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Abstract
We present models of bat motion derived from radio-tracking data collected over
14 nights. The data presents an initial dispersal period and a return to roost period.
Although a simple diffusion model fits the initial dispersal motion we show that sim-
ple convection cannot provide a description of the bats returning to their roost. By
extending our model to include non-autonomous parameters, or a leap frogging form
of motion, where bats on the exterior move back first, we find we are able to accurately
capture the bat’s motion. We discuss ways of distinguishing between the two move-
ment descriptions and, finally, consider how the different motion descriptions would
impact a bat’s hunting strategy.

Keywords Bat motion · Partial differential equations

1 Introduction

Bats are an important part of ecosystems around the world, playing a vital role in
controlling insect populations, seed dispersal and pollination (Kunz et al. 2011). There
are more than 1270 bat species worldwide, occupying a huge range of habitats on each
continent except Antarctica and bats are among the most ecologically diverse groups
of mammals on the planet (Kunz and Fenton 2005).

Insectivorous bat species, such as the 18 species found in the UK, feed primarily on
airborne insects and contribute to suppressing insect populations including agricultural
pests and species, such as mosquitoes, which can spread diseases. Due to their role as
predators, they are sensitive to changes in the population of insects and can therefore
act as ecological indicators of biodiversity and pollution (Jones et al. 2009).

Bat activities and populations are sensitive to a number of human driven factors such
as light and noise pollution and climate change. Habitat fragmentation due to roads
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and building work can also reduce foraging opportunities and lead to a significant risk
of population decline (Rossiter et al. 2000).

In thematernity season during summer, large numbers of bats tend to group together
in a single roost to have young, and as such it is imperative that these roosts are iden-
tified and protected. The disturbance of bat roosts has been identified as a significant
cause of the population decline of bat species in Europe during the past century (Steb-
bings 1988; Hutson and Mickleburgh 2001). As a result, bats are protected by law in
Europe under the EUROBATS agreement (Marnella and Presetnik 2010) and under
domestic law in the UK (Wildlife and Countryside Act 1981; Conservation of Habitats
and Species Regulations 2017).

We seek to aid bat conservation through understanding bat movement. If we under-
stand how bats travel away from and back to their roosts we can then use this to predict
roost locations (Henley 2022). We will focus on using deterministic models (Voigt
et al. 2017a; Woolley et al. 2012; Woolley 2011) to describe the movement of greater
horseshoe bats, a species that is classified as Near Threatened across Europe owing
to significant declines in its distribution and abundance over the last 50 years (Jones
et al. 2009). Great Britain, and particularly south-west England are a stronghold for
the species, and several detailed ecological studies have been conducted in this region
(Finch et al. 2020a; Mathews 2009; Froidevaux et al. 2017). Greater horseshoe bats
roost predominantly in caves. However, particularly in the northern part of their distri-
bution, they also frequently form maternity colonies in the loft spaces of barns, stable
blocks and large houses.

Variousmethods are employed for identifying, or locating bat roosts, and in general,
they all entail significant labour. Radio-tracking surveys are a common approach for
studying bat movement, habitat preferences, and to track animals back to their roosts
(Bontadina et al. 2002; Encarnação et al. 2005;Kunz and Parsons 1988). This approach
entails humanely capturing bats in flight, using mist nets or harp traps and attaching a
small radio transmitter to the bat’s back typically with surgical glue. The transmitter
must be less than 5% of the bat’s weight in order to avoid disrupting flight patterns
(Brigham 1988). Images of a typical transmitter attached to a greater horseshoe bat
are shown in Fig. 1.

Upon releasing a bat, the signal from their transmitter is picked up by field workers
using scanning radio receivers. Triangulation is generally used to increase the accuracy
of the bat’s position estimate, which requires a minimum of two field workers to
simultaneously record a bearing. However, with bats reaching flight speeds exceeding
20mph (≈ 9m/s) (Jones 1995), recording simultaneous bearings by multiple workers
is often problematic, introducing potential human error. Field workers shadow the bat,
attempting to maintain contact throughout the night, continuously scanning for the
signal and recording location data until either the signal is lost or the bats return to
their roost. Notably, bat locations are recorded at irregular intervals, occurring only
when the signal is detected.

Due to transmitter range limitations, workers must remain in close proximity to
the bat, typically within 1–2km, or even closer if the bat roosts within a building or
underground structure. This can be particularly challenging in rural environments with
obstacles like impassable waterways, hedgerows and hills. Furthermore, transmitters
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Fig. 1 Greater horseshoe bats with radio transmitters glued to their backs. The radio transmitters have very
thin antennae, and are highlighted in white. Photographs taken by Professor Fiona Mathews

have limited battery life and are often lost before the survey concludes, potentially trun-
cating data collection (O’Mara et al. 2014). Additionally, given the numerous potential
roost locations, conducting physical surveys of each site is not always feasible.

Mathematical models are an invaluable tool in understanding ecology as they help
us to derive the mechanisms that lead to certain patterns of behaviour (Ovaskainen
et al. 2016). There are many possible formalisms, such as stochastic or deterministic,
continuous or discrete, depending on the population and behaviour (Murray 2003;
Collins-Hooper et al. 2012; Woolley et al. 2013). Partial differential equation (PDE)
models can provide a useful approximation to real life, whilst simplifying the math-
ematics by excluding noise (Belmonte-Beitia et al. 2013). However, as there are a
finite number of animals in a population, adding stochastic dynamics can sometimes
improve the model approximations (Woolley et al. 2011a, b; Hill et al. 2021).

In this paper, we focus on diffusion-type models for bat movement. Diffusion-
type models have been used for decades to describe animal movement, and can be
formalised with stochastic processes, or with PDEs (Patterson et al. 2017; Ovaskainen
et al. 2016; Woolley et al. 2011c; Woolley 2011). With improvements in electronic
animal tracking devices in recent years, increasingly detailed data can now be gathered
and used to inform complex models of animal movement.

Stochastic processes are able to effectively describe movement of individual ani-
mals under the influence of group dynamics and landscape effects (Patterson et al.
2017; Woolley et al. 2014, 2022). The Ornstein-Uhlenbeck (OU) process was first
introduced in 1930 as an adaptation of Brownian motion which includes an overall
drift towards a specific location (Uhlenbeck and Ornstein 1930). The OU process is
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a stochastic process with two components, a random diffusion element and a deter-
ministic convection or drift element. The first method for modelling animal locations
using a stochastic process in continuous time in 1977 Dunn and Gipson (1977) was
derived from the OU process, and provided a description of an animal’s home range,
defined as the smallest geographical area in which the animal spends a fixed propor-
tion of time (Jennrich and Turner 1969). Since 1977, stochastic processes have been
used to study movement on various scales ranging from the microscopic movement
of cells (Woolley et al. 2014), migration of large land mammals such as elk (Preisler
et al. 2004) to constructing flight models of bumblebees (Lenz et al. 2013).

