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Abstract
Multidimensional Magnetic Resonance Imaging (MRI) is a versatile tool for micro-
structure mapping. We use a diffusion weighted inversion recovery spin echo (DW-
IR-SE) sequence with spiral readouts at ultra-strong gradients to acquire a rich dif-
fusion–relaxation data set with sensitivity to myelin water. We reconstruct 1D and 
2D spectra with a two-step convex optimization approach and investigate a variety 
of multidimensional MRI methods, including 1D multi-component relaxometry, 1D 
multi-component diffusometry, 2D relaxation correlation imaging, and 2D diffusion-
relaxation correlation spectroscopic imaging (DR-CSI), in terms of their potential 
to quantify tissue microstructure, including the myelin water fraction (MWF). We 
observe a distinct spectral peak that we attribute to myelin water in multi-component 
T1 relaxometry, T1-T2 correlation, T1-D correlation, and T2-D correlation imaging. 
Due to lower achievable echo times compared to diffusometry, MWF maps from 
relaxometry have higher quality. Whilst 1D multi-component T1 data allows much 
faster myelin mapping, 2D approaches could offer unique insights into tissue micro-
structure and especially myelin diffusion.
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1 Introduction

Magnetic resonance imaging (MRI) is indispensable in neuroimaging. However, its 
resolution is limited and information about cellular microstructure, e.g. the amount 
of healthy myelin, can only be gathered indirectly. This information would be cru-
cial to detect and monitor neurodegenerative diseases, e.g. demyelination in Multi-
ple Sclerosis (MS). Myelin mapping can not only be used for the diagnosis of such 
diseases, but can also provide clinicians with further information that is not avail-
able from current clinical routine protocols, like T1-weighted imaging, T2-weighted 
imaging and fluid-attenuated inversion recovery (FLAIR). Whilst MS lesions may 
be visible in those contrasts and parametric maps, myelin content can addition-
ally be used to e.g. distinguish MS lesions by age, or distinguish demyelination, 
re-myelination, edema, and other forms of neuroinflammation in a number of dis-
eases. Beyond visible lesions, also normal-appearing white matter is known to show 
decreased myelin content in patients with MS [36, 40]. Further, the use of quantita-
tive values is valuable in comparisons across different scan methods and subjects, or 
in longitudinal studies. To this end, researchers have been working on the quantifica-
tion of myelin content via non-invasive MRI methods in the central nervous system 
for decades [39, 56].

A number of studies demonstrated promising results for the detection of myelin 
itself [28, 58, 60], but most research concentrates on the detection of water within 
the myelin layers and mapping of the so-called myelin water fraction (MWF) [2, 
36, 40]. Methods of sensitizing the experiments to the myelin water signal include 
multi-exponential T2 decays (multiple spin echos or GRASE) [20, 22, 29, 39, 49], 
T1 relaxation (multi-inversion recovery (IR) data or ViSTa) [33, 47, 54], T2 prepa-
ration [44–46], and flip angle variation in the steady state (mcDESPOT) [18].

Disentangling the MWF signal from other water pools from a multi-exponential 
decay still remains challenging. Parametric approaches assume a given biophysi-
cal model, i.e. a given number of water pools (usually two or three) [14, 15, 22, 
34], whilst non-parametric approaches gain comprehensive microstructure informa-
tion without confining the solution to a certain model. To that end, spectra of tissue 
parameters like T1, T2 or diffusivity D are reconstructed—either in one or more 
dimensions. Early non-parametric studies focussed on nuclear magnetic resonance 
(NMR) experiments in phantoms, ex vivo tissue, and water in solids like wood or 
stone [21, 26, 42, 53, 59], whilst such demanding experiments were not yet feasible 
for in-vivo studies on clinical MRI systems.

More recently, several techniques for regularizing these ill-conditioned inverse 
problems in various tissues emerged. Zhang and Blümich combined high-resolu-
tion images and low-resolution T2-diffusion correlation data to improve the signal-
to-noise ratio (SNR) in correlation imaging [64]. Benjamini et al. first solved two 
1D problems separately and then used the solutions as constraints to solve the 2D 
correlation problem [6, 7]. Kim et al. used spatial regularization in T1-T2 correla-
tion in vivo, i.e. penalize differences between neighboring spectra [31, 32]. Zhang 
et al. used a spatial total variation constraint [65]. Almeida-Martins et al., Reymbaut 
et al., and Martin et al. increased the dimensionality to 5D and 6D correlation MRI, 
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by additionally varying the shape of b-tensors to encode diffusion and solving the 
inverse problem with a Monte Carlo-inversion [1, 41, 51]. Zibetti et al. jointly solved 
image reconstruction and multi-component relaxometry, leveraging sparsity and 
spatial correlation [66]. Avram et al. used voxel-wise optimized L2 regularization 
for T1-D correlation in vivo [5]. Canales-Rodríguez et al. compared several methods 
for solving multi-component T2 relaxometry in  vivo [12, 13]. Yu et  al. and Endt 
et al. showed promising in vivo results using supervised deep learning in 1D and 2D 
relaxation correlation MRI, respectively [24, 25, 63], whilst Slator et al. combined 
spatial information with unsupervised deep learning to solve 2D correlation imaging 
[52].

Whilst some of the mentioned multidimensional relaxometry and correlation 
imaging studies were able to detect the myelin water compartment, others did not 
achieve this. We tackle the challenge of myelin water’s fast T2 relaxation with a 
combination of spiral readouts and strong gradients of up to 300mTm−1 to achieve 
short echo times TE in a diffusion-weighted inversion recovery spin echo (DW-IR-
SE) sequence [43], whilst ensuring high image quality with a reconstruction that 
accounts for spatio-temporal field dynamics in an advanced encoding model [62]. 
This allows us to acquire a rich data set with a sensitivity to T1, T2, diffusion, or 
combinations thereof, and investigate the potential of different 1D and 2D variants 
of 1D multi-component relaxometry, 1D multi-component diffusion imaging, 2D 
relaxation correlation imaging, and 2D diffusion–relaxation correlation spectro-
scopic imaging (DR-CSI) for the quantification of brain microstructure and espe-
cially myelin water mapping.

