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Abstract—This letter presents an advanced Cardiff Model
(CM) extraction method based on Artificial Neural Network
(ANN) techniques that ensures reasonable extrapolation behavior.
The non-physical extrapolation behavior occurring with CMs
using a high, user-defined, mixing order, i.e., false output optima
point and erroneous efficiency behavior, when extracted using
measured load-pull datasets can be avoided with the proposed
method. The method proposed maintains the accuracy within the
load-pull measurements, design-relevant, impedance space. The
method was verified by modelling the measured load-pull data
of a Wolfspeed 10W Gallium Nitride (GaN) packaged device and
a WIN Semiconductor GaN on-wafer device. With both devices,
the extrapolation issues shown when using the high order CM
are removed by the novel extracted CM coefficients.

Index Terms—Behavioral models, load-pull measurement, Ar-
tificial Neural Network (ANN), nonlinear device modeling, Gal-
lium Nitride (GaN) device.

I. INTRODUCTION

THE A-B wave-based Cardiff Model (CM), as one of the

polynomial mathematical formulated models, has been

utilized reliably as a behavioral model for RF design [1]–[4].

With the appropriate user defined mixing order, it provides

accurate interpolation predictions for measurement data. Gen-

erally, higher interpolation accuracy will require a higher user-

defined mixing order. However, accurate extrapolation from

the CM may require a low mixing order, truncation of the

polynomial functions, or the need to use tailored datasets [5].

As a general rule-of-thumb ‘high user-defined mixing order

while improving interpolation is very likely to cause poor

extrapolation results’ since the CM coefficient extraction is

typically performed over a limited load-pull impedance range,

due to both measurement system limitations and transistor

operation constraints. This unfortunately may result in non-

physical behavior during CM model use in CAD simulation,

such as unrealistic optimum power and efficiency variations as

a function of load, leading to the possibility for an optimizer

to converge on non-physical solutions.

The A-B wave-based ANN behavioral models for RF

transistors have also been proven to be a powerful tool for

extracting the general relationships between the device input

and output. With a proper model structure, analysis shows

that ANN can also provide accurate predictions when moving
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out of the training data range [6]. Taking this extrapolation

advantage into account, the proposed method in this paper

involves a combination of a conventional A-B wave-based

ANN model and the ANN-based Cardiff Model coefficients

extractor [7] to provide novel sets of extracted high order

CM coefficients that can offer both accurate interpolation and

reasonable extrapolation behavior.

Two sets of data collected from load-pull measurements of

two GaN devices, at different frequencies and power levels,

will be used for both CM extrapolation problem detection and

proposed method verification.

II. PROBLEM DETECTION

Active load-pull measurement systems were used for acquir-

ing the design relevant measurement datasets. The Wolfspeed

10 W packaged device was measured (setup as in [8]) at

3.5 GHz, biased at VDS = 28 V, IDq = 59 mA with a constant

input drive corresponding to 1 dB compression at the optimum

load. The WIN NP12 4x25 um on-wafer device was measured

(setup as in [9]) at 20 GHz, biased at VDS = 15 V, IDq = 10 mA

with a constant input drive corresponding to 3 dB compression

at the optimum load.

The coefficients of two 5th order conventional CMs were

extracted from the measurement dataset of the Wolfspeed

and the WIN devices show, within the measured region,

Normalized Mean Square Error (NMSE) levels of - 58 dB and

- 52 dB for B2,1 respectively. The extrapolation behavior of

the conventional CM coefficients is then tested with manually

generated stimulus A2,1 circles, extending beyond the mea-

surement area. To get the maximum coverage within the whole

Smith Chart, a sweeping index c has been determined, from

1 to 6 for the Wolfspeed device, and from 1 to 5 for the WIN

device for the circle propagation. The extrapolated load circles

are markers and grayscale-coded consistently with c sweeps

indexed as shown in Fig. 1.

