
Multi-view Contrastive Learning for Entity Typing over Knowledge Graphs
Zhiwei Hu♣ Víctor Gutiérrez-Basulto♢ Zhiliang Xiang♢

Ru Li♣∗ Jeff Z. Pan♠∗

♣ School of Computer and Information Technology, Shanxi University, China
♢ School of Computer Science and Informatics, Cardiff University, UK

♠ ILCC, School of Informatics, University of Edinburgh, UK
♣ zhiweihu@whu.edu.cn,liru@sxu.edu.cn

♢{gutierrezbasultov,xiangz6}@cardiff.ac.uk
♠http://knowledge-representation.org/j.z.pan/

Abstract

Knowledge graph entity typing (KGET) aims
at inferring plausible types of entities in knowl-
edge graphs. Existing approaches to KGET
focus on how to better encode the knowledge
provided by the neighbors and types of an entity
into its representation. However, they ignore
the semantic knowledge provided by the way
in which types can be clustered together. In
this paper, we propose a novel method called
Multi-view Contrastive Learning for knowl-
edge graph Entity Typing (MCLET), which
effectively encodes the coarse-grained knowl-
edge provided by clusters into entity and type
embeddings. MCLET is composed of three
modules: i) Multi-view Generation and En-
coder module, which encodes structured in-
formation from entity-type, entity-cluster and
cluster-type views; ii) Cross-view Contrastive
Learning module, which encourages different
views to collaboratively improve view-specific
representations of entities and types; iii) En-
tity Typing Prediction module, which integrates
multi-head attention and a Mixture-of-Experts
strategy to infer missing entity types. Extensive
experiments show the strong performance of
MCLET compared to the state-of-the-art.

1 Introduction

Knowledge graphs (KGs) (Pan et al., 2017a,b)
store graph-like knowledge using triples of the
form (s, r, o), indicating that entities s and o are
related to each other through a relation type r. KGs
also contain entity type knowledge described as
(e, has_type, t), denoting that entity e has type t;
e.g., we can express that Joe Biden has type Amer-
ican_politician, cf. Figure 1. Entity type knowl-
edge plays a key role in various natural language
processing related tasks, such as entity and rela-
tion linking (Gupta et al., 2017; Pan et al., 2019),
knowledge graph completion (Peng et al., 2022;
Niu et al., 2022; Wiharja et al., 2020), question
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Figure 1: Heterogeneous graph with entities, coarse-
grained clusters, and fine-grained types, covering three
homogeneous views entity-type, entity-cluster, and
cluster-type.

answering (Hu et al., 2022b; Chen et al., 2019; Hu
et al., 2023), and relation extraction (Li et al., 2019).
However, one cannot always have access to this
kind of knowledge as KGs are inevitably incom-
plete (Zhu et al., 2015). For example, in Figure 1
the entity Joe Biden has types American_politician
and American_lawyer, but it should also have
types male_politician and male_lawyer. This phe-
nomenon is common in real-world datasets, for
instance, 10% of entities in the FB15k KG have the
type /music/artist, but are missing the type /peo-
ple/person (Moon et al., 2017). Motivated by this,
we concentrate on the Knowledge Graph Entity Typ-
ing (KGET) task which aims at inferring missing
entity types in a KG.

A wide variety of approaches to KGET have
been already proposed, including embedding-
(Moon et al., 2017; Zhao et al., 2020), transformer-
(Wang et al., 2019; Hu et al., 2022a) and graph
neural network (GNNs) based methods (Pan et al.,
2021; Jin et al., 2022). Each of these approaches
have their own disadvantages: embedding-based
methods ignore the existing neighbor information,
transformer-based are computationally costly due
to the use of multiple transformers to encode dif-
ferent neighbors and GNNs-based ignore impor-
tant higher-level semantic content beyond what is
readily available in the graph-structure. Indeed,



in addition to relational and type neighbors, entity
types can often be clustered together to provide
coarse-grained information. Importantly, this type
of coarse-grain information is available in many
KGs, such as YAGO (Suchanek et al., 2007), which
provides an alignment between types and Word-
Net (Miller, 1995) concepts. The example in Fig-
ure 1 shows that between the entity Joe Biden and
the type American_politician, there is a layer with
cluster-level information American and politician.
On the one hand, compared with the type content,
the cluster information has a coarser granularity,
which can roughly give the possible attributes of
an entity and reduce the decision-making space
in the entity type prediction task. On the other
hand, the introduction of cluster information can
enhance the semantic richness of the input KG.
For example, from the type assertion (Joe Biden,
has_type, American_politician) and the clusters
American and politician corresponding to type
American_politician, we can obtain new semantic
connection edges between entities and clusters, i.e.,
(Joe Biden, has_cluster, American) and (Joe Biden,
has_cluster, politician). Note that as a type might
belong to multiple clusters and a cluster may con-
tain multiple types, a similar phenomenon occurs at
the entity-type and entity-cluster levels, e.g, an en-
tity might contain many clusters. Through the inter-
connection among entities, coarse-grained clusters
and fine-grained types, a dense entity-cluster-type
heterogeneous graph with multi-level semantic re-
lations can be formed.

