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A B S T R A C T   

Neural noise is an inherent property of all nervous systems. However, our understanding of the mechanisms by 
which noise influences perception is still limited. To elucidate this relationship, we require techniques that can 
safely modulate noise in humans. Transcranial random noise stimulation (tRNS) has been proposed to induce 
noise into cortical processing areas according to the principles of stochastic resonance (SR). Specifically, it has 
been demonstrated that small to moderate intensities of noise improve performance. To date, however, high 
intensity tRNS effects on neural noise levels have not been directly quantified, nor have the detrimental effects 
proposed by SR been demonstrated in early visual function. Here, we applied 3 mA high-frequency tRNS to 
primary visual cortex during an orientation-discrimination task across increasing external noise levels and used 
the Perceptual Template Model to quantify the mechanisms by which noise changes perceptual performance in 
healthy observers. Results show that, at a group level, high-intensity tRNS worsened perceptual performance. 
Our computational analysis reveals that this change in performance was underpinned by an increased amount of 
additive noise and a reduced ability to filter external noise compared to sham stimulation. Interestingly, while 
most observers experienced detrimental effects, a subset of participants demonstrated improved performance. 
Preliminary evidence suggests that differences in baseline internal noise levels might account for these individual 
differences. Together, these results refine our understanding of the mechanisms underlying the influence of 
neural noise on perception and have important implications for the application of tRNS as a research tool.   

1. Introduction 

Neural noise is commonly described in terms of stochastic variability 
in neuronal firing, where systems with more noise will have greater 
variation in neuronal activity (Faisal et al., 2008; Homayoun and Mog-
haddam, 2007). An ongoing debate concerns the mechanisms by which 
neural noise affects perception, as causal links have not been clearly 
established. In the past decade, efforts have therefore been invested into 
the development of experimental techniques that can safely manipulate 
neural noise in the healthy brain, potentially providing tools to explore 
the effects of noise on perceptual performance more directly. 

Transcranial random noise stimulation (tRNS) is a non-invasive 
electrical brain stimulation method shown to influence perceptual per-
formance across several areas, including facial identification, perceptual 
learning, and perceptual decision-making (Contemori et al., 2019; 

Penton et al., 2018; Fertonani et al., 2015; van der Groen et al., 2018). The 
mechanisms by which tRNS modulates brain function are not fully un-
derstood, but previous studies suggest that tRNS effects manifest via the 
modulation of internal neural noise according to stochastic resonance 
(SR; Antal and Herrmann, 2016; Fertonani and Miniussi, 2017; Miniussi 
et al., 2013; Ward, 2009). SR leads to a non-monotonic relationship be-
tween noise and perceptual performance in the shape of an inverted-U 
function (Aihara et al., 2010; Treviño et al., 2016; Raul et al., 2023). 
The non-monotonic dependence occurs for sub-threshold signals, when 
the addition of a small to moderate amount of neural noise pushes a weak 
signal above the threshold for excitation (Moss et al., 2004; McDonnell 
and Ward, 2011). For lower noise levels, the signal (plus noise) remains 
sub-threshold, while higher noise levels obscure the signal. 

Van Der Groen and Wenderoth (2016) demonstrated tRNS influences 
resembling some of the effects predicted by SR. They applied 
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high-frequency tRNS (101–640Hz; hf-tRNS) to the primary visual cortex 
(V1) in human participants during a visual detection task and found that 
moderate intensities of hf-tRNS (0.5 mA and 1 mA) led to improved per-
formance, while a larger intensity (1.5 mA) resulted in perceptual perfor-
mance comparable to baseline (0 mA). While these performance changes 
are consistent with SR, the principle not only predicts increased perfor-
mance for moderate noise levels but also decreased performance for higher 
noise, which was not demonstrated. More importantly, no direct or 
computational measure was acquired to quantify neural noise levels, thus 
limiting the mechanistic insights that can be gained from this study. A more 
recent study (Potok et al., 2023) has also shown beneficial effects of 
moderate intensity hf-tRNS when applied to V1, but did not explore higher 
current intensities (i.e., >1.5 mA). Therefore, the extent to which high 
intensity hf-tRNS to V1 affects perception remains unclear. Hf-tRNS 
mechanisms on perception have been more extensively explored in mo-
tion processing (Ghin et al., 2018; Pavan et al., 2019; O’hare et al., 2021; 
Battaglini et al., 2023). These studies have similarly demonstrated that 
moderate intensities (i.e., 1 mA and 1.5 mA) of hf-tRNS applied to the 
medial temporal cortex (MT) can improve performance on global motion 
processing tasks. However, to date, only Pavan et al. (2019) have demon-
strated a detrimental effect of hf-tRNS on perceptual performance by 
administering a larger than typical current intensity of 2.25 mA; although, 
this effect was not attributed to an increase in internal noise. Thus, overall, 
it is yet to be shown whether the high intensities of hf-tRNS can detri-
mentally impact perceptual performance by modulating internal noise. 

The Perceptual Template Model (PTM) can be used to quantitatively 
estimate the intrinsic noise properties of observers. It assumes that visual 
function is determined by three noise-related factors: internal additive 
noise, internal multiplicative noise, and external noise filtering (Lu and 
Dosher, 2008). Internal additive noise most closely aligns with neural 
noise as typically discussed in the literature, reflecting noise in the system 
that is independent of the input and that underlies the stochastic and 
variable nature of internal responses. By contrast, internal multiplicative 
noise is dependent on the input and is analogous to contrast gain control 
mechanisms affecting the system’s responsiveness to stimulus contrast. 
Lastly, external noise filtering reflects the perceptual system’s inherent 

ability to separate relevant from irrelevant sensory information (Lu and 
Dosher, 2008). These three observer characteristics can be estimated by 
assessing visual function across different levels of external noise and 
fitting a computational model to the resulting threshold versus external 
noise contrast (TvN) function (Lu and Dosher, 2008, Fig. 1). 

