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Summary  

Background 

Chemotherapies administered at normal therapeutic dosages can cause significant 

side-effects and may result in early treatment discontinuation. Inter-individual 

variation in toxicity highlights the need for biomarkers to personalise treatment. 

Inherited genetic variants are increasingly being recognised to cause chemotherapy-

induced toxicity. 

 

Aim 

I sought such biomarkers by conducting genome-wide association studies, together 

with gene and gene set analyses, for ten toxicities in 1800 patients with advanced 

colorectal cancer (CRC) treated with oxaliplatin and fluoropyrimidine chemotherapy ± 

cetuximab. 

 

Materials and Methods 

Patients were from the MRC COIN and COIN-B trials. 385 received folinic acid, 

fluorouracil and oxaliplatin (FOLFOX), 360 FOLFOX + cetuximab, 707 capecitabine 

and oxaliplatin (XELOX) and 348 XELOX + cetuximab. Common and low-frequency 

single nucleotide polymorphisms (SNPs), genes and gene sets that reached 

genome-wide or suggestive significance were replicated in independent patient 

groups, clinical trial cohorts and participants from the UK Biobank and Genomics 

England. Meta-analyses were also performed to increase power. 
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Results 

rs13260246 at 8q21.13 was significantly associated with vomiting in patients treated 

with XELOX (Odds Ratio [OR]=5.0, 95% Confidence Interval [CI]=3.0-8.3, P=9.8x10-

10) but failed independent replication. SNPs at 139 loci had suggestive associations 

for toxicities and lead SNPs at five were replicated. rs6783836 in ST6GAL1 was 

associated with hand‐foot syndrome (HFS) in patients treated with XELOX (OR=3.1, 

95% CI=2.1‐4.6, P=4.3x10‐8) and ST6GAL1 was associated with type-2 diabetes (a 

risk factor for HFS). A low-frequency nonsynonymous variant in the antigen 

processing 1 signature region was suggestive of an association with sepsis (OR=6.1, 

95% CI=3.0-12.8, P=1.2x10-6). rs4760830 in TRHDE was associated with diarrhoea 

in patients treated with capecitabine (OR=0.6, 95% CI=0.50-0.72, P=4.8x10-8). In 

MAGMA gene analyses, MROH5 was significantly associated with neutropenia 

(P=6.6x10-7) and was independently replicated. 

 

Conclusion 

My comprehensive study has identified several biomarkers that warrant further 

investigation for their potential clinical utility. 
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1 Introduction 

1.1 Colorectal cancer 

Colorectal cancer (CRC) is the third most common cancer worldwide and the second 

leading cause of cancer death (Baidoun et al, 2021). At diagnosis, approximately 

25% of patients present with metastatic disease and a further 25% of patients will 

develop metastatic disease (Biller and Schrag, 2021). Although newer drugs have 

doubled CRC survival rates over the past two decades, prognosis is still poor. Only 

around 35% of patients with metastatic disease survive for 3 years after diagnosis, 

and less than 20% survive for more than 5 years (Brody, 2015; Biller and Schrag, 

2021). 

 

The majority of CRC cases develop through the adenoma-carcinoma sequence over 

the course of 10-15 years (Binefa et al, 2014). CRC is usually only symptomatic at 

advanced stages, which is why mortality rates are high (Dekker et al, 2019). Risk 

factors for CRC include a low-fruit high-fat diet, obesity, a sedentary lifestyle, excess 

alcohol intake, being male, smoking and age (Martinez et al, 2007; Wolin et al, 2009; 

Giovannucci, 2004; Liang et al, 2009). Historically, CRC has been limited to older 

age adults, however, in recent years there has been a rise in the number of 20-30 

year olds presenting with CRC (Vuik et al, 2019). It is predicted that >65% of CRC 

cases could be avoided with a healthy lifestyle (Giovannucci, 2002).  

 

However, CRC also has a strong hereditary component. Around 5-10% of CRC 

cases are due to inherited syndromes (Macaron et al, 2015). Most syndromes are 

due to mutations in either tumour suppressor or repair and stability genes (Toma et 

al, 2012). For patients with known mutations or at high risk due to a family history of 
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CRC, enhanced monitoring and prophylaxis can be implemented to prevent CRC 

development (Monahan et al, 2020). However, regardless of whether CRC is 

inherited or sporadic, treatment options remain the same (Figure 1.1). 

 

1.2 CRC treatments 

For the 75% of patients with localised disease at diagnosis, first line treatment is 

surgical resection with intent to cure (Gustavsson et al, 2015). For the 25% of 

patients with metastatic disease at diagnosis and the 45% who experience 

recurrence after surgical resection, a combination of chemotherapies and targeted 

therapies is administered (Kuipers et al, 2015). Which therapies are used depends 

on clinical and genetic factors, notably RAS and BRAF mutation status (Modest et al, 

2019). 

 

1.2.1 Chemotherapies 

Chemotherapy is the most common form of anti-cancer treatment and functions by 

inducing cell death in a nonspecific manner (Kummar et al, 2006). It is administered 

for both curative and palliative care (Neugut and Prigerson, 2017). In the UK, several 

treatments are available depending on patient characteristics and choice.
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Figure 1.1 Treatments used for colorectal cancer. FDA = Food and drug administration, EMA = European Medicines Agency.  
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1.2.1.1 Fluorouracil (5FU) 

5FU was the first chemotherapy developed for CRC and is still one of the most 

common chemotherapies used today (Gustavsson et al, 2015). For CRC, it is mainly 

used for advanced cancer or patients at high risk of recurrence (Blondy et al, 2020). 

5FU is a fluoropyrimidine and works through multiple pathways (Figure 1.2; Longley 

et al, 2003; Francini et al, 1994). The main mechanism of effect is through inhibition 

of thymidylate synthase, which disrupts DNA synthesis and repair mechanisms and 

ultimately results in cell death. However, over 80% of administered 5FU is degraded 

by the enzyme dihydropyrimidine dehydrogenase (DPD) and excreted out in the 

urine (Miura et al, 2010). 5FU is often combined with folinic acid, also known as 

leucovorin. Folinic acid synergises with 5FU, significantly improving its efficacy 

(Piedbois et al,1992). It does so by stabilising the bond between the active 

metabolite and thymidylate synthase, allowing 5FU to remain in cancer cells longer 

(Moran and Keyomarsi, 1987). 
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Figure 1.2 Simplified diagram of the 5FU metabolism pathway showing enzymes with suggested toxicity causing 
mutations. 5′dFCR= 5′deoxy-5-fluorocytidine; 5′dFUR= 5′deoxy-5-fluorouridine, DPD= Dihydropyrimidine dehydrogenase, DHFU= 
dihydro-fluorouracil, FUDR= fluorodeoxyuridine, FdUMP= fluoro-deoxyuridine-monophosphate, dTMP= thymidine monophosphate 
TS= Thymidylate synthase, THF= tetrahydrofolate, MTHF= 5-Methyltetrahydrofolate. Adapted from Escalante et al (2021). 
Capecitabine is converted into 5FU in the liver by the sequential action of carboxylesterase, CDA and thymidine phosphorylase. 
Approximately 80% of 5FU is catabolised into inactive metabolites by DPD. A further 10% is directly excreted out. Only 1% to 5% of 
5FU is converted to active metabolites through nucleotide metabolic pathways. This leads to inhibition of TS which disrupts DNA 
synthesis and repair mechanisms. Another consequence of TS inhibition is the activation of enzymes involved in methionine 
synthesis, which increases 5FU activation in cancer cells. Mutations in CDA (CDA), DPYD (DPD) TYMS (TS), and MTHFR (MTHF) 
have been associated with 5FU toxicity (in yellow/gold).
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1.2.1.2 Capecitabine 

Capecitabine is a 5FU prodrug and was developed to be a more convenient 

alternative for patients, as it is administered orally (Van Cutsem et al, 2001). After 

several conversion steps, capecitabine is eventually broken down to 5FU and so has 

the same mechanism of action (Figure 1.2). Studies have shown that capecitabine is 

non-inferior to 5FU in terms of efficacy and survival (Hoff et al, 2001; Van Cutsem et 

al, 2001). However, some concerns remain about the toxicity profile of capecitabine 

compared to 5FU and therefore it has not become the primary treatment (Aguado et 

al, 2014). Currently, capecitabine is recommended for older adults or those with 

mobility problems as it can be administered at home rather than requiring frequent 

hospital visits (Aguado et al, 2014).  

 

1.2.1.3 Oxaliplatin  

Oxaliplatin is a third-generation platinum derivative chemotherapeutic agent. The 

main mechanism of effect is through the formation of DNA adducts, irreversibly 

damaging DNA and causing cell apoptosis (Alcindor and Beauger, 2011). Oxaliplatin 

is often combined with 5FU chemotherapies as studies have overwhelmingly shown 

better patient outcomes compared to 5FU monotherapy (Soulié et al, 1997; de 

Gramont et al, 2000; André et al, 2004). When combined with 5FU and folinic acid, 

the regimen is commonly called FOLFOX, which is the most common treatment for 

advanced CRC. There are several FOLFOX treatments such as FOLFOX-4 and 

FOLFOX-6 that differ in dosage and administration (Akdeniz et al, 2021). Oxaliplatin 

can also be combined with capecitabine, which is commonly referred to as XELOX 

or CAPOX.   
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1.2.1.4 Irinotecan 

Irinotecan has a broad spectrum of activity, demonstrating strong anti-tumour activity 

against a wide range of tumours (Xu and Villalona-Calero, 2002; Bailly, 2019). It 

works by inhibiting topoisomerase I, a key enzyme in DNA replication, resulting in 

double strand DNA breakage and cancer cell death (Bailly, 2019). Irinotecan is 

normally only used for advanced stage CRC and in combination with other 

chemotherapeutics such as 5FU (Douillard et al, 2003). However, it can be used 

effectively as a monotherapy for second-line treatment (Van Cutsem and Peeters, 

1998; Oostendorp et al, 2010).  

 

1.2.1.5 Other chemotherapies used in the UK 

Other treatments including Lonsurf (trifluridine and tipiracil) and raltitrexed have been 

licensed to treat CRC, but are not routinely used in the NHS (De Falco et al, 2019; 

Gustavsson et al, 2015). Reasons for this include expense, being less effective than 

current recommended therapies or they are not recommended as first-line treatment 

(NICE guidelines, 2022).  

 

1.2.2 Targeted therapies  

The development of targeted therapies has vastly increased the efficacy of CRC 

treatment (Xie et al, 2020). However, the combination of chemotherapy with more 

than one targeted therapy has not been shown to benefit patient outcomes but does 

increase toxicity incidence (Tol et al, 2009; Hecht et al, 2009). Therefore, current 

clinical practice is to administer only one targeted therapy. Several targeted 

therapies for CRC are available in the UK. 
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1.2.2.1 Cetuximab 

Cetuximab is a monoclonal antibody first developed in 2004 that inhibits epidermal 

growth factor receptor (EGFR) activity (Cunningham et al, 2004). As EGFR is 

overexpressed in tumours and causes cell proliferation, this has proven to be an 

excellent target, with other EGFR inhibitors such as panitumumab subsequently 

developed (Hecht et al, 2004; Martinelli et al, 2007). However, there has been some 

conflicting evidence as to cetuximab’s efficacy. In 2009, cetuximab was found to be 

only effective in patients without mutations in codons 12 and 13 of KRAS or NRAS 

(Van Cutsem et al, 2009). Around 30-40% of CRC patients carry these somatic 

mutations. Furthermore, a mutation in BRAF (V600E) was found to also affect the 

efficacy of cetuximab unless BRAF inhibitors were administered (Nicolantonio et al, 

2008). Moreover, it has been suggested that perhaps only when combined with 

FOLFOX does cetuximab work at maximum efficacy (Bokemeyer et al, 2011; Qin et 

al, 2018).   

 

1.2.2.2 Panitumumab 

Panitumumab is an EGFR inhibitor similar to cetuximab in both mechanism and 

efficacy (Price et al, 2014; Modest et al; 2022). However, tumours that show 

resistance to cetuximab have been shown to still be sensitive to panitumumab in 

some cases (Montagut et al, 2012). Panitumumab can be administered effectively as 

monotherapy or in combination with chemotherapy, usually 5FU (Van Cutsem et al, 

2007). Similarly, to cetuximab, panitumumab is ineffective for patients with KRAS, 

NRAS or BRAF mutations (Amado et al, 2008; Nicolantonio et al, 2008).  
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1.2.2.3 Bevacizumab 

Bevacizumab is a monoclonal antibody that targets vascular endothelial growth 

factor (VEGF) (Hurwitz et al, 2004). Bevacizumab inhibits tumour growth by 

preventing the development of new blood vessels, which tumours rely on for 

sustenance and growth (Shih and Lindley, 2006). There are no known somatic 

mutations that alter effectiveness and is therefore suitable for patients with KRAS, 

NRAS or BRAF mutations (Price et al, 2011). Bevacizumab is also effective in 

combination with fluoropyrimidine based chemotherapies (Kabbinavar et al, 2005; 

Saltz et al, 2008). 

 

1.2.3 UK approved treatments 

All the therapies discussed in the previous sections have been approved for the 

treatment of CRC in the NHS, under NICE guidelines (NICE guidelines, 2012a; NICE 

guidelines, 2017). However, it is advised that cetuximab and panitumumab are only 

administered in patients without specified KRAS, NRAS or BRAF mutations, due to 

lack of efficacy. All of the other discussed therapies are suitable for patients with 

these mutations. It is also recommended that bevacizumab only be administered 

alongside non-oxaliplatin containing regimens.  

 

1.3 CRC treatment toxicities 

Toxicity, commonly known as side-effects or adverse events, are defined as 

unexpected medical problems, unfavourable changes in health or abnormal 

laboratory findings that occur during treatment with a drug or other therapy (National 

Cancer Institute, 2017).  Some toxicities have short term acute effects whereas 

others remain after treatment has stopped (Andreyev et al, 2012). Toxicity adversely 
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affects a patient’s quality of life and can be life threatening. Drug toxicity may result 

in treatment discontinuation or dose reduction (Blumenthal et al, 2019; Koedoot et al; 

2003) thus significantly affecting the prospects of a cure (Huitema et al, 2002; Braun 

and Seymour, 2011). Most chemotherapeutic agents are associated with significant 

side-effects even when administered at normal therapeutic dosages. More than 40% 

of patients with solid tumours develop at least one severe toxicity during their 

treatment (Ingrand et al, 2020).   

 

1.3.1 Toxicity classification system 

During clinical trials, toxicity events are recorded using the common terminology 

criteria for adverse events (CTCAE), a descriptive terminology that provides a 

severity scale ranging from 0-5 for all possible toxicities (National Cancer Institute, 

2017). Descriptions are provided for each grade to guide clinicians. In general, grade 

0 represents absent toxicity, grade 1 represents mild toxicity, grade 2 represents 

moderate toxicity, grade 3 represents severe toxicity, grade 4 represents life-

threatening toxicity and grade 5 represents death due the toxicity (Table 1.1). 

Several updates of CTCAE have been published with the latest version (v5.0) 

published in 2017.  

 

Outside of clinical trials, toxicity events are not as well documented (Mandelblatt et 

al, 2015). In the UK there is no standard system for recording toxicity events and 

instead, a patient’s GP or oncologist may record the event as they see fit using 

SNOMED CT (Wardle and Spencer, 2017).  
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Table 1.1 Common terminology criteria for adverse events grading scale 

 
The National Cancer Institute Common Terminology Criteria for Adverse Events is a descriptive terminology which is utilised for 
toxicity event recording during clinical trials. Not all grades are appropriate for all toxicities and therefore fewer grades may be 
described for some toxicities. 
 

Grade Descriptor Grade guidelines 

0 Absent Absent 

1 Mild 
Asymptomatic symptoms, mild symptoms or diagnostic observations only. No clinical 

intervention was needed. 

2 Moderate 
Minimal local or non-invasive intervention was needed. Instrumental daily living activities such 

as grocery shopping may have been limited. 

3 Severe 

Medically significant but not life-threatening. Hospitalisation or pro-longed hospitalisation was 

required. May have been disabling and limited self-care daily living activities such as dressing 

or feeding self. 

4 Life-threatening Life-threatening consequences. Urgent or emergent intervention was needed. 

5 Death Death related to toxicity 
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1.3.2 Clinical risk factors for toxicity to chemotherapeutics 

Studies have shown that clinical factors can increase the risk of toxicity events. The 

largest risk factor is the combination of treatments administered (Braun and 

Seymour, 2011). Each drug has a unique toxicity profile with toxicities that are more 

likely to develop and that are often dose-limiting (Table 1.2). 

 

Another key risk factor is treatment dosage with higher dosages causing more 

severe toxic events (Brock et al, 2021). Dosage can also have a cumulative effect so 

patients with longer or more frequent cycles are at an increased risk of both toxicity 

incidence and increased severity (Kerr et al, 2000; Bleiberg, 1998). The 

administration method can also play a role, with 5FU infusion causing less toxicity 

than bolus administration, as drug levels remain stable throughout treatment 

(Hansen et al, 1996). 

 

On an individual level, there are further factors to consider. Age (Hurria et al, 2011), 

malnutrition (Seo et al, 2016) and having co-morbidities such as diabetes (Gu et al, 

2021; Yokokawa et al, 2015), can increase risk significantly. Furthermore, ethnicity 

has been shown to affect the tolerability of 5FU, with East Asian patients having the 

lowest relative risk of toxicity and US patients having the highest relative risk (Haller 

et al, 2008). 
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Table 1.2 Common dose-limiting toxicities associated with colorectal cancer treatments 
 

Treatment Common dose-limiting toxicities 
Frequency 
grade 1+ 

References 

Oxaliplatin 
Peripheral neuropathy 

Acute neuropathy 
10-15% 

89% 
Saif and Reardon, 2005 

Pachman et al, 2015 

EGFR inhibitors - 
cetuximab and 
panitumumab 

Acneiform rash >60% 
Pinto et al, 2011; Lacouture et 

al, 2018 

5FU Neutropenia 29-69% 
Buroker et al, 1994; Garg et al, 

2012 

Capecitabine Hand-foot syndrome 18- 77% 
Kwakman et al, 2020; Cassidy 
et al, 2002; Tebbutt et al, 2010 

Bevacizumab Hypertension 23-44% 
Ranpura et al, 2010; Kindler et 

al, 2005 

Irinotecan 
Diarrhoea 

Neutropenia 
50-80% 
63-77% 

Stein et al, 2010 
Park et al, 2019; Kuehr et al, 

2004 
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1.3.3 Genetic risk factors for toxicity to chemotherapeutics 

As each drug has a unique toxicity profile, they are likely also to have unique genetic 

variants associated with their profiles. There are two mechanistic categories to 

consider, the first is genetic variants that fall within drug metabolism genes. These 

patients present with severe toxicity that develops during the first couple of cycles 

(Pinto and Dolan, 2012). Typically, toxicity is widespread, and therefore these 

variants are not toxicity specific.  

 

However, since most variants in metabolism genes are usually rare, these variants 

do not explain the observed inter-individual variation. Therefore, there are likely 

toxicity specific risk variants explaining at least of part this variability (Eichler et al, 

2011). This would also explain why toxicity incidence rates vary across ethnicities 

(Haller et al, 2008). These variants would have no links to metabolism and therefore 

do not cause widespread toxicity, being only risk factors for individual toxicities or 

toxicities with shared causal pathways. These variants are harder to identify and 

validate since many toxicities have unknown or several mechanistic pathways (Stein 

et al, 2010; Vichaya et al, 2015; Pergolizzi et al, 2017). The majority of published 

studies have used a candidate gene approach targeted towards drug metabolism 

genes and therefore only a handful of variants outside these genes have been 

identified to date. Moreover, most of these are not validated, failed to reach 

significance after correction for multiple tests and/or had sample sizes less than 200 

(Custodio et al, 2014; Won et al, 2012; Argyriou et al, 2013).  
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1.3.3.1 5FU 

There have been several variants associated with toxicity to 5FU, the best 

documented of which lie within the gene encoding DPD, DPYD (Section 1.2.1.1 

above). Genetic variants in DPYD can be life-threatening as some variants can 

completely inactivate DPD enzyme activity thereby preventing 5FU metabolism (Yen 

and McLeod, 2007). Approximately 3-5% of patients have at least one variant that 

causes partial or complete deficiency (Innocenti et al, 2020). Therefore, it is 

recommended that DPYD variants are genotyped before treatment, to guide dosage 

and treatment options. Currently, NHS patients are screened for four variants prior to 

5FU therapy (Table 1.3). Patients who are heterozygous for any of these risk 

variants require a dose reduction between 25-75% and patients who are 

homozygous should not receive fluoropyrimidine chemotherapies (Morawska et al, 

2018). There are a further 6 validated and 16 unvalidated variants in DPYD that have 

been associated with toxicity but either due to their limited predictive ability or 

conflicting evidence in other studies, they are not recommended for clinical use at 

present (Table 1.3). 

 

Variants in Thymidylate Synthetase (TYMS) have also been associated with 5FU 

toxicity. While the biological relevance of TYMS is clear, the impact of noted variants 

is not (Figure 1.2). In the literature, two variants have been discussed extensively, a 

28bp sequence occurring usually either as a double (2R) or triple (3R) tandem 

repeat (rs45445694) and a 6 base pair deletion (rs11280056). Both have been 

significantly associated with toxicity in some studies (Lecomte et al, 2004; Schwab et 

al, 2008; Castro-Rojas et al, 2017; Hamzic et al, 2020) but failed to replicate in 

several others (Martinez-Balibrea et al, 2010; Meulendijks et al, 2017; Braun et al, 
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2009; Sharma et al, 2008). However, it is unclear whether the causal gene is TYMS 

or the nearby gene enolase superfamily member 1 (ENOSF1), which may explain 

the lack of consistency in results. rs2612091 in ENOSF1 has been associated with 

5FU toxicity and is in partial linkage disequilibrium (LD) with both TYMS variants 

(Meulendijks et al, 2017; Hamzic et al, 2020). However, the mechanism of effect for 

ENOSF1 is unclear, although it may regulate TYMS activity (Wu and Dolnick, 2003). 

Overall, further work is required to establish which gene is causal and the 

mechanism of effect before any of these variants could be implemented in the 

clinical setting.
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Table 1.3 Validated variants associated with toxicities to chemotherapeutics 
used in the treatment of colorectal cancer 
 

Treatment 
 

Gene 
SNP 

 

Alternative 
names Effect 

EUR 
MAF 

Original 
observation 

Replication 

5FU 

DPYD 

rs3918290 
 

*2A, 
IVS14+1G>A 

Splice variant 0.005 
Salgueiro, 

2004 
Largillier, 

2006 
rs55886062 

 
*13A 

p.I560S  
Missense 0.002 Morel, 2006 Lee, 2014 

rs67376798 p.D949V  Missense 0.007 
Boisdron-

Celle, 2007 
Deenen, 

2011 

rs75017182 
c.1129-

5923C>G 
Intronic 0.02 

Amstutz, 
2009 

Froehlich, 
2015 

rs1801265 
*9A 

p.C29R 
Missense 0.23 Vreken, 1997 

Joerger, 
2015 

rs755416212 p.Arg235Gln Missense 0.00002 
van 

Kuilenburg, 
2008 

Ly, 2020 

rs2297595 p.M166V  
Initiator 
Codon 
Variant 

0.12 Gross, 2008 
Falvella, 

2015 

rs1801160 
*6 

p.V732I 
Missense 0.05 

Collie-Duguid, 
2000 

Kleibl, 2009 

rs115232898 p.Tyr186Cys Missense 0.00004 Zaanan, 2014 Saif, 2014 

rs17376848 p.Phe632= Synonymous 0.04 
Kristensen, 

2010 
Falvella, 

2015 

TYMS 
rs45445694 

TYMS 5’-UTR 
VNTR 

Indel in 
promoter 

- 
Kristensen, 

2010 
Castro-

Rojas, 2017 

rs11280056 
TYMS 3’-UTR 

6-bp ins 
Indel in 

promoter 
- 

Rosmarin, 
2015 

Hazmic, 
2020 

ENOSF1 rs2612091 
c.742-

227G>C 
Intronic 0.44 

Meulendijks, 
2017 

Hamzic, 
2020 

Capecitabine 

CDA rs2072671 p.Lys27Gln Missense 0.25 
García-

González, 
2015 

Pellicer, 
2017 

MTHFR 
rs1801133 p.Ala263Val Missense 0.27 Sharma, 2008 

Gusella, 
2009 

rs1801131 p.Glu470Ala Missense 0.31 Sharma, 2008 
Thomas, 

2011 

Oxaliplatin GSTP1 rs1695 p.Ile105Val Missense 0.37 
Lecomte, 

2006 
Ruzzo, 
2007 

Bevacizumab 
KCNAB1 rs6770663 

c.276-
10722A>G 

Intronic 0.26 
Quintanilha, 

2022 
Quintanilha, 

2022 

SV2C rs6453204 
c.580+11045

A>G 
Intronic 0.08 

Schneider, 
2014 

Schneider, 
2014 

Irinotecan UGT1A1 

rs3064744 
*28 

g.234668881
TA[7] 

Indel in 
promoter 

0.39 Iyer, 2002 
Innocenti, 

2004 

rs10929302 
*93 

c. 3156G > A 
Promoter  0.30 

Innocenti, 
2009 

Hulshof, 
2022 

rs4148323 
*6 

p.Gly71Arg 
Missense 0.008 Han,2006 

Cheng, 
2014 

 
EUR= , MAF= minor allele frequency. Indel = Insertion/deletion variant. Minor allele 
frequencies referenced from gnomAD v.2.1.1 (Europeans non-Finnish). Variants in 
bold are currently tested before therapy is administered.
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1.3.3.2 Capecitabine 

Variants in DPYD and TYMS/ENOSF1 have also been associated with capecitabine 

toxicity (Rosmarin et al, 2015, Henricks et al, 2017). However, as there are additional 

conversion steps from capecitabine to 5FU, unique capecitabine specific markers 

have also been identified (Table 1.3). rs2072671 in cytidine deaminase (CDA) has 

been consistently associated with capecitabine toxicity although its clinical utility is 

limited due to its modest effect size of around 2 (García-González et al, 2015; 

Pellicer, 2017; Mattia et al, 2019). Several variants in drug transporter gene ATP 

Binding Cassette Subfamily B Member 1 (ABCB1) have been suggested to be 

associated with capecitabine toxicity but findings have been inconsistent across 

studies (Gonzalez-Haba 2010, Loganayagam et al, 2013; García-González et al, 

2015; Mattia et al, 2019). Two variants in methylenetetrahydrofolate reductase 

(MTHFR) have also been associated with capecitabine toxicity but both routinely fail 

to associate with 5FU toxicity despite MTHFR being involved with 5FU and folate 

metabolism (Sharma et al, 2008; Loganayagam, 2013; Afzal et al, 2009; Mattia and 

Toffoli, 2009). The biological reasoning for this is unclear (Loganayagam, 2013). 

 

1.3.3.3 Oxaliplatin  

Variants in key metabolism genes have been tested for association with oxaliplatin 

toxicity, but studies have routinely failed to identify any significant loci (Figure 1.3; 

Ruzzo et al, 2014; Varma et al, 2020; Park et al, 2022). Of the studies that have 

yielded results, all have proven contentious (Ye et al, 2013; Formica et al, 2017). For 

example, a variant in Glutathione S-Transferase π 1 (GSTP1) has been associated 

with peripheral neuropathy in several studies (Table 1.3; Lecomte et al, 2006; Ruzzo 
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et al, 2007; McLeod et al, 2010) but has been contested in numerous others 

(Gamelin et al, 2007; Inada et al, 2010; Peng et al, 2013).  