To effectively leverage the flow of knowledge
between entities, clusters and types, we pro-
pose a novel method MCLET, a Multi-view
Contrastive Learning model for knowledge graph
Entity Typing, including three modules: a Multi-
view Generation and Encoder module, a Cross-
view Contrastive Learning module and a Entity
Typing Prediction module. The Multi-view Gener-
ation and Encoder module aims to convert a het-
erogeneous graph into three homogeneous graphs
entity-type, entity-cluster and cluster-type to en-
code structured knowledge at different levels of
granularity (cf. right side of Figure 1). To collabo-
ratively supervise the three graph views, the Cross-
view Contrastive Learning module captures the in-
teraction by cross-view contrastive learning mecha-
nism and mutually enhances the view-specific rep-
resentations. After obtaining the embedding repre-
sentations of entities and types, the Entity Typing

Prediction module makes full use of the relational
and known type neighbor information for entity
type prediction. We also introduce a multi-head
attention with Mixture-of-Experts (MoE) mecha-
nism to obtain the final prediction score. Our main
contributions are the following:

• We propose MCLET, a method which effec-
tively uses entity-type, entity-cluster and cluster-
type structured information. We design a cross-
view contrastive learning module to capture the
interaction between different views.

• We devise a multi-head attention with Mixture-
of-Experts mechanism to distinguish the contri-
bution from different entity neighbors.

• We conduct empirical and ablation experiments
on two widely used datasets, showing the supe-
riority of MCLET over the existing state-of-art
models.

Data, code, and an extended version with ap-
pendix are available at https://github.com/
zhiweihu1103/ET-MCLET.

2 Related Work

Embedding-based Methods. These methods have
been introduced based on the observation that the
KGET task can be seen as a sub-task of the comple-
tion task (KGC). ETE (Moon et al., 2017) unifies
the KGET and KGC tasks by treating the entity-
type pair (entity, type) as a triple of the form (en-
tity, has_type, type). ConnectE (Zhao et al., 2020)
builds two distinct type inference mechanisms with
local typing information and triple knowledge.
Graph Neural Network-based Methods. Given
that GNNs inherently capture structural knowl-
edge from graphs (e.g. the neighborhood of an
entity), they have been previously used for the
KGET task (Jin et al., 2019; Vashishth et al., 2020;
Pan et al., 2021; Zhuo et al., 2022; Zhao et al.,
2022; Zou et al., 2022a). For example, CET (Pan
et al., 2021) introduces two mechanisms to fully
utilize neighborhood information in an independent
and aggregated manner. MiNer (Jin et al., 2022)
proposes a neighborhood information aggregation
module to aggregate both one-hop and multi-hop
neighbors. However, these type of methods ignore
other kind of semantic information, e.g., how types
cluster together.
Transformer-based Methods. Many studies use
transformer (Vaswani et al., 2017) for KGs related
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tasks (Liu et al., 2022; Xie et al., 2022; Chen
et al., 2022), including KGC. So, transformer-based
methods for KGC, such as CoKE (Wang et al.,
2019) and HittER (Chen et al., 2021) can be di-
rectly applied to the KGET task. TET (Hu et al.,
2022a) presents a dedicated method for KGET.
However, the introduction of multiple transformer
structures brings a large computational overhead,
which limits its application for large datasets.

3 Background

Task Definition. Let E , R and T respectively be
finite sets of entities, relation types and entity types.
A knowledge graph (KG) G is the union of Gtriples

and Gtypes, where Gtriples denotes a set of triples
of the form (s, r, o), with s, o ∈ E and r ∈ R, and
Gtypes denotes a set of pairs of the form (e, t), with
e ∈ E and t ∈ T . To work with a uniform rep-
resentation, we convert the pair (e, t) to the triple
(e, has_type, t), where has_type is a special role
type not occurring in R. Key to our approach is the
information provided by relational and type neigh-
bors. For an entity e, its relational neighbors is
the set Nr = {(r, o) | (e, r, o) ∈ Gtriples} and its
type neighbors is the set Nt = {(has_type, t) |
(e, has_type, t) ∈ Gtypes}. In this paper, we con-
sider the knowledge graph entity typing (KGET)
task which aims at inferring missing types from T
in triples from Gtypes.
Type Knowledge Clustering. Before we intro-
duce our approach to KGET, we start by not-
ing that it is challenging to infer types whose
prediction requires integrating various pieces of
information together. For example, to predict
that the entity Barack Obama has type 20th-
century_American_lawyer, we need to know his
birth year (Barack Obama, was_born_in, 1961),
place of birth (Barack Obama, place_of_birth,
Hawaii), and occupation (Barack Obama, occu-
pation, lawyer). Clearly, this problem is exac-
erbated by the fact that the KG itself is incom-
plete, which might more easily lead to predic-
tion errors. However, in practice, type knowledge
is often semantically clustered together, e.g., the
types male_lawyer, American_lawyer, and 19th-
century_lawyer belong to the cluster lawyer. Natu-
rally, this coarse-grained cluster information could
help taming the decision-making process by pay-
ing more attention to types within a relevant cluster,
without considering ‘irrelevant’ types from other
clusters. With this in mind, we explore the intro-

duction of cluster information into the type predic-
tion process. Therefore, a natural question is how
to determine the clusters to which a type belongs
to. In fact, the Freebase (Bollacker et al., 2008)
and the YAGO (Suchanek et al., 2007) datasets
themselves provide cluster information. For the
Freebase dataset, the types are annotated in a hier-
archical manner, so we can directly obtain cluster
information using a rule-like approach based on
their type annotations. For instance, the type /loca-
tion/uk_overseas_territory belongs to the cluster lo-
cation and the type /education/educational_degree
belongs to the cluster education. The YAGO
dataset provides an alignment between types and
WordNet concepts1. So, we can directly obtain the
words in WordNet (Miller, 1995) describing the
cluster to which a type belongs to. For example, for
the type wikicategory_People_from_Dungannon,
its cluster is wordnet_person_100007846, and for
the type wikicategory_Male_actors_from_Arizona,
its cluster is wordnet_actor_109765278.