2  Theory

Multi-component MRI assumes that the measured transverse magnetization M origi-
nates from different compartments, characterized by different T1, T2 and diffusivity 
D (here used synonymously for the apparent diffusion coefficient (ADC) and the 
mean diffusivity (MD)). Different voxels r are made up of a different compartment 
mixture, characterized by each compartment’s signal fraction f. Based on the known 
exponential equations for relaxation and diffusion in a DW-IR-SE sequence, and the 
scan parameters inversion time TI, echo time TE and b-value b, which make the scan 
sensitive to T1, T2 and D, respectively, the signal M at position r is described by the 
weighted sum

where we number a total of P sets of scan parameters (different TI, TE, or b) with the 
index p. Although non-parametric approaches do not assume a biophysical model 
with a defined set of water pools, we still need to discretize Eq. 1 in order to quantify 

(1)
Mp(r) ∝ ∫T1,T2,D

f (r, T1, T2,D)
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the compartments. Assuming Q unique combinations of tissue parameters T1, T2 
and D (each defining a possible component), we get:

Pre-computation of a kernel K

of dimensions P × Q , which contains the exponential decays for all combinations of 
imaging and tissue parameters, allows the forward problem of simulating the signals 
M to be formulated as a matrix multiplication:

where N is the number of voxels. For every voxel, the spectrum F contains the signal 
fractions for all Q possible compartments. Depending on the experiment, the spectra 
can have one (e.g. 1D T1 spectrum) or more dimensions (e.g. 2D T1-T2 spectrum). 
For P < Q , estimating the spectra F from given signals is an ill-conditioned, inverse 
problem.

3  Methods

3.1  Data Acquisition, Reconstruction and Post‑processing

In vivo brain data of three healthy volunteers were acquired on a 3T Siemens MAG-
NETOM Skyra Connectome MR system (Siemens Healthcare GmbH, Erlangen, 
Germany) with gradients of up to 300mTm−1 and a 32-channel head coil, using a 
custom DW-IR-SE sequence with spiral readouts [43]. All scans were performed 
in accordance with the local ethics board after obtaining written informed consent. 
For each volunteer, either TI and TE, TI and b or TE and b were varied, resulting 
in sensitivity to T1-T2, T1-D or T2-D, respectively. All three data sets consisted of 
P = 8 × 8 = 64 different contrasts, i.e. different combinations of acquisition param-
eters TI, TE, and b. The different scan protocols are shown in Table 1. The maxi-
mum gradient strength used was 295mTm−1 for b = 1000 smm−2 . Additionally, 
multi-echo Cartesian gradient echo reference scans were acquired and used for the 
computation of coil sensitivity and B0 maps. Field fluctuations were measured in 

(2)

Mp(r) ∝
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a separate experiment with a Dynamic Field Camera (Skope Magnetic Resonance 
Technology AG, Zurich, Switzerland) [19].

Images were then reconstructed iteratively with a conjugate gradient sensitiv-
ity encoding (SENSE) reconstruction [50]. This is based on an expanded encod-
ing model, accounting for the measured spatio-temporal field dynamics up to third 
order, as well as coil sensitivities and static field inhomogeneities [61, 62], using 
the Skope-i software package (Skope Magnetic Resonance Technology AG, Zurich, 
Switzerland). Complex images were skull-stripped and registered iteratively with 
FSL FLIRT [30], followed by recovery of the signal polarity based on multi-expo-
nential fits (T1-T2 and T1-D). Then, the signals obtained along the different diffu-
sion directions were powder-averaged (T1-D and T2-D data), resulting in 64 dif-
ferent contrasts for all three data sets, as shown in Fig. 1. Finally, complete sets of 
P = 64 signals M were normalized voxel-wise to their L2 norm, which removes sig-
nal offsets, leaving only the relative differences between different TI, TE, and b. To 
ensure comparability, we limit all visualizations to slices 5 and 4 for the T1-T2 and 
T2-D data, respectively, which show approximately the same brain structures as the 
T1-D data (cf. Fig. 1).

3.2  Reconstruction of Parameter Spectra

We chose linearly spaced spectra grids with Q1D = 60 entries in 1D, or 
Q2D = 60 ∗ 60 = 3600 entries in 2D, in the ranges T1∈ [50, 3000]ms , 
T2∈ [5, 300]ms , D ∈ [0.05, 3] μm2 ms−1 . For the reconstruction of spectra, we solve 
a convex inverse problem in two steps with a combination of spatial regularization 
following Kim et al. [31, 32] and marginal constraints, inspired by Benjamini et al. 
[6, 7].

In the first step, we split the 2D problem into two 1D problems. To solve for 
one parameter (T1, T2 or D), the scan parameter encoding the other dimension (TI, 
TE or b) is kept at its minimum value (corresponding to the first row or column in 
Fig. 1a–c). This leaves P1D = 8 contrasts for each of the six 1D problems, reduc-
ing the unknowns-to-knowns ratio Q/P from 3600/64 in 2D to 60/8. We use the 

(a) T1-T2 data (b) T1-D data (c) T2-D data

Fig. 1  All three 2D data sets used in this study. The images show real signals M/M
0
 after polarity cor-

rection and before normalization, visualizing the qualitative signal trends. After powder-averaging, 
each data set contains P = 8 × 8 = 64 different contrasts, defined by unique combinations of acquisition 
parameters TI, TE, and b. To obtain 1D data, only the first row or column of the respective 2D data set 
were used. For T1-T2 and T2-D, only the 5th and 4th slice are shown, respectively
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alternating direction method of multipliers (ADMM) [9, 32] to solve the following 
convex 1D problem:

The first term fits the signal of voxel i following Eq. 4. The second term serves as a 
regularizer and compares the solution Fi in voxel i to its neighboring voxels j. The 
spatial regularization for the 1D problem is weighted by �s1D = 0.5 , which proved to 
stabilize the solution enough, whilst avoiding excessive smoothing.

To solve the 2D problem, we utilize a generalization of the Douglas–Rachford 
method [10, 11, 37, 48] and continue to use spatial regularization with a reduced 
weight �s2D = 0.01 , as we now use additional regularization:

The solutions of both 1D problems are considered marginals of the 2D problem and 
act as regularizers. The operators �1∕2 project the 2D solution Fi of voxel i to its 
respective 1D marginal, which is compared to the corresponding 1D solutions F1

i
 or 

F2
i
 , respectively. The marginal regularization is weighted with �m = 103 . This keeps 

the marginals of the 2D solution close to the solution of the much less ill-condi-
tioned 1D problem, whilst the distribution within the 2D space can still be diversi-
fied. Finally, spectra are averaged over the whole slice to identify sub-compartments 
and delineate them with thresholds.

3.3  Signal Fractions and Visualization

Compartmental signal fractions maps were computed by thresholded integration of 
the voxel-wise spectra. The signal fraction of myelin water is computed as follows:

for the T1-T2 case. For other compartments or spectra in both 1D and 2D, the equa-
tion can be formulated analogous. In all cases, the compartmental signal fractions 
are normalized to

For consistency with literature, we use the abbreviation MWF, which is equivalent 
to fMW . For the visualization of 2D spectra and compartmental signal fraction maps, 
we use Scientific colour maps by Crameri et al. [16, 17].

(5)argmin
F≥0

N�

i=1

�
‖Mi − KFi‖22 + �s1D

�

j∈Δi

‖Fj − Fi‖22

�
.