Ideally, the CM computed (extrapolated) B2,1 wave re-

sponse as a function of the A2,1 wave stimulus should show

expanding circles/ellipses load points when moving away from

the optimum. However, Fig. 1(a-b) shows clearly that this is

not the case for the 5th order CM, extrapolated results provide

load points sitting on unrealistic trajectories with cusps and

knots, as highlighted within the dash circles. This is because of

the interaction between polynomial terms in the B2,1 response

yielding function limitations in the extrapolation region. This

is best visualized in Fig. 1(c-d) where the extrapolated output
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Fig. 1. The measured (black dots) and conventional CM extrapolated
(grayscale-coded markers) load points on the Smith Chart; and output power
levels for both the Wolfspeed device (a,c) and the WIN device (b,d).

power is not following a physically valid behavior, i.e., a de-

creasing trend away from the measured optimum, highlighted

using different grayscale-coded markers for both devices. This

may result in an optimizer converging on an erroneous load

point when trying to optimize the matching networks.

III. PROPOSED METHOD

Previous work has shown that the accuracy of a Knowledge-

Based Neural Network (KBNN) deteriorates slower than that

of Multilayer Perceptions (MLPs) within the extrapolation

region, since its knowledge layer allows built-in knowledge

to give more information that is not seen in the training data

[6]. This suggests that the KBNN model could be used to over-

come the extrapolation issues shown for the conventional CM

in section II. Also, an ANN-based CM coefficients extractor

has been proven to output a set of coefficients with the same

level of accuracy as the standard Least Mean Square (LMS)

algorithm [7]. Therefore, a novel method is proposed in this

paper, taking the advantages from the two model structures. An

artificial set of extrapolated data outside the extraction region

is generated with the KBNN model. The ANN model extractor

will use the measured data in the feed-forward process, and

the artificial data in the backpropagation, to achieve a new CM

coefficient set that can provide reasonable extrapolation while

maintaining the accuracy in the measurement region.

A. Step 1: Conventional ANN Setup

The Fully Connected Cascade (FCC) ANN model structure

is selected as a simpler version of the KBNN model. As the

first step, two FCC ANN models are implemented in a one-

hidden-layer structure [6], [10] for both devices. The hidden
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Fig. 2. The measured (black dots) and FCC ANN extrapolated (grayscale-
coded markers) load points on the Smith Chart; and output power levels for
both the Wolfspeed device (a,c) and the WIN device (b,d).

neuron numbers of the models are determined by an adaptive

process [11], which results in 7 and 4 for the Wolfspeed and

the WIN device respectively. The training is carried out with

the measured A-B waves in Section II. Since the tanh function

was selected as the activation function, note that measurement

data will need to be normalized between -1 and 1 before

feeding into the network training process. The scaling factor

of the normalization process will need to be recorded for use

in step 2. The NMSE levels provided within the measurement

region of B2,1 for the Wolfspeed and WIN devices are - 50 dB

and - 45 dB, respectively.

B. Step 2: Conventional ANN Extrapolation

The trained A-B wave-based ANN models from step 1 can

now be used for extrapolation. The scaling factor recorded

from step 1, will be used to preprocess the A2,1 wave for

extrapolation that is generated in section II. This ensures that

both the A2,1 waves, that cover the expanded area on the

Smith Chart and the measured A2,1 waves, are kept within

a meaningful boundary of the tanh function [10], [12] before

being fed into the trained ANN.

The grayscale-coded markers in Fig. 2, clearly highlight

that the extrapolation issue shown on the edge of the Smith

Chart in Fig. 1(a-b) for both devices is absent in Fig. 2(a-b).

