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H I G H L I G H T S 

⚫   A novel assessment method for WAC is proposed based on the multi-stage robust optimization. 

⚫   Tractable risk evaluation method is integrated in the multi-stage framework. 

 ⚫   Adaptive techniques are designed for FRDDP method to accelerate the optimal solution. 

⚫   The proposed method achieves both non-anticipative and robust assessment decisions.  
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 A B S T R A C T 

The volatility and uncertainty of wind energy has brought great challenges to its accommodation in electric 

power systems. To determine a wind power trading strategy in the real-time power market, the accurate 

assessment of wind energy accommodation capability (WAC) is of great significance. However, most 

current studies investigate the wind energy accommodation potential from the perspective of dispatch, but 

rarely provide quantitative assessment results. Additionally, the non-anticipativity of decisions has not been 

considered in the assessment yet. This paper proposes a novel quantitative assessment method for WAC 

based on the multi-stage robust optimization (RO), which addresses the anticipativity issues in the 

traditional two-stage method while maintaining the decision-making process’ robustness. In the assessment 

method, the operational risk is integrated via a tractable scheme to obtain dynamic admissible WAC 

boundaries. To obtain the optimal solution of the proposed multi-stage RO problem, a fast robust dual 

dynamic programming (FRDDP) algorithm is employed, where the adaptive techniques are developed to 

accelerate the computation. Numerical studies on the modified IEEE 14-Bus system and a real-world system 

in Zhejiang Province of China validate the effectiveness of the proposed assessment model and adaptive 

acceleration techniques. The simulation results demonstrate the presented method brings a 18.87% reduction 

in operational cost, and reduces 29.34% curtailment of wind energy. Compared with the original FRDDP, 

the adaptive technique significantly reduces the computational consumption by 73.34% on the real-world 

test system. 

 

 

1.    Introduction 

The wind energy installed capacity has rapidly expanded to mitigate 

global warming caused by excessive fossil fuel consumption since it can 

provide electricity with zero carbon emissions [1], [2]. However, the 

endogenous variability and uncertainty characteristics make wind energy 

difficult to be accommodated in power systems [3]. In some real-time 

power markets, power system operators need to purchase electricity from 

wind farms [4]. When the actual available wind energy in the market cannot 

support the demand, operators will make additional emergency regulations, 

such as running fast-acting units to recover the operation feasibility [5]. 

Thus, the wind power accommodation capability (WAC) assessment results 

are necessary to give the range of wind power that can be purchased from 

the market, and provide the boundary conditions of wind power output for  

 

 

Nomenclature 
 

Abbreviations 

WAC Wind energy accommodation capability lt
υ The penalty coefficient of slack variables  

RO Robust optimization θ, θ  Upper/lower bound of phase angles 

FRDDP Fast robust dual dynamic programming Fhk, F hk  Upper/lower capacity limits of transmission line hk   

SO Stochastic optimization ρ  Penalty factor of lt
υ in RIA 

SDDP Stochastic dual dynamic programming Ce  Total capacity of ESS e 

RDDP Robust dual dynamic programming ℘s  The objective value of upper approximation problem in s 

RIA Relaxed inner approximation c
e 

q , c
d 

q   Coefficients of operational risk 

UC Unit Commitment M  Penalty factors of imbalanced power 

ED Economic dispatch ω
+ 

q,t,γ, ϑ
 + 

q,t,γ Intermediate parameters of piecewise linearization method 

ESS Energy storage systems Pg, P g Upper/lower generation limitation of unit g  



 

 

WCR Wind curtailment risk Ig,t   Pre-defined UC plan in unit g, period t 

LSR Load shedding risk R
+ 

g , R
- 

g  Ramp up/down rate limit of unit g 

SOC State of charge Aq   Upper limit of available wind power in farm q 

MI14B Modified IEEE 14-Bus  Soce, Soce Upper/lower limits state of charge in ESS e 

FEG Fast-starting emergency generator Ld,t  Load demand of node d at period t 

MC Monte Carlo method  Variables  

Indices and Sets Riskt
+(-)

 Measurement for WCR and LSR 

q Index of wind farms Awq,t
+(-)

  Upper/lower bound of WAC range in wind farm q at period t 

g Index of thermal units Pg,t  Output of unit g at period t 

eC Index of ESS Awq,t  Available wind power in wind farm q at period t 

h Index of power buses ξ
q,t
+(-)

  Uncertainty indicator variables in wind farm q at period t 

hk Index of transmission lines Soce,t  State of charge of ESS e at period t 

sΛt Index of valid iterations/sampling points at stage t  Pee,t  Charging/discharging power of ESS e at period t 

d Index of demands Pwq,t   Consumed wind power in wind farm q at period t 

fh /th Sets of lines come from/to node h θh,t  Phase angle of node h at period t 

  Feasible set of admissible WAC decision Fhk,t  Power flow at line hk at period t 

  Feasible set of dispatch decision  δh,t
+(-)

  Slack variables in Bus h for power flow at period t 

  Uncertainty set of wind power ∆t
+(-)

  Slack variables for characterizing sampling points at period t 
n

 Set of n-dimensional real variables λs  The coefficients of the convex combination in iteration s 

Parameters   
ϛ Quantity measurement of wind generation   

γ Ordinal number of the piecewise linearization method  

a
+ 

q,t,γ, b
+ 

q,t,γ Constant coefficients of operational risk  

  

the secure and economic operation of power systems [5], [6]. An effective 

WAC assessment method needs to meet the following requirements: 

•  Properly modeling the uncertainty of wind generation, and 

•  Obtaining quantitative assessment results. 

To cope with the uncertainties of wind power, the two-stage stochastic 

optimization (SO) methodology was presented in [7]-[10]. Nevertheless, 

the SO approach is hard to be applied in practice due to the computational 

intractability and the requirement of accurate distribution of the random 

variables [11]. An alternative approach is the robust optimization (RO) 

method, which mitigates computational burden via using the “max-min” 

operator to screen out the worst-case scenario [12]. Benefiting from this, 

the two-stage RO is frequently utilized in modeling the operation of 

variable renewable systems [13]-[15], and has been applied in providing a 

robust WAC assessment [6]. 