(6)
argmin

F≥0

N�

i=1

�
‖Mi − KFi‖22 + �s2D

�

j∈Δi

‖Fj − Fi‖22

+�m‖�1Fi − F1
i
‖1 + �m‖�2Fi − F2

i
‖1
�
.

(7)MWF(r) = ∫
T1MWF

max

T1MWF
min

∫
T2MWF

max

T2MWF
min

F(r, T1,T2)dT1dT2

(8)MWF + fIC∕EC + fCSF
!
= 1.
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Further, the spectra are used to simulate predicted signal evolutions, following 
Eq. 4, which are then compared to the actual data by computing the root-mean-
square error (RMSE).

4  Results

Figure 2 shows the full spectra for T1-T2, T1-D, T2-D, and their respective 1D 
subsets, averaged over the whole slice. We find three distinct spectral compart-
ments in 1D T1 and 2D data, and two compartments in 1D T2 and 1D diffu-
sion spectra. We attribute these spectral components to the following micro-
structure compartments (low to high T1/T2/D): Myelin water at T1= 50ms , 
T2≈ 20 − 45ms , D ≈ 0.3 − 0.55 μm2 ms−1 , combined intra- and extra-cellu-
lar space (IC/EC) (a broader peak at T1≈ 700 − 1400ms , T2≈ 50 − 95ms , 
D ≈ 0.5 − 1.1 μm2 ms−1 ) and cerebrospinal fluid (CSF). The MWF peak is not 
visible in 1D T2 and 1D diffusion spectra. The CSF compartment is very broad 

Fig. 2  Resulting spectra for all three data sets. a–f show the 1D spectra for the different sub-sets of our 
data. g–i show the 2D correlation spectra using all of the respective data sets. Dashed lines and rectan-
gles indicate the thresholds used to define the different sub-compartments. Red: fast relaxing, only vis-
ible in a,b and g–i, attributed to myelin water. Green: Medium fast relaxing, attributed to IC/EC. Blue: 
slow relaxing, attributed to CSF
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but present at high T1/T2/D. Dashed lines and rectangles indicate manually set 
thresholds that define the sub-compartments. For 2D spectra, especially for T2-D, 
there are some spurious signals outside of the delineated areas, which we ignore 
for further analysis.

Figure  3 shows the resulting compartmental signal fraction maps for all three 
sub-compartments, as obtained from all nine spectra. The MWF map is only present 
where previously delineated.

Histograms of these five MWF maps (Fig. 4) show similar myelin water fractions 
for 1D T1 from T1-T2, 1D T1 from T1-D, and 2D T1-T2 data. The data show two 
peaks, which can be attributed to gray matter (GM) and white matter (WM), respec-
tively. Data from 2D T1-D and 2D T2-D also show higher values in WM than GM, 
but the peaks are not as well separated. Gaussian fits to the histograms yield the fol-
lowing quantitative values:

Fig. 3  Compartmental signal fractions spectra for all three data sets, as they result from the thresholded 
integration of F. a–f use the different 1D subsets of our data, whilst g–i show the 2D solutions using 
all data. In each sub-figure, the myelin water sub-compartment (MWF) is shown enlarged to the left, 
followed by IC/EC and CSF to the right. A distinctive MWF peak was only identified in five methods, 
resulting in a MWF of 0 in subfigures c–f. Note that we chose a different color bar scaling for the MWF 
map
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• 1D T1 from T1-T2: MWF of ≈ 6.2% ± 0.3% in GM and ≈ 14.0% ± 1.7% in WM,
• 1D T1 from T1-D: MWF of ≈ 5.1% ± 2.6% in GM and ≈ 10.1% ± 1.7% in WM, 

with values ≈ 15.1% ± 1.4% in the frontal lobe, which is also visible in Fig. 3 b),
• 2D T1-T2: MWF of ≈ 8.5% ± 4.1% in GM and ≈ 15.3% ± 1.2% in WM,
• 2D T1-D: MWF of ≈ 5.1% ± 1.6% in GM and ≈ 8.0% ± 1.5% in WM,
• 2D T2-D: MWF of ≈ 20.4% ± 4.8% , with GM and WM being hard to separate.

In CSF, we find MWF values of ≈ 0% for 1D T1 from T1-T2, 1D T1 from T1-D, and 
2D T1-T2 data. In both 2D T1-D and 2D T2-D data, the algorithm yield a false posi-
tive MWF of ≈ 1% in CSF.

5  Discussion

Our scan protocols were designed for brain microstructure quantification with a 
focus on myelin water. Using spiral readouts and strong diffusion gradients up to 
300mTm−1 , we achieved a minimum TE of 4.5ms without diffusion weighting 
and 21ms with diffusion weighting of up to b = 1000 smm−2 (cf. Table 1). Whilst 
these gradients are not the clinical standard, the T1-T2 data does not rely on them 
and can just as well be acquired on clinical systems. With limited scan times and 
to achieve sufficiently fine spectra gridding at lower values, we did not include any 
TE > 150ms and chose to reconstruct spectra with a maximum T2 of 300ms . There-
fore, the capability to estimate T2 is limited in CSF, as shown in the error maps 
(Fig. 5).

Two compartments were found in all spectra and can be attributed to the com-
bined intra- and extra-cellular space (IC/EC), and CSF (Fig.  2). A third, fast 

Fig. 4  Histogram of MWF values for all five methods that were able to reconstruct a distinct MWF peak. 
The bars above the histograms show the mean and standard deviation of fitted Gaussians. In sub-figures 
a–c, two distinctive peaks are visible, which can be attributed to gray matter and white matter. b shows 
an additional third peak at higher MWF which is present in WM of the frontal lobe. In sub-figure (d), 
GM and WM do not show distinct peaks, but are still separable, whilst in sub-figure (e) we could fit only 
one Gaussian for both. The peaks at 0% are attributed to CSF. Histogram bin width is 0.2%
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relaxing compartment was found in five out of nine slice-average spectra. This 
compartment was identified as myelin water. The resulting MWF maps (Fig. 3) 
from 1D T1 data at TE = 4.5ms (subset of T1-T2 data) and from 2D T1-T2 
data show high quality and have good WM-GM contrast. MWF from T1 data at 
TE = 21ms (subset of T1-D data) has inferior WM-GM contrast and an implausi-
ble MWF increase in the whole frontal lobe. Whilst exhibiting good image qual-
ity, the MWF map obtained from 2D T1-D data shows the lowest values and has a 
worse WM-GM contrast. For 2D T2-D data, the MWF map quality is not accept-
able with the highest MWF values and little WM-GM contrast.