However, following the dynamics of each individual in a colony can prove to be
computationally expensive, particularly when studying large populations under the
influence of multiple external factors (Patterson et al. 2017). In contrast, PDE models,
also frequently used to model a wide range of biological systems, reduce complexity
by excluding individual dynamics, focusing only on the dynamics of the group as a
whole (Murray 2003; Woolley 2017). In the context of animal movement, PDEs have
been applied to a range of problems including home-range formation and territory
use (Potts and Lewis 2014), insect dispersal (Ovaskainen et al. 2008) and flocking
behaviour (Eftimie et al. 2007). PDE diffusion models have been used to model the
movement of bats in both homogeneous and heterogeneous landscapes (Cvikel et al.
2015; Kerches-Rogeri et al. 2021). Whilst PDEs are highly useful in analysing the
properties of ecological systems, their use in empirical and statistical ecology is much
less common (Potts and Schlägel 2020). This is likely due to the difficulties in choosing
PDEmodels and fitting them to data. Fitting parameters to a PDEmodel often requires
numerically solving the PDE for various parameter values (Ferguson et al. 2016), and
as a result simpler or easier to solve stochastic process models are often favoured by
non-mathematical ecologists.

Overall, both stochastic process and PDE models are useful for solving different
problems: stochastic models can effectively describe individual dynamics, and can be
simpler to simulate by ecologists, whilst PDEmodels exclude individual variation and
can provide useful approximations.

Although our mathematical approaches are fairly standard, to our knowledge, it
is the first time that these techniques have been applied to bat motion. Moreover, the
motion characteristics of themean squared displacement during the returning phase are
unusual and require additional temporally varying factors, such as shrinking domain
models that have previously not been applied in this manner. In this paper we use
time-location data from radio-tracking studies that track bat motion from when they
first leave their roost at sunset to when they return in the morning. By extracting the
mean squared displacement (the ensemble average of squared displacement from the
roost over time) from the data we see two distinct movement phases, an initial linear
dispersal followed by a gradual return to the roost. We use this data to develop PDE
models to describe motion for each movement phase. Diffusion models are discussed
to describe the dispersal of bats away from the roosts. Convection-diffusion models
are widely used in ecology to model population migration, however we will show here
that a temporally homogeneous convection-diffusion model is not consistent with
radio-tracking data, whilst an non-autonomous convection-diffusion model can be
used to match the data. However, due to inconsistencies with bat behaviour narrative
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Fig. 2 The locations of the same bat over two nights during the survey. The roost has been normalised to
be at the origin in each case. The circles represent detections and the numbers next to them represent the
time in hours after sunset that the bat was detected at the given location

we develop a shrinking domain diffusionmodel (Crampin et al. 2002a; Crampin 2000;
Crampin and Maini 2001a, b; Crampin et al. 1999) that provides a better description
of bat movement during their returning phase.

2 Radio-Tracking Survey

A radio-tracking study was conducted at three greater horseshoe bat roosts in Devon
to study the usage of land surrounding the roosts (Mathews 2009). Twelve bats were
fitted with radio tags and studied over 24 nights during May and June 2016 by a team
of trained volunteers and ecologists, such that between 2 and 6 people were tracking
on each night. Due to a limited number of workers and limited battery life on the tags,
each bat was not tracked every night. Instead, effort focused on one to two bats at one
time, attempting to maintain close contact. Four day roosts were used by bats in the
study, with some bats using different roosts on different days. The roost used by each
bat was not identified on every night.

For this analysis, only data from nights when a bat’s beginning and ending roost
were the same is used. As such, only the trajectories of 7 bats over 14 nights were used
consisting of a total of 25 individual trajectories containing a total of 328 recordings.
All of the data and accompanyingMATLAB codes to produce the figures can be found
at https://github.com/ThomasEWoolley/Bat_motion.

As an example of the data we illustrate the trajectory of a bat over two different
nights in Fig. 2. We observe that the bat visits different areas whilst foraging, taking a
different route on each night. Further, we note that the number and time of recordings
varies each night, which is one of the difficulties of bat detection.

A histogram of time intervals between consecutive recordings is shown in Fig. 3,
demonstrating the irregularity of recording intervals. We will use the mean-squared
distance (MSD) from the roost as a function of time to summarise the motion features
and thus fit the movement models to the data. In order to calculate the MSD at a given
time, we require regularly spaced recordings. The locations were linearly interpolated
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Fig. 3 A histogram of the time
intervals between consecutive
recordings

Fig. 4 a Themean-squared distance (MSD) for all radio tracked bats interpolated at�t = 200s. bTheMSD
for all radio tracked bats interpolated at�t = 1000, 2000 and 3000s, from left to right, respectively. The red
line is the MSD trajectory and the ribbon represents the mean±standard error of the squared displacement
trajectory data

between recordings at intervals of �t = 200 seconds, as the distribution in Fig. 3
peaks between 0 and 400s.

The MSD from the roost was calculated from the interpolated positions using

〈r2(t)〉 = 1

N (t)

N (t)∑

i=1

|xi (t) − xi (0)|2, (1)

where xi (t) is the location (x, y) of bat i at time t and N (t) is the number of trajectories
that exist at time t . Due to the trajectories being chosen such that the bats are recorded
as having started and ended at the same roost the MSD (shown in Fig. 4a) begins
and ends at zero. Another statistic we will be frequently using to provide confidence
intervals about the MSD is the Standard Error, σSE , which is the standard deviation
of the squared displacement of individual bat tracks, σ , divided by the square root of
the number of tracks, N (t), thus, σSE = σ/

√
N (t).
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Inmuchof the followingwewill be using an interpolation interval of�t = 200s.We
note that increasing �t (shown in Fig. 4b) leads to a reduction in used data, however,
it does not change the overall shape of the curve from Fig. 4a.

The data in Fig. 4a indicates two movement phases, an initial rapid dispersal from
the roost, followed by a gradual return whilst bats are foraging. We will separate these
two phases at a fixed transition point of ts = 1.5 hours, which matches the ecologists
rule of thumb that the first 90min after sunset is the major foraging period for greater
horseshoe bats, thus, it is the time we would expect most dispersion. At the end of
Sect. 3.2.3 we will revisit this assumption and additionally fit this transition time.

During phase 1, for 0 ≤ t ≤ 1.5 = ts hrs, the MSD seems to increase linearly as
bats are dispersing. The standard error grows during this phase as the bats spread out.
During phase 2, for ts = 1.5 < t < 8 hrs, the MSD decreases as bats move back
towards the roost, shrinking to zero at t ≈ 8 hrs. The variation also shrinks to zero
during this phase as bats start to converge on the roost.