4 Method

In this section, we introduce our proposed method
MCLET, which consists of three components: (1)
Multi-view Generation and Encoder (§4.1); (2)
Cross-view Contrastive Learning (§4.2); and (3)
Entity Typing Prediction (§4.3).

4.1 Multi-view Generation and Encoder

For the KGET task, the two parts, Gtriples and
Gtypes, of the input KG can be used for inference.
The main question is how to make better use of the
type graph Gtypes, as this might affect the perfor-
mance of the model to a large extent. So, the main
motivation behind this component of MCLET is to
effectively integrate the existing structured knowl-
edge into the type graph. After introducing coarse-
grained cluster information into the type graph, a
three-level structure is generated: entity, coarse-
grained cluster, and fine-grained type, such that the
corresponding graph will have three types of edges:
entity-type, cluster-type, and entity-cluster. Note
that different subgraphs focus on different perspec-
tives of knowledge. For example, the entity-cluster
subgraph pays more attention to more abstract con-
tent than the entity-type subgraph. Therefore, to
fully utilize the knowledge at each level, we convert
the heterogeneous type graph into homogeneous
graphs and construct an entity-type graph Ge2t, a

1https://yago-knowledge.org/downloads/yago-3
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Figure 2: An overview of our MCLET model, containing three modules: Multi-view Generation and Encoder,
Cross-view Contrastive Learning, and Entity Typing Prediction.

cluster-type graph Gc2t, and a entity-cluster graph
Ge2c separately.

Entity Type Graph. The entity type graph, de-
noted Ge2t, is the original type graph Gtypes from
the input KG. Recall that different types of an en-
tity can describe knowledge from different perspec-
tives, which might help inferring missing types. For
example, given the type assertion (Barack Obama,
has_type, 20th-century_American_lawyer), we
could deduce the missing type assertion (Barack
Obama, has_type, American_lawyer), since the
type 20th-century_American_lawyer entails Amer-
ican_lawyer.

Cluster Type Graph. The cluster type graph, de-
noted Gc2t, is a newly generated graph based on
how types are clustered. Type knowledge avail-
able in existing KGs inherently contains seman-
tic information about clusters of types. For in-
stance, the type /people/appointer in FB15kET,
clearly entails the cluster people. A similar phe-
nomenon occurs in the YAGO43kET KG. Fol-
lowing this insight, for a type t and its cluster
c, we use a new relation type is_cluster_of to
connect t and c. For instance, from the type
/people/appointer and its cluster people we can
obtain (people, is_cluster_of, /people/appointer).
Note that a type may belong to multiple clusters.
For example, the type American_lawyer, belongs
to the clusters American and lawyer.

Entity Cluster Graph. The entity cluster graph,
denoted as Ge2c, is generated based on Ge2t and
Gc2t. Unlike the entity type graph, the entity clus-
ter graph captures knowledge at a higher level of

abstraction. Therefore, its content has coarser gran-
ularity and wider coverage. So, given an entity
e and a type t, for a triple (e, has_type, t) from
Ge2t and a triple (c, is_cluster_of, t) from Gc2t,
we construct a triple (e, has_cluster, c), where
has_cluster is a new relation type. Note that
because a type may belong to multiple clusters,
an entity with this type will also be closely re-
lated to multiple clusters. Consider for an exam-
ple, the entity Barack Obama with type Ameri-
can_lawyer. Since American_lawyer belongs to
the American and lawyer clusters, then there will
be (Barack Obama, has_cluster, American) and
(Barack Obama, has_cluster, lawyer) in Ge2c.

Multi-view Encoder. We encode the different
views provided by Ge2t, Gc2t, and Ge2c into the
representations of entities, types and clusters us-
ing graph convolutional networks (GCN) (Kipf and
Welling, 2017). More precisely, we adopt Light-
GCN’s (He et al., 2020) message propagation strat-
egy to encode the information propagation from
entity-type, cluster-type, and entity-cluster views.
Our choice is supported by the following observa-
tion. The three graphs, Ge2t, Gc2t, and Ge2c, are
uni-relational, i.e., only one relational type is used,
so there is no need a for a heavy multi-relational
GCN model like RGCN (Schlichtkrull et al., 2018).
Indeed, LightGCN is more efficient because it re-
moves the self-connections from the graph and
the nonlinear transformation from the information
propagation function. To encode the three views,
we use the same LightGCN structure, but no param-
eter sharing is performed between the correspond-



ing structures. Taking the encoding of Ge2t as an
example, to learn the representations of entities and
types, the ℓ-th layer’s information propagation is
defined as:

x(ℓ)e←e2t =
∑

t∈Me

1√
|Me||Mt|

x(ℓ−1)t←e2t

x(ℓ)t←e2t =
∑

e∈Mt

1√
|Mt||Me|

x(ℓ−1)e←e2t

(1)

where {x(ℓ)e←e2t, x(ℓ)t←e2t} ∈ Rd represent the embed-
dings of entity e and type t in the graph Ge2t, and d

is the dimension of embedding. {x(0)e←e2t, x(0)t←e2t}
are randomly initialized embeddings at the begin-
ning of training. Me and Mt respectively denote
the set of all types connected with entity e and the
set of all entities connected with type t. By stack-
ing multiple graph propagation layers, high-order
signal content can be properly captured. We further
sum up the embedding information of different lay-
ers to get the final entity and type representation,
defined as:

x∗e←e2t =
L−1∑
i=0

x(i)e←e2t, x∗t←e2t =
L−1∑
i=0

x(i)t←e2t (2)

where L indicates the number of layers of the Light-
GCN. In the same way, we can get the type rep-
resentation of cluster interaction x∗t←c2t and the
cluster representation of type interaction x∗c←c2t

from Gc2t, and the entity representation of cluster
interaction x∗e←e2c and the cluster representation of
entity interaction x∗c←e2c from Ge2c.