Despite their demonstrated effectiveness, the state-of-the-art two-stage 

SO and RO approaches violate the non-anticipativity of decisions under the 

evolution of uncertain wind energy [16], [17]. Specifically, the second stage 

decisions of two-stage scheme are made with the full knowledge of all the 

uncertain parameters in the future, while in the real-world process, the 

system operators’ decisions only depend on the uncertainties realized up to 

the current period [18]. Consequently, the two-stage scheme overestimates 

the adjustment capacity of power systems to accommodate wind energy 

[19].  

To enforce the non-anticipativity of decisions, temporal decomposition 

is employed to extend the two-stage SO and RO into a multi-stage problem. 

In the field of SO, the multi-stage version has recently attracted a lot of 

interests, and performs well in hydropower scheduling [17], economic 

dispatch [20], microgrid operation [18], and long-time planning [21]. 

Besides, a sequential solution method, referred to stochastic dual dynamic 

programming (SDDP) [20], can provide the global optimal solution to the 

multi-stage SO. Compared to SO, the research in RO is lagging in the multi-

stage field, since it is challenging to find a tractable way for tackling the 

nested “max-min” operators [22]. The conventional solution method is to 

use the affine rules [23] to map the unit output to a linear function of the 

actual wind power [24]. To improve the optimality, the piecewise affine 

rules [25]-[26] and the polynomial affine rules [27] are proposed. Although 

the different affine rules seem to provide an executable way to handle the 

multi-stage RO model, it should be emphasized that they are essentially 

conservative approximation ways, which oversimplifies the origin 

formulation and reduces the quality of solution. Recently, a mathematically  
 

Table 1. Comparative features of relevant studies pertaining to WAC 

Reference 
Quantitative 

assessment results 

Non-anticipative 

decisions 

Risk-based evaluation Global optimality 
Acceleration of solution 

algorithm 

[16], [22], [25]      

[19], [29], [30]      

[34]      

[5], [6], [35], [36]      

This work      

 

strict robust dual dynamic programming (RDDP) method is proposed to 

achieve the global solution of multi-stage RO model [28], which is a robust 

counterpart of SDDP. However, since the method used in the upper 

approximation of RDDP has exponentially increasing time complexity, it 

is not suitable for solving the real-time dispatch problem even with more 

than ten units [28], [29]. In [30], the column and constraint generation 



 

 

algorithm is integrated to RDDP for improving the tractability. In our 

previous work, a fast RDDP (FRDDP) method through relaxed inner 

approximation (RIA) is proposed [31]. Through testing, FRDDP 

significantly improves the solution speed of traditional RDDP. In [32], the 

RIA and outer approximation are simultaneous utilized to construct an 

upper bound for the non-convex value functions under the RDDP based 

framework. However, the latest studies [29]-[32] of modeling the 

uncertainties of wind energy focus on the power dispatch, whose 

application in tackling the WAC assessment problem is still a gap. 

Referring to the studies aforementioned above, most of them investigate 

the wind energy accommodation potential of power systems from the 

perspective of dispatch, but no quantitative WAC assessment results are 

given [19], [33]. In [34], a do-not-exceed limitation interval of wind energy 

is proposed to achieve the WAC assessment of power grids. However, this 

method can only provide a static WAC assessment result since it is derived 

under a pre-defined box uncertainty set, which may not be optimal under 

different real-time dispatch strategies. Ref. [5] and Ref. [35] minimize the 

operational risk to measure the admissible wind energy, which can obtain a 

dynamic WAC assessment outcome being fit for different economic 

dispatch (ED) strategies. Furthermore, Ref. [36] considers the information 

of wind generation forecast errors in the risk measurement to achieve a 

more accurate WAC assessment. In [6], the operational risk is divided into 

the wind curtailment and load shedding risk, where a tractable linearization 

method is also presented. However, the existing studies that can provide a 

quantitative WAC assessment [5]-[6], [35]-[36], are formulated by the two-

stage RO approach, which violates the non-anticipativity of decisions under 

the uncertain wind energy. Thus, the WAC assessment outcomes from them 

will lose accuracy. 

The challenges existed in the literature in terms of presenting an effective 

WAC assessment method can be summarized as follows:   

(1) Most research investigates the WAC potential from the perspective 

of dispatch, but rarely provides quantitative assessment results.  

(2) Although a few attempts have been made on the quantitative 

assessment of WAC, they formulate the uncertainty of wind energy 

based on the two-stage scheme, which violates the non-

anticipativity of assessment decisions. 

(3) A WAC assessment method that can provide dynamic admissible 

boundaries and properly evaluate systems’ operational risk is still 

lacking. 

To address these challenges, this paper proposes an innovative WAC 

assessment method, which can provide quantitative assessment outcomes 

of WAC for directing the development of real-time trading strategies for 

power systems that need to purchase electricity from wind farms. The 

proposed method enforces the non-anticipativity of assessment decisions 

and designs a risk-based measurement technique to serve a dynamic 

assessment result. The main contributions of this work are as follows, 

compared with the existing studies in Table 1. 

(1) The proposed method can provide a quantitative range of WAC to 

power system operators, which can be served as the real-time wind 

power purchasing guidance for power systems. 

(2) Based on the multi-stage RO model, the proposed method enforces 

the non-anticipativity and preserves the robustness of decision-

making, which improves the accuracy of assessment results 

compared to the existing studies. 

(3) The multi-stage scheme is presented with a tractable strategy for 

evaluating operational risk, enabling the proposed WAC 

assessment method to obtain dynamic acceptable boundaries in 

accordance with the operation risk of the systems. 

(4) A novel FRDDP algorithm is employed as the global optimal 

solution methodology. For accelerating computation, we develop 

two adaptive techniques. 

The remainder of this paper is organized as follows. Section 2 

introduces the concept of WAC assessment in power systems. Section 3 

describes the mathematical formulation of the proposed WAC assessment 

model. Section 4 illustrates the FRDDP solution methodology and the 

developed adaptive acceleration techniques. In Section 5, the proposed 

assessment model and solution methodology are validated on a modified 

IEEE 14-Bus system and a real-world system in Zhejiang province of 

China. Section 6 concludes this paper. 

2.    Concept of WAC assessment in power systems 

In recent decades, more and more individual wind power operators have 

participated in power markets [37]. This study focuses on the power 

systems that need to purchase wind energy from wind power operators in 

real-time power market [38], the mechanism of which is shown by Fig. 1. 