 

1.3.3.4 Irinotecan  

Variants in the irinotecan metabolism gene UDP glucuronosyltransferase family 1 

member A1 (UGT1A1) have been associated with severe toxicity (Table 1.3; Karas 

and Innocenti, 2022). rs3064744 (*28) is recommended for clinical use as it is 

common in patients with African (43%) and European (39%) ancestries. Two other 

UGT1A1 variants, rs10929302 (Innocenti et al, 2009; Hulshof et al, 2022) and 

rs4148323 (Han et al, 2006; Cheng et al, 2014) have also been associated with an 

increased risk of toxicity and could prove clinically useful. Other variants and genes 

have also been proposed, but without validation in independent cohorts (Innocenti et 

al, 2009; Han et al, 2013; Chen et al, 2015; Riera et al, 2020). 

 

1.3.3.5 Cetuximab and panitumumab 

There are no genetic markers with strong evidence associated with toxicity to 

cetuximab or panitumumab. Several studies have identified potential markers, but 

none of these have been validated in replication cohorts (Baas et al, 2018; Froelich 

et al, 2018).  
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Figure 1.3 Simplified diagram of the oxaliplatin metabolism pathway showing enzymes with suggested toxicity causing 
mutations. Adapted from Escalante et al (2021). Some oxaliplatin is directly detoxified by GSTP1 which is then eliminated. 
Oxaliplatin’s main mechanism of cytotoxicity is through the formation of DNA adducts. In summary, oxaliplatin binds to the guanine 
and cytosine bases in DNA which creates DNA crosslinks which induces cell apoptosis. DNA-oxaliplatin adducts are then 
subsequently repaired through either the nucleotide-excision repair or base-excision repair pathways. Mutations in GSTP1, 
ERCC2, ERCC1 and XRCC1 (in yellow/gold) have been tested for association with oxaliplatin toxicity but have routinely proven 
non-significant . 
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1.3.3.6 Bevacizumab 

Two variants have been associated with bevacizumab-induced hypertension which 

have been validated in independent cohorts (Table 1.3). One lies within potassium 

voltage-gated channel subfamily A regulatory beta subunit 1 (KCNAB1) (Quintanilha 

et al, 2022) and the other within synaptic vesicle glycoprotein 2C (SV2C) (Schneider 

et al, 2014). Neither of these genes are involved with bevacizumab metabolism but 

both are involved with biologically relevant pathways for hypertension (Li and Kroetz, 

2018). Other variants have also been proposed for bevacizumab toxicity, but none 

have been validated in independent cohorts (Lambrechts et al, 2014; di Stefano et 

al, 2015; Li et al, 2018).  

 

1.4 Genome-wide association studies (GWAS) 

GWAS are a popular approach to identify single nucleotide polymorphisms (SNPs) 

associated with a phenotype of interest. GWAS function by testing for differences in 

allele frequency for each SNP across individuals that differ phenotypically but are 

similar in most other aspects including ancestry.  

 

1.4.1 GWAS hypotheses 

GWAS were first designed based on the common disease common variant 

hypothesis (Figure 1.4). This states that if a heritable disease is common in the 

population, then genetic contributors should also be common in the same population 

(Reich and Lander, 2001). However, common variants with large effect sizes would 

be subject to negative selection and so it is more likely variants have small effect 

sizes. Therefore, it is expected that most phenotypes are polygenic, with each 

variant contributing little individually, but collectively explaining phenotype heritability 
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(Bush and Moore, 2012). However, for toxicity-related traits, it has been 

hypothesised that negative selection may not be applicable unless causal variants 

are also associated with other harmful phenotypes. This is because exposure to 

chemotherapy is a recent phenomenon in evolution, so toxicity variants would not 

have been subjected to negative selection pressure (Maranville and Cox, 2015). 

Therefore, common toxicity-related variants may have large effect sizes. 

 

There is also a competing hypothesis to consider, the common-disease rare variant 

hypothesis that states common diseases could be caused by multiplicity of individual 

rare genetic variants (Pritchard, 2001; Gorlov et al, 2008). Supporters have argued 

this hypothesis is more consistent with human pathobiology (Schork et al, 2009). 

Rare variants are more likely to be relatively new and have therefore not been 

subjected to strong negative selection or are rare because they have been selected 

against due to having a deleterious effect (Pritchard, 2001). In contrast, common 

variants are more likely to be older and by reaching a common frequency indicates 

they have not been subjected to negative selection (Schork et al, 2009). Therefore, 

some GWAS have now turned to look at low-frequency and rare variants, when 

common variants have failed to explain heritability (Bomba et al, 2017 Lettre, 2014).
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Figure 1.4 Relationship between the frequency of the variant minor allele and the size of the effect. The X-axis represents 
variant effect size, and the Y-axis represents variant minor allele frequency. Genome-wide association studies are effective at 
identifying common variants with small or large effect sizes. However, common variants with large effect sizes are rare, particularly 
for disease phenotypes. More studies are now investigating low-frequency variants that have historically been excluded from 
analysis. Rare variants with small effects are still virtually undetectable with current technology. 
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1.4.2 Single nucleotide polymorphisms 

SNPs are defined as single base pair changes that occur in at least 1% of the 

general population and are one of the most common forms of genetic variation 

(Brookes, 1999). It is estimated that a person’s genome differs from the reference 

genome at approximately 4.5 million sites, with most of these being common variants 

(100,000 genomes project consortium, 2015). Most known SNPs are classified as 

silent mutations, but some SNPs can have serious functional consequences. SNPs 

that have direct effects on protein structure can be classified as missense, 

frameshift, splicing, or nonsense mutations (Dobson et al, 2006; Shastry, 2009). 

SNPs can also have functional consequences that do not affect protein structure, 

including through gene expression, transcription factor binding sites and mRNA 

stability (Shastry, 2009). 

 

There are also several different models of genetic inheritance for SNPs including 

dominant, recessive and additive models. Most association studies test for additive 

effects as an additive model can still capture non-additive variability with some 

accuracy, whereas other models cannot (Tsepilov et al, 2015). However, most 

additive GWAS will always have insufficient power to detect lower frequency SNPs 

with truly recessive effects (Guindo-Martínez et al, 2021). 

 

1.4.3 Linkage disequilibrium  

LD is the non-random association of alleles at different loci (Slatkin, 2008). High LD 

indicates that SNPs are usually inherited together and therefore are part of the same 

haploblock. LD between loci can be measured using two methods, R2 and D’. Both 

can be useful indicators; R2 measures the squared correlation between a pair of loci 



 25  

and D’ assesses the relationship between haplotype frequencies. LD is crucial to 

GWAS interpretation as the most associated SNP is often not causal (Schaid et al, 

2018). The process of fine mapping can help to determine which SNPs have a high 

confidence of being causal. For GWAS studies, R2 is the usual measure used (Bush 

and Moore, 2012). 

 

1.4.4 Genotyping and imputation 

SNP chip array genotyping is a cost-effective method to get large coverage of the 

genome (Verlouw et al, 2021). If genotyped SNPs are chosen wisely then additional 

information can be gained through imputation. Genomic imputation works by 

leveraging the power of LD between SNPs to infer the haplotypes of non-genotyped 

SNPs (Figure 1.5). The first step is haplotype phasing where the probability of each 

genotype is calculated per variant using a whole genome sequence (WGS) 

reference panel to infer genotypes (Howie et al, 2009; The Haplotype Reference 

Consortium, 2016). From these probabilities, imputation scores can be generated 

that represent the probability of the variant being called accurately. Only variants 

with high imputation scores will be used for analysis. However, no agreed threshold 

has been set although most studies use a cut off between 0.4-0.8 (Southam et al, 

2011; Zheng et al, 2015; The Haplotype Reference Consortium, 2016). 

 

Imputation has been shown to be very accurate for common variants, while 

historically being poor for rare variants. Therefore, most GWAS studies to date have 

excluded rare variants from analysis. However, newer larger reference panels have 

been shown to impute rare variants accurately and so rare variant analyses are likely 

to become commonplace in the future. 
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Figure 1.5 Genotype imputation methodology. Genotyped alleles from individual I are used to match segments from the 
reference panel. Non-genotyped sites can then be inferred using the matched segment. Adapted from Das (2017). 
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1.4.5 GWAS validation 

Unfortunately, false positives are common in GWAS and therefore this must be 

considered when reporting results. Providing strong mechanistic or biological 

evidence can help validate the initial observation (König, 2011). To confirm the 

observation, the gold standard is to replicate significant GWAS results in an 

independent cohort, proving the result is replicable (Oetting et al, 2017). When 

choosing a replication cohort, it is important to consider heterogeneity between study 

samples, otherwise confounding may interfere with results (Liu et al, 2008) 

 

1.4.6 Statistical power 

Statistical power analyses are a critical first step of any statistical study (Hong and 

Park, 2012). Power analyses calculate the probability of finding an effect assuming 

that there is an effect to be found (Castelloe and O'Brien, 2001). Power is linked to 

several variables including sample size, case to control ratio, SNP effect size, SNP 

minor allele frequency (MAF) and the statistical significance threshold (Sham and 

Purcell, 2014). Changing one or more of these variables will influence power (Figure 

1.6). For prospective studies, power calculations can be used to guide the design of 

the cohort and study. However, most GWAS are performed retrospectively, and 

power calculations are therefore used to guide analysis choices to maximise power 

(Sham and Purcell, 2014; Visscher et al, 2017). 

 

For GWAS, due to the large number of SNPs tested, multiple testing burden must be 

considered. The de facto significance threshold for GWAS and use in power 

calculations is P<5.0x10-8 which is an alpha of 0.05 corrected for 1,000,000 tests 

using Bonferroni (Risch and Merikangas, 1996; Bland and Altman, 1995). Although 
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the number of SNPs tested has increased since this threshold was set, over the 

years Bonferroni has been proposed to be too conservative due to LD and the 

threshold has therefore never been adjusted (Chen et al, 2021). A second threshold 

of suggestive significance has been established at P<1.0x10-5 which indicates SNPs 

of potential interest. This was introduced due to the conservative nature of 

Bonferroni and because SNPs with low effect sizes or MAFs may be too 

underpowered to reach the significance threshold unless very large sample sizes are 

utilised (Lander and Kruglyak, 1995).  

 

Power should also be calculated for validation cohorts to ensure that the SNP has 

sufficient power to replicate. While the original effect size of the SNP can be useful to 

guide this, it is also important to consider the winners curse phenomenon 

(Lohmueller et al, 2003). This states a variant effect size is likely overestimated in 

the original study and may be weaker in subsequent validation studies (Göring et al, 

2001). Thus, the actual sample size of the validation cohort may need to be even 

larger than the initial estimate (Liu et al, 2008).
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Figure 1.6 Genome-wide association power calculated based on a sample size of n with a case rate of 30%. The X-axis 
shows SNP minor allele frequency (MAF), and the Y-axis shows statistical power. Power plots are shown for studies with 1000, 
2000 and 3000 participants (left to right). Power curves are shown for SNPs with odds ratios (OR) of 1.5, 2, 3 and 4. The disease 
model is assumed to be additive.
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1.4.7 Covariates 

Covariates are included in statistical analyses to reduce confounding and increase 

precision (McCaw et al, 2022). Precision will improve if the distribution of the 

phenotype varies across levels of the covariate by reducing residual variation 

(McCaw et al, 2022). The simplest and most common method to incorporate 

covariates is to include a linear or binary term for the covariate in the association 

model. However, when a covariate is not linearly associated with the phenotype, 

transformation of the covariate may be needed (Pain et al, 2018). In GWAS studies it 

is also possible to test for the effect of a covariate to see if a SNP of interest interacts 

with the covariate.   

 

1.5 Other bioinformatic analyses 

1.5.1 Molecular quantitative trait loci 

In addition to SNPs directly affecting the phenotype, they can also shape phenotypes 

through gene expression, splicing or epigenetic changes (Qu et al, 2017). SNPs that 

are associated with this variation are called molecular quantitative trait loci (QTL). 

QTLs can be classified as cis or trans depending on their location of effect. In most 

cases, QLTs are as cis indicating that they regulate nearby genes (<1 Mb). In 

contrast, the rarer trans QLTs can regulate far away genes (>1 Mb) or genes on 

other chromosomes (Suzuki et al, 2021). Most QLTs are also tissue specific unless 

associated with house-keeping genes (Gerrits et al, 2009). The most common QTLs 

are expression QTLs (eQTL) and splice QTLs (sQTL). eQTLs are associated with 

gene expression and epigenetic changes. Studies suggest eQTLs are enriched in 

loci identified from GWAS which may help validate and explain the effect of non-

coding loci (Kubota and Suyama, 2022). sQTLs are associated with the expression 
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of RNA isoforms from alternative splicing events (Garrido-Martín et al, 2021). In 

several diseases sQTLs have larger predicted effects than eQTLs (Farh et al, 2015; 

Yamaguchi et al, 2022). 

 

However, some recent studies have shown that QTL variants are more likely to have 

smaller effect sizes and are unlikely to be within critical genes (Wang and Goldstein, 

2020; Battle et al, 2014). This is because genes with key functional roles have been 

more conserved throughout evolution. Therefore, while QTLs help establish potential 

mechanistic pathways for intronic SNPs, not being a QTL should not exclude SNPs 

from further investigation. 

 

1.5.2 Gene and gene set analyses 

One key problem of GWAS is that SNPs often only explain a fraction of a 

phenotype’s heritability, which can make them difficult to detect at genome-wide 

significant levels (Lee et al, 2011). Gene and gene set analyses are one avenue to 

gain additional insight from GWAS results while also placing the results in a broader 

biological context. 

 

In gene analyses, single SNP association results are aggregated to the gene level. 

This makes it possible to detect genes where multiple weaker associations are 

present. There are various methods available which have different underlying 

assumptions (Purcell, 2007; Holmans et al, 2009; Segrè et al, 2010). Earlier software 

had several problems including being dependent on LD structure, computational 

demand and lack of interpretability. More recent algorithms such as MAGMA have 
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overcome these problems and are now frequently used post-GWAS (de Leeuw et al, 

2015).  

 

Gene set analyses also known as pathway analyses work by aggregating the gene 

analysis results into biological pathways. Significant gene sets indicate that genes 

within the set are enriched for association with the phenotype. Gene set analyses 

can lead to novel hypotheses for the biological mechanisms of diseases. Various 

programs are available however only INRICH and MAGMA have consistently shown 

good power (de Leeuw et al, 2015). This is important, as power strongly depends on 

the heritability of the phenotype with more heritable phenotypes being more weakly 

powered (de Leeuw, 2016). 

 

1.5.3 In silico analyses 

In silico analyses can be key in contextualising GWAS results by determining how 

SNPs can affect the phenotype of interest. Although SNPs that fall within exonic 

regions can affect protein structure directly, their effects can have varying impact. 

Several programs to predict the functional impact of coding variants include 

Combined Annotation Dependent Depletion (CADD) (Kircher et al, 2014), 

Polymorphism Phenotyping version 2 (PolyPhen2) (Adzhubei et al, 2010) and 

Sorting Intolerant from Tolerant (SIFT) (Sim et al, 2012). More difficult is determining 

the relevance of intronic SNPs or SNPs that fall outside protein coding genes. 

Looking at evolution conservation can help to indicate regions that may have 

important regulatory function (Huber et al, 2020). Intronic SNPs may also affect 

splicing which can be predicted with the use of tools such as Human Splicing Finder 

(Desmet et al, 2009) and SpliceDetector (Houreh et al, 2018). 
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1.6 Visualisation and plots 

1.6.1  Manhattan plots 

Manhattan plots are used to visualise and interpret the results of a GWAS (Figure 

1.7A). A Manhattan plot shows the P-values of a GWAS ordered by chromosomal 

location. The Y axis is the -log10 (P-values), and the X axis is genomic location by 

chromosome and then chromosomal position (Turner, 2018). Genome-wide 

significance at P<5.0x10-8 and suggestive significance at P<1.0x10-5 are indicated 

with red and blue lines, respectively.  

 

1.6.2 Quantile-quantile (QQ) plots 

QQ plots graphically represent the deviation of the observed P values from P-values 

expected under the null hypothesis. The observed P-values are plotted in 

descending size order. If no genomic inflation is observed, the points will align to 

form a diagonal line from the bottom left corner to the upper right corner (Figure 

1.7A). If over or under inflation is observed, points will deviate from the centre line. 

QQ plots are an easy method to determine if over or under inflation of test statistics 

is occurring. Over inflation usually indicates a population stratification issue and 

under inflation can indicate a lack of power (Reed et al, 2015).
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Figure 1.7 Visualisation of Genome-wide association study results. (A) 

Example Manhattan plot adapted from Turner (2018) and its QQ plot showing the 

expected versus observed P-values for SNPs. On the Manhattan plot, the red line 

B 

A 
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corresponds to a P=5.0x10-8 and the blue line P=1.0x10-5. On the QQ plot, upward 

deviation from the diagonal red line indicates potential genomic inflation and 

correlates to high peaks in a Manhattan plot. (B) Example Locuszoom plot adapted 

from Pruim et al. (2010). The plot shows the results of the analysis for SNPs and 

recombination rates. −log10(P) (y-axis) of the SNPs are shown according to their 

chromosomal positions (x-axis). The sentinel SNP (purple) is labelled by its rsID. The 

colour intensity of each symbol reflects the extent of linkage disequilibrium (LD) with 

the sentinel SNP, deep blue (r2=0) through to dark red (r2=1.0) (those in grey lacked 

LD information). Genetic recombination rates, estimated using 1000 Genomes 

Project samples, are shown with a blue line. Physical positions are based on NCBI 

build 37 of the human genome. Also shown are the relative positions of genes and 

transcripts mapping to the region of association. Genes have been redrawn to show 

their relative positions; therefore, maps are not to physical scale. Functional 

annotation is shown using shapes as noted by the legend.
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1.6.3 Locuszoom regional association plots 

Regional plots are important to determine where SNPs lie within the genome and 

their relationship with nearby genes (Figure 1.7B). Several software is available 

including Locuszoom (Pruim et al, 2010), SNAP (Johnson et al, 2008) and 

CandiSNPer (Schmitt et al, 2010). Of these, Locuszoom provides extra features not 

available in other software including visualisation of LD structure, recombination 

peaks and the ability to incorporate finemaps or functional annotations (Pruim et al, 

2010). These additional features can be vital for guiding downstream analyses. For 

example, it can be quickly determined using LD patterns how many independent 

association signals may be present at a locus. 

 

1.7 Hypothesis and aims 

The main hypothesis of this thesis is that there are germline SNPs associated with 

toxicity to chemotherapeutics that have not yet been discovered. I expect to identify 

SNPs that are associated with individual toxicities, some of which may be treatment 

specific. An analysis plan outlining the phenotypes and cohorts used throughout this 

thesis, is shown in Table 1.4. 

 

Individual aims: 

 Identify common toxicity SNPs that are associated with specific treatment 

combinations. 

 Perform meta-analyses with QUASAR2 to identify SNPs associated with 

capecitabine toxicity. 

 Identify low-frequency SNPs associated with 5FU toxicity. 

 Validate any promising markers using external cohorts and in silico analyses.
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Table 1.4 Simplified version of thesis analysis plan 

Each of the results chapters in this thesis (Chapter 3-6) presents results from either genome-wide association studies (GWAS) or 
GWAS meta-analyses. For boxes marked GWAS, all patients in the indicated groups were analysed as one cohort, whereas for 
boxes marked meta-analyses, GWAS were performed for each group and then meta-analysed together. For each chapter, greyed-
out boxes indicate groups which were not used during the initial analysis phase. These groups were however, used for validation 
analyses.   

 

Phenotypes analysed 

COIN + COIN-B QUASAR2 

FOLFOX 
FOLFOX + 
cetuximab 

XELOX 
XELOX + 

cetuximab 
Capecitabine  

Capecitabine + 
bevacizumab 

Chapter 3 

Any-toxicity, diarrhoea, 
neutropenic sepsis, peripheral 

neuropathy, hand-foot 
syndrome, neutropenia, 

lethargy, stomatitis, nausea, 
vomiting, rash 

GWAS GWAS GWAS GWAS  

Chapter 4 

Diarrhoea, neutropenic sepsis, 
peripheral neuropathy, hand-foot 

syndrome, neutropenia, 
lethargy, stomatitis, nausea, 

vomiting, rash 

Meta-analysis (of 2 GWAS) Meta-analysis (of 2 GWAS)  

Chapter 5 

Diarrhoea, hand-foot syndrome, 
neutropenia, stomatitis, vomiting   Meta-analysis (of 4 GWAS) 

Chapter 6 

Diarrhoea, neutropenic sepsis, 
peripheral neuropathy, hand-foot 

syndrome, neutropenia, 
lethargy, stomatitis, nausea, 

vomiting, rash 

GWAS  
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2 Materials and Methods 

2.1 My contribution and others’ contributions 

Genotyping, imputation and initial quality control (QC) of COIN (COntinuous vs 

INtermittent) and COIN-B was performed prior to this project. Quick and Simple and 

Reliable trial (QUASAR2) data is held by Claire Palles, Birmingham University and 

summary statistic data from their analyses was provided for this thesis. The UK 

Biobank and Genomic England (GEL) cohorts had standard QC performed by their 

respective companies. Christopher Wills (Cardiff University) performed additional QC 

of the UK Biobank data. Further QC measures imposed on each dataset are detailed 

in the relevant results chapter’s materials and methods sections. All other analyses 

were performed by myself unless otherwise stated. 

 

2.2  Datasets used in this thesis 

2.2.1 COIN and COIN-B clinical trials 

2.2.1.1 COIN trial design and aims 

COIN was a Cancer Research UK and MRC funded phase III clinical trial 

(ISRCTN27286448). COIN aimed to determine (i) if there was a significant difference 

in patient outcomes between those who received continuous or intermittent therapies 

and (ii) if the addition of cetuximab had a significant effect on patient outcomes for 

those receiving continuous therapies (Maughan et al, 2011; Adams et al, 2011). 

 

Recruitment ran between 2005 and 2008 across 111 hospitals in the UK and Ireland.  

Inclusion criteria included having written informed consent, being at least 18 years 

old, having a histologically confirmed adenocarcinoma of the colorectum, inoperable 
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metastatic or locoregional measurable disease (RECIST v1.0, Therasse et al, 2000), 

being chemotherapy naive for metastatic disease, a WHO performance status 0–2 

and having good end-organ function (Adams et al, 2011). Patients were excluded if 

they had previous or present malignant disease, had uncontrolled medical 

comorbidity that may interfere with treatment or assessment, had known brain 

metastases or if they had ever been administered oxaliplatin.  

 

In total, 2,245 patients were recruited and randomised 1:1:1 to receive continuous 

oxaliplatin and fluoropyrimidine chemotherapy (n=815), continuous chemotherapy 

with cetuximab (n=815), or intermittent chemotherapy (n=815) (Figure 2.1). Two 

chemotherapies XELOX (XEL= capecitabine, OX= oxaliplatin) and FOLFOX  (FOL= 

folinic acid, F= fluorouracil, OX= oxaliplatin) were utilised in the trial and 

administered based on the choice of the patient and doctor. In total, approximately 

one third chose FOLFOX and two thirds XELOX. For patients in arms A and B the 

trial ceased when one of the following occurred, disease progression, severe toxicity 

or patient choice (Adams et al, 2011).  

 

The results showed non-inferiority in patient outcomes between those receiving 

intermittent chemotherapy compared to those receiving continuous therapy. Overall 

survival (OS) was an average of 14.4 months for intermittent versus 15.8 months for 

continuous cetuximab, but the difference was not significant (Hazard Ratio 

[HR]=1.08, 95% Confidence interval [95%CI]=0.97-1.21, P not reported). There was 

also no evidence of cetuximab having a significant improvement on patient outcomes 

when comparing all patients or those with KRAS wild type tumours (Maughan et al, 

2011). 



40
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1 COIN and COIN-B trial design. In COIN, patients were randomised 1:1:1 to receive continuous oxaliplatin and 
fluoropyrimidine chemotherapy (n=815), continuous chemotherapy with cetuximab (n=815), or intermittent chemotherapy (n=815). 
In COIN-B, patients were randomised 1:1 to receive intermittent chemotherapy and cetuximab (n=112) or intermittent 
chemotherapy and continuous cetuximab (n=114). For patients in intermittent therapy arms, treatment was given for 12 weeks and 
then resumed when disease progression occurred, and 12 more weeks of treatment was administered. 
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2.2.1.2 COIN-B trial design and aims 

COIN-B was a follow-on study and a phase II clinical trial (ISRCTN38375681).  

COIN-B aimed to determine if there was a significant difference in patient outcomes 

between patients receiving continuous cetuximab or intermittent cetuximab (Wasan 

et al, 2014).  

 

Recruitment ran between 2007 and 2010 across 30 hospitals in the UK and one in 

Cyprus. In May 2008, COIN-B was halted and re-designed after data indicated that 

KRAS mutations were predictive of resistance to EGFR targeted therapies. Tumoral 

KRAS mutation status of already recruited patients was assessed and the protocol 

for future recruitment amended to include screening for KRAS mutation status. Only 

the participants with KRAS wild type tumours were recruited following reactivation of 

the trial. Other inclusion criteria included having written informed consent, being at 

least 18 years old, having a histologically confirmed adenocarcinoma of the 

colorectum, inoperable metastatic or locoregional measurable disease (RECIST 

v1.0), a WHO performance status 0–2 and having good end-organ function 

(Eisenhauer et al, 2009). Patients were excluded if they had any uncontrolled 

medical comorbidity that may interfere with treatment or had a history of cancer or 

brain metastases.  

 

In total, 226 patients were recruited and randomised 1:1 to receive intermittent 

chemotherapy and cetuximab (n=112) or intermittent chemotherapy and continuous 

cetuximab (n=114). All patients received FOLFOX. All patients received treatment for 

12 weeks followed by a break in chemotherapy (and cetuximab for Arm D patients) 

until RECIST disease progression occurred, at which point they received 12 
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additional weeks of chemotherapy. Patients in Arm D received cetuximab 

continuously throughout the trial.  

 

Results indicated there was better outcomes for patients with KRAS wild type 

tumours when treated with continuous compared to intermittent cetuximab. 

Progression free survival was an average of 3.1 months (95%CI=2.8-4.7) for 

intermittent versus 5.8 months (95%CI=4.9-8.6) for continuous cetuximab. Similarly, 

failure free survival was an average of 16.8 months (95%CI=14.5-22.6) for 

intermittent versus 22.2 months (95%CI=18.4-28.9) for continuous cetuximab. 

 

2.2.1.3 Cohort demographics 

Given their overlapping treatment regimes, COIN and COIN-B were treated as one 

cohort for my genetic analyses. In total, 2,671 patients (mean age at randomisation 

of 62 years, range 18-87, 36% female) with metastatic or locally advanced CRC 

were recruited. For the first 12 weeks, treatments were identical in all patients apart 

from the choice of fluoropyrimidine in COIN (n=1,603, 60% received XELOX and 

n=1,068, 40% received FOLFOX) together with the randomisation of ± cetuximab 

(n=1,041, 39% received cetuximab).  

 

 

 

 

 

 

 



43 
 

2.2.1.4  Genotyping and QC 

Blood DNA samples were prepared from 2,244 of the 2,671 patients and were 

genotyped using Affymetrix Axiom Arrays according to the manufacturer's 

recommendations (Affymetrix, Santa Clara, CA 95051, USA) (Al-Tassan et al, 2015).  