We therefore aimed to investigate if hf-tRNS could detrimentally 
impact contrast detection. We used intermittent 3 mA hf-tRNS, where 
stimulation was stimulus-locked, and the PTM to computationally 
quantify internal additive noise, internal multiplicative noise, and 
external noise filtering levels. We hypothesised that perceptual perfor-
mance should be negatively affected by hf-tRNS via an increase in in-
ternal additive noise. Furthermore, we expected no improvement in the 
participants’ ability to filter external noise given that our protocol 
avoided potential contamination by adaptation.1 In fact, if continuous 
exposure to hf-tRNS is linked with adaptation to external noise we 
predicted that external noise filtering may even be negatively affected 
by the intermittent nature of our manipulation. Finally, we expected no 
effects of hf-tRNS on multiplicative noise.2 

2. Material and methods 

2.1. Participants 

Forty-one healthy observers with normal or corrected-to-normal 
vision served as participants. All participants met the standard safety- 

Fig. 1. Threshold versus noise contrast (TvN) function and PTM predictions. 
Threshold signal contrast reflects the amount of contrast required to maintain a performance level (accuracy) as external noise is added to the stimulus. A) The TvN 
function is initially characterised by a flat slope in the presence of minimal external noise as performance is dominated by (largely constant) internal noise in the 
system. The addition of external noise has little to no effect on perceptual performance. As the external noise exceeds the internal noise amount, it impedes perceptual 
performance, leading to an increasing slope or ‘arm’ of the curve. The inflection indicates the point at which internal neural noise is equivalent to the external noise. 
B) The PTM predicts changes in TvN depending on the source(s) of noise that may vary (orange and blue curves indicate increased and reduced levels of noise, or 
increased and reduced impact on external noise filtering). Increased internal additive noise will increase thresholds across low levels of external noise (top left), while 
increased (i.e., worse) external noise filtering is demonstrated by increased thresholds at the arm of the curve (top right). Increasing internal multiplicative noise will 
increase thresholds across all external noise levels and have a greater ratio between thresholds at two different difficulty levels (bottom left and right). 

1 It is clear that external ‘visual’ noise acts on perception according to SR, 
where small amounts can improve performance, while large amounts reduce 
performance (Van Der Groen and Wenderoth, 2016). Additionally, continuous 
exposure to external ‘visual’ noise can lead to noise adaptation, and conse-
quently, improved perceptual performance (Menzel et al., 2017). Therefore, we 
suggest that if hf-tRNS also acts on perception according to SR, the presence of 
continuous hf-tRNS may also lead to noise adaptation.  

2 There is no previous research to suggest that we would expect to see a 
multiplicative effect. 
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related inclusion criteria for tRNS and were exposed to both sham (0 
mA) and active (3 mA) tRNS conditions. The average participation 
duration was 2-h, and participants received university course credits or 
payment as remuneration. Participants were required to complete a 
tRNS safety questionnaire to determine their eligibility to participate in 
this study. Participants were excluded from participating if they iden-
tified any contraindications that would place them at a higher risk of 
experiencing negative side effects (e.g., metal implant in head). This 
study was approved by an Australian university Human Research Ethics 
Committee (2018/559), and informed written consent was obtained 
from all participants prior to commencing the experiment. Participants 
were aged between 18 and 33 years old (M = 21.46, SD = 3.71), and 
were primarily female (~73%). 

2.2. Apparatus and stimuli 

All computer-based tasks took place in a quiet and dark room. Visual 
stimuli were generated using Matlab version R2013b and the Psy-
chtoolbox extensions (Brainard, 1997; Kleiner et al., 2007; Pelli and 
Vision, 1997). Stimuli were presented on a Compaq colour monitor 
(P1220) with a calibrated linearized output at a resolution of 1280 ×
1024 pixels, and a refresh rate of 85Hz. A 14-Bit grayscale resolution 
was achieved using the Bits# Stimulus Processor (Cambridge Research 
Systems). Chin rest fixed the viewing distance at 60 cm, with each pixel 
subtending 0.028 deg of visual angle. The signal stimulus was a Gabor 
patch (spatial frequency f = 4 c/deg, Gaussian envelope σ = 0.25 deg) 
with a cardinal orientation (vertical or horizontal; θ = 0 deg or 90 deg) 
presented in the centre of the screen. The background luminance (l0) was 
25 cd/m2, the contrast of the Gabor patch was determined for every trial 
by the Psi method (see details below). 

The signal Gabor patch was temporally sandwiched between two 
independent external noise samples (Fig. 2A). The noise samples had an 
identical Gaussian envelope to the signal Gabor patch and were con-
structed using 4 × 4 pixel elements and sampled from a Gaussian dis-
tribution with a mean of 0 and standard deviation of 0, 0.02, 0.04, 0.08, 
0.12, 0.16, 0.25, and 0.33 (Fig. 2B). 

2.3. Procedure and design 

A two-alternative forced choice (2-AFC) task required participants to 
judge if the Gabor stimulus had a vertical or horizontal orientation 
(Fig. 2A) by pressing keys 1 or 2 on a keyboard numeric keypad. A 20 
trial practice session that was identical to the main task was used to 
familiarise observers with the experiment. Ten practice trials were 
initially presented in the absence of external noise (0% noise standard 
deviation), while the remaining 10 practice trials were presented in the 
presence of high external noise (50% noise standard deviation). During 
the main experiment, the two experimental sessions (sham-tRNS and 
active-tRNS) were counterbalanced and used the Psi method to deter-
mine the stimulus contrast on every trial (Palamedes toolbox; Prins and 
Kingdon, 2009, Fig. 2C). Data to estimate psychometric functions for 
eight external noise conditions were acquired, using an interleaved 
design of 60 trials per noise condition. In total, 480 trials over 10 blocks 
containing 48 trials were completed. Between each block, participants 
were required to take a minimum 60 s break before proceeding. Weibull 
functions were used to estimate contrast thresholds for three different 
performance levels (d′: 0.78, 1.35, and 2.07), corresponding to 65%, 
75% and 85% performance accuracy: 

P(c)= 1 − (1 − 0.5) × 2
−

(
log(c)

α

)

η
(1)  

where the P is the percent correct, c is the stimulus contrast, α is the 
threshold parameter, and η is the slope parameter of the psychometric 
function. 