During the day-ahead stage, under the pre-determined unit commitment 

(UC), power system operators aggregate the forecast wind power 

information, the adjusting capacity of dispatchable units and energy storage 

systems (ESS), and the gird parameters to assess WAC. The schematic 

diagram is shown in Fig. 2. In the intra-day stage, the obtained WAC range 

is utilized to evaluate the impact of real measured wind power for power 

systems and makes corresponding dispatch and trading plan.  

As shown in Fig.2, if the real measured wind power located in the WAC 

range (i.e., admissible region), power system operators can purchase the 

entire volume of wind power, since arbitrary realization of wind generation 

within the range can be fully admitted without breaking the operational 

feasibility. When the real measured wind power exceeds the upper bound 

of WAC, the maximum quantity that can be purchased by the operators is 

restricted by the upper admissible level, since the adjusting capacity of 

dispatchable units and ESS cannot support consuming the abundant wind 

generation, which leads to the power imbalance. Once the real measured 

wind power is smaller than the lower bound of WAC range, fast-starting 

emergency units that are not contained in the day-ahead UC plan, are started 

up to preserve normal demand. 
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Fig. 1. The mechanism representation of WAC assessment in energy scheduling 

and trading 
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Fig. 2. Schematic diagram of WAC assessment 

3.    Mathematic formulation of proposed WAC assessment method 



 

 

3.1.  Tractable operational risk evaluation model 

The operational risk is defined referring to [5] and [35], which is the 

expectation of wind curtailment risk (WCR) and the load shedding risk 

(LSR) when the wind power exceeds the system's WAC range. It is usually 

established based on the probability distribution function of wind power, 

which is obtained by the historical prediction error data. 
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Fig. 3. Probability density function of wind power and operational risk 

The relationship between WAC and operational risk can be seen in Fig. 

3, where Awq,t represents the day-ahead forecast wind power. Arising from 

the forecast error, when the intra-day actual wind power is larger than the 

upper bound of WAC range, Aw
+ 

q,t, it will result in WCR. Conversely, when 

the actual wind power is smaller than Aw
- 

q,t, it will cause LSR, which needs 

emergency regulations to restore systems’ operational feasibility, as 

described in Section 2. According to the definition of operational risk, 

WCR and LSR can be calculated by (1) and (2), respectively: 

 
,

, ,( )Pr( ) ( )
q t q

u

q t q q t
Aw A

Risk c Aw d


  
+

+ +

 
= −  (1) 

 
,

, ,
0

( )Pr( ) ( )
q t

d

q t q q t
Aw

Risk c Aw d


  
−

− −

 
= −  (2) 

where,   is the quantity of wind generation, and Pr( )  stands for its 

probability. 

Since the defined formula of operational risk (1) and (2) contain complex 

integral terms, a piece-wise linear method is introduced for reformulating 

it into a tractable model. Since the operational risk is always convex for 

different kinds of probability density functions [39], this tractable 

operational risk model is valid for any probability density functions of wind 

energy. Taking WCR as an example, the first step is to relax (1) to 

inequality (3): 

 
,

, ,( )Pr( ) ( )
q t q

u

q t q q t
Aw A

Risk c Aw d


  
+

+ +

 
 −   (3) 

Since the operation risk is minimized in the objective function, (3) will 

take an equal sign after optimization, which means formula (1) and (3) are 

equivalent. Furthermore, (3) is piecewise linearized as (4): 

 
, , , , , , ,  , ,q t q t q t q tRisk a Aw b q t  + + + + +    (4) 

where, γ is ordinal number of the piecewise linearization method. a
+ 

q,t,γ and 

b
+ 

q,t,γ are the constant coefficients, which can be calculated by (5)-(8): 

 
, , ( 1)q t   + = −   (5) 
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q t q

u

q t q q t
A

c d


 
 
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+

+ +

 
= −  (6) 

 
, , , , 1 , , , , 1 , ,( ) / ( )q t q t q t q t q ta        + + + + +

+ += − −   (7) 

 
, , , , , , 1 , , , , 1 , , , ,( ) / ( )q t q t q t q t q t q t q tb            + + + + + + +

+ += − − − +  (8) 

Similarly, the LSR can be reformulated by the tractable formula: 

 
, , , , , , ,  , ,q t q t q t q tRisk a Aw b q t  − − − − +    (9) 

3.2.  System secure operation constraints 

The generation of dispatchable units are limited by constraints (10)-(12), 

which include the upper and lower generation limits and ramping 

restrictions. The start-up or shut-down state of units are fixed by the day-

ahead determined UC plan Ig,t.  

 
, , , ,,g t g t g tggP tP gI P I     (10) 

 ( ), 1 , 1 ,, 1 ,1 ,gg t g t g gg t t g tP P I R I P+

− − −−  + −   (11) 

 ( ), 1 , , , ,1 ,gg t g t g t g g t g tP P I R I P−

− −   + −  (12) 

The output of wind generation is characterized by (13)-(15). Among 

them, (13) regulates the relationship between the forecast available wind 

power and WAC range. (14) restricts that the consumed wind power cannot 

exceeds the real measured wind power, which fluctuates within the 

uncertainty set. (15) defines the boundary of uncertainty sets of real 

measured wind power, where ξ
q,t
+

, ξ
q,t
-

  are binary variables. 

 
, , ,0 ,,qq t q t q tAw Aw Aw A q t− +      (13) 

, , , , , , , ,0 ( ) ( ) ,,q t q t q t q t q t q t q t q tPw Aw Aw Aw Aw Aw q t + + − −−   + − −   (14) 

 
, , 1, ,q t q t q t − +  +   (15) 

The charging and discharging states of ESS are often represented by two 

separate integer variables to consider the different charging and discharging 

efficiencies, which will cause intractable problems in large-scale multi-

stage SO or RO problems [20]. In our previous work [19], [31], a tractable 

ESS model is proposed in a multi-stage RO problem, whose effectiveness 

also has been mathematically proved. This study also adopts this linear ESS 

model, which is specifically shown as follows: 

 , 1 , / ,,c
ee t e t e ePe e tSoc C Soc− −  C  (16) 

 ,, 1 ,/ ( ) ,d

e t e e ee t Pe e tSoc C Soc− −  C  (17) 

 , 1 ,, / , ,e t e t et e tS eoc Soc CPe−= −  C  (18) 

where, the positivity or negativity of Pee,t represents the charging or 

discharging of ESS. The state of charge (SOC) of ESS are limited by (16) 

and (17). Eq. (18) is an approximated computation to model the 

transformation of SOC for ESS, which ignores the charging and 

discharging efficiency parameters of ESS. 