 

Genotyping QC was tested using duplicate DNA samples with a concordance rate of 

>99%. Individuals were excluded from analysis if they failed one or more of the 

following checks: overall genotyping SNP rate <95% (n=122), discordant sex 

information (n=8), classed as out of bounds by Affymetrix (n=30), duplication or 

cryptic relatedness (n=4), and non-white European ancestry by Principal Component 

(PCA)-based analysis (n=130). After QC, SNP genotypes were available for 1,950 

patients. 

 

Phasing of genotypes was performed using SHAPEIT and prediction of untyped 

SNPs was carried out using IMPUTE2 (v2.3.0) using the 1000 Genomes Project as a 

reference panel. As part of this thesis, I applied stricter QC filters before analysis. 

SNPs with imputation scores < 0.8, genotyping rates <95% and deviation from 

Hardy-Weinberg equilibrium (HWE) > 1x10-6 were excluded from analyses. 

 

2.2.1.5  Toxicities to chemotherapeutics 

Assessment of toxicities was performed at 12 weeks, since at this point patients from 

all trial arms received identical levels of chemotherapy with or without cetuximab. 

This time point was also prior to any interruption to treatment for the intermittent 

therapy arms. Toxicities assessed were diarrhoea, neutropenic sepsis, peripheral 

neuropathy, hand-foot syndrome (HFS), neutropenia, lethargy, stomatitis, nausea, 
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vomiting and rash graded by critical adverse events as per the CTCAE (v4.0) with 

the highest grade noted within the first 12 weeks of treatment. Note, for HFS and 

nausea, the maximum possible grade on the CTCAE scale is 3 (severe). For all 

other toxicities the maximum grade is 5 (death). 

 

Out of 1,950 patients with genotyping data, 150 did not have toxicity data and these 

were excluded leaving 1,800 for analyses. The cohort demographics for the 1800 

patients are shown in Table 2.1 (and analysed by treatment). The frequencies of 

toxicities in COIN and COIN-B are shown in Table 2.2.  
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Table 2.1 Clinicopathological data for patients from COIN and COIN-B by 
treatment received 

  FOLFOX FOLFOX + 
cetuximab 

XELOX XELOX + 
cetuximab 

Difference 
between 
groups 
P-value 

N  385  360  707 348  
       

Age at 
diagnosis 

Mean (SD) 62.3 (9.4) 62.2 (9.8) 62.9 (9.5) 62.4 (9.2) 0.68 
Range 22.0-87.0 25.0-81.0 18.0-83.0 36.0-82.0  

      
       

Sex Female 136 (35) 142 (39) 239 (34) 106 (30) 0.08 
Male 249 (65) 218 (61) 468 (66) 242 (70)  

       
WHO 

Performance 
status 

0 166 (43) 166 (46) 343 (49) 182 (52) 0.29 
1 186 (48) 169 (47) 314 (44) 145 (42)  
2 33 (9) 25 (7) 50 (7) 21 (6)  

       
Primary site 
of tumour 

Colon 221 (57) 206 (57) 364 (51) 179 (51) 0.11 
Other 164 (43) 154 (43) 343 (49) 169 (49)  

       
Number of 
metastatic 

sites 

0 2 (1) 1 (0) 6 (1) 4 (1) 0.76 
1 139 (36) 137 (38) 231 (33) 128 (37)  
2 143 (37) 133 (37) 295 (42) 133 (38)  
3 82 (21) 68 (19) 144 (20) 69 (20)  
4 17 (4) 18 (5) 28 (4) 13 (4)  
5 2 (1) 3 (1) 3 (0) 1 (0)  

       
Liver 

metastases 
Yes  299 (78) 265 (74) 525 (74) 263 (76) 0.55 
No 86 (22) 95 (26) 182 (26) 85 (24)  

       
Lung 

metastases 
Yes 159 (41) 134 (37) 300 (42) 142 (41) 0.44 
No 226 (59) 226 (63) 407 (58) 206 (59)  

       
Peritoneal 

metastases 
Yes 61 (16) 58 (16) 99 (14) 55 (16) 0.74 
No 324 (84) 302 (84) 608 (86) 293 (84)  

       
Nodal 

metastases 
Yes 170 (44) 169 (47) 349 (49) 147 (42) 0.13 
No 215 (56) 191 (53) 358 (51) 201 (58)  

       
Other 

metastases 
Yes 60 (16) 68 (19) 107 (15) 51 (15) 0.37 
No 325 (84) 292 (81) 600 (85) 297 (85)  

       
White blood 
cell count 

Mean (SD) 9.2 (3.3) 8.5 (3.1) 9.0 (4.4) 8.9 (3.5) 0.08 
Range 3.3-33.1 3.2-27.7 3.1-90.0 3.4-33.0  

       
Creatinine 
clearance 

Mean (SD) 89.2 (27.7) 89.0 (27.5) 87.8 (27.6) 88.6 (29.6) 0.85 
Range 47.0-261.0 40.0-223.0 50.0-290.0 38.0-270.0  

       
Alkaline 

phosphatase 
Mean (SD) 208.8 (195.3) 174.9 (149.1) 192.0 (179.1) 180.7 (176.3) 0.05 

Range 12.0-1456.0 33.0-1173.0 18.0-1452.0 27.0-1497.0  
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Platelets Mean (SD) 364.3 (136.0) 335.1 (120.7) 347.7 (125.8) 358.8 (140.7) 0.01* 

Range 128.0-869.0 115.0-809.0 92.0-999.0 120.0-848.0  
       

Prior adjuvant 
chemotherapy 

Yes 85 (22) 82 (23) 192 (27) 87 (25) 0.22 
No 300 (78) 278 (77) 515 (73) 261 (75)  

 

For categorical variables, the number and percentage of patients in each category is 

stated and the P-value calculated using the Chi-squared test. For continuous 

variables, the mean, standard deviation (SD) and range are stated, and the P-value 

calculated using one-way ANOVA. *Not significant after correction for multiple 

testing. 
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Table 2.2 Patients from COIN and COIN-B with grade 2-5 CTCAE toxicities at 12 weeks 
 

Percentage of patients in parentheses. HFS - Hand-foot syndrome.

 FOLFOX treated XELOX treated 
 

 

n=385 (%) 

+ cetuximab 

n=360 (%) 

 

n=707 (%) 

+ cetuximab 

n=348 (%) 

     

Any Toxicity 237 (61) 275 (76) 430 (61) 226 (65) 

     

Individual toxicities     

Diarrhoea 78 (20) 109 (30) 165 (23) 123 (35) 

Neutropenic sepsis 24 (6) 39 (11) 5 (0.7) 1 (0.3) 

Peripheral neuropathy 43 (11) 30 (8) 110 (16) 44 (13) 

HFS 9 (2) 56 (16) 53 (8) 56 (16) 

Neutropenia 100 (26) 119 (33) 36 (5) 6 (2) 

Lethargy 130 (34) 126 (35) 258 (36) 103 (30) 

Stomatitis 48 (12) 102 (28) 32 (5) 29 (8) 

Nausea 41 (11) 47 (13) 142 (20) 68 (20) 

Vomiting  25 (6) 34 (9) 87 (12) 35 (10) 

Rash 5 (1) 196 (54) 11 (2) 166 (48) 
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2.2.2 QUASAR2 

2.2.2.1 Trial design and aims 

QUASAR2 (ISRCTN45133151) was an international phase III clinical trial to assess 

if the addition of bevacizumab to capecitabine therapy improved outcomes in 

patients with stage III or high-risk stage II CRC (Kerr et al, 2016) (Figure 2.2). The 

primary endpoint was 3-year disease free survival. 

 

Patients were recruited between 2005-2010 across 170 hospitals in 7 countries 

(Australia, Austria, Czech Republic, New Zealand, Serbia, Slovenia and the UK). 

Recruitment criteria included being age 18 years or older, a WHO performance 

status of 0-1, histologically proven stage III or high-risk stage II CRC, primary 

resection 4-10 weeks before randomisation and life expectancy of at least 5 years. 

Exclusion criteria included having a history of cancer, inflammatory bowel disease, 

active peptic ulcer in the previous 2 years, or both; lack of physical integrity of the 

upper gastrointestinal tract, malabsorption syndrome, or inability to take oral 

medication; creatinine clearance <30 mL/min; absolute neutrophil count lower than 

1.5x10⁹ cells per L; platelet count lower than 100x10⁹ cells per L; total bilirubin 

concentration higher than 1.5 times the upper limit of normal; alanine 

aminotransferase, aspartate aminotransferase, or alkaline phosphatase 

concentration greater than 2.5 times the upper limit of normal; proteinuria worse than 

500 mg per 24 h; previous chemotherapy, immunotherapy, or infradiaphragmatic 

radiotherapy or the need for radiotherapy to these sites expected within the next 12 

months; use of any investigational drug, agent, or procedure within 4 weeks of 

randomisation; chronic use of full-dose anticoagulants, high-dose aspirin, antiplatelet 

drugs, or known bleeding diathesis; concomitant treatment with sorivudine or its 
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chemically related analogues; history of uncontrolled seizures, central nervous 

system disorders or psychiatric disorders that precluded giving informed consent or 

interfered with adherence to oral drug intake; clinically important cardiac disease; 

known coagulopathy; known allergy to Chinese hamster ovary cell proteins; 

pregnancy, lactation, or no use of contraception in premenopausal women (Kerr et 

al, 2016). All participants provided their written consent and separate consent was 

obtained for the use of tumour and blood samples for further analyses. 

 

In total 1,941 patients were recruited and randomised (1:1) to receive either 

capecitabine alone (n=968) or capecitabine and bevacizumab (n=973). Patients in 

the capecitabine and bevacizumab arm had the same dosing schedule for 

capecitabine as the capecitabine alone group, but with the addition of bevacizumab. 

Bevacizumab was administered for 8 extra cycles after capecitabine treatment for all 

patients ended. 

 

The results indicated no significant difference in patient outcomes between those 

receiving capecitabine alone compared to those receiving bevacizumab + 

capecitabine (Kerr et al, 2016). Furthermore, the addition of bevacizumab was 

associated with increased toxicity (221 grade 3+ toxicity events in the capecitabine 

arm versus 350 grade 3+ toxicity events in the bevacizumab + capecitabine arm) so 

the authors recommended that this treatment combination should not be used in the 

treatment of CRC.
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Figure 2.2 QUASAR2 trial design. Patients were recruited and randomised (1:1) to receive either capecitabine alone (n=968) or 
capecitabine and bevacizumab (n=973). Capecitabine was administered in 3-week cycles for a total of 24 weeks. Bevacizumab 
was also administered in Arm B every 3 weeks for a total of 48 weeks. 
 

QUASAR2 

Arm A 

Arm B 

Capecitabine 

Capecitabine 

Bevacizumab 

24 weeks 48 weeks 
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2.2.2.2 Patient demographics 

On average QUASAR2 patients had a mean age at randomisation of 65 years 

(interquartile range 58-71) and 43% were female. 61% of all patients had stage III 

CRC and 38% had stage II CRC. Treatment was identical in all patients except for 

the randomisation of ± bevacizumab (n=973, 50% received bevacizumab).  

 

2.2.2.3 Genotyping  

The full genotyping methodology can be found in Rosmarin et al (2014). In brief, 

blood DNA samples were available for 1,119 patients and genotyped using Illumina 

genome-wide SNP panels (Human Hap 370, Human Hap 610 or Human Omni 2.5). 

Samples were excluded when there were poor genotyping call rates (<95%) or non-

Caucasian ancestry by PCA-based analysis. Genotypes were imputed with IMPUTE 

(v2) using the 1000 genomes as a reference panel. A panel of 196 UK CRC patients 

with whole genome sequence data was used to check the accuracy of the 

imputation. SNPs were excluded if they had imputation scores <0.8 or a missingness 

rate above 10%. 

 

2.2.2.4 Toxicities to chemotherapeutics 

Toxicity events were recorded every 3 weeks for all patients receiving treatment, 

from enrolment until 30 days after the last dose of any study treatment was 

administered. Toxicities were recorded using the CTCAE (v3.0) grading system. In 

total, 930 patients had both genotyping and toxicity data available. The most 

common grade 2+ toxicities at 12 weeks were HFS (n=376), diarrhoea (n=199) and 

stomatitis (n=69). 
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2.2.3 UK Biobank 

The UK Biobank data was accessed under application number 65833, Project 

entitled ‘Investigating genetic & clinicopathological factors underlying risk, survival 

and toxicity to treatment in patients with cancer and population controls. 

 

2.2.3.1 Cohort design 

The UK Biobank is an open access population-based cohort of around 500,000 

participants ranging in age between 40-69 years at recruitment (Bycroft et al, 2018). 

During recruitment participants signed consent forms including for follow-up through 

linkage to their health-related records. The initial assessment focused on lifestyle, 

health and socio-economic factors and took place between 2006 and 2010 across 22 

assessment centres in the UK. Physical measurements were also recorded, and 

blood, saliva and urine samples were collected. Later, additional tests were added to 

the initial assessment including, eye measurements, electrocardiographs and 

hearing tests. Some participants have had up to 3 follow-on assessments which are 

repeats of the initial assessment, to track changes over time. Additional 

questionnaires continue to be sent out to expand the collection of phenotypic data. 

 

2.2.3.2 Genotyping  

The full genotyping methodology is available in Bycroft et al, 2018. In brief, DNA was 

extracted from blood DNA samples collected at the initial assessment. Genome-wide 

genotyping for 450,000 participants was performed using the UK Biobank Axiom 

Array which was carried out by the Affymetrix Research Services Laboratory. A 

further 50,000 samples were genotyped using the UK BiLEVE array. Approximately 

850,000 variants were directly measured, and a further > 90 million variants were 
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imputed using the Haplotype Reference Consortium and UK10K + 1000 Genomes 

as reference panels. 

 

Prior to analyses, participants were excluded if there was evidence of non-white 

European ancestry by PCA-based analysis, or if they had more than 10% of SNPs 

missing. Relatedness was calculated to identify strongly related pairs of individuals. 

Out of the pair, only one participant was kept in the cohort - if one had a history of 

cancer, they were kept, otherwise the choice was random. This left approximately 

336,000 participants for use in analysis. SNPs were filtered to remove multiallelic 

variants, those with imputation scores <0.8, MAFs of < 0.01, missingness rates > 5% 

or with a deviation from HWE > 1x10-6.  

 

2.2.3.3 Phenotypic data 

2.2.3.3.1 International classification of diseases dataset 

Data field 41270 contains the international classification of diseases version 10 (ICD-

10) diagnosis codes extracted from participants hospital inpatient records. Inpatients 

were classified as people admitted to a hospital who occupied a bed for any length of 

time. This data field contains all ICD-10 diagnosis codes, that were recorded as 

either the primary or secondary diagnosis, for each participant. However, each UK 

nation has its own coding guidelines which could impact how hospital admissions 

were coded. Records date back to 1997 for England, 1998 for Wales and 1981 for 

Scotland. Participants never admitted to the hospital within the period covered are 

still present in the data field but with no recorded values.  
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Data field 41262 links to data field 41270 and contains the corresponding date for 

when each ICD-10 code was recorded. If an ICD-10 code appeared in the 

participants hospital records multiple times, only the earliest date was extracted. 

 

2.2.3.3.2 Self-reported illness dataset 

Data field 20002 contains self-reported non-cancer illnesses. Participants were 

interviewed by a nurse practitioner during recruitment and asked to provide a 

detailed medical history. When participants were uncertain of an exact diagnosis, 

they described the symptoms to the interviewer who attempted to identify the illness. 

If the illness could not be identified, then the interviewer recorded the information as 

free text. These were subsequently examined by a doctor to be classified if possible. 

Any free-text descriptions that could not be classified with a very high probability 

were marked as “unclassifiable”. 

 

2.2.3.3.3 Toxicity to chemotherapeutics  

Data on toxicities to drugs or chemotherapeutics was not available in the UK 

Biobank. Instead, phenotype data was extracted from the ICD-10 dataset, and I 

identified participants given chemotherapy using the classification of operations and 

procedures (OPCS4) dataset. Participants with codes X35.2, X37.3, X38.4 and X70-

74 were included in the analyses as these codes indicate the participant was given 

chemotherapy. Cases were classified as participants that experienced a phenotypic 

event within 1 or 3 months of being given chemotherapy. Controls were classified as 

participants administered chemotherapy without an event. 
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2.2.3.3.4 Blood assays 

Category 100081 contains results from haematological assays for basophils, 

eosinophils, monocytes, neutrophils, haematocrit, haemoglobin, red blood cells, 

lymphocytes, white Blood Cells, platelets and reticulocytes. Assays were performed 

using the whole blood sample collected during the initial assessment. 477,193 

participants have data available for analysis. 

 

2.2.4 Genomics England 

Genomics England (GEL) data was accessed under application number 681, Project 

entitled ‘Investigating genetic & clinicopathological factors underlying risk, survival 

and toxicity in patients with cancer and immune disorders. 

 

2.2.4.1 Cohort design 

Recruitment for the study ran between 2014 and 2018, and in total approximately 

90,000 participants have been recruited and processed (Smedley et al, 2021). The 

study consisted of two arms, rare diseases and cancer.  Participants were recruited 

by a range of clinical practitioners including doctors, clinical nurses and geneticists. 

NHS consultants could also nominate eligible persons for consideration. Children 

and adults of all ages were eligible for recruitment. 

Participants were recruited for the rare disease arm if they had a disorder affecting < 

1 in 2,000 persons, which was likely to have a single gene or oligogenic cause and 

had not received a genomic diagnosis (Smedley et al, 2021). Where possible, 

parents or other closely related family members of the participants were also 

recruited. The youngest affected person recruited in a family was assigned as the 

proband. Approximately 34,000 probands and 38,000 family members were 
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recruited. Baseline clinical data was recorded using human phenotype ontology 

terms for each participant. 

 

Participants were recruited for the cancer arm if they had one of the eligible cancers 

listed on the GEL website. Participants were referred to the 100,000 genomes 

project by a member of their clinical team. Approximately 17,000 participants were 

recruited. Treatment plans were unchanged by any work performed by GEL. Cancer 

information such as staging and location was recorded at recruitment.  

 

For all participants, whole blood DNA samples were collected during recruitment. All 

participants also had their health records (previous and future) linked to the study for 

use in analyses. 

 

2.2.4.2 Sequencing 

The full sequencing methodology is available in Smedley et al (2021) and on the 

GEL website (https://re-docs.genomicsengland.co.uk/sample_qc/). In brief, DNA was 

extracted from whole blood at the National Institutes for Health Research 

BioResource Laboratory in Cambridge. All genomes were sequenced with 150bp 

paired-end reads in a single lane of an Illumina HiSeq X instrument and uniformly 

processed on the Illumina North Star Version 4 Whole Genome Sequencing 

Workflow (NSV4, v2.6.53.23). Alignments had to cover at least 95% of the genome 

at 15X or above with well mapped reads or the sample was failed. Any samples with 

high levels of cross-contamination, mismatches with the declared gender, or for 

which consent had been withdrawn, were also excluded.  
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Prior to analyses, participants were also excluded if they were a relative of a proband 

or if there was evidence of non-white European ancestry by PCA-based analysis, or 

if the participant reported non-white ancestry. 

 

2.2.4.3 Phenotypic data 

2.2.4.3.1 International classification of diseases dataset 

GEL extracted ICD-10 diagnosis codes from hospital inpatient records in a method 

similar to the UK Biobank. Inpatients were classified as people admitted to a hospital 

who occupied a bed for any length of time. GEL assembled a dataset of ICD-10 

diagnoses codes, that were recorded as either the primary or secondary diagnosis, 

for each participant. Each record also contains the corresponding date of when each 

ICD-10 code was recorded. When an ICD-10 code appeared in the participants 

records multiple times, all the dates were listed. 

 

2.2.4.3.2 Toxicity to chemotherapeutics  

Data on toxicities to drugs or chemotherapeutics was not available in GEL. Instead, 

phenotype data was extracted from the hospital inpatient records dataset, and I 

identified participants given chemotherapy using the OPCS4 dataset. Participants 

with codes X35.2, X37.3, X38.4 and X70-74 were included in the analyses. Cases 

and controls were classified as described for the UK Biobank.  

 

2.3 Hardware 

All work presented in this thesis was performed using an Apple MacBook Pro (15 

inch, 2019, Intel core I9, 32GB RAM, 1TB) using the operating system macOS 

Monterey purchased from Apple Incorporated (Cupertino, USA). Advanced Research 
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Computing at Cardiff (ARCCA) granted access to Cardiff University’s high-

performance computer (HPC) Hawk which was used via command line-based 

remote access for processes that required intensive computation such as analysing 

UK Biobank data. 

 

2.4 Software  

2.4.1 Downloaded software 

Analyses were performed using software designed for statistical and genetic 

analyses. Plink (v1.9 and v2.0) were used for file conversion of genotype files and for 

statistical analyses and was downloaded from 

http://pngu.mgh.harvard.edu/purcell/plink/ . SNPTEST (v2) was used for calculating 

imputation scores and downloaded from https://www.well.ox.ac.uk/~gav/snptest/. 

IMPUTE2 (v2.3.2) was used to update imputation for areas of interest and was 

downloaded from https://mathgen.stats.ox.ac.uk/impute/impute_v2.html .MAGMA 

(v1.07 and v1.08) was used for gene and gene set analyses and were downloaded 

from https://ctg.cncr.nl/software/magma. The java version of Locuszoom (v0.13.2) 

was used for regional association plots and was downloaded from 

https://github.com/statgen/locuszoom/. PAINTOR (v3.1) was used for fine mapping 

and was downloaded from https://github.com/gkichaev/PAINTOR_V3.0. PHESANT 

was used for analysing blood assay phenotypes for individual SNPs using UK 

Biobank data and was downloaded from https://github.com/MRCIEU/PHESANT. R 

(v3.5.2) downloaded from http://www.r-project.org was used in conjunction with 

RStudio (v1.4.1106) downloaded from https://www.rstudio.com/, for survival 

analyses, data manipulation and visualisation of results. 
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2.4.2 R Packages  

Packages for R were downloaded from Comprehensive R Archive Network (CRAN, 

https://cran.r-project.org/) and GitHub (https://github.com/). R packages used in this 

thesis are listed in Table 2.3. Some of the listed packages automatically install 

package dependencies which may not be listed here. 

 

2.5 Statistical analyses 

2.5.1 Power considerations 

Power to detect odds ratios (OR) was calculated using the package genpwr in R. 

The calculation accounts for a P-value threshold, defined power and SNP MAF (1%, 

5% or 20%). The result indicates the odds ratio needed for a SNP to pass the 

defined P-value threshold.  

 

2.5.2 Genome-wide association analyses 

GWAS were run under a univariate additive model in Plink (v1.9, Purcell et al, 2007) 

and results were plotted in R studio using qqman (Turner et al, 2018). A logistic 

regression method was chosen. SNPs that showed an association at P<1.0x10-5 

(suggestive of significance) were selected for independent validation.  
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Table 2.3 R Packages used in this thesis 

 

Package Use References 

devtools Development tool for R packages Wickham et al (2021a) 

dplyr Tool for data manipulation Wickham et al (2021b) 

plyr Tools for splitting, applying and 

combing data 

Wickham et al (2011) 

genpwr Power calculations for genetic 

models 

Moore and Jacobson (2021) 

ggplot2 Data visualisation Wickham (2016) 

qqman Visualisation for Genome-wide 

association studies 

Turner (2018) 

RColorBrewer Colour pallets for visualisation Neuwirth (2014) 

survival Survival analysis Therneau (2000) 

survminer Survival analysis Kassambara et al (2021) 

data.table 

 

Tool for working with tabular data Dowle et al (2021) 

readr 

 

Tool for reading data into R Wickham et al (2020) 

png 

 

Tool for exporting figures as png 

files 

Urbanek (2013) 

stats Package containing functions for 

statisitical calculations 

R Core Team (2021) 

tibble Tool for creating dataframes Müller et al (2021) 

tidyr Package for manipulating 

datasets 

Wickham et al (2021c) 
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2.5.3 MAGMA gene and gene set analyses 

MAGMA (de Leeuw et al, 2015) was used for gene and gene set analyses using 

data files from the NCBI 37.3 gene definitions and ~8,500 predefined gene sets. 

MAGMA uses an F-test to compute gene P-value. The snpwise multiple regression 

model was chosen to ensure that linkage disequilibrium (LD) between SNPs was 

fully accounted for during analysis. Gene analyses were run under a univariate 

model imposing a Bonferroni corrected significance threshold of P=2.5x10-6. 

 

Gene set analysis was run under the competitive model (de Leeuw et al., 2015). The 

competitive model tests if the genes in a gene set are more strongly associated with 

the phenotype than other genes and corrects for this. MAGMA also adds gene size 

and gene density as covariates to the regression models. Significance was set at a 

Bonferroni corrected significance threshold of P=5.8x10-6. 

 

2.5.4 Other bioinformatic analyses 

2.5.4.1 Fine mapping 

Fine-mapping was used for SNPs at validated loci; conditional regression was first 

used to identify the number of causal variants and fine-mapping was then run using 

PAINTOR (Kichaev et al, 2014), which employs a Bayesian permutation method 

incorporating ENCODE and FANTOM5 functional annotations. Credible sets of 

causal SNPs were assembled for 95% coverage. 

 

2.5.4.2 Blood assay analyses using UK Biobank  

The software PHESANT (Millard et al, 2018) was used for single SNP association 

analyses against blood assay data in the UK Biobank. All analyses were adjusted for 
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sex, age at recruitment and genotyping chip. All blood assay data was continuous 

and analysed using linear regression except for where limited variation in the data 

was detected (where more than 20% of the samples have the same value). In these 

cases, the software defaults to using an ordered logistic model instead.  

 

2.5.4.3 The genotype-tissue expression project database 

The genotype-tissue expression project database (GTEx) is a publicly available 

resource which can be accessed at https://gtexportal.org/home. GTEx is comprised 

of samples from 838 donors, aged 20–79 years old with 67% being male. 84.6% of 

donors were white, 12.9% African-American, 1.3% Asian and 0.2% American Indian 

with the remaining donors having unknown heritage. The methodology of DNA 

sequencing can be found at https://gtexportal.org/home/documentationPage.  

 

The GTEx database was used to identify eQTLs and sQTLs for SNPs of interest.  

Significance for tissue association was set at P<1.0x10-3 (i.e. Bonferroni correction 

for 49 tissues [0.05/49]). 

 

2.5.4.4 LocusZoom 

Locuszoom produces high quality plots for visualising GWAS results. Locuszoom 

can be accessed on the web at http://locuszoom.org/ or be downloaded as a Java 

version for enhanced functions. The 95% credible sets from fine mapping are shown 

on the plot as squares. LD of nearby variants was calculated in relation to the lead 

SNP. 

 

 



63 
 

2.6 Study design 

All the analyses performed in this thesis are retrospective with pre-determined 

sample sizes due to the recruitment of patients to the COIN and COIN-B trials. 

Reported P-values are uncorrected and two tailed unless otherwise stated. All 

analyses are reported in accordance with Strengthening the Reporting of Genetic 

Association Studies (STREGA) guidelines (Little et al, 2009). 
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3 Genome-wide association studies of toxicity to oxaliplatin and 

fluoropyrimidine chemotherapy with or without cetuximab 

 

3.1 Introduction 

3.1.1  XELOX and FOLFOX 

The combination of fluoropyrimidine and oxaliplatin is a common first line treatment 

for many cancers including CRC (Stein and Arnold, 2012). XELOX is an oral 

fluoropyrimidine containing regimen with similar efficacy to FOLFOX, an intravenous 

fluoropyrimidine containing regimen, and both chemotherapies frequently cause 

toxicities. The Food and Drug Administration (2015) reported that 94% of patients 

administered FOLFOX and 96% administered XELOX will experience at least one 

toxicity over the course of their treatment. However, the two chemotherapies have 

different toxicity profiles (Ducreux et al, 2011; Guo et al, 2016). XELOX often causes 

gastrointestinal symptoms and HFS, whereas FOLFOX tends to affect immunity. 

