
Explaining Random Forests Using Bipolar Argumentation and Markov Networks

Nico Potyka, Xiang Yin, Francesca Toni
Department of Computing, Imperial College London, London, UK

{n.potyka, x.yin20, f.toni}@imperial.ac.uk

Abstract
Random forests are decision tree ensembles that can be used
to solve a variety of machine learning problems. However, as
the number of trees and their individual size can be large, their
decision making process is often incomprehensible. We show
that their decision process can be naturally represented as an
argumentation problem, which allows creating global expla-
nations via argumentative reasoning. We generalize sufficient
and necessary argumentative explanations using a Markov
network encoding, discuss the relevance of these explanations
and establish relationships to families of abductive explana-
tions from the literature. As the complexity of the explanation
problems is high, we present an efficient approximation algo-
rithm with probabilistic approximation guarantees.

1 Introduction and Related Work
Random forests (RFs) (Breiman 2001) are machine learning
models with various applications in areas like E-commerce,
Finance and Medicine. They consist of multiple decision
trees that use different subsets of the available features.
Given an input, every tree makes an individual decision
and the output of the random forest is obtained by a ma-
jority vote. They have low risk of overfitting; support both
classification and regression tasks and come equipped with
some feature importance measures (Breiman 2001). How-
ever, feature importance measures can be too simplistic as
they can represent neither joint effects of features (e.g.,
multi-drug interactions) nor non-monotonicity (e.g., increas-
ing the weight may be healthy for an underweight person,
but not for an overweight person).

In recent years, a variety of other explanation methods
has been proposed. Model-agnostic feature importance mea-
sures like LIME (Ribeiro, Singh, and Guestrin 2016), SHAP
(Lundberg and Lee 2017) and MAPLE (Plumb, Molitor,
and Talwalkar 2018) have similar limitations like the fea-
ture importance measures defined for random forests. Coun-
terfactual explanations explain how an input can be modi-
fied to change the decision (Wachter, Mittelstadt, and Rus-
sell 2017), but mainly explain the model locally. Another
interesting family of explanation methods are abductive ex-
planations, also called prime implicant explanations (Shih,
Choi, and Darwiche 2018; Izza and Marques-Silva 2021;

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Wäldchen et al. 2021). Roughly speaking, abductive expla-
nations are sufficient reasons for a classification. Recently,
SAT encodings have been applied to compute abductive ex-
planations in tree ensembles (Izza and Marques-Silva 2021;
Ignatiev et al. 2022) and many other logic-based explana-
tion approaches have been investigated (Marques-Silva and
Ignatiev 2022; Cyras et al. 2021; Vassiliades, Bassiliades,
and Patkos 2021).

As random forests are essentially composed of rules, a
natural question is if we can use logical tools to reason in
more flexible ways about random forests. Since the rules
can be mutually inconsistent, non-classical reasoning ap-
proaches are a natural choice. Here, we investigate abstract
bipolar argumentation graphs (BAGs) (Amgoud et al. 2008;
Oren and Norman 2008; Boella et al. 2010; Cayrol and
Lagasquie-Schiex 2013) for this purpose. Intuitively, BAGs
allow identifying consistent subsets (extensions) of contra-
dicting arguments and to reason about them. We will show
that the bi-stable semantics for BAGs (Potyka 2021) allows
representing random forests as BAGs such that the possi-
ble decisions made by the forest correspond to extensions
of the BAG. Finding sufficient and necessary reasons for the
classification of a random forest can then be reduced to find-
ing sufficient and necessary reasons in argumentation frame-
works (Borg and Bex 2021). In order to solve the combi-
natorial reasoning problems, we consider Markov network
encodings of the BAG (Potyka 2020), which also allow rea-
soning about almost sufficient and almost necessary reasons.
As the computational complexity of the problems is high,
we consider a probabilistic algorithm to approximate rea-
sons and present first experimental results.

The proofs of all technical results can be found in the ac-
companying technical report (Potyka, Yin, and Toni 2022).

2 Random Forests and Classes of AXps
We will focus on Random forests for classification prob-
lems here. The goal of classification is to assign class la-
bels y to inputs x. Inputs are vectors x = (x1, . . . , xk),
where the i-th value belongs to some feature Xi with do-
main Di. We let D = ×k

i=1 Di denote the set of all in-
puts and C the set of class labels. Figure 1 shows two de-
cision trees for a medical classification problem where pa-
tients are diagnosed based on their age and three symptoms
A,B,C that can be present (1) or not (0). The diagnosis can

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

9453

Figure 1: A simple random forest with two decision trees.

be positive (Pos) or negative (Neg). Formally, we under-
stand trees as sets of rules T = {r1, . . . , r|T |}. A rule r has
the form prem(r) → conc(r), where the premise prem(r)
is a set of feature literals and the conclusion conc(r) ∈ C
a class label. Feature literals are positive or negative fea-
ture conditions. Feature conditions (positive feature literals)
have the form Xi = vi (categorical features) or Xi ≤ vi
(ordinal/numerical features), where vi ∈ Di. Negative fea-
ture literals are negated feature conditions. For example,
the tree on the left in Figure 1 can be represented by the
three rules {A = 1} → Pos, {A ̸= 1, B = 1} → Pos,
{A ̸= 1, B ̸= 1} → Neg. Note that the rules are exhaustive
and exclusive, that is, for every input x ∈ D, there is one
and only one rule that applies. We call this rule the active
rule in T for x.

