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Summary 

This work presents an investigation into the modelling of the hydraulic behaviour of 

heterogeneous soils of mixed wettabilities. The model represents moisture transfer 

of a liquid phase, and can account for the highly non-uniform nature of unsaturated 

flow in soil due to the presence of strong heterogeneity. This is accounted for with 

Gaussian random fields to represent an arbitrary number of spatially varying material 

properties. 

The theoretical formulations are presented to model this complex behaviour, as well 

as their numerical solutions which form the foundation of the developed model. The 

chosen method of random field generation is also investigated in terms of reducing 

the error in the correlated structures near the domain boundaries, as well as 

removing the need to solve over an extended domain. Methods to account for water 

repellency in soil are also given, such that the exaggerated flow behaviour it exhibits 

in relation to wettable unsaturated soil can be represented. 

Validation of the model was conducted through representing field tracer experiments 

to assess the ability of the model to predict suitable vertical profiles of dye coverage. 

This was conducted for both wettable and water repellent soil, and quantified through 

confidence intervals such that a very low number of simulations was able to describe 

the overall model response to a high level of confidence. 

The following conclusions can be drawn. The inclusion of material heterogeneity is 

crucial in representing complex unstable flow processes in soil of any wettability. The 

non-linear constitutive behaviour of the material that was predicted by the model 

simulations would be difficult to account for without spatial variability of material 

parameters. Similarly, the applied field generation method is a fast way to introduce 

this, and the proposed method of error reduction in the correlation structure is 

suitable for complex domains. The proposed methods to account for hydrophobicity 

based on the soil water retention curve are sufficient to allow unstable flow to 

develop. The similarity in finger characteristics of both the wettable and water 

repellent cases with the experimental observations suggest the model is more than 

sufficient in representing the complex flow behaviour that both can exhibit. 
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Nomenclature 

𝑎(⋅, ⋅)  bilinear functional, see (3.31) 

𝑏(⋅, ⋅)  bilinear functional, see (3.36) 

𝐴  saturation-capillary pressure relation parameter, Foroughi et al. (2022) 

𝐵  saturation-capillary pressure relation parameter, Foroughi et al. (2022) 

ACFX  Matérn autocorrelation function 

𝐶  saturation-capillary pressure relation parameter, Foroughi et al. (2022) 

𝐶(ℎ)  covariance function 

𝐶1  model parameter, see (7.2) 

𝐶𝑙𝑙  coefficient of saturation derivative, see (3.13) 

𝐶𝑢  coefficient of uniformity 

CI  confidence interval, see (6.5) 

𝐂  mass matrix, see (4.9) 

𝑑  dimension 

𝑑10  particle size for which 10% are finer 

𝑑60  particle size for which 60% are finer 

𝑒  void ratio 

𝐸𝑠𝑠  sink/source term 

𝑓1, 𝑓2  illustrative fields to be interpolated 

𝑓𝐼  interpolated field, see (7.4) 

𝐅  flow vector in matrix governing equations, see (4.11) 

ℎ  lag distance 

𝐻1(Ω)   Sobolev space 
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𝐇  operator in (3.21) 

𝐽𝑙  right hand side of moisture transfer governing equations, see (3.15) 

𝑘  incremental variable  

𝑘𝑙  effective permeability 

𝐾𝑙  unsaturated hydraulic conductivity 

𝐾𝑙𝑙  coefficient of pressure gradient, see (3.14) 

𝐾𝑟  relative coefficient of unsaturated hydraulic conductivity 

𝐾ν  Bessel function of second kind of order ν 

∑ 𝐾𝑠  total saturated conductivity of a considered collection of nodes 

𝐊  stiffness matrix, see (4.10) 

𝑙  length-scale parameter 

𝑚𝑣𝑔  van Genuchten parameter 

𝑀𝑖,𝑗  mass matrix of discretised SPDE, indexed notation, see (3.33) 

𝑛  porosity 

𝑛𝑒  number of nodes per element 

𝑛𝑂  number of experimental observations (see Tale 7.1) 

𝑛𝑠  sample size 

𝑛𝑣𝑔  van Genuchten parameter 

𝐧   unit normal to the boundary 

𝑁  shape functions 

𝑁(ℎ)  number of pairs of points in Ω of separation ℎ 

N  number of operations to denote algorithmic complexity 

𝐍  shape functions 

𝑁𝑖,𝑗  mass matrix integrated over the boundary, indexed notation, see (3.37) 
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𝑞  scaled flux, see (6.1) 

∑ 𝑞  total applied flux of a considered collection of nodes 

𝑠  suction 

𝑆(𝜉)  spectral density, see (3.17) 

𝑆𝑙  degree of saturation of pore water 

𝑆𝑖,𝑗  stiffness matrix of discretised SPDE, indexed notation, see (3.34) 

SE  standard error 

𝒮(ℝ𝑑)  space of rapidly decreasing smooth functions 

𝕊   stochastic domain 

𝑡  current time-step 

𝑡̅  t-score 

𝑡1, 𝑡2  upper and lower t-scores respectively 

𝑢𝑎  atmospheric pressure 

𝑢𝑙  liquid pressure 

𝐮  location vector 

𝐮𝒍  liquid pressure vector 

δ𝐮𝑙  incremental update of liquid pressure 

𝒗𝒍  liquid velocity 

𝐯�̂�    approximate liquid velocity normal to the boundary 
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𝑊𝑖  right hand side of discretised SPDE, see (4.28) 

𝐖   white noise on ℝ𝑑 

𝑧  elevation 
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Γ  Gamma function 

ζ  domain boundary of Ω, i.e., ∂Ω  
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Chapter 1 

Introduction 

Materials exhibit variability at different scales, where the heterogeneity that is 

present often plays a crucial role in influencing the response of the material due to 

external stimuli. Its presence can lead to exaggerated responses that may not occur 

if the material was homogeneous, making it difficult to understand and predict their 

behaviour under certain conditions. Such unpredictable behaviour can significantly 

affect the reliability and effectiveness of the material in its intended application. In 

engineering, environmental science, and even biomedical applications, 

understanding the variability within materials can be crucial. It determines the 

material's performance, durability, and interaction with surrounding media. Predicting 

outcomes without considering this variability can lead to significant errors or even 

catastrophic failures. As the complexity and intricacy of modern designs and 

applications grow, the need for accurate representation of material heterogeneity 

becomes even more pressing. 

Porous materials encompass a wide range of materials critical to many sectors of 

industry and research. For example, soil exhibits strong levels of variability, and 

exemplifies the complexities that arise from material heterogeneity. Within a patch of 

soil, there can be vast differences in grain size, mineralogy, organic content, and 

wettability. Such diverse characteristics can have strong implications on its 

associated behaviour. Under homogeneous conditions, water might percolate 

uniformly, but real-world conditions often see the development of preferential paths 

or 'fingered flow'. This unstable flow response can be attributed to the presence of 

heterogeneity. It can also lead to an uneven moisture distribution, impacting plant 

growth, groundwater recharge, and even introduce such phenomena as subsurface 

erosion, posing risks to structures or ecosystems. Similarly, the distinct fingered-like 

pathways that arise can lead to regions of reduced cohesion, thereby reducing the 

strength of the surrounding soil. It is noted that this response becomes even more 

pronounced in soils of varied wettability, where the effects are typically exaggerated. 

Traditional modelling approaches to capture this variable behaviour are deterministic 

and typically assume the simulated medium to be homogeneous. Whilst this 
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simplification makes the models tractable, they often fall short in capturing the true 

and varied responses that porous materials exhibit, especially when considering fluid 

flow dynamics. This difficulty becomes particularly pronounced in soils, where even 

minor flow irregularities due to heterogeneity can drastically alter the course of 

moisture, resulting in distinct infiltration patterns rather than a uniformly advancing 

wetting front. Recognising these limitations, the adoption of a probabilistic or 

stochastic approach becomes increasingly appealing. Such methodologies can still 

utilise simplified models but are better equipped to represent the intricate behaviour 

of heterogeneous materials. By embracing and incorporating randomness into the 

variability of the medium, stochastic models can generate a range of possible 

outcomes, enriching our understanding of the overall material response. Stochastic 

models, by their nature, resonate more with the inherent randomness found in real-

world porous materials, providing a platform to address the very challenges posed by 

material heterogeneity and portray the intricate patterns of fluid flow within them. 

The present work aims to develop and validate a stochastic numerical approach for 

modelling fluid flow in complex heterogeneous porous materials, utilizing soils -

particularly those that exhibit fingered flow and mixed wettability- as a key application 

to elucidate the inherent challenges and intricacies of representing material 

heterogeneity. While soil serves as the principal application in this research, the 

challenges and concepts discussed hold relevance across many domains. Be it the 

medical field where porous bone structures impact drug delivery, or the realm of civil 

engineering where concrete porosity affects structural integrity, understanding and 

modelling heterogeneity is universally critical. 

Initially, the model and its discretisation are presented for moisture flow, based on 

the conservation of mass and Darcian flow. Similarly, the governing equation is 

derived for a method of random field generation based on stochastic partial 

differential equations (SPDE). Random fields are a well-established choice for 

introducing soil heterogeneity, and their use will be detailed in the following chapters. 

Due to the complexity of the governing equations, numerical methods are necessary 

for their solution, and the finite element method is employed for their spatial 

discretisation. The presented model solves the equations in three dimensions, and 

accounts for both Dirichlet and Neumann boundary conditions. A novel method for 

applying Neumann boundary conditions is also presented based on spatial variation 
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in the saturated conductivity at the applied boundary. Details are also given on the 

constitutive components of the model that allow hydrophobicity of the soil to be 

represented. This is mainly done through a soil water retention curve that can 

account for the unique water entry pressures that are characteristic of water repellent 

soils. Similarly, the method of representing layered soils of mixed wettabilities is 

given, as well as a novel approach to deal with the transition region between the 

layers, based on an assumed level of mixing. 

Validation of the developed model is a crucial step in providing confidence in the 

approach. This is done for both the unsaturated case, and the case where strong 

water repellency is present. Field tracer experiments are replicated to assess the 

ability of the model to represent the observed fingered flow characteristics, and the 

numerical results are quantified in terms of confidence limits. 

1.1 Study objectives 

The objectives of this study are as follows: 

i. Develop a stochastic numerical approach for flow related problems to account 

for heterogeneity in porous materials 

ii. Investigate the practicalities of implementing random fields to represent 

material heterogeneity and its associated challenges 

iii. Develop a numerical approach to simulate fingered flow behaviour in soils, 

including water repellent materials 

iv. Validate the model and quantify its ability to simulate preferential fingered flow 

in soil of mixed wettability 

1.2 Scope and limitations 

Mechanical processes, such as erosion in water repellent soils, are particularly 

relevant but have not been considered in the presented work. Such processes can 

lead to localised deformation or failure in extreme cases. Similarly, complex 

boundary conditions that can account for runoff are not developed. Here, the applied 

boundary condition is assumed to infiltrate fully into the soil surface, where in reality, 

water repellent soils can exhibit ponding and high rates of runoff. The developed 

model does not couple different complex phenomena, only representing the flow of a 

single moisture phase. Whilst the theory for coupled models is well developed, the 

focus was put on representing material heterogeneity and water repellent behaviour, 
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which is largely explored in relation to moisture transport. Finally, hysteresis is not 

considered, which is a predominant mechanism in drying and wetting, as well as the 

persistence of hydrophobicity. 

1.3 Thesis overview 

A brief overview of each chapter is given below. 

In Chapter 2, a review of areas related to the modelling of water repellent soils is 

presented. Whilst the majority of the section is dedicated to reviewing techniques 

used in representing complex flow phenomena in water repellent soils, also explored 

are the effects of heterogeneity on soil hydraulic response, techniques for modelling 

flow in unsaturated soils, stochastic methods for soil modelling, random field 

generation methods, and an overview of soil hydrophobicity. The aim is to give a 

well-rounded overview of topics relating to the modelling of water repellent soils, in 

order to contextualise the chapters that follow. 

Chapter 3 describes the theoretical formulation of the developed model. First, 

moisture transfer is considered, and the governing equations of flow are derived. 

Similarly, the generation of random fields through the SPDE method is described. 

These form the basis of the work described in subsequent chapters. The numerical 

solution of the given theoretical formulations is presented in Chapter 4. In both the 

moisture transfer and field generation, spatial discretisation is achieved through the 

finite element method, where a finite difference method is used for the time 

discretisation. Once more, these methods are used in the chapters that follow and 

form the foundations of the model. 

Chapter 5 presents an investigation in error reduction in the near-boundary when 

generating random fields through the SPDE approach. Current mitigation strategies 

are presented, which are dependent on the applied boundary condition. Following 

this, a new boundary condition is suggested which is shown systematically to be 

more suitable in reducing the spurious values seen near the boundary of the 

generated fields. This is shown for simple and more complex domains. 

In Chapter 6, the model is applied to simulate a field tracer experiment to validate the 

model. The application of the random fields is described in detail, as well as a novel 

approach for applying surface boundary conditions such that material heterogeneity 
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is accounted for. Finally, the uncertainty in the presented results is quantified with a 

confidence interval-based approach. 

Chapter 7 presents the development of the model to account for soil of varying 

wettability, specifically hydrophobic soil. The additional numerical components are 

presented, such as the updated constitutive components and the layering of soil, as 

well as the transition region between soil layers that required careful consideration. 

The model is then applied to represent a different field tracer experiment to that 

considered in Chapter 6, where hydrophobicity is present in the soil mass. Similar 

quantification of the presented results is conducted, such that the characteristics of 

dye coverage can be used to show convergence in the model results. 

Finally, Chapter 8 presents the conclusions from the study, and makes suggestions 

for the wider applicability of the developed model and how it can be extended. 
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Chapter 2 

Literature review 

2.1 Introduction 

In the following chapter, the literature is reviewed considering subjects relating to the 

modelling of flow behaviour in unsaturated soil, as well as water repellent soils. As 

this study is largely concerned with the development of a model to represent soils of 

mixed wettability, the majority of this chapter will focus on previous works in 

modelling hydrophobic soil behaviour in relation to infiltration processes. The other 

sections act as building blocks to give context of the wider research relating to 

modelling flow behaviour in soil. 

Section 2.2 considers the effects of heterogeneity on the hydraulic behaviour of soil; 

Section 2.3 provides an overview of soil hydrophobicity; Section 2.4 presents a 

review on modelling approaches to represent flow phenomena in unsaturated soil; 

Section 2.5 reviews the current literature on the stochastic modelling of soils; Section 

2.6 presents a review on random field generation methods; Section 2.7 provides a 

review of the literature relating to flow processes of water repellent soil; and Section 

2.8 concludes on the findings. 

2.2 Effects of heterogeneity on hydraulic behaviour of soil 

The key aspects relating to heterogeneous soil and its effects on flow behaviour are 

summarised here. Further details of methods to deal with soil heterogeneity in 

geotechnical engineering applications, as well as the implications of soil 

heterogeneity are discussed in Elkateb et al. (2003). 

Heterogeneity is a known cause of unstable flow in unsaturated and hydrophobic 

soils, resulting in fingered flow patterns (Ritsema et al. 1998; Sililo and Tellam 2000; 

Sheng et al. 2014). The preferential flow paths, which form in the soil mass, transport 

water at an accelerated rate and can lead to increased rates of solute transport 

(Gjettermann et al. 1997; Reichenberger et al. 2002; Morris and Mooney 2004; 

Perkins et al. 2011), as well as localised erosion. The effect of using heterogeneous 

hydraulic parameters in numerical analyses on various aspects of soil behaviour has 

been investigated systematically over the past 20 years (Jiang et al. 2022). Their 
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effects have been studied in relation to water uptake by plant roots and the influence 

of non-uniform unsaturated flow (Kuhlmann et al. 2012).  Zhu and Mohanty (2002) 

explored steady-state evaporation and infiltration using the well-known van 

Genuchten model (van Genuchten 1980). They investigated a number of averaging 

schemes, applied to van Genuchten parameters, and compared the results to 

measured effective parameters at field scale. Other researchers (Hammel et al. 

1999) studied solute transport using spatially and temporally varying pore-water 

velocity fields at different spatial scales. The issue of transient flow in large-scale 

spatially variable soils was explored by averaging local governing flow equations in 

three-dimensional representations of local soil properties (Mantoglou and Gelhar 

1989). The importance of hysteresis in numerical modelling of water flow, related to 

heterogeneous distributions of hydraulic conductivities, was studied by Nakagawa et 

al. (2012). An underlying assumption in these studies is that the inclusion of spatially 

varying parameters in numerical models, especially local variations in hydraulic 

properties, is necessary to achieve physically representative simulations. If the 

effects of heterogeneity in analyses are neglected, the predicted uniform wetting 

front will be, in general, inconsistent with experimental observations (Glass et al. 

1989; Siemens et al. 2021). 

2.3 Overview of soil hydrophobicity 

Water repellency in soils is known to be generated by five dominant methods: fungal 

and microbial activity, growth of particular vegetation species, organic matter, heating 

of the soils by wildfires, and soil characteristics (Doerr et al. 2000). The fluctuation in 

levels of water repellency following a wildfire event can lead to significant changes in 

the hydrological response of the soil (Granged et al. 2011; Nyman et al. 2014; Chen 

et al. 2020), whether it be upon the surface such as enhancing runoff and erosion, or 

within the soil mass through the increased likelihood of unsteady infiltration. These 

body processes are where much of the modelling of hydrophobic soils is concerned, 

with relative sparsity of work surrounding the response on the surface. 