This difference in profiles suggests that the underlying mechanisms of toxicities may 

be different.  

 

3.1.2 Cetuximab 

Cetuximab is also used in the treatment of CRC and commonly causes skin rash 

(Petrelli et al, 2013). The addition of cetuximab to chemotherapies also exacerbates 

the toxicity caused by the chemotherapy backbone (Huang et al, 2016).  

  

3.1.3 Genetic variants associated with toxicities to fluoropyrimidines  

Since there is significant inter-individual variation in chemotherapy-related toxicity 

(Chapter 2, Table 2.2), the identification of predictive biomarkers is highly desirable 
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to personalise therapy. The role of inherited genetic factors is increasingly being 

recognised to influence patient chemotherapy-related toxicity. Notably, rare variants 

in DPYD are well established to be associated with severe toxicities to 5FU (Schwab 

et al, 2008; Henricks et al, 2018). While the role of common genetic variation is less 

clear, others have shown that common variants in DPYD also appear to affect 

toxicity (Gonzalez and Fernandez-Salguaro, 1995; Wei et al, 1996; Madi et al, 2018).  

 

3.1.4 Aims 

To date, most studies have sought to identify inherited predictive biomarkers using 

candidate gene and variant-based analyses, based on preconceptions as to 

probable biology and using small cohorts of patients with no independent replication. 

To address such limitations, I have analysed GWAS data on 1,800 patients with 

advanced CRC treated with oxaliplatin and fluoropyrimidine chemotherapy ± 

cetuximab, with replication in independent patient groups. 
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3.2 Materials and methods 

3.2.1 Patients and samples 

Toxicity data and SNP genotypes were available for 1,800 patients from the COIN 

and COIN-B clinical trials after QC (Chapter 2, Sections 2.2.1.4 and 2.2.1.5) (Figure 

3.1). Additional imputation was performed using IMPUTE2 for an 800Mb region 

surrounding MROH5 (to provide better SNP coverage) using the phase 3 1000 

Genome Project as reference. I restricted the analysis to directly typed SNPs and 

imputed SNPs with imputation scores of ≥0.8, a HWE of ≥1.0x10-6 and a MAF of 

≥0.05.  

 

3.2.2 Clinical endpoints assessed and power considerations 

The primary endpoint assessed was any toxicity, with patients that experienced any 

grade 2+ toxicity classified as a case (Chapter 2, Section 2.2.1.5). Secondary 

endpoints were individual toxicities: diarrhoea, neutropenic sepsis, peripheral 

neuropathy, HFS, neutropenia, lethargy, stomatitis, nausea, vomiting and rash. 

Patients with toxicities graded 2-5 were compared against those graded 0-1. 

 

Logistic regression models were used to determine if the chemotherapy regimen and 

cetuximab administration affected toxicity occurrence. Power to detect toxicity effect 

sizes was calculated, based upon 70% power, a standard GWAS significance of 

P=5.0x10-8 and SNPs with MAFs of 0.20. 
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Figure 3.1 CONSORT diagram of the analysis strategy. The 1,800 patients were segregated into groups according to 
chemotherapy regimen and cetuximab status (385 patients received FOLFOX, 360 FOLFOX + cetuximab, 707 XELOX and 348 
XELOX + cetuximab). I conducted genome-wide association studies for any toxicity and ten individual toxicities together with gene 
and gene set analyses. SNPs, genes and gene sets that reached genome-wide or suggestive significance were independently 
replicated in the COIN and COIN-B group with the same chemotherapy regimen but alternative cetuximab status, and, the COIN 
and COIN-B group with the alternative chemotherapy regimen but with the same cetuximab status. 
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3.2.3 GWAS analyses 

Patients from COIN and COIN-B were analysed for associated genetic biomarkers 

after segregating by chemotherapy regimen and cetuximab status; 385 patients had 

FOLFOX, 360 had FOLFOX + cetuximab, 707 had XELOX and 348 had XELOX + 

cetuximab (Figure 3.1; Chapter 1, Table 1.4). The number of cases and controls for 

each treatment group are shown in Chapter 2 (Table 2.2). GWAS were run under a 

univariate additive model in Plink (v1.9) and results were plotted in R studio using 

qqman (Chapter 2, Section 2.5.2). A logistic regression method was chosen. SNPs 

that showed an association at P<1.0x10-5 (suggestive of significance) were selected 

for independent replication.  

 

3.2.4 MAGMA gene and gene set analyses 

MAGMA (de Leeuw et al, 2015) was used for gene and gene set analyses (Chapter 

2 Section 2.5.3). Gene analyses were run under a snpwise univariate model 

imposing a Bonferroni corrected significance threshold of P=2.5x10-6 (Figure 3.1). 

Gene set analyses were run under a competitive model with a corrected significance 

threshold of P=5.8x10-6 (Figure 3.1). 

 

3.2.5 Replication analyses 

SNPs, genes and gene sets that reached genome-wide or suggestive significance in 

the GWAS analyses, were independently replicated in: (i) the COIN and COIN-B 

group with the same chemotherapy regimen but alternative cetuximab status, and (ii) 

the COIN and COIN-B group with the alternative chemotherapy regimen but with the 

same cetuximab status (Figure 3.1). For example, a SNP identified from the group 

receiving FOLFOX was replicated in those receiving FOLFOX + cetuximab and in 
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those receiving XELOX. A SNP identified from the group receiving XELOX was 

replicated in those receiving XELOX + cetuximab and in those receiving FOLFOX. A 

SNP identified from the group receiving FOLFOX + cetuximab was replicated in 

those receiving FOLFOX and in those receiving XELOX + cetuximab. A SNP 

identified from the group receiving XELOX + cetuximab was replicated in those 

receiving XELOX and in those receiving FOLFOX + cetuximab (Figure 3.1). I 

considered a nominally significant threshold of P<0.05 as evidence for replication. 

There was >85% power to detect the initially observed odds ratios for each 

replication sub-group. 

 

3.2.6 Replication analysis using QUASAR2 

Because rs13260246 reached genome-wide significance for vomiting in patients 

treated with XELOX, I also sought replication for this biomarker using data from 930 

patients enrolled in QUASAR2 (Chapter 2, Section 2.2.2). Three patients had 

missing data and were excluded, leaving 927 to be analysed. The imputation score 

for rs13260246 was 0.96. Vomiting was graded using the CTCAE scale and patients 

with grades 2-5 (22%) were compared to those with grades 0-1. 

 

3.2.7 Bioinformatic analyses 

The GTEx project database was used to identify QTLs for relevant SNPs (Chapter 2, 

Section 2.5.4.2). Significance for tissue association was set at P<1.0x10-3 (i.e. 

Bonferroni correction for 49 tissues [0.05/49]). Fine mapping was used for SNPs at 

significant loci using PAINTOR (Kichaev et al, 2014). Credible sets of causal SNPs 

were assembled for 95% coverage. Regional association plots were generated using 

the online version of Locuszoom (Chapter 2, Section 2.4.1). 
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3.3 Results 

3.3.1 Rates of toxicity 

There were significant differences in the incidences of toxicities associated with 

different chemotherapy regimens and cetuximab administration in COIN and COIN-B 

(Table 3.1). Notably, patients treated with FOLFOX had a significantly higher 

incidence of neutropenic sepsis, neutropenia and stomatitis, those with XELOX had 

a higher incidence of nausea, and those with cetuximab had a higher incidence of 

skin rash, HFS and diarrhoea (Chapter 2, Table 2.2). In view of this, patients were 

analysed for associations with genetic biomarkers after segregation by 

chemotherapy treatment and cetuximab status (Figure 3.1). In total, 385 patients 

with genotyping data were treated with FOLFOX, 360 with FOLFOX + cetuximab, 

707 with XELOX and 348 with XELOX + cetuximab.  

 

3.3.2 Genomic inflation and power considerations 

4 million SNPs were analysed for a relationship with any toxicity and ten individual 

toxicities in each of the four patient groups. QQ plots of observed versus 

expected χ2-test statistics showed no evidence of inflation of test statistics for all 40 

GWAS performed (lambda range 0.99-1.02). There was 70% power to detect a 

mean OR of 4.3 (range 3-6) for any toxicity and 5.9 (2-39) for individual toxicities 

(Table 3.2). GWAS for neutropenic sepsis in patients treated with XELOX and 

XELOX + cetuximab, neutropenia in patients treated with XELOX + cetuximab, and 

rash in patients treated with FOLFOX were not performed due to having insufficient 

power.  
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Table 3.1 Significance of cetuximab and chemotherapy regimen on toxicities in 
patients from COIN and COIN-B 
 
 

Cetuximab Chemotherapy 

regimen 

Interaction 

    

Any Toxicity 1.5x10-5 0.99 1.7x10-2 

    

Individual toxicities    

Diarrhoea 1.8x10-3 0.27 0.64 

Neutropenic sepsis 2.2x10-6 3.3x10-7 8.5x10-5 

Peripheral neuropathy 0.24 3.7x10-2 0.98 

HFS 7.2x10-10 5.2x10-3 0.12 

Neutropenia 3.3x10-3 2.0x10-16 1.2x10-3 

Lethargy 0.72 0.36 0.08 

Stomatitis 3.9x10-12 5.4x10-5 7.8x10-5 

Nausea 0.38 5.9x10-5 0.41 

Vomiting 0.18 2.3x10-3 0.08 

Rash 2.0x10-16 0.90 3.0x10-2 

HFS - Hand-foot syndrome.
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Table 3.2 Detectable odds ratios at 70% power 
 
 

FOLFOX 

n=385 

FOLFOX + 

cetuximab 

n=360 

XELOX 

n=707 

XELOX + 

cetuximab 

n=348 
     

Any Toxicity 3.8 6.4 2.5 4.4 

     

Individual toxicities     

Diarrhoea 3.8 3.5 2.6 3.5 

Neutropenic sepsis 7.4 5.6 NA NA 

Peripheral neuropathy 5.2 7.5 2.9 5.3 

HFS 38.5 4.6 4.0 4.6 

Neutropenia 3.5 3.4 5.2 NA 

Lethargy 3.3 3.4 2.4 3.6 

Stomatitis 4.8 3.6 5.6 7.1 

Nausea 5.3 5.0 2.7 4.2 

Vomiting 7.9 6.2 3.2 6.1 

Rash NA 3.7 19.4 3.6 

 

Detectable odds ratios are shown for a univariate additive model, based on a minor 

allele frequency of 20% and a significance of P=5.0x10-8. NA – group sizes were too 

small to be calculated. HFS - Hand-foot syndrome.
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3.3.3 Relationship between SNP genotype and any toxicity 

No SNPs were associated with any toxicity at genome-wide significant levels 

(P<5.0x10-8). SNPs at 27 loci were associated at suggestive levels (P<1.0x10-5) (5 

with FOLFOX, 8 with FOLFOX + cetuximab, 7 with XELOX and 7 with XELOX + 

cetuximab) (Figure 3.2); however, no lead SNPs were independently replicated in 

COIN and COIN-B patients treated with the same chemotherapy regimen but 

alternative cetuximab status, or alternative chemotherapy regimen but with the same 

cetuximab status, despite having >85% power (Table 3.3). 

 

3.3.4 Relationship between SNP genotype and individual toxicities 

3.3.4.1 Vomiting 

rs13260246 at 8q21.3 was associated with vomiting in patients treated with XELOX 

(OR=5.0, 95% CI=3.0-8.3, P=9.8x10-10) (Figure 3.3). However, the association was 

not replicated in COIN and COIN-B patients treated with XELOX + cetuximab 

(P=0.72), nor in those receiving FOLFOX (P=0.35), with >90% power (Table 3.4). I 

also failed to replicate the association for rs13260246 with vomiting in the QUASAR2 

trial of capecitabine alone versus capecitabine + bevacizumab for stage II and III 

CRC, regardless of treatment arm studied (with >99% power) (Table 3.4). 

rs13260246 was an eQTL for SLC26A7 and five other genes (Figure 3.3). SNPs at 

15 loci had suggestive associations with vomiting but none were independently 

replicated. 
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Figure 3.2 Manhattan plots of the relationship between SNP genotype and any toxicity. Patients treated with (A) FOLFOX 

(n=385), (B) FOLFOX + cetuximab (n=360), (C) XELOX (n=707) and (D) XELOX + cetuximab (n=348). The red line indicates a 

genome-wide significance threshold of P=5.0x10-8 and the blue line indicates a suggestive significance threshold of P=1.0x10-5.
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Table 3.3 SNPs with suggestive associations for any toxicity and independent replications 

 GWAS Replication 
chemo 

Replication 
cetuximab status  

Lead SNP Cytoband OR 95% CI P-value P-value P-value 

 
FOLFOX 

rs7181923 15q26.3 0.4 0.3-0.6 8.6x10-8 0.58 0.19 

rs34265761 5q11.2 0.4 0.3-0.6 2.3x10-7 0.16 0.39 

rs153081 16p13.12 0.5 0.4-0.7 3.6x10-6 0.65 NA 

rs8090986 18q23 0.5 0.4-0.7 6.1x10-6 NA 0.35 

rs12276840 11q25 2.0 1.5-2.7 7.5x10-6 NA NA 

 
 

FOLFOX + 
cetuximab 

rs35157945 15q14 0.2 0.1-0.4 9.8x10-8 0.48 NA 

rs76301897 2q11.2 0.3 0.2-0.5 1.7x10-6 0.41 0.55 

rs73015484 3q26.1 0.2 0.1-0.4 3.8x10-6 0.20 0.78 

rs74946974 8q13.2 0.2 0.1-0.4 4.6x10-6 0.53 0.51 

rs58842897 5p14.1 0.2 0.1-0.4 5.2x10-6 0.40 NA 

rs75434917 20p11.22 0.2 0.1-0.4 5.9x10-6 NA 0.55 

rs4503663 13q33.3 2.3 1.6-3.3 8.0x10-6 0.16 NA 

rs6827299 4q35.2 0.4 0.3-0.6 8.9x10-6 NA 0.06 

 
 

XELOX 

rs17709614 9p22 0.6 0.5-0.7 7.0x10-7 NA 0.44 

rs72621832 4q27 0.4 0.3-0.6 2.8x10-6 NA 0.22 

rs1932542 10q26.1 1.9 1.5-2.5 2.9x10-6 NA 0.18 

rs34330891 21q21 0.6 0.5-0.7 3.2x10-6 NA 0.81 

rs11786456 8p12 1.8 1.4-2.3 5.5x10-6 NA NA 

rs9812615 3q13.33 2.0 1.5-2.7 6.5x10-6 NA NA 

rs150312337 2p14 0.4 0.3-0.6 7.6x10-6 NA 0.61 
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XELOX + 
cetuximab 

rs4438529 2p22.1 0.4 0.3-0.6 1.4x10-6 0.18 NA 

rs315866 7p14.3 0.2 0.1-0.4 3.6x10-6 0.22 NA 

rs6716820 2p23.2 0.3 0.2-0.5 4.4x10-6 0.41 1.0 

rs71897151 10p13 0.4 0.3-0.6 7.0x10-6 NA 1.0 

rs6966363 7q21.11 0.4 0.3-0.6 7.9x10-6 NA 1.0 

rs61942090 12q24.33 2.3 1.6-3.3 8.1x10-6 NA NA 

rs35775456 20q13.2 0.2 0.1-0.4 9.7x10-6 NA 0.06 

 

Replication chemo - Replication in the COIN and COIN-B group with the same chemotherapy regimen but alternative cetuximab 

status. Replication cetuximab status - Replication in the COIN and COIN-B group with the alternative chemotherapy regimen but 

with the same cetuximab status. NA = Replication odds ratio in opposite direction to the GWAS odds ratio, OR = Odds ratio, CI = 

Confidence intervals.
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Figure 3.3 Regional association plots of the relationship between SNP 
genotype and vomiting in patients treated with XELOX. (A) Manhattan plot for 
the vomiting GWAS. The red line corresponds to a P=5.0x10-8 and the blue line 
P=1.0x10-5. (B) Regional plot for the 8q21.3 association with vomiting. Plot shows 
results of the analysis for single-nucleotide polymorphisms (SNPs) and 
recombination rates. −log10(P) (y axis) of the SNPs are shown according to their 
chromosomal positions (x axis). The sentinel SNP (purple) is labelled by its rsID. The 
colour intensity of each symbol reflects the extent of linkage disequilibrium (LD) with 
the sentinel SNP, deep blue (r2=0) through to dark red (r2=1.0) (those in grey lacked 
LD information). Genetic recombination rates, estimated using 1000 Genomes 
Project samples, are shown with a blue line. Physical positions are based on NCBI 
build 37 of the human genome. Also shown are the relative positions of genes and 
transcripts mapping to the region of association. Genes have been redrawn to show 
their relative positions; therefore maps are not to physical scale. Fine-mapping 
identified a credible set of 70 SNPs with rs13260246 having the highest posterior 
probability of 0.14.
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Table 3.4 rs13260246 associated with vomiting in patients treated with XELOX and analyses of replication cohorts 
 

Trial 
 

Treatment 
 

Total 

patients 

Patients 

G0-1 for vomiting 

 Patients 

G2-5 for vomiting OR 95% CI P-value 

   wild type heterozygous homozygous  wild type heterozygous homozygous    

             

COIN and 

COIN-B 
XELOX 695 555 54 0  58 26 2 5.0 3.0-8.3 9.8x10-10 

 
XELOX + 

cetuximab 
341 269 37 0  31 3 1 1.2 0.5-3.2 0.72 

 FOLFOX 378 318 35 1  23 1 0 0.4 0.1-2.9 0.35 

             

QUASAR2 Capecitabine 440 315 40 0  82 3 0 0.3 0.1-1.0 2.7x10-2* 

 
Capecitabine + 

bevacizumab 
487 322 48 1  96 18 2 1.4 0.8-2.4 0.22 

 

 

Reference allele = C, OR = Odds ratio, CI = Odds ratio confidence intervals. *OR in opposite direction for replication. Total patients 

excludes those with missing genotypes (12 treated with XELOX, 7 treated with XELOX + cetuximab and 7 treated with FOLFOX). 

rs13260246 has a minor allele frequency of 0.07 in gnomAD v.2.1.1 (Europeans non-Finnish).
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3.3.4.2 Diarrhoea 

SNPs at 21 loci had suggestive associations with diarrhoea (Figure 3.4); however, 

only rs6030266 at 20q13.12 in patients treated with XELOX + cetuximab (OR=0.4, 

95% CI=0.28-0.58, P=5.7x10-7) was replicated in patients receiving FOLFOX + 

cetuximab (OR=0.7, 95% CI=0.5-0.9, P=3.6x10-2); Pooled P=3.2x10-7 (Table 3.5). 

rs6030266 maps to intron 8 of the gene encoding protein tyrosine phosphatase 

receptor type T (PTPRT) (Figure 3.5A). 

 

3.3.4.3 HFS 

SNPs at 13 loci had suggestive associations with HFS (Figure 3.4). Only rs1546161 

at 1q21.2 in patients treated with FOLFOX (OR=17.8, 95% CI=5.1-62.0, P=5.9x10-6) 

was replicated in those receiving XELOX (OR=1.7, 95% CI=1.1-2.7, P=2.5x10-2); 

Pooled P=2.5x10-6 (Table 3.5). rs1546161 maps to B-Cell Lymphoma 9 (BCL9) and 

was an eQTL for GJA5 (Figure 3.5B). 

 

3.3.4.4 Neutropenia 

SNPs at 13 loci had suggestive associations with neutropenia (Figure 3.4). Only 

rs9601722 at 13q31.1 in patients treated with FOLFOX + cetuximab (OR=3.4, 95% 

CI=2.0-5.7, P=5.2x10-6) was replicated in those receiving FOLFOX (OR=1.7, 95% 

CI=1.1-2.9, P=3.6x10-2); Pooled P=3.0x10-6 (Table 3.5). rs9601722 maps to a 

lncRNA (LOC105370284). 
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Figure 3.4 Manhattan plots of the relationship between SNP genotype and (A) Diarrhoea in patients treated with XELOX + 

cetuximab, (B) Hand-foot syndrome (HFS) in patients treated with FOLFOX, (C) Neutropenia in patients treated with 
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rs6030266 
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FOLFOX + cetuximab, (D) Lethargy in patients treated with XELOX, and, (E) Nausea in patients treated with FOLFOX + 

cetuximab. Replicated SNPs were: (A) rs6030266 at 20q13.12 (P=5.7x10-7) which replicated in patients treated with FOLFOX + 

cetuximab (P=3.6x10-2); Pooled P=3.2x10-7. (B) rs1546161 at 1q21.2 (P=5.9x10-6) which replicated in patients treated with XELOX 

(P=2.5x10-2); Pooled P=2.5x10-6. (C) rs9601722 at 13q31.1 (P=5.2x10-6) which replicated in patients treated with FOLFOX 

(P=3.6x10-2); Pooled P=3.0x10-6. (D) rs13413764 at 2q14.3 (P=4.5x10-6) which replicated in patients treated with FOLFOX 

(P=9.2x10-3); Pooled P=7.5x10-7. (E) rs4600090 at 1p33 (P=5.9x10-6) which replicated in patients treated with FOLFOX (P=4.2x10-

2); Pooled P=4.0x10-6. The red line indicates a genome-wide significance threshold of P=5.0x10-8 and the blue line indicates 

suggestive significance threshold at P=1.0x10-5 
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Table 3.5 Replicated SNPs associated with individual toxicities 

   

GWAS 

Replication 

chemo 

Replication 

cetuximab status 

Combined 

Toxicity Treatment group Lead SNP Cytoband OR 95% CI P-Value P-value P-value P-value 

          

Diarrhoea XELOX + cetuximab rs6030266 20q13.12 0.4 0.3-0.6 5.7x10-7 0.33 3.6x10-2 3.2x10-7 

HFS FOLFOX rs1546161 1q21.2 17.8 5.1-62 5.9x10-6 0.13 2.5x10-2 2.5x10-6 

Neutropenia FOLFOX + 

cetuximab 

rs9601722 13q31.1 3.4 2.0-5.7 5.2x10-6 3.6x10-2 NA 3.0x10-6 

Lethargy XELOX rs13413764 2q14.3 1.8 1.4-2.3 4.5x10-6 NA 9.2x10-3 7.5x10-7 

Nausea FOLFOX + 

cetuximab 

rs4600090 1p33 4.0 2.2-7.2 5.9x10-6 4.2x10-2 0.55 4.0x10-6 

 

Replication chemo - Replication in the COIN and COIN-B group with the same chemotherapy regimen but alternative cetuximab 

status. Replication cetuximab status - Replication in the COIN and COIN-B group with the alternative chemotherapy regimen but 

with the same cetuximab status. Combined P - Pooled P-value of GWAS and replicated cohorts (excludes cohort which was not 

replicated). OR = Odds ratio, CI = confidence intervals, NA = OR in the opposite direction to the GWAS. HFS- Hand-foot syndrome. 
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Figure 3.5 Regional plots of (A) the 20q11.2 association with diarrhoea, (B) the 

1q21.2 association with Hand-foot syndrome (HFS) and (C) the 1p33 

association with nausea. Plots show results of the analysis for single-nucleotide 
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polymorphisms (SNPs) and recombination rates. −log10(P) (y axis) of the SNPs are 

shown according to their chromosomal positions (x axis). The sentinel SNP (purple) 

in each analysis is labelled by its rsID. The colour intensity of each symbol reflects 

the extent of linkage disequilibrium (LD) with the sentinel SNP, deep blue (r2=0) 

through to dark red (r2=1.0) (those in grey lacked LD information). Genetic 

recombination rates, estimated using 1000 Genomes Project samples, are shown 

with a blue line. Physical positions are based on NCBI build 37 of the human 

genome. Also shown are the relative positions of genes and transcripts mapping to 

the region of association. Genes have been redrawn to show their relative positions; 

therefore maps are not to physical scale. Fine-mapping identified a credible set of 

(A) 20 SNPs with rs6030266 having the highest posterior probability of 0.87, (B) 3 

SNPs with rs1546161 having the highest posterior probability of 0.47 and (C) 19 

SNPs with rs4600090 having the highest posterior probability of 0.14 (SNPs that 

form the 95% credible set are denoted by squares). 
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3.3.4.5 Lethargy 

SNPs at 12 loci had suggestive associations with lethargy (Figure 3.4); however, 

only rs13413764 at 2q14.3 in patients treated with XELOX (OR=1.8, 95% CI=1.4-2.3 

P=4.5x10-6) was replicated in those receiving FOLFOX (OR=1.5, 95% CI=1.1-2.1, 

P=9.2x10-3); Pooled P=7.5x10-7 (Table 3.5). rs13413764 maps to an intergenic 

region. 

 

3.3.4.6 Nausea 

SNPs at 12 loci had suggestive associations with nausea (Figure 3.4). However, 

only rs4600090 at 1p33 in patients treated with FOLFOX + cetuximab (OR=4.0, 95% 

CI=2.2-7.2, P=5.9x10-6) was replicated in those receiving FOLFOX (OR=2.0, 95% 

CI=1.1-4.0, P=4.2x10-2); Pooled P=4.0x10-6 (Table 3.5). rs4600090 was an eQTL for 

CMPK1, FOXE3 and PDZK1IP1 (Figure 3.5C). 

 

3.3.4.7 Peripheral neuropathy, stomatitis, rash and neutropenic sepsis 

SNPs at 15, 10, 8 and 4 loci had suggestive associations with peripheral neuropathy, 

stomatitis, skin rash and neutropenic sepsis, respectively, but no lead SNPs were 

independently replicated. 

 

3.3.4.8 Association between genes and neutropenia 

Four genes were significantly associated with neutropenia (using a Bonferroni 

corrected threshold of P<2.5x10-6). Of these, Maestro Heat-Like Repeat Family 

Member 5 (MROH5), found in patients treated with XELOX (P=6.6x10-7), was 

replicated in those receiving XELOX + cetuximab (P=3.3x10-2); Pooled P=3.7x10-7 

(Table 3.6). Under a multivariate model accounting for sex and age, MROH5 
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remained significant in a pooled analysis of patients treated with XELOX and XELOX 

+ cetuximab; Pooled P=1.0x10-6. 

 

MROH5 lies at 8q24.3, one of the 13 loci of suggestive association with neutropenia. 

The association of MROH5 with neutropenia appeared to be due to independent sets 

of SNPs in patients treated with XELOX (lead SNP rs76380775 OR=4.8, 95% 

CI=2.4-9.5, P=1.4x10-6) as compared to those receiving XELOX + cetuximab (lead 

SNP rs12056882 OR=4.4, 95% CI=1.4-14, P=1.0x10-2). After additional imputation 

was performed (to increase the SNP density), rs67817056 became the most 

significantly associated SNP in patients treated with XELOX + cetuximab (P=2.9x10-

3; Figure 3.6). Neither rs76380775 nor rs12056882 were associated with 

neutropenic sepsis or white blood cell count. rs12056882 was an sQTL for PTP4A3 

(which lies 1.37kb downstream of MROH5). 