4.2 Cross-view Contrastive Learning
Different views can capture content at different lev-
els of granularity. For example, the semantic con-
tent of x∗e←e2c in Ge2c is more coarse-grained than
that of x∗e←e2t in Ge2t. To capture multi-grained
information, we use cross-view contrastive learn-
ing (Zhu et al., 2021; Zou et al., 2022b; Ma et al.,
2022) to obtain better discriminative embedding
representations. For instance, taking the entity em-
bedding as an example, for the embeddings x∗e←e2c

and x∗e←e2t, our cross-view contrastive learning
module goes through the following three steps:

Step 1. Unified Representation. We perform two
layers of multilayer perceptron (MLP) operations
to unify the dimension from different views as fol-
lows:

z∗e←e2t = W2(f(W1x∗e←e2t + b1)) + b2

z∗e←e2c = W2(f(W1x∗e←e2c + b1)) + b2
(3)

where {W1,W2} ∈ Rd×d and {b1, b2} ∈ Rd are
the learnable parameters, f(·) is the ELU non-
linear function. The embedding of the i-th entity
in Ge2t

2 can be expressed as z∗ei←e2t.
Step 2. Positive and Negative Samples. Let a
node u be an anchor, the embeddings of the corre-
sponding node u in two different views provide the
positive samples, while the embeddings of other
nodes in two different views are naturally regarded
as negative samples. Negative samples come from
two sources, intra-view nodes or inter-view nodes.
Intra-view means that the negative samples are
nodes different from u in the same view where
node u is located, while inter-view means that the
negative samples are nodes (different from u) in
the other views where u is not located.

Step 3. Contrastive Learning Loss. We adopt
cosine similarity θ(◦, ◦) to measure the distance
between two embeddings (Zhu et al., 2021). For
example, take the nodes ui and vj in different views,
we define the contrastive learning loss of the posi-
tive pair of embeddings (ui, vj) as follows:

L(ui, vj) = −log eθ(ui,vj)/τ

eθ(ui,vj)/τ︸ ︷︷ ︸
positive pair

+Hintra +Hinter︸ ︷︷ ︸
negative pairs

Hintra =
∑

k∈Sintra

eθ(ui,uk)/τ

Hinter =
∑

k∈Sinter

eθ(ui,vk)/τ

(4)
where τ is a temperature parameter, Hintra and
Hinter correspond to the intra-view and inter-view
negative objective function. If ui is in Ge2t and vj
is in Ge2c, then the positive pair embeddings (ui,
vj) represents (z∗ei←e2t, z∗ej←e2c), i.e., the i-th node
embedding in Ge2t and the j-th node embedding in
Ge2c represent the same entity; after the contrastive
learning operation, the corresponding node pair em-
bedding becomes (z⋄ei←e2t, z⋄ej←e2c). Considering
that the two views are symmetrical, the loss of the
other view can be defined as L(vj ,ui). The final
loss function to obtain the embeddings is the mean
value of all positive pairs loss:

LCL = mean(
∑
i,j

[L(ui, vj) + L(vj ,ui)]) (5)

4.3 Entity Typing Prediction
After performing the multi-view contrastive learn-
ing operation, we obtain two kinds of entity and

2We assume an arbitrary, but fixed order on nodes.



type representation. These two representations in-
corporate entities, coarse-grained clusters and fine-
grained type knowledge at the same time. In this
way, the cluster information is fully integrated into
the representation of entities and types. For an en-
tity e and type t, we obtain their final representation
by respectively concatenating z⋄e←e2t and z⋄e←e2c,
and z⋄t←e2t and z⋄t←c2t:

ze = z⋄e←e2t||z⋄e←e2c, zt = z⋄t←e2t||z⋄t←c2t (6)

Neighbor Prediction Mechanism. The entity
and type embeddings are concatenated to obtain
z = ze||zt as the embedding dictionary to be used
for the entity type prediction task. We found out
that there is a strong relationship between the neigh-
bors of an entity and its types. For a unified repre-
sentation, we collectively refer to the relational and
type neighbors of an entity as neighbors. There-
fore, our goal is to find a way to effectively use the
neighbors of an entity to predict its types. Since
different neighbors have different effects on an en-
tity, we propose a neighbor prediction mechanism
so that each neighbor can perform type prediction
independently. For an entity, its i-th neighbor can
be expressed as (zi, ri), where ri represents the
relation embedding of the i-th relation. As previ-
ously observed (Pan et al., 2021), the embedding
of a neighbor can be obtained using TransE (Bor-
des et al., 2013), we can then perform a nonlin-
ear operation on it, and further send it to the lin-
ear layer to get its final embedding as follows:
N (zi,ri) = W(zi − ri) + b, where W ∈ RN×d,
b ∈ RN are the learning parameters, and N rep-
resents the number of types. We define the em-
bedding of all neighbors of entity e as follows:
N e = [N (z1,r1),N (z2,r2), ...,N (zn,rn)], where n
denotes the number of neighbors of e.
Expert Selection Mechanism. Different neigh-
bors of an entity contribute differently to the pre-
diction of its types. Indeed, sometimes only few
neighbors are helpful for the prediction. We in-
troduce a Multi-Head Attention mechanism (Zhu
and Wu, 2021; Jin et al., 2022) with a Mixture-of-
Experts (MHAM) to distinguish the information
of each head. We compute the final score as:

αi = ϕ(W2(ϕ(W1N e + b1)) + b2)

p = σ(
H∑
i=1

ϕ(TiN eαi)N eαi)
(7)

where W1 ∈ RM×d, W2 ∈ RH×M , b1 ∈ RM

and b2 ∈ RH are the learnable parameters. M and

H respectively represent the number of experts in
Mixture-of-Experts and the number of heads. ϕ
and σ represent the softmax and sigmoid activation
functions respectively. Ti > 0 is the temperature
controlling the sharpness of scores.
Prediction and Optimization. We jointly train
the multi-view contrastive learning and entity type
prediction tasks to obtain an end-to-end model. For
entity type prediction, we adopt the false-negative
aware (FNA) loss function (Pan et al., 2021; Jin
et al., 2022), denoted LET . We further combine
the multi-view contrastive learning loss with the
FNA loss, so we can obtain the joint loss function:

LET = −
∑

(ei,tj)/∈Ge2t

β(pi,j − p2i,j)log(1− pi,j)

−
∑

(ei,tj)∈Ge2t

log pi,j

L = LET + λLCL + γ||Θ||22 (8)

where β is a hyper-parameter used to control the
overall weight of negative samples, λ and γ are
hyper-parameters used to control the contrastive
loss and L2 regularization, and Θ is the model
parameter set.

5 Experiments

Datasets FB15kET YAGO43kET

# Entities 14,951 42,335
# Relations 1,345 37
# Types 3,584 45,182
# Clusters 1,081 1,124
# Train.triples 483,142 331,686
# Train.tuples 136,618 375,853
# Valid.tuples 15,848 43,111
# Test.tuples 15,847 43,119

Table 1: Statistics of Datasets.

Datasets. We evaluate our MCLET model on two
knowledge graphs, each composed of Gtriples and
Gtypes. For Gtriples, we use the FB15k (Bordes
et al., 2013) and YAGO43k (Moon et al., 2017).
For Gtypes, we use the FB15kET and YAGO43kET
datasets introduced by (Pan et al., 2021), which
map entities from FB15k and YAGO43k to corre-
sponding entity types. The statistics of the corre-
sponding datasets are shown in Table 1.

Baselines. We compare MCLET with three
types of baselines. (i) embedding-based models:
ETE (Moon et al., 2017), ConnectE (Zhao et al.,



Datasets FB15kET YAGO43kET
Metrics MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Embedding-based methods
ETE (Moon et al., 2017)♢ 0.500 0.385 0.553 0.719 0.230 0.137 0.263 0.422
ConnectE (Zhao et al., 2020)♢ 0.590 0.496 0.643 0.799 0.280 0.160 0.309 0.479
CORE (Ge et al., 2021)♢ 0.600 0.489 0.663 0.816 0.350 0.242 0.392 0.550

GNN-based methods
HMGCN (Jin et al., 2019)♦ 0.510 0.390 0.548 0.724 0.250 0.142 0.273 0.437
AttEt (Zhuo et al., 2022)♢ 0.620 0.517 0.677 0.821 0.350 0.244 0.413 0.565
ConnectE-MRGAT (Zhao et al., 2022)♢ 0.630 0.562 0.662 0.804 0.320 0.243 0.343 0.482
RACE2T (Zou et al., 2022a)♢ 0.640 0.561 0.689 0.817 0.340 0.248 0.376 0.523
CompGCN (Vashishth et al., 2020)♦ 0.665 0.578 0.712 0.839 0.355 0.274 0.383 0.513
RGCN (Pan et al., 2021)♢ 0.679 0.597 0.722 0.843 0.372 0.281 0.409 0.549
CET (Pan et al., 2021)♢ 0.697 0.613 0.745 0.856 0.503 0.398 0.567 0.696
MiNer (Jin et al., 2022)♢ 0.728 0.654 0.768 0.875 0.521 0.412 0.589 0.714

Transformer-based methods
CoKE (Wang et al., 2019)♦ 0.465 0.379 0.510 0.624 0.344 0.244 0.387 0.542
HittER (Chen et al., 2021)♦ 0.422 0.333 0.466 0.588 0.240 0.163 0.259 0.390
TET (Hu et al., 2022a)♢ 0.717 0.638 0.762 0.872 0.510 0.408 0.571 0.695

Our methods
MCLET-Pool 0.726 0.644 0.773 0.881 0.524 0.418 0.589 0.715
MCLET-MHA 0.744 0.670 0.788 0.889 0.540 0.434 0.608 0.729

MCLET-MHAM 0.750 0.677 0.793 0.891 0.543 0.436 0.613 0.735

Table 2: Main evaluation results. ♢ results are from the original papers. ♦ results are from our implementation of
the corresponding models. Best scores are highlighted in bold, the second best scores are underlined.

2020) and CORE (Ge et al., 2021); (ii) GNN-
based models: HMGCN (Jin et al., 2019), At-
tEt (Zhuo et al., 2022), ConnectE-MRGAT (Zhao
et al., 2022), RACE2T (Zou et al., 2022a),
CompGCN (Vashishth et al., 2020) RGCN (Pan
et al., 2021), CET (Pan et al., 2021), and MiNer (Jin
et al., 2022); (iii) transformer-based models: CoKE
(Wang et al., 2019), HittER (Chen et al., 2021) and
TET (Hu et al., 2022a).

