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Genome-wide association study of
thyroid-stimulating hormone highlights
new genes, pathways and associations with
thyroid disease

Alexander T. Williams1,19 , Jing Chen 1,19, Kayesha Coley 1, Chiara Batini 1,2,
Abril Izquierdo1,2, Richard Packer1,2, Erik Abner 3, Stavroula Kanoni 4,
David J. Shepherd1, Robert C. Free 2,5, Edward J. Hollox 6, Nigel J. Brunskill7,
Ioanna Ntalla1, Nicola Reeve 1,8, Christopher E. Brightling2,9, Laura Venn 1,
Emma Adams1, Catherine Bee1, Susan E. Wallace1, Manish Pareek2,10,
Anna L. Hansell 1, Tõnu Esko3, Estonian Biobank Research Team*,
Daniel Stow 11, BenjaminM. Jacobs 12,13, DavidA. vanHeel 14, Genes&Health
Research Team*, William Hennah15,16,17, Balasubramanya S. Rao18,
Frank Dudbridge 1, Louise V. Wain 1,2, Nick Shrine 1, Martin D. Tobin1,2,20 &
Catherine John 1,2,20

Thyroid hormones play a critical role in regulation of multiple physiological
functions and thyroid dysfunction is associated with substantial morbidity.
Here, we use electronic health records to undertake a genome-wide associa-
tion study of thyroid-stimulating hormone (TSH) levels, with a total sample
size of 247,107.We identify 158 novel genetic associations,more thandoubling
the number of known associations with TSH, and implicate 112 putative causal
genes, of which 76 are not previously implicated. A polygenic score for TSH is
associated with TSH levels in African, South Asian, East Asian, Middle Eastern
and admixed American ancestries, and associated with hypothyroidism and
other thyroid disease in South Asians. In Europeans, the TSHpolygenic score is
associated with thyroid disease, including thyroid cancer and age-of-onset of
hypothyroidism and hyperthyroidism. We develop pathway-specific genetic
risk scores for TSH levels and use these in phenome-wide association studies
to identify potential consequences of pathway perturbation. Together, these
findings demonstrate the potential utility of genetic associations to inform
future therapeutics and risk prediction for thyroid diseases.

Thyroid hormones are essential for energy metabolism and act on
almost all cells. Thyroid dysfunction is associated with secondary
cardiovascular, mental health, ophthalmic and other disease1. Hypo-
thyroidism has a high prevalence2 and is most commonly due to

autoimmune (Hashimoto) thyroiditis, in areas where iodine intake is
sufficient1. Hyperthyroidism, prevalence 0.2–1.3%, is most commonly
due to autoimmune (Graves) disease or toxic nodular goitre1. Ageing,
diet (including iodine deficiency), smoking status, genetic
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susceptibility, ethnicity, and endocrine disruptors are risk factors for
thyroid diseases; defining genetic variants, genes, proteins and path-
ways associatedwith hypothyroidism and hyperthyroidismwill inform
a deeper understanding of the mechanisms of thyroid disease and
inform prevention and treatment strategies.

Genome-wide association studies (GWAS) of quantitative traits
have been particularly powerful and successful in identifying newdrug
targets3–5. Most genetic associations for thyroid disorders were dis-
covered in GWAS of thyroid-stimulating hormone (TSH) levels, a sen-
sitive marker of thyroid function which is suppressed when levels of
thyroxine (T4) and triiodothyronine (T3) are high and elevatedwhenT4

and T3 levels are low. The largest GWAS to date, including 119,715
participants, brought the number of known genetic associations for
TSH to 99, highlighting associations with hypothyroidism, hyperthyr-
oidism, and thyroid cancer6.

Electronic health records (EHR) are increasingly utilised in geno-
mic studies7,8. In the UK, primary care EHR have been recorded pro-
spectively for more than 25 years. TSH is frequently measured in
primary care because thyroid disease may present with non-specific
symptoms or be asymptomatic. Through harnessing such TSH mea-
sures, our study included 247,107 participants,more thandoubling the
size of the largest study to date, increasing the number of genetic
associations for TSH from 99 to 260. Using these 260 associated
variants we then (i) tested the association between TSH-associated
variants anddisease; (ii)fine-mapped associations through annotation-
informed credible sets; (iii) applied a consensus-based framework to
systematically investigate and identify putative causal genes, inte-
grating eight locus-based or similarity-based criteria; (iv) developed
and applied a polygenic score (PGS) for TSH to show associations with
susceptibility and age-of-onset of thyroid disease; (v) applied
phenome-wide association studies (PheWAS) to individual variants,
the PGS, and molecular pathway-specific genetic risk scores (GRSs).
Through evidence from the above, we aimed to define putative causal
genes, and provide new insights into the mechanistic pathways
underlying thyroid disorders and their relationship to other long-term
conditions to inform relevant drug therapies.

Results
In UK Biobank and the EXCEED study we undertook GWAS with TSH
levels, using an inverse normal transformation and adjusting for age,
genotyping array, sex and thefirst 10principal components of ancestry
(Online Methods). Across the two studies, we analysed 127,392 Eur-
opean ancestry (EUR) participants. We meta-analysed summary sta-
tistics from GWAS in UK Biobank and EXCEED with those from the
independent European-ancestry populations of Zhou et al6, bringing
the total sample size to 247,107 participants and 57,524,162 genetic
variants in Stage 1. Sentinel variants reaching P < 5 × 10−8 in Stage 1were
taken forward to Stage 2, in which TSH associations were tested in
63,326 EUR participants from the Estonian Biobank9 and 33,171 South
Asian ancestry (SA) participants from Genes & Health10. We meta-
analysed summary statistics from Stages 1 and 2. Overall, we studied
TSH associations in 343,604 individuals and up to 70,647,331 genetic
variants (Fig. 1).

TSH association with 260 sentinel variants
In Stage 1 (N = 247,107), we identified 260 independent sentinel var-
iants associated with TSH (P < 5 × 10−8) at 156 unique genomic loci, of
which 158 sentinel variants at 78 genomic loci are new (Online Meth-
ods, Supplementary Figure 1). In addition to reaching P < 5 × 10−8 in the
Stage 1 meta-analysis, 230 of 249 sentinel variants available in Stage 2
(133 of the 158 novel sentinel variants) reached P < 5 × 10−8 after meta-
analysing Stages 1 and 2 (N = 343,604, Supplementary Data 2)6,9,11.

Together the 260 sentinel variants explain 22.8% of the TSH var-
iance (Eq. (1)), accounting for 35.1% of the heritability previously esti-
mated by Panicker et al. at 65% (OnlineMethods). Themedian number

of variants per 95% credible set (i.e. the set of variants that has 95%
probability of containing the causal variant) was 3, and 167 (64%) of
credible sets had a putative causal variant with a posterior inclusion
probability (PIP) > 50%. Sentinel variants were defined as the variant in
each credible set with the highest posterior probability (Online
Methods).