Due to soil being highly variable, the exact cause of changing levels of water 

repellency is often unclear and can be best considered as an accumulation of 

various influencing factors. During a fire, super-heating of the soil occurs, leading to 

organic matter vaporising and moving downwards through the soil body. Lower 

temperatures at depth result in the vapour cooling and condensing on the fabric of 
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the soil, coating particles in the cooled organic substance (DeBano 2000b). Similarly, 

aliphatic hydrocarbons are released from organic matter when subject to extreme 

heat, generating hydrophobic compounds (Malkinson and Wittenberg 2011). 

Temperatures between 175°C and 280°C are necessary to cause an increase in 

hydrophobicity, whereas going beyond this range will revert the change in wettability 

(DeBano 2000b; Doerr et al. 2004), leading to the non-uniform spread of water 

repellency close to the surface often seen following a wildfire event (DeBano 2000b; 

Mataix-Solera and Doerr 2004; Chen et al. 2020). Whilst high levels of water 

repellency are seen initially, these do breakdown overtime due to the system being 

unstable. As Figure 2.1 suggests however, given a longer timescale, these levels do 

begin to rise, and this is thought to be due to organic matter recovery. 

 

Figure 2.1: Hypothesised long-term changes of soil water repellency. Solid line: 

overall response, dotted line: short-term generated from fire, dashed line: long-term 

induced by increased biotic activity (reproduced from Malkinson & Wittenberg (2011)) 

Increased biotic activity due to vegetation and microfauna populations, microbial, 

bacterial and fungal, can all lead to increased levels of water repellency (Wallach et 

al. 2005; Hallett 2008; Malkinson and Wittenberg 2011). Similarly, certain species of 

plant can induce stronger hydrophobicity in soils beneath them, such as evergreens 

and differing eucalyptus species (Doerr et al. 2000; Malkinson and Wittenberg 2011). 

Contrary to this, as stressed or killed trees drop foliage whilst ash settles on the 

surface, a wettable layer will form, and can reduce the effects of heating of the soil 

leading to reduced water repellency and less risk of surface runoff and erosion 
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(Cerdà 1998; Pannkuk and Robichaud 2003; Shakesby and Doerr 2006; Bodí et al. 

2012). This deposited layer will eventually clear, highlighting its importance in the 

short-term analysis post-fire on water repellency levels (Cerdà and Doerr 2008). This 

process could be the cause of reduced levels of hydrophobicity being found when 

trying to replicate wild fire induced changes (Coelho et al. 2004; Ferreira et al. 2005), 

as replicating all contributing factors is challenging. As the ash cover deteriorates, 

the topsoil will be left with no vegetation, and has been seen to be the primary cause 

of increased run off and erosion rates (Prosser and Williams 1998; Johansen et al. 

2001; Wohlgemuth et al. 2001). Similarly, as the short-term water repellency grows 

at the surface, the coatings upon the minerals will impede the formation of a soil 

crust, suggesting increased risk of splash erosion (Terry and Shakesby 1993). Rill 

erosion is also observed, due to the water repellent (WR) layer causing a build-up of 

pore water pressure and consequent reduction in shear strength in the overlying 

saturated soil (DeBano 2000a). Fingered flow can also result from this, as the 

distinct paths caused by rill erosion will offer less resistance to infiltration.  

With increasing levels of hydrophobicity, the chances of preferential flow and 

fingering are greatly increased, often arising from changes in wettability (Bauters et 

al. 1998; Ritsema and Dekker 2000). Having many influencing factors means that 

modelling such processes due to increased variability is challenging; a single 

characteristic or parameter will not suffice (McKissock et al. 1998). With the risk of 

extreme weather events increasing, potentially leading to wildfire induced water 

repellency, the need to model and predict the behaviour of soil transport processes is 

ever more necessary. 

2.4 Modelling of flow in unsaturated soil 

Flow processes in unsaturated soil can exhibit signs of both stable and unstable 

behaviour, depending on the material being investigated. As will be seen in the later 

sections and chapters, the representation of unstable preferential flow requires 

careful numerical consideration. One approach is the use of a simple active region 

model (ARM) to allow for fractal flow in a continuum domain (Liu et al. 2005). The 

approach employs regions in the numerical domain that are either active or inactive, 

where flow is either mobile or immobile respectively. It is based on the assumption 

that preferential flow follows a fractal pattern, and showed consistent results between 

field observations and the model. Liu et al. (2005) suggested further evaluation of the 
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model to assess its capabilities. This has been further investigated in more recent 

years; for example Sheng et al. (2011) applied the approach to preferential flow and 

solute transport. The ARM approach was compared with the inherently similar 

mobile-immobile region model (MIM), and was used to analyse dye infiltration 

experiments and quantify soil water content and Cl- concentration. The movement of 

soil water and solute was assumed in the vertical direction only, with averaged 

horizontal behaviour. Once more, the ARM approach was seen to give adequate 

results, especially when compared with the MIM. The main difficulty in the method is 

the estimation of the ARM parameter, a constant between 0 and 1 which increases 

with flow heterogeneity (Liu et al. 2005). To address this further, Sheng et al. (2012) 

developed three determination methods of the parameter based on distributions of 

soil water content and dye stained regions. Further experimental studies have also 

been carried out to determine the capabilities of the ARM approach (Sheng et al. 

2014). 

Lower dimensional modelling is also an area of interest due to its ability to 

approximate highly complex behaviour with low computational demands. Often the 

well-known Richards equation is employed in this setting (Richards 1931), as was 

the case in Zha et al. (2013). The general 1-D Richards equation was modified with a 

correction term expressed in terms of soil water content, being tested in gradational 

and layered soils. Several numerical algorithms were also posed for calculating the 

water content based on Darcian flux in layered soils. The water content based 

formulation was seen to perform better for initially dry soils than the usual mixed 

formulation of the Richards equation, whilst also performing well over coarse 

meshes. The authors highlighted that the model was restricted to unsaturated flow, 

and should be extended to account for both saturated and unsaturated flow. See 

Gandolfi et al. (2006) for a comparison of other 1-D models for flow in unsaturated 

soils. The Richards equation can also be extended to two and three dimensions, as 

was done in Cavalcante et al. (2019). The equation was extended to 3-D for 

unsaturated flow, illustrating flow behaviour under two conditions: (i) a domain with 

an initial higher volumetric water content in a given region, and (ii) a domain with a 

region of decreased volumetric water content to represent localised drying. For the 

first case, the water was seen to flow under unsaturated conditions to regions of 

lower water content, where the opposite was observed in case two. Highlighted was 
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the impact of the advective and diffusive components of the Richards equation when 

considering transient unsaturated flow. 

Slope stability, as is shown in the next section, is a large area of research in soil 

modelling due to its associated risk in design and failure. Zhang et al. (2009) 

considered unsteady seepage of water and air in soil slopes due to under water level 

rise. The two-phase model was used to investigate the influence of capillary 

pressure on slope safety coefficients, finding that the safety of a slope is mostly 

sensitive to negative pore water pressure, where the air phase could be neglected. 

This is in contrast to Cho (2016), suggesting that the inclusion of the air-phase was 

dependent of the soil type being considered. The authors studied the interaction of 

air and water two-phase flow due to heavy rainfall, and their effects on slope stability 

of unsaturated soil. When under heavy rainfall, the pore air pressure was seen to 

increase, delaying the effects of water flow. This was more prominent in silty soils, 

showing deeper critical failure surfaces, where the inclusion of the air phase in sand 

was seen to given negligible effects. Coupled models have also been used to asses 

slope behaviour. Hu et al. (2016) coupled elastoplastic deformation with two-phase 

fluid flow for homogenised slope stability induced by rainfall. The model, based on 

their derived constitutive model, was validated with lab tests associated with isotropic 

loading and shearing, as well as the Liakopoulos drainage test. Numerical testing 

assessed the suitability of the constitutive model, and correlations with experimental 

data were found. Similarly, neglecting gas flow was seen to give overestimations in 

rainfall induced deformation. For a more exhaustive review on coupled heat and 

water models for transport in unsaturated soils, see Lekshmi and Arnepalli (2017). 

2.5 Stochastic modelling of soil 

As highlighted in Section 2.2, the inclusion of spatially varying material parameters is 

necessary in numerical models to achieve physically representative simulations. 

Although it is possible to generate a random distribution and assign this to a model 

parameter, this will not give an accurate representation of soil material properties 

because soil bodies have correlated micro-structures with intrinsic length scales 

(Lloret-Cabot et al. 2014). Various methods have been proposed in the literature for 

representing spatial variability within a soil body, with random fields being a well-

established choice (Arregui-Mena et al. 2016). These fields are commonly defined by 



13 
 

the statistical properties of the variable that the field describes, such as the mean, 

standard deviation, and correlation structure.  

The seminal work of Vanmarcke (1977) introduced random field theory as a means 

of representing the spatial variability of soil properties in geotechnical systems. Rubin 

& Or (1993) used random fields to represent saturated conductivity, the rate of 

change of hydraulic conductivity with suction, and characteristic root depth, 

investigating the effects of the spatially varying parameters on root water uptake. The 

numerical domain was split using parallel columns, and used to compute the 

expected value and second moments of the degree of saturation and pressure head 

through averaging over the domain. The water uptake by plants was seen to have a 

profound effect on the dependent variables, and the spatial moments compared well 

with traditional Monte Carlo simulations. A similar use of random permeability fields 

was conducted by Li et al. (2009), where a Karhunen-Loeve (KL) expansion based 

probabilistic collocation method (PCM) was developed to predict flow in the vadose 

zone. The PCM computes solutions at a set of collocation points, and was shown to 

capture the stochastic behaviour of the effective saturation and pressure fields with 

many fewer simulations than traditional Monte Carlo simulations. KL expansion-

based fields have also been shown to be suitable in representing random 

permeability fields for single and multiphase flow models of heterogeneous porous 

media (Li & Zhang, 2007, 2009). An alternative approach is embedding equivalent 

random variables based on random field characteristics into the governing equations 

of the model (Mousavi Nezhad et al. 2011). The authors used a perturbation-spectral 

approach to include random material fluctuations into the Richards equation to 

simulate water flow in unsaturated soils. The model was shown to give better 

agreement with lysimeter testing results over a deterministic model, highlighting the 

importance of stochastic methods. More recently, a reduced order model for 1-D 

unsaturated flow in heterogeneous soil was developed, considering spatially varying 

hydraulic conductivities (Liu & Welfert, 2020). The model was also based on the 

Richards equation, and compared the results of direct numerical simulations, a 

homogenized model, and the proposed reduced order model, which consisted of a 

coupled system of moment equations for water content and soil hydraulic 

parameters. A single solution was needed to obtain the stochastic characteristics of 
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unsaturated flow, vastly reducing overall simulation times, and was shown not to 

underestimate the downward numerical flux as in the other considered approaches.  

A number of investigators have also adopted random fields for simulating slope 

stability and related problems (Srivastava et al. 2010; Cho 2012; Li et al. 2015; Jiang 

et al. 2018). These studies showed that neglecting these spatial variations can lead 

to significant underestimates of slope failure probabilities (Le et al. 2012; Huang et 

al. 2017). This is because homogenous models do not account for localised water 

accumulation and the associated reductions in effective stress and shear strength. 

Much of the reported research involving spatially varying materials has been based 

on two-dimensional (2-D) simulations. This use of 2-D analysis, rather than 3-D, may 

be attributed to the relatively high computational demands of the latter (Ou-Yang et 

al. 2021). In more recent years, there has been an increase in 3-D random field 

simulations. Hicks et al. (2014) explored how the heterogeneity of undrained shear 

strength impacts the reliability and risk posed by a long slope cut in clay using a 3-D 

finite element program. The model allowed the identification of three possible failure 

modes that are significantly influenced by the scale of fluctuation relative to slope 

geometry. A similar investigation has been carried out to assess whether 3-D 

analyses are necessary for long slopes consisting of spatial random soils (Liu et al. 

2018). Using a random finite element model, the authors concluded that 2-D plane 

strain analyses, based on the most pessimistic cross-section, generally give a more 

conservative result than the corresponding full 3-D analysis. Ng et al. (2022) 

investigated how spatial variability of saturated water permeability affects the stability 

of unsaturated soil slopes using 3-D random fields under rainfall conditions. Chi et al. 

(2022) investigated the effect of spatial variations in the soil properties of the 

Guanyinyan composite dam on the degree of settlement and the development of 

cracks. In their work, random fields were coupled with a 3-D FE analysis. They 

concluded that the consideration of spatial variability leads to a more accurate dam 

safety evaluation relative to traditional security indexes that ignore spatial variability. 

Conditional random fields have also been explored, where the field parameters are 

based on direct samples of measured data (Li et al. 2016). Whilst, in certain cases, 

2-D analyses can lead to more conservative predictions, it is generally considered 

more accurate to simulate real systems with 3-D models, particularly when the 

nature of a problem is inherently three dimensional (Hungr 1987; Liu et al. 2018; Ng 



15 
 

et al. 2022). Relatively little work has been undertaken on using random fields to 

explicitly represent fingered unstable flow. A few notable exceptions to this include 

the work of Chen et al. (2000), who used Gómez-Hernández and Cassiraga’s (1994) 

random field generation code GCOSIM3D to represent the distribution of saturated 

conductivities in a soil mass. More recently, Cueto-Felgueroso et al. (2020) 

employed Gelhar and Axness’s (1983) stochastic algorithm to generate intrinsic 

permeability fields. Their work studied the relationship between fingering instabilities 

and heterogeneity, and quantified the influence of the degree of heterogeneity on the 

resulting infiltration pattern. This gap in the literature is further addressed by the work 

of this thesis. The modelling of unstable fingered flow due to the presence of a 

heterogeneous medium is given in Chapter 6. Similarly, the effects of heterogeneity 

on fingered flow in water repellent soil are seen in Chapter 7, a case for which the 

instability of flow is much more pronounced. 

2.6 Random field generation 

Uncertainty in physical systems, such as those seen above, can be introduced with 

random fields. This is a well-established practise in soil modelling, but can be applied 

much more widely to represent other complex phenomena. Existing methods of 

generating correlated random fields include Karhunen-Loève’s expansion (Huang et 

al. 2017; Montoya-Noguera et al. 2019), local averaging subdivision methods 

(Fenton and Vanmarcke 1990), covariance matrix decomposition (Olsson and 

Sandberg 2002; Cheng et al. 2018; Jiang et al. 2018; Tang et al. 2020) and the 

solution of stochastic partial differential equations (PDEs) derived from Whittle-

Matérn’s autocorrelation function (ACF) (Lindgren et al. 2011; Roininen et al. 2014).  

The latter of these methods is computationally efficient due to sparse matrix linear 

algebra, and is well suited to existing FEM codes due to the construction of the PDE 

components and their solution. Another key aspect is the strong theoretical basis in 

the desired domain properties of the fields that can be produced, being due to the 

clear distinction between the construction of the theoretical model and the numerical 

methods used in the solution process (Lindgren et al. 2022). This ensures that the 

correlated structure of the generated fields is as intended. The approach also allows 

for many generalisations of stationary Matérn fields such as non-stationary fields and 

those generated over less idealised domains (Lindgren et al. 2011; Fuglstad et al. 

2015; Bolin and Kirchner 2020). For practical simulations, the domain must be 
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reduced to a bounded domain of interest, requiring boundary conditions that are not 

generally known (Khristenko et al. 2019). By applying a non-exact condition at the 

boundary, the approximation of the ACF that the stochastic PDE represents will 

breakdown, resulting in spurious values in the near-boundary region. Often, the 

homogenous Neumann or homogeneous Dirichlet condition is chosen due to the 

ease of implementation. To deal will this, the computational domain Ω is often 

extended, such that solving the stochastic PDE over the extended domain and 

extracting Ω will result in minimal effects from the applied the boundary condition. 

The reduction in error at the boundary is relative to the size of extension, and has 

been previously studied (Khristenko et al. 2019).  

An alternative approach is to apply the Robin boundary condition through careful 

choice of the Robin coefficient 𝜆, which can be thought of as a tuning parameter. The 

choice of 𝜆 can be problem dependent, but a choice of 𝜆 = 1.42𝑙, where 𝑙 is defined 

as the length-scale parameter, has been found to be an adequate approximation 

(Roininen et al. 2014). As such, the use of an extended computational domain is not 

strictly necessary when applying this condition. The computational expense of the 

method, considered here via the order (𝑂) of the number of operations (Mala and Ali 

2022), is dependent on the numerical method implemented to solve the PDE. These 

methods can have very low computational expense such as 𝑂(N log N) (Lang and 

Potthoff 2011), and are significantly more efficient than other field generation 

methods such as LAS (𝑂(N)) and CMD (𝑂(N3)) (see Liu et al. (2019) for a summary 

of other common methods and their computational complexity). This is also true for 

alternative methods such as stepwise CMD, which is 𝑂(Nx
3 + Ny

3 + Nz
3) (Li et al. 

2019). In addition, the variation in efficiency is non-linear, with the degree of non-

linearity becoming more pronounced with larger values of N. The method’s ease of 

implementation in an existing FEM framework allows for efficient random field 

generation for domains where pre-existing methods would be intractable. 