Then, the deviation for SOC caused by the ignorance of efficiency is 

refined by correction function (19).  Note that (19) does not serve as a 

constraint and is calculated in the interval of each adjacent stage of multi-

stage RO problem, so the max/min operators will not affect the model's 

linearity [19]. 

   , , 1 , ,max ,0 / ( ) min ,0 / , ,d c

e t e t e t e e e e t eSoc Soc Pe Pe e tC C −= − −  C  (19) 

The DC power flow [29] is utilized to model the power balance of the 

whole network. Constraints (20)-(21) characterizes the relationship of 

phase angle difference and power flow between the connected nodes. (22) 

restricts the power flow in each transmission line within the capacity 

limitation. Constraint (23) stipulates the nodal power balance. 

 ( ), , ,/ , ,h t k t hk hk h ht f t tx F hk  − =   (20) 

 , ,,h t th      (21) 

 , ,,hkhk hk tF F F thk−     (22) 
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3.3.  Overall multi-stage RO based WAC assessment problem 

By minimizing the anticipated operational risk brought on by the 

inadmissible wind energy, the WAC range can be obtained, which needs to 

consider the worst-case scenario to guarantee the operational feasibility. 

This renders a multi-layer optimization problem as follows: 
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In problem (24), the out-layer “min” problem ensures the optimality of 

WAC boundaries in terms of system operational risk. The inner-layer 

“max-min” problems are nested in sequence for t [1:T], which guarantees 

within the admissible WAC decision wt, arbitrary wind generation 

realizations will not cause power imbalance.  

For the brevity of statements, the multi-stage RO based WAC assessment 

problem can be recast in the compact problem (25). 
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where, the “max-min” operators screen out the worst-case wind generation 

scenario to determine a WAC assessment result that is secure enough for 

system operational feasibility. Compared to the two-stage RO based 

method, the “max-min” operators are sequentially expanded to multi-stage, 

which follow the non-anticipative evolution of uncertainty realizations, 

discussed in [19] in more detail. 

To decouple tp  and tξ  from the complex affine relationship ( )t tp ξ , 

problem (25) can be equivalently transformed to the L-shaped nested form, 

according to the dynamic programming methodology [19]. 
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where, 1(w) is the worst-case cost-to-go function of pre-stage problem QP, 

which measures the total operational risk of WAC assessment decision w 

under for whole intra-day system operation. The 1(w) can be calculated 

by: 1(w) = max{Q1(w; ξ1): ξ1 1 }. 

Following the paradigm of dynamic programming, w is sent to the system 

operation problems (Q1 to QT) as a state-variable, which begins with the 

1-stage problem (27). 
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where, e1 is a selection matrix which selects the w1 from w. 

The cost-to-go functions  t( 1 1,t t− −ω p ) of system operation problems, 

where t   2, encode the future power imbalance penalty of operation 

strategies and assessment decisions 1 1( , )t t− −ω p  in the worst case. It can be 

calculated by: 

 1 1 1 1( , ) max{ ( , ; ) : }t t t t t t t t t− − − −= ω p ω p ξ ξQ  (28) 

where 1 1( , ; )t t t t− −ω p ξQ is defined as: 
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In (27) and (29), the linking constraints 1  = ω w  and 1 = t t−ω ω  copy the 

WAC assessment decision w obtained by solving QP  to the state space of 

each stage problem. It means that not only the variable pt representing 

system operation state (e.g. units ramping state), butωt are state variables 

in the proposed WAC assessment model. This state space augmentation 

technique for the feasibility of the whole multi-stage RO problem is proved 

in our previous study [31]. 

4.    Problem solving methodology 

4.1.  Two-bounds based optimal solution method 

Due to the dynamic programming based framework, the problem (26)-

(29) can be solved recursively via decomposition methods. For the multi-

stage SO based dynamic formulation, the nested Benders cut and SDDP can 

be employed to achieve the global optimal solution, which constructs the 

lower bounds of cost-to-go functions t+1 through cutting planes. But in the 

multi-stage RO problem studied in this paper, using only lower bounds of 

cost-to-go functions cannot handle the nested “max” operator indicating the 

worst-case uncertainties realization [28], as in (28).  

Consistent with the conventional RDDP method [28], both the lower 

bounds of cost-to-go functions  t+1 and the upper bounds  t+1 are 

constructed in FRDDP, which has the relationship t+1 t+1 t+1 with 

the real cost-to-go functions  t+1. In RDDP, the  t+1 and  t+1 are 

constructed by convex hull and hyperplanes respectively, as shown in Fig. 

4. This two-bounds based solution method can effectively screen out the 

worst scenario involved in t+1 via the refinement of upper bounds, and 

achieve the global optimal solution of multi-stage RO. To approximate t+1,  
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Fig. 4. Geometric interpretation of two-bounds based solution method in 

FRDDP 

the t+1 and t+1 are refined iteratively until the gap between them is less 

than the criterion, which is completed by recursively solving the lower and 

upper approximation problems, Qt and Qt. 

 

( )1

1

1

max min   ,

  1
                 . .  

 =   

                          

                          ,  

t t

tt t t t t

t

t t

t t t t t t t t

n m T

t

t t

when t
s t

otherwise

+


−

−



= +

= =



+ + 

 

ξ
m p ω p

ω w

ω ω

D p B p ω e F ξE

p ω

Q

 (30) 

 

( )
1

1

1

( ) min   ,

  1
          . .  

 =   

                   

                   ,  

t t t t ttt

t

t t

t t t t t t t t

n m T

t

t t

when t
s t

otherwise

+

−

−



= +

= =



+ + 

 

ξ m p ω p

ω w

ω ω

D p B p ω e F ξE

p ω

Q

 (31) 



 

 

The implementation of FRDDP consists of two procedures: Forward 

pass and Backward pass. In the Forward pass, from pre-stage (QP) to stage 

T (QT), problem Q t is solved to generate the worst-case uncertainty 

realization ξt, and the decision sampling points [ω t; pt] are determined 

through the solution of problem Qt(ξt) under scenario ξt. The Backward 

pass yields effective inner points, supporting hyperplanes to refine t+1 and 

t+1. The algorithm terminates once the upper bound reaches the lower 

bound. 