A random forest F = {T1, . . . , Tt} is a collection of de-
cision trees. It processes an input x by computing the out-
puts y1, . . . , yt for x for all decision trees. Then, it returns
the class label that was selected most frequently. We assume
that ⊥ is returned if multiple class labels receive the maxi-
mum number of votes (a tie). We let OF : D → C ∪ {⊥}
denote the output function for F , where OF (x) = y if F
outputs class y for x and OF (x) = ⊥ if there is a tie.

Example 1. Consider the random forest composed of the
two trees in Figure 1 and a patient aged 25 with symptoms
A and B present. Then both decision trees will return Pos
and the output of the random forest is Pos. If symtom B was
not present, the decision tree on the left would return Pos,
while the decision tree on the right would return Neg. In
this case, the output is ⊥.

In order to understand the decision process of random
forests, we can consider abductive explanations (Shih, Choi,
and Darwiche 2018; Izza and Marques-Silva 2021). A weak
abductive explanation (wAXp), for a class label y ∈ C is
a partial assignment to the features such that every com-
pletion x of this partial assignment satisfies O(x) = y
(Huang et al. 2022). If a wAXp cannot be shortened, then
it is called an abductive explanation (AXp) or prime impli-
cant (Huang et al. 2022). For example, the partial assignment
(A = 1, B = 1, Age = 20) is a wAXp for Pos with respect
to the random forest in Figure 1. However, it is not an AXp
because it can be shortened to (B = 1, Age = 20), which
is, in fact, an AXp. (Wäldchen et al. 2021) recently general-
ized AXps. Roughly speaking, a partial assignment is called
a δ-relevant explanation for class y if the probability that a
completion satisfies O(x) = y is at least δ (Wäldchen et al.

2021) (where we consider a uniform distribution over the
completions). For brevity, we will call them δ-AXps in the
following. Note that 1-AXps are wAXps. Finding and even
deciding if a partial assignment is an (δ-)AXp is difficult
as complexity results in (Izza and Marques-Silva 2021) and
(Wäldchen et al. 2021) show.

3 Ambiguous and Indistinguishable Inputs
Random forests may be unable to make a decision due to
a tie in the individual tree decisions. For binary classifica-
tion problems, we can always avoid a tie by creating a forest
with an odd number of trees. However, if we have more than
two classes, there is no simple workaround. We call the un-
decided inputs ambiguous and let Amb(F) = {x ∈ D |
OF (x) = ⊥} denote the set of all ambiguous inputs.

The following proposition explains that analyzing ambi-
guity is a difficult problem even for simple random forests
that contain only boolean features and have at most 4
leaves/rules. We call this special case B4L random forests.

Proposition 1. • Deciding if there exists an ambiguous in-
put for a B4L random forest is NP-complete.

• Counting the number of ambiguous inputs for a B4L ran-
dom forest is #P-complete.

If F contains variables with infinite domains, the number
of ambiguous inputs can be infinite. However, it is always
possible to partition the inputs into a finite set of equivalence
classes. To make this more precise, let us first note that every
random forest yields a natural partition of the input domains
based on the feature conditions that occur in the forest.

Definition 1 (Domain Partition). The domain partition as-
sociated with F partitions every domain Di into disjoint
subsets Si,1, . . . , Si,ni such that Di = ⊎ni

j=1Si,j . If Di =

{v1, . . . , v|Di|} is finite, then ni = |Di| and Si,j = {vj}.
If Di is continuous, let Xi ≤ v1, . . . , Xi ≤ v|Di| denote
the feature conditions that occur in F for Xi and assume
w.l.o.g. that v1 ≤ · · · ≤ v|Di|. Then ni = |Di| + 1,
Si,j = (vj−1, vj] = {v ∈ Di | vj−1 < v ≤ vj} where
v0 = infDi, and S|Di|+1 = [v|Di|, supDi).

Example 2. For the random forest in Figure 1, the domains
of A, B and C are partitioned into {0} and {1}. For Age,
the domain is partitioned into (−∞, 35] and (35,∞).

Note that the number of partitioning sets is always finite
because random forests are finite. Furthermore, when we
chose one partition index ij for every feature Xi, then all
inputs in Si1 × · · · × Sik ⊆ D are indistinguishable for the
trees and, therefore, are all classified in the same way. To
capture these indistinguishable inputs, we define the char-
acteristic function of F as the mapping χF : D → Nk that
maps every input x to a k-dimensional vector v = χF (x)
such that xi ∈ Si,vi

for all i = 1, . . . , k.

Definition 2 (Indistinguishability Relation). Two inputs
x1,x2 ∈ D are indistinguishable with respect to F iff
χF (x1) = χF (x2). We denote this by x1 ≡F x2.

It is easy to check that indistinguishability is an equiva-
lence relation and that the equivalence classes E ∈ D/≡F

9454

correspond to the sets Si1 × · · · × Sik that we obtain by
choosing one partition index ij for every feature.

Let us note that while Amb(F) can be infinite, the set of
equivalence classes of ambiguous inputs Amb(F)/ ≡F is
always finite. Hence, we can now ask, what is the number
of ambiguous equivalence classes? If all domains are finite,
this is equivalent to counting the number of ambiguous in-
puts because, in this case, every equivalence class contains
exactly one input. Hence, Proposition 1 implies that count-
ing the ambiguous equivalence classes is #P -hard as well.

4 Representing Random Forests as BAGs
In order to reason about the decision process of random
forests, we represent it as a bipolar argumentation graph
(BAG). Formally, a BAG is a tuple B = (A,Att, Sup),
where A is a finite set of arguments, Att ⊆ A × A is the
attack relation and Sup ⊆ A × A is the support relation
(Cayrol and Lagasquie-Schiex 2013). We let Att(A) = {B |
(B,A) ∈ Att} denote the attackers of A and, analogically,
Sup(A) its supporters.