Identification of putative causal genes and causal variants
To better understand the functional relevance of our sentinel variants,
we undertook comprehensive variant-to-gene mapping by integrating
evidence from eight methods: (i) the nearest gene to the sentinel
variant; (ii) the gene with the highest polygenic priority score (PoPS)12;
identification of (iii) expression quantitative trait loci (eQTL) or (iv)
protein quantitative trait loci (pQTL) within the credible sets; (v)
proximity to a gene for a thyroid-associated Mendelian disease
(±500 kb); (vi) an annotation-informed credible set containing a mis-
sense/deleterious/damaging variant with a posterior probability of
association >50%; (vii) identification of a rare variant (±500 kbof a TSH
sentinel variant) association with hypo- or hyperthyroidism using
whole-exome13 and whole-genome sequencing14 resources; and (viii)
proximity to a human ortholog of a mouse knockout gene with a
thyroid-related phenotype (±500 kb).

We identified 112 putative causal genes satisfying ≥2 criteria, of
which 30were supported by ≥3 criteria (Fig. 2, Supplementary Data 3).
36 of the 112 overlap with a list of 67 previously reported genes
(Supplementary Data 4)6,15 typically implicated by a single criterion.

Of the 112 putative causal genes supported by ≥2 criteria, 76 genes
have not been previously implicated in TSH levels. The 36 previously
reported genes were supported by additional criteria compared with
the original reports, among which were 15 genes also supported by
additional sentinel variants (Supplementary Data 3). Among the 30
genes supported by ≥3 criteria, 18 were not previously implicated in
TSH levels (ADCY6, ANXA5, BCAS3, BNC2, CADM1, HMGA2, KIAA1217,
KRT18, PDE4D, PHC2, PTEN, SDCCAG8, SGK1, SMOC2, SPPL3, SULF1,
TRIM2, TSHZ3, novel genes shown in bold) and 12 were previously
reported genes supported by additional criteria compared with the
original reports, among which were 6 genes also supported by addi-
tional novel sentinel variants (TG, TSHR, GLIS3, IGFBP5, PTPRS,
SPATA13). The 30 genes supported by ≥3 criteria include genes
involved in transcriptional regulation (BNC2, HMGA2, PHC2, TSHZ3,
GLIS3), production, signaling or response to thyroid hormones (TG,
TPO, TSHR, PDE4D) or non-thyroid hormones (ADCY6, INSR, NR3C2),
regulation of thyroid-relevant pathways (HMGA2, IGFBP5), neuronal
protection and neuropathies (ADCY6, TRIM2), angiogenesis (SMOC2,
SKG1, VEGFC, SPATA13), AKT signalling (PTEN, SGK1, AKT1, PTPRS) and
ciliogenesis (SDCCAG8).

To supplement understanding of the biological pathways and
clinical phenotypes influenced by TSH-associated variants, we first
tested associations between our sentinel variants and circulating free
T4 levels, hypothyroidism, hyperthyroidism (Fig. 2, Supplementary
Data 5), thyroid cancer and other thyroid disease in UK Biobank. Using
DeepPheWAS v0.2.97, we then undertook PheWAS inUKBiobank of 64
sentinel variants whichmapped to putative causal genes implicated by
≥3 criteria or by a single putative causal missense variant (PIP > 50%;
Supplementary Fig. 2, Supplementary Data 6).

TSH sentinel variants implicating putative causal genes with ≥2
variant-to-gene mapping criteria show variable patterns of association
with hypothyroidism, hyperthyroidism, thyroid cancer and other
thyroid diseases. Among these are sentinel variants associated with
hypothyroidism but not hyperthyroidism (implicating AKT1, IGFBP5,
INSR, GLIS3, SPATA13, CADM1, BCAS3, SASH1, PDE4D, VEGFC, SPPL3,
BNC2, PDE10A, PDE8B, NR3C2, VAV3, SOX9, B4GALNT3, CGA, C9orf92,
NEK6, NSF, CCBE1, GNG7, TPPP, WNT4, SNX8, C1orf116, RBM47,
KCTD5, PPP2R1B, PTPRJ, OCLN, C9orf156, GATA3, WWTR1, MAL2,
ZBTB17, ARNT, CDC16), sentinel variants associated with
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hyperthyroidism but not hypothyroidism (implicating TSHR, NRG1,
SDCCAG8, HMGA2, APOH, BMP2, SMAD6), and sentinel variants asso-
ciated with both hypothyroidism and hyperthyroidism with an oppo-
site direction of effect (implicating TPO, PTEN, CAPZB, VEGFA, NFIA,
MBIP, HLA-C, SLC25A37, SLC25A37, NKX2-1, NKX2-3, FOXA2). However,
tolerated SH2B3missense variant, rs3184504 (allele T), associated with

increased TSH, was associated with increased risk of both hypothyr-
oidism and hyperthyroidism, and in our PheWASwith increased risk of
other autoimmune disorders and pleiotropic associations with many
traits (Supplementary Data 5 and 6). Furthermore, the TSH-increasing
allele of SGK1 intronic SNP rs1743963 was associated with decreased
risk of both hypothyroidism and hyperthyroidism and in our PheWAS,

53,096,898 SNPs 15,158,142 SNPs 22,397,080 SNPs

 & 

gene 

Fig. 1 | Overview of the study design. Flow diagram summarising the two-stage study design. UKB UK Biobank, EUR European ancestry, SA South Asian ancestry,
SNP single nucleotide polymorphism, GRS genetic risk score, EstBB Estonian Biobank, G&H Genes & Health.
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Fig. 2 | 112 genes prioritised by two or more variant-to-gene criteria. The first
seven columns indicate that at least one variant implicates the corresponding gene
via the evidence for that column (Supplementary Data 3). The remaining six col-
umns indicate the strengthof association of themost significant variant implicating
the corresponding gene as causal with respect to the TSH increasing allele, such

that shades of blue represent associations with the other thyroid phenotypes that
have the same direction of effect as the TSH association and shades of red repre-
sent an opposite direction of effect to the TSH association (Supplementary Data 5).
As therewere no significant pQTL associations, that column has been omitted from
the figure.
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with increased calcium levels. SGK1, encoding serum glucocorticoid
regulated kinase 1, is involved in the regulation of ion channels and
stress response.

Among relevant clinical phenotypes in the PheWAS is “secondary
hypothyroidism”, defined by PheCode 244.1 which encompasses ICD
codes for hypothyroidism due to surgery, ablation or medicaments
used in treating hyperthyroidism. This code therefore represents
consequences of treated hyperthyroidism—or occasionally treatment
of other conditions—and is unrelated to central hypothyroidism,which
was sometimes previously referred to as secondary hypothyroidism.
We excluded these codes from our definition of hypothyroidism
(Fig. 2). When we explored single SNP associations with treated
hyperthyroidism we found consistent directions of association with
hyperthyroidism clinical codes and instances of associations, impli-
cating genes IGFBP5, CADM1, SOX9, BMP2, TGFB2 and SYT13, which
were not detected by only studying hyperthyroidism codes in UK
Biobank, consistent with earlier onset hyperthyroidism cases (Sup-
plementary Fig. 3; Supplementary Data 7).