Note we will frequently describe the shape of the phase 2MSD as convex, meaning
that, on average, it does not initially tend to MSD = 0, but rather it can either be seen
to stay constant, or perhaps even increase, before decreasing to zero. We will compare
this generic shape with the MSDs from convection-diffusion equations with fixed
parameters in Sect. 3.2, which decrease rapidly to MSD = 0, which will be known as
concave shapes. Our task will be to develop the convection-diffusion framework in a
couple of directions to reproduce the convex MSD shape.

In the next section various models for each phase will be compared. Although
the data is recorded at irregular time points and stochastic in nature, we will assume
that the underlying probability distribution of the ensemble dynamics is continuous in
both space and time. Therefore, we will be able to use partial differential equations to
analytically describe the evolution of the probability distribution.

3 ModellingMethods

3.1 Phase 1: Dispersal

Diffusion models describe agents as random walkers and are widely used to model
dispersal animal movement for a number of species (Ovaskainen et al. 2016). In this
case, we wish to describe the dispersal during phase 1 of movement as bats fly away
from the roost to the surrounding areas. It is commonly accepted that bats tend to
remain within an area around the roost known as the Core Sustenance Zone, CSZ, and
will forage within this area for the majority of the night (Trust 2016). As a result, a
diffusion model on a bounded domain is considered here.

3.1.1 Diffusion in Polar Coordinates

Although bats are not restricted to a single movement plane, as they are able to fly
in any direction in 3D, we will not include the third dimension here, as height is not
measured in the radio-tracking survey. As the bats are unrestricted in two dimensions
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we will assume their motion is unbiased in terms of direction leading us to use a
diffusion model in polar coordinates.

If the roost is at (x0, y0) and bats leave the roost at time t = 0, the 2D diffusion
equation describes the probability density φ(x, y, t) of finding a bat at position (x, y)
at time t . Explicitly

∂φ(x, y, t)

∂t
= D∇2φ(x, y, t), (2)

where ∇2 is the Laplacian, D is the diffusion coefficient, a positive constant that
quantifies the rate of spread. The CSZ is denoted by� ⊂ R

2 and modelled as a disk of
radius R centred around the roost. Since the domain and initial condition are angularly
symmetric, φ is only dependent on r and not on the angle, and we drop the angular
dependence from the Laplacian. The diffusion equation in radial polar coordinates is
then given by

∂φ(r , t)

∂t
= D

r

∂

∂r

(
r
∂φ(r , t)

∂r

)
, (3)

where r is the distance from the roost, given by r = √
(x − x0)2 + (y − y0)2. The

initial condition,

φ(r , t = 0) = δ0(r), (4)

specifies that all bats begin the night at the roost, at position r = 0. The boundary
condition,

∂φ(r = R, t)

∂r
= 0, (5)

specifies zero-flux across the boundary such that bats cannot enter or leave the bound-
ary. Of course, in reality there is no physical boundary, R simply represents some
maximum distance that the bats tend not to violate.

Equation (3) cannot be solved for all space and time under the given ini-
tial and boundary conditions. However, we can extract information regarding how
displacement averages evolve over time.

3.1.2 Mean Squared Displacement in the Diffusion Model in Polar Coordinates

Given a probability distribution, φ, the moments of φ are defined by (Curtiss 1942)

〈rn〉 =
∫

�

rnφ(r , t)dω. (6)

where 〈.〉 denotes that a mean value is being taken as in Eq. (1). Thus, even though
we are unable to calculate φ exactly, we are able to make some analytical headway
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in understanding the MSD through calculating the second moment (Anh et al. 2009;
Yun 2018; Grebenkov 2019). Taking the time derivative of both sides, we can then use
Eq. (3) to provide the following derivation

d

dt
〈r2〉 =

∫ 2π

0

∫ R

0
r3

∂φ

∂t
drdθ,

=
∫ 2π

0

⎛

⎜⎜⎜⎝

[
Dr2

(
r
∂φ

∂r

)]R

0︸ ︷︷ ︸
=0

−
∫ R

0
2r D

(
r
∂φ

∂r

)
dr

⎞

⎟⎟⎟⎠ dθ,

=
∫ 2π

0

([
−2r2Dφ

]R
0

+
∫ R

0
4r Dφdr

)
dθ,

= 4D(1 − πR2φ(R, t)). (7)

Finally, integrating with respect to time gives

〈r2〉 = 4D

(
t − πR2

∫ t

0
φ(R, τ )dτ

)
. (8)

Depending on the sizes of R and D then for t small, φ(R, t) ≈ 0, since the
probability of reaching the boundary over a short period of time is small due to the
compact initial condition. Therefore, while

t 	 R2

D
, (9)

the expected MSD for diffusion is approximately equal to the first term of Eq. (8),
meaning that the MSD is approximately proportional to time,

〈r2〉 ≈ 4Dt . (10)

As noted in Sect. 2 the MSD in Fig. 4a is indeed linear during phase 1, and therefore
consistent with a diffusion model.

An expression for mean-squared displacement over a long time scale can also be
derived using Eq. (6). Over long time scales, we expect the probability density to be
uniformly spread across the domain,

φ(r , t) = 1

πR2 . (11)

Substituting this into Eq. (6) gives

〈r2〉 = 1

πR2

∫ 2π

0

∫ R

0
r3drdθ = 1

2
R2, (12)
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Fig. 5 a Simulation of Eq. (2), the diffusion in polar coordinates, and b derived MSD from Eqs. (6) and
(8) compared with approximations from Eqs. (10) and (12). Parameter values are D = 100m2/s and
R = 2000m (Color Figure Online)

and therefore the mean squared displacement is constant over long time scales.
To illustrate the accuracy of these approximations,we simulateEq. (3) usingpdepe

from MATLAB R2022b (Inc. 2022; Coleman 2013; Stanoyevitch 2005) and extract
the MSD directly. Figure5a illustrates the radial profiles of the probability density φ

over a number of times shown in the legend. We can observe that the initial condition
approximates a delta function as specified by Eq. (4) the evolving shape smoothly
transports density from local peaks to local troughs, eventually tending to a uniform
spread of density across the domain. Figure5b illustrates the excellent comparison
between the methods of calculating the MSD through Eqs. (6) and (8), as well as
the short time and long time approximations, namely the MSD grows linearly before
plateauing to a constant value, consistent with Eqs. (10) and (12).

3.2 Phase 2: Return to Roost

The diffusion model described in Sect. 3.1 explains the initial dispersal in phase 1,
however it cannot explain the decrease inMSD for phase 2 (see Fig. 4a). For the second
phase of movement we consider adding a convection term to the diffusion equation,
which describes a drift in a particular direction, or towards a specific location. These
models are commonly used to describe animal movement in response to external
factors, for example a drift towards patches of high resources, or away from predators
(Ovaskainen et al. 2016).