The quantitative MWF peaks around 5 − −8% in GM and 8 − −15% in WM, 
excluding the T2-D data. These values lie within most ranges reported in the 
literature [4, 23, 27, 35, 38, 39, 46, 55, 57, 63]. However, some studies report 
higher values in WM [8]. Apart from comparisons with different in vivo meth-
ods, the results should also be validated with histological examinations. Whilst 
this is beyond the scope of this study, a few previous studies showed good agree-
ment of similar methods with ex-vivo histology of different tissues [63, 65]. 
This includes the work of Benjamini et  al., which inspired the design of our 

Fig. 5  Root-mean-square error (RMSE) of signal fits simulated from the spectra compared to the original 
signals for all data sets. Subfigures a–f show the multi-component 1D methods, g–i show the 2D methods
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regularized spectra reconstruction framework [7]. The width of the MWF distri-
butions (Fig. 4) beyond the standard deviation of fitted Gaussians is attributed to 
partial volumes and noise. We also observed slightly higher MWF in inner parts 
of WM structures, compared to outer parts.

A myelin water T2 around ≈ 30ms leaves us with less than 60% of the myelin 
water signal in any diffusion data ( TE ≥ 21ms ) compared to TE = 4.5ms . This 
may explain the lower MWF map quality in diffusion experiments and makes 
the results in 1D T1 spectra, acquired at TE = 4.5ms , and 2D T1-T2 spectra the 
most promising for MWF mapping in this study. These findings confirm that the 
low TE achieved with spiral readouts are crucial for MWF mapping, whilst dif-
fusion weighting can be a limiting factor. We did not find a distinct myelin water 
peak in 1D T2 spectra. However, previous research did achieve the reconstruc-
tion of MWF maps from 1D T2 relaxometry. The main difference could be that 
with 32 echo times, these studies used four times the amount of data [12, 13, 
63]. Our work shows that multi-component T1 relaxometry in 1D may allow 
MWF mapping of comparable quality to 2D correlation imaging in a fraction of 
the scan time—using only 8 inversion times.

Whilst the incorporation of diffusion weighting prolongs the echo times, dif-
fusion–relaxation correlation imaging in 2D is promising for the measurement 
of myelin water’s diffusion coefficient. Our results for the mean diffusivity are in 
reasonable agreement with previous research, although there is a notable direc-
tional dependence of D within in myelin water [3]. For the present work, we used 
a powder-average of the directional diffusion information, as we aim to compare 
1D and 2D approaches with the same number of signals ( P1D = 8 , P2D = 64 ). 
In the future, the explicit use of directional diffusion information could benefit 
the reconstruction and is subject to ongoing work. Further, we envision that our 
information on myelin water diffusion, combined with directional information 
will be useful for the investigation of e.g. neurodevelopment, ageing, or to dif-
ferentiate demyelination from re-myelination.

The RMSE maps in Fig. 5 consistently show that there is a benefit of 2D cor-
relation imaging compared to 1D multi-component approaches, although the 2D 
data partly contain more noise at higher TE and b. Further, 2D approaches are 
more likely to reliably separate IC and EC compartments in the future.

The three different data sets were acquired in different volunteers. However, 
we chose healthy volunteers of the same gender and similar age (cf. Table  1), 
and similar slice positioning, avoiding the most prominent sources of MWF dif-
ferences across different subjects [4, 27]. The assessment of both reproducibility 
in more volunteers and of clinical relevance is subject to future work.

Once properly trained, neutral networks are promising for the reconstruc-
tion of both 1D and 2D spectra [24, 25, 52, 63]. However, the hyper-parameter 
optimization and training have to be repeated for every data set and would be 
extremely time-consuming for a broad comparison of data sets as in this study.
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6  Conclusion

In our work comparing 1D and 2D methods, we demonstrate how diffusion–relaxa-
tion correlation MRI can enable in  vivo myelin water quantification. To this end, 
we investigated 1D multicomponent relaxometry, 1D multicomponent diffusion 
imaging, 2D relaxation correlation imaging, and 2D diffusion–relaxation correlation 
spectroscopic imaging (DR-CSI).

Using a DW-IR-SE sequence on a 3T Connectome MR system, we acquired a 
rich data set with sensitivity to T1, T2 and diffusion in healthy volunteers. Spiral 
readouts and ultra-strong gradients achieve TE as low as 4.5ms without and 21ms 
with diffusion encoding up to b = 1000 smm−2 , whilst ensuring high image quality 
with an image reconstruction based on an expanded encoding model.

Expanding previous reconstruction approaches for 2D correlation spectra with 
a two-step convex optimization, we demonstrated the successful reconstruction of 
both 1D and 2D spectra in brain in  vivo. Both 1D T1 spectra and all 2D spectra 
(T1-T2, T1-D, T2-D) showed a distinct myelin water signal peak and thus enable 
the study of myelin in vivo. Consistently, the solutions found for the 2D correlation 
experiments depict lower errors than their respective 1D marginals. We achieve the 
best qualitative results for T1-T2 data, but given advances to similarly short TE in 
diffusion-weighted imaging, myelin correlation imaging could increasingly benefit 
from the unique qualities of diffusion MRI in the future.

As compared to prior work oftentimes focusing on T1-T2 correlation, our 
approach to include diffusion encoding in the 2D correlation experiments and to 
develop a consistent framework for robust solutions of the ill-posed inversion prob-
lem will in the future enable the study of myelin in greater detail.

Acknowledgements Prepared for Applied Magnetic Resonance issue on the occasion of Bernhard 
Blümich’s 70th birthday. We gratefully acknowledge funding by the German Research Foundation (DFG) 
within the Research Training Group GRK 2274, the Technical University of Munich (TUM) Graduate 
Center BioEngineering (GCB), the European Union’s Horizon Europe Research and Innovation Pro-
gramme under The Marie Sklodowska-Curie Grant Agreement No. 861137, the German Federal Ministry 
of Education and Research (BMBF) in the grant SparseMRI3D+ (FZK05M20WOA) and the European 
Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 952172. M.P. 
is supported by UKRI Future Leaders Fellowship (MR/T020296/2). The data were acquired at the UK 
National Facility for In Vivo MR Imaging of Human Tissue Microstructure funded by the EPSRC (grant 
EP/M029778/1) and The Wolfson Foundation, and supported by a Wellcome Trust Investigator Award 
(096646/Z/11/Z) and a Wellcome Trust Strategic Award (104943/Z/14/Z).

Author Contributions Conceptualization: SE, MP, DKJ, MIM; Methodology: SE, ME, EN, RA, MM, 
LM, CMV, CMP, MIM; Formal analysis and investigation: SE, MIM; Writing—original draft prepara-
tion: SE; Writing—review and editing: SE, ME, EN, MM, LM, CMV, MP, DKJ, MIM; Funding acquisi-
tion: DKJ, MIM; Resources: DKJ, MIM; Supervision: MP, DKJ, MIM.