Various semantics have been proposed for BAGs. We use
the bi-complete semantics from (Potyka 2021) here, which
generalizes the complete semantics (Dung 1995) and re-
solves conflicts between attackers and supporters by means
of majority votes. It is based on labellings L : A →
{in, out, und} that assign a label in (accept), out (reject)
or und (undecided) to every argument. Given a labelling L,
we say that the attackers of an argument dominate its sup-
porters if |{B ∈ Att(A) | L(B) = in}| > |{B ∈ Sup(A) |
L(B) ̸= out}|. That is, for every supporter that is not out,
there is an attacker that is in and there is at least one ad-
ditional attacker that is in. Intuitively, every non-rejected
pro-argument is balanced out by an accepted counterargu-
ment and there is an additional counterargument that breaks
a potential tie. Symmetrically, the supporters of an argu-
ment dominate its attackers if |{B ∈ Sup(A) | L(B) =
in}| > |{B ∈ Att(A) | L(B) ̸= out}|. Given a BAF
(A,Att, Sup), we call a labelling L : A → {in, out, und}
Bi-complete (Potyka 2021): if L satisfies

1. L(A) = in if and only if L(B) = out for all B ∈
Att(A) or A’s supporters dominate its attackers.

2. L(A) = out if and only if A’s attackers dominate its
supporters.

A bi-complete labelling is called bi-stable if it does not label
any argument undecided. We let Lc(B) and Ls(B) denote
the bi-complete and bi-stable labellings of the BAG B.

Given a random forest F = {T1, . . . , Tt}, we want to rep-
resent it as a BAG BF,x such that the labellings of BF,x cor-
respond to the possible inputs and decisions of F . To do so,
we first associate a collection of arguments with F .

Definition 3 (Explanation Arguments). The explanation ar-
guments AF = AC ∪AR ∪AF associated with the random
forest F are defined as follows:

• AC = {Ay | y ∈ C} contains one class arguments for
every class,

• AR =
⋃

T ∈F AT , where AT = {AT ,r | r ∈ T } con-
tains a rule argument AT ,r for every tree T in F and
every rule r ∈ T ,

• AF =
⋃n

i=1AXi
, contains one feature argument for ev-

ery partitioning set of the feature domain (Def. 1), that is,
AXi = {AXi∈Si,1 , . . . , AXi∈Si,ni

}.
Next, we explain the attack and support relations in BF .

Intuitively, BF is a layered graph with the feature arguments
AF at the bottom, the rule arguments AR in the middle and
the class arguments AC at the top. Attack edges occur only
within the feature layer, from the feature to the rule and from
the rule to the class layer. Support edges occur only from the
rule to the class layer.
Definition 4 (Explanation Argument Relationships). The at-
tack and support relationships AttF = AttF,F ∪ AttF,R ∪
AttR,C and SupF = SupR,C associated with the random
forest F are defined as follows:
• AttF,F contains a feature-feature-attack between all fea-

ture arguments that belong to the same feature. That is,
(Af1 , Af2) ∈ AttF,F if and only if Af1 , Af2 ∈ AXi

,
• AttF,R contains a feature-rule-attack (AXi∈Si,j

, AT ,r)
if the feature constraint Xi ∈ Si,j is inconsistent with a
feature literal L ∈ prem(r) (e.g., the feature constraint
X ∈ (1, 3] is inconsistent with the feature literal X > 6),

• AttR,C contains a rule-class-attack (AT ,r, Ay) for every
rule argument AT ,r with conc(r) ̸= y,

• SupR,C contains a rule-class-support (AT ,r, Ay) for ev-
ery rule argument AT ,r with conc(r) = y.

Intuitively, feature-feature attacks guarantee that only one
feature argument per feature can be accepted (because they
refer to distinct feature values/ranges). Feature-rule attacks
deactivate rules that are inconsistent with the currently ac-
cepted feature configuration. The rule-class relationships
support/attack classes according to their claim. The Expla-
nation BAG associated with a random forest is then con-
structed from the explanation arguments and the attack and
support relationships between them.
Definition 5 (Explanation BAG). Given a random for-
est F , the explanation BAG for F is the BAG BF =
(AF ,AttF , SupF).

We note that BF can be constructed in quadratic time.
The reason for the quadratic blowup is that we have pairwise
attacks between feature arguments for the same feature.
Proposition 2. BF can be generated from F in quadratic
time.

4.1 Faithfulness of the Explanation BAG
As we show next, the explanation BAG BF is a faithful rep-
resentation of F in the following sense: every bi-stable la-
belling ofBF represents a possible decision made byF (cor-
rectness) and for every possible decision that F can make,
there is a bi-stable labelling of BF that represents it (com-
pleteness). The following lemma motivates the use of bi-
stable labellings.
Lemma 1. Let L be a labelling for BF .
1. If L ∈ Lc(BF), then for all features Xi, either

9455

• L(AXi∈Si,j) = und for all AXi∈Si,j ∈ AXi or
• L(AXi∈Si,j

) = in for exactly one AXi∈Si,j
∈ AXi

and L(AXi∈Si,j′) = out for all other AXi∈Si,j′ ∈
AXi \ {AXi∈Si,j}.

2. If L ∈ Ls(BF), then for all features Xi, L(AXi∈Si,j) =
in for exactly one AXi∈Si,j ∈ AXi and L(AXi∈Si,j′) =

out for all other AXi∈Si,j′ ∈ AXi \ {AXi∈Si,j}.
Lemma 1 states that bi-complete labellings either accept

exactly one feature constraint per feature or remain unde-
cided. Since the undecided case is not interesting for our
purposes, we focus on bi-stable labellings. The fact that bi-
stable labellings accept exactly one constraint per feature al-
lows us to associate every bi-stable labelling L of BF with
an equivalence class SL ∈ D/≡F of inputs with respect to
the indistinguishability relation (Def. 2).