We will demonstrate that a convection-diffusion model with fixed parameters is
unable to reproduce the observed MSD curve in Fig. 4, but allowing the diffusion and
convection terms to depend on time does allow the equation to generate a good fit. As
an alternative hypothesis we will show that a diffusion model in a shrinking domain
provides an equally good fit to the data. Thus we look to the data to see if there is a
way of separating the mechanisms.
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3.2.1 A Convection–Diffusion Model in Two Dimensions

During phase 2 of movement, the MSD is decreasing as bats return towards their roost
location (x0, y0) at r = 0. We will first consider a convection-diffusion model with
fixed parameters to describe this drift. The convection-diffusion equation is given by
(Murray 2003)

∂φ

∂t
= D∇2φ + ∇ · (vφ), (13)

where ∇ is the gradient and v is the vector flow velocity. The initial and boundary
conditions are once again a delta function and zero-flux.

We seek to test whether Eq. (13) can reproduce theMSD shown in phase 2 of Fig. 4a
by considering forms of radial convection. In all cases we make v piecewise non-zero.
Namely, v(t) = 0 for t < 1.5hrs= ts because as we saw in Sect. 3.1 plain diffusion
can account for the linear form of the increasing MSD in phase 1. For t ≥ 1.5hrs= ts
we set v(t) = χ f (r)r̂ and we consider three cases for the form of f , (i) uniform
convection towards the origin, (ii) convection that increases with distance from the
origin, and (iii) convection that decreases with distance from the origin. The cases
of (i) and (ii) can be captured using v(t) = χrn r̂ , with n = 0 being case (i) and
n > 0 being case (ii). Unfortunately, we cannot also consider n < 0 as this produces
a singularity in v at the origin, thus, for case (iii) we use v(t) = χ/(1 + rn)r̂ ,

Figure6 provides an overview of simulations with varying values of χ and n. In
the left-hand column we observe the evolution of the probability density over time.
In all cases we visualise the case where χ = 1. The right-hand column illustrates
the extracted MSD. In all cases we observe that although the convection acts to draw
the probability distribution towards the origin the shape of the MSD is concave and
it tends to a non-zero steady state, where the diffusion spreading out φ balances the
convection, which is driving the heterogeneity.

Althoughwe could not have predicted the shape of the time-dependentMSD graphs
without running the simulations we could have predicted that the simulations would
have reached a non-zero steady state since the steady state form of Eq. (13) is actually
solvable. Explicitly, at steady state Eq. (13) simplifies to

0 = ∂

∂r

(
r

(
D

∂φs

∂r
+ χ f (r)φS

))
, (14)

Using, the zero flux boundary conditions we can show that

φs =
exp

(
− ∫ r

0
χ f (r1) dr1

D

)

2π exp
(
− ∫ R

0
χ f (r)
D dr

) . (15)
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Fig. 6 Population density simulations (left) and MSD plots (right) from Eq. (13) for different convection
functions, v. All simulations occur on a circle of radius R = 2000mwith D = 100m2/s. In a and b v = χ r̂ ,
c and d v = χr2 r̂ and e and f v = χ/(1+ r2)r̂ . In the left-hand figures χ = 1, whilst χ is specified in the
legend of the right-hand figures (Color Figure Online)

and, thus, the steady state MSD is

〈r2s 〉 = 1

exp
(
− ∫ R

0
χ f (r)
D dr

)
∫ R

0
r32 exp

(
−

∫ r2

0

χ f (r)

D
dr1

)
dr2. (16)

Since all terms in the integrands are positive 〈r2s 〉must also be positive.We can observe
from Eq. (16) that 〈r2s 〉 decreases as χ increases, or D decreases, thus, we can make

123



Bat Motion can be Described by Leap Frogging Page 13 of 28    16 

the MSD head towards zero. However, this does not solve the problem that the MSD
trajectories curves in the wrong direction.

Taking inspiration from the idea that altering D and χ could lead to a reduction of
the MSD we now consider the possibility that the parameter values defining diffusion
and convection are time dependent. We define

D(t) = Dc

∣∣∣∣1 − t

tc

∣∣∣∣ and v(t) = χct r̂, (17)

where Dc, tc andχc are parameters to be fitted,with the restrictions that Dc andχc > 0.
The chosen temporal functional forms are linear in time for reasons of simplicity. We
call Eq. (13)with functional termsdefinedbyEq. (17) the non-autonomous convection-
diffusion model.

The chosen functional forms and interpretation of Eq. (17) are purposefully simple,
but capture the expected dynamics. Initially, v(t) ≈ 0 and, so, the model is diffusion
dominatedmeaning that the bats spread out.However, as time increases D(t) decreases
and v(t) increases meaning that towards the end of the night the bats reduce their
random motion characteristics and move in a more directed fashion towards the roost.
We could producemuchmore complicated versions, but then thiswould require further
justification. Moreover, we will see that the forms in Eq. (17) are enough to fit well
against the data.

Having defined ourmodel we can nowfit the outputMSD solutions to the data using
nonlinear least-squares fitting algorithms built intoMATLABR2022b (Inc. 2022). Not
only does the fitting algorithm provide point estimates for the best-fit parameter values,
but it also supplies a 95% confidence interval for each value. The width of the interval
indicates our uncertainty regarding the fitted values, with wider intervals correlating
withmore uncertainty. The values quoted here are presented to three significant figures,
or two decimal places.

To provide a measure of ‘goodness-of-fit’ of the fitted curves we use the coefficient
of determination. If the {yi }Ni=1 are the observations, {pi }Ni=1 are the predictions and〈y〉 is the mean of the observations then the coefficient of determination is

R2 = 1 −
∑N

n=1(yi − pi )2∑N
n=1(yi − 〈y〉)2 . (18)

R2 measures the proportion of the variation in the MSD that is predicted by the time
dependence and describes how well our model fits the observations, thus, the closer
R2 is to 1 the better the fit.

Upon fitting the non-autonomous convection-diffusion equation to the data shown
in Fig. 4a we produce best-fit parameter values and 95% confidence intervals of Dc =
100m2/s, [94.4 106]m2/s; tc = 8.23h, [7.44, 9.00]h; and χc = 0.83 × 10−5m/s2,
[0.75, 0.91]×10−5 m/s2. The density of the bat population is shown in Fig. 7a, whilst
the fitted MSD curve, which has R2 = 0.96, can be seen in Fig. 7b. We observe that
the non-autonomous convection-diffusion equation fits the data extremely well, but
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Fig. 7 a Population density simulations and bMSD from Eq. (13) using temporally evolving diffusion and
convection terms from Eq. (17) fitted to the data in Fig. 4a. The parameters and 95% confidence intervals
are Dc = 100m2/s, [94.4 106]m2/s; tc = 8.23h, [7.44, 9.00]h; and χc = 0.83 × 10−5m/s2, [0.75,
0.91]×10−5m/s2. In b The red line is the MSD trajectory and the ribbon represents the mean±standard
error of the squared displacement trajectory data. The black solid line represents the simulated data with
best-fit parameters. The dashed lines represent simulations using parameters from the upper and lower limits
of the confidence intervals (Color figure online)

the density profiles in Fig. 7a do not fit with the expected behaviour as suggested in
the ecology literature.