Of the TSH sentinel variants implicating putative causal genes, a
minority were associated with free T4 (TPO, IGFBP5, INSR, GLIS3, NRG1,
PDE10A, PDE8B, CAPZB, VEGFA, NFIA, MBIP, HLA-C, NEK6, CERS6,
CCBE1, GNG7, PTPRJ, KANK1, C9orf156, NKX2-1, NKX2-3, GATA3), and
sentinel variants that were not associated with T4 included sentinel
variants associated with hypothyroidism or hyperthyroidism (TG,
AKT1, TSHR, SPATA13, CADM1, BCAS3, SASH1, PTEN, PDE4D, VEGFC,
SGK1, SPPL3, SDCCAG8, HMGA2, NR3C2, VAV3, CGA, SH2B3, GNG7,
APOH, TPPP, WNT4, SNX8, BMP2, C1orf116, KCTD5, KDR, FOXA2,
WWTR1, TGFB2, MAL2, ZBTB17, ARNT, CDC16). Our findings suggest
that the study of TSH levels is a more sensitive approach to detecting
genetic associations relevant to thyroid disease than the study of T4

levels.
Genes implicated by a single putative causal missense variant that

was deleterious included SPATA6, ADCY6 and APOH. SPATA6 (impli-
cated by rs77303590, minor allele frequency [MAF] 2.6% in EUR)
encodes a spermatogenesis-associated protein possibly involved in
microfilament transport, and had no associations at FDR <1% in our
PheWAS. ADCY6 (implicated by rs115315671, MAF 2.3% in EUR) encodes
an adenylate cyclase protein involved in cAMP signalling, and was
associated with creatinine levels in our PheWAS. Apolipoprotein H is
involved in lipoproteinmetabolism, coagulation and haemostasis. The
G allele of the APOH missense deleterious variant, rs1801690 (MAF
5.7% in EUR), was associated with reduced TSH, increased risk of
hyperthyroidism, increased risk of congenital anomalies of endocrine
glands and thyrotoxicosis in the UK Biobank DeepPheWAS analysis, as
well as increased aspartate aminotransferase (AST) and alanine ami-
notransferase (ALT) levels, increased height, reduced triglycerides,
reduced carotid intima media thickness and, in FinnGen16, reduced
deep venous thrombosis risk. C9orf156 (encoding TRNA Methyl-
transferase O) was implicated by a single putative causal tolerated
missense variant, rs2282192 (T allele, frequency 28.8% in EUR), asso-
ciated with increased TSH, increased hypothyroidism risk and
decreased risk of nontoxic multinodular goitre and thyroid cancer as
well as lower mean corpuscular volume and HbA1c.

Novel TSH sentinel variants associated with thyroid diseases also
implicated relatively understudied putative causal genes, such as
SPPL3 and SDCCAG8. SPPL3 encodes Signal Peptide Peptidase Like 3
involved in T cell receptor signaling, regulation of calcineurin-NFAT
signaling and protein dephosphorylation. The SPPL3 intronic variant
rs2393717 G allele (frequency 47.3% in EUR) associated with increased
TSH was associated with reduced hypothyroidism risk, increased tyr-
osine (a thyroid hormone precursor), as well as decreased C-reactive
protein, increased insulin-like growth factor 1 (IGF-1), reduced height,
whole body fat-free mass and reduced sex hormone binding globulin
(especially in males), decreased gamma glutamyltransferase (GGT),
increased alkaline phosphatase, reduced platelet count and

eosinophils, increased cholesterol and with lipid composition traits.
Mutations in SDCCAG8, encoding the sonic hedgehog (SHH) signaling
and ciliogenesis regulator, SDCCAG8, cause Bardet-Biedl Syndrome 16
(BBS16). Hypothyroidism and hyperthyroidism have been observed in
commoner forms of Bardet-Biedl Syndrome17. The TSH increasing
allele, C (frequency 53.8% in EUR), of SDCCAG8 intronic variant
rs10926981 was associated with reduced risk of thyrotoxicosis and
thyroid cancer, as well as reduced creatinine and increased eGFR.

As smoking is known to influence thyroid function,we conducted a
look-up of our sentinel variants in the summary statistics from GSCAN
(GWAS & Sequencing Consortium of Alcohol and Nicotine use)18 across
four smoking behaviour traits: age at smoking initiation, cigarettes
per day, smoking cessation and smoking initiation. One sentinel variant,
rs3184504, implicating a large number of genes including SH2B3, was
significantly associatedwith smoking initiation (P < 5 × 10−8); the T allele
associated with increased TSH levels was associated with lower risk of
smoking initiation18 (Supplementary Data 5).

Druggable targets
For the 112 genes supported by ≥2 criteria, we surveyed gene-drug
interactions using the Drug Gene Interaction Database (DGIDB). The
protein products of these genes include targets for treatments to sti-
mulate (thyrotropin [TSH]) or suppress (methimazole, targeting thyr-
oid peroxidase, TPO) thyroid function, and drugs to treat thyroid
cancer (e.g. the KDR inhibitor, vandetanib) as well as PDE4 inhibitors
and AKT inhibitors utilised in immunoinflammatory conditions and
cancers (Supplementary Data 8).

Pathway analysis
Employing ConsensusPathDB19, we tested biological pathways enrich-
ment for the 112 putative causal genes supported by ≥2 criteria, high-
lighting signal transduction, particularly G protein (Reactome) and
cAMP (KEGG) signaling, and the overlapping phosphodiesterases in
neuronal function pathway (Wikipathways, including novel genes
PDE4D, PDE7A, PDE4B, ADCY6). The thyroxine production (Wiki-
pathways) pathway included novel gene CGA, encoding anterior
pituitary glycoprotein hormones subunit alpha, which is common to
TSH, chorionic gonadotropin (CG), luteinizing hormone (LH), and
follicle-stimulating hormone (FSH). New pathways of interest include
VEGF hypoxia and angiogenesis (Biocarta), including ARNT, BDKRB2,
and KDR alongside VEGFA and AKT1, as well as opioid signalling, and
platelet activation (Supplementary Data 9).

Phenome-wide associations of pathway-specific TSHgenetic risk
scores
We hypothesised that partitioning a TSH GRS into pathway-specific
GRSs according to the biological pathway(s) that each variant influences
could informunderstandingofmechanismsunderlyingTSHand thyroid
disease, and possible consequences of pathway perturbation. Informed
by the above prioritisation of putative causal genes and classification of
these genes by pathway, we undertook PheWAS for TSH-weighted GRSs
partitioned by each of 26 enriched pathways (FDR<5 × 10−4) after
dropping redundant pathways (GRS correlation r2 <0.7).

We highlight examples of pathway-specific GRSs showing differ-
ing patterns of associations with thyroid and non-thyroid diseases
(Supplementary Data 10; Supplementary Fig. 4). The GRS for higher
TSH specific to the cAMP signalling pathway (KEGG, including novel
genes GNAS, PDE4D, PDE4B, ADCY6, CGA) was specific to increased
risk of hypothyroidism; no associations (FDR< 1%) with other traits
were shown (Supplementary Fig. 4a). A GRS for higher TSH specific to
the activin receptor-like kinase (ALK) in cardiac myocytes pathway
(Biocarta, including novel genes SMAD6, BMP4) showed associations
with reduced risk of nontoxic nodular and multinodular goitre, and
simple goitre, as well as raised heel bone mineral density, standing
height and whole-body fat-free mass and reduced FEV1/FVC (Fig. 3a,
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Supplementary Data 10). GRSs specific to several pathways showed
association to PheCode 244.1 capturing consequences of treated
hyperthyroidism: the ALK in cardiac myocytes pathway, pathways in
cancer (KEGG), factors and pathways affecting IGF-1-Akt signaling

(Wikipathways), myometrial relaxation and contraction pathways
(Wikipathways), FGFR3 signaling in chondrocyte proliferation and
terminal differentiation (Wikipathways). The GRS for higher TSH spe-
cific to the platelet activation, signalling and aggregation pathway

Fig. 3 | PheWAS for select pathway-specific TSH-weighted GRS. PheWAS for pathway-specific TSH-weighted GRS partitioned by: (a, top) activin receptor-like kinase
(ALK) in cardiac myocytes pathway (Biocarta); (b, bottom) platelet activation, signalling and aggregation pathway (Reactome).
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(Reactome, including novel genes GNG7, ANXA5, PRKCZ) was asso-
ciated with increased hypothyroidism risk, reduced nontoxic nodular
goitre and simple goitre risk, raised urate, creatinine and reduced
eGFR, reduced sex hormone binding globulin and testosterone,
increased waist-hip-ratio, handgrip strength and whole body fat-free
mass, osteochondropathies, increased triglyceride levels, and with
lipid composition traits (Fig. 3b).

