditional ML approaches are powerful when used for relatively small, well-

structured datasets where the relationships between the features and the target

variable are well understood. They rely on feature engineering as a preprocessing

step for the data before their training for best performance.

When approaching suitable tasks, it is common to test multiple algorithms and

compare them based on their success. This is usually done through metrics such as

accuracy, f1-score and recall for classification, or mean absolute error and r2-score in

regression tasks. These metrics compare the outputs of algorithms to the expected

outputs to measure their performance. Details on the most common metrics for

model evaluation are given in Table 2.2.

The most commonly used algorithms for classification and regression tasks in-

clude Naive Bayes, k-Nearest Neighbours (kNN), Random Forests, Decision Trees,

XGBoost and Support Vector Machines (SVM) with different kernels. The other

important application of the traditional ML approaches is in clustering and manifold

learning. These applications reveal relationships between data examples, based on

the distances in a learnt space, where the data examples are represented by a point.

Such algorithms include K-Means Clustering, SVMs, Gaussian Mixture Models and

Density-Based Spatial Clustering of Applications with Noise (DBSCAN).

These traditional ML algorithms are cheap to train and can be easily imple-

mented using popular machine learning libraries such as scikit-learn and PyTorch

(Paszke et al., 2019).
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Metric Task Description Formula

Accuracy Class. Proportion of correct predictions

out of total predictions

TP+TN
TP+TN+FP+FN

Precision Class. Proportion of true positives out of

predicted positives

TP
TP+FP

Recall Class. Proportion of true positives out of

actual positives

TP
TP+FN

F1-score Class. Harmonic mean of precision and

recall

2 · TP
2TP+FP+FN

MAE Reg. Average absolute difference be-

tween predicted and actual values

1
n

∑n
i=1 |yi − ŷi|

MSE Reg. Average squared difference be-

tween predicted and actual values

1
n

∑n
i=1(yi − ŷi)2

R2-score Reg. Proportion of variance in the

target variable explained by the

model

1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

ROC AUC Class. Performance of binary classifier at

different thresholds

Area under ROC curve

Table 2.2: Common metrics for evaluating classification and regression models. R2-

score is also known as the Coefficient of Determination and ROC AUC computes the Area Under

the Receiver Operating Characteristic (ROC) Curve.

Deep Learning

DL approaches involve the construction of Neural Network (NN) models, which

are suitable for dealing with vast amounts of data with large complexity and vari-

ability. Their application in the field of CV is particularly strong, and has led to a

significant amount of innovation in microscopy imaging (Ede, 2021b). DL methods

are capable of ingesting data without particular need for preprocessing and feature

engineering steps, although image augmentation as a preprocessing step has been

shown to be very beneficial, especially when working on relatively small datasets

(Shorten & Khoshgoftaar, 2019).

Different NN model architectures are designed to deal with specific tasks, such as
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image classification, segmentation, reconstruction or generation. The networks are

constructed by stacking layers with different sizes and functionalities and controlling

the flow of data between them. Most of the layers contain parameters, which are

adjusted during the training process, enabling the model’s learning. The networks

can be built using Python frameworks, such as PyTorch and Tensorflow (Abadi et

al., 2016).

Here, we describe the common ideas and most widely used building blocks of

NN models in the context of CV and microscopy imaging applications and their

importance for model performance.

Key concepts in the training process. The aim of the training process is to

adjust the weights of the network to minimise the difference between the network’s

predicted outputs and the expected outputs, given the set of training data. The

difference between the predicted and expected outputs is defined through the loss

function. The loss function quantifies how well the model is performing on a spe-

cific task, and the goal of the training process is to minimise the loss by adjusting

the model’s parameters with optimisation algorithms, such as the Adam Optimiser

(Kingma & Ba, 2015).

The key process used to apply changes to the model parameters is backpropaga-

tion. It works by calculating the error at the output layer of the network and then

propagating that error backwards through the network, layer by layer, to adjust

the weights. The adjustment is computed through gradient descent, which uses the

gradient of the loss with respect to the weights. The weights in the network are

then updated in the opposite direction of the gradient. This is an iterative process,

which happens over many steps and many iterations of the data, called epochs, until

the training loss is minimised.

To ensure the model has been trained well, it is crucial to check the trained

model’s performance on testing data that it has not seen during its training. Under-

performance on such data, compared to the model’s performance during training can

indicate overfitting. This usually happens when the model’s size is too large, com-

pared to the dataset, which allows the network to simply learn the different examples

it is presented with during training ’by heart’, resulting in poor generalisation of the

data and low performance on unseen examples.
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The neural layers. Almost all the learning during the NN model’s training hap-

pens in layers of neurons, which contain almost all of the model’s learning parame-

ters. Neurons are nodes in layers, through which the data flows and computations

are made. Neurons contain weights, usually for each input they receive, which are

adjusted during training to optimise the outputs of the model.

The simplest such layer is the Fully Connected (FC) layer, also known as the

dense layer. In this type of layer, all neurons in the previous layer are connected to

every neuron in the current layer. This means that each neuron in the current layer

receives input from every neuron in the previous layer, and outputs a single value

to be passed to the next layer.

In the heart of models trained for image processing tasks, convolutional layers are

commonly used instead of the FC layers. Convolutional layers apply a set of filters

by means of their kernels, which contain the trainable parameters. The kernels are

applied over the images with dot products and are able to extract sets of feature

maps from them, which have been trained to contain features of interest for the

specific task during model training. When constructing models, we are able to

adjust hyperparameters, such as the number of filters, size of the kernels and kernel

stride for each convolutional layer.

Non-linear activation functions. A non-linear activation function is usually

added as a layer before each pass onto a learning layer. It allows the network to

learn complex and non-linear relationships between inputs and outputs, which is

often necessary in CV and microscopy applications where the data can be highly

complex and non-linear. Without non-linear activation functions, a neural network

would essentially be reduced to a linear model, which would severely limit its ability

to model complex patterns in the data. Therefore, non-linear activation functions

such as exponential linear unit (ELU), rectified linear unit (ReLU), leaky rectified

linear unit (LeakyReLU), sigmoid, and tanh are commonly used in deep learning

architectures to introduce non-linearity and improve model performance. Their

equations and shapes are shown in Table 2.3. Modern approaches also include

trainable activation functions (Apicella et al., 2021).
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Activation Function Formula Graph

ReLU f(x) = max(0, x)

Leaky ReLU f(x) =

x, x ≥ 0

αx, x < 0

ELU f(x) =

x, x ≥ 0

α(ex − 1), x < 0

Sigmoid f(x) =
1

1 + e−x

Tanh f(x) =
ex − e−x

ex + e−x

Table 2.3: Common activation functions with their formulas and graph shapes.

Normalisation. Normalisation keeps the data in a defined range of values through-

out its pass in the model. It is a necessary step to ensure that data values do not

grow out of control and remain in the range, where they can be easily manipulated

by the layer weights and the non-linear activation functions. The most common

approach in CV applications is the usage of Batch Normalisation, which performs

its normalisation over the entire batch of data that passes through the model at

each training step or model inference (Ioffe & Szegedy, 2015). It contains learn-

able parameters, which adapt to the data. The mathematical formulation of Batch

Normalisation is:

BatchNorm(xi) =
xi − E(x)√
Var(x) + ε

γ + β
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where xi represents the i-th input to the Batch Normalisation layer, E(x) is the

mean of the batch of inputs, Var(x) is the variance of the batch of inputs, γ and

β are learnable parameters that scale and shift the normalised inputs, respectively,

and ε is a small constant added to the variance to prevent division by zero. This is

applied to all channels of images simultaneously, with separate learnable parameters.

Architectural Patterns. These basic building blocks for neural networks are

layered together to create DL models. Different DL architectures can be engineered

for various purposes through modifications in the stacked structures, layer sizes and

the way the data flows through these layers and structures. Here, we overview some

of the most impactful architectures for CV tasks, which can be very useful in the

context of microscopy imaging.

Using DL for image classification involves one of the most basic architectures -

the Convolutional Neural Network (CNN) (Alex et al., 2012). The network involves

stacking building blocks, constructed of a convolutional layer, a normalisation layer

and an activation function layer, as shown in Figure 2.16. The building blocks can

Figure 2.16: A common CNN building block, consisting of a convolutional layer, a normal-

isation layer and an activation layer. The convolutional layer carries tunable hyperparameters,

such as its kernel size, stride and padding type.

also include MaxPooling or MeanPooling layers for downsampling - the reduction of

dimensions as the images flow through the network. The data flows directly through

all the layers and results in an array of numbers with the length of the number of
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classes in the task, as shown in Figure 2.17. The model training has the objective

of predicting the image classes through its output of numbers.

Figure 2.17: A general CNN architecture. It uses MaxPooling layers to gradually reduce

image dimensions to suit the final output dimensions for its classification or regression purpose.

By setting the layer sizes in a specific way, we can take the CNN architecture and

create an Autoencoder (AE) architecture. The AE architecture forces the images

to squeeze through a very small bottleneck dimension, called the latent space, and

then get reconstructed back, with the objective of recreating the original image, as

shown in Figure 2.18. This pushes the algorithm towards learning a generalisation of

the dataset in its latent space. With that, the algorithm learns the most important

features of the images and is capable of removing features that are not consistent,

such as noise. For that reason, AE networks are powerful in denoising applications

and anomaly detection, but the learnt data generalisation in the latent space can

also be utilised for unsupervised data analysis. This is what is used in Chapter 5.

Figure 2.18: A general AE network. It reduces the dimensions of the image to a bottleneck

in the latent space, and then expands them back to the original dimensions.

A milestone architecture, the Residual Neural Network (ResNet) (He et al.,

2015), is reached by taking the CNN network and modifying the flow of data. It

adds the idea of skip connections - an extra channel in a building block that du-

plicates the image and ’skips’ the network layers to merges back at the end of the
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building block, as shown in Figure 2.19. This results in the identity of the image

being preserved, and the network learning not to map the image entirely for its

task, but to add residual mapping on top of it. ResNet networks enable very deep

networks and are used in very large models. They are mainly used for classification

tasks.

Figure 2.19: A general ResNet architecture. It uses a skip connection to enable a data flow

outside the stacked CNN building blocks.

One of the most impactful architectures for image segmentation, the U-Net (Ron-

neberger et al., 2015), combines the idea of skip connections with the AE architec-

ture. U-Net downsamples the input image through a series of convolutional and

pooling layers, and then upsamples the resulting feature map through a series of

transposed convolutional layers, as shown in Figure 2.20. The final output of the

network is a binary mask that indicates the presence or absence of the target features

in each pixel of the input image. It can be used to identify structures or features of

interest, such as particles or defects.

Other impactful applications lie in image generation, which we do not expand on

here for brevity. There, different types of Generative Adversarial Networks (GANs)

(Goodfellow et al., 2014) and Diffusion models (Sohl-Dickstein et al., 2015) can be

used in applications such as expanding datasets with synthetic images.
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Figure 2.20: A general UNET architecture. It uses the skip connections idea to preserve

the identity of the data.
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Chapter 3

Measuring entropy difference

through phase coexistence

monitoring with LEEM

3.1 Introduction

Entropy is a key thermodynamic property of the semiconductor surface that

governs much of the surface phase behaviour. Its contribution to surface energet-

ics can be a valuable consideration in theoretical surface models, but measuring

entropy differences between phases experimentally is elusive and the parameter is

usually neglected. In this work, we show that in the context of a first-order phase

transition, this can be achieved through three sets of measurements within a single

experiment using Low-Energy Electron Microscopy (LEEM). LEEM microscopy has

been established as one of the most effective methods for the detection of phase co-

existence (Telieps & Bauer, 1985, 1986) and its ability to observe surface dynamics

in real-time with great precision allows the measurements of the phase coverage and

boundary fluctuations, which can then be analysed with the methods reviewed by

Hannon and Tromp, 2003.