2.4. tRNS protocol 

Participants received an active-tRNS current (3 mA) during one of 
the experimental sessions (active session), and sham-tRNS (0 mA) in the 
other (sham session). Stimulation was administered by a battery driven 
stimulator (Neurocare DC-Stimulator PLUS; https://www.neurocare 
group.com/technology/dc-stimulator-plus) through two 5 × 7 cm (i.e., 
35 cm2) electrodes were positioned on the participant’s scalp and held in 
place with a soft rubber headband. The current density for 3 mA tRNS 
delivered across a 35 cm2 electrode area was determined to be 0.0857 
mA/cm2; a value that lies well within the range of current densities for 
experiments showing no adverse effects (i.e., 0.040–0.167 mA/cm2; 
Fertonani et al., 2015). The electrodes were coated with an electrode gel 
(Signa gel; Parker Laboratories Inc) to reduce skin impedance. Based on 
the 10–20 EEG system, the anode was positioned at the occipital region 
Oz and the cathode at the vertex of the scalp (Cz). This setup is an 
established method for stimulation of the primary visual cortex (Neuling 
et al., 2012; Van Der Groen and Wenderoth, 2016). 

During the active session, 3 mA of high-frequency tRNS (hf-tRNS; 
101–640Hz) was administered to participants during the task and 
terminated during breaks between blocks. Investigations applying such 
intermittent stimulation could be used to minimise the possibility of 
adaptation (Van Der Groen and Wenderoth, 2016). Stimulation was 
triggered by a spacebar press required to start each block and stopped at 

Fig. 2. Psychophysical task and features 
A) Each trial began with a central dark-blue fixation dot. The stimulus sequence 
coincided with a fixation colour change to light-blue, and comprised a series of 
three frames: Gaussian pixel noise, oriented Gabor patch (vertical or horizon-
tal), Gaussian pixel noise. Participants were asked o judge whether the grating 
was vertically or horizontally oriented. Feedback was provided in the form of a 
fixation colour change to green (i.e., correct) or red (i.e., incorrect) responses. 
From left to right: B) eight external noise images with increasing external noise 
(standard deviation: 0%, 2%, 4%, 8%, 12%, 16%, 25%, and 33%); C, a hori-
zontally oriented signal Gabor patch with increasing contrast. 
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the end of each block or after a maximum of 105 s (including a ramp-up 
stimulation phase of 5 s). The impedance of each electrode was checked 
before and during stimulation to ensure it was under 10 kΩ. The stim-
ulation equipment set-up for sham-sessions was identical to the 
active-session, however no current (0 mA) was presented. 

2.5. Perceptual template model analysis 

The effects of stimulation on perceptual performance were estimated 
by fitting data of individual observers with the PTM and comparing 
active-tRNS versus sham-tRNS (implemented using Matlab version 
R2013b; See Appendix A, Table A-1 for individual PTM data). The PTM 
model provides a computational means to quantify the extent to which 
perceptual performance under each condition was limited by internal 
additive noise, internal multiplicative noise, or external noise filtering. 
The PTM models thresholds (cτ) by equation (2) (Lu and Dosher, 2008): 

cτ =
1
β

[(
1 + N2

mul

)
N2γ

ext + N2
add(

1
/

d′2 − N2
mul

)

] 1
2γ

, (2)  

where each N refers to the variance of a normally distributed random 
variable with a mean of 0 for each respective noise type. An input 
consisting of signal and external noise (Next) is received by an observer 
and transformed into an internal representation. This representation is 
passed through a perceptual ‘template’, which can be understood as a 
filter with selectivity for certain visual characteristics. The system’s 
ability to filter external noise will affect its ability to match the signal 
with the template. The signal can be enhanced by a gain factor β 
depending on how well the input is matched to the template. This 
template output will undergo another transformation through a 
nonlinear transducer function γ, accounting for the nonlinear properties 
of the visual system. Two sources of internal noise, that is additive (Nadd) 
and multiplicative (Nmul), are added to the transformed signal. 

tRNS effects were characterised by introducing three coefficient 
indices (Aa(stim), Am(stim), and Af(stim)) to the conventional equation 
(2). As seen in equation (3), each coefficient is multiplied by the cor-
responding source of noise: additive noise (Nadd), multiplicative noise 
(Nmul), or external noise (Next): 

cτ =
1
β

[(
1 + (Am(stim)Nmul )

2 )( Af (stim)Next
)2γ

+ (Aa(stim)Nadd )
2

(
1
/

d’2 − (Am(stim)Nmul )
2 )

]
1
2γ

(3) 

The influence of these noise types on performance between sham and 
active-tRNS conditions was determined by fixing sham stimulation coef-
ficient indices (Aa(sham), Am(sham), and Af(sham)) to 1, while the indices 
for active stimulation (Aa(active), Am(active), and Af(active)) were free to 
vary. The resulting coefficients, therefore, describe the relative difference 
in the effects of tRNS between the stimulation groups; i.e., parameters 
greater than 1 suggest that the active stimulation produced higher 
amounts of the respective noise types compared to the sham stimulation. 
Eight forms of the PTM were considered on the basis that the coefficient 
indices for active stimulation could vary or be fixed to 1. For instance, a 
null model assumes that there are no group differences between stimula-
tion conditions and, therefore, four free parameters (Nmul, Nadd, β, and γ). 
Alternatively, the fullest model has up to seven free parameters. 