Polygenic score associations
We constructed a PGS for TSH using the summary statistics of
approximately 1.12 million SNPs from our Stage 1 analysis (meta-ana-
lysed fromUKBiobank, EXCEED, and results fromZhou et al. with total
sample size of 247,107 European-ancestry individuals) as the training
dataset (Online Methods, Fig. 4).

The TSH PGS showed distinct patterns of associations with rele-
vant thyroid and non-thyroid phenotypes in our PheWAS (Supple-
mentary Fig. 5, Supplementary Data 11). Thyroid-relevant PGS
associations included increased risk of hypothyroidism, lower risk of
non-toxic (multi)nodular goitre, thyrotoxicosis, Graves’ disease, and
thyroid cancer, and reduced tyrosine. Other PGS associations included
increased FEV1/FVC, lower risk of chronic obstructive pulmonary dis-
ease (COPD), pneumonia, coeliac disease, common cancers andmulti-
site chronic pain, lower arterial stiffness, increased creatinine and
urate, increased alkaline phosphatase and aspartate aminotransferase,
increased eosinophils, decreased sex hormone-binding globulin, tes-
tosterone and IGF-1, decreased glucose (Supplementary Data 11) as
well as altered lipid levels and composition. We found little or no
attenuation of these PGS associations after adjustment for whether the
individuals had ever smoked (Supplementary Data 12).

We then tested PGS associations across ancestries in UK Biobank.
Strong associations were shown with TSH levels in all ancestry groups
tested (African, AFR; Admixed American, AMR; Central/South Asian,
CSA; East Asian, EAS; Middle Eastern, MID; Fig. 4, Supplementary

Data 13). The TSH PGS was strongly associated with free T4 levels in
European ancestry individuals (SD change inphenotypeper SD change
in PGS (β) = −0.0704; 95% confidence interval (CI): [−0.0790, −0.0618];
P = 5.93 × 10−58), nominally associated with free T4 in the next largest
ancestry group, CSA (β = −0.0904; 95% CI: [−0.1443, −0.0365];
P =0.0010, 1307 participants), and showed a consistent direction of
effect in other ancestry groups (Supplementary Data 13).

To inform understanding of the relevance of the TSH PGS for
disease, we subsequently tested disease susceptibility risk in all UK
Biobank ancestry subgroups with at least 100 cases. In European
ancestry UK Biobank participants, the TSH PGS was associated with
risk of hypothyroidism (odds ratio per SD change in PGS (OR) = 1.46;
95% CI: [1.44,1.48]; P < 1 × 10−300), hyperthyroidism (OR =0.67; 95% CI:
[0.65,0.69]; P = 9.17 × 10−166), thyroid cancer (OR =0.78, 95% CI: [0.72,
0.85]; P = 7.20 × 10−10) and other thyroid disease (OR=0.69; 95% CI:
[0.65,0.72]; P = 1.35 × 10−39, Supplementary Data 14). In other ancestry
groups, a consistent direction of association was shown with each of
these traits, the largest casenumbers being seen for hypothyroidism in
CSA (862 cases; OR = 1.42; 95% CI: [1.32,1.53]; P = 9.45 × 10−21, Supple-
mentary Data 14). Results from a sensitivity analysis in an independent
subset (i.e. excluding individuals who were included in our Stage 1
analysis or share at least 2nd degree relatedness with individuals
included in the Stage 1 analysis) were consistent with these findings
(Supplementary Data 15). We then tested the PGS in independent
South Asian population from Genes & Health, in which the TSH PGS
was associated with hypothyroidism (OR = 1.41; 95% CI: [1.35,1.46];
P = 1.51 × 10−68) and other thyroid disease (OR =0.83; 95% CI:
[0.78,0.89]; P = 4.92 × 10−8) (Supplementary Data 14).

To further understand the clinical relevance of the PGS we
examined risk of thyroid disease per decile of the PGS in European
ancestry individuals. Individuals in the highest decile had 3.65-fold
higher odds (95% CI: [3.42,3.90]; P < 1 × 10−300) of hypothyroidism
compared with those in the lowest decile, whilst those in the lowest
decile had 4.21-fold (95% CI: [3.67,4.83]; P = 3.78 × 10−92) and 2.18-fold
higher odds (95%CI: [1.52,3.14]; P = 2.77 × 10−5) of hyperthyroidism and
thyroid cancer, respectively, and 3.40-fold higher odds (95% CI:
[2.59,4.46]; P = 1.11 × 10−18) of other thyroid disease compared with
those in the highest decile (Fig. 5, Supplementary Data 14). The pre-
diction performance was evaluated using receiver operating char-
acteristic (ROC) curves, with the area under the curve (AUC) for
hypothyroidism, hyperthyroidism, thyroid cancer and other thyroid
disease being 71.6% [71.3%–71.9%], 73.5% [72.7%–74.3%], 64.6%
[62.5%–66.7%] and 76.0% [74.6%–77.3%], respectively, when age and
sex were combined with TSH PGS (Supplementary Fig. 6).

Given questions about how best to deploy and repeat testing for
thyroid disease in asymptomatic patients and in patients with non-
specific symptoms, we explored whether membership of a high or low
risk decile for TSH PGS was associated with differences in age of onset
of hypothyroidism or hyperthyroidism (Online Methods). Between
individuals with median, highest and lowest deciles of the TSH PGS,
clear differences were seen in age of onset of hypothyroidism
(P < 1.0 × 10−300, Fig. 6a) and hyperthyroidism (P = 4.30 × 10−61, Fig. 6b).
For example, a 5% prevalence of hypothyroidism was reached by age
51.1 years in the highest TSH PGS decile versus by 74.7 years in the
lowest TSH PGS decile. Similarly a 1% prevalence of hyperthyroidism
was reached by age 47.3 years in the lowest PGS decile compared with
71.2 years in the highest TSH PGS decile. Results from sensitivity ana-
lyses excluding individualswhowere included in our Stage 1 analysis or
share at least 2nd degree relatedness with individuals included in the
Stage 1 analysis were consistent with the findings described here
(Supplementary Figs. 7, 8 and 9).