As time tends towards dawn the strength of the convection term increases causing
the bat population density to move towards the roost. However, the convection term
causes the bats nearest to the roost to return first. This is currently against the narrative
in bat ecology that says that bats stay out as long as possible (Pyke 1984) and only
return to the roost just before dawn to maximise their foraging potential (McAney and
Fairley 1988;Murray and Kurta 2004). In the next section we define a newmechanism
that accounts for bats returning to the roost due to the bats furthest out returning first,
which would fit better with the current knowledge of bat behaviour.

3.2.2 Leap Frogging

Instead of pulling the bats towards the roost in this section we generate a motion
mechanism pushes the bats on the periphery back to the roost. We term this form
of motion ‘leap frogging’ because it mirrors the idea that bats on the periphery will
choose to fly towards the roost until they are no longer the furthest bat away from
the roost. Once the convecting bat is no longer the furthest out from the roost it stops
convecting and returns to moving randomly. The new bat that is furthest out starts to
convect towards the roost and the process begins again. Note that the furthest out bat
becomes the edge of the domain and no randomly moving bat is able to move past it.
Over time this form of motion will cause the bat population to tend towards the roost,
as shown in Fig. 8.

Of course, with this strategy comes the questions: (i) why would the furthest out
bat be the only one convecting? And (ii) how would the furthest out bat know that
they are the furthest one out?

We answer (i) by appealing to a number of different aspects linked to self-
preservation. Firstly, a bat on the periphery is more vulnerable to predators as it is
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Fig. 8 Schematic diagram illustrating the leap frogging strategy of movement in one-dimension. The black
bats are all moving randomly. The furthest out, highlighted in blue convects until it is no longer the furthest
out. Its motion then becomes diffusive. The bat that is now furthest out starts to convect towards the roost
and the process repeats (Color figure online)

not surrounded by other bats that would act as potential targets that could take the
predator’s attention. Secondly, the furthest out bats have furthest to travel back to the
roost, so it is likely that they would be the ones to start returning first. Equally, bats
closer to the roost have less far to travel and can continue to forage for longer. Thirdly,
if the rest of the bat population has found suitable foraging areas closer to the roost
the furthest out bat is wasting energy by flying further.

To answer (ii) we focus on the recent research into bat calls that suggests that there
is a lot of contextual information in their calls beyond just use in echo location (Prat
et al. 2016; Genzel et al. 2019). Not only do bats gain a lot of spatial information from
hearing other bats calling they will also be able to discern that they are the furthest
out if they are unable to hear calls emanating from all directions. So, if a bat can hear
calls from all surrounding directions it can infer that it is not the furthest out and, thus,
free to forage randomly. However, as soon they become the furthest out bat the calls
will no longer surround them, triggering a change in their behaviour.

The stochastic form of this motion can be seen considered in Henley (2022).
However, using stochastic-to-deterministic scaling arguments (Woolley et al. 2011c;
Woolley 2011) we have found that the motion can be interpreted and included in the
presented framework of diffusion-convection equations. Further, using the determinis-
tic form produces tractable equations, which can be analytically approximated. From
these approximations we can fit the temporally evolving convection term to provide
a MSD that matches the data. Although, this can also be done stochastically, using
Approximate Bayesian Computation (Blum 2010; Prangle 2015; Henley 2022), this
would require many thousands of stochastic simulations to fully explore the parameter
regime. Because of these reasons wemove forward using deterministic equations only.

The key observation is that convecting the boundary bats towards the roost is the
same as casting the diffusion motion on an apically shrinking domain, i.e. the domain
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shrinks only at the edge. The derivation of reaction-diffusion equations on domains
undergoing growth or shrinkage is standard, and involves considering an elemental
volume that moves with the flow due to domain evolution. By applying Reynolds’
transport theorem (Acheson 1990) in addition to the standard diffusive movements
terms we generate an additional advective term which accounts for the transport of
material around the domain, as well as a source/sink term that accounts for concen-
tration/dilution which arises due to volume changes. We skip further specifics of the
derivation for brevity, but note that further details can be found in any of the fol-
lowing sources (Barrass et al. 2006; Crampin 2000; Crampin and Maini 2001a, b;
Crampin et al. 1999, 2002a, b; Madzvamuse and Maini 2007; Neville et al. 2006)
and the simulation codes accompanying this paper can be found at https://github.com/
ThomasEWoolley/Bat_motion.

In short, if we assume that the diffusion is occurring on an origin-centred disk with
time dependent radius R(t), we can use a Lagrangian description of the coordinates
to map the motion onto a stationary domain, such that the diffusion equation becomes
a convection-diffusion equation with time-dependent coordinates,

∂φ

∂t
= 1

R(t)
∇2

ρφ + Ṙ

R
ρ · ∇ρφ, (19)

where the position vector and derivatives are all with respect to the stationary coor-
dinate ρ = (X ,Y ) and are linked to the time dependent coordinates r = (x(t), y(t))
through the uniform scaling r = R(t)ρ. The equation once again has zero-flux
boundary conditions and an initial delta function of concentration at the origin.

We observe that we are still going to be simulating a convection-diffusion equation,
however, Eq. (13) fundamentally assumes that the domain is stationary and the con-
vection term arises as a temporally uniform, but spatially homogeneous driving force
pushing the bats back to the roost. Alternatively, the convection in Eq. (19) arises due
to the temporally shrinking domain driving the bats back to their roost.

Next, we will discuss the form of the shrinking rate. We make the assumption that
the diffusion rate is larger than the rate at which the domain changes size. In this case,
the solution should approximate the homogeneous steady state on a bounded domain
to a good approximation. We offer some verbal reasoning as to why this assumption,
although not exactly correct, should be valid on both short and long time scales.

Over short time scales any heterogeneity will be constrained to a thin region near
the edge, thus, the homogeneous solution will hold true over most of the domain.
Over long time scales any gradients that are generated will be spread out over physical
distances of kilometres. In addition to this justificationwewill demonstrate a posteriori
that this assumption does produce the desired behaviour even though itmay be violated
in reality towards the end of the night.

Using the assumption that our solution is near a uniform steady state Eq. (11) says
that φ = 1/

(
πR(t)2

)
. Moreover, Eq. (12) tells us that 〈r2〉 = R(t)2/2. From this, we

can choose the radius so that the expected MSD matches the observed MSD from the
radio-tracking data.