Funding Open Access funding enabled and organized by Projekt DEAL. Sebastian Endt received fund-
ing by the German Research Foundation (DFG) within the Research Training Group GRK 2274. Maria 
Engel received funding from the Wellcome Trust Strategic Award (104943/Z/14/Z). Emanuele Naldi 
receives funding by the European Union’s Horizon Europe Research and Innovation Programme under 
The Marie Sklodowska-Curie Grant Agreement No. 861137. Rodolfo Assereto receives funding by the 
European Union’s Horizon Europe Research and Innovation Programme under The Marie Sklodowska-
Curie Grant Agreement No. 861137. Malwina Molendowska was partly funded by Siemens Healthcare 
GmbH. Lars Mueller receives funding from the Wellcome Trust Investigator Award (219536/Z/19/Z). 



 S. Endt et al.

1 3

Claudio Mayrink Verdun receives funding by the German Federal Ministry of Education and Research 
(BMBF) in the grant SparseMRI3D+ (FZK05M20WOA). Carolin M. Pirkl receives funding by the Euro-
pean Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 952172. 
Marco Palombo receives funding by UKRI Future Leaders Fellowship (MR/T020296/2). Marion I. Men-
zel receives funding by the European Union’s Horizon 2020 Research and Innovation Programme under 
Grant Agreement No. 952172.

Data Availability The data sets generated and analysed during the current study are not publicly available 
as the participants did not give consent for the data to be shared publicly, but the data sets are available 
from the corresponding author on reasonable request.

Declarations 

Conflict of interest Carolin M. Pirkl and Marion I. Menzel are employees of GE HealthCare, Munich, 
Germany.

Ethical Approval All scans were performed at Cardiff University School of Psychology in accordance with 
the School of Psychology Research Ethics Committee of Cardiff University.

Consent to Participate All scans were performed after obtaining the volunteers’ written informed consent 
to participate.

Consent for Publication All volunteers gave informed consent to the use of their data in publications.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 
ses/ by/4. 0/.

References

 1. J.P. de Almeida Martins, D. Topgaard, Multidimensional correlation of nuclear relaxation rates and 
diffusion tensors for model-free investigations of heterogeneous anisotropic porous materials. Sci-
ent. Rep. 8(1), 2488 (2018). https:// doi. org/ 10. 1038/ s41598- 018- 19826-9

 2. E. Alonso-Ortiz, I.R. Levesque, G.B. Pike, MRI-based myelin water imaging: a technical review. 
Magn. Reson. Med. 73(1), 70–81 (2015). https:// doi. org/ 10. 1002/ mrm. 25198

 3. T.J. Andrews, M.T. Osborne, M.D. Does, Diffusion of myelin water. Magn. Reson. Med. 56(2), 
381–385 (2006). https:// doi. org/ 10. 1002/ mrm. 20945

 4. M. Arshad, J.A. Stanley, N. Raz, Adult age differences in subcortical myelin content are consist-
ent with protracted myelination and unrelated to diffusion tensor imaging indices. Neuroimage 143, 
26–39 (2016). https:// doi. org/ 10. 1016/j. neuro image. 2016. 08. 047

 5. A.V. Avram, J.E. Sarlls, P.J. Basser, Whole-brain imaging of subvoxel T1-diffusion correlation 
spectra in human subjects. Front. Neurosci. 15, 671465 (2021). https:// doi. org/ 10. 3389/ fnins. 2021. 
671465

 6. D. Benjamini, P.J. Basser, Use of marginal distributions constrained optimization (MADCO) for 
accelerated 2D MRI relaxometry and diffusometry. J Magn. Reson. 271, 40–45 (2016). https:// doi. 
org/ 10. 1016/j. jmr. 2016. 08. 004

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s41598-018-19826-9
https://doi.org/10.1002/mrm.25198
https://doi.org/10.1002/mrm.20945
https://doi.org/10.1016/j.neuroimage.2016.08.047
https://doi.org/10.3389/fnins.2021.671465
https://doi.org/10.3389/fnins.2021.671465
https://doi.org/10.1016/j.jmr.2016.08.004
https://doi.org/10.1016/j.jmr.2016.08.004


1 3

In Vivo Myelin Water Quantification Using Diffusion–Relaxation…

 7. D. Benjamini, P.J. Basser, Magnetic resonance microdynamic imaging reveals distinct tissue micro-
environments. NeuroImage 163, 183–196 (2017). https:// doi. org/ 10. 1016/j. neuro image. 2017. 09. 033

 8. M. Bouhrara, A.C. Rejimon, L.E. Cortina et al., Adult brain aging investigated using BMC-mcDES-
POT-based myelin water fraction imaging. Neurobiol. Aging 85, 131–139 (2020). https:// doi. org/ 10. 
1016/j. neuro biola ging. 2019. 10. 003

 9. S. Boyd, N. Parikh, E. Chu et al., Distributed optimization and statistical learning via the alternating 
direction method of multipliers. Foundat. Trends® Mach. Learn. 3(1), 1–122 (2011). https:// doi. org/ 
10. 1561/ 22000 00016

 10. K. Bredies, E. Chenchene, E. Naldi, Graph and distributed extensions of the Douglas-Rachford 
method (2022). arXiv preprint arXiv: 2211. 04782https:// doi. org/ 10. 48550/ arXiv. 2211. 04782

 11. R. Campoy, A product space reformulation with reduced dimension for splitting algorithms. Com-
putat. Optimizat. Appl. 83(1), 319–348 (2022). https:// doi. org/ 10. 1007/ s10589- 022- 00395-7

 12. E.J. Canales-Rodríguez, M. Pizzolato, G.F. Piredda et al., Comparison of non-parametric T2 relax-
ometry methods for myelin water quantification. Med. Image Anal. 69, 101959 (2021). https:// doi. 
org/ 10. 1016/j. media. 2021. 101959

 13. E.J. Canales-Rodríguez, M. Pizzolato, T. Yu et  al., Revisiting the T2 spectrum imaging inverse 
problem: Bayesian regularized non-negative least squares. NeuroImage 244, 118582 (2021). https:// 
doi. org/ 10. 1016/j. neuro image. 2021. 118582

 14. S. Chatterjee, O. Commowick, O. Afacan, et al., Multi-compartment model of brain tissues from 
T2 relaxometry MRI using gamma distribution, In: 2018 IEEE 15th International Symposium on 
Biomedical Imaging (ISBI 2018) (2018). pp. 141–144. https:// doi. org/ 10. 1109/ ISBI. 2018. 83635 41

 15. C.A. Clark, D. Le Bihan, Water diffusion compartmentation and anisotropy at high b values in the 
human brain. Magn. Res. Med. 44(6), 852–859 (2000)

 16. F. Crameri, Scientific colour maps. Zenodo (2018). https:// doi. org/ 10. 5281/ zenodo. 80358 77
 17. F. Crameri, G.E. Shephard, P.J. Heron, The misuse of colour in science communication. Nat. Com-

municat. 11(1), 5444 (2020). https:// doi. org/ 10. 1038/ s41467- 020- 19160-7
 18. S.C. Deoni, B.K. Rutt, T. Arun et al., Gleaning multicomponent T1 and T2 information from steady-

state imaging data. Magn. Res. Med. 60(6), 1372–1387 (2008). https:// doi. org/ 10. 1002/ mrm. 21704
 19. B.E. Dietrich, D.O. Brunner, B.J. Wilm et al., A field camera for MR sequence monitoring and sys-

tem analysis. Magn. Res. Med. 75(4), 1831–1840 (2016). https:// doi. org/ 10. 1002/ mrm. 25770
 20. M.D. Does, J.C. Gore, Rapid acquisition transverse relaxometric imaging. J. Magn. Res. 147(1), 

116–120 (2000). https:// doi. org/ 10. 1006/ jmre. 2000. 2168
 21. M.D. Does, J.C. Gore, Compartmental study of T1 and T2 in rat brain and trigeminal nerve in vivo. 