Similar to the conventional RDDP, the lower bound  t+1( ωt , pt) 

contained in problem (31) is refined by adding Benders cutting planes in 

FRDDP. The cutting-plane based lower approximation problems at each 

stage remain feasible due to the presence of slack variables, and the optimal 

cuts (32) can be individually constructed without any feasible cuts to speed 

up computation [40]. 
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where, ωt and pt are the optimal solution of Qt(ξt) obtained from the just 

finished Forward pass. The Q
t+1

∗
 is the value of objective function for the 

problem Qt+1(ξt+1) in this round Backward pass, and [πt
ω; πt

p
] represents the 

shadow price of [ωt; pt] in problem Qt+1(ξt+1). 

As for the formulation of upper bound t+1(ωt, pt) in problem (30), the 

FRDDP proposed in our previous work [31] creates an approximated 

convex hull based methodology to avoid the huge computation in the upper 

approximation of conventional RDDP, which is detailed in section 4.2. 

4.2. RIA based upper approximation 

In the conventional RDDP, the convex hull based upper bound in Fig. 4 

is formulated through the internal approximation (IA) method [28], which 

needs to enumerate the extreme points of t+1(ωt, pt). This time consuming 

procedure in IA makes the conventional RDDP cannot solve the real-time 

dispatch problem even with more than ten units [29]. In the FRDDP 

algorithm, an RIA method is presented to accelerate the solution of upper 

approximation problem Qt, which avoids the extreme points enumeration 

via constructing an approximate convex hull. The RIA formulated problem 

Qt in FRDDP is shown as following: 
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The illustration of (33) and its comparison with IA are shown 

geometrically in Fig. 5. As shown in Fig. 5(a), the IA method constructs the 

top of convex hull by enumerating all extreme points of t+1(ωt, pt). After 

that, IA collects a decision sample point for each iteration in order to update 

the convex hull, which increasingly approaches the real cost-to-go function 

t+1 from above. In contrast, the RIA substitutes boundary lines with slope 

lt
υ for the extreme points-based top, to build up an approximate convex hull. 

If the optimal solution falls inside the approximate convex hull (shadow 

region in Fig. 5(b)), the t+1(ωt, pt) is formulated as a convex combination 

of the historical inner points ∑ λs[ωt
s;p

t
s]s∈Λt

. Whilst  t+1( ωt , pt) is 

penalized by a large number lt
υ∆t and locates on the boundary lines if the 

optimal solution lies outside of the approximate convex hull. Additionally, 

the validation, tightness and finite convergence of RIA method based 

FRDDP algorithm is mathematically proved in our prior work [31].  

As for the solution of “max-min” problem (33), with the linearization of 

Big-M method, the duality theorem or Karush-Kuhn-Tucker optimality 

conditions can be used to transform it into a single layer MILP problem 

[12], which can be directly handled by commercial solvers. 
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(a) IA based convex hull (b) RIA based approximate convex hull  
Fig. 5. Demonstration of the upper bounds of conventional RDDP and FRDDP 

4.3. Adaptive accelerating technique 

The FRDDP requires complete Forward pass and Backward pass from 

pre-stage to stage T, which constantly produces redundant cuts and inner 

points because t+1 and t+1 may converge earlier in some stages. Hence, 

we suggest an adaptive stage selection approach for the FRDDP, which is 

checked before each iteration. 
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where, Tadp represents the end stage of the Forward pass and Backward 

pass. It is found by the last one whose relative gap of upper and lower bound 

is more than the tolerance ε.  

Note that the effectiveness of adaptive stage selection is guaranteed by 

the fact that the cost-to-go functions in SDDP or RDDP always converge 

in the sequence from the T-stage problem to the first stage problem [28], 

[41]. Besides, when the gap between 1 and 1 is lower than the tolerance, 

the whole algorithm satisfies the convergence criterion.  
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Fig. 6. Illustration of adaptive stage selection in FRDDP 

In (33), the slope of approximated convex hull’s boundary lines, lt
υ, is a 

tuning parameter that has strong influence on the convergence of FRDDP. 

A too large value will result in an inside region that is too tiny to explore 

sufficient decision sampling points, which slows convergence. By contrast, 

a value that is too small could cause the lower bound to exceed the upper 

bound. For the feasibility of two-bounds based optimal solution method, 

the key observation is that the boundary slope of the outside region of t+1 

should be no less than the maximum slope of t+1. Therefore, we present 

an adaptive rule to configure lt
υ. 

  (( ) )[ ; ],  1: ( 2)max p k
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where, [πt
ω(k)

; πt
p(k)

] is the historical value of [πt
ω; πt

p
] in iteration from 1 to 

υ. ρ is tested to be configured between 1.5 and 2.0, which will be more 

suitable to ensure that RIA is strictly above the real value function t+1. 

With the adaptive variability of lt
υ, the approximate convex hull can explore 



 

 

more decision sampling points at the start of FRDDP to speed up 

convergence, and ensure the strict optimality of the solutions at the end of 

the algorithm. In summary, the solution procedure of FRDDP is 

summarized in Fig. 7. 
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Fig. 7. Flow chart of FRDDP with adaptive acceleration 

5.    Case study 

5.1.  Simulation setting 

The proposed method is tested on a modified IEEE 14-Bus (MI14B) 

system and a real-world system connecting Jiashan region, Pinghu region 

and Nanhu region in Zhejiang province of China, the topology of which are 

drawn in Fig. 8 and Fig. 9. The MI14B system consists of 3 dispatchable 

units, 2 ESS, 1 wind farm and 1 fast-starting emergency generator (FEG). 