In the next section R(t)will be fit to the data exactly using a nonlinear least-squares
fit. However, in this section we demonstrate that our assumptions work by choosing
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Fig. 9 a Results of a diffusion simulation on a shrinking domain at different times given in the legend.
The dashed line presents the boundary location at the given times. b The extracted values of MSD, with
R(t)2/2 for comparison. The initial condition is a delta function at r = 0 and the time-dependent radius of

the domain is R(t) = R0 for t < ts and R(t) = R0

√
1 − ((t − ts )/(8 − ts ))2, with R0 = 2000m, ts = 1.5

hours and D = 100m2/s (Color Figure Online)

a form of the domain radius, R(t), to give a convex MSD. To match the two phases
of the observed motion we use a piecewise form of R(t), such that R(t) = R0 for
t < 1.5hrs and, so, the domain has a constant radius during phase 1. Then in phase 2
t > 1.5hrs, we choose R(t)2 = R2

0(1−α(t−1.5)2), so that the domain radius shrinks
like a negative parabola, which decreases from the initial value of R0. Further, to fix
α we assume that the MSD reaches zero at t = 8hrs, i.e. α = 1/(8 − 1.5)2.

The probability density and MSD of φ undergoing diffusion on a shrinking domain
with time-dependent radius, R(t), is shown in Fig. 9. During phase one the domain’s
width is constant and we observe that the probability density, shown in Fig. 9a, spreads
across the domain due to the diffusion process. This corresponds with the MSD
increasing approximately linearly in Fig. 9b for t < 1.5hrs.

For t > 1.5hrs the domain starts to shrink, as defined above, andwe see that theMSD
decreases, producing a convex shape. In Fig. 9b we also plot R(t)2/2 the theoretical
MSD that would occur if φ was homogeneous across the domain. We see that the
MSD and R(t)2/2 well approximate each other for t > 3hrs. We can understand this
by considering the approximate homogeneity of φ in Fig. 9a, where we observe that φ
has a very shallow gradient across the domain for 3 < t < 7hrs. Even when t = 7 and
φ doubles over the domain this doubling occurs over 1km, thus, the gradient would
be very small over this distance. Finally, during the last hour, when the homogeneity
of φ would start to be violated the MSD is small enough that any errors simply get
smaller and the approximation actually gets better (compare the two curves in Fig. 9b
at t ≈ 8hrs).

As a result, we conclude that, even when our assumption does not hold true, and
the probability density is not uniform, the simulation produces the desired behaviour.
Using the close approximation of the MSD and R(t)2/2, we can fit R(t) to the radio-
tracking data, which will do in the next section.
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Fig. 10 Fitting the two phases of bat MSD data. a Phase 1 presents the data for t < 1.5hrs after sunset. The
data is fitted with a straight line. b Phase 2 presents the data for t > 1.5hrs after sunset. The data is fitted
with a quadratic polynomial. The ribbons represent the standard error

3.2.3 Data Fitting

Figure10 presents the data from Sect. 2 separated in the two phases of before 1.5hrs
after sunset and after 1.5hrs after sunset. The data from phase 1 is fitted with a straight
line, MSD = α11t+α10, (Fig. 10a) and the data from phase 2 is fitted with a quadratic
polynomial, MSD = α22t2 + α21t + α20, (Fig. 10b). The polynomial regression was,
once again, obtained using least-squares algorithms built into MATLAB R2022b (Inc.
2022).

From the fitted values and the identification that 4D = α11 we can calculate that the
diffusion rate of the bats is D = 81.7m2/s. This means that every second a population
of bats will spread out into an area of approximately 82m2. To convert this to a speed
we need to use a standard time scale over which the bats move. We consider the time
scale to be on the order of 1 s (or higher). To generate a bat speed, v = r(t)/t , we note
that the diffusion rate can be linked to the area that the bats spread over, πr(t)2, in the
given time scale, i.e. D = πr(t)2/t . Manipulating these equations we find that

v =
√

D

π t
. (20)

Substituting the fitted values and the time scale into Eq. (20) we generate a speed of
v = 5.10 ± 0.11m/s. Further, as we see in Fig. 10, there is a delay between sunset
and the MSD observably increasing. From the linear fit we can calculate the delay as
td = −α10/α11 = 698s, or approximately 11.6min.

For phase 1 the linear fit to the data has a goodness of fit of R2 = 0.96. The
quadratic fit of phase 2 hasR2 = 0.95.

By fitting these two phases separately we can combine them directly. Thus we
propose to apply a diffusion model of movement acting on a shrinking domain to both
phases. The diffusion rate is D = 81.7m2/s (taken from phase 1) and the domain size
R(t) (taken from phase 2) is linked to the fittedMSD curve through MSD = R(t)2/2,
explicitly,
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Fig. 11 MSD of diffusing agents on a shrinking domain. The red line is the MSD trajectory and the ribbon
represents the mean±standard error of the sqaured displacement trajectory data. The black lines represent
simulated data. The diffusion cofficient is D = a11/4 and the radius of the domain, R(t), is given by
Eq. (21). The solid line uses the best-fit parameter values, whilst the upper and lower dashed lines use the
upper and lower values from the 95% parameter confidence intervals. The parameters are specified in Table
1. a The parameters are fitted with ts = 1.5hours. b The parameters are refitted with ts included in the
fitting (Color figure online)

R(t) =
√
2

(
α22t2 + α21t + α20

)
. (21)

From this definition we can extract an estimate for the CSZ as R(0) = √
2α20 =

1780mwhich is the largest domain that the bats can spread out into since R(t)decreases
as t increases.

Figure11a shows the two phases simulated together under the above extracted
parameter values and functional forms. The goodness-of-fit value of the black line,
which uses the best-fit parameters isR2 = 0.93. The best-fit parameters are specified
on the left of Table 1.

By using Eq. (21) we no longer have to consider a piecewise form of R(t) that is
constant for t < 1.5hrs and decreasing for t > 1.5hrs. Equation (21) is able to account
for both phases simultaneously. Equally, the value of D is constant throughout the
simulation.

Up until now we have fixed the transition time between dispersion and roost return
at ts = 1.5 hours. We now extend our method to be piecewise linear and quadratic,
such that a linear curve is fitted for 0 < t ≤ ts and a quadratic is fitted for ts < t .
Upon fitting the piecewise curve to the data we generate the best-fit parameter and
confidence intervals as presented in the right of Table 1. We observe that the best-fit
parameter for ts = 1.46 hours, which confirms the ecologists anecdotal knowledge
that the first 90min after sunset is a good prediction for the major foraging period.
Combining these piecewise parameters into the single simulation we generate the
best-fit curve illustrated in Fig. 11b that is practically indiscernible from that shown in
Fig. 11a, however, the error bounds provided by the upper and lower curves are wider.