It is worth noting that this choice of λ = 1.42𝑙 was not established in a rigorous way, 

as it was deemed out of the scope of the study (Roininen et al. 2014), and it was 

suggested that λ should vary as a function of the boundary. This was later 

considered by Daon and Stadler (2018), who utilised a spatially varying Robin 

coefficient to provide domain Green’s functions that are close to the free-space 
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Green’s functions of the Matérn covariance function. Through numerical 

experiments, the approach was seen to reduce the observed boundary effects, but 

the computation of the spatially dependent coefficient posed difficulties due to 

integral singularities and a required prior knowledge of pointwise variance over the 

domain which may not always be available. Other approaches have been taken, 

such as the use of a partial Dirichlet-to-Neumann operator on the extended boundary 

(Calvetti et al. 2015a). The mapping depends on the unknown correlation structure of 

the extended domain, and as such is an unknown itself that needs to be estimated. It 

was later shown to have suitable representation by a lower dimensional truncated 

Karhunen-Loève expansion based on information about the desired correlation 

structure (Calvetti et al. 2015b). The mapping was seen to result in reductions in 

computational complexity and matched well with simulated and real data. The 

reduction of error in the near-boundary is an open problem, and one which is 

addressed systematically in Chapter 5. 

2.7 Modelling water repellent soils 

In the following, modelling approaches are considered that look at representing the 

overall movement of water through the soil mass, termed here as body processes, 

and the influence that water repellency has upon them. This movement can be 

described in various ways, such as through capillaries of varied geometry (Czachor 

et al. 2010; Takeuchi et al. 2017; Wang and Wallach 2020), or by pore-scale analysis 

(Ustohal et al., 1998; Blunt et al., 2002; Raoof and Hassanizadeh, 2012). Similarly, a 

more distinct response can be seen by the presence of preferential and fingered flow 

in the soil mass. These are synonymous with hydrophobicity, and vary in response 

as the level of wettability changes. In cases where preferential flow occurs near the 

soil surface, accelerated rates of rill erosion can cause problems for stability, 

intensifying the specific flow paths the water takes. This also increases the rate at 

which solutes are transported, and could increase risk of pollution in areas of heavily 

treated soils such as agricultural land. The ability to simulate the movement of 

wetting fronts through the soil mass can provide vital insight, being able to assist with 

engineering problems such as agricultural design. 

2.7.1 Capillary flow and infiltration 

Early work on modelling infiltration within water repellent soil was presented by Yang 

et al. (1996) who used capillary pressure as a driving force to describe the 
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movement of water in furrow-sown water repellent sand.  At the time, very few 

models existed for soil water repellency, especially those with an agricultural 

application. The aim was to optimise the design of the furrow to increase water 

conservation, taking into account evaporative resistance and soil surface conditions. 

Water repellency was included through appropriate hydraulic characteristics to the 

finite element method, showing that an initially dry furrow composed of water 

repellent sand had reduced rates of evaporation compared with wettable sand 

following infiltration. Whilst the finite element method is a widely adopted approach, 

alternative methods such as the use of machine learning and neural networks have 

also been employed in representing complex hydrodynamic behaviour. Xiong et al. 

(2011) evaluated the ability of such models in simulating the flow of water in soil of 

varied wettability, looking to predict the spatial development of plumes. Experimental 

and synthetic numerical data were used as the network’s basis, with the main 

objective being the utilisation of the data to create self-organising maps (SOM) which 

could inform modular neural networks on how to simulate soil water dynamics. The 

1-D SOM was able to represent the moisture content distribution in the transition 

zone of the wetting plumes, whilst also preserving the spatial structure of the soil 

moisture distribution. It is common to use experimentally gained soil characteristics 

to influence a model’s development; however, evaluation of soil properties can be 

conducted through numerical analysis to reduce development time. Takeuchi et al. 

(2014) attempted to address this shortcoming, formulating a physically-based model 

to represent the hydrodynamic properties of porous media of mixed wettability. The 

model was validated against experimental results, preforming reasonably well, and 

finding that the number of grains considered was highly influential in infiltration due 

its relationship with the contact angle in the cell. 

Plume dynamics have been further analysed through moment analysis; Xiong et al. 

(2012) successfully characterised plumes during wetting and redistribution for 2-D 

transient flow experiments in a transparent flow chamber. The spatial moments for a 

2-D moisture plume have been previously defined as (Yeh et al., 2005; Lazarovitch 

et al., 2007) 

𝑀𝑖𝑗(𝑡) = ∬ 𝜃diff(𝑥, 𝑧, 𝑡)𝑥𝑖𝑧𝑗d𝑥d𝑧
+∞

−∞
       (3) 
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where 𝜃diff(𝑥, 𝑧, 𝑡) = 𝜃(𝑥, 𝑧, 𝑡)  −  𝜃init(𝑥, 𝑧, 0) is the spatial distribution of water 

content increase with time, 𝜃(𝑥, 𝑧, 𝑡) and 𝜃init(𝑥, 𝑧, 0) are spatial measures and initial 

soil moisture contents respectively, and both 𝑖 and 𝑗 are non-negative integers 

related to the directions 𝑥 and 𝑧. The fitted model accounted for capillary and 

gravitational forces for porous media with dynamic wettability. Unlike the somewhat 

restricted representation provided by neural networks, it was observed that water 

repellency had significant impact on the patterns exhibited by water flow. The 

empirically developed model was validated, and enabled the authors to predict the 

plume shape geometry beyond periods for which measurements were taken. The 

moving-boundary approach -coupled with a finite element solution of the Richard’s 

equation- has also been implemented to represent spatial changes in plume 

geometry. Brindt and Wallach, (2017) had previously used this approach for the 

modelling of stable and unstable flow, and later extended this for 2-D gravity-driven 

unstable flow for soil of varied wettability (Brindt and Wallach 2020). Similarly to 

Ganz et al. (2014) and Xiong et al. (2012), the plume perimeter was included in the 

model, allowing for relationships between the geometry of the plume and soil 

moisture content properties to be made. It was seen that the model was capable of 

accurately simulating unsaturated flow problems, whilst also being able to predict 2-

D and 3-D preferential flow.  

A similar approach in representing plume geometry used the well-known HYDRUS 

software, with the aim of validating the use of electrical resistivity tomography (ERT) 

in analysing wetting plume geometry (Ganz et al. 2014). The model included 

hysteretic effects, resulting in slowed wetting front arrival times, and matched well 

with experimentally gained dye patterns. In later years, a thorough assessment of 

the software was conducted by Wang et al. (2018), evaluating cumulative infiltration, 

wetting front and the volumetric water content for both vertical infiltration and 

horizontal imbibition for soils of varied wettability. An assessment into the capability 

of the software was necessary as an explanation for inaccuracies, such as those 

seen in Ganz et al. (2014), needed further exploration. The software was seen to 

accurately calibrate and validate said key hydraulic parameters, and was able to 

reproduce the previously mentioned hydraulic processes. The authors (Wang et al. 

2018) however found that as the level of water repellency increased, the accuracy of 
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the model decreased, indicating that the model may not be so well suited when 

water repellency is a key attribute.  

Levels of cumulative infiltration have also been used in evaluating the ability of 

certain functional models when hydrophobicity is present. Zhao et al. (2020) reported 

one dimensional infiltration experiments for wettable and hydrophobic soils. The aim 

was to evaluate the Kostiakov function, Gamma function and Beta function at 

replicating rates of infiltration over time. It was seen that having greater values of 

initial soil water content results in an earlier inflection point for increasing cumulative 

infiltration, and subsequently larger values of infiltration rate at the inflection point. All 

models considered were able to represent the dynamics of water repellent soils, with 

the Beta function showing the highest level of accuracy. A similar simplistic model 

based on physical principles was presented by Brown et al. (2018), predicting the 

soil water dynamics of structured soils for various wettabilities. Three soils were 

analysed, all having distinct soil textures, to show how preferential flow and 

hydrophobicity affect the soil water dynamics associated with infiltration. The model 

depicted the effects of water repellency accurately, ultimately showing that with a 

more repellent soil, the top layer of the structured soil remained at a lower soil-water 

content for longer. Both Brown et al. (2018) and Zhao et al. (2020) illustrated the 

strength of utilising simple functional models when representing well understood 

processes. An area where this simplistic approach may not be suitable is when the 

mechanical behaviour of the soil is under consideration. The discrete element 

method (DEM) and volume of fluid (VOF) have been used in combination by 

Davydzenka et al. (2020) to investigate the effects of wettability on deformation of 

the soil body. DEM-VOF combines DEM and computational fluid dynamics, with VOF 

being capable of dealing with dynamics at the pore-scale. Suitable boundary 

conditions allow for the contact angle to be accounted for, with the effects of 

wettability on deformation being seen through a series of examples. The patterns of 

fluid displacement observed shows that when wettability reaches high values, 

invasion of water is more prominent. The capabilities of the DEM-VOF couple are 

realised for the simulation of mechanistic problems, an area which is under explored 

in relation to water repellent soils. 

There is a relatively limited amount of work reported considering the specific problem 

of modelling of capillary effects in relation to wettability; capillary bundle models are 
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often used, requiring simplifying assumptions to allow upscaling to bench and field 

scale domains (Mualem, 1976; Letey et al., 2000; Vervoort and Cattle, 2003). 

Modelling of soil pore-water contact angle for capillaries with non-cylindrical pores 

has been conducted, with the effects of changes in contact angle on water retention 

analysed by Czachor et al. (2010). A theoretical model was produced, illustrating that 

by inducing small changes in the wetting angle, the behaviour of a soil can switch 

between wettable and water repellent. The verified theoretical model demonstrated 

that water retention is sensitive to changes in the wetting angle for the wetting curve, 

but has little to no influence over the drying curve. Takeuchi et al. (2017) investigated 

triangular cross-sectional capillaries (see Figure 2.2) analysing how geometric 

changes affect the permeability of the system.  

 

Figure 2.2: Schematic of fluid in triangular capillary tube. (reproduced from Takeuchi 

et al. 2017) 

It was reported that permeability is strongly influenced by air-water interfaces in the 

capillary tubes, and that changes in tube size and the air-water interface were 

correlated with increases in permeability of the unsaturated hydrophobic porous 

media. Simulations also showed that flow resistance at the centre of the capillaries 

could be less than that of full flow under the appropriate pressure conditions, which 

leads to higher hydraulic conductivity of hydrophobic porous media. Wang and 
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Wallach, (2020) presented a slightly different approach using uniform and non-

uniform capillaries to describe the reorientation process of amphiphilic molecules for 

water penetration. Amphiphilic molecules contain both hydrophilic and hydrophobic 

ends, where their orientation determines the soil wettability, allowing time dependent 

wettability to be exhibited by reorientation of the molecules over time. The approach 

was validated against measured data, demonstrating that pore geometry was very 

influential in terms of capillary rise dynamics for non-uniform capillaries.  

The various reported capillary dynamics studies emphasise the importance of 

allowing for non-uniform capillaries, warranting further investigation into their 

relationships between water movement and wettability (Czachor et al. 2010; 

Takeuchi et al. 2017; Wang and Wallach 2020). Having a more detailed 

representation at the microscale could prompt its coupling in multi-scale models. A 

simple way to introduce the multilevel approach would be to evaluate soil 

characteristics by using a separate pore-scale model, for properties such as the 

hydraulic conductivity, which would then be used in a macrolevel model. This type of 

parameter estimation has been seen previously, where the developed model is often 

posed as a tool (Takeuchi et al. 2014), but would be well suited in the multi-level 

approach. Models of this nature are lacking when it comes to hydrophobic soils, 

leaving room for further work for cases where experimental determination of soil 

characteristics is challenging. The non-standard approach of neural networks also 

has more room for growth (Xiong et al. 2011). Due to the restriction in dimensions for 

the self-organised map, the expected high moisture content classes you would find 

for water repellent soils were not represented, suggesting further refinement is 

needed. Ultimately, the potential for use of machine learning should be recognised 

as it would allow complex conditions to be represented where physical intuition is not 

present. Similarly, there is potential for improvement in models where variable 

wettability is considered (Ganz et al. 2014; Wang et al. 2018). The authors found that 

as the level of water repellency increased, the accuracy of the model decreased, 

highlighting the need for caution when simulating hydrophobic soils in its current 

state.  

2.7.2 Preferential flow and fingering 

Variable flow in soils leads to the development of fingers, transporting water at an 

accelerated rate through distinct paths (Ritsema et al. 1993). These preferential 
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pathways are strongly coupled with hysteretic effects, making it challenging to model 

their behaviour (Glass et al., 1989; van Dam et al., 1996; DiCarlo et al., 1999; 

Schweizer, 2017). Once fingers are established, water will be preferentially 

transported through them, in contrast to steady flow where a wetting front will 

progressively make its way through the porous media in a uniform manner. Here, we 

will consider the modelling of both wettable and water repellent soils, preferential 

flow, and the fingers which are developed as a result. 

An early attempt at describing finger growth was presented by Tamai et al. (1987). 

The work was relatively limited and the results did not represent the behaviour 

observed in laboratory experiments. This motivated the development of a model to 

describe the mechanisms for growth and persistence of a gravity driven finger 

(Nieber 1996). Hysteresis was represented in the water retention function, with the 

growth and persistence of a single finger being simulated, showing behaviour similar 

to that observed experimentally and theoretically by Parlange and Hill (1976) and 

Glass et al. (1989). It was seen that for subsequent wetting, the flow will follow the 

path of an already established finger, decreasing the water transport time to the 

wetting front. Nguyen et al. (1999) further extended these approaches to consider 

layered soils of mixed wettability, analysing how the structure would influence 

unstable flow patterns. Results from time domain reflectometry experiments were 

replicated for moisture distributions in a 2.2 m wide by 0.7 m deep trench, where it 

was observed that the soil’s hydrophobic layer was the cause of unstable infiltration. 

A comparable study was carried out by Nieber et al. (2000), who captured the effects 

of water repellency on gravity-driven unstable flow and finger formation for a 

wettable and extremely water repellent sand. Detailed lab experiments (Bauters et 

al. 1998) were replicated, with the model being able to match the temporal changes 

in pressure, velocity of the wetting front, finger width and average velocity of 

propagation within fingers (see Figure 2.3).  
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Figure 2.3: Simulated infiltration patters at similar times for (a) wettable sand, and (b) 

extremely water repellent sand. (reproduced from Nieber et al. 2000) 

It was noted that to be able to evaluate the effects of varying degrees of water 

repellency on characteristics of unstable flow, further analysis was required resulting 

in the simulation of infiltrating flows being described by a non-equilibrium model 

(Nieber et al. 2003). The model that Nieber (1996) and Nieber et al. (2000) had 

developed was based on the Richards equation, which was found to be 

unconditionally stable (Egorov et al. 2003). As a result, the effects of the dynamic 

and static memory were brought into the solution for the mass balance equation in 

portraying finger dynamics. Hysteresis was seen to be the cause of persistence in 

fingers, with the degree of WR being sensitive to the saturation-pressure relationship 

and sufficient in causing unstable flow. This work highlighted that the presence of 

only low levels of WR were necessary for flow to become unstable. 

Alternative approaches were used in the infancy of the field, where the formation and 

recurrence of fingers were simulated based on a numerical solution comprising 

coupled water and air flow in a 2-D domain (Ritsema et al. 1998). The heterogeneity 

of the soil was taken into account, with the authors claiming that the spatial variability 

of wettability that it infers will cause fingers to become permanent preferential 



25 
 

pathways. It was proposed that repeated drying and wetting of developed 

preferential pathways could result in leaching of hydrophobic substances from the 

pores of the fingers, thus changing the water retention functions and making the soil 

more wettable over time. Ritsema and Dekker (2000) would later consider the wider 

influences of transport in water repellent soils due to preferential flow, hypothesising 

the factors that need to be considered in the modelling process. Simulations found 

that preferential flow paths will only form for infiltration into a dry water repellent soil, 

whereas for an initially wet soil of similar wettability, stable flow patterns can be 

expected. Following this, a new approach was considered for representing transport 

and preferential flow by use of the pre-existing Soil Water Atmosphere Plant (SWAP) 

model (Ritsema et al. 2005). Modifications to the model were made, these being 

applied to an extensive field tracer experiment. Initial results showed early arrival 

times of bromide tracer in the subsoil, a significant change relative to that of uniform 

flow. Later, Kramers et al. (2005) use the modified model to analyse how crop growth 

and solute leaching were influenced by the addition of preferential flow . Three main 

flow configurations were considered within the model: (i) uniform flow, (ii) the 

classical mobile-immobile concept, and (iii) finger development from unstable 

infiltration. The use of clay amendments to the soil was simulated, whereby clay is 

deposited into the soil to reduce repellency levels. It was observed that without the 

consideration of preferential flow it was not possible to replicate experimental 

behaviour, implying that the physical characteristics of the soil alone are not 

sufficient in describing the effects of variable wettability. Parameter analysis also 

showed that the critical soil water content was the most influential factor in defining 

the presence and extremity of preferential flow.  

As seen above, the applicability of HYDRUS was questioned when water repellent 

soils are considered. This is further reflected through its use in simulating water flow 

and solute transport in heterogeneous soil, showing that the expected preferential 

characteristics are not always observed (Buczko and Gerke 2006). The model was 

unable to account for hydrophobicity, where the authors suggested that hysteresis in 

the hydraulic functions could be the cause of the poor simulations, all pointing 

towards the presence of soil water repellency as the cause. The effects of 

heterogeneity on finger instability have been further considered by Cueto-Felgueroso 

et al. (2020), who used a model with a random field generation method to simulate 
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preferential flow during infiltration in a 2-D initially dry heterogeneous soil. Spatial 

heterogeneity was categorised by random spatially correlated fields of intrinsic 

permeability (left of Figure 2.4), allowing for isotropic and anisotropic configurations 

of permeability.  