The understanding and control of the GaAs(001) semiconductor surface struc-

ture is a crucial factor in maintaining the high quality of epitaxial growth for the

high-precision fabrication of heterostructures for optoelectronic devices (Ibach, 1997;

Joyce & Vvedensky, 2004; Krzyzewski & Jones, 2008; Ohtake et al., 2013; Ohtake
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et al., 2014; Orton & Foxon, 2015; Yasuda et al., 2008). As a result, the structure,

defined by its surface phases, has been extensively studied and considerable under-

standing of the behaviour and underlying processes has been reached (LaBella et al.,

2005; Ohtake, 2008; Pristovsek et al., 2003). A significant part of that behaviour,

especially during some phase transitions, is the possibility of having multiple sur-

face phases simultaneously. This phase coexistence phenomenon can be successfully

accounted for by the energetics of long-range elastic and electrostatic interactions

and its stability is largely governed by two fundamental parameters - the stress dif-

ference and the entropy difference between the two phases (Hannon et al., 2001).

The elastic and electrostatic interactions, which are dependent on the surface phase

coverage, give access to the entropy difference. The stress difference manifests itself

through the stiffness of the boundaries between the two coexisting phases and so

it is found by closely monitoring the boundary fluctuations (Alfonso et al., 1992;

N. C. Bartelt et al., 1992). A description of the theory behind these interactions is

outlined in Chapter 2.1.1.

We bring together methods in LEEM imaging and analysis and demonstrate their

ability to obtain fundamental surface parameters of a compound semiconductor

independently and without the need for external characterization. We develop a

modular computational algorithm to automate the analysis process, making the

method easily applicable to most semiconductor and metallic surfaces.

3.2 The stability of the (6× 6)

Our experimental observations focus on the stable phase coexistence between the

(6×6) and the c(8×2) as we aim to settle the ongoing debate about the stability of

the (6×6) phase. Multiple (6×6) geometries have been determined through theoret-

ical calculations, but were shown to not be stable (Ohtake, 2007; Pristovsek et al.,

2003; Seino et al., 2006). These geometries are found through density Functional

Theory (DFT) calculations - the main tool for theoretically describing the energetics

of a surface reconstruction. In GaAs(001), it is used to derive the zero temperature

formation free energies of different structures and to plot them against the Gallium

chemical potential µGa to a get phase diagram for its surface. With this approach,
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many models for the (6×6) have been proposed, such as Kuball (Kuball et al., 1995),

McLean (McLean et al., 1999), Xu (H. Xu et al., 2002) and Kocan (Kocán et al.,

2004), but all of them suggest a high formation energy, making them inaccessible on

a real GaAs(001) surface. The likeliest candidate out of them is the Kocan model,

as it possesses the lowest free energy. To make that model more accessible, modifi-

cations were also proposed, adjusting the proportions of As-As dimers, resulting in

the most likely candidate for the (6×6) structure so far - a (12×6)-sized unit cell

(Seino et al., 2006). However, this optimal structure is still not stable at any chemi-

cal potential value, suggesting a β2(2×4)→ c(8×2) phase transition sequence. By

contrast, experiments show a β2(2× 4)→ (3× 6)→ (6× 6)→ c(8× 2) transition.

Despite the predicted instability multiple surface structures and compositions

of the phase were experimentally observed using Scanning Tunneling Microscopy

(STM) measurements (Ohtake, 2007). LEEM microscopy was recently used to ob-

serve that the (6×6) phase manifests itself on the GaAs(001) surface through three

separate regimes, depending on the experimental conditions. In its low-temperature

regime, it can indeed be stable within a very narrow window and cover most of the

surface area, as observed through control over the chemical potential under As flux

(Zheng et al., 2019). In its high-temperature regime, where the surface is mostly

covered by the c(8×2) phase, the (6×6) enters a state of metastability, with patches

appearing and disappearing dynamically (Hannikainen et al., 2019). In between

the two regimes lies a broad (6×6)↔c(8×2) transition, where a stable coexistence

between the two phases is observed under a large spectrum of temperatures during

the transition (Niu et al., 2019; Zheng, Tersoff, et al., 2016). These observations

contradict surface energy calculations, which exclude the (6×6) from the sequence

of phase transitions altogether. It was suggested that since calculations are done at

T = 0 K, the entropy difference at non-zero temperatures could be responsible for

the stabilization of the otherwise unfavourable (6×6) phase (Zheng et al., 2019).

We show that with the unified method, we are able to fill this gap between theory

and experiment, as we explore the (6×6) phase and gain valuable insights from its

coexistence with the c(8×2).
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3.3 Experimental details

3.3.1 Experimental setup

Experiments were performed using the Elmitec LEEM-III microscope. Using

very low energy electrons (0− 15eV) makes the LEEM highly sensitive to the struc-

ture of the crystal surface, allowing real-time non-scanning in-situ observation of

the processes occurring on a crystal surface under a variety of conditions, with high

lateral resolution (Bauer, 2014). A GaAs(001) sample is placed under Ultra-High

Vacuum (UHV) of around 2× 10−10 Torr, its surface is initially prepared by anneal-

ing for 2 h at 580 °C. Gallium droplets of up to 5 µm in diameter are then produced

at 620 °C and allowed to run on the surface, creating flat regions of at least 15 µm

length (Tersoff et al., 2009; Zheng, Tang, et al., 2016). After the atomically flat

surface is created, the droplets are slowly evaporated at temperatures of around

530 °C. The sample is then brought up to 550 °C, which is in the middle of the tem-

perature region where both the c(8×2) and the (6×6) phases can be found (Zheng,

Tersoff, et al., 2016). The forming domains are always monitored and maintained for

enough time to ensure equilibrium before an experiment is conducted. The phases

are confirmed by observing the low-energy electron diffraction patterns at select

small surface patches (µLEED) and the discrimination of phases can be further en-

hanced by utilising the high contrast between phases using Selected Energy Dark

Field Low-Energy Electron Microscopy (SEDFLEEM), as described by (Niu et al.,

2019), with the consequence of a lower overall image intensity.

3.3.2 Experimental design

The full experiment is split into two main procedures - the first one focuses on the

larger scale coverage, while the other focuses on small-scale dynamics of boundary

fluctuations. A supplementary measurement is necessary in order to quantify the

specific electrostatic interactions in the system.

Coverage measurements

First, experiments are done to determine the behaviour of the coverage against

varying temperature. The measurements are done by changing the temperature
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in small steps between 500 °C and 620 °C and monitoring the phase transition be-

tween the c(8x2) and the (6x6) phases. Each temperature was held for 2 hours to

ensure stability. Figure 3.1 shows the variation in coverage for the full range of

temperatures and the corresponding images at chosen temperatures during the ex-

periment. At higher temperatures, up to 620 °C, the c(8×2) dominates the surface,

with the (6×6) becoming unstable above 580 °C, entering a state of metastability

(Hannikainen et al., 2019). At 550 °C, the coverage of c(8×2) and (6×6) equalises,

and at lower temperatures, between 550 °C and 500 °C, the (6×6) covers the majority

of the surface. The patterns are proven to be thermodynamically stable, retaining a

constant coverage during observations for a period of 3-4 hours. The reversibility of

the process is verified by repeating the same procedure for both heating and cooling

down the surface, where some hysteresis was observed. The observations indicate

that the transition between the (6×6) and the c(8×2) phases is first-order, as the

contrasting areas in the images show that the boundaries between the (6×6) and

c(8×2) patches are sharp.
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Figure 3.1: A diagram of the full coverage variation between the c(8×2) (white dots) and

(6×6) (black dots) phases with temperature. LEEM images of the dark (6×6) domains and the

bright c(8×2) domains are shown at the corresponding temperatures. The images show how the

coverage of the (6×6) decreases as the temperature is increased. Low-Energy Electron Diffraction

(LEED) images show the diffraction patterns at the temperature regions with different coverage

proportions of the two phases. The diffraction pattern in the middle of the range, at around equal

coverage, is a mixture of the (6×6) and the c(8×2) patterns in the low and high temperature range,

respectively.

Fluctuations measurements

Fluctuation monitoring experiments are done with the temperature set to 550 °C,

where the coexistence between the (6×6) and c(8×2) phases is at about equal cov-

erage. The surface is allowed to stabilise and selected suitable regions are imaged

for 3 − 6 minutes each. With these conditions, imaging was done with frame rates

of between 15fps and 20fps with sufficient signal-to-noise ratio and a lateral resolu-
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tion of about 10 nm. Fluctuations detection and processing was designed in such a

way as to accommodate different boundary sizes and shapes, and to work well in a

variety of imaging conditions. This extends the application of the method to mate-

rials that do not necessarily exhibit a particular structural order in their steps and

boundaries, just like the GaAs(001) surface examined in this work. The algorithm’s

process of detecting boundaries is shown in Figure 3.2 and the process of convert-

ing the boundaries to fluctuations data is visualised in Figure 3.3. The detection

process starts with the boundaries marked by the user and isolated (Figure 3.2 step

0.). After that, the following methods, corresponding to the illustrated steps, are

applied to each video frame, as illustrated in Figure 3.2:

1. Normalisation: The selections are normalised linearly or through Contrast

Limited Adaptive Histogram Equalization (CLAHE) (Pizer et al., 1987), de-

pending on intensity gradients and noise levels in the image section.

2. Bilateral Denoising: A non-linear edge-preserving denoising method is ap-

plied to filter noise without destroying small features (Jain & Tyagi, 2016;

Tomasi & Manduchi, 1998).

3. Canny-Devernay Detection: A sub-pixel variant of the powerful and stable

Canny edge detection is applied, giving the boundary positions for each video

frame with sub-pixel accuracy (Canny, 1986; Devernay, 1995). The size of

each pixel is equivalent to 6 nm.

In total, about 15500 video frames were analysed, producing sets of coordinates

for 10 boundaries. Figure 3.3(a.1) shows the area of the selected boundary for

which the boundary coordinates were gathered and Figure 3.3(a.2) gives an example

of the edge detection for the whole area. The precise detection for each frame is

shown in Figure 3.3. The detected boundary from the first frame of the LEEM

video is used to construct perpendiculars which adapt to boundary’s general shape,

allowing for boundaries of arbitrary shapes to be analysed without additional bias

Figure 3.3(b.1). The constructed perpendiculars, shown in full in Figure 3.3(b.2),

are the reference frame to which all detected points are aligned. The detection

points from the Canny-Devernay algorithm are projected onto the reference frame

by finding the crossing points with the perpendiculars using WENO interpolation
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(Janett et al., 2019). Figure 3.3(c.1) shows how the detected boundary around an

example perpendicular from the reference frame is interpolated and crossed with

the perpendicular to produce a data point. The image intensity profile along that

perpendicular is shown in Figure 3.3(c.2) at the example detected point position,

demonstrating the positional accuracy of the detection. In total, over 3.1 million

data points were analysed with this method. The algorithm’s final output is the

distance offset of each detection with respect to the average position over the whole

experiment, as detected in every image of the video by the initially constructed

frame of reference.