 

3.3.5 Genes and gene sets associated with other toxicities 

Of the other significant genes, three (all mapping to 8q21.3) were associated with 

vomiting and one was associated with stomatitis (Table 3.6). For gene sets 2, 8 and 

3 gene sets were associated with any toxicity, lethargy and vomiting, respectively. 

However, all these genes and gene sets failed independent replication (Tables 3.7 

and 3.8). 
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Figure 3.6 MROH5 regional plots associated with neutropenia. Plots show results of the analysis for single-nucleotide 

polymorphisms (SNPs) and recombination rates. −log10(P) (y axes) of the SNPs are shown according to their chromosomal 

positions (x axes). The sentinel SNP (purple) in each analysis is labelled by its rsID. The colour intensity of each symbol reflects the 

extent of linkage disequilibrium (LD) with the sentinel SNP, deep blue (r2=0) through to dark red (r2=1.0) (those in grey lacked LD 

information). Genetic recombination rates, estimated using 1000 Genomes Project samples, are shown with a blue line. Physical 

positions are based on NCBI build 37 of the human genome. Also shown are the relative positions of genes and transcripts 

mapping to the region of association. Genes have been redrawn to show their relative positions; therefore, maps are not to physical 
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scale. The association with MROH5 appeared to be due to independent sets of SNPs: rs76380775 was the lead SNP in patients 

treated with XELOX (P=1.4x10-6), and rs12056882 was lead SNP in patients treated with XELOX + cetuximab (P=1.0x10-2). After 

additional imputation (to increase the SNP density), rs67817056 became the most significantly associated SNP in patients treated 

with XELOX + cetuximab (P=2.9x10-3).
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Table 3.6 MAGMA gene analyses for individual toxicities 

 Toxicity Treatment 

group 

Gene P-value Replication 

chemo 

P-value 

Replication 

cetuximab status 

P-value 

Pooled 

P-value 

Neutropenia FOLFOX RPL17-C18orf32 8.9x10-7 0.57 0.53 - 

C18orf32 1.3x10-6 0.56 0.51 - 

RPL17 1.5x10-6 0.56 0.52 - 

      

XELOX MROH5 6.6x10-7 3.3x10-2 0.09 3.7x10-7 

       

Stomatitis FOLFOX SCAF4 1.3x10-6 0.07 0.61 - 

       

Vomiting XELOX LRRC69 1.2x10-7 0.77 0.73 - 

SLC26A7 4.3x10-7 0.81 0.60 - 

PIP4P2 9.7x10-7 0.94 0.34 - 

 

Replication chemo - Replication in the COIN and COIN-B group with the same chemotherapy regimen but alternative cetuximab 

status. Replication cetuximab status - Replication in the COIN and COIN-B group with the alternative chemotherapy regimen but 

with the same cetuximab status. Significance was set at a Bonferroni corrected significance threshold of P<2.5x10-6. Only MROH5 

was significantly associated with neutropenia in patients treated with XELOX and was independently replicated in patients receiving 

XELOX + cetuximab (P=3.3x10-2), with a Pooled P=3.7x10-7 (in bold) (and P=5.8x10-7 when also including the FOLFOX cohort).
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Table 3.7 MAGMA gene set analyses for any toxicity  

 

Significance was a Bonferroni corrected threshold of P<5.6x10-6. Replication chemo - Replication in the COIN and COIN-B group 

with the same chemotherapy regimen but alternative cetuximab status. Replication cetuximab status - Replication in the COIN and 

COIN-B group with the alternative chemotherapy regimen but with the same cetuximab status. No results passed replication at 

P<0.05.

Treatment Pathway GWAS 

P-value 

Replication 

chemo 

P-value 

Replication 

cetuximab status 

P-value 

XELOX + cetuximab Negative regulation of cellular response to insulin 

stimulus 

1.7x10-6 0.07 0.71 

Negative regulation of insulin receptor signalling 

pathway 

1.8x10-6 0.09 0.77 
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Table 3.8 MAGMA gene set analyses for individual toxicities 
 

Genome-wide significance was a Bonferroni corrected significance threshold of P<5.6x10-6. Replication chemo – Replication in the 

Toxicity Treatment Pathway GWAS 
P-value 

Replication 
chemo 
P-value 

Replication 
cetuximab status 

P-value 
Lethargy FOLFOX + 

cetuximab 
Dopamine transport 4.3x10-6 0.88 0.77 

     
XELOX Purine nucleoside biosynthetic process 1.2x10-7 0.30 0.58 
 Purine ribonucleoside biosynthetic process 1.2x10-7 0.30 0.58 
 Actin-dependent ATPase activity 7.6x10-7 0.35 0.68 
 Ral GTPase binding 3.6x10-6 0.46 0.80 
 G protein-coupled receptor internalization 3.8x10-6 0.34 0.50 
 Nucleoside biosynthetic process 4.2x10-6 0.48 0.51 
     
XELOX + cetuximab Endoplasmic reticulum calcium ion 

homeostasis 
4.6x10-7 0.19 0.79 

      
Vomiting FOLFOX Mitogen-activated protein kinase kinase 

binding 
2.3x10-6 0.99 0.90 

     
FOLFOX + 
cetuximab 

Nuclear membrane 3.7x10-6 0.25 0.64 

     
XELOX Euchromatin 4.8x10-6 0.25 0.21 
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COIN and COIN-B group with the same chemotherapy regimen but alternative cetuximab status. Replication cetuximab status - 

Replication in the COIN and COIN-B group with the alternative chemotherapy regimen but with the same cetuximab status. No 

results replicated at P<0.05.   
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3.3.6 Lack of confounding effect for rare DPYD variants 

It has previously been shown that two rare variants in DPYD (Asp949Val and 

IVS14+1G>A) were associated with a range of toxicities in COIN and COIN-B (Madi 

et al, 2018). Of the 1,800 patients in the GWAS, 22 carried Asp949Val and 17 

carried IVS14+1G>A. Excluding these patients made no significant differences to the 

strengths of associations reported herein (Table 3.9). 

 

3.3.7 Evaluation of previously purported associations 

A previous GWAS for toxicity to 5FU or FOLFOX in patients with CRC identified two 

SNPs associated with mucositis, two with diarrhoea and three with haematological 

toxicities (Fernández-Rozadilla et al, 2013). All these SNPs failed to replicate in 

COIN and COIN-B (Table 3.10), despite having adequate power. 
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Table 3.9 Lack of confounding effect of rare toxicity-associated DPYD variants on biomarkers identified herein 
 

   Number of 

patients 

excluded 

P-value 

Lead SNP Toxicity Treatment group Before exclusion After exclusion 

rs13260246 Vomiting XELOX 13 9.8x10-10 2.2x10-9 

rs6030266 Diarrhoea XELOX + cetuximab 6 5.7x10-7 1.1x10-6 

rs1546161 HFS FOLFOX 15 5.9x10-6 7.0x10-6 

rs9601722 Neutropenia FOLFOX + cetuximab 5 5.2x10-6 7.0x10-6 

rs13413764 Lethargy XELOX 13 4.5x10-6 1.6x10-5 

rs4600090 Nausea FOLFOX + cetuximab 5 5.9x10-6 7.4x10-6 

rs76380775 (MROH5) Neutropenia XELOX 13 1.4x10-6 1.6x10-6 

 

P-values before and after excluding patients with the rare DPYD variants Asp949Val and IVS14+1G>A. HFS- Hand-foot syndrome. 
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Table 3.10 Lack of replication of loci identified by Fernández-Rozadilla et al. (2013) 
 

Toxicity SNP Fernández-

Rozadilla et al. 

(2013) Pooled 

P-value  

COIN and COIN-B 

FOLFOX 

P-value 

FOLFOX + 

cetuximab 

P-value 

XELOX 

P-value 

XELOX + 

cetuximab 

P-value 

Diarrhoea       

 rs10876844 1.0x10-2 0.87 0.72 0.57 0.66 

 rs10784749 1.7x10-2 0.69 0.70 0.08 0.97 

Haematological       

 rs7325568 2.3x10-4 0.89 0.38 0.49 0.45 

 rs4243761 2.8x10-3 0.96 0.97 NA 0.20 
 

rs17626122 4.2x10-2 0.74 0.13 0.31 0.42 

Mucositis       

 rs2465403 9.4x10-3 0.65 0.52 0.52 0.31 

 rs16857540 2.0x10-2 0.42 0.44 0.40 0.96 

 

All loci failed to replicate in COIN and COIN-B. COIN did not record mucositis (inflammation of the mouth and digestive tract) so 
SNPs were replicated using stomatitis (inflammation of the mouth). rs10876844 was not genotyped in COIN so a proxy SNP, 
rs2555036, was used (r2=0.69). The power to replicate the stomatitis loci was >99%, the diarrhoea loci >99% and the 
haematological loci 40% in those treated with FOLFOX and 7% in those treated with XELOX. Power was calculated using the SNP 
minor allele frequency in COIN and COIN-B, and the odds ratio from Fernández-Rozadilla et al. (2013). NA = odds ratio in opposite 
direction. 
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3.4 Discussion 

3.4.1 Exploring the mechanism underlying the association of MROH5 with 

neutropenia 

MROH5 was identified from MAGMA gene analyses as associated with neutropenia 

at genome-wide significant levels in patients treated with XELOX and was 

independently replicated in those receiving XELOX + cetuximab. Interestingly, this 

association appeared to be due to independent sets of SNPs in these two patient 

groups and rs12056882 was an sQTL for PTP4A3 which lies adjacent to MROH5. 

MROH5 has been suggested to be both a pseudogene and a functional gene (with 

an unknown role) dependent upon the status of a SNP that introduces a premature 

termination codon, which is not in LD with rs12056882. PTP4A3 represents a strong 

causal candidate for neutropenia as treatment of mice with a PTP4A3 derived 

peptide reduced endotoxemia induced septic shock (Tang et al, 2009). PTP4A3 

expression has also been associated with poor prognosis in CRC possibly due to a 

role in metastasis and tumour invasion (Zimmerman et al, 2013; Saha et al, 2001), 

and has been implicated in resistance to chemotherapy (Csoboz et al, 2018; 

Hollander et al, 2016). 

 

3.4.2 Evaluating the association between rs13260246 and vomiting 

There was also a clear signal for rs13260246 associated with vomiting in patients 

treated with XELOX. However, this association was not replicated in patients treated 

with XELOX + cetuximab, nor in those receiving FOLFOX. While rs13260246 was 

significant in patients treated with capecitabine +/- bevacizumab from the QUASAR2 

trial, the odds ratio was in the opposite direction. It has been proposed that loci 

effects can flip-flop particularly in GWAS as they miss some genetic complexity (Lin 
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et al, 2007). However, without any further mechanistic evidence to support this, my 

data suggest that rs13260246 could be a false-positive or that the association with 

vomiting is specific to those treated with XELOX alone. rs13260246 maps to, and is 

an eQTL for, SLC26A7, which functions as a Cl−/HCO3− exchanger and chloride 

channel (Kim et al, 2005), and is expressed in several tissues including the thyroid. 

Chemotherapy can cause thyroid dysfunction and response to treatment may be 

affected by pre-existing thyroid conditions (Fujiwara et al, 2013; Andreyev et al, 

2020; Hartmann, 2015). SLC26A7 is also expressed in parietal cells and genetic 

deletion results in decreased gastric acid secretion (Xu et al, 2009; Petrovic et al, 

2003). Both thyroid and gastric dysfunction can cause vomiting (Sweet et al, 2010; 

Raufman et al, 1983). Therefore, SLC26A7 represents a potential biological 

candidate for vomiting but lacks genetic replication at present. 

 

3.4.3 Suggestive significance loci 

In total, SNPs at 139 loci had evidence for suggestive associations for any toxicity or 

individual toxicities and lead SNPs at five of these were replicated at nominally 

significant levels. However, if a more stringent correction for 139 replication tests 

was applied, none of the five would have passed the adjusted significance threshold. 

Further replication of these biomarkers in independent cohorts is therefore 

necessary before they could be applied in clinical practice. rs6030266 was 

associated with diarrhoea and identified in patients treated with cetuximab. It maps 

to intron 8 of PTPRT, a tumour suppressor gene that functions as part of the 

JAK/STAT pathway (Hsu et al, 2018). rs1546161 was associated with HFS and 

maps to BCL9, overexpression of which has been linked to disrupted wnt signalling 

(Takada et al, 2012). rs1546161 is also an eQTL for GJA5, a gap junction protein 
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with significant expression in subcutaneous adipose tissue. rs4600090 associated 

with nausea lies within and is an eQTL for CMPK1, an enzyme associated with 

activation of 5FU phosphorylation and linked to 5FU sensitivity (Yasuno et al, 2013). 

rs4600090 is also an eQTL for PDZK1IP1 which functions as a cargo protein 

expressed in the adrenal glands. Interestingly, noradrenaline and cortisol, hormones 

released by adrenal glands, have both been associated with chemotherapy-induced 

nausea (Fredrikson et al, 1994). rs9601722 associated with neutropenia and 

rs13413764 with lethargy did not lie within protein coding gene regions. 

 

3.4.4 Evaluation of other significant genes and gene sets 

As all other genes and gene sets failed to replicate across groups their likelihood of 

being true associations is reduced. However, as the replication groups had non-

identical therapies, there is a chance that the genes and gene sets are highly 

therapy specific. It is noteworthy that from a biological standpoint, none of the genes 

or gene sets have support in the literature for association with their respective 

toxicity, suggesting they are likely to be false positives. 

 

3.4.5 Study limitations 

One design decision was to analyse by treatment subgroup rather than by analysing 

the whole cohort and adjusting for treatment effects through covariates. I choose this 

method to identify treatment specific markers which may otherwise be missed if the 

cohort was analysed all together. However, this did limit the power available for 

individual GWAS, especially for variants with low odds ratios (<2). Furthermore, my 

attempts to replicate any findings was limited by groups with similar, but non-

identical, therapies. 
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3.4.6 Conclusions and follow-on studies 

After conducting 40 GWAS on large patient cohorts with well characterised clinical 

data, I conclude there is a lack of common variants with modest or large effect sizes 

associated with toxicities induced by oxaliplatin and fluoropyrimidine chemotherapy, 

with or without cetuximab. In support of this, I failed to replicate loci previously 

suggested to be associated with toxicity to FOLFOX identified from another GWAS 

(Fernández-Rozadilla, 2013). Meta-analyses can be performed to improve the power 

to detect associations with lower effect sizes and I have carried out such analyses in 

Chapters 4 and 5. 

 

Further analyses of MROH5 and PTP4A3 with neutropenia are warranted to 

establish the mechanism of effect. Identification of a XELOX only cohort to replicate 

the vomiting loci would also be ideal, to determine if the locus is treatment specific or 

a false positive.  
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4 Meta-analyses of COIN and COIN-B to identify loci associated 

with toxicity to FOLFOX and XELOX chemotherapy regimens 

4.1 Introduction 

4.1.1 Meta-analyses 

While GWAS have increased our understanding of complex inherited traits, often loci 

will fail to validate in replication studies (Ioannidis, 2007; Pearson and Manolio, 

2008). An approach to alleviate this is meta-analysis, a statistical method used to 

integrate the results of several studies into a single conclusion (Glass, 1976). GWAS 

meta-analyses benefit from increased statistical power and precision (Trikalinos et 

al, 2008), being more likely to identify true loci because their effects must already 

have been present in several of the cohorts meta-analysed (Panagiotou et al, 2013).  

 

In a meta-analysis, it is important to consider heterogeneity between studies to 

ensure an appropriate model is used (Egger et al, 1997). There are numerous 

statistics that can be used but all work on the same principle (Zeggini and Ioannidis, 

2009). A low heterogeneity score indicates there is minimal inter-study variation, so a 

fixed effects model will provide the most power (Nakaoka and Inoue, 2009). A high 

heterogeneity score indicates the studies are heterogeneous which must be 

accounted for during analysis. The most common method for this is to use a random 

effects model. 

 

4.1.1.1 Fixed effects model 

Fixed effect models assume that for each tested variable, there is one true effect. 

Associations are expected to be consistent across studies, only differing due to intra-
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study error (Hunter and Schmidt, 2000). During the meta-analysis, individual studies 

are weighted depending on their sample size, with results from larger cohorts being 

weighted more highly. This increases precision, as false positives are more prevalent 

in smaller cohorts, which are allowed to bias the overall results less (Mikolajewicz 

and Komarova, 2019).  

 

4.1.1.2 Random effects model 

Random effect models can account for heterogeneity between studies. The test 

assumption is that the true effect of a variable can vary (DerSimonian and Laird, 

1986). This allows for underlying differences in the studies to be accounted for such 

as treatment or cancer stage. Individual studies are not weighted in the meta-

analysis and results are instead influenced by the number of studies the effect is 

present in and the association strength in each (Mikolajewicz and Komarova, 2019). 

Random effect models work well when meta-analysing clinical studies since patient 

inclusion criteria can differ significantly (Borenstein et al, 2010).  

 

4.1.2 HFS 

Toxicity from chemotherapy may result in treatment discontinuation or dose 

reduction affecting the prospect of a cure in patients with cancer. Patients treated 

with XELOX often develop HFS, in which small amounts of the chemotherapeutic 

agent leaks out of capillaries into the hands and feet and damages the surrounding 

tissues (Milano et al, 2008). HFS is characterised by erythema, blisters, peeling of 

the skin on the hands and feet and at higher grades pain that limits daily living 

activities. HFS has been suggested to be a biomarker of treatment efficacy with post-

hoc analyses from clinical trials of colorectal and breast cancer patients finding that 
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grade 1+ HFS was associated with improved overall and progression-free survival 

(Stintzing et al, 2011; Zielinski et al, 2016). Established risk factors for HFS include 

being older, female, having pre-existing peripheral neuropathy, circulation problems 

and diabetes (Diasio, 2000; Kooner et al, 2011). Common genetic variants in TYMS 

and MTHFR have been associated with increased risk of HFS toxicity, albeit with low 

effect sizes (Rosmarin et al, 2015; Lin et al, 2019).  

 

4.1.3 ST6 β-galactoside α‐2,6‐sialyltransferase 1 (ST6GAL1) 

Genetic variation in ST6GAL1 is associated with a risk of developing type-2 diabetes 

(T2D) (Mahajan et al, 2018; Kaburagi, 2017). ST6GAL1 catalyses the addition of 

α2,6-linked sialic acids onto key surface glycoproteins. Increases in α2,6-linked sialic 

acids have been linked to inflammatory conditions (Yasukawa et al, 2005) and 

ST6GAL1 deficiency leads to increased inflammatory cell production (Nasirikenari et 

al, 2006), granulocyte recruitment (Nasirikenari et al, 2010) and cytokine release 

(Nasirikenari et al, 2019). There is also substantial evidence that ST6GAL1 plays an 

important role in cancer progression and it is overexpressed in numerous cancers 

including colorectal (Dorsett et al, 2021). High ST6GAL1 expression has been 

associated with radioresistance and chemoresistance to several anticancer 

treatments, which ultimately leads to worse patient outcomes (Lee et al, 2008; 

Schultz et al, 2013, Britain et al, 2018; Duarte et al, 2021). 

 

4.1.4 Aims 

As in the previous chapter, I chose to analyse the cohort by treatment subgroup, in 

this chapter I aim to continue this methodology. I extended my analyses by meta-

analysing those patients who received XELOX ± cetuximab and, separately, 
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FOLFOX ± cetuximab (Chapter 1, Table 1.4). After initial analyses, I then considered 

HFS as a biomarker of treatment efficacy. I also sought to confirm an association 

between ST6GAL1 and T2D, and understand their inter-relationship with HFS by 

studying biomarkers of inflammation using data from the UK Biobank. 
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4.2 Materials and Methods 

4.2.1 Patients and samples 

As previously described (Chapter 2, Sections 2.2.1.4 and 2.2.1.5), toxicity data and 

SNP genotypes were available for 1,800 patients from COIN and COIN-B after QC. 

For analyses of response to treatment at 12 weeks, a further 210 patients had 

missing data and were excluded. 

 

4.2.2 Toxicities assessed 

Toxicities assessed were diarrhoea, neutropenic sepsis, peripheral neuropathy, 

HFS, neutropenia, lethargy, stomatitis, nausea, vomiting and rash. Patients with 

toxicities graded 2-5 (G2-5) were grouped and compared against those graded 0-1 

(G0-1). Of note, for HFS, G3 is the maximum possible grade so, patients with G2-3 

were compared against those with G0-1. A linear model was considered for the 

association between rs6783836 and HFS, to assess if rs6783836 was associated 

with toxicity severity. 

 

4.2.3 Patient outcome 

Assessment of response was also performed at 12 weeks. Response was defined as 

complete or partial response using RECIST 1.0 guidelines and no response was 

defined as stable or progressive disease. Overall survival (OS) was defined as the 

time from randomisation to death or date of last assessment.  
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4.2.4 GWAS 

In Chapter 3, 4 million SNPs were analysed for a relationship with each toxicity 

under univariate models in patients that received XELOX (n=707), XELOX + 

cetuximab (n=348), FOLFOX (n=385) and FOLFOX + cetuximab (n=360). Here, I 

incorporated covariates associated at P<0.05 (Table 4.1) into the additive logistic 

models in Plink (v1.9) and meta-analysed those patients receiving XELOX ± 

cetuximab (n=1,055) and, separately, FOLFOX ± cetuximab (n=745). Meta-analyses 

were run under random effects models to account for heterogeneity caused by the 

effect of cetuximab on toxicity (Chapter 3, Table 3.1). Analyses were restricted to 

directly typed SNPs and imputed SNPs with imputation scores  ≥0.8, a HWE 

≥1.0x10-6 and a MAF ≥0.05. Results were plotted in R studio using qqman and 

ggplot2. SNPs associated at genome-wide significance (P<5.0x10-8) were selected 

for further analyses.  

 

4.2.5 Patient outcomes  

For survival analyses, Cox proportional hazard regression models were used for 

both univariate and multivariate analyses. For analyses of response to treatment, 

logistic regression models were used for both univariate and multivariate analyses. 

 

4.2.6 Gene and gene set analyses 

MAGMA (de Leeuw et al, 2015) was used for gene and gene set analyses (Chapter 

2 Section 2.5.3). Gene analyses were run under a snpwise univariate model 

imposing a Bonferroni corrected significance threshold of P=2.5x10-6. Gene set 

analyses were run under competitive models with a corrected significance threshold 

of P=5.8x10-6. 
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Table 4.1 Covariates used in the genome-wide association studies 

 Sex 
Creatinine 

clearance 

Location of 

primary 

tumour 

Age Platelet count 

WHO 

performance 

status 

       

Diarrhoea 3.3x10-2 6.5x10-4 0.18 0.65 0.86 3.8x10-2 

Neutropenic sepsis 4.6x10-4 0.53 0.07 0.15 0.12 0.07 

Peripheral neuropathy 3.1x10-2 0.71 0.53 0.70 1.0x10-2 0.39 

HFS 0.09 4.6x10-2 0.46 1.9x10-3 1.8x10-2 0.82 

Neutropenia 2.5x10-4 1.9x10-2 0.51 0.20 2.9x10-3 0.13 

Lethargy 3.9x10-3 0.21 3.6x10-2 0.18 0.74 1.4x10-5 

Stomatitis 4.5x10-3 0.76 0.98 0.06 0.07 3.0x10-3 

Nausea 5.3x10-4 8.3x10-3 8.5x10-3 1.1x10-2 0.08 3.0x10-2 

Vomiting 0.09 3.5x10-2 2.6x10-2 2.0x10-2 0.78 0.79 

Rash 1.3x10-3 0.50 0.09 1.8x10-2 0.07 1.1x10-2 

 
Logistic model also had chemotherapy regimen and cetuximab as terms added. Covariates associated at P<0.05 were included in 
the genome-wide association studies. HFS- Hand-foot syndrome.
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4.2.7 Power considerations 

Power to detect toxicity effect sizes was calculated, based upon 70% power, 

P=5.0x10-8 and SNPs with MAFs=0.20. Under these conditions SNPs with a mean 

OR of 2.8 (range 2-4 dependent upon toxicity, Table 4.2) could be identified. 

 

4.2.8 Independent replication 

The association of rs6783836 with HFS was attempted to be replicated using data 

from 930 patients enrolled in QUASAR2 (Kerr et al, 2016). Three patients had 

missing data and were excluded, leaving 927 to be analysed. The imputation score 

for rs6783836 was 0.89. HFS was graded using the CTCAE scale and patients with 

G2-3 (46%) were compared to those with G0-1. Age was included as a covariate.  

 

4.2.9 ST6GAL1 and diabetes 

Six hundred and fourteen SNPs spanning ST6GAL1 were tested for an association 

with T2D in UK Biobank participants (17,384 cases and 317,887 controls as of 1 

January 2021). The analysis was restricted to directly typed SNPs and imputed 

SNPs with imputation scores ≥0.8, a HWE ≥1.0 × 10−6 and a MAF ≥0.01. We also 

analysed the relationship between rs6783836 and diabetic skin lesions by logistic 

regression on 617 diabetic individuals with self‐reported open sores and 6,605 

diabetic controls (as of 1 July 2021). 
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Table 4.2 Patients with grade 2-5 CTCAE toxicities at 12 weeks and detectable odds ratios at 70% power 
 

Toxicity Frequency  Detectable odds ratio 

 

XELOX ± 

cetuximab 

n (%) 

FOLFOX ± 

cetuximab 

n (%) 

 

XELOX ± 

cetuximab 

 

FOLFOX ± 

cetuximab 
 

Diarrhoea 288 (27) 187 (25)  2.1 2.5 

Neutropenic sepsis 6 (1) 63 (8)  NA 3.7 

Peripheral neuropathy 154 (15) 73 (10)  2.4 3.4 

HFS 109 (10) 65 (9)  2.7 3.6 

Neutropenia 42 (4) 209 (28)  4.5 2.4 

Lethargy 361 (34) 256 (34)  2.0 2.3 

Stomatitis 61 (6) 150 (20)  3.6 2.6 

Nausea 210 (20) 88 (12)  2.2 3.1 

Vomiting 122 (12) 59 (8)  2.6 3.8 

Rash 177 (17) 201 (27)  2.3 2.4 

 

Percentage of patients in parentheses. NA - for neutropenic sepsis in patients treated with XELOX ± cetuximab as there was 
insufficient power to perform the genome-wide association study.  HFS - Hand-foot syndrome 
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4.2.10  Potential biomarkers of HFS 

rs6783836 and potential biomarkers of HFS were analysed using participant data 

from the UK Biobank. Seven markers of wound healing and/or inflammation were 

assessed: lymphocyte, neutrophil, monocyte, eosinophil, platelet and basophil 

counts (109 cells/litre) and C-reactive protein levels (mg/l), and one marker for 

diabetes: glycated haemoglobin (HbA1c) levels (mmol/mol). Analyses were run using 

PHESANT (Millard et al, 2018) (Chapter 2, Section 2.5.4.2). Lymphocyte count, 

HbA1c levels, platelet count, neutrophil count, c-reactive protein levels and 

monocyte count were analysed under a linear regression model and, basophil count 

and eosinophil count were analysed under an ordered logistic model. Results were 

held to a significance threshold of P=6.3x10-3 (Bonferroni correction for 8 tests, 

P=0.05/8). rs6783836 was analysed as a potential regulator of inflammation by 

performing a univariate logistic regression on 4,228 individuals from the UK Biobank 

with self-reported psoriasis and 331,043 controls (as of 1st January 2021).  

 

4.2.11 Additional bioinformatic analyses 

The GTEx project database was used to identify eQTLs for relevant SNPs (Chapter 

2, Section 2.5.4.2). Significance for tissue association was set at P<1.0x10-3 (i.e. 