 

Figure 2.4: Permeability field (left) and the resulting infiltration path for gravity-driven 

flow. (reproduced from Cueto-Felgueroso et al. 2020) 

The question of whether moderate or strong heterogeneity influences fingering 

instability was addressed, concluding that its inclusion enhanced the effects of 

preferential flow, leading to increased rates of finger development. For all spatial 

structures of intrinsic permeability considered, soil heterogeneity promoted fingering 

at low infiltration rates, whereas for larger infiltration rates, the finger widths were 

comparable to the size of the domain. It is also stated that the patterns of finger 

formation strongly depend on the soil structure, namely the correlation length and the 

form of the permeability field. It was concluded that soil heterogeneity should be 

considered in future modelling, being well justified due to its substantial influences on 

preferential flow. A similar view was shared by (Ritsema et al. 1998), suggesting that 

for models to have improved accuracy, unstable flow, consequent development of 

fingers, and heterogeneity of the porous media must be incorporated. The authors 

also noted that hysteresis is vital in modelling water repellent soils, especially when 

solute transport is considered.  
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2.7.3 Solute transport 

In the previous section, we considered preferential flow as a result of hydrophobicity, 

observing that the finger like paths can accelerate water transport through porous 

media. This change in patterns of water movement will have a consequential impact 

on the advective transport of chemicals or other solutes present in the fluid phase 

(Gjettermann et al. 1997; Reichenberger et al. 2002; Morris and Mooney 2004). 

Chemicals, such as those used in agricultural processes, can make their way into 

reservoirs and pollute water sources, whilst also impacting water quality and water 

supply (Perkins et al. 2011). Understanding transport in this setting can inform waste 

management practises such as landfills, ensuring the long-term sustainability of their 

implementation. Solute transport is becoming increasingly important as the built 

environment continues to evolve; being able to understand, and in turn, control 

chemical movements will aid in environmental sustainability. 

An early account of water repellency being included in a numerical model was 

presented by van Dam et al. (1990) and considered its effects on the transport of 

water and bromide tracer for a coarse textured soil. The experimental work of 

Hendrickx et al. (1988) was replicated using a simple numerical model based on the 

Richards equation and simple Fickian-based convection-dispersion relation for 

transport of the solute 

∂

∂t
(θ𝑅𝑐) =

∂

∂z
(θ𝐷

∂𝑐

∂z
− 𝑞𝑐)        (2.1) 

where θ is the volumetric water content, 𝑅 a retardation factor, 𝑐 the solution 

concentration, 𝐷 the dispersion coefficient and 𝑞 is the soil water flux density such 

that 

𝑞 = −𝐾
∂ℎ

∂z
+ 𝐾         (2.2) 

where 𝐾 is the unsaturated conductivity and ℎ is the soil water pressure head. 

Macroscopic effects of preferential flow paths were incorporated, and the transport of 

water and bromide in the unsaturated soil could be predicted well using the simplistic 

model. Similar replication of bromide profiles has been conducted, in which the soil 

water content and infiltration profiles collected over a 474 day period were simulated 

(van den Bosch et al. 1999). The field scale model was adequate in water and 

bromide transport simulation, but due to its empirical nature, its applicability for other 
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soils of similar wettability conditions was not determined. Tracer experiments in 3-D 

have also been explored numerically, representing the distribution of water content, 

pH, bromide concentration and level of water repellency for a layered soil of varied 

wettability (Nguyen et al., 1999). An extension to the already established model of 

Nieber (1996) was conducted using random walk particle tracking, and was suitable 

in depicting unstable flow conditions. The model was most accurate when the solute 

was injected proportionally to the amount of rainfall over time, rather than as a full 

initial injection. It is claimed that this could imply the occurrence of partial solute 

mixing, and that rainfall events are necessary in mobilising all of the injected solute 

due to the gradual dispersion of the substance through the penetrating water. Further 

analysis on layered systems has been carried out, exploring the effects of a 

hydrophobic surface layer on solute transport in its wettable sublayer (de Rooij and 

de Vries 1996). The model was developed to describe the growth of a single finger, 

and explored the sensitivity of solute leaching to different hydraulic parameters, with 

the main outcome being that not accounting for a wettable layer exhibiting diverging 

flow below the fingers had detrimental effects upon the accuracy on the model, 

specifically how the fingers influence fluid flow. 

More recently, the effects of wettability on the transport and retention of bacteria 

have been considered (Sepehrnia et al. 2018). Solute breakthrough experiments 

were reported considering bacterial transport through wettable and water repellent 

porous media of varied levels of saturation for Escherichia coli and Rhodococcus 

erythropolis as they are representative examples of hydrophilic and hydrophobic 

bacteria respectively. Figure 2.5 shows the various retention mechanisms observed 

in this setting.  
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Figure 2.5: Schematic for the various retention mechanisms for Escherichia coli and 

Rhodococcus erythropolis in a granular 3 phase system. (reproduced from 

Sepehrnia et al. 2018) 

Even though its discrepancies have been highlighted (Ganz et al. 2014; Wang et al. 

2018), HYDRUS was used to build equilibrium and attachment/detachment models 

for transport of bromide and the given bacteria. Retention was seen to vary 

significantly with the type of bacteria due to their relative size and shape for all types 

of infiltration modes and soil wettability. The main outcomes of the study were that 

retention of bacteria in water repellent soils was much greater than in wettable soils, 

and that when dry, water repellent soil is able to not only retain, but filter bacteria. As 

is clear, there is considerable scope for further work in representation of bacterial 

dynamics in water repellent soils within numerical models. Similarly, more 

consideration is needed for mechanisms often neglected in the modelling process 

that are known to be important, such as hysteresis (Bachmann et al. 2007; Ganz et 

al. 2014). For the case of de Rooij and de Vries, (1996), hysteresis was neglected 

due to the assumption of steady state flow, on the basis that agreement between 

transient and steady state flow for a similar soil was observed by van Ommen et al. 

(1989). As hysteresis was not modelled, the size of the fingers were prescribed to 

account for its influence on fingered flow dynamics. This led to differing positions 

from which the fingers would infiltrate, and was justified due to the movement of 

water or solute through either a few large or many small fingers being not significant 

for correctly representing solute leaching. Similar revisions were suggested for the 
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model of van den Bosch et al. (1999), due to a lack of unsteady infiltration being 

observed which was thought to be due to either uniform vegetation cover, or a 

thicker topsoil than is usually present in water repellent sandy soils. Much of the 

limited amount of work in this area predates the second millennia and needs further 

investigation. 

2.8 Discussion and Conclusions 

This chapter presented research relating to the modelling of soils, largely on flow 

processes in unsaturated soils for different wettabilities and the effects of soil 

heterogeneity. Field generation methods were also considered as their use in soil 

modelling is well-established.  

Through conducting this review, gaps in the literature have been identified. In many 

cases, a 2-D representation of a given problem can give conservative results, 

potentially underestimating the soil response. Many processes in soil are inherently 

3-D, and should be modelled as such. Similarly, hysteresis is not accounted for when 

modelling soils of all wettabilities. This is a key mechanism that effects the wetting 

and drying behaviour of soils, and is particularly important when considering water 

repellent soils. 

It was also noted that very few studies have been conducted in explicitly 

representing fingered flow, especially in a stochastic manner. Much of the work is 

concerned with field scale simulations of slope stability for heterogeneous soil. The 

use of random fields allows soil heterogeneity to be represented such that fingered 

flow can be induced. This stochastic approach enables the quantification of fingered 

flow characteristics in a non-deterministic manner. Similarly, the error associated with 

random field generation in the near-boundary region is not very well understood. 

Systematic approaches should be taken to find methods to mitigate this error and 

preserve the desired field correlation structure. 

The most important conclusion that can be drawn from the presented studies, is that 

material heterogeneity strongly influences the behaviour of complex phenomena in 

soil, and should be accounted for when modelling. Most coupled models do not 

account for material heterogeneity also, and focus on the coupling of the material 

behaviour under certain conditions. The vast amount of literature on coupled models 

suggests the need for extension to account for material heterogeneity. Similarly, little 
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has been considered for heterogeneous water repellent soils. The presence of water 

repellency and its variability in the domain are known to be strong driving forces in 

the unstable flow response that is commonly observed. The combination of a non-

uniform material -as well as its non-uniform wettability- will lead to a highly non-linear 

system, and should be further investigated. 
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Chapter 3 

Theoretical formulation 

3.1 Introduction 

This chapter presents two theoretical formulations that underpin the numerical 

research reported in this thesis, namely, the hydraulic behaviour of unsaturated soils, 

and the generation of Gaussian random fields through the solution of stochastic 

partial differential equations. 

The theory of moisture transfer in unsaturated soils is based on the fully coupled 

model for heat, moisture and air flow developed by Thomas & Sansom (1995). This 

model is well established, and has seen further extension to represent mechanical 

and chemical processes (Thomas and He 1995; Cleall et al. 2007). Darcy’s law is 

the underlying mechanism to describe the movement of the moisture phase over 

representative elementary volumes of the unsaturated medium. A significant 

limitation here is that the use of Darcy’s law assumes the soil to be homogeneous 

and isotropic. As seen in the previous chapter, the effects of soil heterogeneity on 

flow processes are complex, and need to be modelled to simulate important 

characteristics of soil behaviour. 

To account for this, Gaussian random fields are used to represent the spatially 

varying material parameters that soils exhibit. The theory is based on the work of 

Lindgren et al. (2011) and Roininen et al. (2014), where the random fields are 

generated by solving stochastic partial differential equations (SPDE). The approach 

is applicable to very large data sets (>106)  because the sparsity of the matrices in 

the discretised PDE allow for extremely efficient treatment. By contrast, classical 

geostatistical methods often struggle to solve such problems (Vergara et al. 2018). 

For further discussion on the SPDE approach versus kernel-based methods, such as 

covariance matrix decomposition (Tang et al. 2020), see Simpson et al. (2012). 

Since the PDEs have the same structure as those of transport problem, the same FE 

framework may be used for their solution, thereby removing the need for potentially 

complex dual implementations (Jiang et al. 2022). 
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Section 3.2 presents the governing equations for moisture transfer in unsaturated 

soil where conservation of mass and Darcy’s law are used to derive the governing 

equation in terms of the liquid pressure. Section 3.3 presents the derivation of the 

stochastic PDE relating to Gaussian field generation based on posing the Matérn 

autocorrelation function as a PDE with Fourier transform pairs. 

3.2 Moisture transfer in unsaturated soils 

The theoretical model is based on the approach of Cleall et al. (2007). The transport 

process for moisture in soil is dictated by two phases, liquid water and water vapour. 

Here, the influence of the gaseous phase is neglected, such that the volumetric 

water content 𝜃 is solely dependent on the liquid phase, such that 

θ = θ𝑙           (3.1) 

where θ𝑙 is the volumetric liquid content. Similarly, the law of mass conservation is 

composed of mass conservation relating to the liquid phase alone, such that the 

following must hold true 

ρ𝑙
∂θ𝑙

∂𝑡
= −ρ𝑙𝛁𝒗𝒍 − ρ𝑙𝐸𝑠𝑠        (3.2) 

where 𝑡 is time, ρ𝑙 is the liquid density, 𝐸𝑠𝑠 is a sink/source term, and 𝒗𝒍 is the liquid 

velocity. This then leads to the law of conservation of mass as  

ρ𝑙
∂θ𝑙

∂𝑡
= −ρ𝑙𝛁𝒗𝒍.         (3.3) 

The volumetric liquid content can be formulated in terms of the degree of saturation 

as 

θ𝑙 = 𝑛𝑆𝑙          (3.4) 

where 𝑛 is the porosity and 𝑆𝑙 is the degree of saturation of pore water. Upon 

substituting (3.4) into (3.3), this leads to 

∂(ρ𝑙𝑛𝑆𝑙)

∂𝑡
+ ρ𝑙𝛁𝒗𝒍 = 0.         (3.5) 

From (3.5), it is seen that the movement of water is governed by liquid flux in the soil 

medium. Flow can be induced by various means such as thermal or chemical 

concentration gradients (Fredlund and Rahardjo 1993; Mitchell 1993); however, here 

flow is assumed to be driven by changes in pressure head. As such, the widely 
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adopted (Nielsen et al. 1986; Rosso et al. 2006; Hosseinejad et al. 2019) Darcy’s law 

is employed (Darcy 1856). For multiphase flow in unsaturated soil, Darcy’s law can 

be expressed as  

𝑣𝑙 = −
𝑘𝑙

μ𝑙
[∇ (

𝑢𝑙

γ𝑙
+ ∇𝑧)] = −𝐾𝑙 [∇ (

𝑢𝑙

γ𝑙
+ ∇𝑧)]     (3.6) 

where 𝑘𝑙 is the effective permeability, μ𝑙 is the absolute viscosity of pore liquid, γ𝑙 is 

the unit weight of liquid, 𝑧 is the elevation, 𝐾𝑙 is the unsaturated hydraulic 

conductivity, and 𝑢𝑙 is the liquid pressure and primary variable of the formulation.  

A number of factors can influence the unsaturated hydraulic conductivity, such as 

void ratio, particle sizes and their distribution, degree of saturation, and turbulence of 

flow (Mitchell 1993). As the flow is assumed to be slow under Darcy’s law, turbulent 

effects become negligible. Due to this, the unsaturated hydraulic conductivity is 

dependent on the degree of liquid saturation and void ratio (Fredlund 1981; Lloret 

and Alonso 1985), such that 

𝐾𝑙 = 𝐾𝑙(𝑒, 𝑆𝑙).         (3.7) 

Initial values of void ratio and degree of saturation, as well as stress parameters, are 

known to influence the degree of saturation. The stress parameters -namely 

deviatoric stress and net stress- have been shown to be negligible in this context 

(Fredlund and Rahardjo 1993). Thus, given the control over the initial state of the soil 

mass, the degree of saturation can be expressed in term of soil suction as 

𝑆𝑙 = 𝑆𝑙(𝑠)          (3.8) 

where 𝑠 is the suction. Suction can be related to the primary variable 𝑢𝑙 by 

𝑠 = 𝑢𝑙 − 𝑢𝑎,          (3.9) 

where 𝑢𝑎 is the pore air pressure, assumed atmospheric.  

To reach the final governing differential equation for moisture transfer, the 

components of liquid flow need to be included in the mass conservation of water flow 

(3.5) and formulated in terms of the primary variable. By substituting (3.6) into (3.5), 

this results in  

𝑛ρ𝑙
∂𝑆𝑙

∂𝑡
+ 𝑆𝑙ρ𝑙

∂𝑛

∂𝑡
−

ρ𝑙

γ𝑙
∇(𝐾𝑙∇𝑢𝑙) = ρ𝑙∇(𝐾𝑙∇𝑧).     (3.10) 
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By the chain rule, the time derivative of the degree of saturation can be reformulated 

in terms of the primary variable as 

∂𝑆𝑙

∂𝑡
=

∂𝑆𝑙

∂𝑠

∂𝑢𝑎

∂𝑡
−

∂𝑆𝑙

∂𝑠

∂𝑢𝑙

∂𝑡
,         (3.11) 

and as 𝑢𝑎 is assumed atmospheric, its time derivative vanishes. Similarly, the 

porosity 𝑛 is assumed constant with time, such that its time derivative will vanish 

also. Thus, with substitution of the reduced (3.11) into (3.10), the governing 

differential equation for water transport in terms of the primary variable 𝑢𝑙 is given as 

𝐶𝑙𝑙
∂𝑢𝑙

∂𝑡
− ∇(𝐾𝑙𝑙∇𝑢𝑙) = 𝐽𝑙,        (3.12) 

where 

𝐶𝑙𝑙 = −𝑛ρ𝑙
∂𝑆𝑙

∂𝑠
 ,         (3.13) 

𝐾𝑙𝑙 =
ρ𝑙𝐾𝑙

γ𝑙
,          (3.14) 

𝐽𝑙 = ρ𝑙∇(𝐾𝑙∇𝑧).         (3.15) 

By solving (3.12), the flow of moisture in soils can be represented in terms of its 

associated liquid pressure. A direct analytical solution to this is not necessarily 

straight-forward, so a numerical approach will be taken as detailed in the next 

chapter.  

3.3 Gaussian random field generation 

The underlying physical structure of the soil domain has not been considered in most 

previous studies. Ignoring this structure, in particular the intrinsic length scale of the 

domain, implies that certain aspects of behaviour -such as preferential flow- cannot 

be represented in an objective manner. This issue may be addressed by introducing 

a correlated structure to the field that is derived from a covariance kernel with a 

given correlation length. This length defines the size of region over which the field 

values (e.g. material properties) are correlated. Structurally, correlated random fields 

share a common form of soil material parameters (Liu and Leung 2018). For 

example, the conductivity at a given point in the soil mass should be similar in a 

nearby region of soil, where the size of said region is determined by the correlation 

length of the material parameter.  
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In the following, the theory used for generating correlated random fields is described. 