The weight of each threshold data point fit by the PTM varied ac-
cording to the goodness of fit (R2) of the Weibull function used to obtain 
the threshold estimate. Weibull function fits that were <0.001 were set 
to 0.001 as a minimum, and weights were then normalised relative to 
the maximum threshold. Thus, threshold estimates with better fitting 
Weibull functions were weighted more heavily, compared to those ob-
tained from poorer fitting functions. This ensured that the most reliable 
threshold estimates had the most influence in the model. 

A least square procedure was used to fit the PTM to the TvN data for 
each participant. The least square difference between the log of the 

measured threshold contrast and the log of the model-predicted 
threshold contrast was minimised to find the best fit for the reduced 
and full models. The r2 statistic was used to measure the PTM goodness- 
of-fit using equation (4): 

r2 = 1.0 −
Σ
[
log

(
ctheory

τ
)
− log(cτ)

]2

Σ[log(cτ) − mean(log(cτ))]
2 , (4)  

where, Σ and mean() were applied across all external noise levels, 
stimulation conditions, and performance levels. 

2.6. Akaike information criterion model selection 

The best-fitting PTM was determined across participants by 
comparing the akaike information criterion (AIC; Wagenmakers and 
Farrell, 2004) for all eight PTM variations 

AICi = 2k − 2 ln (L̂) (5) 

where k refers to the number of estimated parameters in the given 
model (i), and L̂ is the maximum value of the likelihood function for the 
model seen in equation (5). 

The AIC for each model was calculated for individual participants 
and averaged (see Appendix B, Table B-1 for extended data). Specif-
ically, the AIC analysis used the average error associated with the PTM 
full model (i.e., active stimulation) relative to the reduced model (i.e., 
sham) that was used to generate noise estimates for each PTM variation. 
Therefore, the best-fitting model identified by the AIC analysis not only 
indicates which model (i.e., combination of PTM noise parameters) best 
explain our data, but this also allows us to interpret differences between 
sham and active stimulation conditions between models. For instance, 
the PTM null model has the assumption that there are no differences 
between sham and active stimulation conditions (i.e., groups do not vary 
according to any PTM noise parameters). Therefore, if the AIC identifies 
that another model (e.g., including the additive noise parameter) 
meaningfully deviates from the null model, this indicates that changes in 
the noise parameters in that model drive differences between sham and 
active stimulation conditions.3 

The model with a) the lowest AIC estimate, which b) meaningfully 
deviated from the other models (i.e., a difference greater than 2), was 
identified as having the best fit (Wagenmakers and Farrell, 2004). The 
differences in AIC with respect to the best-fit candidate model were 
calculated by equation (6): 

ΔAICi =AICi − minAIC (6) 

Akaike weights were then calculated to determine the relative 
strength of evidence in favour of this model over the other candidate 
models by equation (7): 

wi(AIC)=
exp

{

− 1
2ΔAICi

}

∑
exp

{

− 1
2ΔAICk

} (7)  

where the terms in equation (7) are proportional to the likelihood of the 
model. That is, the weight of a given model, wi(AIC), is equal to the 
relative likelihood of that model (numerator in equation (7)), divided by 
the sum of the relative likelihoods of all models (denominator in equa-
tion (7)) (Wagenmakers and Farrell, 2004). An evidence-ratio then 

3 We recognise that it is recommended for studies with smaller sample sizes 
(such as the present study) to implement a correction in the AIC to account for 
over fitting the model (Wagenmakers and Farrell, 2004). We performed the 
analysis with and without the correction (AICc), noting no difference to overal 
results (see supplementary material, Table 3). Therefore, we report the results 
of the AIC in the subsequent results section. 
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allowed us to infer how likely the best-fit model (wi(AIC)) identified by 
the raw AIC values was over the next-best model (wj(AIC)) using 
equation (8): 

ratio=
wi(AIC)
wj(AIC)

(8)  

3. Results 

3.1. Screening 

Upon inspection of the PTM results for each participant (N = 41), we 
identified 6 participants whose data could not be fit by the PTM to a 
moderate or high standard (i.e., r2 < 0.5) (Moore et al., 2013). As a 
result, data for these participants were excluded from analyses, leaving 
35 participants in the final analysis. 

3.2. AIC model selection 

AIC model selection was applied to identify which of the eight PTM 
variations best accounted for differences between stimulation condi-
tions. The PTM variation that included internal additive noise and 
external noise filtering (but not multiplicative noise) was identified as 
the best model (i.e., model AF; Table 1). This suggests that 3 mA hf-tRNS 
differed from sham-tRNS in levels of internal additive noise and external 

noise filtering produced, but not in the amount of internal multiplicative 
noise produced. An assessment of AIC weights (w(AIC); Table 1) further 
supports this conclusion, where model AF, accounted for approximately 
31% of the total explanation that can be found in the full set of models. 

Although the model consisting of external noise filtering only (i.e., 
model F) did not meaningfully deviate from model AF, further in-
vestigations of individual participant data supported the conclusion that 
model AFshould be considered as the best fitting model (see extended 
data in Appendix B Tables B-1 and B-2). Specifically, when model F had 
the best fit it did not meaningfully differ from model AF. However, when 
model AF had the best fit, it meaningfully differed to model F. 
Furthermore, when the null model had the best fit, model F did not 
meaningfully differ, but model AF did. Taken together, individual 
participant evaluations demonstrate that model AF should be favoured 
as the best fitting model to apply to our group data. 