Evaluation Protocol. For every pair (e, t) in the
test set, we obtain a ranking list for the possi-
ble types t. We choose five automatic evaluation
metrics: mean rank (MR), mean reciprocal rank
(MRR), and Hits@k (k∈ {1, 3, 10}), MR measures
the average positions of the first correct answer in
a list of ranked results, MRR defines the inverse of
the rank for the first correct answer, Hits@k calcu-
lates the percentage of correct types ranked among
the top-k, in addition to the MR metric, the larger
the value, the better the effect. Following the eval-
uation protocol in most entity typing works (Pan
et al., 2021; Hu et al., 2022a; Jin et al., 2022), all
metrics are reported under the filtered setting (Bor-
des et al., 2013).

5.1 Main Results

The empirical results on entity type prediction are
reported in Table 2. We can see that all MCLET

variants outperform existing SoTA baselines by
a large margin across all metrics. In particular,
compared to MiNer (the best performing baseline),
our MCLET-MHAM respectively achieves 2.2%
and 2.1% improvements on MRR in the FB15kET
and YAGO43kET datasets. We can see a simi-
lar improvement e.g. on the Hits@1 metric, with
an increase of 2.3% and 2.4% on FB15kET and
YAGO43kET, respectively. Our ablation studies
below show the contribution of MCLET’s compo-
nents on the obtained improvements.

We have evaluated three variants of MCLET
to explore the effectiveness of the expert selec-
tion mechanism: MCLET-Pool, MCLET-MHA,
and MCLET-MHAM. MCLET-Pool and MCLET-
MHA respectively replace our expert selection
mechanism with the pooling approach introduced
in CET and the type probability prediction module
introduced in MiNer. We observe that the MHAM
variant achieves the best results. For instance, on
FB15kET, MHAM improves 2.4% and 0.6% over
the Pool and MHA variants on the MRR metric.
This can be intuitively explained by the fact that
the neighbors of an entity have different contribu-
tions to the prediction of its types. Indeed, by using
the expert selection strategy, the information ob-
tained by each head can be better distinguished. As
a consequence, a more accurate final score can be



Datasets FB15kET YAGO43kET
Setting MRR MR Hits@1 Hits@3 Hits@10 MRR MR Hits@1 Hits@3 Hits@10
w/o e2t 0.738 13 0.662 0.783 0.887 0.519 249 0.413 0.588 0.704
w/o c2t 0.745 12 0.670 0.788 0.891 0.540 170 0.433 0.609 0.731
w/o e2c 0.720 16 0.641 0.765 0.874 0.527 226 0.423 0.595 0.712
w/o all 0.683 20 0.601 0.726 0.843 0.470 498 0.365 0.535 0.658

MCLET-MHAM 0.750 12 0.677 0.793 0.891 0.543 167 0.436 0.613 0.735

Table 3: Evaluation of ablation experiments with different views on FB15kET and YAGO43kET. Best scores are
highlighted in bold.

Datasets FB15kET YAGO43kET
Setting MRR MR Hits@1 Hits@3 Hits@10 MRR MR Hits@1 Hits@3 Hits@10

{all}

l=1 0.744 11 0.670 0.786 0.888 0.543 167 0.436 0.613 0.735
l=2 0.747 12 0.671 0.792 0.894 0.524 219 0.411 0.595 0.726
l=3 0.747 12 0.670 0.793 0.894 0.340 405 0.245 0.377 0.527
l=4 0.750 12 0.677 0.793 0.891 0.220 1368 0.160 0.237 0.330

{1~4}

l=1 0.768 42 0.708 0.813 0.873 0.477 620 0.407 0.517 0.599
l=2 0.752 42 0.685 0.804 0.864 0.441 751 0.372 0.480 0.564
l=3 0.735 41 0.672 0.771 0.859 0.322 1125 0.267 0.350 0.419
l=4 0.674 48 0.603 0.712 0.809 0.297 1357 0.253 0.321 0.367

Table 4: Evaluation of ablation experiments with different LightGCN layers on FB15kET and YAGO43kET, where
{all} indicates the complete dataset, and {1~4} indicates that the entities in the dataset only contain 1 to 4 type
neighbors. Best scores are highlighted in bold.

obtained based on the prediction scores of each of
the neighbors.

5.2 Ablation Studies

To understand the effect of each of MCLET’s com-
ponents on the performance, we carry out ablation
experiments under various conditions. These in-
clude the following three aspects: a) the content of
different views, see Table 3; b) different LightGCN
layers, see Table 4; c) different dropping rates, see
Table 5. Other ablation results and a complexity
analysis can be found in Appendix B and C.

Effect of Different Views. We observe that remov-
ing any of the views most of the time will result in a
decrease in performance, cf. Table 3. Further, if all
three views are removed there will be a substantial
performance drop in both datasets. For instance,
the removal of all three views brings a decrease of
7.3% of the MRR metric on both datasets. This
strongly indicates that the introduction of the three
views is necessary. Intuitively, this is explained
by the fact that each view focuses on a different
level of granularity of information. Using the cross-
view contrastive learning, we can then incorporate
different levels of knowledge into entity and type
embeddings. We can also observe that the perfor-
mance loss caused by removing the cluster-type
view is much lower than that caused by remov-
ing entity-type and entity-cluster views. This is

mainly because the cluster-type graph is smaller
and denser, so the difference in the discriminative
features of nodes is not significant.