Magn. Res. Med. 47(2), 274–283 (2002). https:// doi. org/ 10. 1002/ mrm. 10060
 22. Y.P. Du, R. Chu, D. Hwang et al., Fast multislice mapping of the myelin water fraction using multi-

compartment analysis of T2* decay at 3T: A preliminary postmortem study. Magn. Res. Med. 58(5), 
865–870 (2007). https:// doi. org/ 10. 1002/ mrm. 21409

 23. A. Dvorak, H. Liu, E. Ljungberg, et al., Multivariate template creation of a myelin water brain atlas 
with GRASE and mcDESPOT, in International Society for Magnetic Resonance in Medicine (2019)

 24. S. Endt, C.M. Pirkl, C. Mayrink Verdun, et al., A deep learning approach to accelerated T1-T2-re-
laxation-correlation imaging, In: European Society for Magnetic Resonance in Medicine and Biol-
ogy (ESMRMB) 2020 Online, 37th Annual Scientific Meeting (2020). p. 26

 25. S. Endt, C.M. Pirkl, C. Mayrink Verdun, et al., Unmixing tissue compartments via deep learning 
T1-T2-relaxation correlation imaging, In: 17th International Symposium on Medical Information 
Processing and Analysis, SPIE (2021). pp. 218–227. https:// doi. org/ 10. 1117/ 12. 26047 37

 26. A. English, K. Whittall, M. Joy et al., Quantitative two-dimensional time correlation relaxometry. 
Magn. Res. Med. 22(2), 425–434 (1991). https:// doi. org/ 10. 1002/ mrm. 19102 20250

 27. T.D. Faizy, C. Thaler, G. Broocks et al., The myelin water fraction serves as a marker for age-related 
myelin alterations in the cerebral white matter-a multiparametric MRI aging study. Front. Neurosci. 
14, 136 (2020). https:// doi. org/ 10. 3389/ fnins. 2020. 00136

 28. R.A. Horch, J.C. Gore, M.D. Does, Origins of the ultrashort-T2 1H NMR signals in myelinated 
nerve: a direct measure of myelin content? Magn. Res. Med. 66(1), 24–31 (2011). https:// doi. org/ 10. 
1002/ mrm. 22980

 29. D. Hwang, D.H. Kim, Y.P. Du, In  vivo multi-slice mapping of myelin water content using T2* 
decay. Neuroimage 52(1), 198–204 (2010). https:// doi. org/ 10. 1016/j. neuro image. 2010. 04. 023

 30. M. Jenkinson, S. Smith, A global optimisation method for robust affine registration of brain images. 
Med. Image Anal. 5(2), 143–156 (2001). https:// doi. org/ 10. 1016/ S1361- 8415(01) 00036-6

https://doi.org/10.1016/j.neuroimage.2017.09.033
https://doi.org/10.1016/j.neurobiolaging.2019.10.003
https://doi.org/10.1016/j.neurobiolaging.2019.10.003
https://doi.org/10.1561/2200000016
https://doi.org/10.1561/2200000016
http://arxiv.org/abs/2211.04782
https://doi.org/10.48550/arXiv.2211.04782
https://doi.org/10.1007/s10589-022-00395-7
https://doi.org/10.1016/j.media.2021.101959
https://doi.org/10.1016/j.media.2021.101959
https://doi.org/10.1016/j.neuroimage.2021.118582
https://doi.org/10.1016/j.neuroimage.2021.118582
https://doi.org/10.1109/ISBI.2018.8363541
https://doi.org/10.5281/zenodo.8035877
https://doi.org/10.1038/s41467-020-19160-7
https://doi.org/10.1002/mrm.21704
https://doi.org/10.1002/mrm.25770
https://doi.org/10.1006/jmre.2000.2168
https://doi.org/10.1002/mrm.10060
https://doi.org/10.1002/mrm.21409
https://doi.org/10.1117/12.2604737
https://doi.org/10.1002/mrm.1910220250
https://doi.org/10.3389/fnins.2020.00136
https://doi.org/10.1002/mrm.22980
https://doi.org/10.1002/mrm.22980
https://doi.org/10.1016/j.neuroimage.2010.04.023
https://doi.org/10.1016/S1361-8415(01)00036-6


 S. Endt et al.

1 3

 31. D. Kim, E.K. Doyle, J.L. Wisnowski et  al., Diffusion-relaxation correlation spectroscopic imag-
ing: a multidimensional approach for probing microstructure. Magn. Res. Med. 78(6), 2236–2249 
(2017). https:// doi. org/ 10. 1002/ mrm. 26629

 32. D. Kim, J.L. Wisnowski, C.T. Nguyen et al., Multidimensional correlation spectroscopic imaging 
of exponential decays: from theoretical principles to in  vivo human applications. NMR Biomed. 
33(12), e4244 (2020). https:// doi. org/ 10. 1002/ nbm. 4244

 33. C. Labadie, J.H. Lee, W.D. Rooney et al., Myelin water mapping by spatially regularized longitudi-
nal relaxographic imaging at high magnetic fields. Magn. Res. Med. 71(1), 375–387 (2014). https:// 
doi. org/ 10. 1002/ mrm. 24670

 34. J.L. Lancaster, T. Andrews, L.J. Hardies et  al., Three-pool model of white matter. J. Magn. Res. 
Imag. 17(1), 1–10 (2003). https:// doi. org/ 10. 1002/ jmri. 10230

 35. C. Laule, I. Vavasour, G. Moore et al., Water content and myelin water fraction in multiple sclerosis: 
A T2 relaxation study. J. Neurol. 251, 284–293 (2004). https:// doi. org/ 10. 1007/ s00415- 004- 0306-6

 36. J.W. Hyun, J. Lee, J. Lee et al., So you want to image myelin using MRI: an overview and practi-
cal guide for myelin water imaging. J. Magn. Res. Imag. 53(2), 360–373 (2021). https:// doi. org/ 10. 
1002/ jmri. 27059