3.3. Best fitting PTM 

Further investigations of the best fitting PTM demonstrated charac-
teristic nonlinear TvN functions, where contrast thresholds increased as 
a function of increasing levels of external noise contrast (Fig. 3A). In-
ternal additive noise estimates showed an average 19% increase under 3 
mA hf-tRNS conditions compared to sham-tRNS (Fig. 3B). This effect is 
demonstrated in the TvN function by the increase in contrast threshold 

Fig. 3. Contrast threshold versus external noise contrast (TvN) functions and changes in noise. 
A) TvC functions at for a representative participant showing 65% (left panel), 75% (middle panel), and 85% (right panel) performance accuracy. This representative 
participant reflects the average findings, displaying ~20% increase in additive noise and ~3% increase in external noise filtering under 3 mA hf-tRNS (orange circle 
+ dashed line) compared to sham (blue circle + solid line) estimated by the PTM. Eight external noise levels (standard deviation: 0%, 2%, 4%, 8%, 12%, 16%, 25%, 
and 33%). B) Average percentage change for internal additive noise (i.e., additive noise) and external noise filtering (i.e., ext. noise filtering) PTM estimates (n = 35) 
with standard error of the mean as error bars. 

Table 1 
Akaike Information Criterion (AIC) estimated for PTM parameter combinations.   

Model Parameter Combinations 

AFM AF AM FM A F M Null 

AIC − 38.19 − 40.17 − 35.99 − 38.17 − 36.80 − 39.90 − 36.00 − 36.55 
ΔAIC 1.98 0.00 4.17 1.99 3.37 0.27 4.17 3.62 
w(AIC) 0.12 0.31 0.04 0.11 0.06 0.27 0.04 0.05 

Note. The best fitting model has the smallest AIC estimate that meaningfully deviates from other models by a value of ~2 or more (ΔAIC is the difference between the 
best model and each other model); w(AIC) = AIC weight is proportional to the total amount of predictive power provided by the full set of models contained in the 
model being assessed (Wagenmakers and Farrell, 2004). AFM – fullest model with Aa, Af, and Am coefficients free to vary; AF – Aa and Af coefficients free to vary; AM – 
Aa and Am coefficients free to vary; FM – Af and Am coefficients free to vary; A – Aa coefficient free to vary; F – Af coefficient free to vary; M – Am coefficient free to 
vary; Null – Aa, Af, and Am fixed to 1. 
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for 3 mA hf-tRNS across low external noise levels compared to sham- 
tRNS (Fig. 3A). Ability to filter external noise was poorer for partici-
pants under 3 mA hf-tRNS conditions compared to sham-tRNS, as 
demonstrated by an average ~3% increase in external noise filtering 
estimates. This small difference was demonstrated as a slight increase in 
contrast thresholds across high external noise conditions in the TvN 
functions (Fig. 3A).4 The meaningful deviation of model AF from the 
null model shown by AIC estimates indicates that changes in additive 
noise and external noise filtering meaningfully drive the differences in 
behavioural data seen between sham and active stimulation conditions. 

PTM estimates across individual participants showed considerable 
variability (Fig.4A and B). Overall, 3 mA hf-tRNS appeared to increase 
internal additive noise and decreased the ability to filter external noise 
in ~55% of participants (Fig.4A and B, respectively). In order to explore 
whether baseline internal noise levels could explain the individual 

differences in noise estimates derived from the PTM, we used the slope 
parameter of each observer’s psychometric function under sham con-
ditions with zero external noise as a measure of baseline internal noise. 
As outlined by Aihara et al. (2010), the spread of the psychometric 
function corresponds to trial-to-trial variability, and therefore, is 
assumed to reflect the total noise level in the system. Accordingly, under 
the sham stimulation condition when zero external noise was applied, 
the spread of the psychometric function may be interpreted to reflect 
performance that is limited by the internal noise level alone. Indepen-
dent samples t-test marginally showed that participants with 3 mA 
hf-tRNS-induced increases in internal additive noise appeared to 
generally have smaller slope estimates (M = 2.16, SD = 0.09) that is 
indicative of greater baseline internal noise relative to those with who 
presented reduction in internal additive noise (M = 2.20, SD = 0.11), t 
(27.85) = 1.31, p = .100. Taken at face value, this suggests that 3 mA 
hf-tRNS had a tendency to increase internal additive noise in observers 
with high baseline noise (but see discussion). With regards to external 
noise filtering, independent samples t-test showed no difference in slope 
estimates between 3 mA hf-tRNS-induced external noise filtering 
increased and reduced outcomes (Increased: M = 2.19, SD = 0.03, 
reduced: M = 2.17, SD = 0.03; t (32.19) = − 0.86, p = .395). 

4. Discussion 

The present study provides evidence that high intensity (3 mA) hf- 
tRNS over V1 worsens perceptual performance across increasing 
external noise levels in a contrast detection task. Computational 
modelling using the PTM suggests that detrimental effects of tRNS on 
performance resulted from increased internal additive noise and 
reduced ability to filter external noise. No effects of 3 mA hf-tRNS were 
seen on internal multiplicative noise. Furthermore, analyses of indi-
vidual differences offer tentative evidence suggesting that responses to 
3 mA hf-tRNS may be determined by the baseline noise levels pre- 
existing in the observer’s system. These findings provide important 
implications for the application of hf-tRNS as a means of investigating 
the impacts of noise on perception. 

When considered in the context of pre-existing work, our result that 
3 mA hf-tRNS can be detrimental to performance by increasing internal 
additive noise provides further evidence for SR as a plausible mechanism 
underlying hf-tRNS effects on performance. As discussed in the intro-
duction, previous research only demonstrated one part of the SR effect, 
showing improved performance for low intensities of stimulation with 
hf-RNS and no change in performance with medium intensities (Van Der 
Groen and Wenderoth, 2016; Ghin et al., 2018; Pavan et al., 2019; 
O’hare et al., 2021; Battaglini et al., 2023, Potok et al., 2023). Recently, 
hf-tRNS was observed to negatively affect perception of higher-level 
perceptual features such as coherent motion, an effect that is, howev-
er, not attributed to increased internal noise (Pavan et al., 2019). 
Therefore, whether high amounts of internal noise detrimentally affect 
perception has not been tested in contrast detection tasks using hf-tRNS. 
Our findings therefore add the missing piece of information as predicted 
by SR, namely, that high intensities negatively affect perceptual per-
formance by increasing additive noise. 