Figure 3.2: The process of extracting boundary coordinates from raw images through

edge detection.

The coverage experiments were done in Dark Field (DF), by switching between

the (1/4, 0) spot with an electron beam energy of 6.2 eV to observe the c(8×2), and

the (3/6, 0) spot of the (6×6) at an energy of 7.8 eV. The fluctuations experiments

were all done in Bright Field (BF) at 8.5 eV electron beam energy.

Work function measurements

The work function difference between the (6×6) and c(8×2) phases was mea-

sured by varying the Start Voltage to change the incident electron energy from

−1.5eV to 2.5eV. By using the transition between mirror-mode and LEEM-mode in

the microscope imaging of each phase, as shown by Yim et al., 2008, the energies

corresponding to the largest intensity variation is found for both phases, the differ-
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Figure 3.3: The logical steps of the algorithm for converting the detected boundary

coordinates to fluctuations (offsets).

ence of which gives the work function difference, in eV. It is found that the work

function difference has an insignificantly small contribution to the results, compared

to contributions from elastic interactions.

3.4 Results

In order to explore the coexistence during the transition, we perform analysis

over two complementary steps - analysis of the phase coverage and analysis of the

phase boundaries, as demonstrated by Hannon and Tromp, 2003.

3.4.1 Phase Coverage

Phase coexistence occurs when the energy gain from creating and subsequently

maintaining an unfavourable phase and its boundaries is compensated by the elastic

and electrostatic interactions at those phase boundaries, which allow local relax-
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ation. The total surface energy per unit area is (Hannon et al., 2001):

Etotal/A2 =
Cb
Lb

+ p
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2
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This is an extended version of Equation 2.1, derived in 2.1.1, with added higher-

order interactions that do not impact the final results. Here, p = (2
A(6×6)

Atotal
− 1) is

the surface coverage parameter. It is defined with the areas of (6×6) and c(8×2)

coverage, such that it expresses the asymmetry between the two phases. It varies

from p = −1 for full c(8×2) coverage to p = 1 for full (6×6) coverage. T0 ≈ 550 °C is

the temperature where the two phases have equal coverage, ∆S is the difference in

entropy between the phases and Lb is the distance between steps, or terrace width.

This expression can then be minimised with respect to the coverage, ∂E/∂p = 0, to

give a dependence between coverage and temperature.
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A fitting of the experimental data is shown in Figure 3.4 and yields the con-

stants in Equation 3.1. The C0 term accounting for the boundary creation en-

ergy costs vanishes with the differentiation. From the fit, the value of the con-

stant representing the elastic and electrostatic interactions at the phase bound-

aries is Cm = (6.44± 1.39) meV Å
−1

, the interaction between boundaries and steps

- Cd = (8.65± 0.98) eV, the short-range boundary-boundary interactions - Cr =

(57.78± 0.15) eV Å, and the difference in entropy is

∆S = (7.21± 1.55)× 10−4 meV K−1 Å
−2

. To estimate the values of the Cd and Cr

parameters more accurately, the fitted values of Cm and ∆S are bound to within an

order of magnitude of the values derived in the fluctuations analysis.

The higher order interaction terms Cd and Cr have a negligible contribution at

the regions of equal coverage p ≈ 0 (Hannon et al., 2001), giving a linear dependence:

tan
(pπ

2

)
≈ −Lb∆S

2πCm
(T − T0) (3.3)
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Figure 3.4: Experimental results (red dots) of dependence of tan(pπ2 ) on the temper-

ature T . The gray curve is a fit from the minimisation of Equation 3.1 and the dashed linear fit

represents the linear dependence expected at around equal coverage (Equation 3.4). The slope of

the fit is (−0.031± 0.002) K−1 and gives us the result in Equation 3.4.

As can be seen in the linear fit shown in Figure 3.4, experimental data agrees with

the linear behaviour indicated by Equation 3.3 around equal coverage. This is a

strong indication that the elastic relaxation at the boundaries is the most important

interaction that contributes towards the observed coexistence (Hannon & Tromp,

2003). The linear fit yields a relation between the entropy difference ∆S and Cm,

which can be used to calculate the entropy difference (Hannon et al., 2001). Given

the terrace sizes on the GaAs(001) surface where measurements were made during

the experiment are Lb = (185± 13) nm, the slope corresponds to:

∆S

Cm
= (1.06± 0.20)× 10−4 K−1 Å

−1
(3.4)

3.4.2 Boundary fluctuations

The value of Cm can be obtained by analysing the boundary fluctuations be-

tween the two phases in the coexistence. In Equation 3.4, Cm is the sum of the

contributions from electrostatic interactions,

Cφ =
(∆φ)2

8π2
(3.5)
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in electrostatic units (Vanderbilt, 1992), coming from the work function difference

∆φ between the two phases, and elastic interactions,

Cλ = (∆λ)2
(1− ν2)
πΥ

(3.6)

arising from the stress difference ∆λ between the two phases. Here ν = 0.31 is

Poisson’s ratio and Υ = 0.53 eV/Å
3

is Young’s modulus. The origin of these two

constants is described in Chapter 2.1.1 - see the derivations of Equations 2.10 and

2.7. The difference in work functions between the two phases can be found ex-

perimentally, as outlined in Section 3.3.2, giving ∆φ = 0.1 eV. This results in an

electrostatic interaction constant of Cφ = 0.01 meV Å
−1

.

The stress difference ∆λ is found through measurements of the phase boundary

fluctuations (N. Bartelt et al., 1996; Hannon & Tromp, 2001) at the temperature of

equal coverage T0 = 550 °C. The phase boundary fluctuations are closely imaged at

15 fps for about 4 min and processed as shown in Figures 3.2 and 3.3. These imag-

ing conditions push the LEEM to the limits of its temporal and spatial resolution

capabilities.

The boundary fluctuations are defined as the offsets y(x, t) of each point x along

the boundary for a unit time t. In practice, that is the measured point offset

for each image frame, with respect to its average position over all frames. These

measurements are first used to find the boundary stiffness β. Through the Fourier

transformation in the form:

yq(t) =
1

N

∑
q

y(x, t) exp(−iqx) (3.7)

the Fourier components can be analysed. The mean squared Fourier components of

the deflections 〈|yq|2〉 can be expressed through Equation 2.17:

〈|yq|2〉 =
kBT

Lbβq2
(3.8)

, where kB is the Boltzmann constant, Lb is the length of the explored boundary

and q = 2πn/Lb, where n = 1, 2, ...N . This gives a linear relationship between

〈|yq|2〉−1 and q2. The linear fit to the data, using Equation 3.8 as shown in Figure

3.5(a), gives a boundary stiffness of β = (28.3± 11.0) meV nm−1. The linearity

of the experimental data, when adapted for Equation 3.8, is an indication of how

independent the fluctuations of each analysed boundary are.
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The boundary stiffness is used to find Cλ using the probability distribution of

the phase boundary deflections ∆x, shown in Figure 3.5(b). The standard deviation

of the Gaussian fit to the data corresponds to the expected distribution, given by

Equation 2.23:

σ2 =
kBTLb

2π(2βCλ)
1
2

(3.9)

From Equation 3.9, the value of the elastic contributions constant becomes Cλ =

(9.75± 6.06) meV Å
−1

. Using Equation 3.6, we are then able to find the stress

difference ∆λ = (0.15± 0.05) eV Å
−2

.

The much larger value of Cλ compared to Cφ suggests the elastic contributions

are prevalent during the coexistence. We can now find Cm = (9.76± 6.06) meV Å
−1

,

and so, from Equation 3.4, we can obtain the value for the entropy difference ∆S =

(10.32± 6.82)× 10−4 meV K−1 Å
−2

.
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Figure 3.5: Example of the fluctuations analysis. These results were generated for the

marked edge in Fig. 3.3.

(a) A linear fit of the Fourier components of the boundary fluctuations (Equation 3.8). The slope

of the fit is
Lbβ

kBT
.

(b) Probability distribution of the boundary fluctuation deflections ∆x, with respect to the mean

boundary position (Equation 3.9). The measured standard deviation over all the data is σ =

(5.88± 1.08) nm.

3.5 Conclusion

The uncertainties in the results are in part due to the disordered nature of the

surface steps configurations, affecting interactions at each individual boundary and

giving a spread in the measured values for every analysed boundary. Nonetheless,

the behaviour of the coverage, as seen in Figure 3.4, fits the predicted behaviour,

providing a relationship between the entropy and elastic interactions at the bound-

aries that enables us to reach fundamental conclusions on the thermodynamics of

the system. Despite the chaotic nature of the step arrangements and the complexity

of the compound material, the coexistence in GaAs(001) obeys the same rules as
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the coexistence in a more predictable and thoroughly detailed system, such as the

one in Si(111) between the (1×1) and (7×7) phases in Hannon et al., 2001, giving

confidence in the broad applicability of the method. The density-functional theory

(DFT) calculations in previous works show that none of the available (6×6) models

are stable at T = 0 K, as shown by Pristovsek et al., 2003. By contrast, experiments

are conducted at a range of temperatures around T0 ≈ 550 °C, which has led to

the suggestion that the entropy difference due to configurational entropy can help

stabilise the (6×6) with its contribution to the formation energy by Seino et al.,

2006; Zheng et al., 2019. In the context of the (6×6), the entropy difference found

above contributes to the formation energy with:

T0∆S = (13.6± 9.0) meV ((1× 1) cell)−1 (3.10)

The contribution to the formation energy needed to stabilise the most energetically

favourable (6×6) structure models is approximately 50 meV ((1× 1) cell)−1 (Zheng

et al., 2019). The contribution from the entropy difference in Equation 3.10 is not

negligible, but not large enough to stabilise the (6×6) with respect to the c(8×2) by

itself. These results strongly suggest that (6×6) phase is not stable and the elastic

relaxation associated to the phase boundaries is necessary to stabilise it.

In conclusion, we propose a new methodology that brings together separate ex-

perimental methods that are well established within the LEEM community to pro-

vide an estimate of the entropy change between surface phases. The unified tech-

nique demonstrates the ability of LEEM microscopy to provide insight on elusive,

but key thermodynamical parameters in semiconductors through a unitary, self-

contained method. We show the applicability of the method on complex semicon-

ductor materials and develop computational methods that generalise the approach

to surfaces with irregular step geometry. With that, the developed method is capa-

ble of giving straightforward access to the entropy difference and stress difference

between two coexisting phases on many semiconductor surfaces, adding valuable

insights on phase transitions that can have a significant impact on surface science.

Using the unified method, we resolve an important uncertainty around the surface

energetics of GaAs(001), namely, we show that for the temperature spectrum where

the (6×6) is observed in its coexistence regime, it is still the unfavourable phase,

but the elastic relaxation at the boundaries during its coexistence with the c(8×2)
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phase is a key contribution to reach the lowest energy state of the surface and enable

its stability.

3.6 Data analysis

Here, we give a summary of how the results are extracted from the raw data.