As we show next, every bi-stable labelling L accepts ex-
actly one rule argument per tree. This rule argument corre-
sponds to the active path in the tree for all inputs x ∈ SL in
the corresponding equivalence class SL ∈ D/≡F .

Lemma 2. If L ∈ Ls(BF), then for all trees T ∈ F , AT ,r ∈
AT is labelled in if and only if r is the active rule in T for
all inputs x ∈ SL. Furthermore, all other rule arguments in
AT are labelled out.

We can now show that our enconding is correct in the
sense that a class argument Ay can be labelled in by L if
and only if OF (x) = y for all x ∈ SL.

Proposition 3 (Correctness). If L ∈ Ls(BF), then for all
class arguments Ay ∈ AC , L(Ay) = in if and only if
OF (x) = y for all x ∈ SL. Furthermore, if L(Ay) = in,
then L(Ay′) = out for all Ay′ ∈ AC .

Proposition 3 guarantees that every bi-stable labelling L
represents a collection of inputs from the equivalence class
SL ∈ D/≡F and the accepted class-arguments corresponds
to their classification. However, it is also possible that L does
not accept any class argument. As we show next, this is only
possible if the inputs in SL ∈ D/≡F are ambiguous. Since
all inputs in an equivalence class are classified equally, this is
equivalent to showing that for every input with OF (x) ̸= ⊥,
there is a corresponding bi-stable labelling Lx that repre-
sents it. Lx is defined as follows:

1. a feature argument AXi∈Si,j
∈ AF is labelled in if Xi ∈

Si,j and labelled out otherwise,
2. a rule argument AT ,r ∈ AR is labelled in if r is the active

rule in T for x and labelled out otherwise,
3. a class argument is labelled in if its supporters dominate

its attackers, out if its attackers dominate its supporters,
and und otherwise.

The following lemma explains that Lx is always a bi-
complete labelling (Item 1) and accepts at most one class
argument (Item 2).

Lemma 3. 1. For all x ∈ D, Lx ∈ Lc(BF) .
2. There is at most one y ∈ C such that Lx(Ay) = in.

Furthermore, if Lx(Ay) = in for some y ∈ C, then
Lx(Ay′) = out for all y′ ∈ C \ {y}.

We can now show that our encoding is complete in the
sense that Lx is a bi-stable labelling (x is represented by a
bi-stable labelling) if and only if OF (x) ̸= ⊥.

Proposition 4 (Completeness). For all inputs x ∈ D,
OF (x) ̸= ⊥ if and only if Lx ∈ Ls(BF).

4.2 Applications of the Explanation BAG
Now that we established the formal relationship between BF
and F , we can use it to reduce questions about F to ar-
gumentation problems in BF . To begin with, we note that
counting the ambiguous equivalence classes of F can be re-
duced to counting the bi-stable labellings of BF .

Proposition 5. |Amb(F)/≡F | = |D| − |Ls(BF)|.

Two interesting argumentative reasoning problems that
are relevant for explainable AI are finding sufficient and nec-
essary reasons for the acceptance of arguments (Borg and
Bex 2021). A set of arguments S is a sufficient reason for
an argument A if for all labellings L, A is accepted by L
whenever S is accepted by L. A set of arguments N is a
necessary reason for A if L accepts A only if it also accepts
N . We will consider sufficient and necessary reasons with
respect to bi-stable labellings here. Note that a set of fea-
ture arguments {AXi1∈Si1,j1

, . . . , AXik
∈Sik,jk

} is a (mini-
mal) sufficient reason for a class argument Ay in BF if and
only if every partial assignment from Si1,j1 × · · ·×Sik,jk is
a wAXp (AXp) for y in F .

Example 3. For the explanation BAG corresponding to Fig-
ure 1, the set of feature arguments {AB∈{1}, AAge∈(−∞,35]}
is a minimal sufficient reason for APos. This means that ev-
ery partial assignment of the form (B = 1, Age = x), where
x ≤ 35, is an AXp for the random forest.

Similarly, if {AXi1∈Si1,j1
, . . . , AXik

∈Sik,jk
} is a neces-

sary reason for Ay , then F can only classify an input as y
if the input is an extension of one of the partial assignments
from Si1,j1 × · · · × Sik,jk .

Example 4. For Figure 1, the feature argument AA∈{0} is
necessary for ANeg because if A = 1, the first tree will vote
for Pos, so that the output of F is either Pos or ⊥.

The following proposition allows us to construct neces-
sary feature arguments bottom-up.

Proposition 6. If N ⊆ AF is necessary for Ay , then all
A ∈ N are necessary for Ay .

This suggests the following algorithm for finding all nec-
essary feature arguments. For every class argument Ay and
every feature argument AXi∈Si,j , test if AXi∈Si,j is neces-
sary for Ay . The union of all these feature arguments is then
the maximal necessary reason among the feature arguments
and we can find it with a linear number of atomic necessity
checks. However, deciding if a feature argument is neces-
sary for a class argument, may be a difficult problem itself.
The problem is in CoNP because a counterexample for the
necessity of a candidate can be verified efficiently, but we
currently do not know a lower bound for the complexity.

9456

5 Markov Network Representation
We can reduce many combinatorial tasks in argumentation
graphs to probabilistic queries in Markov networks (Potyka
2020). The reduction also allows us to generalize the idea
of necessary and sufficient reasons to δ-sufficient and δ-
necessary reasons similar to the idea of δ-AXps.