Importantly, analyses of individual differences in the response to hf- 
tRNS demonstrated substantial variability across participants, with 
some participants showing improved perceptual performance at low 
levels of external noise. The PTM characterised such performance ben-
efits as being due to a reduction in internal additive noise in response to 
3 mA hf-RNS. This finding exposed limitations of the use of the PTM to 
index noise characteristics related to SR. In particular, the PTM assumes 
that increased internal noise will always result in detrimental effects to 
performance. Therefore, it simply cannot model improved performance 
that is due to SR. The PTM shares this limitation with similar ap-
proaches, such as the linear amplifier model, that has been shown to 
misestimate the level of internal noise, when conditions allow for SR 
(van Boxtel, 2019). This has serious implications when interpreting 

Fig. 4. Variability of hf-tRNS effects across individual participant PTM esti-
mates. 
Hf-tRNS effects across participants for A) internal additive noise and B) external 
noise filtering reflect the change in corresponding noise types under 3mA hf- 
tRNS relative to sham-tRNS conditions. A negative shift from zero is indica-
tive of a reduction (n=16), while a positive shift is indicative of an increase 
(n=19) in each noise type. Note that an increase in external noise filtering 
estimates is indicative of poorer filtering. 

4 We would like to highlight that including all participants (N = 41) in this 
analysis resulted in larger averages for additive noise (42.3% increase) and 
external noise filtering (9% increase) model estimates compared to the screened 
sample (n = 35; See Appendix A, Fig A-1). The exclusion of 6 participants was 
based on poor model fits (See Appendix A, Table A-1). Even though the data of 
these 6 participants would have appeared to strengthen our results, we did not 
deem these data to be reliable, and therefore, the data we present after exclu-
sions may be considered to be a conservative representation of our full sample. 
The excluded participants did not present any particular personal characteris-
tics that could allow us to draw conclusions about why their data could not be 
modelled to a higher standard. 
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modelling results. Specifically, in the case of SR, improved performance 
is not necessarily due to reduced internal noise in the system, but rather, 
low to moderate increases in internal noise. Yet, the PTM would incor-
rectly attributed these changes in performance to a reduction of internal 
additive noise. 

Our individual differences analysis provides tentative evidence in 
support of this perspective. We found a trending relationship where 
participants with low baseline internal noise levels were associated with 
improved perceptual performance under 3 mA hf-tRNS compared to 
sham, while high baseline internal noise levels related to negative effects 
in performance. This pattern of results is consistent with predictions by 
SR, where hf-tRNS may have pushed low baseline noise levels to the 
point at which neural noise improves perceptual performance. 
Conversely, for observers with higher pre-existing baseline noise levels, 
hf-tRNS may have increased neural noise beyond the optimal level and 
pushed it into the range of detrimental levels. While 3 mA hf-tRNS also 
appeared to have varying effects across observers’ ability to filter 
external noise, individual baseline noise levels did not appear to explain 
this observation. Overall, these results are consistent with predictions by 
SR, and suggest that the PTM misestimates internal additive noise when 
the added system noise benefits performance. In a recent publication, 
Potok et al. (2023) were able to individualise tRNS stimulation for each 
participant by investigating performance under increasing current in-
tensities to determine an ‘optimal’ current intensity that benefited per-
formance. Future research could implement a similar protocol to reduce 
individual variability across a given sample, especially if interested in 
exploring detrimental effects of tRNS. 

A similar explanation regarding the limits of the PTM to account for 
SR might be applicable to a previous study that found no performance 
changes in response to stimulation with 2 mA hf-tRNS (Melnick et al., 
2020). Their PTM analysis suggested that such medium intensities do 
not modulate internal noise. However, it is also possible that the 
increased noise induced by 2 mA hf-tRNS may have resulted in perfor-
mance that was equivalent to baseline performance, landing at the 
cross-over point between facilitative and suppressive effects on a SR 
curve. As PTM estimates are based on differences in perceptual perfor-
mance between active and sham conditions, if there is no difference in 
performance between stimulation groups across low external noise 
conditions, the PTM attributes this finding to no change to the internal 
additive noise estimate. Thus, it is likely that internal additive noise did 
increase under 2 mA hf-tRNS. However, this effect was not visible as a 
change in performance and was therefore not detected by the PTM. 

The results also indicate that exposure to 3 mA hf-tRNS generally 
diminished participant’s ability to filter external noise. This is shown as 
a slight increase in contrast thresholds (i.e., worse performance) at 
higher external noise levels under 3 mA hf-tRNS compared to sham. This 
finding is inconsistent with another observation presented by Melnick 
and colleagues that demonstrated the opposite effect, i.e., improved 
external noise filtering effects from 2 mA hf-tRNS (Melnick et al., 2020). 
These results are most likely due to differences in our stimulation pro-
tocol, where we minimised the potential for the effects to be contami-
nated by adaptation by presenting stimulus-locked intermittent hf-tRNS. 
The inconsistent and changing environment produced by intermittent 
stimulation may have substantially reduced the possibility for adaption 
to occur, diminishing the observers’ ability to filter external noise. 