A particular advantage of the approach adopted is that the unknown field values (𝐗) 

(e.g. nodal values of the hydraulic conductivity) are determined by solving a system 

of partial differential equations that have the same general structure as those used to 

solve the transport problem. Depending on the boundary conditions applied in the 

formulation, the resulting discretised finite element matrix equation has the general 

form 

(𝐌 + 𝑙2𝐒)𝐗 = 𝐑         (3.16) 

where the solution 𝐗 is a Gaussian random field, 𝐌 and 𝐒 are the standard mass and 

stiffness matricies respectively (Zienkiewicz et al. 2013), 𝑙 is the length-scale 

parameter determining the correlation length, and 𝐑 is a combination of Gaussian 

noise and the mass matrix 𝐌. This is the standard stochastic PDE formulation of the 

Matérn autocorrelation function. According to Stein (1999), the Matérn covariance 

function is a generalisation of several covariance functions due to its smoothness 

parameter. Stein (1999) also suggested that this function is more flexible when 

compared with other common autocorrelation functions employed in geostatistical 

analysis (see Li et al. (2015) for example functions). Its use can lead to more 

physically representative results when matching physical processes (Stein 1999), 

and has been shown to be suitable for representing soil material properties (Minasny 

and McBratney 2005). 

The method of random field generation through solutions of SPDEs concerns 

Bayesian statistical inverse problems, where the probability distribution, often called 

a prior, of an unknown object 𝑋 is estimated (Lindgren et al. 2011; Roininen et al. 

2014). Here, a Gaussian random field 𝐗 ∈ ℝd ⨂ 𝕊 is considered, where 𝕊 is the 

stochastic space, and its contents are parameterised collections of Gaussian random 

variables {𝐗(𝐱)}𝐱∈ℝd. An example of 𝐗 generated through the SPDE approach is 

given in Figure 3.1, illustrating the correlated structure of the saturated conductivity 

for a soil layer of arbitrary size. A non-isotropic kernel was used such that the field is 

three times more correlated in the y axis, where the field was scaled to have a mean 

value of 7.1E-06 m/s with standard deviation of 2.3E-06 m/s. 
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Figure 3.1: An example random field generated through the SPDE approach, 

representing the saturated conductivity of a soil layer of arbitrary size 

Stationary random fields are considered, where the covariance of the field is a 

function of spatial distance alone, so that the correlation structure can be realised by 

the standard autocorrelation function form. Due to its smoothness, the Matérn 

autocorrelation function (ACFX(𝐱)) is adopted 

ACFX(𝐱) =
21−𝜈

Γ(𝜈)
(

|𝐱|

𝑙
)

𝜈

𝐾𝜈 (
|𝐱|

𝑙
)       (3.17) 

for 𝐱 ∈ ℝ𝑑, where ν > 0 is the smoothness parameter, |𝐱| is the Euclidean distance, Γ 

is the gamma function, and 𝐾ν is the Bessel function of the second kind of order ν 

(Rasmussen and Williams 2005). An important parameter 𝑙 > 0 is the length-scale 

parameter for which δ = 𝑙√8ν is the distance for correlations near 0.1 (Lindgren et al. 

2011). Through 𝑙, the correlation length of the solution can be controlled. To avoid 

cumbersome matrix inversion, the prior covariance is approximated by posing the 

prior as a stochastic PDE. 
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This is achieved by forming the spectral density 𝑆(ξ) as the Fourier transform pair of 

the autocorrelation function (Gihman and Skorokhod 2004), which gives the following 

spectral density  

𝑆(𝜉) =
2𝑑𝜋

𝑑
2Γ(𝜈+

𝑑

2
)

Γ(𝜈)𝑙2𝜈 (
1

𝑙2 + |𝜉|2)
−(𝜈+

𝑑

2
)

,       (3.18) 

where 𝑑 = 1,2,3, such that 𝑆(ξ) = ACF�̂�(𝐱) denotes the Fourier pair, where ACF�̂�(𝐱) is 

the Fourier transform of (3.17). Thus, 𝐗 can be defined as 

𝐗 = 𝜎√𝑆(𝜉)𝐖,         (3.19) 

where 𝜎 is the standard deviation, and 𝐖 is the white noise on ℝ𝑑, resulting in 𝐗 

being the Gaussian random field with correlation structure based on the Whittle-

Matérn autocorrelation function. Finally, the stochastic PDE is attained after dividing 

(3.19) by √𝑆(ξ) and computing the inverse Fourier transform 

(1 − 𝑙2Δ)
(ν+𝑑/2)

2 𝐗 = √ϱ𝑙𝑑𝐖        (3.20) 

where ϱ is a constant such that 

ϱ ≔ 𝜎2 2𝑑π𝑑/2Γ(ν+𝑑/2)

Γ(ν)
         (3.21) 

where (1 − 𝑙2Δ)
(𝜈+𝑑/2)

2  is a pseudo-differential operator defined by its Fourier 

transform. The smoothness parameter is now fixed such that ν = 2 − 𝑑/2. Then, by 

defining the operator 𝐇 ≔ 𝐈 − 𝑙2Δ, where Δ is the Laplace operator, (3.20) becomes 

𝐇𝐗 = (𝐈 − 𝑙2Δ)𝐗 = √ϱ𝑙𝑑𝐖        (3.22) 

where 𝐈 is the standard identity matrix. 

3.4 Conclusion 

The derivation of the governing equations to describe the characteristics of moisture 

transport in unsaturated soil have been presented. This approach is well established 

in coupled models and can closely match the soil behaviour observed in the field. 

Similarly, the derivation of the SPDE, which when solved results in a Gaussian 

random field, has been given. As the random field generation and moisture transport 

problems are formulated as PDEs, the same approach can be used for their solution. 
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In this way, the random fields will integrate seamlessly with the existing model 

architecture. Similarly, the mathematical formulation of the problem ensures that the 

correlation structure observed in the generated fields closely matches that of the 

autocorrelation function it is based on. This ensures that the material parameters 

represented by the random fields are similar in structure to those observed in the 

field. 

In the next chapter, the numerical discretisation of both equations will be considered 

to allow for them to be solved numerically. 
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Chapter 4 

Numerical formulation 

4.1 Introduction 

Due to the complex nature of PDEs, the formulation of a direct analytical solution can 

be challenging. An alternative approach is the use of numerical approximation 

methods. Hence, due to the underlying complexity of the governing equations 

presented in Chapter three, this chapter presents their numerical solution through 

finite elements (FE). This approach is used widely in many areas of research and 

commercial codes for mechanics and transport based problems (Ghosh and Liu 

1995; Stefanou 2009; Huang et al. 2014; Yi et al. 2020; Liu and Wang 2021; Pande 

et al. 2021), and has seen high levels of development since its conception. By using 

FE, the model is not restricted from potential future extensions to account for other 

mechanics based soil phenomena such as slope failure. Another key component is 

the existence of a well-established FE code base at Cardiff that could be used as a 

basis for developing the soil moisture and stochastic solution. Time stepping was 

achieved through an implicit Euler backward difference scheme. When compared 

with the classical forward method, this approach has been seen to be very 

numerically stable, and is able to find solutions where classical methods may 

struggle (Rapp 2017). It is also accurate due to the error level related to the 

governing equation being defined by a selected tolerance. An incremental-iterative 

solution of the non-linear problem was achieved using the Newton-Raphson 

approach, which is known for its accuracy and fast convergence to a given 

incremental solution (Sheng et al. 2002). If the problem poses strong non-linearities, 

the convergence of the iterative solution may not be guaranteed. To address this, 

many effective methods have been developed to improve the performance of the 

standard algorithm, as well as dealing with break down conditions (de Borst et al. 

2012). See de Borst et al. (2012) and Potts & Zdravkovic (1999) for detailed reviews of 

incremental and iterative schemes. 

Section 4.2.1 presents the spatial discretisation of the problem through finite 

elements, whereas the temporal discretisation is considered in section 4.2.2. Section 
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4.3 presents the problem formulation and discretisation for the matrix equivalent of 

the stochastic PDE seen in Section 3.3. 

4.2 Moisture transfer in unsaturated soils 

As stated, a numerical approach is employed to solve the governing PDE for 

moisture transport (3.12) from Chapter 3. Here, we use the finite element method for 

spatial discretisation of the problem, with an implicit Euler backward difference 

scheme for time discretisation. As the problem is highly non-linear, a standard 

Newton-Raphson procedure is implemented for incremental updating of the solution 

(Zienkiewicz et al. 2013). 

4.2.1 Spatial discretisation 

Here, the Galerkin weighted residual approach is employed (Zienkiewicz et al. 2013). 

The domain discretisation employed in the simulations presented in later chapters is 

that of three dimensional 8-noded hexahedral elements. This element was chosen 

due its ease of meshing and computational efficiency (Zhou et al. 2017; Shang et al. 

2020; Karpik et al. 2023). Tetrahedral elements are also commonly used in FE codes 

due to their ability to adapt to complex domain geometries, but the higher accuracy 

of hexahedral elements allows for lower mesh density, and an overall increase in 

computational efficiency (Parrish et al. 2008; Schneider et al. 2022). Whilst the 

derivation could be presented generally for arbitrary elements, what follows conforms 

with the assumption of 3-D 8-noded hexahedral elements to keep with the wider 

narrative of the study. 

The primary variable 𝑢𝑙 and its derivatives can be approximated using the standard 

shape function approach 

𝑢𝑙 ≈ 𝑢�̂� = ∑ 𝑁𝑠𝑢𝑙�̂�

𝑛𝑒
𝑠=1          (4.1) 

∇𝑢𝑙 ≈ ∇𝑢�̂� = ∑ (∇𝑁𝑠)𝑢𝑙�̂�

𝑛𝑒
𝑠=1         (4.2) 

where the subscript 𝑠 denotes the nodal values, 𝑁𝑠 denotes the shape function, 𝑛𝑒 is 

the number of nodes per element, and the symbol ^ denotes the approximate form. 

The governing equation (3.12) can be rewritten using the approximation (4.1), such 

that  

−𝐶𝑙𝑙
∂𝑢�̂�

∂𝑡
+ ∇(𝐾𝑙𝑙∇𝑢�̂�) + 𝐽𝑙 = 𝑅Ω       (4.3) 
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where 𝑅Ω is the residual error arising from the approximate form. The Galerkin 

weighted residual approach can be used to minimise the element-wise error by 

enforcing 

∫ 𝑁 (−𝐶𝑙𝑙
∂𝑢�̂�

∂𝑡
+ ∇(𝐾𝑙𝑙∇𝑢�̂�) + 𝐽𝑙) dΩ𝑒

Ω𝑒 = 0      (4.4) 

where Ω𝑒 is the element domain, and 𝐽𝑙 = ρ𝑙∇(𝐾𝑙∇𝑧). The variational form can them 

be found by integration by parts of (4.4), such that 

∫ {∇(𝑁𝐾𝑙𝑙∇𝑢�̂�) − 𝐾𝑙𝑙∇𝑢�̂�∇𝑁 + ∇(𝑁ρ𝑙𝐾𝑙∇𝑧) − 𝐾𝑙ρ𝑙∇𝑧∇𝑁 − 𝑁𝐶𝑙𝑙
∂𝑢�̂�

∂𝑡
} dΩ𝑒

Ω𝑒 = 0. (4.5) 

To reduce this further, the Gauss Divergence theorem is applied to reduce second 

order terms. For adjacent elements, the resulting surface integral will vanish, such 

that their contribution will exist only on the limit of the domain. Thus, (4.5) becomes 

∫ {−𝐾𝑙𝑙∇𝑢�̂�∇𝑁 − 𝐾𝑙ρ𝑙∇𝑧∇𝑁 − 𝑁𝐶𝑙𝑙
∂𝑢�̂�

∂𝑡
} dΩ𝑒

Ω𝑒 + ∫ {𝑁(𝐾𝑙𝑙∇𝑢�̂� + ρ𝑙𝐾𝑙∇𝑧)𝐧}dζ𝑒 = 0
ζ𝑒

 (4.6) 

where ζ𝑒 is the element boundary surface. Furthermore, introducing the derivative 

approximations (4.3) leads to 

∫ 𝐾𝑙𝑙Ωe ∇𝐍𝑇∇𝐍 dΩ𝒖𝒍 + ∫ 𝐶𝑙𝑙Ωe 𝐍𝑇𝐍 dΩe ∂𝐮𝑙

∂𝑡
+ ∫ 𝐾𝑙Ωe ρ𝑙∇𝐍𝑇∇𝑧 dΩe − ∫ 𝐍𝑇[ρ𝑙𝐯�̂�]

ζe  dζe = 0

           (4.7) 

where 𝐍 are the shape functions in matrix form, and 𝐯�̂� is the approximate liquid 

velocity normal to the boundary. This can be written compactly using matrix notation 

as 

𝐂
∂𝐮𝑙

∂𝑡
+ 𝐊𝐮𝑙 = 𝐅         (4.8) 

where 

𝐂 = ∑ ∫ 𝐶𝑙𝑙Ωe 𝐍𝑇𝐍 dΩe𝑛𝑒
𝑒=1         (4.9) 

𝐊 = ∑ ∫ 𝐾𝑙𝑙Ωe ∇𝐍𝑇∇𝐍 dΩ
𝑛𝑒
𝑒=1         (4.10) 

𝐅 = ∑ ∫ 𝐾𝑙Ωe ρ𝑙∇𝐍𝑇∇𝑧 dΩe𝑛𝑒
𝑒=1 − ∑ ∫ 𝐍𝑇[ρ𝑙𝐯�̂�]

ζe  dζe𝑛𝑒
𝑒=1     (4.11) 

Non-linearity is present in 𝐶𝑙𝑙, 𝐾𝑙𝑙, and 𝐾𝑙 based on the constitutive laws required for 

their calculation. For example, to calculate the unsaturated conductivity 𝐾𝑙, non-
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linear constitutive laws such as the van Genuchten-Mualem model are required 

(Mualem 1976), introducing non-linearity into the system. Similar constitutive laws 

are required for 𝐾𝑙𝑙 and 𝐶𝑙𝑙 based on the well-known van-Genuchten relation (van 

Genuchten 1980). 

4.2.2 Temporal discretisation 

As previously stated, an implicit Euler backward difference scheme is employed for 

time discretisation (Zienkiewicz et al. 2013), such that 

𝐊𝐮𝑙
𝑡+1 +

1

Δ𝑡
𝐂(𝐮𝑙

𝑡+1 − 𝐮𝑙
𝑡) = 𝐅       (4.12) 

where 𝑡 indicated the given time step. The standard Newton-Raphson procedure is 

applied to solve the non-linear equation, and is based on the first-order Taylor series 

expansion of the mass balance error (Chitez and Jefferson 2015). Similarly to 

Freeman et al. (2019), the primary variable vector is updated incrementally through 

an iterative process as 

δ𝐮𝑙𝑘+1
𝑡+1 = [

∂𝚿

∂𝐮𝑙𝑘
𝑡+1]

−1

(−𝚿)        (4.13) 

where 𝑘 indicates the current increment, δ represents the incremental change in the 

primary variable vector, and 𝚿 is the approximate error, given by 

𝚿 = Δ𝑡𝐊𝐮𝑙
𝑡+1 + 𝐂(𝐮𝑙

𝑡+1 − 𝐮𝑙
𝑡) − Δ𝑡𝐅.      (4.14) 

Once the solution vector is updated, tolerance checks are conducted based on a 

pre-defined convergence criterion. It may be the case that the solution does not 

converge within a given number of iterations, and if this is the case, then the 

simulation configuration would need to be re-assessed, possibly in terms of mesh or 

time-step refinement. Pseudo code for the solution algorithm is given below to 

highlight the process 
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Algorithm 1: Primary variable solution 

Objective: 

To solve for the primary variable 𝑢𝑙 over a given time and within specified tolerance 

conditions. 

Parameters: 

- Initial arrays for storing results 

- Total number of time steps ntime 

- Maximum number of iterations niter 

- Tolerance condition for convergence, taken as 0.01 

Convergence Criterion: 

Algorithm terminates for a time step when the tolerance between the norms of the 

solution is satisfied. 

Initialise arrays  

DO itime=1,ntime 

 DO iiter=1,niter 

  Calculate boundary flux 

  Calculate error 𝚿   (4.14) 

  Solve for incremental primary variable δ𝐮𝑙    (4.13) 

  Update primary variable vector 𝐮𝑙 = 𝐮𝑙 + δ𝐮𝑙 

  IF tolerance condition satisfied THEN 

   BREAK 

  END IF 

 END 

 Update solution matrix 

END 

 

4.3 Gaussian random field generation 

Previous work has been conducted by Roininen et al. (2014) to discretise the 

governing equation for stochastic PDE based random field generation for regular 

lattices. As a finite element approach is taken for the moisture transport problem, it is 

the natural approach for solving the random field generation problem. 
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In Chapter 3, 𝐖 was considered white noise on ℝ𝑑, but is now considered to be a 

generalised random variable, i.e. a continuous linear mapping from the space of 

rapidly decreasing smooth functions 𝒮(ℝ𝑑) to square-integrable random variables. 