The interconnected three regions of the real-world system have 39, 18 and 

44 buses, respectively, whose tie lines are marked by red. The number of 

transmission lines, generation units, and wind farms involved in the three 

regions are shown by Table 2. Ref. [42] aggregates the day-ahead forecast 

information of demand and wind generation, detailed parameters of each 

equipment and capacities of transmission lines. The penalty coefficient of 

power imbalance M is set as 106 $/MWh, and the risk coefficients of WCR 

and LSR, cq
u  and cq

d, are configured by 50 $/MWh and 104 $/MWh. The 

minimum on/off time of fast-starting units is 1 hour, whose start-up and 

fuel cost are 4103 $ and 103 $/MWh. Each wind farm’s actual available 

power is assumed to follow a normal distribution, whose standard deviation 

σ equals 0.1 AWq,t. The test code is implemented on JuMP.jl toolkit of the 

Julia language, and the optimization problems are solved by Gurobi 

Optimizer 8.1.1 on a server with CPU Xeon E5–2678, 64 Gb RAM. Four 

cases are designed to demonstrate the effectiveness of the proposed 

methodologies, where three other WAC assessment methods are introduced 

for comparison. 

Table 2. Characteristics of real-world test system 

District Jiashan Region Pinghu Region Nanhu Region 

Buses 39 18 44 

Dispatchable Units 7 4 7 

ESS 4 2 3 

Transmission Line 46 26 52 

FEG 3 2 3 

Case Ⅰ: Static WAC assessment based on the two-stage RO [34], which 

does not consider the system operational risk. 

Case Ⅱ: Risk based WAC assessment formulated by the two-stage RO 

[5], [6], which ignores the non-anticipativity of decision making under the 

uncertain wind evolution. 

Case Ⅲ: Extending Case Ⅱ into a non-anticipative multi-stage RO 

scheme, which uses affine rules [22], [23] to obtain the approximate 

optimal solution. It’s worth noting that although most affine rules applied 

to power system problems map the recourse decisions to a linear function 

of the current uncertainty realization [43] or the current forecast error [44], 

it has been demonstrated that the affine rule mapping historical uncertainty 

information, termed the full affine rule, can achieve superior solution 

quality in addressing multi-stage RO problems, as detailed in [16], [22], 

and utilized in [23]. Given the focus of this study on day-ahead WAC 

assessment, there is ample time for the model solution to be conducted. 

Consequently, we adopt the more precise full affine rules for comparison 

in this section. For a more comprehensive comparison between the FRDDP, 

current information-based affine rules, and full affine rules concerning the 

solution of multi-stage RO in terms of computational tractability and 

solution quality across both day-ahead and intra-day timescales, we refer 

readers to our previous work [31]. 

Case Ⅳ: The proposed WAC assessment method, which uses FRDDP 

algorithm to obtain the global optimal solution. 
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Fig. 8. Topology of the modified IEEE 14-Bus system 
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Fig. 9. Topology of the three-region connected real-world system in Zhejiang province, China 

In each case, the WAC assessment is conducted based on the day-ahead 

forecast information and pre-given UC. To make the best usage of the clean 

energy, we stipulate the operators will purchase the upper amount of WAC 

range if the actual available wind energy on the real-time power market 

exceeds the maximum admissible level. While the fast-starting units will be 

used to meet the load if the actual wind energy available cannot reach the 

lower admissible bound. The specific real-time ED model considering the 

participation of FEG in each case for validating the WAC assessment 

results can be found in [45]. 

5.2. The results of the Modified IEEE 14-Bus system 

The day-ahead pre-defined UC of MI14B system is drawn by Fig. 10. 

For Cases Ⅰ-Ⅳ, the WAC assessment results of the MI14B system are 

compared in Fig. 11, where the day-ahead forecast wind generation data 

with different confidence interval are also demonstrated. In Fig. 11, Case Ⅰ 

determines a static WAC range that exactly consists of the boundary of two-

stage RO’s box uncertainty sets. Compared with Case Ⅰ, considering the 

operational risk, Case Ⅱ obtains a WAC assessment result which has larger 

admissible capacity and more flexible boundaries. For Case Ⅲ and Ⅳ, the 

flexibility of admissible boundary is preserved while the WAC range is 

smaller than that in Case Ⅱ. The reason is that the two-stage RO method 

used in Case Ⅱ ignores the non-anticipativity of assessment decisions, 

which overestimates the adjustable capability of dispatchable elements to 

accommodate variable wind power. Besides, Case Ⅳ behaves with larger 

WAC range than Case Ⅲ, since the affine approximation used in Case Ⅲ 

loses the optimality of solutions. To further evaluate the quantity of WAC 

of Cases Ⅱ-Ⅳ, the calculated operational risk values and other solution 

information are provided in Table 3.  

On Off

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

G1
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G3

Period (h)

  
Fig. 10. Pre-given UC information of the MI14B system 

Table 3. Risk comparison of Cases Ⅰ-Ⅳ on the MI14B system 

Case Operational risk ($) Imbalanced Power (MW) Running time (sec.) 

Ⅰ \ 0.0026 67.05 

Ⅱ 419.91 0.0053 69.33 

Ⅲ 986.35 0.0097 264.15 

Ⅳ 530.77 0.0049 80.96 

WAC  bound: Case Ⅰ   

WAC  bound: Case Ⅱ    

WAC  bound: Case Ⅲ     

WAC  bound: Case Ⅳ      

Forecast error 5%-30%

Forecast value

W
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)

Period (h)  

Fig. 11. Determined WAC assessment results of Cases Ⅰ-Ⅳ 

The imbalanced power in each case is less than 10-2
 MW in Table 3, 

which means the security constraints will be satisfied within the WAC 

range. Among all the cases, the operational risk of Case Ⅱ is lowest in Table 

3, which denotes the allowable WAC interval is the widest, in accordance 

with Fig. 11. Although Case Ⅲ extends the two-stage scheme into multi-

stage to enforce assessment decisions’ non-anticipativity, the historical 

affine information aggravates the computational burden, and lengthens the 

computation time. To validate the effectiveness of the WAC assessments 

of Cases Ⅰ-Ⅳ for intra-day wind energy trading, 10,000 possible wind 

generation scenarios with forecast error 20% are sampled by the Monte 

Carlo method (MC) [12] to simulate the real-time measured wind power 

data. The MC outcomes of each case for intra-day dispatch considering 

real-time wind power trading is provided in Table 4. 