We recognise that a limitation of the present study is that we did not 
record participant sensation perceptions (e.g., headache, tingling, itch-
ing, heat, and pain) across sham and 3 mA hf-tRNS conditions, and that 
this may have impacted task performance. However, we note that data 
analysed from another study implementing a similar stimulation pro-
tocol (i.e., intermittent 3 mA hf-tRNS) did not identify any significant 
associations between sensation perceptions and perceptual performance 
(unpublished data, see supplementary material). We also recognise that 
we did not recruit a gender balanced sample, with the majority of the 

sample presenting as female. This could be problematic as females 
typically show lower cortical excitability compared to males, and 
therefore may be differently impacted by stimulation compared to males 
(Chaieb et al., 2008; Kuo et al., 2006). Although, cortical excitability 
appears matched for females and males during the follicular phase of the 
menstrual cycle (Inghilleri et al., 2004; Smith et al., 2002; Snowball 
et al., 2013). If we had controlled for this by testing females during the 
follicular phase of their menstrual cycle, the females in our sample may 
have been more likely to show the detrimental effects of hf-tRNS on 
perception. As discussed above, we propose that the addition of noise 
induced by hf-tRNS to a system that already has high baseline noise 
would more likely result in detrimental effects on performance (based 
on SR). Finally, while we have emphasised the non-monotonic effect of 
hf-tRNS on performance, we recognise that we have only tested one 
amplitude level in the present study. Comparatively, other published 
work tends to explore behavioural effects associated with increasing 
from weak to moderate current intensities (e.g., Van Der Groen and 
Wenderoth, 2016; Pavan et al., 2019). Our experimental design priori-
tised adequate data quantity to support the application of the PTM; 
because a considerable amount of data is needed for each external noise 
condition, the task was quite lengthy and demanding for participants. 
The 3 mA intensity was of primary interest to understand the potential 
detrimental effects of hf-tRNS. Therefore, the decision was taken to 
include a sham and single hf-tRNS intensity. 

In conclusion, this study shows that visual performance can be 
detrimentally impacted by 3 mA hf-tRNS compared to sham. Modelling 
with the PTM suggests that the mechanisms driving this effect are 
increased internal additive noise and impaired external noise filtering. 
In the context of previous work, these results further support the notion 
that hf-tRNS increases additive noise to affect performance in line with 
SR. However, our findings, and in particular our individual differences 
analyses, also highlight an inherent limitation in using the PTM to 
capture noise characteristics related to SR. 
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Appendix A  

Table A1 
Individual participant PTM estimates for the best fitting PTM determined with AIC for all participants (N=41). 
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Fig. A-1. Perceptual template model percentage change in noise estimates for full and screened participant samples. The average percentage change for internal 
additive noise (i.e., additive noise; white) and external noise filtering (i.e., ext. noise filtering; striped) PTM estimates comparing 3mA hf-tRNS to sham for the full 
participant sample (N = 41) and the screened participant sample (n = 35). 

Appendix B 

AIC Model Selection for Individual Participants  

Table B-1 
Raw individual participant Akaike Information Criterion (AIC) estimates for PTM parameter combinations.  

ID Model Parameter Combinations 

AFM AF AM FM A F M NULL 

1 -17.49 -19.49 -18.70 -14.62 -20.70 -16.46 -15.78 -15.97 
2 -79.16 -81.16 -68.85 -78.12 -69.21 -79.77 -69.10 -65.44 
3 -103.60 -105.62 -101.48 -104.84 -101.55 -106.75 -103.48 -103.35 
4 -35.55 -37.44 -24.21 -37.54 -23.22 -39.43 -26.12 -23.03 
5 -10.66 -12.66 -12.58 -12.30 -14.58 -14.30 -14.22 -16.18 
6 -19.41 -21.41 -18.47 -18.00 -19.94 -19.19 -17.17 -19.17 
7 -36.35 -38.35 -37.90 -36.34 -39.90 -37.43 -37.23 -39.22 
8 18.90 17.05 23.10 18.38 22.27 16.38 21.99 22.47 
9 -70.69 -72.69 -72.19 -70.80 -74.19 -72.36 -72.13 -74.06 
10 -18.57 -20.57 -19.87 -16.95 -21.62 -18.94 -18.51 -20.51 
11 -65.90 -67.90 -40.51 -64.75 -38.05 -66.22 -42.17 -39.93 
12 -49.35 -51.35 -49.93 -50.03 -50.84 -51.47 -51.34 -50.63 
13 -37.05 -39.05 -38.96 -36.31 -40.96 -38.31 -37.40 -38.83 
14 -15.31 -17.31 -10.01 -17.26 -9.28 -19.26 -12.05 -11.08 
15 -30.12 -32.12 -31.99 -28.37 -33.99 -30.34 -30.37 -32.34 
16 -23.44 -25.44 -25.42 -25.41 -27.42 -27.41 -27.37 -29.37 
17 -14.97 -16.97 -11.61 -15.50 -11.11 -17.50 -12.26 -12.77 
18 -33.29 -35.09 -35.28 -33.84 -36.77 -35.84 -35.61 -37.59 
19 -37.97 -39.65 -39.90 -39.73 -40.13 -40.36 -41.49 -40.85 
20 -24.81 -26.81 -23.31 -25.49 -24.33 -27.49 -24.48 -26.16 
21 -19.24 -21.24 -20.80 -20.60 -22.80 -22.60 -22.03 -23.99 
22 -77.36 -79.36 -79.24 -71.84 -81.24 -73.27 -73.67 -73.40 
23 -5.41 -7.41 -4.40 -2.98 -5.83 -4.84 -3.60 -5.55 
25 -31.67 -33.67 -33.36 -28.25 -35.36 -30.06 -29.95 -30.20 
25 -21.69 -23.69 -23.42 -23.67 -25.42 -25.67 -25.30 -27.30 
26 -63.66 -65.66 -65.64 -65.65 -67.64 -67.65 -67.61 -69.61 
27 -27.68 -29.68 -28.97 -29.09 -30.97 -31.09 -30.70 -32.70 
28 -34.01 -36.01 -33.36 -32.63 -35.31 -34.60 -31.96 -32.27 
29 -95.28 -97.28 -84.82 -96.98 -79.78 -98.79 -81.57 -79.82 
30 -9.04 -11.04 -8.18 -11.03 -9.26 -13.03 -10.16 -10.97 
31 -14.50 -16.50 -11.95 -16.50 -13.80 -18.50 -13.58 -14.80 
32 -58.08 -60.07 -60.03 -55.21 -62.00 -56.59 -56.82 -58.56 
33 -59.89 -61.89 -47.17 -60.60 -41.84 -62.60 -47.62 -43.82 
34 -59.83 -61.83 -61.48 -61.28 -63.48 -63.27 -63.01 -65.01 
35 -54.45 -56.45 -39.01 -51.93 -37.78 -51.61 -36.31 -37.45   
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Table B-2 
Average Akaike Information Criterion (AIC) estimates and weight calculation for PTM parameter combinations for participants when model AF, model F, and the null 
has the best fit.   