 37. P.L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators. SIAM J. Num. 
Anal. 16(6), 964–979 (1979). https:// doi. org/ 10. 1137/ 07160 71

 38. H. Liu, C. Rubino, A.V. Dvorak et al., Myelin water atlas: a template for myelin distribution in the 
brain. J. Neuroimag. 29(6), 699–706 (2019). https:// doi. org/ 10. 1111/ jon. 12657

 39. A. Mackay, K. Whittall, J. Adler et al., In vivo visualization of myelin water in brain by magnetic 
resonance. Magn. Res. Med. 31(6), 673–677 (1994). https:// doi. org/ 10. 1002/ mrm. 19103 10614

 40. A.L. MacKay, C. Laule, Magnetic resonance of myelin water: an in vivo marker for myelin. Brain 
Plasticity 2(1), 71–91 (2016). https:// doi. org/ 10. 3233/ BPL- 160033

 41. J. Martin, A. Reymbaut, M. Schmidt et al., Nonparametric D-R1-R2 distribution MRI of the living 
human brain. NeuroImage 245, 118753 (2021). https:// doi. org/ 10. 1016/j. neuro image. 2021. 118753

 42. R.S. Menon, P.S. Allen, Application of continuous relaxation time distributions to the fitting of data 
from model systems and excised tissue. Magn. Res. Med. 20(2), 214–227 (1991). https:// doi. org/ 10. 
1002/ mrm. 19102 00205

 43. L. Mueller, S.U. Rudrapatna, C.M. Tax, et  al., Diffusion MRI with b=1000s/mm2 at TE<22ms 
using single-shot spiral readout and ultra-strong gradients: Implications for microstructure imaging, 
in Proceedings of the International Society for Magnetic Resonance in Medicine, 2019 Presented at 
the ISMRM (2019)

 44. T.D. Nguyen, C. Wisnieff, M.A. Cooper et al., T2prep three-dimensional spiral imaging with effi-
cient whole brain coverage for myelin water quantification at 1.5 tesla. Magn. Res. Med. 67(3), 614–
621 (2012). https:// doi. org/ 10. 1002/ mrm. 24128

 45. J. Oh, E.T. Han, D. Pelletier et al., Measurement of in vivo multi-component T2 relaxation times for 
brain tissue using multi-slice T2 prep at 1.5 and 3 T. Magn. Res. Imag. 24(1), 33–43 (2006). https:// 
doi. org/ 10. 1016/j. mri. 2005. 10. 016

 46. J. Oh, E.T. Han, M.C. Lee et al., Multislice brain myelin water fractions at 3T in multiple sclerosis. 
J. Neuroimag. 17(2), 156–163 (2007). https:// doi. org/ 10. 1111/j. 1552- 6569. 2007. 00098.x

 47. S.H. Oh, M. Bilello, M. Schindler et  al., Direct visualization of short transverse relaxation time 
component (ViSTa). Neuroimage 83, 485–492 (2013). https:// doi. org/ 10. 1016/j. neuro image. 2013. 
06. 047

 48. G. Pierra, Decomposition through formalization in a product space. Mathemat. Program. 28, 96–115 
(1984). https:// doi. org/ 10. 1007/ BF026 12715

 49. T. Prasloski, A. Rauscher, A.L. MacKay et al., Rapid whole cerebrum myelin water imaging using 
a 3D GRASE sequence. Neuroimage 63(1), 533–539 (2012). https:// doi. org/ 10. 1016/j. neuro image. 
2012. 06. 064

 50. K.P. Pruessmann, M. Weiger, P. Börnert et  al., Advances in sensitivity encoding with arbitrary 
k-space trajectories. Magn. Res. Med. 46(4), 638–651 (2001). https:// doi. org/ 10. 1002/ mrm. 1241

 51. A. Reymbaut, J. Critchley, G. Durighel et al., Toward nonparametric diffusion-characterization of 
crossing fibers in the human brain. Magn. Res. Med. 85(5), 2815–2827 (2021). https:// doi. org/ 10. 
1002/ mrm. 28604

 52. P.J. Slator, J. Hutter, R.V. Marinescu et  al., Data-Driven multi-Contrast spectral microstructure 
imaging with InSpect: INtegrated SPECTral component estimation and mapping. Med. Image Anal. 
71, 102045 (2021). https:// doi. org/ 10. 1016/j. media. 2021. 102045

https://doi.org/10.1002/mrm.26629
https://doi.org/10.1002/nbm.4244
https://doi.org/10.1002/mrm.24670
https://doi.org/10.1002/mrm.24670
https://doi.org/10.1002/jmri.10230
https://doi.org/10.1007/s00415-004-0306-6
https://doi.org/10.1002/jmri.27059
https://doi.org/10.1002/jmri.27059
https://doi.org/10.1137/0716071
https://doi.org/10.1111/jon.12657
https://doi.org/10.1002/mrm.1910310614
https://doi.org/10.3233/BPL-160033
https://doi.org/10.1016/j.neuroimage.2021.118753
https://doi.org/10.1002/mrm.1910200205
https://doi.org/10.1002/mrm.1910200205
https://doi.org/10.1002/mrm.24128
https://doi.org/10.1016/j.mri.2005.10.016
https://doi.org/10.1016/j.mri.2005.10.016
https://doi.org/10.1111/j.1552-6569.2007.00098.x
https://doi.org/10.1016/j.neuroimage.2013.06.047
https://doi.org/10.1016/j.neuroimage.2013.06.047
https://doi.org/10.1007/BF02612715
https://doi.org/10.1016/j.neuroimage.2012.06.064
https://doi.org/10.1016/j.neuroimage.2012.06.064
https://doi.org/10.1002/mrm.1241
https://doi.org/10.1002/mrm.28604
https://doi.org/10.1002/mrm.28604
https://doi.org/10.1016/j.media.2021.102045


1 3

In Vivo Myelin Water Quantification Using Diffusion–Relaxation…

 53. Y. Song, L. Venkataramanan, M. Hürlimann et al., T1–T2 correlation spectra obtained using a fast 
two-dimensional laplace inversion. J. Magn. Res. 154(2), 261–268 (2002). https:// doi. org/ 10. 1006/ 
jmre. 2001. 2474

 54. A.R. Travis, M.D. Does, Selective excitation of myelin water using inversion-recovery-based prepa-
rations. Magn. Res. Med. 54(3), 743–747 (2005). https:// doi. org/ 10. 1002/ mrm. 20606

 55. M.N. Uddin, T.D. Figley, K.G. Solar et al., Comparisons between multi-component myelin water 
fraction, T1w/T2w ratio, and diffusion tensor imaging measures in healthy human brain structures. 
Scient. Rep. 9(1), 2500 (2019). https:// doi. org/ 10. 1038/ s41598- 019- 39199-x