First we look at how this analysis was done in the past, what were its weaknesses and

why we need to solve our analysis with a new approach. We outline the procedures in

each of the new developed algorithms for that purpose. Algorithm 1 takes raw images

that go through a preprocessing procedure and detects the selected boundary in each

image sequentially, outputting a list of boundary coordinates. Algorithm 2 takes the

output of Algorithm 1 and transforms it into boundary offsets, outputting data that

represents the boundary fluctuations in a robust and unbiased manner. Algorithm

3 takes the boundary offsets data and analyses it, as described in Section 3.4, out-

putting and recording the sought parameters and generating relevant graphical rep-

resentations of the analysis. The importing of raw images in Python is done through

the convenience of Lin Zhu’s package at https://github.com/zhulincqu/LEEMimage

and the images are processed using the scikit-image Python package (van der Walt

et al., 2014).

3.6.1 Previous approaches

An overview of literature on similar experimental fluctuations measurements for

line stiffness estimation is presented in Table 3.1. The works that were used as a basis

for the boundary detection was done on LEEM images of Silicon by Hannon and

Tromp, 2001, which monitors phase boundary fluctuations in an analogous manner

to the much more explored step fluctuations (N. Bartelt et al., 1996). The images

there were denoised using Boxcar averaging, which works by substituting each pixel

with the average value of its neighbourhood - 9 to 11 pixels in the previous works. It

is simple and quick, but comes with inherent drawbacks that lead to a reduction in

the measured fluctuation amplitudes. The steps and boundaries were then detected

by fitting a hyperbolic tangent (tanh) function along at each line perpendicular to

the average direction of the steps. The tanh lines have a width of one pixel and fit
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the intensity profile where they cross the image. Curve-fitting methods like this are

powerful, but they are, just like all edge detection methods to different degrees, prone

to getting fooled by the noise. Because of this, good control over noise during data

gathering and its optimal removal during preprocessing is essential for the quality

of the measurements. The ability for improvements over previous approaches stems

from the availability and accessibility of newer techniques that have been shown to

be very powerful, but a necessity also comes from the nature of the GaAs surface.

In particular, the steps are more chaotic and can take complex shapes, as shown in

Figure 3.6. The straight line in the average step direction used in the well-ordered

Figure 3.6: LEEM image examples of (a) a complex step arrangement and (b) a well-behaved

step arrangement in GaAs(100), produced under the same experimental conditions, as detailed in

the ’Experimental procedure’ section. The image analysis should be aimed to perform well in both

situations and not allow for hidden sources of error.

systems in previous works as a reference to measure step offsets would be prone

to errors with the variations in the step shapes. The aim is to build a robust and

automated modular pipeline for the detection, as well as the analysis procedures,

taking the raw data from the microscope, saving the work done at each significant

step and outputting the end results in numbers and graphs.
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Publication Material Technique Temperature Type Stiffness

Alfonso et al., 1992 Si(111) REM 900 °C Step 680 µeV nm−1

N. C. Bartelt et al., 1993 Si(111) REM 900 °C Step 300 µeV nm−1

N. Bartelt et al., 1996 Si(001) LEEM 790 °C Step 13 µeV nm−1

Hannon and Tromp, 2001 Si(111) LEEM 860 °C Boundary 180 µeV nm−1

Cohen et al., 2002 Si(111) REM 1100 °C Step 163 µeV nm−1

Ondrejcek et al., 2003 Mo(011) LEEM 820− 1400 °C Step 250− 360 µeV nm−1

(anisotropy)

Ondrejcek et al., 2004 Pt(111) LEEM 1225 °C Step 175 µeV nm−1

Van Gastel et al., 2004 Pb on Cu(111) LEEM 330− 380 °C Step 22− 8 µeV nm−1

Ondrejcek et al., 2005 Pd(111) LEEM 730− 1130 °C Step 210 µeV nm−1

Pang et al., 2008 Si(111) LEEM 890 °C Step 600 µeV nm−1

Freitas et al., 2017 Cu(111) MD sim. 1025 °C Step 370 µeV nm−1

Table 3.1: List of experimental work in finding step stiffness for a number of materials and

temperatures.

3.6.2 Boundary Detection

During experiments, a large amount of data is collected that needs to be pro-

cessed - more than 20000 frames from the 25 selected edges, each edge yielding a

total of ≈ 130000 data points over all frames. Processing this data involves an ini-

tial denoising step, followed by edge detection and conversion of detected edges to

boundary fluctuation data. This is then analysed through the methods described

in the main text to give us the entropy difference between the two phases on the

GaAs(100) surface. It is important to find the optimal trade-off between precision

in measurements and stability of the methods used. This would help to achieve

the best accuracy across the whole dataset without the necessity for error-prone

and laborious manual inspection and corrections on each image frame. We utilise

well-known powerful edge detection methods and approaches and adjust them to

suit the task in hand. From here onward, we use the terms edge and boundary

interchangeably.

Canny edge detection has previously been successfully employed to detect

edges in scanning probe microscopy (SPM) imaging (Campbell et al., 2009) and

more recently, it was shown to be effective with particle size estimation in scanning

electron microscopy (SEM) images (Meng et al., 2018; Stephens et al., 2019). It

works by using the image gradient at each pixel of the image to find whether that

Chapter 3 Matyo Ivanov 71



Computational methods for quanifying surface structure and dynamics with LEEM

pixel is a local maximum in its gradient direction. The directions are in windows

of 45◦, in both forward and backward directions, and if a pixel happens to be a

local maximum in its gradient direction, it is recorded as an edge candidate and is

a subject to a threshold and a connectivity search - e.g. it is more likely to be an

edge if it has other edge candidate neighbours. The basis for the detection method

here is the implementation in the scikit-image Python library (van der Walt et al.,

2014). There, they give us the following summary of the process:

* Smooth the image using a Gaussian with “sigma“ width.

* Apply the horizontal and vertical Sobel operators to get the gra-

dients within the image. The edge strength is the norm of the

gradient.

* Thin potential edges to 1-pixel wide curves. First, find the normal

to the edge at each point. This is done by looking at the signs

and the relative magnitude of the X-Sobel and Y-Sobel to sort

the points into 4 categories: horizontal, vertical, diagonal and

antidiagonal. Then look in the normal and reverse directions to

see if the values in either of those directions are greater than the

point in question. Use interpolation to get a mix of points instead

of picking the one that’s the closest to the normal.

* Perform a hysteresis thresholding: first label all points above the

high threshold as edges. Then recursively label any point above

the low threshold that is 8-connected to a labelled point as an

edge.

There are a few weaknesses in the Canny edge detection method that affect the

precision of the phase boundary detection and need to be addressed.

The first issue arises in the denoising step. It uses a Gaussian convolution,

which, similarly to Boxcar averaging, reduces the fluctuation amplitudes and can be

especially detrimental to fine details, in this case - smaller fluctuations. To tackle

this issue, a preceding more sophisticated denoising step can be applied, which

preserves edges much better. With that, the strength of the Gaussian convolution
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can be brought to a minimum and small fluctuations can be preserved.

An overview of state-of-the-art (SOTA) denoising methods can be found in Goyal

et al., 2020 and an extensive survey of edge-preserving denoising algorithms was

done in Jain and Tyagi, 2016. The main goal of the SOTA denoising algorithms is

to remove noisy pixels while preserving edges and fine details. Linear Translation-

Invariant (LTI) filters, like the mean filtering used in the past (N. C. Bartelt et al.,

1993; Hannon & Tromp, 2001), or Gaussian blur filtering, have been found to be

destructive towards sharp features, blurring edges and losing fine detail. For this

reason, the current SOTA utilises non-linear and non-local methods, which enable

better edge preservation, as described in Chapter 2.3.1. Bilateral Filtering and Non-

Local Means (NLM) denoising were found to perform best. While both algorithms

can be used with good success, NLM is strong in preserving texture and Bilateral

Filtering is designed to preserve fine-grained image features, such as the small details

in a phase boundary, and fits the analysis goals better.

These methods are specifically designed to deal with Gaussian noise, as is the

noise added by the CCD camera sensor. However, another source in the experimen-

tal images is shot noise, which has a Poisson distribution. Thus, we can reason-

ably expect a mixture of Gaussian and Poisson noise in our experimental data. As

shot noise is a signal dependent, whereas Gaussian noise is additive, the Gaussian

targeted noise filtering methods, such as the Bilateral Filter, would have limited

success in removing shot noise, even though such approaches are still utilised to

reduce Poisson noise in recent LEEM image processing applications (de Jong et al.,

2020). To check if this limited efficiency of Bilateral Filtering on shot noise has an

effect over the final results in our experiments, we extract two sets of data from

the image sequence of the same edge - the first one using our standard Bilateral

Filtering, and the second one using the same Bilateral Filter in conjunction with

an Anscombe Transformation, as shown in Figure 3.7. The Anscombe Transforma-

tion is a variance-stabilising method, which transforms a Poisson distribution into

a Gaussian one, enabling the efficient application of Gaussian targeting noise filters

(Anscombe, 1948; Mäkitalo & Foi, 2013). The results show that the Anscombe

Transformation has a visible, but limited effect over the extracted data from the im-

ages, with the example analysis giving differences of ∆σ = 0.02 nm in the standard
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deviation and ∆β = 2.5 meV nm−1 in the boundary stiffness. This suggests that the

application of Bilateral Denoising on the experimental data is sufficient to prepare

the images for analysis.

Figure 3.7: A comparison between results from denoising using only the standard

Bilateral Filtering (solid blue lines) and an identical Bilateral Filtering in conjunction

with the Anscombe Transformation (dashed red lines).

After the Bilateral Denoising, mostly features coming from imperfections of the

channel plate may sometimes be preserved, requiring minimal Gaussian blur, down

to a standard deviation of around 1
4

of a pixel, or σ ≈ 1.5nm, as opposed to the

σ ≈ 12nm that the raw images would require otherwise. This can only affect very

small fluctuations, which are error-prone anyways, falling far below the resolution

of the microscope.

The algorithm is susceptible to intensity gradients across the images, as it uses

thresholding to distinguish edges and noisy intensity variations. This is addressed by

the local image preprocessing, as well as a more sophisticated thresholding method,

called Otsu thresholding.

Canny’s method detects edge pixels. It is a pixel method and so its accuracy is

limited to the image grid size. To address this, we use a method by Devernay, 1995

that intuitively builds on it to give the detection sub-pixel accuracy. Canny edge

detection uses Sobel kernels to find the gradient Gx and Gy in the horizontal and

vertical directions, for each pixel and then sort the found gradients by direction,

utilising the signs and magnitudes of Gx and Gy, as shown in Table 3.2. The

magnitude at each point is:

G0 =
√
G2
x +G2

y, (3.11)
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Degree window Gx Gy Magnitudes

0− 45◦
+ + Gx > Gy

− − Gx > Gy

45− 90◦
+ + Gx < Gy

+ − Gx < Gy

90− 135◦
− + Gx < Gy

+ − Gx < Gy

135− 180◦
− + Gx > Gy

+ − Gx > Gy

Table 3.2: Canny edge detection sort-

ing of gradient directions.