Hence, if 𝐗 is a generalised random variable, then the duality pair ⟨𝐗, 𝛟⟩ is a square 

integrable random variable for all 𝛟 ∈ 𝒮(ℝ𝑑), where: 

⟨𝐗, 𝛟⟩ = ∫ 𝐗(𝐱)𝛟(𝐱)  dx        (4.15) 

defines the inner product of smooth functions over the physical domain ℝ𝑑. By the 

definition of 𝐖, for all 𝛟, 𝛗 ∈ 𝒮(ℝ𝑑), ⟨𝐖, 𝛟⟩ is a Gaussian random variable such that 

𝐸⟨𝐖, 𝛟⟩ = 0 and 𝐸(⟨𝐖, 𝛟⟩, ⟨𝐖, 𝛗⟩) = ∫ 𝛟𝛗  dx,     (4.16) 

completing the inner product in the physical and stochastic domain. Furthermore, 𝐖 

can be extended to be a linear function on 𝐿2(ℝ𝑑) (Lasanen 2002), suggesting that 

(3.19) can be reduced to: find 𝐗 such that 

⟨(𝐈 − 𝑙2Δ)𝐗, 𝛟⟩ = ⟨√ϱ𝑙𝑑𝐖, 𝛟⟩ = ⟨𝐖, √ϱ𝑙𝑑⟩     (4.17) 

for all 𝛟 ∈ 𝒮(ℝ𝑑).  

For numerical implementation, the problem must be reduced to a bounded domain. 

Let Ω ⊂ ℝ𝑑  be a bounded Lipshitz domain, then the problem becomes: find 𝐗 on Ω 

such that equation (4.17) holds for all 𝐶0
∞(Ω). The solution to this is non-unique, so 

additional conditions need to be supplied to make the problem well-posed. The 

common boundary conditions (Dirichlet, Neumann and Robin respectively) are 

specified as 

𝐗|𝜕Ω = 0,          (4.18) 

∂𝐗

∂𝐧
|∂Ω = 0,          (4.19) 

(𝐗 + λ
∂𝐗

∂𝐧
) |∂Ω = 0,         (4.20) 

where 𝐧 is the unit normal to the boundary, and λ is a scalar value denoted as the 

Robin coefficient. By imposing these conditions, a change in the correlation 

properties of the field may be inferred, which is considered in the next section. It is 

now possible to derive a weak bilinear approximation of the problem; however, the 
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resulting fields may not lie within the defined problem space. It is with this in mind 

that finite element approximations are employed, such that  

𝐗 ≈ ∑ 𝑋𝑗
𝑁
𝑗=1 ψ𝑗,         (4.21) 

where ψ𝑗 are the basis functions in 𝐻1(Ω) (Sobolev space), and 𝑋𝑗 are random 

variables.  

Considering first the Neumann boundary condition (4.19) for 𝑋 in (4.21), and by 

applying Green’s first identity, the following equation may be derived 

⟨(𝐈 − 𝑙2Δ)𝐗, 𝛟⟩ = ∫ 𝐗𝛟dx
Ω

+ 𝑙2 ∫ ∇𝐗 ∙ ∇𝛟dx.
Ω

     (4.22) 

By following the usual Galerkin choice of ϕ = ψ𝑖, the problem can now be 

approximated as 

find 𝐗 ≈ ∑ 𝑋𝑗
𝑁
𝑗=1 ψ𝑗 such that 𝑎(𝐗, ψ𝑖) = ⟨𝐖, √ϱ𝑙𝑑ψ𝑖⟩ for all 𝑖 = 1, … , 𝑁, (4.23) 

where 𝑎 is a bilinear functional defined as  

𝑎(𝛗, 𝛟) = ∫ 𝛗𝛟dx
Ω

+ 𝑙2 ∫ ∇𝛗 ∙ ∇𝛟dx
Ω

,  𝛗, 𝛟 ∈ 𝐻1(Ω).    (4.24) 

Thus, (4.24) can be formulated as the matrix equation 

𝐇𝐗 = (𝐌 + 𝑙2𝐒)𝐗 = 𝐖,        (4.25) 

where 𝐗 = (𝑋𝑗) and the given matrices 𝐌 and 𝐒 and the vector 𝐖 are 

𝑀𝑖,𝑗 = ∫ ψ𝑗ψ𝑖dx
Ω

         (4.26) 

𝑆𝑖,𝑗 = ∫ ∇ψ𝑗 ∙ ∇ψ𝑖dx
Ω

         (4.27) 

𝑊𝑖 = ⟨𝑊, √ϱ𝑙𝑑𝜓𝑖⟩.         (4.28) 

Dirichlet and Robin conditions may be considered in a similar fashion. For the Robin 

condition, after applying Green’s theorem, the approximation becomes the bilinear 

form 

𝑏(𝛗, 𝛟) = 𝑎(𝛗, 𝛟) +
𝑙2

λ
∫ 𝛗𝛟

ζ
dζ, 𝛗, 𝛟 ∈ 𝐻1(Ω)     (4.29) 

where ζ = ∂Ω, corresponding to the matrix equation 
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𝐇𝐗 = (𝐌 + 𝑙2𝐒 + 𝑙2/𝜆𝐍)𝐗 = 𝐖  where 𝑁𝑖,𝑗 = ∫ 𝜓𝑗𝜓𝑖ζ
dζ.   (4.30) 

For the Dirichlet condition, choosing the function space to be 𝐻0
1(Ω) and applying 

Green’s theorem results in the same expression as (4.22), and so the problem can 

be formulated as seen in the matrix equation (4.25).  

Solving either equation (4.25) or (4.29) will result in a random field with correlated 

properties that could, for example, be utilised in numerical solution routines for 

physical representation of initial conditions or material properties. Pseudo code for 

the solution algorithm is given below to highlight the process 

Algorithm 2: Random field generation through SPDE 

Objective: 

To generate a random field 𝐗 by solving the stochastic partial differential equation 

given by Eqn (4.30). 

Parameters: 

- Initial arrays for storing intermediate results and 𝐗 

- Random seed for generating stochastic processes 

- LHS (Left Hand Side) and RHS (Right Hand Side) of Eqn (4.30) 

Initialise arrays  

Set random seed 

Assemble LHS of (4.30) 

Compute Cholesky decomposition of 𝐌 

Generate random array 𝑊 based on a normal distribution 

Compute RHS of (4.30) 

Solve (4.30) for 𝐗 

 

Following this procedure, the random field 𝐗 can be scaled to represent a given 

parameter used in the wider solution process. 

4.4 Conclusion 

The approximate solution of the governing equations for moisture transfer and 

Gaussian random field generation have been derived through the finite element 

method for spatial discretisation. By using this method, future development of the 

model is not impeded by the physical processes that can be represented, such as 
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mechanical or chemical. Similarly, the FE architecture employed could be modified to 

allow for more advanced approaches, such as unfitted methods. By also using FE for 

the solution of the random field problem, the model architecture does not need to be 

reinvented, and similar solution processes can be carried out as in the moisture 

transport stage. Many of the matrices present in equation (4.30) are equivalent to 

those seen in equation (4.8), such as the classical stiffness and storage matrix. The 

main advantage is that the random fields are solved using an identical mesh 

(elements and nodes) to that used for the solution of the moisture transfer problem, 

so their nodal and element values can easily be included in the constitutive 

components of equation (4.8) without the need for complex mapping rules. The 

random field generation is a stationary solution, but time discretisation was 

necessary for the moisture transport processes, and was achieved though and 

implicit Euler backwards difference scheme. Whilst the modelling of moisture transfer 

in heterogeneous soil is a highly non-linear problem, the Newton-Raphson approach 

works effectively under these tight constraints, as will be seen in later chapters. 
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Chapter 5 

Near-boundary error reduction in stochastic PDE based 

Gaussian random field generators 

5.1 Introduction 

As seen in Chapter 4, to be able to generate random fields numerically, the problem 

domain must be reduced to a bounded domain, often requiring boundary conditions 

that are not generally known (Khristenko et al. 2019). The standard Dirichlet, 

Neumann, and Robin conditions are commonly applied, where each comes with its 

respective method of error reduction in the near-boundary region ΩB ⊆ Ω (see Figure 

5.1 (c)). More formally, this is defined as the near-boundary region which includes all 

points that are at a distance of less than or equal to the length-scale parameter 𝑙 

from ∂Ω. As 𝑙 grows, the approximation of the autocorrelation function (ACF) inherent 

to the field structure breaks down in ΩB due to its increasing size relative to Ω. When 

implementing the stochastic PDE approach, it is advisable to minimise ΩB in relation 

to Ω to avoid heavily constraining the problem.  

The following will present the current mitigation strategies for reducing the near-

boundary error, depending on the boundary condition applied, as well as a new 

approach which is shown in the present study to be systematically more flexible in 

reducing said error. This alternative approach is presented for reducing spurious 

values in the near-boundary region through a weighted Dirichlet-Neumann (D-N) 

boundary condition. Two variants of the condition are proposed based upon adopting 

different dependencies to define the Neumann coefficient used. The proposed 

conditions are both dependent on a weighting parameter α that controls the ratio of 

Dirichlet to Neumann components applied to the boundary, with the second also 

containing a dependency based on 𝑙. Through a detailed parametric investigation, 

optimal values of α are found based on the length-scale parameter 𝑙. To allow for 

comparison between the two weighted D-N approaches, the homogeneous 

Neumann boundary condition, with and without domain extension, and the Robin 
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boundary condition with Robin coefficient λ = 1.42𝑙 are also applied. The error 

reduction at the boundary based on the applied condition is then evaluated through 

computing the covariance functions of the corresponding generated fields, and 

compared with the true ACF. Finally, a relation between α and 𝑙 is proposed to 

generalise the condition, allowing for simpler application when considering other 

problems.  

Section 5.2 considers methods to mitigate boundary error when employing a given 

boundary condition, Section 5.3 presents the weighted Dirichlet-Neumann boundary 

condition and shows the processes of its testing, and Section 5.4 concludes on the 

investigation. 

5.2 Existing methods in near-boundary error mitigation 

5.2.1 Extended domain 

The application of both Dirichlet and Neumann boundary conditions result in the 

same matrix equation (4.25). In this way, the strategy for error reduction is applicable 

for both applied conditions. Similarly, both conditions are independent of components 

that can be tuned, so the use of numerical techniques is necessary. 

One approach involves computing the random field over an extended domain -

denoted ΩEXT- such that the desired problem domain Ω sits within it, and can be 

extracted. By extending the domain, the error in the near-boundary is moved from 

the near-boundary of Ω, to that of the extending domain ΩEXT. This will ensure the 

correlation structure of Ω more closely matches the assumed structure of the 

autocorrelation function, being of Matérn form. Figure 5.1 (a-b) shows two 

schematics of this process in both two and three dimensions. 
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Figure 5.1: Domain extension schematics for: (a) the 2-D case, (b) the 3-D case, 

where both 𝛺EXT and 𝛺 are labelled for each dimension, and (c) an illustration of 𝛺𝐵 

in 2-D 

Clearly the extension of the domain in this manner increases the computational cost 

of computing the solution, this issue being more critical in 3-D than 2-D. However, 

this does depend on how fine the discretisation is across Ω. The number of random 

variables used to represent the field is equal to the number of nodes, so an 

extension of the domain could increase this significantly. An alternative could be to 

use a coarser mesh in the extended region of ΩEXT, since capturing a more accurate 

solution here is unnecessary as it will be neglected after solving. Another question 

that is raised is the amount that the domain must be extended such that the error is 
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eliminated in all Ω. As ΩB is dependent on the length-scale parameter of the field 𝑙, 

an extension of at least 𝑙 away from the boundary will leave no intersection between 

Ω and ΩB due to their definition. Of course, this depends on the domain geometry, 

and in some cases, an extension of less than 𝑙 would also be sufficient in reducing 

the error. 

5.2.2 Robin boundary condition 

Clearly, computing a solution directly over Ω rather than an extended domain would 

reduce the computational cost, and neglect the need to implement numerical 

routines to consider multiple domains. This can be done by using the Robin 

boundary condition (4.20), which depends on the Robin coefficient λ (see also 

equation 5.1 below), and can be interpreted as a tuning parameter for the correlated 

structure in ΩB. As such, the use of an extended computational domain is not strictly 

necessary when applying this condition. The choice of λ, however, is not well 

understood. Roininen et al. (2014) suggested that λ = 1.42𝑙 results in an adequate fit 

to the correlation structure. This choice of λ was not shown to be established in a 

rigorous way as it was deemed out of the scope of the study (Roininen et al. 2014), 

suggesting the need for further investigation to verify the condition. It was also 

suggested that λ should vary as a function of the boundary, which was later 

considered by Daon and Stadler (2018) who utilised a spatially varying Robin 

coefficient to provide domain Green’s functions that are close to the free-space 

Green’s functions of the Matérn covariance function. Other approaches have also 

been taken, such as the use of a partial Dirichlet-to-Neumann operator on the 

extended boundary (Calvetti et al. 2015a). 

5.3 Weighted Dirichlet-Neumann boundary condition 

5.3.1 Theory 

Here, two alternative coefficients 𝜆1, 𝜆2 are proposed by formulating the Robin 

condition in equation (4.20) as a weighted boundary condition between the Dirichlet 

and Neumann components, denoted as the weighted Dirichlet-Neumann (D-N) 

condition. The conditions will depend on the weighting parameter α ∈ [0,1] which 

controls the ratio of the Dirichlet and Neumann components. 

First consider 𝜆1, where the weighted D-N condition is 
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(α𝑋 + (1 − α)
𝜕𝑋

𝜕𝐧
) = 𝑅γ on ∂Ω.       (5.1)  

Here, 𝑅γ is assumed zero, such that  

(α𝑋 + (1 − α)
𝜕𝑋

𝜕𝐧
) = 0 on ∂Ω.       (5.2)  

It is possible that a non-zero value would provide a meaningful boundary conditions, 

but this is not further investigated. Taking equation (5.2) in the standard form of 

equation (4.20), it can be seen that 

λ = 𝜆1(α) =
1−α

α
.         (5.3) 

Similarly, when considering 𝜆2, the given boundary condition is 

(α𝑋 + (1 − α)𝑙
𝜕𝑋

𝜕𝐧
) = 0 on ∂Ω,       (5.4)  

where in this case 

λ = 𝜆2(α, 𝑙) =
1−α

α
𝑙.         (5.5) 

Both (5.2) and (5.4) are functionally the same as the Robin condition, where in this 

case, α can be used to tune the influence of its components. The inclusion of 𝑙 in 

equation (5.5) follows the functional dependency of the proposed Robin coefficient in 

Roininen et al. (2014), and whilst similar to equation (5.3), the additional dependence 

will result in a different optimal range when tuning α to reduce errors in the near-

boundary region. Equations (5.2) and (5.4) can be applied by simply exchanging the 

expression for λ in the approximate matrix equation (4.30) to that of 𝜆1 or 𝜆2. To 

illustrate the effects of changing α, random fields were generated by solving equation 

(4.30) after applying equation (5.4) for a 1 m cube consisting of hexahedral elements 

with 𝑙 = 0.2 m. Figure 5.2 shows a partition of the resulting fields generated over a 

cube for (a) α = 0, (b) α = 0.5, (c) α → 1 , and (d) the result of implementing the 

standard Neumann boundary condition where the fields are scaled to have zero 

mean and a standard deviation of 1. 
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Figure 5.2: Differing correlation structures of a general spatially varying parameter 

based on the weighted D-N boundary condition for changing α where (a) α = 0, (b) 

α = 0.5, (c) α → 1 , and (d) the result of applying the standard Neumann condition 

(scaled to zero mean and standard deviation of 1) 

As α → 1, the Neumann component of equation (5.4) tends to zero, relating to a fixed 

(Dirichlet) condition on all boundaries as seen in Figure 5.2 (c). On the other hand, 

when α = 0, the Dirichlet component is removed, leading to the resulting field 

matching the corelation structure of the pure Neumann enforcement (see Figure 5.2 

(a) and (d)). It can also be seen in (a) and (d) that variability within the domain is 

more diffuse than the variation over the boundary. This is commonly observed when 

considering Neumann boundary conditions. The converse is apparent in Figure 5.2 

(c), as α → 1, with no variability over the boundary and more pronounced structures 

within the domain. Figure 5.2 (b) is the generated field for α = 0.5, highlighting that 

combing the components of both conditions can lead to correlation structures that 

are more consistent with those expected over the whole domain (this is more 

explicitly quantified in the following sections). Whilst α = 0.5 may not be the optimal 

value of α for this particular length-scale 𝑙, there is a distinct change in the correlation 
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structure in the near-boundary which appears to be more coherent with that 

observed over the full domain. 

5.3.2 Testing Procedure 

To determine the relationship between the optimised value of α and 𝑙 for 𝜆1 and 𝜆2, a 

detailed parametric testing regime was devised to find the optimal value of α for a 

given range of 𝑙. Here, 𝑙 is in relative terms, where 𝑙 = 0.1 would relate to a length-

scale parameter of 10% of the domain length. The fields were generated for values 

of 𝑙 = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, and 0.4. For each 𝑙, α is varied from 0 to near 1 

in increments of 0.1, with 10 realisations being generated at each α to allow for the 

average covariance function for each α to be calculated and compared with the true 

ACF equation (3.17). The average is taken since multiple realisations are often 

required to achieve objective results for a given quantity of interest when conducting 

stochastic analyses. Once the optimal value of α is found for this level of precision, 

the search is continued between the two best choices of α for each 𝑙. Here, the 

maximal value of 𝑙 is taken as 0.4. When applying spatial variation using Gaussian 

random fields in numerical models, it is unlikely that larger values will be used due to 

resulting low levels of variation across the domain defeating the purpose of imposing 

variability in the system. It is more likely to be at most 0.3 in relative terms. Similarly, 

due to the break down in the formulation, taking 𝑙 larger than 0.4 will not give a 

reasonable approximation of the desired correlation structure for all boundary 

conditions considered. As 𝑙 approaches 0.4, the domain is largely composed of ΩB, 

so the error associated with the near-boundary will manifest throughout all of Ω. 