Intuitively, Markov networks decompose a large proba-
bilistic model P into smaller local models (Koller and Fried-
man 2009). We denote random variables by capital letters
U, V,W and values of these random variables by small let-
ters u, v, w. Bold capital letters U,V,W denote ordered se-
quences of random variables and bold small letters u,v,w
denote assignments to these random variables. For example,
if U = (U1, U2, U3) and u = (u1, u2, u3), then U = u
denotes the assignment (U1 = u1, U2 = u2, U3 = u3). We
write V ⊆ U if the random variables in V form a subset of
the random variables in U. If V ⊆ U, we denote by U|V
and u|V the restriction of U and u to the random variables in
V. For example, if V = (U1, U3), we have U|V = (U1, U3)
and u|V = (u1, u3). We consider three types of random
variables in our application.
Definition 6 (Explanation Random Variables). The random
variables associated with F are defined as follows:
• For every feature Xi, we introduce a feature variable Ui

that can take values from {Si,j1 , . . . , Si,ni
} (the parti-

tioning sets of the feature domain from Def. 1).
• For every tree T = {r1, . . . , rk}, we introduce a tree

variable UT that can take values from {r1, . . . , rk}.
• We introduce a class variable UC that can take values

from C.
A factor with scope V ⊆ U is a function ϕ(V) that

maps every assignment v to V to a non-negative real num-
ber. Intuitively, factors can increase or decrease the prob-
ability of variable assignments. Given a set of factors Φ =
{ϕ1(U1), . . . , ϕk(Uk)}, Ui ⊆ U, we define the plausibility
of a state of U via

PlΦ(U) =
k∏

i=1

ϕi(U|Ui
).

By normalizing the plausibility, we obtain a probability dis-
tribution that is called the Gibbs distribution over U:

PΦ(U) =
1

Z
PlΦ(U),

where the normalization constant Z =
∑

u PlΦ(u) guaran-
tees that the probabilities add up to 1. Z is also called the
partition function.

In our application, we build up the Gibbs distribution from
two types of factors. Intuitively, the first one simulates the
individual tree decisions based on the state of the feature
constraints and the second one simulates the decision mak-
ing process of the random forest based on the tree decisions.
Definition 7 (Explanation Factors). The factors associated
with F are defined as follows:

• For every tree T ∈ F , there is a tree factor ϕT (UT),
where UT contains the tree variable UT and for each

feature Xi used in T , the corresponding feature vari-
able Ui. ϕT (UT) is a tree-factor (Koller and Friedman
2009) defined as follows: given a variable assignment
uT , ϕT (UT) computes the active rule r for the assign-
ment of the feature variables and returns 1 if r is assigned
to UT and 0 otherwise.

• There is one class factor ϕC(UC), where UC contains
the class variable UC and all tree variables. ϕC(UC) is
defined as a deterministic factor (Koller and Friedman
2009) defined as follows: Given a variable assignment
uC , ϕC(UC) iterates over the tree variables and counts
for every class the number of rules that vote for the class.
It then returns 1 if the class assigned to UC has a larger
number of votes than all other classes and 0 otherwise.

The factors define the explanation plausibility distribution
and the corresponding Gibbs distribution for F .

Definition 8. Given a random forest F , the associated ex-
planation plausibility distribution for F is

PlF (U) = ϕC(U|UC) ·
∏
T ∈F

ϕT (U|UT)

and the explanation Gibbs distribution is

PF (U) =
1

Z
PlF (U).

Although PF (U) is motivated by the explanation BAG,
we can construct it immediately from F . To do this, we tra-
verse all trees to create the domains of the random variables,
translate the decision trees into tree factors and create the
class factor. This can almost be done in linear time, but as
we need to order the threshold values of continuous features
for the domain partition, there can be a log-linear blowup.
As the explanation plausibility distribution is just the prod-
uct of the factors, we can generate it in log-linear time.

Proposition 7. The explanation plausibility distribution
PlF (U) can be generated from F in log-linear time.

Building up the Gibbs distribution probably requires ex-
ponential time as it involves computing the normalization
constant Z. However, we will exploit the fact that the plausi-
bility distribution can be used to design sampling algorithms
to approximate Z and queries to the Gibbs distribution.

5.1 Explanation Queries
Before going into the sampling algorithms, let us explain
what we can learn from the normalization constant and prob-
abilities from the Gibbs distribution. We keep exploiting the
fact that bi-stable labellings correspond to non-ambiguous
inputs for F (Proposition 4). To do so, we associate every
input u for PF (U) with a labelling Lu as follows:

1. a feature argument AXi∈Si
j
∈ AF is labelled in if Ui =

Si
j and labelled out otherwise,

2. a rule argument AT ,r ∈ AR is labelled in if UT = r and
labelled out otherwise,

3. a class argument Ay is labelled in if UC = y and labelled
out otherwise.

9457

Let us first observe that the plausibility of every input for
PF (U) is either 0 or 1 and it is non-zero if and only if it
represents a bi-stable labelling of the explanation BAG.

Proposition 8. For every assignment u to PlF (U), we have
PlF (u) ∈ {0, 1}. Furthermore, PlF (u) ̸= 0 if and only if
Lu is a bi-stable labelling of the explanation BAG.

This relationship allows us to connect the partition func-
tion Z to the number of bi-stable labellings (non-ambiguous
inputs) and probabilistic queries to generalizations of suf-
ficient and necessary reasons. We say that a set of argu-
ments S is a δ-sufficient reason for an argument A if among
the labellings that accept S, δ · 100 % also accept A. Sim-
ilarly, N is a δ-necessary reason for A if among the la-
bellings that accept A, δ · 100 % also accept S. Note that
1-sufficient (1-necessary) reasons are just sufficient (neces-
sary) reasons. Furthermore, if all features are categorical,
then {AXi1

∈Si1,j1
, . . . , AXik

∈Sik,jk
} is a δ-sufficient reason

for a class argument Ay in BF if and only if every partial
assignment from Si1,j1 × · · · × Sik,jk is a δ-AXp for y in
F . If we have continuous features, this may not be the case
for δ ̸= 1 because the indistinguishability relation does not
necessarily partition the domains of continuous features into
equivalence classes of equal size.