As noted in Fig. 4b increasing the track interpolation interval from �t = 200s will
lead to variations in the best-fit parameter values stated here.However, since the overall
shape of the curve does not change greatly our framework would still fit the data and
the variability of the numerical values would be no worse than the ecological data

123



   16 Page 20 of 28 L. Henley et al.

Ta
bl
e
1

B
es
t-
fit

pa
ra
m
et
er
s
an
d
95
%

co
nfi

de
nc
e
in
te
rv
al
s
fo
rt
he

da
ta
fit
te
d
w
ith

a
lin

ea
r-
qu
ad
ra
tic

pi
ec
ew

is
e
fu
nc
tio

n,
w
he
re
a
lin

ea
rfi

to
cc
ur
s
fo
r0

<
t
≤

t s
an
d
a
qu

ad
ra
tic

fit
oc
cu
rs
fo
r
t s

<
t

Pa
ra
m
et
er

U
ni
t

B
es
t-
fit

va
lu
e

C
on
fid

en
ce

in
te
rv
al

B
es
t-
fit

va
lu
e

C
on
fid

en
ce

in
te
rv
al

a 1
1

m
2
/s

32
7

[2
94

,3
60

]
33

5
[3
01

,3
70

]

a 1
0

m
2

−2
.2
8×

10
5

[−
3.
34

,−
1.
22

]×
10

5
−2

.4
6×

10
5

[−
3.
54

,−
1.
38

]×
10

5

t s
ho

ur
s

1.
5

Fi
xe
d

1.
46

[0
.6
0,
2.
32

]

a 2
2

m
2
/s
2

−2
.0
4×

10
−3

[−
2.
56

,−
1.
52

]×
10

−3
−2

.1
1×

10
−3

[−
2.
62

,−
1.
60

]×
10

−3

a 2
1

m
2
/s

−2
.1
3

[−
20

.1
,1

5.
8]

0.
48

[−
17

.3
,1
8.
2]

a 2
0

m
2

1.
58

×1
06

[1
.4
5,

1.
73

]×
10

6
1.
57

×1
06

[1
.4
3,
1.
70

]×
10

6

T
he

pa
ra
m
et
er
s
on

th
e
le
ft
as
su
m
e
th
at
t s

=
1.
5
ho

ur
s
is
fix

ed
,w

hi
ls
tt
he

pa
ra
m
et
er
s
on

th
e
ri
gh

ti
nc
lu
de

t s
in

th
e
fit
tin

g
pr
oc
es
s

123



Bat Motion can be Described by Leap Frogging Page 21 of 28    16 

Fig. 12 Comparing the density
of returning bats within 100m of
the roost across the two
simulated mechanisms of
non-autonomous
convection-diffusion and leap
frogging with the trajectory data
(Color Figure Online)

itself. Should the interested reader want to vary �t all of the data and accompanying
MATLAB codes can be found at https://github.com/ThomasEWoolley/Bat_motion.

3.3 Comparing Non-autonomous Convection–Diffusion and Leap Frogging
Mechanisms

Figures7b and 11 demonstrate that both the non-autonomous convection-diffusion
model and the leap frogging mechanism are able to fit the observed data well. Thus,
we need a metric to distinguish between the two motion descriptions. We focus on
using the information provided by the density plots in Figs. 7a and 9a, where we see
that a major difference between the two mechanisms is the placement of the density
peak. In the case of the non-autonomous convection-diffusion model the peak appears
close to the roost (the bats are being attracted, or pulled towards the roost), whereas in
the leap frogging model the density peaks at the boundary (the bats on the boundary
are being pushed towards the roost).

Asmentioned at the end of Sect. 3.2.1 the current narrative of bat behaviour suggests
that bats would prefer to maximise their foraging time and stay out as long as possible
(McAney and Fairley 1988; Murray and Kurta 2004), which would align closer with
the idea of the leap frogging mechanism because in this case it is the bats that are
furthest out that are returning first, whilst those nearer to the roost continue to forage
(Speakman 1991). We test this idea in Fig. 12 by calculating the proportion of bats
that are within 100m of the roost through integrating the density profiles of the two
mechanisms and seeing how they change towards the end of the night. We note that
100m is an arbitrary distance from the roost to use, but offers a clear difference between
the twomechanismswe are trying to decide between.We then compare these simulated
curves with data as we extract the time at which each bat is detected within 100m and
is not detected beyond 100m thereafter. Since we know that all the bats returned to the
roost we assume that the bat never travels beyond 100m again. From extracting this
time we can generate an approximate density of returning bats throughout the night.

Figure12 illustrates our central idea that under the non-autonomous convection-
diffusion model bats return earlier than under the leap frog model. Moreover, the
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non-autonomous convection-diffusion model predicts that not all bats (≈ 20%) will
return, even by dawn, which is problematic as it is known that bats are extremely
sensitive to light (Rossiter et al. 2000). In comparison, the data line lies in between the
two proposed mechanisms, suggesting that it may be a combination of both processes
that defines the bat behaviour; a pull from the roost to head home and a push from bats
returning from the furthest out parts of the CSZ. However, the rapid increase towards
the end is much more in line with the ecological theory that the bats tend to stay out
as long as possible before returning home (Pyke 1984).

We note that the assumption that the bats never travel beyond 100m again between
the detected time and dawn is a weakness of the data comparison. The irregular inter-
vals between the detections means that it is possible that the bats did fly outside the
radius of 100m. However, this would simply cause the final return time to be later
making the data fit better with the curve from the leap frog simulation. A better source
of data would be to place a static microphone detector close to the roost. This is what
was done in (McAney and Fairley 1988), where it can be observed that the number of
detections rapidly increases within the last hour, which is consistent with our results.
Thus, although more data needs to be collected to really test our two hypotheses, the
leap frog motion description appears to be more consistent with the observed data and
bat behaviour hypothesis.

4 Discussion

In this paper we have considered the mean squared displacement of a foraging bat
population extracted from survey data that occurred in Devon during May-June of
2016. We observed that there was a clear separation of motion types during the night,
an initial dispersal phase and a slow drift back to the roost. We used partial differential
equations to model the motion and we have discovered two mechanisms that fit the
data, one pulls the bats towards the roost (non-autonomous convection-diffusion),
whilst the other pushes the bats from the boundary (leap frogging).

Having discovered twomechanisms that fit the data, we must consider the ability of
testing the mechanisms and deciding between them. In Sect. 3.3 we saw that the major
difference between the non-autonomous convection-diffusion model and the leap-frog
model is that the local maximum are at opposite ends of the bat density profile. In the
non-autonomous convection-diffusion model the density peaks at the roost, whilst in
the leap frog model the density is higher on the boundary. Comparing the mechanisms
to data and ecologist narrative we suggest that either a mix of the mechanisms, or the
leap frogging model are the best fit. Not only do bats want to stay out from the roost
as long as possible to maximise foraging, suggesting that bats on the outside moving
in first is more likely, but also the non-autonomous convection-diffusion model has a
problem in that it predicts that there will be a non-zero population not in the roost at
sunrise. We suggest further testing of our hypotheses with static detector microphone
arrays that can be placed out in the field and these can be used to track the call density
throughout the night. Such experiments are less labour intensive than bat tracking and
provide constant surveillance through the night, thus, we can generate much more
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data. Having this data would immediately allow us to see when and where the density
of returning bats tends to concentrate, i.e. at the roost, or move in from the boundary.