Hence, the erroneous extrapolation behavior that can cause

CAD simulation issues is absent. Now, the predicted output

power levels of both devices are following a decreasing trend

around the measured optimum as shown in Fig. 2(c-d). The ex-

trapolated response provided by the trained FCC ANN models

can now be used, in step 3, during CM coefficient extraction,

to overcome the previously identified CM extrapolation issues.
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C. Step 3: Extracting the CM coefficients with the ANN-based

extractor

The trained ANN themselves could be used as reasonable

extrapolation models. However, as a widely used commercially

available behavioral model, the CM will provide a simpler

polynomial structure and less calculation steps than those of

the ANNs when the data complexity increases. Hence, an

ANN-based Cardiff Model coefficients extractor [7] is now

used. In this step, new CM coefficients sets are extracted

using both the measured A-B wave dataset and the FCC

ANN models (trained in step 2) predicted B wave dataset,

instead of using measured data only. Since the ANN-based CM

coefficient extractor is computing coefficients using both the

measured data (over a limited impedance range over the Smith

Chart) and the extrapolated data (over a significantly expanded

range over the Smith Chart), the new extracted CM coefficient

sets, even for high order Cardiff CAD models, should now

provide for both accurate interpolation and reasonable ex-

trapolation behavior. Details of the modified backpropagation

Levenberg-Marquart Algorithm [7], [13] used for the ANN-

based coefficient extractor is written as Algorithm 1.

Algorithm 1 Modified Steps of Levenberg-Marquart Algo-

rithm for CM Coefficients Extractor

INPUT:A2,1 Measured,Bp,h Measured

[A] = ( ̸ A1,1)
h
|A2,1 Calculated|

m
(

̸ A2,1

̸ A1,1

)n

Initialization: [Wi] , [Bi]← rand [−1, 1]
for epoch = 1
Mp,h,m,n = [Wi] [A2,1 Measured,Bp,h Measured] + [Bi]
Bp,h Modelled =

∑

r

∑

n
Mp,h,m,n × [A]

Bp,h Error = Bp,h Modelled − Bp,h ANNpredicted

Mp,h,m,n Error =
(

[A]
H
[A]

)−1 (

[A]
H
[Bp,h Error]

)

Compute Jacobian

Initialization: [Wi] and [Bi] till required error level met

end for

OUTPUT:Mp,h,m,n

where [Wi] and [Bi] represent the weight and bias matrices

that are required in the ANN model structure, Mp,h,m,n is the

CM coefficients with ‘p’ and ‘h’ denoting the respective port,

harmonic; ‘r’ is the magnitude indexing term; ‘m’ and ‘n’ are

the magnitude and phase exponents related as m = |n|+ 2r.

Here, with the measured and predicted datasets, the ANN-

based CM coefficient extractors [7] are implemented under

two-hidden-layer FCC structure, with hidden neuron numbers

of each layer defined using an adaptive process [11]. For

those of the Wolfspeed device, the hidden layers have 3 and

4 neurons respectively; and for the WIN device, both hidden

layers have 5 neurons. The extracted CM coefficients in this

case produce output power contours, shown in Fig. 3-4(a),

absent are the unrealistic CAD simulation issues observed in

Fig. 3-4(b). To obtain the efficiency contours, pure linear FCC

ANN structures without any hidden layers are used for I2,0
(drain DC current) extrapolation with the same process. The

extreme, unrealistic, efficiency levels shown in Fig. 3-4(c) are
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Fig. 3. Power and efficiency contours from the CM extracted using only
measurement data (a, c), and the New Method (b, d), of the Wolfspeed device.
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Fig. 4. Power and efficiency contours from the CM extracted using only
measurement data (a, c), and the New Method (b, d), of the WIN device.

also avoided by the CM coefficients extracted by the proposed

new method as shown in Fig. 3-4(d).

IV. CONCLUSION

This paper has introduced a novel procedure for extract-

ing reasonable CM coefficients exploiting the superior ex-

trapolation capabilities of Knowledge-Based Neural Network

(KBNN) structure. Novel high mixing order CM coefficient

sets were obtained, with the new method, providing accu-

rate interpolation while also ensuring extrapolation without

unrealistic power and efficiency predictions. The robustness

of the novel proposed method is shown for two different

GaN devices when using practical measured load-pull datasets

under different frequency and power levels. The verification

results show that the new method can help to avoid the non-

physical CM model behavior when used in CAD simulations

to optimize the matching networks, when CM model extraction

is constrained by load-pull measurement limitations.
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