 

Table 4. Statistic outcomes of Cases Ⅰ-Ⅳ in MC testing on MI14B system 



 

 

Case Wind curtailment 

($) 

Load shedding 

($) 

Generation cost of 

FEG ($) 

Total cost 

($) 

Ⅰ 8,518.56 5,360.32 30,721.46 123,601.79 

Ⅱ 11,844.96 3,414.92 21,964.42 85,377.04 

Ⅲ 9,502.23 2,609.91 28,907.61 106,349.90 

Ⅳ 6,019.13 1,878.36 22,139.55 61,511.21 

Table 5. Total cost of Cases Ⅰ-Ⅳ under different forecast errors in MC 

Case 
 Total cost ($) / under MC’s forecast error percentage:  

 5% 10% 20% 30% 

Ⅰ  89,675.08 98,872.00 123,601.79 152,057.96 

Ⅱ  63,782.61 74,276.18 85,377.04 101,343.85 

Ⅲ  80,134.90 88,475.30 106,349.90 131,702.83 

Ⅳ  46,976.30 53,536.22 61,511.21 82,219.64 

According to Table 4, although the majority of the bought wind energy 

in Case I can be used within a narrow WAC range, there will be a significant 

increase in the generation costs for FEG and other dispatchable units due to 

the insufficient wind generation. Between Cases Ⅲ and Ⅳ, Case IV’s 

assessment decision can better handle the actual intra-day dispatch process 

because it naturally characterizes the dynamic operation of generators and 

ESS via the global optimal framework. For Case Ⅱ and Case Ⅳ, Case IV 

performs better in wind curtailment and in making economic generation 

decisions since it takes into account the non-anticipativity of the uncertain 

evolution of wind power, which will be demonstrated in more detail later. 

Compared with existing studies, the proposed assessment method reduces 

the wind curtailment by 29.34%. 

Furthermore, different forecast errors of wind power are configured in 

MC sampling to compare the performances of Cases Ⅰ-Ⅳ to check the 

results above. The total operation cost of Cases Ⅰ-Ⅳ under MC forecast 

error 5%-30% is provided Table 5. It is found in Table 5 that the total 

operation cost increases along with the growth of forecast error in each case, 

while the ranks analyzed in Table 4 remain unchanged. Compared with the 

best-performed assessment method among the existing researches, Case Ⅲ, 

the Case Ⅳ reduces the total operational cost by at least 18.87%.  

To demonstrate the impact of considering / not considering the non-

anticipativity of uncertain wind evolution on the effectiveness of WAC 

assessment, a typical available wind generation scenario (dotted line) 

involved in MC sampling is screened out to compare the decisions made in 

Case Ⅱ and Case Ⅳ, which is drawn in Fig. 12.  

The WAC assessment outcomes and corresponding intra-day elements’ 

generation decision of Cases Ⅱ and Ⅳ are shown in Fig. 12(a) and Fig. 

12(b), respectively. When the available wind power is at a high level, such 

as periods 5-9h and 13-18h, Case Ⅳ only purchases the upper bound of 

admissible interval since the admissible range cannot envelope the total 

wind generation. Case II, on the other hand, buys all of the available wind 

energy because it overestimates the generators’ adjustable capacity to get a 

broader WAC range that can include all of the available wind energy, which 

leads to a significant wind curtailment. In Case IV, the MEG units are 

started up to meet the load during periods of low wind power availability, 

such as 10-12h and 22-24h, because the actual wind power is less than the 

WAC limitation. However, Case II incorrectly assumes that since the wind 

output is within the WAC range, the load would be provided by 

dispatchable elements, resulting in load shedding. 
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Fig. 12. Comparison of the decisions considering / not considering non-

anticipativity 
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Fig. 13. Impacts of important parameters on the WAC assessment results 

Moreover, the influences of penalty coefficient M for imbalanced power 

and the standard deviation σ are studied, which is shown in Fig. 13. It can 

be seen that the operational risk and MC total cost, which is the sum of the 

wind curtailment cost, load shedding cost and total fuel cost, increase along 

with the growth of the standard deviation σ. Besides, the assessment can 

degenerate into a deterministic optimization problem with operational risk 

equal to zero if there is no forecast error. With the increment of M, the 

system’s operational risk and MC total cost initially rise and then nearly 

stays the same, indicating that the worst-case scenario filtered out by the 

multi-stage RO will not change when M is larger than 106. 

5.3. The results of the three-region connected real-world system 

In the real-world system, a 31-days real wind power and load data from 

00:00 August 1, 2021 to 23:45 August 31, 2021 in [46] is employed as the 

basic value of forecast and real measured wind power to perform the 

proposed assessment methodology. The total installed capacity of wind 

generation is set by 36% of the installed thermal generation, where the 

proportion of wind farm (WF) 1-3 are configured by 33.60%, 23.92%, 

42.48%, respectively. The original load data is expanded by the same ratio 

with wind generation capacity and averagely distributed to each bus. 

The WAC admissible output of the real-world system with the 31-days 

simulation is shown by Fig. 14. It can be seen from Fig. 14 (a) that the real 

wind power locates in the WAC range in most periods. If the real wind 

generation cannot achieve the admissible lower bound, the load beyond the 

capacity of the EMG unit will be shed, as shown in Fig. 14 (b). As 

highlighted in Fig. 14(c), surplus wind power may be curtailed when the 

real wind power exceeds the WAC range. Overall, the obtained WAC range 

effectively directs the cooperation between intra-day dispatch and real-time 

trading of wind energy, since the wind curtailment and load shedding are 

less than 9.35% and 4.22% in Fig. 14(d), respectively. 

 



 

 

Table 6. Daily average outcomes of Cases Ⅰ-Ⅳ with 31-days simulation 

Case Running time (sec.) Operational risk ($) Operation total cost (103$) 

Ⅰ 313.34 \ 1,015.41 

Ⅱ 328.98 7,190.18 701.47 

Ⅲ 1,092.77 13,874.16 882.60 

Ⅳ 299.62 8,560.23 553.39 

To verify the effectiveness of proposed assessment method, Cases Ⅰ-Ⅳ 

are tested on the real-world system using the 31-days real wind data, whose 

daily average outcomes are displayed in Table 6. Table 6 has similar results 

with Table 3 and Table 4, indicating that Case Ⅳ provides a more practical 

assessment scheme for WAC, which can guide the operators make more 

economical decisions in real-world intra-day dispatch and wind power 

trading. In contrast to Table 3, Case IV in Table 6 takes less time than Cases 

I and II in real-world system. The rationale is that each stage problem in 

Case IV is decoupled from the others, and that as a result of the 

exponentially decreasing dimensionality of the optimization variables for 

large-scale systems, the computation complexity of the LP problem has 

been considerably reduced. 