In the next proposition, we use the following notation:
Given an assignment vF to a subsequence of feature ran-
dom variables VF , we let SvF

denote the corresponding
set of feature arguments that contains the feature argument
AXi∈Si

j
if and only if vF assigns Ui = Si

j .

Proposition 9. 1. If all features are categorical, then Z =
|D| − |Amb(F)| = |Ls(BF)| is the number of equiva-
lence classes of non-ambiguous inputs for F .

2. Let VF be a subsequence of feature random variables.
Then PlF (C = y,vF) =

N(C=y,vF)

Z , where N(C=y,vF)

is the number of bi-stable labellings that accept all argu-
ments in SvF

∪ {Ay}.
3. PF (C = y | vF) = δ if and only if SvF

is a δ-sufficient
reason for Ay .

4. PF (vF | C = y) = δ if and only if SvF
is a δ-necessary

reason for Ay .

5.2 A Probabilistic Approximation Algorithm
Proposition 1 and the complexity results for deciding AXps
and δ-AXps from (Izza and Marques-Silva 2021) and
(Wäldchen et al. 2021) make it unlikely that there is an ef-
ficient exact algorithm for computing the partition function
and the probabilities in Proposition 9. We therefore consider
a probabilistic algorithm that approximates the probabili-
ties. Readers familiar with Bayesian networks may notice
that PF is almost a Bayesian network: The variable factors
are independent of all other factors, the tree factors depend
only on the variable factors and the class factor only on the
tree factors. The dependency structure of the factors in PF
is therefore acyclic like in a Bayesian network. However, the
class factor cannot be interpreted as a conditional probability
distribution because it does not define a probability distribu-
tion when the configuration of the tree factors corresponds
to an ambiguous input. Nevertheless, the acyclic structure

Input: rand. forest F , queries (w1 | v1), . . . , (wl | vl)

Output: estimates for PF (w1 | v1), . . . ,PF (wl | vl)

DO:
| E ← sampleEquivalenceClass(F)
| IF OF (E) ̸= ⊥ :

| | countNonambiguous()

| | u← computeAssignment(E)

| | FOR i = 1 TO k :

| | | IF u|Vi
= vi:

| | | | IF u|Wi
= wi: countPos(wi,vi)

| | | | ELSE: countNeg(wi,vi)

| ELSE: countAmbiguous()

WHILE termination condition not met

RETURN estimates()

Figure 2: Probabilistic approximation algorithm for estimat-
ing the percentage of non-ambiguous inputs, and the proba-
bilities of sufficient and necessary queries.

allows us to use forward sampling ideas for Bayesian net-
works (Koller and Friedman 2009) to approximate sufficient
and necessary queries.

Figure 2 shows the template of our algorithm. It expects
as input a random forest and the probabilistic queries that
are to be approximated. The queries consist of sufficient
queries (item 2) or necessary queries (item 3) in Proposi-
tion 1. The algorithm uses forward sampling (from the fea-
ture variables to the class variable). It repeatedly samples
equivalence classes of inputs for F . Since the tree and class
factors are deterministic, the state of the tree and class vari-
ables is already determined by this sample and their state
is only computed if needed. With a slight abuse of nota-
tion, we write OF (E) for OF (e), where e ∈ E is an ar-
bitrary input from the equivalence class E (recall that all in-
puts in E are indistinguishable for F). Ambiguous samples
are rejected immediately, but we keep track of their num-
ber (countAmbiguous()). For non-ambiguous samples, we
also iterate a counter (countNonambiguous()) and com-
plete the variable assignment. The completed samples are
used to approximate the queries by relative frequencies.
More precisely, countPos(wi,vi) and countNeg(wi,vi)
increment counters N+

(wi,vi)
or N−

(wi,vi)
that count how of-

ten the target wi was satisfied or not when the condition
vi was satisfied. The estimate for the conditional proba-

bility PF (wi | vi) is
N+

(wi,vi)

N+
(wi,vi)

+N−
(wi,vi)

. The estimate for

the percentage of non-ambiguos input equivalence classes is
Nn

Nn+Na
, where Na (Nn) is the numbers of (non-)ambiguous

equivalence classes that we sampled. Multiplying this frac-
tion by the number of all equivalence classes results in an

9458

estimate for the number of non-ambiguos input equivalence
classes, but we restrict to reporting the percentage as it is
easier to comprehend. We have the following guarantees,
where convergence in probability means that the probabil-
ity that the estimates deviate from the target by more than an
arbitrarily small ϵ goes to 0 as the number of samples goes
to∞.
Proposition 10. When sampling inputs uniformly and inde-
pendently in the algorithm in Figure 2, then Nn/(Nn+Na)
converges in probability to the percentage of non-ambiguous
equivalence classes and e(wi|vi) = N+

(wi,vi)
/(N+

(wi,vi)
+

N−
(wi,vi)

) to PF (wi | vi) for 1 ≤ i ≤ l. Every iteration runs
in linear time with respect to F and the number of queries
l. Furthermore, if we have M ≥ 3 ln(2/δ)

P (wi|vi)·ϵ2 samples for
e(wi|vi), then P (e(wi|vi) ∈ PF (wi | vi) · (1± ϵ)) ≥ 1− δ.