Discussion
The large sample size of our study, achieved through utilising
quality-controlled TSH measures from UK primary health care
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records, increased the yield of TSH sentinel variants by over
2.5-fold, to 260. Through the most comprehensive initiative to
identify putative causal variants and genes for TSH levels, we
defined 112 genes implicated by multiple criteria. This is the first
study to develop pathway-specific GRS for TSH levels and to use
these in PheWAS, through our new DeepPheWAS platform7, to
investigate the potential consequences of intervening in relevant
pathways. It is also the first study to visualise and compare the
incidence of hypothyroidism and hyperthyroidism over time
among individuals grouped according to their TSH PGS, showing
marked differences in ages of onset of these conditions according
to PGS deciles.

We implicate novel putative causal variants and genes, which
alongside those previously reported6,15,20, provide a more complete
picture of relevant pathways and putative mechanisms. Pathways
we highlight include signal transduction and cAMP signaling, as well
as pathways not confidently implicated previously such as VEGF
hypoxia and angiogenesis, AKT signaling, and platelet activation.
Our findings are consistent with signaling or response to thyroid or
non-thyroid hormones (including IGF-1 signaling), neuronal pro-
tection, angiogenesis and ciliogenesis influencing TSH levels and
thyroid diseases.

Pleiotropic effects of aggregated TSH-associated variants have
been previously shown through PheWAS. Partitioning TSH-associated
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variants by pathway provides a more nuanced understanding of the
consequences of pathway perturbation on thyroid and non-thyroid
disorders. We show contrasting patterns of phenotype association—
for example highly specific associations for hypothyroidism (cAMP
signalling) versus associations also with body composition, renal
function and lipid traits (platelet activation pathways). As individuals
may have high GRS for one or more pathways and low GRS for other
pathways21, individuals’ pathway GRS profiles may relate to patterns of
comorbidities, and could have implications for treatment choices in
thyroid diseases.

Here we adopted a powerful strategy for discovery of genetic
variants associated with thyroid diseases. We studied TSH as a quan-
titative measure within reference ranges, and detected novel sentinel
variants which individually and in aggregate are associated with thyr-
oid diseases. Not all TSH-associated variants showed association with
free T4 levels, even those associated with thyroid disease, highlighting
the value of TSH as a sensitivemarker of thyroid disorders. In addition,
thyroid function within the euthyroid range is associated with adverse
outcomes22 and thus TSH-associated variants that have not yet been
overtly associated with thyroid disease remain highly relevant. GWAS
of other quantitative traits—including those on the UK Biobank bio-
marker panel—have highlighted a number of targets leading to active
drug development for related diseases3–5. However, TSH has not yet
been measured in UK Biobank samples. Thus, harnessing TSH levels
measured in primary care in the EXCEED andUK Biobank studiesmore
than doubled available sample sizes.

The PGS we developed for TSH measures genome-wide genetic
risk, using association statistics from the Stage 1 analysis. To our
knowledge this is the first TSH PGS to be shown to be associated with
TSH levels across all ethnic groups in UK Biobank. Power was more
limited for testing other traits and diseases in themuch smaller sample
sizes available in non-Europeanancestries inUKBiobank, but therewas
a strong association with hypothyroidism (P = 1.51 × 10−68) and other
thyroid disease (P = 4.92 × 10−8) in South Asian participants from the
independent Genes & Health study. Understanding the genetic archi-
tecture of thyroid diseases within and across ancestries requires larger
sample sizes in non-European ancestries, and an urgent global effort is

required to include much more diverse populations in genomic stu-
dies than has been the case to date23.

The PGS shows a strong association with age of onset of hypo-
thyroidism and hyperthyroidism in European ancestry individuals.
Universal screening for thyroid disease is not recommended24,25.
Instead, case finding strategies are adapted to personal risk factors
such as age, family history and relevant long-term conditions. Our
findings raise the possibility of tailoring case finding strategies for
thyroid disease according to a PGS for thyroid disease, especially if
genome-wide data become available as part of the medical record.
Further development and testing of a PGS would be required in inde-
pendent, diverse populations, and alongside risk factors already
employed in case finding.

Our study has potential limitations. Stage 1 focused on European
ancestry individuals and the overall design included too few studies
and participants of non-European ancestry to quantify heterogeneity
in allelic effects on TSH attributable to ancestry using transethnic
meta-analyses26. Non-European ancestry populations are markedly
under-represented in genomic studies globally, requiring diversifica-
tion of new studies23. As with other contemporary genome-wide
association meta-analysis, maximising power for discovery leaves
fewer independent datasets for follow-up. However, we were able to
include 96,497 additional participants (including 33,171 individuals of
South Asian ancestry) in Stage 2 and show that after meta-analysis of
Stages 1 and 2 that 230 of 249 sentinels available in Stage 2 still met
genome-wide significance. Whilst we replicated associations in UK
Biobank for 91 of 98 available variants from the largest previous meta-
analysis of TSH, we cannot rule out selection bias. For example, effect
estimates could be biased if research participants in whom TSH levels
were routinelymeasured differed fromparticipants inwhich theywere
not measured, although 78% of UK Biobank participants with linked
primary care data had one or more TSH measures. Our approach of
excluding measurements of TSH outside the normal range could miss
some variants more relevant to the extremes of the distribution. Effect
estimates could be attenuated through previous treatment for thyroid
diseases. As thyroid treatment is unlikely to commence before a TSH
measure, we used only the first available TSH measure. Effect size

Log rank test: p−value < 1.00e−300

0.00

0.05

0.10

0.15

0.20

0.25

20 40 60 80
Age(years)

P
ro

po
rt

io
n 

di
ag

on
os

ed

strata highest 10% PGS lowest 10% PGS median PGS

Hypothyroidism

Log rank test: p−value = 4.30e−61

0.00

0.01

0.02

0.03

0.04

0.05

20 40 60 80
Age(years)

P
ro

po
rt

io
n 

di
ag

on
os

ed

strata highest 10% PGS lowest 10% PGS median PGS

Hyperthyroidisma b

Fig. 6 | Association of TSH PGS with age-of-onset of hypothyroidism and
hyperthyroidism. Proportion of hypothyroidism (a, left) and hyperthyroidism
(b, right) cases diagnosed by age stratified into lowest (grey), median (blue) and

highest (yellow) decile for the TSH PGS. Shaded bands indicate 95% confidence
intervals. Sample size: Hypothyroidism, 29,550 cases and 368,691 controls;
Hyperthyroidism, 5549 cases and 392,692 controls. Statistical tests were two-sided.

Article https://doi.org/10.1038/s41467-023-42284-5

Nature Communications |         (2023) 14:6713 8



estimates for disease associations of TSH-associated variants could
also be attenuated due tomisclassification of thyroid diseases in EHRs.
To mitigate this, we undertook careful curation of clinical codes used
to define clinical thyroid disease, such as exclusion of cases of hypo-
thyroidism resulting from treatment of hyperthyroidism. To avoid
classifying cases incorrectly as hyperthyroidism or hypothyroidismwe
defined a separate category “other thyroid disease” containing dis-
orders for which thyroid activity levels were less clear, such as goitre
and thyroiditis. In the latter group, the PGS associations were in the
same direction as for hyperthyroidism, with a smaller effect estimate.

A limitation of our variant-to-genemapping approach is the equal
weighting given to all lines of variant-to-gene evidence, however
strategies for in silico mapping of associated variants to causal genes
are evolving and difficult to evaluate without a reference set of fully
functionally characterized variants and causal genes.