In order to compare the generated field structures with equation (3.17), the 

semivariogram of each field is computed. The semivariogram is used to measure the 

level of spatial continuity for a given domain, these being most commonly applied in 

the area of geostatistics (Zhao and Wall 2004; Bachmaier and Backes 2011).  It can 

be calculated as half the average squared difference of values separated by a 

location vector, such that 

γ(ℎ) =
1

2𝑁(ℎ)
∑ (𝑧(𝐮𝑖) − 𝑧(𝐮𝑖 + ℎ))

2𝑁(ℎ)
i=1 ,      (5.6) 

where ℎ is the lag distance, 𝑁(ℎ) is the number of pairs of points in Ω of separation 

ℎ, 𝐮 is the location vector, and 𝑧(𝐮) is the value in the domain at the vector 𝐮. Figure 
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5.3 shows a schematic of the semivariogram, where the range can be thought of as 

the correlation length or distance for which points become uncorrelated, the sill is the 

total variance of the data, and the nugget describes the small-scale variability of the 

data (which could be attributed to measurement error in some cases). 

 

Figure 5.3: Schematic of a semivariogram calculated based on empirical data (after 

Biswas & Cheng (2013)) 

The covariance function and semivariogram are directly related by 

𝐶(ℎ) = 𝜎 − γ(h),         (5.7) 

where 𝜎 is the standard deviation of the field values. In this way, we can compute the 

covariance function of each field, averaging the individual covariance functions over 

the 10 realisations for each choice of α, and compare this with equation (3.17) to 

determine an optimal value of α. 

The standard Neumann and Robin conditions, with λ = 1.42𝑙, are also given the 

same treatment, with 10 realisations being generated for each 𝑙. In doing so, the 

optimal choice of boundary condition can be evaluated, and further insight to the 

choice of λ = 1.42𝑙 can be used to determine its suitability in matching the true 

covariance function equation (3.17).  Furthermore, use of an extended domain, ΩEXT 
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with a Neumann condition is also considered (denoted as Neumann-Extended) again 

with 10 realisations being generated for each 𝑙. 

5.3.3 Results 

In this section, results relating to the application of the following boundary conditions 

are presented: Neumann, Neumann-Extended, Robin with λ = 1.42𝑙, weighted D-N 

with  λ = 𝜆1, and weighted D-N with λ = 𝜆2. The covariance functions are computed 

over the full domain Ω, as well as the near-boundary region as a means of 

comparison. The computational domain of the standard case (Ω) is a 1 m cube sub-

domain of ΩEXT , aligned concentrically, consisting of 29791 nodes discretised with 

27000 elements, where ΩEXT is a 1.5 m cube consisting of 97336 nodes discretised 

into 91125 8-noded hexahedral elements. For both domains, the relative element 

length is 0.03333. Once the field has been generated over ΩEXT, the 1 m cube 

internal domain Ω is extracted and used to compare with the other methods whose 

fields are generated directly over Ω. The computational domains can be seen in 

Figure 5.4, being Ω (a) and ΩEXT (b). 

 

Figure 5.4: The computational domains used for field generation, being: (a) 𝛺, a 1 m 

cube with 29791 nodes, and (b) 𝛺𝐸𝑋𝑇, a 1.5 m cube with 97336 nodes 

It is worth noting that the strongly enforced Dirichlet boundary condition is neglected 

here, as upon its enforcement the variation on the boundary will vanish (as in Figure 

5.2 (c)), defeating the purpose of having a random field to represent variable spatial 

continuity. It could be argued that the domain extension principle should be applied 
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in this case, but doing so would lead to an identical field as that of the Neumann-

Extended condition, and so it has not been considered.  

Figure 5.5 shows the range of average covariance functions obtained when applying 

the weighted D-N boundary condition with λ = 𝜆1 for α from 0 to near 1 with 

increasing correlation length (a-d) over Ω. In (a-d), the maximum and minimum alpha 

will define the range over which the correlation values lie for linearly increasing α, 

and are compared against the ACF equation (3.17). 

 

Figure 5.5: Average covariance functions over 𝛺 for weighted D-N with 𝜆 = 𝜆1 for full 

range of 𝛼 for 𝑙 equal: (a) 0.1, (b) 0.2, (c) 0.3, and (d) 0.4 

The covariance functions over Ω can also be visualised when considering λ = 𝜆2, 

and is shown in Figure 5.6. 
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Figure 5.6: Average covariance functions over 𝛺 for weighted D-N with 𝜆 = 𝜆2 for full 

range of 𝛼 for 𝑙 equal: (a) 0.1, (b) 0.2, (c) 0.3, and (d) 0.4 

In both Figures 5.5 and 5.6, the dashed curves plotted between the maximal and 

minimal α values relate to linear increases in α between 0 and 0.9999. 

Finally, Figure 5.7 compares the average covariance function over Ω of all 

considered boundary conditions with the true ACF equation (3.17), where the optimal 

values of α at each 𝑙 have been chosen for both weighted D-N conditions. The 

coefficient of determination R2 of the covariance functions and (3.17) is used to 

determine which α resulted in the best fit, by maximising R2. 
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Figure 5.7: Average covariance functions comparison for weighted D-N with 𝜆 = 𝜆1 

and 𝜆 = 𝜆2, Robin, Neumann and Neuman-Extended boundary conditions for full 

range of 𝛼 for 𝑙 equal: (a) 0.1, (b) 0.2, (c) 0.3, and (d) 0.4 

Figure 5.5 shows that the curves converge as α → 0, suggesting that the optimal α 

values will be more variable with increasing 𝑙. What is more enlightening are the 

results seen in Figure 5.7, in which all tested boundary conditions are compared. In 

(a), almost all applied boundary conditions result in a correlation structure that 

matches well with the ACF, with the exception being the Neumann condition without 

domain extension due to more of the domain being dominated by ΩB. As 𝑙 increases, 

the performance of the proposed method progressively degrades due to ΩB 

becoming larger, meaning that the approximation of equation (3.17) will weaken in all 

cases. However even though there is a reduction in accuracy, the weighted D-N with 

optimal α appears to give better matches to the ACF than the standard applied 

boundary conditions. 

This can be quantified by computing the R2 values of the curves presented in Figure 

5.7 to evaluate their performance in matching the correlation structure of equation 
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(3.17) with increasing 𝑙. Consequently, the optimal values for α at each 𝑙 used in 

Figure 5.7 were determined through maximising R2 when measuring the goodness of 

fit between the weighted D-N covariance function curves over Ω with the ACF 

equation (3.17). Figure 5.8 shows the full comparison of all considered boundary 

conditions in terms of their R2 value for average covariance functions computed over 

Ω and ΩB, where the suffix “- F” and “- B” denote calculation over the full domain and 

near-boundary respectively. 

 

Figure 5.8: 𝑅2 values for average covariance functions of all considered boundary 

conditions, where optimal 𝛼 values are utilised, computed over 𝛺 and 𝛺𝐵 denoted by 

the suffix “- F” and “- B” respectively 

It can be seen in Figure 5.8 that the weighted D-N approach yields a more consistent 

match to the ACF. Almost all applied boundary conditions result in fields that follow a 

similar pattern of a decreased wellness of fit as 𝑙 increases, and similarly after a 

certain point as 𝑙 → 0. An exception is seen when the Neumann boundary condition 

is applied. As 𝑙 → 0.5, the correlation structure becomes unchanging, where further 

increasing 𝑙 will have no effect on the static structure. By this, we can assume that 

the correlation structure is beginning to stabilise at 𝑙 = 0.4, which can be seen in the 

difference in the covariance function of the Neumann boundary condition in Figure 

5.7 (c) and (d). Thus, as 𝑙 increases, the ACF will shift closer to the static Neumann 

covariance curve, resulting in a larger R2 value but not necessarily a truer correlation 

structure. It is also worth noting that when 𝑙 = 0.5, the domain Ω = ΩB, suggesting 
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that the error in the correlation structure at the boundary is seen throughout the 

whole domain regardless of the applied boundary condition. Figure 5.8 also shows 

that the Robin condition with λ = 1.42𝑙 may not always be the best choice for 

approximating the ACF due to its sharper fall in R2. This supports the suggestion in 

Roininen et al. (2014) that λ could be given as a function on the boundary.  

The effect of the applied boundary condition on the level of error in ΩB can also be 

quantified in this way, being visualised in Figure 5.8 as the separation between a 

given boundary condition’s R2 curves when calculated over Ω and ΩB respectively. 

The largest level of disparity is seen when the Neumann boundary condition is 

applied without extension, where the covariance functions calculated over ΩB appear 

to have a better fit. This can be further seen in Figure 5.2 (d), where the centre of the 

domain appears more diffuse. On the other hand, Neumann-Extended results in the 

least error over ΩB. This is due to the computational domain being extended, and the 

errors seen in the near-boundary will not be carried through to the inner cube Ω 

where the covariance functions are calculated. The weighted D-N approach also has 

marginal differences in R2 over Ω and ΩB, where the choice of λ = 𝜆1 or λ = 𝜆2 has 

negligible effects on the level of difference. As 𝑙 decreases, the near-boundary 

effects can be seen to reduce to the point where the curves appear identical, 

suggesting that an appropriate choice of α can mitigate error seen over ΩB. This is in 

contrast to the Robin condition, whose near-boundary effects in fact begin to 

increase as 𝑙 decreases from 0.15 to 0.1, and the Neuman-Extended condition 

whose near-boundary effects increase over the full domain but decrease over the 

near-boundary region with decreasing 𝑙 in this range (see Figure 5.9). When 

generating fields with Neumann-Extended boundary conditions, the combination of 

domain extraction and a decreasing 𝑙 suggests the error in the near boundary and 

full domain will converge due to the shrinking of near-boundary region as 𝑙 reduced.  

After a certain point, the difference between the boundary regions of the weighted D-

N conditions begins to grow as seen in Figure 5.9, and could be mitigated with slight 

variation in the chosen α or by using a finer mesh.  
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Figure 5.9: 𝑅2 values for average covariance functions over a relative length-scale of 

0.1 - 0.15 for all considered boundary conditions excluding the standard Neumann 

condition, where optimal 𝛼 values are utilised, computed over 𝛺 and 𝛺𝐵 denoted by 

the suffix “- F” and “- B” respectively 

Finally, the relationship between the optimal values of α with respect to 𝑙 can be 

determined as seen in Figure 5.10, where ‘Data’ refers to the calculated optimal α for 

a given relative length-scale, and ‘Fitted’ are curves fit to said data. 
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Figure 5.10: Relationship between the relative length-scale 𝑙 and optimal 𝛼 

The functions can be described as 

α(𝑙) = 𝑎𝑙2 + 𝑏𝑙 + 𝑐         (5.8) 

where 𝑎 = −4, 𝑏 = −0.3857, and 𝑐 = 0.9679 when λ = 𝜆1, and 𝑎 = −1.1905, 𝑏 =

−0.6262, and 𝑐 = 0.5229 when λ = 𝜆2. The functions were determined over 𝑙 from 

0.1 – 0.4, but are applicable from 0 – 0.445. Both instances of equation (5.8) are 

quadratic, with λ = 𝜆2 being smoother in nature. This suggests that upon 

implementing the weighted D-N condition, small variations in the chosen α from its 

optimal value will have a less detrimental effect on the resulting correlation structure 

when λ = 𝜆2 as opposed to λ = 𝜆1. As 𝑙 increases, the optimal value of α reduces in 

both cases. This relates to a more dominant Neumann component in the condition. 

This also agrees with the increase in R2 for the Neumann condition, suggesting that 

at larger 𝑙, having a larger Neumann component would result in a better matching 

correlation structure. It is also worth highlighting that both fitted curves converge to a 

common root 𝑙 = 0.445, where the Dirichlet component of the weighted D-N 

condition vanishes, suggesting that the pure Neumann condition will give just as 

sufficient an approximation. 



89 
 

5.3.4 Mesh Convergence 

A similar testing procedure was carried out as above for 𝑙 = 0.1 over the same 1 m 

cube as in Figure 5.4 (a) for different mesh sizes to determine if the solution is mesh 

converged. Here, the weighted D-N boundary condition was applied with λ = 𝜆2. The 

mesh was divided into relative element lengths Le of 0.1, 0.05, 0.03333, and 0.025 

for the regular hexahedral elements. The testing range of α was chosen as 0.41 – 

0.49 to assess the capabilities of the relationship between α and 𝑙 given in equation 

(5.8) and shown in Figure 5.10, where the functions exact value gives α as 0.45. 

Here, the accuracy was determined by Root Mean Squared Error (RMSE) and R2 

values of the covariance function plots to the true ACF. The RMSE was used here as 

an additional metric as it quantifies the error as absolute values as opposed to the R2 

which is a percentage-based indicator and can be less interpretable for ill-fitting 

curves. The covariance functions compared with the ACF for different mesh sizes 

can be seen in Figure 5.11.  



90 
 

 

Figure 5.11: Covariance plots of cubed domain, with 𝑙 = 0.1, over the optimal range 

of 𝛼 for 𝐿𝑒 of (a) 0.1, (b) 0.05, (c) 0.03333, and (d) 0.025 

Apart from the element length 0.1 case (Figure 5.11 (a)), the covariance plots match 

well with the true function, showing that for all mesh sizes, the mesh is converged 

and the 𝜆2 relationship gives a sufficiently accurate choice of α. This can be seen 

further in Table 5.1, where the R2 and RMSE values are presented for the considered 

mesh sizes when α = 0.45, with the RMSE values being visualised in Figure 5.12. 

Table 5.1: 𝑅2 and RMSE for 𝛼=0.45 and 𝑙 = 0.1 for different relative mesh sizes 

Le R2 RMSE 

0.1 -2.60544 0.19559 

0.05 0.94716 0.05224 

0.03333 0.98970 0.02410 

0.025 0.99522 0.01643 
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Figure 5.12: RMSE values for 𝛼=0.45 and 𝑙 = 0.1 with different relative mesh sizes 

The convergence of the mesh -as well as the confirmation of the applicability of the 

𝜆2 relationships in equation (5.8)- suggests that the values of α fit through the 

parametric investigation are adequate, and were evaluated over an appropriate 

mesh. When considering an appropriate mesh size, it is accepted that the element 

length should less than 𝑙/2 (Huang and Griffiths, 2015), ensuring that the variation 

seen over length 𝑙 is well represented. In practise, 𝐿𝑒 ≈ 𝑙/5 is more than sufficient in 

capturing the local variation observed within 𝑙. 

It is worth noting that these results are related to the choice of covariance kernel 

when formulating the governing SPDE. If other kernels were chosen, then it is 

necessary to repeat the process as the optimal values of alpha would change.  

5.3.5 Dog bone example 

To further test the applicability of the weighting parameter, random fields were 

generated over a dog bone shaped specimen, whose shape is synonymous with the 

experimental determination of tensile properties of cement composites (Na et al. 

2016; Krishnaraja et al. 2018; Zhu et al. 2019). The domain Ω was discretised to 

contain 91203 nodes, where the mesh and relative dimensions can be seen in 

Figure 5.13 (a).  
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Figure 5.13: (a) Dog bone unstructured mesh consisting of hexahedral elements, (b) 

random field realisation when using the weighted D-N boundary conditions with 𝛼 =

0.32 for 𝑙 = 0.25 (scaled to zero mean and a standard deviation of 1) 

The length scale given is relative to the central portion of the dog bone, whose 

dimensions are of 1 in both the x- and z-axis. The size and shape of the domain was 

chosen such that the percentage of the domain which is dominated by ΩB is 

relatively low. This ensured that the problem formulation is not heavily constrained 

due to the domain shape, and the error seen in the near-boundary region does not 

propagate through the whole domain. Similar to the parametric regime, 10 fields 

were generated with a length-scale of 𝑙 = 0.25 -relative to the dimensions of the 

central portion- for each applied boundary condition, with α = 0.32 for the weighted 

D-N condition with λ = 𝜆2. A sample field is shown in Figure 5.13 (b) when using the 

weighted D-N condition with α = 0.32. The average covariance function for each 

applied boundary condition was determined, as seen in Figure 5.14. 
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Figure 5.14: Average correlation function comparison across the dog bone domain 

when applying the Robin, Neumann, and Weighted D-N boundary condition with 𝛼 =

0.32 

As expected, the Neumann case offers the worst fit to the function, with the Robin 

and weighted D-N conditions offering a marginal under and over estimation 

respectively. The choice of α adopted here is based on a function obtained from a 

domain where the relative length-scale is well defined in all directions. For the case 

of the dog bone, the true relative length-scale differs in each portion of the domain, 

where the top and tail sections in fact have a smaller associated 𝑙 than that 

considered. This will be reflected in the chosen α, where a smaller 𝑙 suggests taking 

a larger α. In this way, taking a larger alpha will shift the covariance function closer to 

the true ACF, converging to the best possible fit in terms of the error estimation for 

this domain and applied boundary condition. Both the Robin and weighted D-N 

provide an R2 > 0.99 from Figure 5.14, suggesting that both are more than sufficient 

to apply in this case. The benefit of employing the weighted D-N condition is the 

ability to tune α by small perturbations to further reduce the error based on the 

chosen relative length-scale and domain geometry. 