Bonferroni correction for 49 tissues [0.05/49]). Fine mapping was used for SNPs at 

significant loci using PAINTOR (Kichaev et al, 2014). Credible sets of causal SNPs 

were assembled for 95% coverage. Regional association plots were generated using 

both the online and JavaScript versions of Locuszoom (Chapter 2, Section 2.4.1). 
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4.3 Results 

4.3.1 Genomic inflation 

The distribution of expected and observed P-values for each GWAS meta-analysis 

and their genomic inflation factor (λ range = 0.75 – 0.83) indicated there was 

deflation of the test statistics. For HFS in patients administered XELOX ± cetuximab, 

the λ was 0.76. However, individual GWAS test statistics showed no evidence of 

inflation or deflation, indicating the cause was due to heterogeneity correction in the 

meta-analysis and not because of abnormal population substructure.  

 

4.3.2 Relationship between genetic variation at ST6GAL1 and HFS 

rs6783836 at 3q27.3 was associated with HFS at genome-wide significant levels in 

patients treated with XELOX (OR=3.1, 95% CI=2.1-4.6, P=4.3x10-8, Figure 4.1). 

Forty-six percent (50/108) of patients with G2-3 HFS carried rs6783836 in a 

heterozygous or homozygotes state for the minor allele as compared to 21% 

(200/934) of patients with G0-1 HFS (Table 4.3). The association between 

rs6783836 and HFS was seen in patients treated with XELOX alone (OR=3.3, 95% 

CI=1.9-5.7, P=2.7x10-5) and in those treated with XELOX + cetuximab (OR=2.9, 95% 

CI=1.6-5.1, P=3.0x10-4, Table 4.3); cetuximab did not affect this relationship 

(Pinteraction=0.98). rs6783836 was not associated with HFS in patients treated with 

FOLFOX (OR=0.86, 95% CI=0.44-1.7, P=0.65) and the difference between regimens 

was significant (Pinteraction=1.0x10-3). rs6783836 maps to intron 4 of ST6GAL1 in a 

region involved in transcriptional elongation (Figure 4.2) and was not an eQTL.
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Figure 4.1 Regional plots for the association of rs6783836 with hand-foot 
syndrome (HFS). (A) Manhattan plot of the association between single-nucleotide 
polymorphism (SNP) genotype and HFS in patients treated with XELOX. The red line 
corresponds to a P=5.0x10-8 and the blue line P=1.0x10-5. (B) Locuszoom plot 
shows results of the analysis for SNPs and recombination rates. −log10(P) (y axis) of 
the SNPs are shown according to their chromosomal positions (x axis). The sentinel 
SNP (purple) is labelled by its rsID. The colour intensity of each symbol reflects the 
extent of linkage disequilibrium with the sentinel SNP, deep blue (r2=0) through to 
dark red (r2=1.0). Genetic recombination rates, estimated using 1000 Genomes 
Project samples, are shown with a blue line. Physical positions are based on NCBI 
build 37 of the human genome. Also shown are the relative positions of genes and 
transcripts mapping to the region of association. Genes have been redrawn to show 
their relative positions; therefore, maps are not to physical scale. Fine-mapping 
identified a credible set of 3 SNPs with rs6783836 having the highest posterior 
probability of 0.53.
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Table 4.3. Relationship between rs6783836 and hand-foot syndrome (HFS) in patients from COIN and COIN-B treated with 
XELOX ± cetuximab 
 

Treatment groups 

analysed 

Total 

patients 

Patients G0-1 HFS  Patients G2-3 HFS 
OR 95% CI P-value 

wildtype heterozygous homozygous  wildtype heterozygous homozygous 

            

Meta-analysis 1,042 734 190 10  58 48 2 3.1 2.1-4.6 4.3x10-8 

            

Subgroups:            

XELOX 699 520 121 5  30 21 2 3.3 1.9-5.7 2.7x10-5 

XELOX + cetuximab 343 214 69 5  28 27 0 2.9 1.6-5.1 3.0x10-4 

 

Reference allele = T, OR = Odds ratio, CI = Confidence intervals. Eight patients had missing SNP genotyping data for rs6783836.
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Figure 4.2 Layered Locuszoom plot showing single-nucleotide polymorphisms 

(SNPs) in ST6GAL1 associated with hand-foot syndrome (HFS) and type-2 

diabetes (T2D). Plot shows results of the analysis for SNPs and recombination 

rates. −log10(P) (y axis) of the SNPs are shown according to their chromosomal 

positions (x axis). The dashed line corresponds to a P=5.0x10-8. Genetic 

recombination rates, estimated using 1000 Genomes Project samples, are shown 

with a blue line. Physical positions are based on NCBI build 37 of the human 

genome. ST6GAL1 has previously been associated with T2D, a risk factor for HFS. 

The association results between SNPs in ST6GAL1 with HFS (blue), and with T2D 

(red) are plotted. Lead SNPs for HFS and T2D are indicated by their rsIDs. 

rs3887925 is not in linkage disequilibrium with rs6783836 (D’=0.26, R2=0.01), so 

these appear to be independent loci. Also shown is the relative coding region of 

ST6GAL1 and chromatin state annotations from ENCODE.
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4.3.3 Investigating the relationship between rs6783836 and HFS in an 

independent cohort 

rs6783836 was borderline significant for HFS in patients treated with only 

capecitabine from QUASAR2 (OR=0.66, 95% CI=0.42-1.03, P=0.05) but with an 

opposite direction of effect to that found in COIN and COIN-B (Table 4.4). 

  

4.3.4 Evaluation of previously purported associations with HFS 

Previous studies have shown that common variants in TYMS/ENSOF1 (rs2612091), 

MTHFR (rs4846048 and rs3737964) and DPYD (rs12022243) are associated with 

HFS. None of these variants replicated in the HFS meta-analysis despite having 

sufficient power (Table 4.5). 
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Table 4.4 Relationship between rs6783836 and hand-foot syndrome (HFS) in patients from QUASAR2 treated with 
capecitabine ± bevacizumab  
 

Treatment 

groups analysed 

Total 

patients 
Patients G0-1 HFS  Patients G2-3 HFS OR 95% CI P-value 

  wild type heterozygous homozygous  wild type heterozygous homozygous    

            

Capecitabine 440 171 50 1  184 33 1 0.7 0.4-1.0 0.05 

Capecitabine + 

bevacizumab 
487 164 35 3  220 57 8 1.3 0.9-1.9 0.24 

            

Meta-analysis 927 335 85 4  404 90 9 0.9 0.7-1.3 0.71 

 

Reference allele = T, OR = Odds ratio, CI = Confidence intervals.  
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Table 4.5 Lack of replication of loci from previous studies 
 

 

 

 

 

 

 

 

 

 

SNP Gene Previous study 

COIN and COIN-B 

XELOX ± cetuximab 

P-value 

FOLFOX ± cetuximab 

P-value 

rs4846048 MTHFR Lin et al (2019) 0.64 0.51 

rs3737964 MTHFR Lin et al (2019) 0.68 0.53 

rs2612091 ENOSF1 Rosmarin et al (2015) 0.73 0.60 

rs12022243 DPYD Rosmarin et al (2015) 0.40 0.50 



 

 117

4.3.5 Relationship between HFS and patient outcome in COIN and COIN-B 

Overall, 174/1,800 (10%) patients from COIN and COIN-B developed G2-3 HFS at 

12 weeks (109/1,055, 10% in the XELOX group and 65/745, 9% in the FOLFOX 

group, Table 4.2). HFS was predictive of treatment outcome (Table 4.6). 105/154 

(68%) patients with G2-3 HFS responded to chemotherapy ± cetuximab at 12 weeks 

as compared to 831/1436 (58%) with G0-1 HFS (OR =1.6, 95% CI =1.1-2.2, 

P=1.4x10-2, univariate model). Under a multivariate model accounting for age, sex, 

disease site, World Health Organisation performance status, primary tumour 

resection status, white blood cell count, chemotherapy regimen and cetuximab 

status, this remained significant (OR=1.1, 95% CI=1.02-1.2, P=2.0x10-2). Median OS 

was 596 days in those with G2-3 HFS and 503 days in those with G0-1 HFS 

(HR=0.81, 95% CI=0.67-0.97, P=2.4x10-2, Figure 4.3A); although, this did not 

remain significant in multivariate analysis (P=0.15, Table 4.6). However, when HFS 

was assessed as a linear trait, the relationship with OS was significant in both 

univariate (Figure 4.3B) and multivariate analyses (G0 median survival=499 days, 

G1=514 days, G2=596 days, G3=687 days, HR=0.92, 95% CI=0.84-0.99, P=4.6x10-

2, Table 4.6). 
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Table 4.6 Relationship between hand-foot syndrome (HFS) and patient outcome in COIN and COIN-B 

 

Response was defined as complete or partial response using RECIST 1.0 guidelines and no response was defined as stable or 
progressive disease. 1,800 patients had data on overall survival and 1,590 had data on response at 12 weeks. Covariates included 
in the multivariate analysis were age, sex, disease site, World Health Organisation performance status, primary tumour resection 
status, white blood cell count, chemotherapy regimen and cetuximab status. OR = Odds ratio, CI = Confidence intervals, HR = 
Hazard ratio.

Model 
Grade of 

HFS (n) 

Response at 12 weeks  Overall survival 

% Responders OR 95% CI P (multivariate)  
Median survival 

(days) 
HR 95% CI P (multivariate) 

           

Grouped 
0-1 (1626) 58 

1.6 1.1-2.2 1.4x10-2 (2.0x10-2)  
503 

0.81 0.67-0.97 2.4x10-2 (0.15) 
2-3 (174) 68 596 

           

Linear 

0 (1264) 56 

1.3 1.2-1.6 1.4x10-4 (2.0x10-4)  

499 

0.90 0.83-0.97 5.8x10-3 (4.6x10-2) 
1 (362) 66 514 

2 (144) 68 596 

3 (30) 67 687 
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Figure 4.3 Kaplan-Meier plot showing the relationship between hand-foot syndrome (HFS) and overall survival (OS) in 
patients from COIN and COIN-B, under (A) a grouped model and (B) a linear model. The y-axis represents survival probability 
and the x-axis represents time (days). Dotted lines show the median OS times (A); 596 days in those with G2-3 HFS and 503 days 
in those with G0-1 HFS and (B); 499 in those with G0 HFS, 514 in those with G1 HFS, 596 in those with G2 HFS and 687 in those 
with G3 HFS. The P-values were calculated using Cox proportional hazard regression. HR = Hazard ratio, CI = Confidence 
intervals.  

A B 
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4.3.6 Relationship between rs6783836 in ST6GAL1 and patient outcome 

rs6783836 was not associated with patient outcome regardless of chemotherapy 

regime (XELOX ± cetuximab, response OR=1.0, 95% CI=0.78-1.4, P=0.82 and OS 

HR=0.95, 95% CI=0.82-1.1, P=0.46; FOLFOX ± cetuximab, response OR=0.77, 95% 

CI=0.54-1.1, P=0.15 and OS HR=1.0, 95% CI=0.86-1.2, P=0.78). 

 

4.3.7 Understanding the inter-relationship between genetic variation in 

ST6GAL1, T2D and HFS 

rs3887925 in intron 1 of ST6GAL1 was the lead SNP associated with T2D (OR=0.94, 

95% CI=0.92-0.96, P=1.2x10-8, Figure 4.2), although rs6783836 was not associated 

with T2D (OR=0.93, 95% CI=0.85-1.0, P=0.07) nor diabetic skin lesions (OR=1.1, 

95% CI=0.89-1.3, P=0.44). rs3887925 and rs6783836 were not in linkage 

disequilibrium (LD) (D’=0.26, R2=0.01). The rs6783836-T allele was associated with 

lowered lymphocyte count (beta=-0.0052, 95% CI= -0.0087, -0.0018, P=2.7x10-3) 

and lowered HbA1c levels (beta= -0.0047, 95% CI= -0.0080, -0.0013, P=5.9x10-3, 

Figure 4.4) that withstood correction for multiple testing. rs6783836 was also 

associated with psoriasis (OR=0.91, 95% CI=0.85-0.98, P=7.5x10-3).  
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Figure 4.4 Relationship between rs6783836 and (A) continuous and (B) ordinal phenotypes. The x axis shows phenotype and 

respective UK Biobank ID, and the y axis shows standard deviation change or odds ratio. Only lymphocyte count and glycated 

haemoglobin (HbA1c) were significantly associated with rs6783836 after Bonferroni correction for 8 tests (P<6.3x10-3). CI = 

Confidence intervals.
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4.3.8 Investigating other variants, genes and pathways associated with 

toxicities 

After meta-analyses, no other SNPs were associated with toxicities in COIN and 

COIN-B at genome-wide significant levels, but eight SNPs were suggestive of 

association (P<1.0x10-6). No genes were associated with toxicities after correction 

for multiple testing (data not shown). Four gene sets (Table 4.7) - peripheral 

neuropathy with response to food, neutropenia with dendritic spine development, 

diarrhoea with co-receptor activity and skin rash with blood vessel endothelial cell 

migration, were associated after correction for multiple testing. For the association 

between peripheral neuropathy with response to food, 5 genes within the set of 20 

had P<0.05 (OXT, SLC16A1, GHRH, G6PC1 and MPO). 

  

4.3.9 Investigating toxicity loci identified in Chapter 3 

Neither of the genome-wide significant loci identified in Chapter 3, rs13260246 

associated with vomiting or MROH5 associated with neutropenia were significant in 

XELOX ± cetuximab meta-analyses (rs13260246 OR=3.2, 95% CI=0.8-12.1, P=0.09 

and MROH5 P=0.51). Likewise, none of the 5 suggestive significant loci that 

replicated in the previous chapter, were significant in these meta-analyses. However, 

this was expected. For the 2 loci that replicated in the subgroup with the same 

chemotherapy their association was weakened here due to differences in association 

strengths (rs9601722 P=1.5x10-2, rs4600090 P=1.1x10-3). The other 3 loci were 

previously replicated in the subgroup with the same cetuximab status and were not 

significant in subgroups with the same chemotherapy, hence their non-significance in 

these meta-analyses (rs6030266 P=0.42, rs1546161 P=0.21, rs13413764 P=0.39). 
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Table 4.7 MAGMA gene set analyses 

Treatment Toxicity Pathway P-value 

    

XELOX ± 
cetuximab 

Peripheral neuropathy Response to food 3.0x10-7 

Neutropenia Negative regulation of dendritic spine development 5.5x10-6 

    

FOLFOX ± 
cetuximab 

Diarrhoea Coreceptor activity 2.8x10-7 

Rash 

Negative regulation of blood vessel endothelial cell 

migration 
2.7x10-6 

 

Genome-wide significance was a Bonferroni corrected significance threshold of P<5.6x10-6. 
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4.4  Discussion 

4.4.1 HFS and treatment efficacy 

It has previously been suggested that HFS may be a biomarker of efficacy to 

chemotherapy (Stintzing et al, 2011; Zielinski et al, 2016). However, others have 

suggested that since HFS is a cumulative toxicity, there may be a bias for those 

living longer simply having more HFS due to having more treatment. This study only 

considered HFS after 12 weeks of treatment and found that patients with HFS had a 

better response to chemotherapy at 12 weeks. There was also an improvement in 

OS when analysed under a linear model of toxicity. Similarly, an exploratory analysis 

of two German trials noted an association between HFS and OS, and found no 

difference in OS between patients with early and late HFS (Hofheinz et al, 2012). 

Together, these data suggest that HFS should be tolerated where possible and that 

an understanding of the underlying mechanism may help improve treatment efficacy. 

 

4.4.2 Exploring the underlying mechanism of rs6783836 in ST6GAL1 

rs6783836 in ST6GAL1 was identified as a genome-wide significant biomarker for 

HFS in patients treated with XELOX, with or without cetuximab. Previous GWAS 

have revealed that SNPs in ST6GAL1 are linked to multiple sclerosis (Li et al, 2007), 

coronary artery disease (Saade et al, 2011), T2D (Kooner et al, 2011), IgA 

nephropathy (Li et al, 2015), asthma (Zhou et al, 2019; Oswald et al, 2020) and 

chronic obstructive pulmonary disease (Krick et al, 2021). Interestingly, diabetics are 

at an increased risk of developing HFS, and this study confirmed an association for 

ST6GAL1 with T2D. rs6783836 was associated with glycated haemoglobin levels, a 

marker routinely used in the diagnosis and monitoring of diabetes. However, 

rs6783836 was not associated with the T2D phenotype directly, with a second locus 
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at ST6GAL1 appearing to be causal. It is possible that there is an untagged 

pleiotropic variant in ST6GAL1 which is in LD with both the T2D and HFS loci, which 

would explain the link between these phenotypes. Therefore, further studies in WGS 

data are required to investigate the LD structure at this locus. 

 

ST6GAL1 also has a known role in inflammation, particularly the NFκB axis 

signalling pathway through the regulation of TNFR1 (Holdbrooks et al, 2020). 

Circulating ST6GAL1 has been shown to modulate B-cell production (Irons et al, 

2020), supporting the association between rs6783836 and lymphocyte count. 

Furthermore, ST6GAL1 has been associated with psoriasis in an Asian population 

previously (Wang et al, 2017), substantiating the association I identified between 

psoriasis and rs6783836. It is also interesting to note that ST6GAL1 knockout mice 

are viable with mild symptoms including diarrhoea, increased inflammation and 

defects in B-cell development (Punch et al, 2020; Zhang et al, 2022). 

 

Overall, although the exact mechanism is unclear, these data support a possible link 

between HFS, T2D, psoriasis and an underlying defect in the inflammatory pathway, 

potentially through ST6GAL1.  

 

4.4.3 Direction of rs6783836 effect  

However, the odds ratios and betas for rs6783836 / ST6GAL1 with T2D, lymphocyte 

count, and psoriasis were in the opposite direction to HFS. Lin et al (2007) proposed 

a flip-flop mechanism for allelic heterogeneity caused by interacting loci in weak LD 

and this has gained support from recent studies (Wang et al, 2018; Maher et al, 

2010; Zaykin and Shibata, 2008; Shao et al, 2016; Mersha et al, 2015) and may help 
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explain our observations. This could occur if an untagged pleiotropic variant is causal 

for all phenotypes and is in weak LD with both the T2D and HFS loci. Additionally, a 

main drawback to GWAS is that each variant is considered individually, so more 

complex genetic effects may appear to ‘flip-flop', despite being genuine (Lin et al, 

2007). Lin et al (2007) demonstrated that the effect direction of one variant can differ 

between studies due to differences in correlations with other causal variants or 

environmental factors. Interestingly, the association with HFS was not found in 

patients treated with FOLFOX and was borderline significant, but with allele flipping, 

in patients from QUASAR2 treated with capecitabine alone. Other variants in DPYD 

have also demonstrated this flip-flop effect for reasons unknown (Kleibl et al, 2009; 

Joerger et al, 2015). While the likelihood of a true flip-flop effect occurring is unlikely, 

it cannot be discounted altogether at present. Therefore, further studies are needed 

to investigate this possibility and to understand its potential specificity to particular 

therapeutic combinations.  

 

4.4.4 Lack of significant variants in other meta-analyses 

Despite the increase in statistical power, no significant loci were identified for any 

other toxicities. There are potential explanations; toxicities could be caused by 

numerous SNPs with low effect sizes, which were underpowered in these analyses. 

Alternatively, low-frequency or rare SNPs may explain most phenotypic variance, 

and these were excluded during QC.  

 

4.4.5 Failure to replicate loci identified in Chapter 3 

In the previous chapter (Chapter 3, Section 3.3.4.1), I noted a significant association 

between rs13260246 and vomiting in patients administered XELOX, but in the meta-
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analysis, the association was insignificant. However, this was expected since 

rs13260246 had failed to replicate in the XELOX + cetuximab subgroup previously. 

MROH5 had been significant in both XELOX and XELOX + cetuximab subgroups 

previously (Chapter 3, Section 3.3.4.8), but the random effects model used for the 

meta-analyses likely weakened the association due to the heterogeneity between 

association strengths. The inclusion of covariates during the meta-analysis may also 

have weakened the association, rendering it insignificant. Therefore, further 

investigation is needed to explore the relationship between MROH5 and the 

covariates associated with neutropenia.  

 

4.4.6 Gene and gene set analyses 

Overall, four gene sets were significantly associated with toxicities. Of note, there 

was an association between peripheral neuropathy and genes involved in response 

to food which is supported by a previous observation linking diet to chemotherapy-

induced peripheral neuropathy (Mongiovi et al, 2018). Other forms of peripheral 

neuropathy have also been linked with diet (Spagnoli et al, 2018; Chopra and Tiwari, 

2012). Adopting vegetarianism has been shown to relieve symptoms in patients with 

diabetic neuropathy (Crane and Sample, 1994; Bunner et al, 2015), and there is 

evidence that taking multivitamins reduces the likelihood of a patient experiencing 

chemotherapy-induced peripheral neuropathy (Zirpoli et al, 2017). My data adds 

weight to this promising avenue for the treatment of this toxicity. 
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4.4.7 Study limitations 

The biggest limitation of this study is the low case rates for some toxicities, even 

after meta-analysis. This impacts power and so the study was limited to detect only 

moderate odds ratios.  

 

Additionally, when choosing which subgroups to meta-analyse, I decided to focus on 

identifying variants associated with XELOX and FOLFOX, at the expense of 

identifying toxicity variants associated with cetuximab. I decided to do this because 

XELOX and FOLFOX form the backbone of many different treatment options and are 

associated with a wide range of toxicities. In comparison, cetuximab is not always 

administered as a first line treatment and the only notable symptom is often skin 

rash. 

 

A limitation of the UK Biobank data is that psoriasis was self-reported and thereby 

prone to misclassification and for wound healing, only indirect measures were 

available. However, as a large cohort the impact of incorrect classifications was 

considered minimal. 

 

4.4.8 Conclusions and follow-up studies 

This investigation has confirmed an association between HFS and improved patient 

outcomes. A potential association between ST6GAL1 and the development of HFS 

was also identified. However, given the opposite allele effect in the replication 

cohorts, further replication in larger clinical cohorts is needed to both confirm the 

initial observation and to explore confounding factors, that may be linked with allele-

flipping.
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5 Meta-analyses of COIN and QUASAR2 to investigate loci 

associated with toxicity to capecitabine 

5.1 Introduction 

5.1.1 Diarrhoea risk factors and mechanisms 

Chemotherapy-induced diarrhoea (referred to as diarrhoea herein) is one of the most 

common toxicities, particularly for patients with advanced stage cancer (Stein et al, 

2010). Upwards of 50% of patients develop diarrhoea at some point during treatment 

(Maroun et al, 2007, Akbarali et al, 2022). Diarrhoea is most often associated with 

fluoropyrimidine chemotherapies, but tyrosine kinase inhibitors and EGFR therapies 

also increase incidence rates (Benson et al, 2004; Leichman et al, 1995). Risk 

factors for diarrhoea include infection, having radiation therapy, prior intestinal 

resection, being female and having diabetes (Zalcberg et al, 1998; Meyerhardt et al, 

2004). Common genetic variants in DPYD, ADCY2, MTHFR and ABCB1 have also 

been associated with an increased risk of diarrhoea (Kristensen et al, 2010; García-

González et al, 2015; O’Donnell et al, 2020). 

 

The pathophysiology of diarrhoea is complicated and not yet fully understood. There 

are several documented pathways leading to diarrhoea, working both independently 

and in combination. At least 5 types of diarrhoea have been described in the 

literature: (i) secretory, (ii) osmotic, (iii) malabsorption, (iv) exudative and (v) 

dysmotility. 
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5.1.1.1 Secretory 

The best documented mechanism of diarrhoea is secretory (Thiagarajah et al, 2015). 

During treatment, chemotherapy can damage the intestinal mucosa, leading to a loss 

of epithelial cells. This reduces the surface area used for water absorption causing 

higher volumes of fluid to leave the small intestines. This increased fluid output is 

beyond the absorptive capacity of the colon, resulting in diarrhoea (Keely and 

Barrett, 2022).   

 

5.1.1.2 Osmotic 

Some cancer treatments can disrupt the gastrointestinal osmotic balance which 

leads to increased fluid output. Similar to secretory diarrhoea, this additional fluid is 

beyond the absorptive capacity of the colon. EGFR inhibitor induced diarrhoea is a 

prime example of this mechanism, as it is associated with increased chloride 

secretion in the gut (Secombe et al, 2020; Kim et al, 2020; Tao and Chityala, 2021). 

Osmotic diarrhoea can also be immune-mediated. Chemotherapy can disrupt a 

patient’s microbiome which lets opportunistic infections arise (Ervin et al, 2020). 

Common infections such as Escherichia coli then release toxins that can disrupt the 

gastrointestinal osmotic balance, leading to diarrhoea. 

 

5.1.1.3 Malabsorption 

Malabsorption diarrhoea is caused by enzyme deficiencies or changes to substrate 

absorption, due to chemotherapy damaging intestinal mucosa. The prime example is 

decreased expression of lactase in the intestinal epithelium which can lead to 

temporary lactose intolerance (Parnes et al, 1994; Österlund et al, 2004). Ingestion 

of milk-containing foods then causes diarrhoea. Chemotherapy-induced bile acid 
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malabsorption is another common example, and results in shortened colonic transit 

time, increased water secretion and inhibition of water and electrolyte absorption 

(Jackson et al, 2017). 

 

5.1.1.4 Exudative 

Exudative diarrhoea is caused by damage to intestinal mucosa which leads to 

bleeding and the release of mucosal and submucosal factors into the gut, increasing 

fluid output (Chassany et al, 2012; Field, 2003). Damage to intestinal mucosa also 

reduces its ability to absorb water amplifying the problem. This damage can occur 

because of the chemotherapy directly or indirectly due to intestinal inflammation.  

 

5.1.1.5 Dysmotility 

Dysmotility is the least understood mechanism of diarrhoea. It is characterised by 

increased gut motility which reduces the amount of time for fluid absorption causing 

more fluid to leave the intensities (McQuade et al, 2016). A study in mice (Pini et al, 

2016) showed that cisplatin chemotherapy can cause enteric neuropathy. This 

resulted in dysmotility diarrhoea due to an increase in the amplitude of neurally 

induced contractions. Dysmotility as the primary cause of diarrhoea is rare but it is 

believed to often co-occur with other types (Kroser and Metz, 1996).  

 

5.1.2 Aims 

In this chapter, I aimed to identify genetic variants associated with toxicity to 

capecitabine treatments. I meta-analysed GWAS data for patients in COIN and 

COIN-B administered XELOX with patients in QUASAR2 (Chapter 1, Table 1.4). 
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This aimed to improve upon my previous analyses, by increasing the power to detect 

variants with smaller effect sizes.  
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5.2 Materials and Methods 

5.2.1 Patients and samples 

As previously described (Chapter 2, Sections 2.2.1.4 and 2.2.1.5), toxicity data and 

SNP genotypes were available for 1,800 patients from COIN and COIN-B after QC. 

Out of the 1,800 patients, 707 received XELOX, 345 XELOX + cetuximab, 385 

FOLFOX and 360 FOLFOX + cetuximab.  XELOX was administered as a 3-week 

regimen of 130 mg/m2 intravenous oxaliplatin and 1000 mg/m2 of oral capecitabine 

twice daily for 2 weeks, followed by a break of 7 days. 

 

As previously described (Chapter 2, Section 2.2.2), toxicity and SNP genotypes were 

available for 930 patients from QUASAR2 after QC. Out of the 930 patients, 443 

received capecitabine and 487 received capecitabine + bevacizumab. For all 

patients, capecitabine was administered in 3-week cycles of 1250 mg/m2 twice daily 

for 14 days, followed by a break of 7 days. 