In summary, we more than doubled the number of TSH-
associated sentinel variants to 260, implicated 112 priority genes,
showed their relevance to thyroid diseases, and developed pathway-
specific genetic risk scores which show differential patterns of pleio-
tropy of relevance in understanding co-morbidities and treatment
choices.We also demonstrate the relevance of our results to a range of
ancestries and highlight the need for better representation of all
ancestries in the future study of thyroid genetics. The PGS we devel-
oped was associated with risk of thyroid disease and with age of onset
of hypothyroidism and hyperthyroidism, and suggests potential utility
of genetic information in future case-finding strategies, subject to
further development and appropriate evaluation.

Methods
Ethical approval
The UK Biobank genetic and phenotypic data were analysed under UK
Biobank Application 43027. UK Biobank has ethical approval from the
UK National Health Service (NHS) National Research Ethics Service (11/
NW/0382). EXCEED received ethical approval from the Leicester Cen-
tralResearchEthicsCommittee (13/EM/0226). Genes&Health received
ethical approval from the NRES Committee London – South East (14/
LO/1240).

The activities of the EstBB are regulated by the Human Genes
Research Act, which was adopted in 2000 specifically for the opera-
tions of EstBB. Individual level data analysis in EstBB was carried out
under ethical approval 1.1-12/624 from the Estonian Committee on
Bioethics and Human Research (Estonian Ministry of Social Affairs),
using data according to release application 6-7/GI/2013 from the
Estonian Biobank.

Informed consent was obtained from all participants.

Cohort details
UK Biobank is a cohort of approximately 500,000 individuals recrui-
ted from across the United Kingdom27. Individuals aged between 40
and 69 years were recruited from the general population between
2006 and 2010.

The Extended Cohort for E-health, Environment and DNA
(EXCEED) recruited ~10,000 individuals primarily through local gen-
eral practices in Leicester City, Leicestershire and Rutland28. Recruit-
ment starting in2013. Individuals invited to contribute to EXCEEDwere
aged between 40 and 69 years.

Estonian Biobank is a population-based biobank with 212,955
participants in the current data freeze (2023v1). All biobank partici-
pants have signed a broad informed consent form and information on
ICD codes is obtained via regular linking with the national Health
Insurance Fund and other relevant databases, with a majority of the
electronic health records having been collected since 20049.

Genes & Health is a cohort of ~50,000 British Pakistani and Ban-
gladeshi individuals recruited primarily in East London, England10.
Individuals aged 16 years and over were recruited via community

settings, such as places of worship, markets, and libraries, or from
healthcare settings, such as primary care practices and outpatient
clinics.

The Zhou et al6. study is a meta-analysis of three constituent
studies: (i) the HUNT study, a population-based study of around
120,000 individuals aged20years andover conducted in the countyof
Nord-Trøndelag, Norway, since 198429; (ii) the Michigan Genomics
Initiative (MGI), which recruited participants awaiting diagnostic or
interventional procedures in the Michigan Medicine health system,
and (iii) the ThyroidOmics consortium, a collection of 22 independent
US- and Europe-based cohorts in approximately 55,000 individuals.

All studies contributing to our analysis collected information at
baseline concerning lifestyle and health outcomes, aswell as providing
linkage to electronic health records and genetic data. Further details of
genotyping and analysis are described in the Supplementary Note.

Phenotype
We captured all TSH results reported in the primary care data available
in up to 230,000 individuals in UK Biobank and 8500 individuals in
EXCEED utilising codes from Read version 2 and Read version 3
(Clinical Terms Version 3 or “CTV3”, Supplementary Data 16). We took
an individual’s first non-missing TSH measurement to minimise the
effect of thyroid function-alteringmedications on our phenotype as an
individual is unlikely to have received these medications before their
first thyroid function test. We excluded individuals with a TSH mea-
surement <0.4 or >4.0mU/L as has been done previously15. TSH values
were captured following the same strategy in the EstonianBiobank and
Genes & Health cohort. In Zhou et al., TSH values were captured using
varying approaches across the constituent cohorts (described further
in the Supplementary Note) and we used publicly available summary
statistics for our analysis.

For the 260 sentinel variants, we compared the −log10P values
from association analyses using the whole range of TSH measures
(unrestricted) versus using the restricted range andwe foundgenerally
less significant P-values for the unrestricted range (Supplementary
Fig. 10, Supplementary Data 2), suggesting we did not lose statistical
power with our approach.

Stage 1 analysis
In UK Biobank and EXCEED, we applied an inverse normal transfor-
mation to the residuals from linear regression of the TSH phenotype
against age (at time of measurement) and sex. This transformed phe-
notype was used for genome-wide association testing under an addi-
tive genetic model adjusted for age, genotyping array, sex and the first
10 principal components of ancestry using PLINK 2.030, generating
effect size estimates (β), standard errors, and P-values. We analysed
individuals of European ancestry, as defined by the Pan-UK Biobank
initiative31, who were not more closely related than third-degree rela-
tives using a KING software relatedness coefficient >0.0884 to indicate
second-degree relatives or closer32. UK Biobank was imputed to the
Haplotype Reference Consortium and merged UK10K and 1000 Gen-
omes phase 3 reference panels11 and we tested genetic variants with a
minor allele count >20 and imputation score >0.5. EXCEED was
imputed to the TOPMed (https://topmed.nhlbi.nih.gov/) panel and
due to the smaller sample size, we tested genetic variants with aminor
allele frequency >0.1% and imputation score >0.5.

We derived the LD Score regression intercept using LDSC v1.0.133

to estimate inflation in our test statistics due to confounding, such as
by cryptic relatedness or population stratification. We estimated,
separately, the LD Score regression intercept for the GWAS in UK
Biobank and EXCEED. TheUKBiobank test statisticswere corrected for
inflation (λLDSC = 1.05) prior to meta-analysis. The EXCEED test statis-
tics were not corrected for inflation (λLDSC = 0.98).

We used METAL v2018-08-2834 to conduct a fixed-effect inverse
variance-weighted meta-analysis of the GWAS in UK Biobank and
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EXCEEDand the previous largestGWASof TSH6.Wedescribe themeta-
analysis of UK Biobank, EXCEED and the previous largest GWAS as
Stage 1. Since the EXCEED results were aligned to GRCh38, we ran
LiftOver v2011-09-2735 tomap the results to GRCh37. Over 99.5% of the
genetic variants tested in the GWAS in EXCEED were successfully
mapped to GRCh37. Following meta-analysis, we estimated the LD
Score regression intercept once more (λLDSC = 1.00).

We estimated the proportionof variance explainedby the sentinel
SNPs using the formula:

Pn
i= 12f ið1� f iÞβ2

i

V
ð1Þ

where n is the number of SNPs, f i and βi are the frequency and effect
estimate of the ith variant from our Stage 1 analysis, and V is the phe-
notypic variance.

Sentinel variant selection and fine mapping
Using Stage 1 results only, we selected 2Mb loci centered on the most
significant variant for all regions containing a variant with P < 5 × 10−8.
Loci within 500 kb of each other were merged for fine mapping.
Annotation-informed fine mapping in each locus defined statistically
independent credible sets (see below) and sentinel variants were
defined as the variant in each credible set with the highest posterior
probability.