 56. V. Vasilescu, E. Katona, V. Simplaceanu et al., Water compartments in the myelinated nerve. III. 
Pulsed NMR result. Experientia 34(11), 1443–1444 (1978). https:// doi. org/ 10. 1007/ BF019 32339

 57. I.M. Vavasour, K.P. Whittall, A.L. Mackay et  al., A comparison between magnetization transfer 
ratios and myelin water percentages in normals and multiple sclerosis patients. Magn. Res. Med. 
40(5), 763–768 (1998). https:// doi. org/ 10. 1002/ mrm. 19104 00518

 58. M. Weiger, R. Froidevaux, E.L. Baadsvik et al., Advances in MRI of the myelin bilayer. Neuroim-
age 217, 116888 (2020). https:// doi. org/ 10. 1016/j. neuro image. 2020. 116888

 59. K.P. Whittall, MacKay AL (1989) Quantitative interpretation of NMR relaxation data. J. Magn. Res. 
84(1), 134–152 (1969)

 60. M.J. Wilhelm, H.H. Ong, S.L. Wehrli et  al., Direct magnetic resonance detection of myelin and 
prospects for quantitative imaging of myelin density. Proc. Nat. Academy Sci. 109(24), 9605–9610 
(2012). https:// doi. org/ 10. 1073/ pnas. 11151 07109

 61. B.J. Wilm, C. Barmet, M. Pavan et al., Higher order reconstruction for MRI in the presence of spa-
tiotemporal field perturbations. Magn. Res. Med. 65(6), 1690–1701 (2011). https:// doi. org/ 10. 1002/ 
mrm. 22767

 62. B.J. Wilm, C. Barmet, S. Gross et al., Single-shot spiral imaging enabled by an expanded encoding 
model: Demonstration in diffusion MRI. Magn. Res. Med. 77(1), 83–91 (2017). https:// doi. org/ 10. 
1002/ mrm. 26493

 63. T. Yu, E.J. Canales-Rodríguez, M. Pizzolato et  al., Model-informed machine learning for multi-
component T2 relaxometry. Med. Image Anal. 69, 101940 (2021). https:// doi. org/ 10. 1016/j. media. 
2020. 101940

 64. Y. Zhang, B. Blümich, Spatially resolved D-T2 correlation NMR of porous media. J. Magn. Res. 
242, 41–48 (2014). https:// doi. org/ 10. 1016/j. jmr. 2014. 01. 017

 65. Z. Zhang, H.H. Wu, A. Priester et al., Prostate microstructure in prostate cancer using 3-T MRI with 
diffusion-relaxation correlation spectrum imaging: validation with whole-mount digital histopathol-
ogy. Radiology 296(2), 348–355 (2020). https:// doi. org/ 10. 1148/ radiol. 20201 92330

 66. M.V. Zibetti, E.S. Helou, A. Sharafi et  al., Fast multicomponent 3D–T1� relaxometry. NMR 
Biomed. 33(12), e4318 (2020). https:// doi. org/ 10. 1002/ nbm. 4318

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Authors and Affiliations

Sebastian Endt1,2,3  · Maria Engel3  · Emanuele Naldi4  · 
Rodolfo Assereto5  · Malwina Molendowska3,6  · Lars Mueller3,7  · 
Claudio Mayrink Verdun1,8  · Carolin M. Pirkl9  · Marco Palombo3  · 
Derek K. Jones3  · Marion I. Menzel1,2,9 

 * Sebastian Endt 
 Sebastian.Endt@thi.de

 Maria Engel 
 EngelM1@cardiff.ac.uk

https://doi.org/10.1006/jmre.2001.2474
https://doi.org/10.1006/jmre.2001.2474
https://doi.org/10.1002/mrm.20606
https://doi.org/10.1038/s41598-019-39199-x
https://doi.org/10.1007/BF01932339
https://doi.org/10.1002/mrm.1910400518
https://doi.org/10.1016/j.neuroimage.2020.116888
https://doi.org/10.1073/pnas.1115107109
https://doi.org/10.1002/mrm.22767
https://doi.org/10.1002/mrm.22767
https://doi.org/10.1002/mrm.26493
https://doi.org/10.1002/mrm.26493
https://doi.org/10.1016/j.media.2020.101940
https://doi.org/10.1016/j.media.2020.101940
https://doi.org/10.1016/j.jmr.2014.01.017
https://doi.org/10.1148/radiol.2020192330
https://doi.org/10.1002/nbm.4318
https://orcid.org/0000-0003-2062-936X
https://orcid.org/0000-0002-0143-1908
https://orcid.org/0000-0002-2437-2832
https://orcid.org/0009-0004-1292-7214
https://orcid.org/0000-0001-8540-8424
https://orcid.org/0000-0002-9605-9183
https://orcid.org/0000-0003-2079-797X
https://orcid.org/0000-0002-5759-5290
https://orcid.org/0000-0003-4892-7967
https://orcid.org/0000-0003-4409-8049
https://orcid.org/0000-0003-0087-9134


 S. Endt et al.

1 3

 Emanuele Naldi 
 E.Naldi@tu-braunschweig.de

 Rodolfo Assereto 
 Rodolfo.Assereto@uni-graz.at

 Malwina Molendowska 
 Malwina.Molendowska@med.lu.se

 Lars Mueller 
 MuellerL@cardiff.ac.uk

 Claudio Mayrink Verdun 
 Verdun@ma.tum.de

 Carolin M. Pirkl 
 Carolin.Pirkl@ge.com

 Marco Palombo 
 PalomboM@cardiff.ac.uk

 Derek K. Jones 
 JonesD27@cardiff.ac.uk

 Marion I. Menzel 
 Marion.Menzel@thi.de

1 Technical University of Munich, Munich, Germany
2 AImotion Bavaria, Technische Hochschule Ingolstadt, Ingolstadt, Germany
3 Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, 

United Kingdom
4 Technische Universität Braunschweig, Braunschweig, Germany
5 Universität Graz, Graz, Austria
6 Medical Radiation Physics, Lund University, Lund, Sweden
7 Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic 

Medicine (LICAMM), University of Leeds, Leeds, United Kingdom
8 Munich Center for Machine Learning, Munich, Germany
9 GE HealthCare, Munich, Germany


	In Vivo Myelin Water Quantification Using Diffusion–Relaxation Correlation MRI: A Comparison of 1D and 2D Methods
	Abstract
	1 Introduction
	2 Theory
	3 Methods
	3.1 Data Acquisition, Reconstruction and Post-processing
	3.2 Reconstruction of Parameter Spectra
	3.3 Signal Fractions and Visualization

	4 Results
	5 Discussion
	6 Conclusion
	Acknowledgements 
	References