Let us note that even though every iteration of our algo-
rithm runs in linear time, we may require a large number
of iterations until the estimates converge. The probabilistic
error bound at the end of Proposition 10 shows that the con-
vergence speed depends on the number of samples generated
for e(wi|vi). If PF (vi) is small, this will take longer. Typi-
cally, the estimates for necessary queries (conditioned on a
class label) and sufficient queries for shorter abductive ex-
planations will converge faster.

Formally, we simultaneously approximate the percent-
age of non-ambiguous inputs using Monte-Carlo sampling
and the probabilities of the queries using rejection sampling
(Koller and Friedman 2009). Every sample that we create in
our algorithm can be used for the Monte-Carlo approxima-
tion, but only a fraction for individual rejection samples. It
can be wasteful not to use the Monte-Carlo samples for the
queries. However, once a sufficiently large number of sam-
ples has been created for the Monte-Carlo approximation,
we can switch from rejection sampling to conditional for-
ward sampling. That is, if e(wi|vi) requires additional sam-
ples, we fix the state of the variables vi and sample only the
remaining feature variables, which is justified by the acyclic
dependency structure of the factors in PF that we explained
at the beginning of this section.

5.3 Implementation and Experiments
As a first proof of concept, we implemented a simple vari-
ant of the algorithm in Figure 2 in Python1. We consider a
reason v almost sufficient for C = y if it is δ-sufficient and
PF (C = y | v) > 1.1 · PF (C = y), that is, v results in a
relative increase of the probability of at least 10 %. We con-
sider v almost necessary if it is δ-necessary. In this case, we
do not need to take the prior into account because we sample
uniformly from the partition domains (the prior is therefore
always at most 0.5). We chose δ = 0.9.

Our implementation works in two stages. The first stage
is analogous to Figure 2 and the queries are the atomic suf-
ficient and necessary queries of the form (Uy | Ui) and
(Ui | Uy) for all combinations of feature arguments Ui and

1https://github.com/nicopotyka/Uncertainpy, folder examples/-
explanations/randomForests. See appendix in (Potyka, Yin, and
Toni 2022) for more details.

class arguments Uy . At the end of stage 1, we report the
estimated percentage of non-ambiguous inputs and all al-
most sufficient and necessary reasons that were found. We
can combine all almost necessary reasons to a single big
necessary reason for reasons similar to Proposition 6. How-
ever, there may be many more almost sufficient reasons.
Therefore, in the second stage, the algorithm tries to find
almost sufficient reasons of size 2. To this end, for all pairs
of features (Ui, Uj), and all possible assignments (ui, uj)
of equivalence classes to these features, we perform forward
sampling conditioned on the feature assignment (ui, uj) and
report the estimate if the probability exceeds the δ-threshold.
For every pair (ui, uj), the probability can be estimated
quickly. However, since there can be a large number of pairs,
the overall runtime can be long and the almost sufficient rea-
sons of size 2 are reported continuously while the sampling
procedure is running.

We tested our algorithm on three datasets. The Iris and
PIMA dataset are continuous datasets that have been con-
sidered for counterfactual explanations (White and d’Avila
Garcez 2020). In addition, we consider the Mushroom
dataset that contains discrete features. For reproducibility,
the datasets are contained in the source folder. For the ran-
dom forest trained on the Iris dataset, the estimated percent-
age of non-ambiguous input equivalence classes is 98 % and
we found several almost sufficient reasons. These included
1-sufficient reasons. The estimates are based on several hun-
dred examples, but since there is uncertainty in the sampling
process, we should be careful and assume that these are δ-
sufficient for δ close to 1, but not necessarily equal to 1.
petallength ∈ (5.0, 5.14] is an example of an almost suf-
ficient reason of length 1 for the class Virginica. The pair
(sepallength ∈ (5.45, 5.5], petallength ∈ (2.64, 2.75])
is an almost sufficient reason of length 2 for the class
Versicolor. We generated 10,000 samples for the first stage
in less than one minute on a Windows laptop with i7-
11800H CPU and 16 GB RAM. The second stage produced
a variety of other sufficient reasons within seconds, but many
redundant reasons are reported in the current version. For the
Mushroom dataset, we found that our random forest learnt
that Odor Foul = 1 is 0.99-sufficient for Poisonous and
Odor Foul = 0 is 0.98-necessary for Edible. We provide
more details and examples about the experiments and how
to reproduce them in the appendix of (Potyka, Yin, and Toni
2022).

6 Conclusions
We showed that the decision process of random forests can
be naturally encoded as a bipolar argumentation problem.
This allows reducing counting the number of ambiguous in-
puts and finding sufficient and necessary reasons to reason-
ing tasks over argumentation problems. The argumentation
problems are often solved using reductions to SAT (Dvorák
et al. 2012; Beierle, Brons, and Potyka 2015; Alviano 2018),
CSP (Lagniez, Lonca, and Mailly 2015) or Markov networks
(Potyka 2020). We used a Markov network reduction as it
naturally leads to almost sufficient and almost necessary rea-
sons and a variety of algorithms with probabilistic approxi-
mation guarantees.

9459

Acknowledgments
This research was partially funded by the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No. 101020934, ADIX) and by J.P. Morgan and by the Royal
Academy of Engineering under the Research Chairs and Se-
nior Research Fellowships scheme. Any views or opinions
expressed herein are solely those of the authors.