Figure 3.8: A diagram of the image gra-

dient, calculated for a single pixel.

and the normal to the edge is defined via the ratio:

w =
Gx

Gy

. (3.12)

Using that, the gradient magnitudes a pixel forward and a pixel backward in the

direction of the gradient can be estimated. This is done with a simple interpolation

of the two nearest points to the gradient. The sorting of gradient directions into

degree windows determines the used points. With the example illustrated in Figure

3.8, the gradients are:

G+ = wGA + (1− w)GB, (3.13)

G− = (1− w)GC + wGD. (3.14)

Here, GA, GB, GC , GD are the differences in intensity between the origin pixel O

and its surrounding pixels A, B, C and D. If the magnitude of the gradient at

the examined pixel is bigger than G+ and G−, the point is recorded as an edge

candidate. Here, Devernay’s method adds an extra step to find the location of the

edge within this pixel with sub-pixel accuracy. Assuming the gradient profile is

parabolic, as shown in Figure 3.9, it calculates a quadratic offset:

η =
1

2

G+ −G−
G+ +G− − 2G0

, (3.15)

where, if the pixel is an edge, −0.5 < η < 0.5. The offset is expressed in the x and y

directions and added to the pixel coordinates to give the method sub-pixel accuracy.
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Figure 3.9: Example of the norm of the gradient profile in the direction of the gradient of

the pixel at point O. Adapted from Grompone Von Gioi and Randall, 2017.

As with the standard Canny’s method, this process is done at each pixel, after

which the algorithm moves on to connectivity and threshold checks. Since Dever-

nay’s addition utilises the image gradients that are already found by the standard

method, the new algorithm’s computational efficiency is close to the original method.

The last issue to address stems from non-ideal experimental conditions, rather

that weaknesses in the algorithm. During the experiment, imperfections in the

images are likely to occur. Namely, three variations in imaging are always going to

be present during long imaging - sample drift, intensity gradient and image

flickering. To correct for the sample drift, the first frame of each video is saved

and used as a template to which all subsequent frames are aligned to match it. The

alignment method uses the scikit-image implementation of fast, normalised cross-

correlation, as detailed in Chapter 2.3.1. Intensity gradients are a common issue

with edge detection tasks, which can cause the thresholding step to act differently

in regions of the image with different intensities. A similar effect is caused by image

flickering, which causes intensity differences between subsequent frames, rather than

between image regions, as detailed in Chapter 2.3.1. To help with those, we utilise

CLAHE histogram equalisation, which fragments each image into tiles and equalises

histograms locally, enhancing and evening out the contrast in both dark and bright

regions of the image. In our image preprocessing, the CLAHE equalisation was done

in windows of 1/8 of the image dimensions and using 256 bins. As well as adaptively

enhancing the image contrast, we adaptively determine the thresholding values that

are used by the edge detection step in the algorithm. For that, we use Otsu’s
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method, which iteratively searches for the optimal threshold value. It goes through

all possible thresholds to find the one which minimises the variance of the two groups

of pixels that each threshold splits the image into. Calculating that separately for

each image adds extra consistency between frames. The last improvement to help

with intensity variations is to process the edge locally. The edge is selected and

only the parts of the image that are around the selection are processed. This limits

the intensity variations, as well as giving a significant performance boost to the

algorithm’s pre-processing steps.

The step-by-step algorithm for detecting the boundaries between the two surface

phases is given in Algorithm 1.

Algorithm 1 Detecting a phase boundary

Input: Ordered list of Raw LEEM Images

Output: Coordinates of each point on selected boundary at each frame

1: for first image do

2: Save in memory as template for Alignment . If images drifting with time

3: Show to user

4: Create mask of boundary, drawn by user

5: for each image ∈ rest of images do

6: Alignment via template matching

7: Crop image to fit only masked area

8: CLAHE Histogram Equalisation

9: Non-Local Means denoising

10: Canny-Devernay Edge Detection with mask and Otsu

11: Get resulting binary images . 0 =⇒ no edge, 1 =⇒ edge

and sub-pixel boundary coordinates

12: Save coordinates of detected boundary to drive; shape: [frame, [x-coords, y-coords]]

3.6.3 Data transformation

The boundary detection algorithm results in the coordinates for a boundary

as it varies its position in each recorded frame. The next step is to use the raw

boundary positions to extract meaningful fluctuations data. We define a boundary
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fluctuation y as an offset in the boundary position at a given frame t, with respect

to the boundary’s mean position over the full experiment duration 〈y(x)〉. This

measurement is gathered at each position along the boundary x, for all frames t

resulting in the boundary fluctuations data y(x, t).

The simplest way of defining the position and direction of the fluctuations is to

take a straight line in the general direction of the boundary and record offsets as

perpendicular distances to it, for every pixel along it. However, the boundaries in our

data are often curved and irregular. This means that this standard approach brings

errors in detection, proportional to the angle at the local step direction compared to

the mean direction. In other words, the degree of curvature and irregularities brings

a corresponding degree of errors in the measured fluctuation offsets, as illustrated

in Figure 3.10.

Figure 3.10: An illustration of how a curved step causes errors in the measured fluctuation offset.

To minimise this effect, we construct a unique reference system for fluctuations

measurements on each boundary. To adapt to the boundary shape, we use the

average position of the boundary. We smooth out small and sharp curvatures with

the Ramer-Douglas-Peucker algorithm and only preserve larger-scale curvature to

ensure stability in the measurements. The reference system is then created by

constructing perpendicular bisectors across this reference shape.
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The measurement against this reference system looks at where the boundary

crosses these bisectors at each frame. As the line of the boundary is discrete, with

each point on it corresponding to a pixel in the original image, we interpolate be-

tween the points on the line to find the crossing points with the bisectors. We use

weighted essentially non-oscillatory (WENO) interpolations (Janett et al., 2019) to

avoid the loss of accuracy with a linear interpolation, while also not suffer from

instability in the interpolations.

This approach enables us to measure against the local boundary shape and di-

rection, rather than the general global one.

Algorithm 2 Extracting boundary fluctuations

Input: Detected Edge Coordinates

Output: Edge fluctuation w.r.t. mean position

Load coordinates of detected edge for each frame from Algorithm 1

1: for edge coordinates of first frame do

2: for each point on edge do

3: Get neighbouring N points

4: Smooth by approximating with Ramer Douglas Peucker algorithm

5: Fit straight line segment through approximated polygon

6: Build line segment bisector

7: for each edge coordinates ∈ rest of frames do

8: for all bisectors do

9: Find closest N points out of all points on edge

10: Do WENO interpolation between points

11: Cross interpolation with bisector and save position

12: for each bisector do

13: Find mean position of all points on bisector

14: Subtract mean from all points’ positions

15: Save all positions: shape: [position on each bisector, frame]
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Algorithm 3 Analysing boundary fluctuations

Input: Boundary fluctuations for one edge

Output: Distribution analysis and FFT analysis

1: procedure Fourier Transform

2: Load data of boundary fluctuations from Algorithm 2

3: for all frames do

4: Fast Fourier Transform of boundary offsets at each frame to find y2q

in Equation 7 in the Main Text

5: Perform linear fit of 1
y2q

against q2 and get slope

6: return resulting β from slope of fit

7: procedure Fluctuations distribution

8: Load data of boundary fluctuations from Algorithm 2

9: Compute histogram of data . Only spacial distribution matters here

10: Fit Gaussian to histogram, as predicted by Equation 3.9

11: return mean, standard deviation of Gaussian
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Growth monitoring near a Ga

droplet on GaAs (001)

4.1 Introduction

Molecular Beam Epitaxy (MBE) has been extensively developed and optimized

in the past decades and remains a widely utilized technique for crystal growth to-

day (Orton & Foxon, 2015). Its systematic and predictable layer-by-layer epitaxial

deposition of materials allows for precise control over the growth process down to

the sub-monolayer level, making it a popular choice among researchers and manu-

facturers who wish to produce materials and nanostructures with specific and highly

accurate properties and qualities. However, in order to fully take advantage of the

capabilities of MBE, a thorough understanding of the behavior of the surface during

growth is necessary (Joyce & Vvedensky, 2004).

The aim of this work is to shed light on surface behavior during MBE growth and

provide new insights into the control and manipulation of surface properties with

the potential to inform the design of new materials with improved qualities. We

utilize Low-Energy Electron Microscopy (LEEM) to observe surface growth dynam-

ics during deposition and our focus falls on high-temperature growth on GaAs(001),

which is the most widely used compound semiconductor in industry and often serves

as a substrate for MBE growth (Wu & Jin, 2015). The growth on the high tempera-

ture Ga-rich surface reconstructions on GaAs(001) is known to produce a generally

rougher final surface (Neave et al., 1984). The reasons behind the impact of recon-
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structions on growth outcomes are significant, but still not fully understood (Ohtake

et al., 2013; Ohtake et al., 2014).

The high-temperature growth process occurs on the Ga-rich c(8 × 2) surface,

where we find a dynamic metastable coexistence between the c(8 × 2) and (6 × 6)

phases, caused by the As-pressure. This is, as far as we are aware, the first such ob-

servation of phase metastability during MBE growth and has potential implications

for the control and manipulation of surface properties. To give us a fuller picture,

we use Ga droplets on the surface to act as our Ga source, giving us a spectrum of

surface chemical potentials to observe (Zheng, Tersoff, et al., 2016). With that, we

are able to quantitatively analyse our observations and gain insights for the surface

behaviour during MBE growth.

4.2 Experimental details

4.2.1 Experimental setup

Experiments were performed using the Elmitec LEEM-III microscope. Details

on the microscope can be found in Chapter 2.2.

A GaAs(001) sample is placed under ultra-high vacuum of around 2×10−10 Torr,

its surface is initially prepared by annealing for 2 h at 580 °C. Gallium droplets of up

to 5 µm in diameter are then produced at 620 °C and allowed to run on the surface,

creating flat regions of at least 10 µm length (Tersoff et al., 2009; Zheng, Tang, et al.,

2016). After the atomically flat surface is created, the sample is brought to 530 °C.

At this point, surface is ready and the c(8 × 2)-covered reconstruction covers the

flat regions near the droplet.

4.2.2 Experimental design

The sample is exposed to Arsenic pressure by opening an As cracker cell, with

the cracker heated to 900 °C and the reservoir put at 380 °C. With the As-pressure

on, a flat region near a droplet is continuously monitored at 4 frames per second and

at a field of view of 10 µm. The imaging is done in Bright Field (BF) mode, at an

electron energy of 8.5 eV. The Ga droplet is slowly consumed by the incoming As
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and shrinks continuously, until it is fully gone. During that process, we observe small

round (6×6) domains form at random places around the c(8×2) covered surface, then

grow to different sizes and transform back into c(8×2), leaving behind a new round

island on the surface. An example of a full raw image during the experiment is shown

in Figure 4.1 and snippets from an example of the (6×6) patch evolution process are

shown in Figure 4.2. As the droplet gets smaller throughout the experiment and the

surface moves towards equilibrium, it allows a larger metastable (6 × 6) coverage.

This coverage variation is due to the chemical potential gradient the droplet and

the As-flux cause, which changes as the droplet size is reduced. The effects of that

change are manifested through the forming (6 × 6) domains being allowed to grow

to a progressively bigger size over the course of an experiment, before transforming

back and leaving a c(8× 2) terrace behind.

Figure 4.1: An image frame from the experiment. The droplet is partially visible on the

top of the image. The (6× 6) domains are the dark portions of the droplet trail, while the bright

portions are covered by the c(8 × 2) phase. The images were taken in Bright Field with a beam

energy of 8.5 eV.