Effect of Different LightGCN Layers. We have
observed that the number of layers on the FB15kET
and YAGO43kET datasets has a direct effect on
the performance of LightGCN, cf. Table 4. For
FB15kET, the impact of the number of GCN layers
on the performance is relatively small. However,
for YAGO43kET, the performance sharply declines
as the number of layers increase. The main reason
for this phenomenon is that in the YAGO43kET
dataset most entities have a relatively small num-
ber of types. As a consequence, the entity-type and
entity-cluster views are sparse. So, when deeper
graph convolution operations are applied, multi-
hop information is integrated into the embeddings
through sparse connections. As a consequence,
noise is also introduced, which has a negative im-
pact on the final results. We further constructed
a dataset where each entity contains between 1 to
4 type neighbors and performed experiments with
LightGCN with layer numbers ranging from 1 to 4.
In this case, we can observe that as the number of
GCN layers increase, there is a significant decline
in the performance on FB15kET as well. This is in
line with the finding that the performance decreases
in YAGO43kET as the number of layers increases.

Effect of Dropping Rates of Relation Neighbors.



Dropping Rates 25% 50% 75% 90%
Models MRR H@1 H@3 MRR H@1 H@3 MRR H@1 H@3 MRR H@1 H@3

CompGCN (Vashishth et al., 2020) 0.661 0.573 0.705 0.655 0.565 0.702 0.648 0.559 0.697 0.633 0.544 0.679
RGCN (Pan et al., 2021) 0.673 0.590 0.716 0.667 0.584 0.708 0.648 0.560 0.694 0.626 0.534 0.673
CET (Pan et al., 2021) 0.697 0.613 0.744 0.687 0.601 0.733 0.670 0.580 0.721 0.646 0.553 0.698
TET (Hu et al., 2022a) 0.712 0.631 0.758 0.705 0.624 0.753 0.689 0.606 0.733 0.658 0.574 0.701
MiNer (Jin et al., 2022) 0.714 0.634 0.760 0.703 0.620 0.749 0.683 0.596 0.731 0.652 0.556 0.706

MCLET-MHAM 0.742 0.665 0.788 0.732 0.653 0.777 0.718 0.636 0.765 0.700 0.614 0.751

Table 5: Evaluation with different relational neighbors dropping rates on FB15kET. H@N is an abbreviation for
Hits@N, N ∈ {1, 3}. Best scores are highlighted in bold.

Dropping Rates 25% 50% 75% 90%
Models MRR H@1 H@3 MRR H@1 H@3 MRR H@1 H@3 MRR H@1 H@3

CompGCN (Vashishth et al., 2020) 0.664 0.578 0.708 0.662 0.574 0.708 0.653 0.565 0.699 0.637 0.546 0.683
RGCN (Pan et al., 2021) 0.676 0.593 0.719 0.673 0.590 0.719 0.658 0.573 0.702 0.636 0.548 0.681
CET (Pan et al., 2021) 0.699 0.617 0.743 0.694 0.610 0.742 0.675 0.588 0.721 0.653 0.564 0.700
TET (Hu et al., 2022a) 0.711 0.631 0.756 0.710 0.630 0.757 0.690 0.608 0.734 0.677 0.591 0.722
MiNer (Jin et al., 2022) 0.716 0.638 0.759 0.713 0.634 0.756 0.687 0.603 0.733 0.658 0.564 0.712

MCLET-MHAM 0.747 0.674 0.790 0.747 0.675 0.787 0.729 0.652 0.773 0.703 0.619 0.750

Table 6: Evaluation with different relation types dropping rates on FB15kET. H@N is an abbreviation for Hits@N,
N ∈ {1, 3}. Best scores are highlighted in bold.

Relational neighbors of an entity provide support-
ing facts for its representation. To verify the ro-
bustness of MCLET in scenarios where relational
neighbors are relatively sparse, we conduct an ab-
lation experiment on FB15kET by randomly re-
moving 25%, 50%, 75%, and 90% of the relational
neighbors of entities, as proposed in (Hu et al.,
2022a). We note that even after removing different
proportions of relational neighbors, MCLET still
achieves optimal performance. This can be mainly
explained by two reasons. On the one hand, our
views are based solely on the entity type neighbors,
without involving the entity relational neighbors.
Thus, changes in relational neighbors do not signif-
icantly affect the performance of MCLET. On the
other hand, relational neighbors only serve as auxil-
iary knowledge for entity type inference, while the
existing type neighbors of entities play a decisive
role in predicting the missing types of entities.

Effect of Dropping Rates of Relation Types.
Compared with YAGO43kET, FB15kET has much
more relations. To verify the robustness of MCLET
when the number of relations is small, similar
to (Hu et al., 2022a), we randomly remove 25%,
50%, 75%, and 90% of the relation types in
FB15kET. From Table 6, we can observe that even
with a smaller number of relation types, MCLET
still achieves the best performance. This demon-
strates the robustness of our method in the presence
of significant variations in the number of relational

neighbors. This is mainly due to the introduction
of cluster information, which establishes a coarse-
grained bridge between entities and types, this in-
formation is not affected by drastic changes in the
structure of the knowledge graph. Therefore, the
incorporation of cluster information is necessary
for entity type prediction tasks.