PolyFun v2022-01-2736 and Sum of Single Effects (susieR)
v0.12.2737 was used to fine-map autosomal non-HLA loci utilising pre-
computed functional prior causal probabilities based on a meta-
analysis of 15 UK Biobank traits. The functional priors are proportional
to per-SNP heritabilities estimated from the functional enrichments of
187 variant annotations from the baseline-LF 2.2.UKB model38, includ-
ing those relating to conservation, regulation, MAF and linkage dis-
equilibrium (LD), which were estimated using an extension of
stratified-LDSC39. Imputed genotype data from 10,000 randomly
selected European individuals from UK Biobank was used as an LD
reference. Loci for which PolyFun and SuSiE did not identify any
credible sets, aswell asHLAand chromosomeX loci, werefine-mapped
using the Wakefield method40 with the prior W set as 0.04 in the
approximate Bayes factor formula. 95% credible sets were generated
for all loci, by adding variants in descending order of posterior inclu-
sion probability (PIP) until the sum total PIP in the set reaches 95% such
that we have 95% confident the causal variant is contained in the set.
Variantswith the highest PIP per credible set are listed (Supplementary
Data 17).

Stage 2 analysis
We took sentinel variants reaching P < 5 × 10−8 in Stage 1 into Stage 2, in
which TSH associations were tested in 63,326 EUR participants from
the Estonian Biobank9 and 33,171 South Asian ancestry (SA) partici-
pants from Genes & Health10.

Using METAL v2018-08-28, we performed a fixed-effect inverse
variance-weighted meta-analysis of the results from the Estonian Bio-
bank andGenes&Health.We subsequentlymeta-analysedStages 1 and
2, using METAL (described above). We used P < 5 × 10−8 in the meta-
analysis of Stages 1 and 2 to highlight sentinel variants that remained
significant after inclusion of independent datasets. All included studies
used the same approach to covariate adjustment as applied in Stage 1.

Novel sentinel variants
We searched PubMed and GWAS Catalog to identify applied studies
focused on thyroid stimulating hormone and associations reaching
P < 5 × 10−8. These included the following sources: Gudmundsson
et al.41, Kwak et al.42, Malinowski et al.43, Medici et al.44, Nielsen et al.45,
Popović et al.46, Porcu et al.20, Taylor et al.47, Teumer et al.15, and Zhou

et al.6. We determinedwhether a sentinel variant was novel if its extent
of LD with nearby previously reported sentinel variants was r2 < 0.2.

Associations with clinical thyroid disease
We tested the association between our sentinel variants and free
thyroxine (T4). We then tested the association between our sentinel
variants and four clinical thyroid diseases: (i) hypothyroidism; (ii)
hyperthyroidism; (iii) thyroid cancer; and (iv) other (non-cancer)
thyroid disease. Using the UK Biobank primary care data, we extracted
free T4 measurements that co-occurred with the corresponding indi-
vidual’s first TSH measurement. To maximise power for hypo- and
hyperthyroidism, we identified all potential cases in the primary care
data using specific Read codes, in the secondary care data using spe-
cific ICD-9/10 codes, and in the self-reported diagnostic data (UK
Biobank Data-Field 20002, code 1225 for “hyperthyroidism/thyrotox-
icosis” and code 1226 for “hypothyroidism/myxoedema”). For the
remaining clinical disease phenotypes, we defined these using specific
Read codes in primary care alone (other thyroid disease), and specific
ICD-9/10 codes in cancer register data (thyroid cancer). To reduce the
overlap in cases for the clinical disease phenotypes, we defined a case
by their first diagnosis of hypothyroidism, hyperthyroidism, thyroid
cancer and other thyroid diseases. We defined controls for these
conditions as any UK Biobank participant who was not defined as a
case. When assessing relatedness between cases and controls, we
preferentially excluded controls to maintain the maximum possible
number of cases. The clinical codes used to define free T4 and the
clinical thyroid diseases are presented in (Supplementary Data 16). We
used PLINK 2.030 to test the associations using logistic regression
under an additive genetic model adjusted for sex, genotyping array,
age at recruitment to UK Biobank and the first 10 principal compo-
nents of ancestry. The free T4 phenotype was inverse-normal trans-
formed in the samemanner as the TSH phenotype, and its association
with our TSH sentinel variants was assessed using linear regression.

These phenotypes were further tested for association with our
polygenic score (described below).

Identification of putative causal genes
To systematically prioritise putative causal genes for TSH-associated
variants, we integrated eight sources of evidence including: (i) the
nearest gene to the sentinel variant; (ii) the gene with the highest
polygenic priority score (PoPS)12, a method based on the assumption
that causal genes on different chromosomes share similar functional
characteristics; identification of (iii) expression quantitative trait loci
(eQTLs) or (iv) protein quantitative trait loci (pQTLs) within the cred-
ible sets; (v) proximity to a gene for a thyroid-associated Mendelian
disease (±500 kb); (vi) an annotation-informed credible set containing
a missense/deleterious/damaging variant with a posterior probability
of association >50%; (vii) identification of a rare variant (±500 kb of a
TSH sentinel variant) association with hypo- or hyperthyroidism using
whole-exome13 and whole-genome14 sequencing resources; and (viii)
proximity to a human ortholog of a mouse knockout gene with a
thyroid-related phenotype (±500 kb).

For (i), (v), (vii) and (viii), all 260 sentinel variants were used as
input; for (ii), the 257 autosomal sentinel variants were used as input;
for (iii), (iv) and (vi), all variants across the credible sets were used as
input. Where there were two sentinel variants with the joint-highest
posterior probability in their credible set, the one with the smallest P-
value was used.

We cataloguedpreviously reported genes (SupplementaryData 4)
implicated by mapping genome-wide significant sentinels for thyroid
traits using eQTL colocalization (P < 1 × 10−7)15 or DEPICT (FDR ≤0.01,
ref. 6), to define whether the genes we implicated were novel.

Expression quantitative trait loci (eQTLs). We used the SNP2GENE
function implemented by FUMA v1.5.448 to facilitate the eQTL analysis.
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FUMA contains several eQTL datasets across a broad range of tissue
types. We ran SNP2GENE requesting eQTL results from the GTEx v8
(thyroid, hypothalamus and pituitary tissues) and eQTLGen (blood,
cis- and trans-eQTLs) datasets. We performed approximate colocali-
sation between our GWAS and eQTL sentinel variants by identifying
whether a sentinel eQTL SNP was in one of our 95% credible sets
(Supplementary Data 18).

Protein quantitative trait loci (pQTLs). Two pQTL datasets were
included in the pQTL analyses: deCODE Genetics49, with data for 4719
proteinsmeasured by 4907 aptamers, and the SCALLOPConsortium50,
including 90 cardiovascular proteins. The significance level for pQTL
associations were set as in the original publications: P-value < 1.8 × 10−9

for deCODE Genetics49 and P-value < 5 × 10−8 for the SCALLOP
Consortium50. We performed approximate colocalisation between our
GWAS and pQTL sentinel variants by identifying whether a sentinel
pQTL SNP was in one of our 95% credible sets.

Polygenic priority score (PoPS). We used a gene prioritization tool,
PoPS12, to calculate gene features enrichment based polygenic priority
score50 to predict genes for our TSH sentinel variants. The full set of
gene features used in the analysis included 57,543 total features –

40,546 derived from gene expression data, 8718 extracted from a
protein–protein interaction network, and 8479 based on pathway
membership. In this study, we prioritized genes for all autosomal TSH
sentinel variants within a 500 kb (±250kb) window of the sentinel
variant and reported the top prioritised genes in the region. If there
was no gene prioritized within a 500 kb window of the sentinel, we
reported any top prioritized genes within a 1Mb window (Supple-
mentary Data 19).