Model Parameter Combinations 

AFM AF AM FM A F M Null 

AF (n=6) 
aveAIC -43.06 -45.06 -34.10 -41.40 -34.35 -42.71 -33.39 -33.30 

ΔAIC 2.00 0.00 10.96 3.66 10.71 2.35 11.67 11.76 
w(AIC) 0.20 0.54 0.00 0.09 0.00 0.17 0.00 0.00 

F (n=11) 
aveAIC -36.67 -38.65 -31.78 -37.94 -31.16 -39.86 -32.79 -32.18 

ΔAIC 3.19 1.21 8.08 1.92 8.70 0.00 7.07 7.68 
w(AIC) 0.09 0.25 0.01 0.17 0.01 0.45 0.01 0.01 

Null (n=8) 
aveAIC -32.44 -34.41 -34.2 -33.98 -36.14 -35.98 -35.73 -37.72 

ΔAIC 5.28 3.31 3.52 3.74 1.58 1.74 1.99 0.00 
w(AIC) 0.03 0.07 0.06 0.05 0.16 0.15 0.13 0.35 

Note. aveAIC = the average AIC estimate across participants with best fitting AF, F, and null models. ΔAIC is the difference between the best model and each other 
model; w(AIC) = is proportional to the total amount of predictive power provided by the full set of models contained in the model being assessed (Wagenmakers & 
Farrell, 2004). Perceptual Template Model parameter combinations: AFM – fullest model with Aa, Af, and Am coefficients free to vary; AF – Aa and Af coefficients free 
to vary; AM – Aa and Am coefficients free to vary; FM – Af and Am coefficients free to vary; A – Aa coefficient free to vary; F – Af coefficient free to vary; M – Am 
coefficient free to vary; Null – Aa, Af, and Am fixed to 1. 

Appendix C. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.neuropsychologia.2023.108703. 

References 

Aihara, T., Kitajo, K., Nozaki, D., Yamamoto, Y., 2010. How does stochastic resonance 
work within the human brain? – Psychophys. internal and external noise 375, 
616–624. https://doi.org/10.1016/j.chemphys.2010.04.027. 

Antal, A., Herrmann, C.S., 2016. Transcranial alternating current and random noise 
stimulation: possible mechanisms. Neural Plast. 2016, 1–12. https://doi.org/ 
10.1155/2016/3616807. 

Battaglini, L., Casco, C., Fertonani, A., Miniussi, C., Di Ponzio, M., Vicovaro, M., 2023. 
Noise in the brain: transcranial random noise stimulation and perceptual noise act on 
a stochastic resonance-like mechanism. Eur. J. Neurosci. 10, 433–436. https://doi. 
org/10.3389/fpsyg.2020.585437. Spatial vision.  

Brainard, D.H., 1997. The Psychophysics Toolbox. Spatial Vision 10 (4), 433–436.doi. 
https://doi.org/10.1163/156856897X00357. 

Chaieb, L., Antal, A., Paulus, W., 2008. Gender-specific modulation of short-term 
neuroplasticity in the visual cortex induced by transcranial direct current 
stimulation. Vis. Neurosci. 25 (1), 77–81. https://doi.org/10.1017/ 
S0952523808080097. 

Contemori, G., Trotter, Y., Cottereau, B.R., Maniglia, M., 2019. tRNS boosts perceptual 
learning in peripheral vision. Neuropsychologia 125, 129–136. https://doi.org/ 
10.1016/j.neuropsychologia.2019.02.001. 

Faisal, A.A., Selen, L.P., Wolpert, D.M., 2008. Noise in the nervous system. Nat. Rev. 
Neurosci. 9, 292–303. https://doi.org/10.1038/nrn2258. 

Fertonani, A., Ferrari, C., Miniussi, C., 2015. What do you feel if I apply transcranial 
electric stimulation? Safety, sensations and secondary induced effects. Clin. 
Neurophysiol. : off. j. Int. Fed. Clin. Neurophysiol. 126 (11), 2181–2188, 0.1016/j. 
clinph.2015.03.015.  

Fertonani, A., Miniussi, C., 2017. Transcranial electrical stimulation. Neuroscientist 23, 
109–123. https://doi.org/10.1177/1073858416631966. 

Ghin, F., Pavan, A., Contillo, A., Mather, G., 2018. The effects of high-frequency 
transcranial random noise stimulation (hf-tRNS) on global motion processing: an 
equivalent noise approach. Brain Stimul. 11 (6), 1263–1275. https://doi.org/ 
10.1016/j.brs.2018.07.048. 

Homayoun, H., Moghaddam, B., 2007. NMDA receptor hypofunction produces opposite 
effects on prefrontal cortex interneurons and pyramidal neurons. J. Neurosci. 27, 
11496–11500. https://doi.org/10.1016/j.tins.2007.05.004. 
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