6 Conclusions

We propose MCLET, a multi-view contrastive
learning (CL) framework for KGET. We design
three different views with different granularities,
and use a CL strategy to achieve cross-view coop-
eratively interaction. By introducing multi-head at-
tention with a Mixture-of-Experts mechanism, we
can combine different neighbor prediction scores.
For future work, we plan to investigate inductive
scenarios, dealing with unseen entities and types.
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7 Limitations

In this paper, we introduce coarse-grained clus-
ter content for the knowledge graph entity typing
task. Although we achieve good results, there are
still limitations in the following aspects: 1) For
the standard benchmark datasets we use the read-
ily available cluster-level annotation information.
However, for those datasets without cluster infor-
mation, we would need to use clustering algorithms
to construct implicit cluster semantic structures. 2)
There is a related task named fine-grained entity
prediction (FET), the difference lies in predicting
the types of entities that are mentioned in a given
sentence, rather than entities present in a knowl-
edge graph. The corresponding benchmarks also
have annotated coarse-grained cluster information.
Therefore, it would be worthwhile exploring the
transferability of MCLET to the FET task.
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Figure 3: The ablation studies results under different experimental conditions.

Appendix

A Details about Experiments

Parameter {FB15kET, YAGO43kET}

# Embedding dimensions {100, 100}
# Learning rate {0.001, 0.001}
# Temperature {0.6, 0.6}
# LightGCN layers {4, 1}
# Number of heads {5, 5}
# Number of experts {32, 32}
# β value {4, 2}
# λ value {0.001, 0.001}
# γ value {1e-5, 1e-5}

Table 7: The best hyperparameters of MCLET model in
different datasets.

Hyperparameter Settings. All experiments
were carried out on a 32G Tesla V100 GPU, we
use Adam (Kingma and Ba, 2015) as the optimizer,
and determine the final value of each hyperparam-
eter based on the MRR value on the validation
set by using grid search. We fine-tune the hyper-
parameters including the number of embedding
dimensions from d ∈ {50, 100, 150, 200}, and
the learning rate from lr ∈ {0.001, 0.005, 0.01},
the temperature parameter in contrastive loss
τ ∈ {0.4, 0.5, 0.6, 0.7}, the number of Light-
GCN layers L ∈ {1, 2, 3, 4}, the number of heads
H ∈ {3, 4, 5, 6}, the numbers of experts M ∈
{16, 32, 64}, the weight of negative samples in
FNA loss β ∈ {1, 2, 3, 4}, the weight of contrastive
loss λ ∈ {0.1, 0.01, 0.001, 0.0001}, the weight of
L2 regularization γ ∈{1e-5, 2e-5, 3e-5}. Table 7
summarizes the best configurations in two datasets.

B Additional Results

Effect of Different Head Numbers. In Figure 3
(a) we report the results of testing the performance
of different numbers of attention heads in MHAM.

We observe that the selection of different numbers
of attention heads has a slight impact on the per-
formance. It should be noted that, as shown in
Equation 7, using more heads will introduce more
learning parameters, so when the performance of
the model is equivalent, it is better to use fewer
heads.

Effect of Different Loss Weight λ. The parame-
ter λ in Equation 8 determines the importance of
the contrastive loss during the multi-loss training
process. We set the weight values of the contrastive
loss as ∈ {0.1, 0.01, 0.001, 0.0001} to investigate
its impact on the final entity typing prediction re-
sults. From Figure 3 (b), one can see that different
weight values have a minimal effect on the over-
all performance. This demonstrates the robustness
of MCLET in terms of setting the weight for the
contrastive loss, ensuring that the results do not
undergo drastic changes due to improper weight
values.

Effect of Different Temperature τ . The temper-
ature coefficient can be used to adjust the similarity
measurement between samples. A higher tempera-
ture coefficient will flatten the distribution of simi-
larities, causing the model to pay more attention to
subtle differences between samples. On the other
hand, a lower temperature coefficient will concen-
trate the distribution of similarities, emphasizing
the overall differences between samples. From
Figure 3 (c), it can be observed that setting dif-
ferent temperature coefficients has limited impact
on MCLET. Although the choice of temperature
coefficient usually requires adjustment based on
specific tasks and datasets, in our current model
context, the selection of this coefficient does not
have a decisive effect on the final performance of
the model.



C Complexity Analysis

Model FB15kET YAGO43kET

CompGCN (Vashishth et al., 2020) 98.395M 604.690M
RGCN (Pan et al., 2021) 45.875M 578.330M
CET (Pan et al., 2021) 504.627M 6.362G
TET (Hu et al., 2022a) 2.016G 8.406G
MiNer (Jin et al., 2022) 1.127G 14.204G

MCLET 1.129G 13.620G

Table 8: The amount of calculations required by differ-
ent models on different datasets.

Computational Complexity. Considering that
the prediction accuracy of embedding-based meth-
ods for KGET is relatively lower, we compared the
computational complexity of MCLET with GNN-
based models like CompGCN, RGCN, CET, TET,
and MiNer, the corresponding results are shown in
Table 8. The computational cost refers to the num-
ber of floating-point operations (FLOPs) required
during training or inference. We incur greater
computational overhead compared to CompGCN,
RGCN, and CET, but the performance of these
three baselines is significantly lower than that
of MCLET. In comparison to the SoTA models
TET and MiNer, we require less computational re-
sources than TET on the FB15kET dataset, and
than MiNer on the YAGO43kET dataset. This in-
dicates that we can achieve optimal performance
without introducing a substantial computational
overhead. Additionally, note that for the FB15kET
and YAGO43kET datasets, the MCLET model
respectively converges in only 39 minutes and 7
hours 10 minutes, for a Tesla V100 32G graphics
card, which is a reasonable time cost.