 

5.2.2 Toxicities assessed 

Toxicities measured in both COIN and QUASAR2 were included in the meta-

analysis. These were diarrhoea, HFS, neutropenia, stomatitis and vomiting. In 

QUASAR2, neutropenia was recorded as haematological toxicity, which also 

contained a number of patients with platelet toxicity and stomatitis was recorded as 

mucositis toxicity, which also contained a number of patients with gastrointestinal 

inflammation. Patients with toxicities graded 2-5 (G2-5) were grouped and compared 

against those graded 0-1 (G0-1). 
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5.2.3 Genome-wide association studies 

In Chapter 3, four million SNPs were analysed for a relationship with each toxicity 

under univariate models for each treatment group. Here, I performed similar 

analyses in Plink (v1.9) but incorporated age and sex as covariates into the additive 

logistic models to match the covariates used in QUASAR2 (Purcell et al, 2007). 

Analyses were restricted to directly typed SNPs and imputed SNPs with imputation 

scores ≥0.8, a HWE ≥1.0x10-6 and a MAF ≥0.05.  

 

GWAS summary statistics were provided from QUASAR2 analyses by Dr Claire 

Palles. In their analyses, age and sex were incorporated as covariates. As with 

COIN, analyses were restricted to directly typed SNPs and imputed SNPs with 

imputation scores ≥0.8, a HWE ≥1.0x10-6 and a MAF ≥0.05. 

 

5.2.4 Meta-analyses 

Only the 1,055 patients from COIN administered XELOX ± cetuximab were meta-

analysed with QUASAR2, since all these patients were administered capecitabine. 

All meta-analyses were run under random effects models to account for 

heterogeneity caused by the differing treatments. Results were plotted in R studio 

using qqman (Turner, 2018) and ggplot2. SNPs associated at genome-wide 

significance (P<5.0x10-8) were selected for further analyses.  

 

5.2.5 Gene and gene set analyses 

MAGMA (de Leeuw et al, 2015) was used for gene and gene set analyses. Gene 

analyses were run under a snpwise univariate model imposing a Bonferroni 
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corrected significance threshold of P=2.5x10-6. Gene set analyses were run under 

competitive models with a corrected significance threshold of P=5.8x10-6. 

 

5.2.6 Power considerations 

Power to detect toxicity effect sizes was calculated based upon 70% power, 

P=5.0x10-8 and SNPs with MAFs=0.20. Under these conditions, SNPs with a mean 

OR of 3.5 (range 2.6-5.3 dependent upon toxicity, Table 5.1) could be identified. 

 

5.2.7 Validation of rs4760830 in GEL  

rs4760830 and potential markers of diarrhoea were analysed using participant data 

from GEL. For functional diarrhoea, data was extracted from the ICD-10 diagnoses 

dataset. For the chemotherapy-induced phenotype, cases were classified as patients 

that had diarrhoea within 3 months of being administered chemotherapy. Diarrhoea 

data was extracted from the ICD-10 diagnoses dataset, as previously described 

(Chapter 2 Section 2.2.4.3.1). Chemotherapy data was extracted from the OPCS4 

dataset as previously described (Chapter 2 Section 2.2.4.3.2). Only patients 

administered chemotherapy, but with any cancer, were used in the analyses. 

Controls were classified as patients administered chemotherapy but that never 

reported experiencing functional diarrhoea. Overall, 91 participants had functional 

diarrhoea (28,591 controls) and 16 participants had chemotherapy-induced 

functional diarrhoea (16,925 controls). 

 

5.2.8 Additional bioinformatic analyses 

The GTEx database was used to identify QTLs for relevant SNPs. Significance for 

tissue association was set at P<1.0x10-3 (i.e. Bonferroni correction for 49 tissues 
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[0.05/49]).  Regional association plots were generated using the online version of 

Locuszoom. 
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Table 5.1 Meta-analysed patients with grade 2-5 CTCAE toxicities in COIN and QUASAR2 and detectable odds ratios at 
70% power 
 

 

 

 

 

 

 

 

 

 

 

 

In COIN, 707 patients were given XELOX (capecitabine + oxaliplatin) and 348 were given XELOX + cetuximab. In QUASAR2, 443 

patients were given capecitabine and 487 patients were given capecitabine + bevacizumab. Detectable odds ratios are given for 

the meta-analysis of COIN and QUASAR2 and calculated for a MAF of 0.05 and P-value of 5x10-8. HFS- hand-foot syndrome. 

 

Toxicity 
COIN 

n (%) 

QUASAR2 

n (%) 
 

Detectable odds 

ratio 

Diarrhoea 288 (27) 199 (21)  2.6 

HFS 109 (10) 376 (40)  2.6 

Neutropenia 42 (4) 30 (3)  5.3 

Stomatitis 61 (6) 69 (7)  4.0 

Vomiting 210 (20) 63 (7)  3.0 
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5.3 Results 

5.3.1 Genomic inflation 

The distribution of expected and observed P-values for each meta-analysed GWAS 

and their genomic inflation factor (λ range = 0.80-0.81) indicated there was deflation 

of the test statistics. For diarrhoea in patients administered XELOX ± cetuximab, the 

λ was 0.80. However, individual GWAS test statistics showed no evidence of inflation 

or deflation, indicating the cause was due to heterogeneity correction in the meta-

analysis and not because of abnormal population substructure.  

 

5.3.2 Relationship between genetic variation at TRHDE and diarrhoea 

rs4760830 at 12q21.1 was associated with diarrhoea at genome-wide significant 

levels in patients treated with XELOX or capecitabine (OR=0.6, 95% CI=0.50-0.72, 

P=4.8x10-8, Figure 5.1). 76% (1131/1496) of the controls carried rs4760830 in a 

heterozygous or homozygous state for the minor allele as compared to 66% 

(322/487) of patients with G2-5 diarrhoea (Table 5.2). rs4760830 maps to intron 3 of 

TRH degrading ectoenzyme (TRHDE) and is an eQTL for TRHDE in skeletal muscle 

tissue (P=2.2x10-4). In those skeletal muscle samples, the rs4760830 minor allele 

was associated with increased TRHDE gene expression. 

 

5.3.3 Assessment of rs4760830 in patients administered FOLFOX ± cetuximab 

rs4760830 was not associated with diarrhoea in patients administered FOLFOX 

(OR=1.1, 95% CI=0.80-1.6, P=0.46) or FOLFOX + cetuximab (OR=1.0, 95% 

CI=0.70-1.3, P=0.83).
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Figure 5.1 Regional plots for the association of rs4760830 with diarrhoea. (A) 
Manhattan plot of the association between single-nucleotide polymorphism (SNP) 
genotype and diarrhoea. The red line corresponds to a P=5.0x10-8 and the blue line 
P=1.0x10-5. (B) Locuszoom plot shows results of the analysis for SNPs and 
recombination rates. −log10(P) (y axis) of the SNPs are shown according to their 
chromosomal positions (x axis). The sentinel SNP (purple) is labelled by its rsID. The 
colour intensity of each symbol reflects the extent of linkage disequilibrium with the 
sentinel SNP, deep blue (r2=0) through to dark red (r2=1.0). Genetic recombination 
rates, estimated using 1000 Genomes Project samples, are shown with a blue line. 
Physical positions are based on NCBI build 37 of the human genome. Also shown 
are the relative positions of genes and transcripts mapping to the region of 
association. Genes have been redrawn to show their relative positions; therefore, 
maps are not to physical scale. 
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Table 5.2 Relationship between rs4760830 genotype and diarrhoea in patients from COIN and QUASAR2 broken down by 
treatment 

Treatment groups 

analysed 

Total 

patients 

Patients G0-1 Diarrhoea  Patients G2-5 Diarrhoea 
OR 95% CI P-value 

wild type heterozygous homozygous  wild type heterozygous homozygous 

            

Meta-analysis 1983 365 764 367  165 248 74 0.6 0.50-0.72 4.8x10-8 

            

Subgroups:            

XELOX 707 144 287 111  60 80 25 0.7 0.55-0.92 1.0x10-2 

XELOX + cetuximab 348 51 113 61  41 63 19 0.6 0.45-0.86 4.1x10-3 

Capecitabine 441 79 162 90  35 61 14 0.6 0.44-0.81 1.1x10-3 

Capecitabine + 

bevacizumab 
487 91 202 105  29 44 16 0.6 0.44-0.91 1.4x10-2 

 

OR = Odds ratio, CI = Confidence intervals. 2 patients in QUASAR2 in the capecitabine arm had missing data.
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5.3.4 Attempted validation of rs4760830 in GEL 

rs4760830 failed to associate with functional diarrhoea (OR=0.96, 95% CI=0.7-1.2, 

P=0.77) or chemotherapy-induced diarrhoea (OR=1.1, 95% CI=0.6-2.3, P=0.73) in 

GEL. 

 

5.3.5 Investigating other variants, genes and pathways associated with 

toxicities 

No other SNPs were associated with toxicities in the meta-analyses at genome-wide 

significant levels, but 21 loci were suggestive of association (P<1.0x10-5, Table 5.3,  

not including one SNP that was only present in the two COIN GWAS and therefore 

excluded from further consideration). Of these, 3 of these were associated with 

diarrhoea, 7 with HFS, 4 with neutropenia, 6 with stomatitis and 2 with vomiting. No 

genes or gene sets were associated with toxicities after correction for multiple testing 

(data not shown). 
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Table 5.3 Single nucleotide polymorphisms (SNPs) associated with toxicities 
at P<1.0x10-5 in the meta-analyses 

Toxicity Lead SNP Cytoband OR 95% CI P-value 

Diarrhoea 

rs4760830 12q21.1 0.6 0.50-0.72 4.8x10-8 

rs111397431* 5p13.3 6.8 2.3-11.3 1.9 x10-6 

rs1356918 1p21.3 1.6 1.3-1.9 1.9x10-6 

rs1791807 11q23.2 0.7 0.60-0.82 6.8x10-6 

HFS 

rs1524975 3p14.1 0.6 0.49-0.74 1.6x10-6 

rs146460380 6q14.3 2.1 1.5-2.9 5.6x10-6 

rs6674251 1q42.2 1.5 1.3-1.8 6.0x10-6 

rs2785503 13q33.1 1.5 1.3-1.8 7.5x10-6 

rs9615794 22q13.32 1.7 1.4-2.1 7.6x10-6 

rs852807 1p32.2 1.4 1.2-1.6 7.6x10-6 

rs12603761 17q21.31 1.8 1.4-2.3 8.1x10-6 

Neutropenia 

rs113743917 3p26.3 4.1 2.4-7.0 3.3x10-7 

rs73063718 7p15.3 3.0 2.0-4.6 7.3x10-7 

rs854034 5q11.2 2.4 1.7-3.4 1.3x10-6 

rs12680421 8q24.22 2.4 1.7-3.4 1.6x10-6 

Stomatitis 

rs113336571 6q15 3.1 2.0-4.9 2.1x10-6 

rs7670051 4p15.1 2.3 1.6-3.2 2.7x10-6 

rs58377730 17q21.31 2.7 1.8-4.0 2.8x10-6 

rs2150259 9q31.3 2.2 1.6-3.1 5.1x10-6 

8:96825914 8q22.1 0.5 0.37-0.67 5.5x10-6 

rs4629011 17q21.32 0.3 0.18-0.50 6.2x10-6 

Vomiting 
rs10002298 4p15.1 2.1 1.5-2.9 4.8x10-6 

rs10811964 9p21.3 2.0 1.5-2.7 9.4x10-6 

HFS- Hand-foot syndrome, OR = Odds ratio, CI = Confidence intervals. 
*rs111397431 was present only in COIN and so was excluded from consideration.
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5.4 Discussion 

5.4.1 Exploring the underlying mechanism of rs4760830 in TRHDE 

TRHDE is an excellent candidate for diarrhoea. Although TRHDE has not previously 

been linked with diarrhoea it exhibits high expression in neurons of the enteric 

system (Zeisel et al, 2018; May-Zhang et al, 2021). The enteric system coordinates 

gastrointestinal behaviour and dysfunction is often associated with digestive 

disorders (Rao and Gershon, 2016). As highlighted in Section 5.1.1.5, the enteric 

system could be affected by chemotherapy and thereby induce dysmotility diarrhoea 

(Pini et al, 2016). 

 

The TRH-DE enzyme has very narrow specificity, displaying strong functional 

selectivity for TRH (Charli et al, 2020). TRH is a peptide primarily expressed in the 

brain and serum and its best documented function is controlling the hypothalamus–

pituitary–thyroid (HPT) axis. However, TRH has also been shown to play a role in the 

gastrointestinal tract. TRH is linked to secretory and dysmotility diarrhoea, causing 

marked acceleration of colonic transit by increasing fluid output (Garrick et al, 1987; 

Taché et al, 1989). TRH also stimulates gastric secretion and can cause 

inflammation, both of which can lead to intestinal bleeding and exudative diarrhoea 

(Taché et al, 1989). Moreover, TRH has been implicated in other gastrointestinal 

disorders.  One study found patients with inflammatory bowel disease had a marked 

accumulation of neuropeptides, including TRH, in the lumen of the colon compared 

to healthy controls (Yamamoto et al, 1996). There are no other enzymes which have 

documented activity for TRH, so alterations to TRHDE would likely have a high 

impact on TRH activity (Charli et al, 2020). The regulation of TRH by THR-DE could 

be an underlying mechanism of diarrhoea. Interestingly, TRHDE has an alternative 
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splicing transcript TRH-DE* which has been shown to regulate TRH-DE enzyme 

activity (Chavez-Gutierrez et al, 2005).  Overall, TRHDE represents a promising 

biological candidate but currently lacks genetic validation.  

 

5.4.2 Lack of significant variants in other GWAS 

Despite the increase in power from meta-analysing two clinical cohorts, no other 

significant loci were identified, although 21 loci were suggestive of association. 

These loci may be potential markers of toxicity, however further validation work is 

required to support the initial observation, especially due to lack of strong biological 

evidence for these loci.  

 

The difference in treatments across the meta-analysed groups may be having a 

confounding effect on results. Whilst the 4 subgroups were given capecitabine, all 

subgroups had additional treatments that differed from the others. There is also the 

potential that low-frequency or rare SNPs may play a role, and these were excluded 

in these analyses. 

 

5.4.3 Study limitations 

The biggest limitation of this study is the lack of replication in a capecitabine cohort 

for the association of rs4760830 and diarrhoea. The association failed to replicate in 

any of the validation analyses, however the cohorts used could not be filtered for 

chemotherapy type, and the loci could be capecitabine specific. This is supported by 

the observation that there was no association between rs4760830 and diarrhoea in 

patients administered FOLFOX, but the four arms administered capecitabine used in 

the meta-analysis, all showed nominal significance.  Moreover, data on diarrhoea 
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was limited in GEL, and the only possibly relevant phenotype identified was a severe 

chronic diarrhoea condition. Therefore, the number of participants used as cases 

was extremely small, particularly when compared to the high incidence rate for 

chemotherapy-induced diarrhoea. Therefore, the only conclusion that can be drawn 

is that rs4760830 is not associated with functional diarrhoea in GEL. rs4760830 may 

therefore be associated with other diarrhoea phenotypes.  

 

Lastly, a limitation of the meta-analyses was that they were limited to detect only 

moderate odds ratios so SNPs with low effect sizes (OR <2) may have been missed. 

 

5.4.4 Conclusions and follow up studies 

A novel association between a locus in TRHDE and the development of diarrhoea 

was identified. TRHDE is a strong candidate gene for diarrhoea and could be 

clinically useful as diarrhoea is often a dose limiting toxicity for 5FU treatments. The 

next step would be to identify a cohort which administered capecitabine, to validate 

the association with rs4760830. This would confirm if the association is treatment 

specific or a false positive. 
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6 An analysis of low-frequency SNPs suggests that a 

nonsynonymous variant in the transporter associated with 

antigen processing 1 gene predicts chemotherapy-induced 

sepsis 

6.1 Introduction 

6.1.1 Low frequency variants 

Low frequency variants are SNPs that have MAFs between 1 and 5%. It is well 

established that rare variants (MAFs less than 1%) are unsuitable for inclusion in 

GWAS, as specialist genotyping is required to capture these accurately (Weedon et 

al, 2021). However, the inclusion of low-frequency variants is more debatable. For 

years the standard GWAS cut off has been 5%, with only large population-based 

studies using a MAF of 1%, due to their increased power capabilities. However, in 

recent years, more modestly sized GWAS have started to include low-frequency 

variants to try and explain missing heritability (Manolio et al, 2009; Zuk et al, 2014). 

The inclusion of low-frequency variants does however require additional thought in 

study design (Panoutsopoulou et al, 2013). Since the number of individuals with the 

SNP is low, imputation errors can have a greater effect, thereby giving higher false 

positive rates compared with analysing common variants (Huang et al, 2009). One 

method of alleviating this problem is to perform independent genotyping of candidate 

SNPs, to confirm the association is true (Bomba et al, 2017).  
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6.1.2 Neutropenic sepsis  

There is no universally accepted definition of neutropenic sepsis (referred to as 

sepsis from herein), but it is characterised by a low neutrophil count and the 

indication of infection, in patients receiving anticancer treatment (NICE guidelines, 

2012b). Sepsis is caused by the immune suppression effect of chemotherapy which 

allows opportunistic invasive infections to arise (Bhatt and Saleem, 2004). Due to 

their weakened immune systems, some chemotherapy patients then develop sepsis 

as a complication. On average, sepsis has a mortality rate upwards of 10% 

(Klastersky et al, 2016), with over 700 cancer patients a year in England and Wales 

dying from sepsis (Herbst et al, 2009).  

 

The diagnosis and treatment of sepsis is complex. The underlying infection could be 

viral, bacterial, parasitic or fungal in origin which requires different treatment 

strategies (Freifeld et al, 2011; Lin et al, 2018).  It is also difficult to categorise 

patients with an infection as being at high or low risk of developing septic 

complications. Ideally, patients at low risk would be treated with antibiotics as 

outpatients but patients at high risk would require immediate hospitalisation (Clarke, 

2013). Moreover, misclassification has a high impact; admitting all patients would be 

an unnecessary use of hospital resources but sending a high risk patient home 

would likely result in their death. Known risk factors for sepsis include age, 

performance status, chemotherapy type and dosage (NICE guidelines, 2012b). 

There are currently no known genomic risk factors. 
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6.1.3 Aims 

In previous chapters, I performed GWAS analyses and identified common inherited 

variants associated with chemotherapy-induced toxicities (Chapters 3-5). Given that 

low-frequency and rare variants in the gene encoding DPYD are associated with 

toxicities to 5FU (Schwab et al, 2008, Henricks et al, 2018), in this chapter I 

investigated the role of low-frequency variants. I then sought related phenotypes and 

mechanistic understanding using data from the UK Biobank and GEL. 
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6.2 Materials and Methods 

6.2.1 Patients and genotyping 

Data on toxicities and SNP genotypes were available for 1,800 patients from COIN 

and COIN-B after QC (Chapter 2, Sections 2.2.1.4 and 2.2.1.5). Approximately 1.5 

million low-frequency SNPs were eligible for analysis after QC. In addition, 16 SNPs 

were independently genotyped using KASPar technology (LGC, Hertfordshire). 

 

6.2.2 Clinical endpoints 

Toxicities assessed were diarrhoea, sepsis, peripheral neuropathy, HFS, 

neutropenia, lethargy, stomatitis, nausea, vomiting and rash. Patients with toxicities 

graded 2-5 (G2-5) were grouped and compared against those graded 0-1 (G0-1). 

For the association between rs56020058 and sepsis, a linear model was also 

considered to assess if rs56020058 was associated with toxicity severity.  

 

6.2.3 Power considerations 

Power to detect SNP effect sizes was calculated, based upon 70% power and 

P=5.0x10-8. Under these conditions I could identify SNPs with MAFs of 0.05 and 

0.01 having mean ORs of 3.0 (2.6-5.4) and 10.1 (8.8-15.9), respectively. For sepsis, 

the detectable OR were 3.3 and 10.1.  

 

6.2.4 GWAS 

GWAS were performed using additive logistic models in Plink (v1.9), incorporating 

chemotherapy regimen and cetuximab status as covariates. All 1,800 patients with 

toxicity data were analysed together (Chapter 1, Table 1.4). Analyses were 

restricted to directly typed SNPs and imputed SNPs with imputation scores ≥0.9. A 
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higher threshold for imputation scores was used here than in other chapters since 

errors impact low-frequency SNPs more than common SNPs. Other SNP filters were 

a HWE ≥1.0x10-6 and a MAF ≥0.01 and ≤0.05. SNPs of suggestive significance 

(P<1.0x10-5) that mapped to or within 50kb of a protein coding gene were selected 

for additional genotyping. These SNPs were then tested for association again. Only 

rs56020058 associated with sepsis, remained at a suggestive significance threshold. 

Results were plotted in R studio using qqman (Turner, 2018).  

 

6.2.5 Bioinformatic analyses 

Fine mapping was performed for the TAP1 locus using PAINTOR (Kichaev et al, 

2014) (Chapter 2, Section 2.5.4.1). A credible set of causal SNPs was assembled for 

95% coverage. Homologous TAP1 sequences were extracted from the NCBI 

database and aligned using Clustal Omega (Sievers et al, 2011). The location of 

splice sites was predicted using Cytognomix’s ValidSpliceMut (Shirley et al, 2019). 

The in silico analysis tools CADD (Kircher et al, 2014), PolyPhen (Adzhubei et al, 

2010) and SIFT (Sim et al, 2012) were used to predict the impact of variants on 

protein function. 

 

6.2.6 Sepsis in UK Biobank and GEL 

rs1057149 in TAP1 was analysed for an association with sepsis using participant 

data from the UK Biobank and GEL. For both, sepsis data was extracted from the 

ICD-10 diagnoses datasets (Chapter 2 Sections 2.2.3.3.1 and 2.2.4.3.1). 

Chemotherapy data was extracted from the OPCS4 datasets (Chapter 2 Sections 

2.2.3.3.3 and 2.2.4.3.2). Cases were classified as participants that experienced a 

sepsis event within 3 months of being given chemotherapy. Controls were classified 
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as participants administered chemotherapy but who had never had sepsis. For CRC 

phenotypes, data field 40006 in the UK Biobank and the cancer_participant_disease 

table in GEL were used to filter for participants with a history of CRC or cancer. 

 

In the UK Biobank, 1,091 participants had chemotherapy-induced sepsis (12,090 

controls), 92 had CRC chemotherapy-induced sepsis (1,662 controls) and 241 had 

septic shock (335,030).  In GEL, 667 participants had chemotherapy-induced sepsis 

(3,665), 77 had CRC chemotherapy-induced sepsis (676) and 4,894 had septic 

shock (30,494). 

 

6.2.7 Immune and inflammatory markers 

rs1057149 in TAP1 was tested for an association with lymphocyte, neutrophil, 

monocyte, eosinophil, platelet and basophil counts (109 cells/litre) in the UK Biobank 

using PHESANT (Chapter 2 section 2.5.4.2). Lymphocyte, platelet, neutrophil and 

monocyte counts were analysed under a linear regression model and basophil and 

eosinophil counts were analysed under an ordered logistic model as software default 

due to limited variation in the data. Results were held to a significance threshold of 

P=8.3x10-3 (Bonferroni correction for 6 tests, P=0.05/6).  

 

Other loss of function variants in TAP1 have been associated with chronic 

respiratory infections. Therefore, I also tested rs1057149 for an association with self-

reported septicaemia (326 cases, 334,945 controls), ICD recorded bronchitis (3,016 

cases, 332,255 controls), ICD recorded sinusitis (2,232 cases, 333,039 controls) and 

self-reported sinusitis (1,631 cases, 333,640 controls) in the UK Biobank. 
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6.3 Results 

6.3.1 Genomic inflation 

The distribution of expected and observed P-values for each GWAS and their 

genomic inflation factors (λ range= 0.99-1.01) indicated there was no inflation or 

deflation of the test statistics. Therefore, no underlying population substructure was 

present. 

 

6.3.2 Association between rs56020058 and sepsis 

rs56020058 (imputation score=0.98, MAF in EUR=0.02) in intron 5 of TAP1 was the 

most significant SNP associated with sepsis (OR=6.1, 95% CI=3.0-12.8, P=1.2x10-6, 

Figure 6.1). Direct genotyping showed 100% (1,733/1,733) genotype concordance 

with the imputed genotypes. 18.8% (13/69) of patients with G2-5 sepsis carried 

rs56020058 in a heterozygous state as compared to 4.2% (70/1,686) with G0-1 

sepsis (Table 6.1). The association remained significant as a linear trait (OR=1.4, 

95% CI=1.2-1.6, P=1.3x10-7, Table 6.1).  

 

Sepsis was more common in patients treated with FOLFOX (8%) than XELOX (1%, 

P=2.7x10-17); however, the relationship between rs56020058 and sepsis was not 

affected by chemotherapy regimen (Pinteraction=0.43), nor cetuximab status 

(Pinteraction=0.27) (Table 6.2). Neither of the known toxicity-associated DPYD variants 

were associated with sepsis (IVS14+1G>A, 18/1,712 with G0-1 versus 2/69 with G2-

5 sepsis, P=0.08 and Asp949Val, 15/1,714 with G0-1 versus 2/69 with G2-5 sepsis, 

P=0.06) and exclusion of the four patients carrying these variants did not significantly 

affect the association seen with rs56020058 (P=2.8x10-5 grouped model).  
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rs56020058 was also associated with neutropenia (found in 4%, 65/1,511 patients 

with G0-1 versus 8%, 20/247 with G2-5 neutropenia, OR=1.8, 95% CI=1.0-3.2, P= 

4.1x10-2; linear model P=2.9x10-4), which itself was associated with sepsis 

(P=7.3x10-37).   