Chapter 4 Matyo Ivanov 83



Computational methods for quanifying surface structure and dynamics with LEEM

Figure 4.2: Example evolution of a (6× 6) patch.

4.3 Analysis

The system can be described through the sizes of the (6×6) metastable domains

at the moment of their transformation back into a c(8 × 2) terrace, which depend

on the chemical potential µGa at their position. Using Equations 2.25 and 2.26, the

average radius upon transformation becomes:

〈R〉 = Γ(4/3)−1
(

3ν

πρ0

) 1
3

exp

(
Ebarrier
3kBT

)
(4.1)

The energy barrier of transformation Ebarrier is the energy where the transition

between the (6× 6) and c(8× 2) phases occurs:

∂Etotal/island
∂R

= 0 (4.2)

As described in Chapter 2.1.2, the total energy in the case of a circular phase

domain includes contributions from the creation cost of the boundary between the

two phases, the maintaining of the unfavourable phase and the elastic relaxation of

atoms at the domain boundaries.

An insight on these contributions can be gained by examining how the domains

grow. The full process of the detection of domain growth is described in Section 4.6

below. Overall, over 400 representative domain growth events were detected. A few

representative examples of how domain sizes grow with time is shown in Figure 4.3a.

As can be seen, the growth rate of the domains tends to be linear, suggesting that

the elastic relaxation does not have a significant influence in this scenario (Hannon

& Tromp, 2003). To confirm the linear trend, the linearity of all detected domains

is checked by fitting a linear regression model to each and extracting the Pearson

correlation coefficient (r-value) of the best fit. The extracted r-values are shown

in Figure 4.3b and demonstrate a significant tendency of the domains to exhibit

linear growth. Examination of patches with the non-linear growth behaviour in the
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Figure 4.3: Linearity of the (6 × 6) patches’ growth process. (a) Size evolution during

growth of some example patches. (b) The linearity measurement for all (unfiltered) detections.

The r-value reaches negative values due to a number of detected events, where (6 × 6) patches

shrank until disappearance. The graph shows a sharp upwards trend in number of detections after

an r-value of about 0.75.

experimental videos shows that the non-linearity is most often caused by the patch

experiencing some interference from nearby steps or by a merging event with another

patch during growth, while patches without such events during their lifetimes tend

to exhibit linear growth.

In contrast to the stable phase coexistence case at the congruent temperature of

T0 = 550 °C detailed in Chapter 3, in the current case away from that temperature
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the data suggests the elastic relaxation is negligible. Using Equation 2.27, the total

energy of a circular domain of size R then becomes:

Etotal/island = 2πRCb + πR2∆γ (4.3)

where Cb is the energetic cost of creating a unit length of boundary, and ∆γ is the

free energy difference between the two phases and can be expressed with the chemical

potential µGa through ∆γ = (∆NAs −∆NGa)(µGa − µcGa). Differentiating Equation

4.3 using 4.2, the critical radius upon transformation becomes Rcritical =
−Cb
∆γ

. This

can now be substituted to express the energy barrier for c(8× 2) phase nucleation:

Ebarrier =
πC2

b

(∆NGa −∆NAs)(µGa − µcGa)
(4.4)

Using this and Equation 4.1, the average domain radius upon transformation is:

〈R〉 = Γ(4/3)−1
(

3ν

πρ0

) 1
3

exp

(
πC2

b

3kBT (∆NGa −∆NAs)(µGa − µcGa)

)
(4.5)

4.4 Results

In Equation 4.5, it can be seen that the average critical radius is a function of the

chemical potential µGa at the spot where a (6× 6) domain nucleates. To model the

observed growth with that equation, we need to extract µGa from the experimental

data.

The chemical potential µGa is strongly affected by the nearby Ga droplet during

the experiment. As shown in Figure 4.4, Zheng et al., 2019 maps the chemical

potential µGa to a Ga droplet, putting its value at the droplet edge at µGa = 0 eV.

Likewise, the transition between the c(8 × 2) and (6 × 6) phases is mapped at

µGa = −0.125 eV.

These two events of interest can be tracked during our experiment and used as

references for extracting µGa. The chemical potential between the two points is

assumed to have a linear behaviour. As mentioned before, during the As-flux in

the experiment, the Ga droplet is gradually consumed over time, meaning that µGa

is not only a function of the distance to the Ga droplet, but also varies with time.

This is practically observed through the c(8 × 2) −→ (6 × 6) transition boundary,

which moves towards the droplet, as the droplet gets consumed over time in the
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Figure 4.4: The observed phases on a Ga droplet trail and their extracted phase

diagram mapping. We use the experimentally derived chemical potential transition point I as a

reference, and set the chemical potential at the edge of the droplet at µGa = 0 eV. Both of these

points of interest are visible throughout most of our observations. Adapted from Zheng et al., 2019

experiment, as seen in Figure 4.5. By knowing or extrapolating the position of the

(6× 6), we now have two reference points, which map to known chemical potential

values from Figure 4.4 - the position of the droplet edge at µGa = 0 eV and the

position of the (6× 6) transition at µGa = −0.125 eV.
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Figure 4.5: (6× 6) boundary movement. The boundary is not always visible throughout the

experiment. In the initial stages of the growth, the Ga droplet is still big and the boundary is

too far out of the Field of View. To estimate its position, it is extrapolated (red line) from the

position measurements at the final stages of the growth (green line), which show a linear boundary

movement with time. The movement of the boundary movement is illustrated in experimental

video frames shown above, which are selected at an equal time interval.

Another parameter that can be estimated from the experimental data is the step

velocity ν. This can be observed through the growth rate of the (6 × 6) patches.

As shown previously, the patches’ radii grow at a constant rate. As the the (6× 6)

patches are constrained by a circular step, the growth velocity is determined by the

step velocity ν. Figure 4.6 shows the distribution of growth rates of the radii of all

(6× 6) patches, which are equivalent to the step velocity ν.

The peak of the fitted distribution is at ν = 22 nm s−1.

The change in reconstruction atoms (∆NAs−∆NGa) can be estimated from the
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Figure 4.6: Step velocities distribution. The distribution follows a Displaced Poisson curve

(red).

phase diagram in Figure 4.4. The difference between the slopes of the c(8× 2) and

(6 × 6) can be used, giving (∆NAs − ∆NGa) = 0.09. The estimates for the step

velocity and the reconstruction atoms change parameters fit directly into Equation

4.5. With the estimate of the chemical potential µGa, which is the variable in the

model, also defined, we are only left with the density of nucleation sites ρ0 and

the cost of boundary creation Cb. We gather the radii upon transformation for

the (6× 6) patches using an automated Computer Vision algorithm, demonstrated

in Section 4.6, and we fit the model to the experimental data against these two

fitting parameters. To address the bias in the transformation data coming from

the uneven distribution along the chemical potential axis, the regions with larger

amounts of data points are given more weight in the fit compared to regions with

fewer points, proportional to the number of data points. This gives more impor-

tance to the more representative regions of the data and limits the bias of the

uneven spread. The result of the fitting is shown in Figure 4.7. and yields an

edge energy of Cb = (4.340± 0.001)× 10−2 eV nm−1 and a nucleation site density

of ρ0 = (416.8± 1.2) nm−2.

The probabilistic behaviour of the patch size distribution is visible in Figure 4.8.
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Figure 4.7: Patch size against chemical potential upon transformation. The final size of

each patch before transformation is represented with a blue dot. The average radius size (green

bars) is calculated for chemical potential steps of ∆µGa = 0.015 eV and the fit from Equation 4.5

is shown with the red dashed line.

The Normal distribution suggests that the thermal-based approach we apply is valid,

as opposed to approaching the problem with an energetically fixed transformation

barrier that would have been seen if the elastic relaxation at the phase boundaries

played a main role in stabilising the unfavourable (6 × 6) phase. In such a case,

a clear cut-off would be seen at the small-sized patch transformations, as well as

a narrower overall size spread. Rather, the surface thermally jumps from the local

energy minimum associated to the (6× 6) to the global energy minimum associated

with the c(8× 2) with some probability, resulting in the distribution shape. As we

see a minor skew in the Normal distribution, this might be an indication of a weak

presence of elastic relaxation interactions, but could also be due to a bias in the

detection algorithms, which naturally tend to detect larger patches easier.
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Figure 4.8: Density distribution of detections. The chemical potential region where most

detections were captured throughout the experiment is isolated (red dots). The distribution of

these detections shows a Gaussian spread in transformation sizes.

4.5 Conclusion

The LEEM-MBE system was used to observe dynamic phase coexistence dur-

ing growth on GaAs(001), providing valuable insights into growth on the high-

temperature c(8 × 2) phase. We are able to describe and quantify the processes

during the metastable growth and extract meaningful surface parameters. We show

that the the observed metastability process has a strong dependence on the surface

chemical potential and obeys a probability distribution, defined by an Arrhenius

temperature dependence on the probability of growth.

As far as we are aware, this is the first time metastability is observed during

surface growth. The metastable behaviour of the surface during growth on c(8× 2)

can be a substantial reason to why such growth generally turns out rougher than

growth on β(2× 4) and c(4× 4) surfaces.
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4.6 Detection Methods

The (6×6) patches detection was automated through an algorithm consisting of

Computer Vision preprocessing and detection methods and a simple registry object-

tracker method. The resulting detection points are filtered though a set of criteria

based on their features to remove false-positives. In total, n = 313 detected patches

are extracted from the experimental data - a video, consisting of a 430 image frames

taken at 4 fps.

4.6.1 Preprocessing

The initial step is aimed at removing the sample drift that is present throughout

the experiment. This is done through the Template Matching technique, as described

in Chapter 2.3.1. Image alignment is vital in making the subsequent object-tracking

more consistent. Other preprocessing steps, such as denoising and correction for

image gradients, are not needed, due to the good intensity achieved during imaging

and overall high quality of the image data.

4.6.2 Detection

The images are in grayscale, where the bright parts are the c(8× 2) phase, while

the (6×6) patches and the surface steps are dark. To detect the patches, we employ

a simple but effective Computer Vision approach of binarising the image and using a

Blob Detector. For each video frame, we apply a threshold to the image and utilise

the ”simpleBlobDetector” method in the OpenCV library, which follows the steps:

* Extract connected components from every binary image and cal-

culate their centers.

* Group centers from several binary images by their coordinates.

Close centers form one group that corresponds to one blob.

* From the groups, estimate final centers of blobs and their radiuses

and return as locations and sizes of keypoints.
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This performs better on the data than the gradient-based methods like Laplacian

of Gaussian, Difference of Gaussian or Determinant of Hessian. A more elaborate

approach using a U-Net algorithm was also examined. It was trained on artificially

generated data to segment the image into c(8×2) regions, (6×6) regions and steps.

Although the approach is promising, it requires careful data engineering and model

tuning, which fell beyond the scope of this work.

The image thresholding used along with the Blob Detector was a global Otsu

threshold, chosen due to its relative simplicity, noting that a k-Nearest Neighbours

(kNN) algorithm for colour segmentation also performed equivalently. The Otsu

method for thresholding is presented in detail in Chapter 2.3.1.