WF1 (a) WF2 (b) WF3 (c)

Aggregated load shedding Aggregated wind curtailmentWAC range Real measured wind power

(a)-(c) WAC assessment results of WF1-3  

Day Day Day

9.35% installed capacity of wind turbines

4.22% minimum aggregated load demand 
(d)

P
o

w
er

 (
M

W
)

P
o

w
er

 (
M

W
)

(d) Aggregated load shedding and wind curtailment in MC simulation

 
Fig. 14. WAC assessment outcomes and analyses of the real-world system 
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Fig. 15. Performance of WAC-range guided intra-day dispatch under different 

wind power and ESS penetration levels 

Furthermore, we compare the WAC-range guided intra-day dispatch and 

real-time trading under different wind energy and ESS penetration levels in 

the real-world system. The resolution for varying the capacities of ESS and 

wind generation is assumed as 0.5% in Fig. 15. Since the ESS is crucial for 

peak clipping and valley filling for power systems, which mitigates the 

impact of wind power variations on the precision of WAC intervals, the 

operational cost reduces as ESS capacity increases. While the operation 

cost initially decreases and then reversely increases as installed wind 

production capacity increases, this is because a suitable increase can reduce 

the cost of thermal units, but a massive increase will result in a significant 

rise in the WCR risk for the system. 

5.4. Performance of FRDDP algorithm with adaptive acceleration 

The finite convergence of FRDDP has been mathematically proved in 

our previous work [31]. To trace the development of upper bound and lower 

bound in the iteration of FRDDP algorithm, the solution procedures for the 

WAC assessment model on the MI14B system and the real-world system 

are depicted in Figs. 16(a) and 16(b), respectively. Additionally, Fig. 16(c)-

(d) show how the presented adaptive stage reduction evolved. 

Fig. 16(a)-(b) show after the opposite evolution of upper and lower 

bound, the FRDDP can tightly converge to the optimality gap of 0.1% on 

different test systems. To verify the stability of the FRDDP algorithm, the 

two iteration processes were tested 100 times, which comes out that the 

results remain the same. This is because the FRDDP is a deterministic 

algorithm, where the sampling points are obtained and boundaries are 

adjusted in an orderly manner, which is different from similar stochastic 

algorithms like SDDP. This characteristic makes FRDDP is beneficial for 

the application to industry. In Fig. 16(c)-(d), the adaptive acceleration 

technique is checked at the end of each iteration in FRDDP to screen out 

the earlier converged stage problems, which effectively reduces the number 

of stages that needs to be solved in the Forward and backward pass 

procedure. During the final iteration process of MI14B and real-world 

systems, the problems to be solved in FRDDP were reduced to from pre-

stage to stage 5, and to stage 7, respectively. 
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Fig. 16. Evolution of FRDDP iteration with adaptive technique 

Table 7. Comparison of FRDDP with and without adaptive acceleration 

Items 

MI14B  Real-world system 

Adaptive 

acceleration 

Without 

acceleration 

 Adaptive 

acceleration 

Without 

acceleration 

Final upper 

bound (103 $) 
1.0212 1.0212  8.7604 8.7604 

Final lower 

bound (103 $) 
1.0201 1.0201  8.7527 8.7527 

Total iteration 

number  
120 120  150 150 

Minimum 

computation 

time/ iteration 

(sec.) 

0.3351 1.9411  0.9987 4.2052 

Total time 

consumption 

(sec.) 

142.9640 376.5823  299.6216 1,124.1921 

To study the effectiveness of presented adaptive acceleration technique 

for FRDDP algorithm, the performance of FRDDP algorithm with and 



 

 

without integrating acceleration technique is demonstrated in Table 7. 

According to Table 7, the FRDDP converges with the same number of 

iterations no matter whether the acceleration techniques is adopted, with the 

upper and lower bounds having the same value at the end of each iteration. 

Nevertheless, each iteration’s computational speed of FRDDP with 

acceleration technique has significantly improved, which is particularly 

noticeable in large-scale systems. The reason is that the acceleration 

technologies effectively decrease the number of unsolved problems and 

offer more flexible boundaries. Compared to the original FRDDP algorithm, 

the proposed adaptive acceleration technique reduces the computational 

consumption by 62.04% and 73.34% on MI14B system and real-world 

system, respectively. 

6.    Conclusion 

In this paper, a robust and non-anticipative method is proposed for 

conducting quantitative WAC assessment for wind power penetrated power 

systems, which can offer useful recommendations for the wind energy 

trading in real-time power market. The presented assessment model is 

formulated via a multi-stage RO problem, which addresses the 

anticipativity issues in the traditional two-stage method while maintaining 

the decision-making process’ robustness. The multi-stage RO model 

successfully incorporates a tractable risk assessment mechanism to create 

dynamic admissible boundaries for the WAC range. Additionally, a novel 

FRDDP algorithm is employed to achieve global optimal solutions of the 

assessment model, which integrates adaptive strategies to accelerate 

convergence.  

Numerical results are presented to validate the effectiveness of the 

proposed WAC assessment method and adaptive acceleration technique. 

Key findings are drawn as follows: 1) According to the MC simulation 

conducted on the MI14B system, the proposed risk-based assessment 

method, in comparison to existing studies, effects a reduction of 18.87% in 

total operational cost and diminishes wind curtailment by 29.34% when 

guiding the real-time wind power trading and dispatch. 2) With non-

anticipative admissible WAC boundaries, the proposed method can activate 

the MEG units promptly to meet the load requirement under extreme 

conditions, which effectively avoids load shedding. 3) The presented 

adaptive acceleration technique significantly improves the computational 

speed of FRDDP, which is particularly noticeable in large-scale systems. 

When applied to resolve the WAC assessment for real-world systems, it 

reduces the computational consumption by 73.34% for original FRDDP 

algorithm. These factors suggest that this work could develop into a 

promising alternative strategy for the WAC assessment of real-world wind 

energy penetrated power systems, which opens up avenues for future 

research. 
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