References
Alviano, M. 2018. The pyglaf argumentation reasoner. In
International Conference on Logic Programming (ICLP).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
Amgoud, L.; Cayrol, C.; Lagasquie-Schiex, M.-C.; and
Livet, P. 2008. On bipolarity in argumentation frameworks.
International Journal of Intelligent Systems, 23(10): 1062–
1093.
Beierle, C.; Brons, F.; and Potyka, N. 2015. A software sys-
tem using a SAT solver for reasoning under complete, stable,
preferred, and grounded argumentation semantics. In Joint
German/Austrian Conference on Artificial Intelligence (KI),
241–248. Springer.
Boella, G.; Gabbay, D. M.; van der Torre, L.; and Villata,
S. 2010. Support in abstract argumentation. In Interna-
tional Conference on Computational Models of Argument
(COMMA), 40–51. Frontiers in Artificial Intelligence and
Applications, IOS Press.
Borg, A.; and Bex, F. 2021. Necessary and Sufficient Ex-
planations for Argumentation-Based Conclusions. In Vej-
narová, J.; and Wilson, N., eds., European Conference on
Symbolic and Quantitative Approaches to Reasoning with
Uncertainty (ECSQARU), volume 12897 of LNCS, 45–58.
Springer.
Breiman, L. 2001. Random forests. Machine learning,
45(1): 5–32.
Cayrol, C.; and Lagasquie-Schiex, M.-C. 2013. Bipolarity in
argumentation graphs: Towards a better understanding. In-
ternational Journal of Approximate Reasoning, 54(7): 876–
899. Publisher: Elsevier.
Cyras, K.; Rago, A.; Albini, E.; Baroni, P.; and Toni, F. 2021.
Argumentative XAI: A Survey. In Zhou, Z., ed., Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
4392–4399. ijcai.org.
Dung, P. M. 1995. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial intelligence,
77(2): 321–357. Publisher: Elsevier.
Dvorák, W.; Järvisalo, M.; Wallner, J. P.; and Woltran, S.
2012. Cegartix: A sat-based argumentation system. In Prag-
matics of SAT Workshop (POS).
Huang, X.; Izza, Y.; Ignatiev, A.; Cooper, M. C.; Asher, N.;
and Marques-Silva, J. 2022. Tractable Explanations for d-
DNNF Classifiers. In AAAI Conference on Artificial Intelli-
gence (AAAI), 5719–5728. AAAI Press.
Ignatiev, A.; Izza, Y.; Stuckey, P. J.; and Marques-Silva, J.
2022. Using MaxSAT for Efficient Explanations of Tree

Ensembles. In AAAI Conference on Artificial Intelligence
(AAAI), 3776–3785. AAAI Press.
Izza, Y.; and Marques-Silva, J. 2021. On Explaining Ran-
dom Forests with SAT. In Zhou, Z., ed., International Joint
Conference on Artificial Intelligence, (IJCAI), 2584–2591.
Koller, D.; and Friedman, N. 2009. Probabilistic graphical
models: principles and techniques. MIT press.
Lagniez, J.-M.; Lonca, E.; and Mailly, J.-G. 2015. Coquiaas:
A constraint-based quick abstract argumentation solver. In
International Conference on Tools with Artificial Intelli-
gence (ICTAI), 928–935. IEEE.
Lundberg, S. M.; and Lee, S.-I. 2017. A unified approach
to interpreting model predictions. In International Confer-
ence on Neural Information Processing Systems (NeurIPS),
4768–4777.
Marques-Silva, J.; and Ignatiev, A. 2022. Delivering Trust-
worthy AI through Formal XAI. In AAAI Conference on
Artificial Intelligence (AAAI).
Oren, N.; and Norman, T. J. 2008. Semantics for Evidence-
Based Argumentation. In International Conference on Com-
putational Models of Argument (COMMA), 276–284. IOS
Press.
Plumb, G.; Molitor, D.; and Talwalkar, A. 2018. Model
agnostic supervised local explanations. In International
Conference on Neural Information Processing Systems
(NeurIPS), 2520–2529.
Potyka, N. 2020. Abstract Argumentation with Markov Net-
works. In European Conference on Artificial Intelligence
(ECAI), 865–872.
Potyka, N. 2021. Generalizing Complete Semantics to Bipo-
lar Argumentation Frameworks. In European Conference on
Symbolic and Quantitative Approaches to Reasoning with
Uncertainty (ECSQARU 2021), Lecture Notes in Computer
Science, 130–143. Springer.
Potyka, N.; Yin, X.; and Toni, F. 2022. Explaining Random
Forests using Bipolar Argumentation and Markov Networks
(Technical Report). CoRR, abs/2211.11699.
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. ” Why
should i trust you?” Explaining the predictions of any clas-
sifier. In ACM SIGKDD international conference on knowl-
edge discovery and data mining, 1135–1144.
Shih, A.; Choi, A.; and Darwiche, A. 2018. A Symbolic
Approach to Explaining Bayesian Network Classifiers. In
Lang, J., ed., International Joint Conference on Artificial In-
telligence, IJCAI, 5103–5111. ijcai.org.
Vassiliades, A.; Bassiliades, N.; and Patkos, T. 2021. Ar-
gumentation and explainable artificial intelligence: a survey.
The Knowledge Engineering Review, 36.
Wachter, S.; Mittelstadt, B.; and Russell, C. 2017. Counter-
factual explanations without opening the black box: Auto-
mated decisions and the GDPR. Harv. JL & Tech., 31: 841.
Wäldchen, S.; MacDonald, J.; Hauch, S.; and Kutyniok, G.
2021. The Computational Complexity of Understanding Bi-
nary Classifier Decisions. J. Artif. Intell. Res., 70: 351–387.
White, A.; and d’Avila Garcez, A. S. 2020. Measurable
Counterfactual Local Explanations for Any Classifier. In
European Conference on Artificial Intelligence (ECAI)).

9460