4.6.3 Object Tracking

(6 × 6) patches persist over multiple video frames and tracking them through

their lifetime is done using a simple dictionary-based object registry system. The

registry accepts patch detections as the Blob Detection algorithm goes through the

video frames. It recognises visible patches that are present at the current time, and

disappeared patches, that have been observed some frames ago, but are no longer

active. Throughout the video, it tracks the positions of all detected patches for a

new frame and the distances to the current dictionary of visible patches. Through

these distances, the registry decides if the newly observed patches match active

detections, or are newly formed domains that become new entries in the registry.

It also retires active patches that have not been matched in the new frames. The

usage of distances between objects in consecutive frames is where the preprocessing

frame alignment step plays an important role.

With this simple tracking approach, we are able to accurately stack multiple blob

detections over consecutive frames into a single patch’s lifetime. The patch ”lifetime”

is naturally captured by the Blob Detection algorithm, as it stops considering a

(6 × 6) patch a blob once it starts transforming into the c(8 × 2), as at that point

it rapidly gains bright area inside its boundary.
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4.6.4 Filtering

After the detection process is complete, all registered (6 × 6) patches over the

whole video are put through a filtering process. The aim is to remove the false

positive detections, through a set of validation checks. Common sense criteria are

used against the collected stats for each patch. The rules for a registered detection

to be considered a real detection are:

• The patch lifetime must be longer than a second. A short detection,

even if it is an accurate one, brings no information for the analysis.

• The detection must be entirely inside the video frame at all times.

Some parts of the surface go in and out of frame due to sample drift, which

introduces inconsistencies in possible detections in such regions.

• The patch must grow at all times. There are also shrinking patches,

which are not the focus in the study. Otherwise, if the patch does not grow

consistently, it is very likely a false detection of another surface object.

• The growth of a patch must be reasonably linear. The limit is set to

r − value ≥ 0.75, which is based on Figure 4.3b). This removes patches, that

although real, have been interfered by another object on the surface and are

no longer representative data points.

The full procedure for the data extraction is given in Algorithm 4.
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Algorithm 4 Patch Detection

Input: Raw LEEM images

1: for each Frame do

2: procedure Frame Alignment(Previous Frame, Current Frame)

3: Create template from Previous Frame.

4: Find position of template in Current Frame.

5: Apply Translation to shift Current Frame and match template position.

6: return Shifted Current Frame

7: procedure Blob Detection(Current Image)

8: Binarize image with Otsu thresholding

9: Detect Blobs with cv2.simpleBlobDetector

10: return Blobs Stats - position, size for all detections

11: procedure Registry(Blobs Stats)

12: for Blob Stats in each frame do

13: Recover previous positions of active detections from Registry Dictionary

14: Create distance matrix by comparing positions to active detections

15: Associate each new detection to the best-corresponding active detection

using distance matrix.

16: Threshold distances of corresponding patches to distinguish: persisting

detections, new detections and vanished patches.

17: Update Registry Dictionary

18: return Position, Size for all detections

19: procedure Filtering(Blob Stats over all frames)

20: for each Registered Patch do

21: Check compliance to Filtering Rules

22: return Filtered detections
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Chapter 5

Real-time interpretation of

CBLEED patterns with

Autoencoders

5.1 Introduction

Low-Energy Electron Microscopy (LEEM) is an established technique in the field

of Material Science, with its unique properties making it invaluable in gathering

fundamental insight into semiconductor surfaces. In crystalline samples, LEEM is

accompanied by its complementary technique for surface reconstruction characteri-

sation - Low-Energy Electron Diffraction (LEED). With the electron beams’ shallow

surface penetration depth, LEED extracts structural information by tapping into re-

ciprocal space. The electron beam in LEED can utilize energies in the range of a

few eV to 100 eV, leading to an electron penetration depth of only a few atomic

layers of the sample surface. Varying the energy in that range produces intensity-

voltage I(V ) curves, giving a comprehensive view of the electron band structure at

the surface of a crystalline sample. As the electron beam normally illuminates a

large portion of the surface simultaneously, this information is convoluted over that

surface. To extract structural information for a spacially localised region of interest,

LEED is routinely used along with a small and well-positioned aperture, illuminating

surfaces patches with diameters of the order of a few hundred nanometers.

While micro-LEED (µLEED) gathers information using planar-wave electron
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beams of normal incidence, Held et al., 1995 observed that having a beam approach

the surface at different angles results in significant intensity modulations in the

LEED pattern and enables the gathering of ”beam-rocking curves”. This provides

additional structural information for the point of incidence. Spence et al., 2004 built

on the same concept, suggesting the converging beam geometry to have multiple

beams approaching the same spot at different angles, replicating the rocking curve

output, but from a significantly smaller incidence area.

The idea of convergent electron beams has been explored in the past (Buxton

et al., 1976). In practice, Convergent Beam Electron Diffraction (CBED) has been

extensively developed in the context of Transmission Electron Microscopy (TEM)

(Bird & Saunders, 1992; Goodman, 1975; J.A.Eades, 1986; J.M. Zuo, 1998; Lazić et

al., 2016; LeBeau et al., 2010; Tanaka et al., 1980; Tsuda & Tanaka, 1999; Vincent

& Midgley, 1994). Over the years, the TEM-based CBED has been utilised in

various applications to a significant impact, such as characterising crystal defects

(Ponce, Cherns, et al., 1996), lattice polarity determination, (Kato et al., 2004;

Ponce, Bour, et al., 1996), lattice misfit measurement (Völkl et al., 1998), charge-

density distribution mapping (Zuo et al., 1999), measuring strain fields (Clément et

al., 2004) and more. Although CBED is a very versatile approach, it predominantly

examines the bulk of crystalline samples and the relatively high beam irradiation on

the sample during TEM, and especially with CBED, is still a challenging problem

for imaging beam-sensitive materials (Lv et al., 2022).

Applying convergent beam in LEED in analogy with CBED mitigates these limi-

tations due to the shallow penetration depth and the sample-preserving nature of the

low energy electrons. These benefits allow the gathering of detailed structural infor-

mation from the surface from localised regions down to several nm in diameter, much

smaller than the minimal region diameters of 250 nm in µLEED imaging (Altman,

2010). Thus, the adoption of Convergent Beam Low-Energy Electron Diffraction

(CBLEED) can lead to a plethora of new applications and research findings. To

make the application of CBLEED more functional and seamless, we demonstrate a

method for the analysis and interpretation of the complex and abstract CBLEED

patterns. With this, we aim to help streamline the adoption of the powerful exper-

imental technique.
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We show that a Machine Learning (ML) approach is able to learn and identify key

surface structure properties based on the observed CBLEED pattern. We propose

a tool, which enables an automated real-time read of CBLEED patterns through

the joint use of a deep learning Autoencoder (AE)-based architecture and a simpler

ML model. This serves to efficiently inform the researcher during an experiment,

making it a more controlled and explainable process. Furthermore, the relatively

inexpensive and quick analysis gives a valuable pointer towards the appropriate

structures that were observed, mitigating the need for guesswork and exploration of

possible structures when experimental data is fitted with simulations. With this, the

approach increases the quality of the extracted information from an experiment and

mitigates the need for intensive and expensive computation in order to understand

the data after its acquisition.

5.2 Overview

The subject of CBLEED patterns has so far been primarily approached through

scattering simulations. Spence et al., 2004 demonstrated the equivalence of CBLEED

to the information from a conventional I-V curve. The individual LEED spots con-

volute into disks on a CBLEED pattern, as shown in Figure 5.1. There, multiple

scattering calculations in metals were used to show the effectiveness and sensitivity

of the approach to the surface potential.

Ruben et al., 2009 provided a basis for simulating CBLEED patterns on crys-

talline surfaces. Through kinematic single electron scattering simulations, they

showed the sensitivity of the CBLEED pattern to different surface reconstructions

and atomic displacements in Si(001) and established the structural sensitivity of

CBLEED patterns. Constantinou and Jesson, 2019 built on that, performing more

sophisticated multiple scattering simulations, which yield much more accurate vari-

ations in CBLEED pattern intensities in response to small atomic displacements.

The outlined current progress in the research on CBLEED patterns provides

computational methods of reaching a CBLEED pattern from a determined structure

and electron energy. With that, the currently available method for experimental data

interpretation is the traditional brute force approach of producing a range of patterns
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Figure 5.1: CBLEED image formation diagram. The immersion lens or the last condenser

lens in the illumination column of the LEEM microscope can be used to have the beam converge

at a point in the sample. Adapted from Constantinou and Jesson, 2019.

and matching with experimental ones. Unfortunately, the cost of the brute-force

approach scales sharply with the complexity of the examined material, where the

variational space quickly becomes large. Furthermore, the convoluted and abstract

nature of the patterns does not allow manual interpretation, by eye, of a pattern by

a researcher. This makes the practical application of the CBLEED technique quite

difficult and expensive. On the other hand, the availability of simulated CBLEED

data enables a data-cetric statistical approach of analysing CBLEED patterns using

Machine Learning.

Machine Learning and Deep Learning algorithms have recently been showing a

lot of promise and prowess in their applications on microscopy data across a variety

of microscopy imaging techniques (Ede, 2021b). In particular, ML algorithms have

been successful in their application in interpreting a variety of diffraction imaging

data, such X-ray diffraction (J. W. Lee et al., 2020; Oviedo et al., 2019; Suzuki et al.,

2020; Vecsei et al., 2019; Wang et al., 2018), reflection high-energy electron diffrac-

tion (Kwoen & Arakawa, 2020, 2022), electron backscatter diffraction (Kaufmann

et al., 2020), scanning precession electron diffraction (Martineau et al., 2019) and

more. In particular, we approach the problem of CBLEED pattern analysis using a
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Convolutional Neural Network (CNN)-based AE architecture. The AE architecture

was recently used in the analysis of X-ray diffraction patterns (B. D. Lee et al., 2022;

Utimula et al., 2022). Additionally, the speed and ability of CNN-based networks

for extraction of physical parameters, have recently been demonstrated in the close

context of CBED by W. Xu and LeBeau, 2018 and Zhang et al., 2020.

5.3 Methods

5.3.1 Dataset

The CBLEED dataset we use is generated by Constantinou and Jesson, 2019

through multiple scattering simulations of patterns on Si(001). The simulations

adapted the CAVATN package, which is based on the CAVLEED program (Titter-

ington & Kinniburgh, 1980). The simulations for the images used here were per-

formed on the symmetric-dimer and buckled-dimer (2× 1) structures. The electron

incidence energy was varied between 30−100 eV and a range of dimer displacements

were introduced to generate a total of about 5000 images in the dataset, examples

of which are shown in Figure 5.2.

Figure 5.2: Examples from the CBLEED dataset. The dataset was generated by intro-

ducing sub-angstrom dimer displacements along the dimer-height and dimer-length, relative to a

symmetric-dimer Si(001) - (2× 1) structure. Adapted from Constantinou and Jesson, 2019.

5.3.2 Model Training

For this work, we utilize an autoencoder-based architecture to capture the se-

mantics of the data. AE networks are a type of neural network techniques that

learns how to compress and reconstruct high-dimensional data in an unsupervised

manner. In an autoencoder, the input data is first encoded into a low-dimensional
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representation, also known as the latent space, by a series of non-linear transforma-

tions through a set of encoder layers. This latent representation is then decoded

back to the original high-dimensional space by a series of decoder layers, producing

a reconstruction of the input data. Since the input data is in the form of images,

the encoder and decoder networks in our architecture are constructed from convo-

lutional layers, followed by a group of fully connected layers and the two networks

mirror each other. The full Deep Convolutional Autoencoder (DCAE) architecture

is shown in Figure 5.3.