Considering the two phases observed in the data, the initial rapid dispersal from the
roost in phase 1 can be explained by competition for resources. If the colony spreads
out across the domain, each individual has a larger area to themselves, and therefore
more resources available to them.

We have shown that a diffusion model provides a good description of motion in
phase 1 as it produces a linear growth in the MSD. From the two mechansims derived
in this paper we have generated a range of possible diffusion rates, D = 73.5-106m2/s,
which can be interpreted as an approximate straight line speed of v = 4.84-5.81m/s.
This fits well with data as, during foraging, greater horseshoe bats have been recorded
flying at speeds of 8.1m/s (Duvergé and Jones 1994). Thus, we can be reasonably
confident in the application of this model to describe the motion of the bats at least
initially.

However, we must consider the limitations of our descriptions of bat motion. The
bat roosts we consider here are in a rural area, thus bats are able to spread out in all
directions. In urbanised areas bat flight directions will be more impeded since bats are
light averse, and show avoidance of road noise (Finch et al. 2020b, c; Barlow et al.
2015). Hence, if we were to repeat this study in a different location we would have to
revisit the assumption that batmotionwas equally likely in all directions. Further,many
bat species (such as greater horseshoe bats) prefer to travel along linear features such as
hedgerows and rivers where insects are abundant and navigation is easy (Barlow et al.
2015), suggesting that the movement may be better described as one-dimensional,
rather than two-dimensional. Even if we were to reduce the dimension of the model
and only consider bat motion in one-dimension, the MSD of diffusion is still linear
with respect to time. Although the gradient would be 2D, rather than 4D, which would
cause us to record a doubled straight line speed (9.68–11.62 m/s) which would still
be within a bat’s plausible speed range (Woolley et al. 2017).

Critically, it does not matter whether the motion is predominantly one-dimensional
(in that the bats prefer to follow linear geographical features e.g. greater horseshoe
bats), two-dimensional (in that the bats will spread out and fill open spaces, e.g. noctule
bats), or amixture of the two; the diffusionmodel will still be able tomatch the data (up
to a factor of 2), which is why the MSD is a useful description of motion. This means
that, regardless of the specific flight features, our derived ranges of bat dispersion rates
will be of the right ‘order of magnitude’, which is often as accurate as we can be in
ecological settings due to the variability in bat species, geography and climate.

Wemust also consider the fact that bat motion is actually three-dimensional and we
are missing height data. This lack of altitude information is a fundamental limitation
of the current technology and tracking practices and we do know that it limits our
understanding of bat behaviour as it has been shown that some species produce dif-
ferent call types at different altitudes (Jensen and Miller 1999). Our only hope is that
future developments in technological miniaturisation will lead to detectors that can be
attached to bats and provide full three-dimensional tracking. If full three-dimensional
data becomes available the model presented here can be easily updated to include the
third dimension through appealing to cylindrical polar coordinates.
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One possible interpretation of the leap frogmodel is that the bats depend on the calls
around them to help navigate their environment. It is known that a common foraging
strategy amongst some bat species is to eavesdrop on the hunting calls of other bats to
easily and quickly locate hunting grounds (Roeleke et al. 2020; Egert-Berg et al. 2018).
This strategy is most common in landscapes dominated by cropland, where prey is
difficult to find for a single bat due to patchy or unpredictable insect distribution and
is uncommon in woodland where insect distribution is more reliable. Eavesdropping
allows bats to locate areas with insects by following bats that have already found these
hunting grounds.

It is likely that the density of bats far away from the roost is often low enough
that they do not hear calls from other bats constantly. However, foraging bats are not
stationary, instead they fly around searching for prey (Jones and Rayner 1989). We
suggest that the mechanism sending bats towards the roost could be the absence of
calls close to them: if a bat spends a significant period of time in silence, without
hearing calls from other bats, or if all the calls come from one direction, the bat would
decide to head closer to the roost, towards where it will find other members of the
colony.

This mechanism would suggest that during the returning phase of the night bats
could be made to return slower and forage longer if they thought that there were bats
beyond their location. An acoustic playback experiment could be designed to test this
hypothesis as we would be able to asses whether microphones playing foraging calls
at the edge of a CSZ would lead to a slower return. However, in such an experiment
ethical decisions would need to be made regarding the bat population’s safety, since
encouraging bats to stay out from their roost for longer may lead them to be more
vulnerable.

The quadratic formof the radius of the shrinking domain, given byEq. (21), suggests
that batsmove very slowly towards the roost at the start of phase 2, and the rate of return
increases as time goes on. We consider two possible explanations for this. Firstly, a
bat located far from the roost is likely to have less knowledge of its surroundings, and
therefore may be more inclined to employ the eavesdropping strategy as it is more
reliant on the behaviour of other bats in the colony. As the bat travels closer to the
roost, navigation becomes easier because the landscape is more familiar, and the bat
is therefore able to return directly to the roost rather than relying on others.

We note that for the specieswe are considering (greater horseshoe bats) it is not clear
whether eavesdropping is used as a foraging strategy, but regardless, it is clear that
they can recognise conspecifics based on echolocation calls (Barclay and Jacobs 2022),
while other horseshoe species can even use acoustic information to determine the sex
of individuals (Schuchmann et al. 2012). Therefore, it is reasonable to hypothesise
that bats use the absence of echolocation calls, perhaps experienced over an extended
time period, as a cue for returning towards a roost.

Alternatively, the time of nightmay provide behavioural cues. Early in the night, the
bat knows that there are several hours before the sun rises and it can therefore continue
to forage safely and eavesdrop on other bats to locate abundant hunting grounds. Later
on in the night, the sense of urgency to return to the roost becomes more pronounced,
as a bat does not want to be stranded far from the roost, without shelter, when the sun
rises, and therefore return travel becomes more urgent as the night progresses to dawn.
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Moreover, it is possible that bats do not want to be further from the roost than the rest
of the colony once they have eaten, and therefore start to travel back after foraging
has succeeded.

Of course our conclusions regarding bat motion are not the whole story. Bats are
not restricted to returning to the same roost each night, indeed many of the trajectories
in the initial data recorded bats starting in one roost and heading towards another. So,
there is work to be done extending these results to include multiple roost locations.
Equally, this work is only applicable to greater horseshoe bats during the survey
months because it is known that different bat species fly in different manners and
prefer different habitats, whilst the same species can present different flight patterns
during different times of the year (Voigt et al. 2017b). Thus, althoughwe have provided
the first steps to understanding bat motion characteristics there are more questions to
be answered.
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