Nearby Mendelian disease genes. We selected rare Mendelian-
disease genes from ORPHANET (https://www.orpha.net/) within
±500 kb of a TSH sentinel variant that were associated with thyroid-
related diseases. We implicated the gene if the string “thyro” (but not
“parathyro”) was included in either the disease name or appeared
frequently in humanphenotype ontology (HPO) terms for thatdisease.
We manually checked the diseases and HPO terms identified for rele-
vance (Supplementary Data 20).

Nearbymouse knockout orthologswith thyroid related phenotype.
We selected human orthologs of mouse knockout genes with thyroid-
related phenotypes, as listed in the International Mouse Phenotyping
consortium (https://www.mousephenotype.org/) within ±500kb of a
TSH sentinel variant. The thyroid-relatedphenotypes included enlarged
thyroid gland, abnormal thyroid gland morphology and increased/
decreased circulating thyroxine level (Supplementary Data 21).

Functional annotation of credible sets. We annotated variants in the
95% credible sets using Variant Effect Predictor (VEP)51. We implicated
the gene if there was a variant with >50% posterior probability in the
credible set that was also either a missense variant, annotated as
“deleterious” by SIFT, annotated as “damaging” by PolyPhen-2 or had a
CADD PHRED score ≥20.

Rare variant analysis from whole-exome and whole-genome
sequencing
We performed a lookup for rare variant associations with hypothyr-
oidism or hyperthyroidism within ±500 kb of a TSH sentinel variant
using the following resources: (i) single variant and gene-based exonic
associations from the AstraZeneca PheWAS Portal13 (https://azphewas.
com/); (ii) single variant whole-genome associations in 150,119 UK
Biobank participants14. For all tests, we used MAF < 1% and P < 5 × 10−6

(Supplementary Data 22).

Pathway analysis
We used ConsensusPathDB19 to test for enrichment of our prioritised
genes in up to 31 pathway and gene set ontology databases. Pathways
with FDR < 5% are reported.

Pathway-specific GRS
We selected 26 pathways that were enriched at FDR < 5 × 10−4 for our
112 genes implicated by 2 or more lines of evidence (Supplementary
Data 9). We created a weighted GRS (weights estimated from the
TSH meta-analysis of UK Biobank and EXCEED) for each of the 26
pathways by including, for each gene in the pathway, the variant
with the most significant P-value that implicates the gene in our
variant-to-gene mapping (Supplementary Data 3). Each of the 26
GRS were then checked for association with up to 1939 traits in the
PheWAS.

Polygenic score (PGS)
We applied PRS-CS-auto v1.0.052 to construct a polygenic score (PGS)
using the summary statistics from our Stage 1 analysis as the training
dataset. PRS-CS-auto is a Bayesian approach, which automatically
learns hyper-parameters from the training data; no validation dataset
is required. We tested the association of this PGS trained from EUR
ancestry group with TSH in non-EUR ancestry groups in UK Biobank,
including AFR, AMR, CSA, EAS, MID. Associations were tested using a
linear regression model, adjusted for genotyping array, age at TSH
measurement, sex and the first 10 principal components of ancestry.
We evaluated the association of the TSH PGS with susceptibility to
hypothyroidism, hyperthyroidism, thyroid cancer, other thyroid
diseases and thyroid eye disease in ancestry groups with more than
100 cases in UK Biobank, and Genes & Health. Associations were
tested using logistic regression models, adjusted for genotyping
array, sex and the first ten 10 principal components of ancestry. To
further aid clinical interpretation, we divided individuals into deciles
according to their PGSs and using logistic regression, investigated
disease risk associated, comparing each decile to a reference decile.
To evaluate the prediction performance, we used ROC curve and
assessed the AUC for thyroid relevant diseases. To evaluate the age-
dependent PGS performance, we used the Kaplan–Meier method to
generate a cumulative incidence plot and a log-rank test to test for
differences between groups. In a sensitivity analysis, we assessed the
possible impact of overfitting when testing the association between
the PGS and binary disease phenotypes by excluding individuals used
in the discovery TSH GWAS in UKB and closely related individuals
(KING software relatedness coefficient >0.0884) from the testing
datasets.

Phenome-wide association study (PheWAS)
To identify pleiotropic associations with a wide range of phenotypes,
we used DeepPheWAS v0.2.97, a flexible PheWAS framework which
incorporates phenotypes not present in other PheWAS platforms for:
(i) sentinel variants implicating genes supported by ≥3 variant-to-gene
mapping criteria (SupplementaryData 3), variants in a credible set that
were annotated as missense/damaging/deleterious/phred-scaled
CADD score ≥20 that also had a posterior probability >50% (Supple-
mentary Data 23), and low-frequency sentinel variants (MAF < 1%,
Supplementary Data 2); (ii) the PGS for TSH; (iii) pathway-specific
genetic risk score (GRS).

Druggability
To identify gene products that are the targets of drugs, we queried the
Drug Gene Interaction Database (DGIDB) (https://www.dgidb.org) for
the 112 putative causal genes supported by ≥2 variant-to-gene criteria
(Supplementary Data 3). Genes were mapped to ChEMBL interactions
and indications (MeSH headings).
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Access to UK Biobank (https://www.ukbiobank.ac.uk/), Estonian Bio-
bank (https://genomics.ut.ee/en/content/estonian-biobank), Genes &
Health (https://www.genesandhealth.org/) and EXCEED (https://
exceed.org.uk/) datasets is available to bona fide researchers upon
application (in accordance with the terms of ethical approval and
participant consent). Further information on how to access the data is
available from the study websites. The genome-wide summary statis-
tics from Zhou et al. (2020) can be freely downloaded from http://csg.
sph.umich.edu/willer/public/TSH2020/. Genome-wide summary sta-
tistics will be made publicly available via the EMBL-EBI GWAS Catalog.
URLs for other external datasets are as follows: GTEx (https://www.
gtexportal.org/home/), eQTLGen (https://www.eqtlgen.org/), FUMA
(https://fuma.ctglab.nl/), deCODE (https://www.decode.com/), SCAL-
LOP (https://olink.com/our-community/scallop/), ConsensusPathDB
(http://cpdb.molgen.mpg.de/), Ensembl Variant Effect Predictor
(https://www.ensembl.org/info/docs/tools/vep/index.html), the Drug
Gene Interaction Database (https://www.dgidb.org/), PoPS (https://
github.com/FinucaneLab/pops), Orphanet (https://www.orpha.net/),
the International Mouse Phenotyping Consortium (https://www.
mousephenotype.org/), PolyFun (https://github.com/omerwe/
polyfun), PubMed (https://pubmed.ncbi.nlm.nih.gov/), EMBL-EBI
GWAS Catalog (https://www.ebi.ac.uk/gwas/), DEPICT (https://github.
com/perslab/depict), AZ PheWAS portal (https://azphewas.com/),
genome assembly GRCh37 (https://www.ncbi.nlm.nih.gov/datasets/
genome/GCF_000001405.13/).
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