Figure 5.3: Deep Convolutional Autoencoder architecture. All convolutional layers apply

”Same” padding, a kernel stride of 1. The encoder convolutions are followed by a MaxPooling

layer and the decoder convolutions are followed by an UpSampling layer.

The encoder and decoder networks are trained simultaneously using backpropa-

gation to minimize the difference between the input and output. This reconstruction

goal is measured using Binary Crossentropy (BCE) loss:

L(y, ŷ) = − 1

N

N∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi) (5.1)

where y is the true binary label, ŷ is the predicted probability of the positive class,

and N is the number of samples in the batch. The loss function measures the

dissimilarity between the original and predicted images, with a higher loss indicating

a poorer reconstruction. Here, BCE is used over simpler loss functions, such as the

Mean Absolute Error (MAE) and Mean Squared Error (MSE), as it generally has the

small advantage of preventing loss saturation and being a convex function. Examples
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of the reconstructive ability progress of the DCAE network during its training are

shown in Figure 5.4.

Figure 5.4: The training of the autoencoder in examples. The reconstructions of the data

examples get progressively more accurate and sharper with each iteration over the dataset during

training (epoch).

A consequence of the data flow and a key feature during autoencoder learn-

ing is that the data must be squeezed through the bottle neck of the small latent

space without losing its essential features. As a result, the latent space needs to

act as a compressed representation of the input data that preserves the important

information while discarding the redundant or irrelevant information.

5.4 Analysis

The latent space of the autoencoder can be used to extract valuable information

from the CBLEED pattern images by providing a compressed, lower-dimensional

representation that captures the essential features of the patterns. By exploring

the latent space structure, we can identify patterns, trends and clusters of similar

data points which are not apparent in the original images. This can give insights

onto the parameters of the structure, which produced its corresponding CBLEED
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pattern. With that in mind, the size of the latent space becomes the most important

hyperparameter in our AE architecture for the task.

5.4.1 Latent space size

To get the most out of the latent space, its size must be carefully chosen. While

too small of a latent space will contain too little information and may start losing

valuable information, too large of a latent space will hold too much information,

lose its generalisation of the data and start overfitting. To find the latent space size

with best trade-off, networks with a variety of latent space sizes are trained. Their

loss values correspond directly to the quality of the reconstructions they achieve

and are therefore an indirect measurement of how successful the latent spaces are in

preserving information from the original data. The losses during training of these

networks is shown in Figure 5.5. As can be seen in the network training converges

after a latent space of size 8. This suggests that 8 dimensions in the latent space are

just enough to encompass all the needed information from the data, and are most

likely to result in the best generalisation of the data. Larger latent spaces do not

bring reconstruction improvements and merely contain the same information within

a larger latent space, going away from the best generalisation of the data.

Figure 5.5: Training loss of autoencoders with different latent space sizes. The AE

architecture between the separate training sessions stays the same, but the dimensionality of the

latent space is varied between 2- and 24-dimensional. While the 2- and 4-dimensional AE variations

even out at a higher loss, the variations with 8 dimensions and above converge around the same

reconstruction loss.
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5.4.2 Latent space structure

The CBLEED patterns in the data have been generated by traversing two phys-

ical parameters - the beam energy and the dimer displacement, with a step of 1 eV

and 0.1 Å respectively. Note that the beam energy is usually a known variable during

an experiment, but is kept as a parameter to showcase the ability of the proposed

algorithm to generalise multiple physical parameters simultaneously without prior

knowledge of them. Hence, the two parameters used for the generations can be con-

sidered metadata, which is not accessible to the AE algorithm at any time. In order

to explore the effectiveness of the latent space generalisation of the CBLEED data,

we visualise the projections of each CBLEED pattern in the latent space, labelled

with its beam energy and dimer displacement parameters. The smallest examined

latent space consists of 2 dimensions and is shown in Figure 5.6, after model training.

It is apparent from the distribution observed over this two-dimensional latent

space that both the beam energy and dimer displacement are reasonably well rep-

resented, with only a few inconsistencies of the dimer displacement parameter pro-

jection in the low-beam energy region of the latent space cluster. On the other

hand, the well-defined structure of the optimal 8 node latent space is clearly visible,

as shown in Figure 5.7. This suggests the autoencoder latent space learns a good

generalisation of the data that ultimately leads back to the initial data generation

process, without any prior knowledge of it.
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Figure 5.6: Latent space structure of the 2-dimensional autoencoder architecture after

training. The continuous distribution of dimer displacements and beam energies indicates a good

generalisation of the data. Small inconsistencies in the representations of the higher values of dimer

displacements are visible as non-blending placements of the yellow and purple lines in the overall

latent structure.

Figure 5.7: Latent space structure of the 8-dimensional autoencoder architecture after

training. Hessian Locally Linear Embedding (Donoho & Grimes, 2003) is used for dimensionality

reduction to three dimensions while preserving the latent space structure. Produced with a testing

subset of the dataset that has not been used for training.
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Beam Energy Dimer Displ.

Algorithm MAE R2 MAE R2

KNN 0.43 0.999 0.025 0.992

RBF SVM 0.83 0.995 0.050 0.978

NuSVM 0.92 0.994 0.010 0.997

DecisionTree 0.85 0.995 0.024 0.980

ExtraTree 0.87 0.997 0.028 0.973

XGBoost 0.75 0.998 0.028 0.986

Table 5.1: Comparison of the predictive success of different ML algorithms. Trained

and tested on the latent space projections of the training and testing subsets of the dataset,

respectively.

5.4.3 Latent Space Parameter Extraction

We use the trained and structured latent space to extract the parameters of the

surface via transfer learning. Several regression approaches, such as nearest neigh-

bours, support vector machines, decision trees and ensembles, were benchmarked,

and the most successful algorithms are presented in Table 5.1. Their accuracy was

measured by the average MAE on the latent representations of a test set of simu-

lated CBLEED patterns, and the robustness of the methods is measured through

the Coefficient of Determination (R2) metric. The R2 metric is a measure of how

well unseen examples are likely to be predicted by the model by relating variances

in the predictions to variations in the initial inputs. In particular, it is an indication

of how predictive the latent representation placements of the CBLEED patterns are

for the regression model, and as a consequence - how well new points in the latent

space can be quantified.

The methods show a sensitivity of less than 1 eV in predicting the beam energy

and less than 0.1 Å with high robustness. The K-nearest Neighbours (KNN) algo-

rithm showed the best robustness and a mean error of 0.043 eV in predicting the

Beam Energy in the test examples. The Nu Support Vector Machine (NuSVM)

Regression had the best dimer displacement prediction accuracy with a mean error

of just 0.01 Å, going well into the sub-angstrom levels of sensitivity.
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5.4.4 Performance

Training the AE network takes around 1.5h on an RTX-3080 Laptop GPU and

an i9-11900H CPU machine. Inference from the full pipeline includes a pass of the

encoder network to project the image into latent space, and a pass on the regression

network to quantify the point. It takes 0.1 sec, giving a performance of 10 fps. This

performance suggests a quick enough execution time for continuous local inference

on a standard lab computer for a real-time structure estimation feed, and alterna-

tively enables instant inference on-demand during an experiment. The performance

points towards the suitability of such an algorithm to be trained in advance for an

experiment, and be used both in real-time during the experimental run, and after

it, to point towards the appropriate structures and enable their confirmation with

a single simulations run, rather than a full lengthy exploration of all possibilities in

the simulation parameters.

5.5 Conclusion

A DCAE network was developed and trained on simulated CBLEED patterns,

generated with sub-angstrom dimer displacements. The network was shown to be

able to generalise the data well with only an 8-dimensional latent space. The well-

defined and explainable structure of the latent space is able to learn and identify

key physical surface properties and parameters based on the observed CBLEED

pattern. The latent space projection of a CBLEED pattern is used to estimate both

the beam energy and dimer displacements with high accuracy through a secondary

ML algorithm, showcasing the ability of the approach to capture multiple parameters

at once. With that, the approach is able to provide means of quick and efficient

interpretation of a CBLEED pattern, providing a basis for experimental tools for

real-time surface structure determination through the CBLEED technique.
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5.6 Future Work

This work demonstrates the idea of analysing CBLEED patterns on a Proof of

Concept level, and further steps can be taken to bring the concept to reality.

• Covering all training strategies. Since we utilise an ensemble of algo-

rithms working together, a further optimisation of the models lies in exploring

different training strategies, such as fine-tuning, joint learning and two-stage

training.

• Including other materials. Expanding the dataset with a variety of ma-

terials will bring further generalisation of the CBLEED patterns in the AE

models.

• Including more structural parameters. A wider range of variables in the

dataset generalisation will explore the limits of the technique and expand it

to more complex structures.

• Testing on experimental data. Even though the initial concept has been

shown to be effective, a real measure of how useful such a model is can be

done by testing its performance on experimental data.

Figure 5.8: Experimental CBLEED patters. Taken on Si(001) on a (2 × 1) / (1 × 2)

reconstructed surface, with a beam energies of (a) 30 eV and (b) 50 eV. Taken by adjusting the

CL3 lens of the LEEM microscope until beam is convergent. Images taken by Y.R.Niu.
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Chapter 6

Conclusion

With this thesis, we covered fundamental questions of phase interactions during

a stable coexistence and growth in the context of the Ga-rich (6 × 6) and c(8 × 2)

at high temperatures. We demonstrated the ability of the presented models to

explain the observed phenomena and extract surface parameters. To achieve this,

we developed Computer Vision (CV) pipelines to process the data automatically

and with high precision. With that, we extracted the values of the relevant surface

parameters behind the models, governing the observed processes. Furthermore, we

showed the application of Deep Learning (DL) to extract information from abstract

diffraction pattern data in real time.

In the first study we presented, the stable (6× 6) and c(8× 2) phase coexistence

was described. We combined the two approaches of observing phase coexistence

variations and measuring boundary fluctuations to establish an end-to-end method

of extracting the entropy difference and stress difference between the two phases

with a single experiment. We developed a complex CV and computational pipeline

to facilitate the data analysis and estimate the two fundamental parameters.

In the second work presented, we observe the metastable phase coexistence be-

tween the (6×6) and c(8×2) phases during growth. By using the chemical potential

gradient provided by a Ga droplet, we create an experimental setup where we gather

data for the metastability in a spectrum of conditions. We develop a model to de-

scribe the surface behaviour at this range of chemical potential variations. We set up

a CV pipeline to extract the rich metastability data from the experimental images

automatically and accurately. The metastability data showed that the developed
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model describes the surface behaviour accordingly.

In the final work of the thesis, we showcased the ability of a DL approach to

analyse Convergent Beam Low-Energy Electron Diffraction (CBLEED) patterns and

connect them with the surface structure they result from. We construct an unsuper-

vised convolutional autoencoder to learn a compressed representation of the data and

capture its essential features. The compressed space of the trained algorithm was

then shown to be well-structured and interpretable by traditional Machine Learning

(ML) algorithms, which are used to extract the surface structure parameters that

produced the CBLEED pattern with sub-angstrom accuracy. The inference on this

ensemble of algorithms was shown to be quick enough to be comfortably used in

real time.

The author’s studentship was funded by EPSRC research Grant No. EP/R513003/1.
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