 

rs56020058 was an eQTL for PSMB8-AS1 (whole blood and skin not sun exposed) 

and an sQTL for TAP1 (whole blood and skin not sun exposed) and PSMB9 (whole 

blood). The associated TAP1 isoform was ENST00000486332, which typically has 

the highest transcripts per million (TPM) in spleen tissue (TPM = 19.5), but also 

shows some expression in skin not sun exposed tissue (TPM = 8.01). The 

associated PSMB9 isoform was ENST00000464863, which typically has low 

expression in most tissues, being highest also in spleen tissue (TPM = 2.95). 
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Figure 6.1 Regional plots for the association of rs56020058 with sepsis. (A) 
Manhattan plot of the association between single-nucleotide polymorphism (SNP) 
genotype and sepsis. The red line corresponds to a P=5.0x10-8 and the blue line 
P=1.0x10-5. (B) Locuszoom plot shows results of the analysis for SNPs and 
recombination rates. −log10(P) (y axis) of the SNPs are shown according to their 
chromosomal positions (x axis). The sentinel SNP (purple) is labelled by its rsID. The 
colour intensity of each symbol reflects the extent of linkage disequilibrium with the 
sentinel SNP, deep blue (r2=0) through to dark red (r2=1.0). Genetic recombination 
rates, estimated using 1000 Genomes Project samples, are shown with a blue line. 
Physical positions are based on NCBI build 37 of the human genome. Also shown 
are the relative positions of genes and transcripts mapping to the region of 
association. Genes have been redrawn to show their relative positions; therefore, 
maps are not to physical scale. Fine mapping identified a set of 20 credible SNPs 
(boxes). 
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Table 6.1 Relationship between rs56020058 and sepsis 

Model 
Grade of 

sepsis 

 rs56020058 genotype 
% of 

patients 
OR 

95% 

CI 
P-value 

 wild type heterozygous 

Grouped 

0-1  1616 70 4.2 

6.1 3.0-12.8 1.2x10-6 

2-5  56 13 18.8 

         

Linear 

0  1608 69 4.1 

1.4 1.2-1.6 1.3x10-7 
1  8 1 11.1 

2  20 5 20.0 

3  29 8 21.6 

 4  7 0 0    

 

OR = Odds ratio, CI = Confidence intervals. No patients were homozygous for the minor allele. 45 patients had missing genotype 

data. For the linear model the exponential of the beta coefficient is given in place of OR.
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Table 6.2 Relationship between rs56020058 and sepsis by treatment 

Treatment 

Grade of sepsis 

OR 95% CI P-value 

G0-1 G2-5 

XELOX 36/702 2/5 13.4 2.2-82.8 5.4x10-3 

XELOX + cetuximab 14/347 0/1 NA NA NA 

FOLFOX 13/341 6/24 5.9 1.9-18.5 2.1x10-3 

FOLFOX + 

cetuximab 
7/296 5/39 4.3 1.3-14.3 1.8x10-2 

 

OR – Odds ratio, CI – Confidence intervals, NA – not applicable (insufficient number 

of cases to run the logistic regression). 45 patients had missing genotype data. The 

grade of sepsis columns (columns 2 and 3) show the number of patients 

heterozygous for rs56020058 (no patients were homozygous for the minor allele) out 

of the total number of patients with that grade of toxicity.
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6.3.3 Fine mapping of the TAP1 locus to identify the causal SNP 

Fine mapping identified a 95% credible set of causal variants consisting of 20 SNPs, 

including two nonsynonymous variants (rs1057149, p.Arg648Gln, c.1943G>A and 

rs41550019, p.Val458Leu, c.1372G>T) and a potential cryptic acceptor splice site 

(rs17213826, 1567-159G>T) in TAP1, all in linkage disequilibrium with rs56020058 

(R2=1.0, D’=1.0) (Table 6.3). rs1057149 was predicted to be dysfunctional by all 

three in silico analysis programmes whereas rs41550019 and rs17213826 were 

predicted to be benign (Table 6.3). rs1057149 lies in TAP1’s signature region at a 

moderately conserved residue (Figure 6.2). 

 

6.3.4 Attempting to replicate the association in UK Biobank  

rs1057149 failed to associate with chemotherapy-induced sepsis in participants with 

any cancer (OR=0.93, 95% CI=0.68-1.3, P=0.62), chemotherapy-induced sepsis in 

CRC participants (OR=1.29, 95% CI=0.51-3.3, P=0.59) or septic shock (OR=1.0, 

95% CI=0.54-1.9, P=0.99), despite having adequate power (>99%). 

 

6.3.5 Attempting to replicate the association in GEL  

rs1057149 failed to associate with chemotherapy-induced sepsis in participants with 

any cancer (OR=0.21, 95% CI=0.08-0.58, P=2.6x10-3), chemotherapy-induced 

sepsis in CRC patients (OR=0.56, 95% CI=0.07-4.08, P=0.57) or septic shock 

(OR=0.84, 95% CI=0.66-1.07, P=0.16), despite having adequate power (>99%). 
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Table 6.3 Potential causal SNPs in TAP1 in linkage disequilibrium with rs56020058 
 

SNP Mutation Effect Details CADD score PolyPhen score SIFT Citations 

rs1057149 
p.Arg648Gln 

(c.1943G>A) 
Nonsynonymous 

Non-conservative 

amino acid change 
35.00 0.98 Deleterious Yang 2005 

rs41550019 
p.Val458Leu 

(c.1372G>T) 
Nonsynonymous 

Conservative amino 

acid change 
23.70 0.30 Tolerated NA 

rs17213826 1567-159G>T Intronic 

*Potential cryptic 

acceptor splice site 
4.04 NA NA NA 

 

NA – not applicable (PolyPhen and SIFT predictions can only be determined for nonsynonymous SNPs). Variants with CADD 

scores >30 are predicted to be in the top 0.1% of the most deleterious substitutions in the human genome. PolyPhen scores range 

from 0 (tolerated) to 1 (deleterious) with scores >0.85 predicted to be damaging. *Predicted using ValidSpliceMut
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Figure 6.2 Conservation of the TAP1 signature region and rs1057149 (p.Arg648, position 38, arrow, single amino acid code 
R648). TAP1 homologs - ARB08461.1 (Human), XP_001115506.2 (Rhesus macaque), XP_038538650.1 (Dog), NP_001091527.1 
(European cattle), NP_038711.2 (House mouse), XP_002714647.1 (European rabbit), XP_002665053.1 (Zebrafish),  
XP_002935231.2 (Western clawed frog), NP_523740.3 (Common fruit fly), HBC7235163.1 (Escherichia Coli), GAQ41780.1 
(Aspergillus niger), WP_139387570.1 (Salmonella enterica), NP_001300412.1 (Roundworm), BAA01537.1 (Fission yeast) and 
NP_001327192.1 (Thale cress). Out of 400 organisms with corresponding sequences, 3 (Rattlesnake, Osprey and Wombat) 
harboured the variant associated with sepsis (R to Q) – normally this residue is conserved with a basic amino acid (R or K). The 
blue box shows α-helix 5, and the green box shows β-strand 9. * indicates a highly conserved residue, : a moderately conserved 
residue, and no icon indicates the residue is not conserved.  

Signature region 
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6.3.6 Association between rs1057149 and immune markers 

I sought further evidence for a mechanistic role for rs1057149 in TAP1 in immune 

surveillance and found that carriers in the UK Biobank had significantly increased 

neutrophil (beta=0.060, 95% CI=0.036-0.084, P=1.1x10-6), lymphocyte (beta=0.044, 

95% CI=0.023-0.065, P=4.7x10-5) and monocyte (beta=0.0062, 95% CI=0.0023-

0.01, P=1.7x10-3) counts and a decreased platelet (beta=-1.8, 95% CI=-0.0032-

0.0015, P=6.4x10-4) count (Table 6.4). rs1057149 was not associated with 

septicaemia (P=0.08), bronchitis (P=0.85), or sinusitis (P=0.19). 

 

6.3.7 Other loci of suggestive significance 

Four other lead SNPs were suggestive of an association with sepsis. rs1318972 

mapping to BMPR1B, rs545354772 mapping to MALRD1, rs151306999 mapping to 

CYP4X1 and rs118000691 mapping to MIR548XHG (Table 6.5). None of these 

SNPs were significant QTLs for any genes. For the other toxicities, 11 loci were 

associated at suggestive significance thresholds. Of these, 1 was associated with 

peripheral neuropathy (rs33934646), 3 with stomatitis (rs16930421, rs139984076, 

rs3102166), 1 with nausea (rs1280847118), 4 with vomiting (rs75199447, 

rs201898372, rs31789, rs77158774), 1 with neutropenia (rs56282256) and 1 with 

HFS (rs11573121).  Direct genotyping showed 93-97% genotype concordance to the 

imputed genotypes. After re-analysis using the actual genotypes none of these loci 

remained associated at a suggestive significance threshold, so all were excluded 

from further analysis. 
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Table 6.4 Relationship between rs1057149 in TAP1 and blood immune cells in 
the UK Biobank 

Immune cell type Beta 95% CI P-value A-allele effect 

Neutrophil 0.059 0.034, 0.03 1.5x10-6 Increased 

Lymphocyte 0.043 0.022, 0.065 5.4x10-5 Increased 

Platelets -1.8 -2.8, - 0.74 7.1x10-4 Decreased 

Monocytes 0.0060 0.0022, 0.010 2.0x10-3 Increased 

Basophils 0.0011 0.00023, 0.0020 0.013 NA 

Eosinophil -0.00096 -0.0033, 0.0013 0.42 NA 

 

CI – Confidence Intervals, NA – Not applicable 
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Table 6.5 Lead SNPs from GWAS associated with sepsis at P<1.0x10-5 

Lead SNP Cytoband Closest gene OR 95% CI P-value 

rs56020058 6p21.32 TAP1 6.1 3.0-12.8 1.2x10-6 

rs1318972 4q22.3 BMPR1B 5.7 2.7-12.2 6.2x10-6 

rs545354772 10p12.31 MALRD1 8.4 3.3-21.2 6.4x10-6 

rs151306999 1p33 CYP4X1 9.9 3.6-26.8 7.0x10-6 

rs118000691 21q21.1 MIR548XHG 9.7 3.6-26.2 8.2x10-6 

 

OR = Odds ratio, CI = Confidence intervals.
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6.4  Discussion 

6.4.1 Potential clinical utility of rs1057149 in TAP1 

rs1057149 in TAP1 has a frequency of 3% in the European population. Carriers of 

rs1057149 had a greater risk of developing neutropenic sepsis with an effect size 

(OR=6.1) that has the potential to have clinical impact. In terms of positive predictive 

value, of the 83 carriers in COIN and COIN-B, 15.7% (n=13) developed G2-5 sepsis. 

In patients treated with FOLFOX this increased to 35.5% (11/31 carriers developed 

G2-5 sepsis), although this is less than for the known variants in DPYD 

(IVS14+1G>A, 57.9-73.6% and Asp949Val, 62.5-68.8% for other toxicities in COIN 

and COIN-B. It is also probable that this initial effect size is inflated due to the 

winner’s curse phenomenon, so the true OR is likely smaller. Therefore if this locus 

is validated, these validation OR would likely provide a more accurate estimate. 

 

6.4.2 Exploring the underlying mechanism of rs1057149 in TAP1 

rs1057149 was predicted to affect TAP1 function and lies within the signature region 

thought to play a role in ATP hydrolysis and peptide transport efficiency (Chen, 

2004). A recent study (Chen et al, 2022) analysing the effect of human leukocyte 

antigen (HLA) genes in sepsis using transcriptome data, showed there is lower 

expression of TAP1 in all-cause sepsis samples compared to control samples. 

Another study using colon cancer samples found that the A-allele of rs1057149 

occurred 17.5 more frequently in samples with reduced cell surface HLA compared 

to samples with normal cell surface HLA (Yang et al, 2005). Their samples with 

rs1057149 also showed impaired transporter activity, exhibiting only 20% activity 

relative to samples with the wild type allele. Together, these data suggest that TAP1 
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and specifically rs1057149 represents a potential biological candidate for sepsis, 

although further work would be required to confirm the mutational impact. 

 

rs1057149 was also associated with immune blood-based biomarkers levels in the 

UK Biobank. Interestingly, rs1057149 was associated with a lower platelet count. A 

study of chronic liver disease patients showed that those with reduced platelet 

counts, even within normal parameters, had an increased risk of adverse events 

(Ouyang et al, 2021). rs1057149 was also associated with higher neutrophil, 

lymphocyte and monocyte counts.  As discussed in Chapter 4, increased white blood 

cell counts can be indicative of wound healing and systemic inflammation. 

Additionally, marginal increases in white blood cell counts can be indicative of 

various health conditions including T2D (Gkrania-Klotsas et al, 2010) and 

cardiovascular disease (Kabat et al, 2017). Patients with rs1057149 may therefore 

have underlying health conditions that increase their sepsis risk. Loss of function 

mutations in TAP1 are causal of bare lymphocyte syndrome, a recessive 

immunodeficiency disorder where patients experience chronic infections. However, 

in the UK Biobank, rs1057149 was not associated with chronic respiratory infections.  

 

Despite some supporting biological evidence, the association between rs1057149 

and sepsis failed to replicate in any of the validation cohorts. However, no 

information was available on which chemotherapy was administered, which may 

have confounded results. Moreover, the initial association failed to reach genome-

wide significance, although this was likely due to low power.  
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6.4.3 Other suggestive significance loci 

After re-analysis using the actual genotypes, all other loci were no longer associated 

at suggestive significance thresholds. It is likely these results were false positives in 

the initial GWAS, so these were not explored further.  

  

6.4.4 Conclusions and follow-up studies 

rs1057149 could be a possible biomarker of sepsis but currently lacks genetic 

validation, and the initial observation also failed to reach genome-wide significance. 

Therefore, a priority for future study would be to identify clinical trial cohorts which 

administered 5FU chemotherapies, that could be used to validate the association. 

Overall, this study has shown that the analysis of low-frequency variants may help 

identify novel toxicity biomarkers. However, given how many loci did not remain at 

even suggestive significance thresholds after genotyping was performed, this 

highlights the complexities of analysing low-frequency variants in small to medium 

sized cohorts. 
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7 General discussion 

7.1 Thesis aims 

This thesis has focussed on identifying germline biomarkers associated with toxicity 

to chemotherapeutics. Historically most studies analysing toxicity have used a 

candidate gene approach to identify potential biomarkers (Rosmarin et al, 2014; 

Pellicer et al, 2017). However, this has been hampered by the often-limited 

understanding of the pathways underlying toxicity (Stein et al, 2010; Vichaya et al, 

2015; Pergolizzi et al, 2017). Therefore, this thesis used GWAS methods to identify 

novel variants and genes associated with toxicity to chemotherapeutics.  

 

7.2  Notable novel findings 

7.2.1 Association between MROH5 and neutropenia  

In treatment specific analyses (Chapter 3), the gene MROH5 was significantly 

associated with neutropenia in patients treated with XELOX. This association was 

then independently replicated in those receiving XELOX + cetuximab, suggesting the 

potential for clinical utility. However, determining whether MROH5 or the nearby 

PTP4A3 is causal is needed before this could be achieved. This is currently limited 

by the unknown function of MROH5, which requires further study.  

 

7.2.2 Association between rs6783836, HFS and inflammation 

In the COIN meta-analyses (Chapter 4) I found rs6783836 at ST6GAL1 was 

significantly associated with HFS in patients treated with XELOX and was borderline 

significant in patients receiving capecitabine from QUASAR2, but with an opposite 

allele effect. In the UK Biobank, ST6GAL1 was associated with T2D, and the 

rs6783836-T allele was associated with lowered HbA1c levels, lymphocyte count, 
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and psoriasis beyond thresholds for multiple testing. Together, these data suggest 

that inflammatory pathways could be targeted to treat or prevent the development of 

HFS. This would be of value as I and previous studies have shown that HFS is 

associated with treatment efficacy (Stintzing et al, 2011; Zielinski et al, 2016). HFS is 

often a dose-limiting toxicity for capecitabine, but my data suggest that HFS should 

be tolerated where possible. However, the issue of allele effect direction must be 

resolved, before ST6GAL1 could be useful as a biomarker. 

 

7.2.3 Association between rs4760830 and diarrhoea 

In the meta-analyses with QUASAR2 (Chapter 5) I identified that rs4760830 in 

TRHDE was significantly associated with diarrhoea, although the association failed 

to replicate in GEL. However, rs4760830 was nominally significant in all meta-

analysis subgroups, suggesting the potential for replication in other clinical trial 

cohorts. Furthermore, TRHDE is a biologically strong candidate exhibiting high 

expression in enteric system neurons and its activity impacts several diarrhoea 

mechanisms (May-Zhang et al, 2021; Taché et al, 1989; Charli et al, 2020). One 

possibility for the lack of validation in GEL was that the phenotype used was too 

inaccurate or heterogeneous to show any level of association. Unfortunately, this 

limitation was due to a lack of well-defined toxicity data available in GEL. 

Furthermore, neither rs4760830 nor any SNP in strong LD with it were genotyped in 

UK Biobank.  Overall, my results suggest that rs4760830 and THR-DE warrant 

further investigation, especially as diarrhoea is a common side effect of many 

chemotherapeutics.  
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7.2.4 Association between TAP1 locus and sepsis 

In the low-frequency GWAS, I identified that rs56020058 in TAP1 was associated 

with sepsis (Chapter 6). Although rs56020058 was not genome-wide significant, it 

represents a strong candidate for chemotherapy-induced sepsis for several reasons. 

Firstly, it is in LD with a nonsynonymous variant (rs1057149) in TAP1. TAP1 plays a 

key role in the immune system via the presentation of antigens onto the surface of 

lymphocytes. rs1057149 is predicted to be dysfunctional by in silico analysis tools 

and lies in TAP1’s signature region at a moderately conserved residue. Previous 

literature has also shown rs1057149 impairs antigen transporter activity in vitro and 

is associated with reduced levels of cell surface HLA (Yang et al, 2005). Moreover, 

other rare loss of function mutations in TAP1 are also causal of Bare Lymphocyte 

Syndrome type 1, a recessive immunodeficiency disorder characterised by recurrent 

respiratory infections (Gadola et al, 2000; Law-Ping-Man et al, 2018). However, the 

initial observation was not genome-wide significant, and I was biased in following up 

on this locus due to the strong biological evidence present in the literature for TAP1. 

Furthermore, the locus lacks independent genetic replication at present, with all 

validation analyses failing to replicate the initial observation. 

 

7.3  Thesis themes and implications of findings 

7.3.1 Lack of validation and the potential of markers being therapy specific  

One theme throughout this thesis is the lack of validation for investigated loci. On 

one hand, this could be down to results being false positives, a common problem in 

GWAS (Kaler and Purcell, 2019). However, there is also the potential that some 

markers are treatment specific and therefore would not replicate unless treatment 
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matching cohorts were used. As toxicity incidence rates do differ between XELOX 

and FOLFOX treatments there must be some underlying difference in the 

mechanism of toxicity effect, supporting this possibility. Another possibility is that the 

heterogeneity between discovery and validation cohorts caused by other 

unaccounted for variables was too significant which could also confound results 

(Manchia et al, 2013; Liu et al, 2008).  

 

7.3.2 Lack of common variants associated with toxicities 

Throughout this thesis, another prominent theme is the lack of significant common 

variants with modest to large effect sizes. This is demonstrated by the QQ plots 

throughout, with lambdas often lower than expected although still within acceptable 

parameters. To counteract both this and the low power for some toxicities, I 

investigated loci at suggestive significance to identify any biologically promising but 

perhaps underpowered loci. However, the majority of these loci also failed to 

validate. Overall, these results were unexpected which led me to conclude that either 

common variants have lower effect sizes which require larger cohorts to find them or 

that low-frequency or rare variants may play a larger role than common variants. 

 

7.3.3 Potential for use of markers in other cancers 

5FU based chemotherapeutics are also used for other common cancers such as 

breast and pancreatic, so it is therefore important to consider if tumour location has 

any effect on the relationship between SNPs and toxicity. At present, there is little 

data in the literature on the effect of tumour location on toxicity frequency and 

toxicity-associated variants. While differences in administration and dosages may 

have an impact on toxicity frequency between cancers (Hansen et al, 1996), it is 
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likely variants will still be applicable, with DPYD variants used for 5FU guiding 

regardless of tumour location (Innocenti et al, 2020). 

 

7.3.4 Clinical utility 

The detection and validation of toxicity biomarkers is an important avenue in the 

treatment of cancer patients. This knowledge could prevent patient death or limit 

severe side effects thereby improving patient quality of life.  Depending on effect 

size, the loci identified in this thesis could be utilised in various ways. Loci with large 

effects such as the TAP1 locus may be used as biomarkers in the clinic directly if 

validated, like the currently used DPYD variants (Morawska et al, 2018). Loci with 

smaller effect sizes are not clinically useful at present, considering the cost of 

genotyping and the lack of infrastructure to guide clinicians. However, in the future 

these variants could be utilised in combination using methods such as polygenic risk 

scores (Adeyemo et al, 2021). 

 

How the variants are utilised in the clinic could also vary depending on the potential 

severity of a toxicity. Patients at risk could be kept on treatment but with enhanced 

monitoring, have dose reductions or be administered a different chemotherapy 

altogether if the risk and potential severity is high (Morawska et al, 2018; Hodroj et 

al, 2021). The use of genomic biomarkers also lends itself to one emerging avenue 

in personalised cancer care which is the shared decision-making policy. The policy 

allows both patients and clinicians to have input into treatment decisions and has 

been shown to improve patient quality of life and patient satisfaction (Kashaf and 

McGill, 2015; Nayak et al, 2017). Implementation of toxicity markers would allow for 
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effective shared decision making by allowing patients the chance to balance their 

quality of life and survival outcomes.  

 

Outside the clinic, novel SNPs or genes can also improve the understanding of 

cellular pathways involved with toxicity and drug reactions (Cirillo et al, 2018). This 

could ultimately help lead to treatments to prevent or treat toxicity. Furthermore, as 

some toxicities are linked to patient outcomes, these markers may also help to 

understand and improve treatment efficacy (Stintzing et al, 2011). 

 

7.4 Strengths and limitations of this thesis 

The methodologies and cohorts used throughout this thesis have their strengths and 

limitations which may have impacted thesis findings.  

 

7.4.1 Power and sample size 

To date, this is the largest published GWAS for toxicity to CRC chemotherapeutics in 

terms of both sample size and scope. I have performed GWAS for 10 toxicities, 

some of which have not been assessed in the literature before.   

 

However, one limitation of the cohort was the low event rate for some toxicities which 

then reduced power. Moreover, in Chapter 6, power was limited due to both the low 

event rate of sepsis and the fact MAF is also associated with power. Therefore, any 

genuine variants with low effect sizes will have been underpowered and not reached 

significance. I attempted to alleviate this by assessing the biological relevance of any 

loci at suggestive significance.  
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7.4.2 Phenotype classification 

In COIN and COIN-B, toxicity events were recorded by physicians and therefore the 

phenotypes analysed are precise. However, for some of the phenotypes used in the 

meta-analyses, QUASAR2 did not have exact matches available. Nevertheless, the 

phenotypes used instead were clinically relevant and similar, so this was expected to 

have little impact on the results. An additional problem of using QUASAR2 was that 

patients were only administered capecitabine rather than XELOX, and half of the 

patients were also administered bevacizumab. Therefore, this heterogenicity may 

have impacted results. However, the most clinically useful markers would be those 

that are predictive regardless of other treatments administered so these results were 

useful for assessing the generality of potential markers.   

 

I also utilised the population cohorts, UK Biobank and GEL as validation cohorts. 

While they were useful due to their size and extensive genomic data, their lack of 

directly coded toxicity data, frequently limited the ability to match phenotypes with 

accuracy. Instead, I attempted to utilise the ICD diagnoses datasets to extract 

clinically relevant phenotypes. However, using the diagnoses dataset presented its 

own limitations. Since 2018, the NHS has used SNOMED CT codes to record patient 

diagnoses, but both the UK Biobank and GEL convert these to the older ICD codes. 

During this process, codes may have been incorrectly matched or valuable 

information may be lost during conversion, since exact matches between the two 

systems are not always available (Fung and Xu, 2012). Furthermore, for both 

cohorts, although I could identify patients with cancer that were given chemotherapy, 

no data on which chemotherapy regimens were administered was available. 

Therefore, this heterogeneity could have confounded results. However, it was 
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expected that most CRC patients would have been administered 5FU based 

therapies since 5FU is the most common treatment for CRC (Gustavsson et al, 

2015). Nonetheless, other treatments administered in combination could have still 

confounded results since they would have their own toxicity profile (Braun and 

Seymour, 2011).  

 

7.5  Future work 

7.5.1 Validation of SNPs 

The main focus of any future work would be attempting to validate discussed loci in 

suitable validation cohorts. Ideally, SNPs would be validated in other clinical trial 

datasets with matching treatment regimens. These trials would also need to have 

similar clinical measures to use as covariates where needed.  At present, no other 

large CRC trials could be identified that had toxicity and genotyping data available. 

As mentioned earlier, one possible avenue would be to consider trials for other 

cancers where 5FU and capecitabine chemotherapies were administered.   

 

Additionally, in upcoming years the UK Biobank plans to release data on 

chemotherapy regimens. Therefore, a future goal would be to repeat any validation 

analyses that utilised the UK Biobank while adjusting for treatment regimen. This 

could potentially reveal effects that were previously masked.  

 

7.5.2 Meta-analysis 

Once validation cohorts are identified, another future goal would be to perform 

further meta-analyses using these, together with COIN and QUASAR2.  This would 

increase power and allow for the identification of SNPs with low effect sizes. This 
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would help determine if the common disease common variant hypothesis or common 

disease, rare variant hypothesis, is most applicable for chemotherapy-induced 

toxicities. 

 

7.5.3 Updating COIN imputation 

The reference panel that was used for the original imputation of COIN and COIN-B is 

now over a decade old. Therefore, a future goal would be to update this imputation. 

Re-imputing with a newer reference panel or combination of reference panels would 

allow the inclusion of more SNPs and allow for more accurate capture of low-

frequency and rare variants. Combining UK10k and 1000 genomes reference panels 

has been shown to vastly improve the imputation quality of low-frequency and rare 

variants in particular. In the Framingham Heart Study (based on 105,796 actual 

genotypes), imputation with 1000 genomes added 15,245,172 low-frequency and 

rare variants, whereas imputation with 1000 genomes + UK10k added 21,449,101 of 

these variants, equating to a 1.4x increase (Chou et al. 2016). Given the associated 

increases in imputation quality score (from 63% to 76%), it would be of great benefit 

to re-impute COIN using the larger reference panel and repeat analyses to identify 

any previously missed loci. 

 

7.5.4 Whole exome and whole genome sequencing 

Alternatively, performing whole exome sequencing (WES) or whole genome 

sequencing (WGS) on the COIN and COIN-B samples would also provide high 

accuracy and maximise the number of variants available for analysis (Höglund et al, 

2019).  The main limitation for this currently is cost, however in future years both 
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WES and subsequently WGS are likely to become more affordable and 

commonplace. 

 

In the short-term WES will be the most attractive option for association studies, as 

over 85% of known disease-causing mutations lie within exomes, whilst costing 

significantly less than WGS (Lacey et al, 2014). However, efforts to functionally 

annotate the genome will eventually make WGS more attractive and will likely lead to 

novel loci and mechanisms being identified (Kim and Wei, 2016). This would be of 

great benefit for toxicity analyses since many of the underlying mechanisms are 

currently unknown. 

 

7.5.5 Machine learning approaches 

Machine learning (ML) models are algorithms capable of analysing complex data to 

identify patterns or make predictions.  In genomics, ML is an emerging method that 

could build and improve upon GWAS and post-GWAS methodology (Nicholls et al, 

2020). Whilst GWAS have proven successful at identifying novel loci, there are 

limitations to the methodology. One limitation is that SNPs are analysed separately, 

missing any loci interaction effects (McCarthy et al, 2008; Slim et al, 2020).  Another 

is the time and resources needed to perform downstream analyses post-GWAS in 

order to provide functional validation (Nicholls et al, 2020). This can be especially 

demanding when investigating polygenic traits where many loci can be identified in a 

single GWAS. However, studies have shown ML can successfully be used to 

address both of these limitations and more. To date, ML models have been used to 

increase GWAS statistical power (Mieth et al, 2016), identify epistatic loci (Leem et 
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al, 2014), perform variant and gene prioritisation post-GWAS (Vitsios and Petrovski, 

2020) and to construct polygenic risk models (Pare et al, 2017).  

 

An interesting future goal would be to incorporate ML methods to measure the 

predictive ability of the SNPs identified in this study. ML models can be built in 

varying complexity depending on the project aim and data available. These range 

from simple regression models to complex ensemble models or deep learning 

models. Therefore, I would compare algorithms of different complexities to identify 

the model with the best predictive ability. The main downside to ML methods is that 

for complex analyses, large sample sizes are required to achieve adequate power. 

However, with large genomic datasets such as UK Biobank and GEL available, 

these could be powerful methods for future variant discovery on the provision that 

toxicity cases can be classified accurately.   

 

7.6 Outlook 

The work in this thesis has identified several promising variants associated with 

toxicities to chemotherapeutics that warrant further investigation. 
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