The near-boundary error associated with complex geometries is related to the size of 

the near-boundary region relative to the full domain, as well as the distinct portions 

that it may encompass. Having complex geometry could lead to regions of the 
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domain that are entirely made up by the near-boundary region due to its size being 

dependent on the length-scale. Having a smaller relative length scale value would 

suggest a reduction of the near-boundary region, so the chance of having zones that 

are purely made up of the near-boundary region would decrease. However, it is 

possible that small relative length-scales will not be sufficient to reduce this as there 

could be thin sections of domain that contain points that are always close enough to 

the boundary to be considered inside the near-boundary region. 

5.4 Conclusions 

This chapter presents an optimised boundary condition applied to the formulation of 

the stochastic PDEs solved to generate correlated Gaussian random fields. The 

condition aims at reducing spurious values in the near-boundary region, and has 

been shown to perform well inside and outside of the range of the parametric 

analysis that followed. It was found that the near-boundary error of the weighted D-N 

approach reduced with decreasing 𝑙 when employing optimal values of α, and is 

more consistent with the correlation structure of the full domain. Similarly, the 

weighted D-N approach provides an overall better match to the autocorrelation 

function when compared with all other applied boundary conditions. This was also 

tested for a more complex geometry, and was found to perform well. The functions 

for α based on the parametric study enable its optimal value to be determined for 

other domains and desired length-scales.  
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Chapter 6 

Three-dimensional unsaturated flow in heterogeneous soil 

through tractable Gaussian random fields 

6.1 Introduction 

The variability present in a given material can have a large influence over its 

behaviour and performance. Unlike homogenous materials that exhibit consistent 

properties throughout their volume, heterogeneous materials possess spatial 

variations in their characteristics, be it in terms of composition, micro-structure, or 

mechanical properties. Whilst heterogeneity can be a desired trait, such as in 

composite materials, it can also introduce uncertainty in predictability, quality control, 

and long-term durability. This variability should be accounted for during design, 

testing, and manufacturing of engineering systems, where robust methods of 

quantifying the resulting uncertainty must also be employed. 

Fingered flow in soils is one of many examples of how heterogeneity influences fluid 

flow in unsaturated soils. When water infiltrates into soils that are spatially variable in 

their properties, a uniform wetting front is not often observed. Instead, due to 

differences in soil composition, texture, or compaction, water may flow through 

certain preferential flow pathways, creating channels or "fingers" of more rapid 

moisture movement (see Figure 6.1). 
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Figure 6.1: A slice obtained from MRI imaging of a 15 x 15 x 15 cm3 sand sample 

showing a fingered profile after having 600ml of water introduced over 3 minutes to 

the top surface (after Posadas Ay et al. (1996)) 

Understanding and predicting fingered flow is crucial in many geotechnical 

engineering related fields where water and soils are components, affecting 

processes such as water availability, nutrient transport, and slope stability. 

In this chapter, a coupled FE model for analysing fingered flow in unsaturated soils is 

presented, where correlated Gaussian random fields are used to represent the 

heterogeneity of soil transport properties. The random field, from which the 

stochastic properties are computed, is generated by solving a set of partial 

differential equations (PDEs) derived from Whittle-Matérn’s autocorrelation function 

(Lindgren et al. 2011; Roininen et al. 2014), as detailed in Chapter 3. The approach 

is applicable to very large data sets (>106) because the sparsity of the matrices in 

the discretised PDE allow for extremely efficient treatment. By contrast, classical 

geostatistical methods often struggle to solve such problems (Vergara et al. 2018). 

For further discussion on the SPDE approach versus kernel-based methods, see 

Simpson et al. (2012). Since the PDEs have the same structure as those of the 

transport problem, the same FE framework may be used for their solution, thereby 

removing the need for potentially complex dual implementations (Jiang et al., 2022).  

This proposed technique has not previously been applied to the simulation of 

fingered flow in two or three dimensional domains. The novel approach presented 

here is applied to the representation of unstable fingered flow and compared to 
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experimentally observed in situ behaviour (Wang et al. 2003). Similarly, a new 

approach to account for spatially varying boundary conditions is presented. The 

method considers the spatial variation in material properties on the boundary, and 

weights the applied boundary condition such that there is more infiltration in some 

areas than in others.  

Section 6.2 presents the application of random fields for representing material 

heterogeneity; Section 6.3 considers a novel way to apply boundary conditions whilst 

accounting for surface heterogeneity; Section 6.4 presents the results of the 

simulations; Section 6.5 deals with the uncertainty of the presented results; and 

Section 6.6 concludes on the investigation and modelling approach. 

6.2 Random field application 

The discretised stochastic PDE (4.30) is solved as a pre-process to the moisture 

transfer problem, resulting in a normalised array with field values for each nodal 

position. It was implemented to be modular, such that the model is not dependent on 

running the field generation algorithm with every simulation if it is not necessary for 

the analysis. The generated array is scaled using experimentally determined mean 

and standard deviation values of the transport parameter being considered to 

compute the required parameter values for the spatial domain. Relevant parameters 

could, for example, include the grain size, porosity, initial moisture content and 

hydraulic conductivity. The chosen parameters have a correlated structure based on 

the Whittle-Matérn autocorrelation function. When the model is run, a stochastic 

input file determines the stochastic components of the model to execute, including 

which parameters to represent by random fields, whether they are correlated to each 

other, and the specific statistical properties that they must hold. 

In the present work, the fields are scaled using mean and standard deviation values 

from experiments. In addition, to ensure that the values remain physically 

meaningful, the distributions were capped at 3 standard deviations from the 

associated mean values. This accounts for over 99.7% of the overall distribution. In 

all of the cases considered in the present work, this was sufficient to ensure that the 

values remained physically meaningful. If problems arise for which this is not the 

case, then, either the standard deviation can be reduced, or the distribution capped 

to ensure only physically meaningful values are considered. 
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Figure 6.2 presents a flow chart of how the variability propagates throughout the 

analyses, specifically in terms of the constitutive components of the model that 

govern the hydraulic response. By introducing the random field initially, the spatial 

variability propagates through the constitutive components of the model, resulting in 

explicit and implicit variability of model parameters. The computational non-linearity 

can grow quickly due to the relations between model parameters. 

 

Figure 6.2: A flow chart of the propagation of variability throughout the model (see 

Section 6.4 for details of the specific terms) 

6.3 Heterogeneity within boundary conditions 

When considering rainfall on a soil surface, the resulting infiltration fluxes on a region 

of more permeable soil -typically associated with the larger pores along the soil 

surface- would be expected to be greater than those in nearby less-permeable 

regions. As infiltration progresses, the nearby pores will receive less water due to the 

highly conductive neighbouring regions, further reducing the available water for the 

rest of the surface. This results in water entering the soil in the most conductive 
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regions of the soil first, and then pluming outwards as the degree of saturation and 

conductivity of the medium increase. Similarly, the movement of water into the soil 

will be much more concentrated initially to the most conductive areas, and then 

smooth over the whole domain with increasing saturation of the near surface. 

Physically, this can be thought of as allowing for the water to track to the paths of 

least resistance. 

Surface fluxes are typically represented as a uniformly distributed flux applied to the 

boundary surface. This assumes that water applied to the surface of the domain will 

enter the soil body at equal rates for any given position on the boundary, suggesting 

that surface conductivity and other physical parameters such as pore-size must be 

uniform across the surface. This also implies that the soil body is solely responsible 

for driving unstable flow, and that the surface has little influence. In reality, this is not 

the case, as variability at the surface interface can influence the behaviour of the 

invading fluid phase. If a material body is assumed heterogeneous, as in the current 

investigation, then the same assumption of variability should logically be extended to 

its boundaries. It follows that the boundary condition applied at the infiltration 

surface, be it a Neumann or Dirichlet condition, should be weighted to account for 

spatial variations in surface conditions.   

Here, a convenient and novel approach is proposed that introduces spatial variation 

at the domain surface. This is accomplished by weighting the applied flux in localised 

regions of a Kernal function, referred to as “blocks”, such that the total applied flux is 

preserved. The surface variation used to weight the flux is taken directly from the 

variation in material properties obtained through the generated Gaussian random 

fields. In this way, variation in surface penetration can be coupled or decoupled from 

the correlated structure present in the spatially varying material properties of the soil 

body.  

In 2-D, each block is associated with a collection of nodes from the surface. Figure 

6.3 shows a schematic of how this is applied in 2-D. A schematic of the approach in 

3-D is seen in Figure 6.4 (a), where the block under consideration is the highlighted 

centre, and the shape functions of each axis are in red. 
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Figure 6.3: Schematic for the localised distribution of flux. The black line represents 

the surface, the green blocks are the regions for distribution, and the red lines are 

the linear hat shape functions relating to a given block 

 

Figure 6.4: Schematic of varying surface flux application. (a) Green centre is the 

problem domain, with 8 over lapping squares, and the linear shape functions in red, 

where (b) shows their combination as a square based pyramid surface 

In 3-D, the flux is scaled by the linear combination of hat shape functions. The blocks 

overlap so as to preserve the partition of unity at all positions in the domain, such 

that the flux is preserved and the effects of nearby variations are accounted for. For 

a given node of index 𝑖, this is calculated as 

𝑞𝑖 = 𝑁𝑥𝑁𝑧
∑ 𝑞

∑ 𝐾𝑠
𝐗𝑖         (6.1) 

where 𝑞𝑖 is the scaled flux at the 𝑖-th node, 𝑁𝑥 and 𝑁𝑧 are the linear shape functions 

in the x- and z-axis respectively, 𝐗𝑖 is the random field value of 𝐾𝑠 for the 𝑖-th node, 

and ∑ 𝑞 and ∑ 𝐾𝑠 are the sums of the applied flux and saturated conductivity of the 

considered infiltration surface nodes. Due to the overlapping Kernel functions, the 𝑖-

th node value will be incrementally updated, such that the shape functions prevent 

over-scaling.  



103 
 

The blocks discretise the domain into so-called “macro elements”, such that the 

applied flux is weighted over each block. In both 2-D and 3-D, it is assumed that the 

macro element length is defined by the length-scale parameter of the main field. 

Algorithmically, the model scans over each overlapping macro element, and 

interpolates the flux based on the generated field values of 𝐾𝑠. This approach could 

also be done for other physical parameters, such as the unsaturated conductivity, or 

variation in pore size. By applying the boundary flux in this way, as opposed to a 

uniform distribution, it is possible to simulate water infiltration into regions where it 

would naturally track due to the higher conductivity of the material.  

6.4 Application: unstable preferential flow 

Having described the theoretical and numerical details of the model in Chapters 3 

and 4, as well as its implementation, it is now applied to consider infiltration into a 

heterogeneous soil mass. Specifically, a set of field experiments undertaken by 

Wang et al. (2003) is considered. In their study, Wang et al. (2003) reported 

infiltration profiles within an in-situ layer of Hanford Sandy Loam (HSL) at the 

University of California Kearney Research Centre in Parlier, California. A detailed 

description of the soil material properties with depth is given in the study, with the 

particle size distribution being illustrated in Figure 6.5. The figure illustrates the 

percentage of particles that are smaller than a given particle diameter. 



104 
 

 

Figure 6.5: Particle size distribution (log scaled) for Hanford Sandy Loam (after 

Wang et al. (2003)), where the y-axis indicates the percentage of particles that are 

smaller than a given particle diameter 

At the start of the experiment, a simulated rainfall condition was applied continuously 

to a soil surface area of 1 m x 1.2 m using a moving spraying system, originally 

designed by Ghodrati et al. (1990), for 6 hours at a rate of 1.5 cm h-1. Once 9 cm of 

water had been applied, the system was turned off and the water was given time to 

redistribute within the body of soil. At 12, 15, 18 and 22 hours, the soil was 

excavated to a 1 m depth to reveal the flow patterns. As the wetting front was not 

visible, a water-soluble anionic brilliant blue dye was applied as an initial high 

concentration pulse (2-5%) for detection. However, signs of dye retardation led to a 

pH indicator method being applied (Wang et al. 2002). The pH was elevated using a 

2.5% water solution of ammonium carbonate, enabling a pH indicator comprising 

thymol blue and cresol red (dye contents ~95%) dissolved in methanol (95% pure) to 

highlight the carbonate-affected areas. 

In this example analysis, the heterogeneity of the domain is represented by 

variations in the saturated conductivity 𝐾𝑠 and the van Genuchten parameters α𝑣𝑔 

and 𝑛𝑣𝑔. These directly affect the soil water retention curve (SWRC) and the 
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unsaturated hydraulic conductivity (Mualem 1976; van Genuchten 1980). The 

following form of the SWRC is adopted 

𝑆𝑙 = (1 + (α𝑣𝑔𝑢𝑙)
𝑛𝑣𝑔

)

1−𝑛𝑣𝑔

𝑛𝑣𝑔
        (6.2) 

and the standard van Genuchten – Mualem model is used to represent the relative 

permeability 

𝐾𝑟 = √𝑆𝑙 [1 − (1 − 𝑆𝑙

1

𝑚𝑣𝑔)

𝑚𝑣𝑔

]

2

       (6.3) 

where 𝑆𝑙 is the degree of saturation, and 𝑚𝑣𝑔 = 1 − 1/𝑛𝑣𝑔. Equation (6.3) is 

combined with the nodal field values of 𝐾𝑠 to attain the unsaturated conductivity at 

each node as 

𝐾𝑙 = 𝐾𝑟𝐾𝑠.          (6.4) 

The primary material parameters used in the model were taken directly from the 

experimental data presented in Wang et al. (2003), and can be seen in Table 6.1 

along with other the key model parameters. The mean value of saturated 

conductivity was taken as the average of those reported by Wang et al. (2003) and 

the standard deviation was calculated based on the values reported with depth 

across the sample. The van Genuchten parameters and their variations were 

calculated using the same procedure; these being estimated from the reported water 

entry pressures. The initial conditions were such that a hydrostatic hydraulic gradient 

was imposed, resulting in a variation of saturation having a mean value of 5 % and 

standard deviation of 1.5 %. 
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Table 6.1: Model parameters 

  

Saturated 

Conductivity, 

m/s 

α𝑣𝑔, 

Pa^-1 
𝑛𝑣𝑔 

Porosity 𝑙 

(vertical) 

m 

 Density 

of Water 

kg/m3 

Mean Value 7.14 x 10-6 0.00051 3 0.35 0.3  1000 

Standard 

Deviation 
2.3 x 10-6 0.0001 0.1 

- -  - 

The van Genuchten parameters are assumed to vary according to a Gaussian 

distribution with the parameters in Table 1, and result in the banded water retention 

and unsaturated conductivity curves shown in Figure 6.6 and Figure 6.7 respectively, 

with each point in the domain having an independent curve.  

 

Figure 6.6: Soil water retention curves for R1, showing the banding as a result of 

variation in the saturated conductivity and van Genuchten parameters. Each curve 

relates to a node in the discretised domain 
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Figure 6.7: Unsaturated conductivity curves for R1, showing the banding as a result 

of variation in the saturated conductivity and van Genuchten parameters. Each curve 

relates to a node in the discretised domain 

The numerical domain is defined as a three-dimensional soil mass with dimensions 1 

m x 1.2 m x 1 m. Regular hexahedral elements with an element length of 25 mm 

were used to discretise the domain (with appropriate convergence checks 

undertaken), as seen in Figure 6.8. The boundary conditions, scaled using the 

method outlined above, are also illustrated in Figure 6.8. A constant timestep of 100 

seconds was used for the simulation and was found to yield converged results.  
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Figure 6.8: Schematic to show the simulation domain, its discretisation, and the 

boundary condition applied to the surface (as indicated by the arrows) 

The boundary condition for the upper surface of the domain was taken directly from 

the field study data, with the first six hours of infiltration at a rate of 1.5 cm h-1 being 

considered. The applied boundary condition was scales using the method described 

in Section 6.3, based on variations in saturated conductivity on the surface. The 

analysis was undertaken for 28 hours to match the time over which moisture 

changes were measured in the experiment. As is standard with stochastic modelling, 

a number of numerical simulations were conducted, each with a different realisation 

of the problem. In the present study, the variation between these realisations relates 

to the field of saturated hydraulic conductivity and van Genuchten parameters. In 

total, 12 simulations were conducted. Here, the results of 3 typical realisations R1, 
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R2 and R3 are presented out of the total of 12. Convergence of the results in terms 

of confidence intervals of mean, maximum and minimum finger depths is considered 

in Section 6.5.  

The length-scale parameters were assumed to be 0.1 m in the horizontal direction 

and 0.3 m in the vertical direction. These values were chosen to reflect the nature of 

the soil body, the way it has been tended and the flora it previously hosted. In 

particular, the soil was planted with nectarine trees until three years prior to the start 

of the experiment. Fruit trees are known to grow taproots which are characterised by 

their strong downward growth (Akin and Rottke 2011; Eshel and Beeckman 2013), 

and can decrease bulk density which leads to increased hydraulic conductivity 

(Carminati et al. 2009; Mubarak et al. 2009). Similarly, the presence of former root 

channels can lead to increased vertical hydraulic conductivity (Bengough et al. 

2006). The soil body also received annual tillage as a means of weed control, 

leading to higher rates of hydraulic conductivity in both horizontal and vertical 

directions (Alletto and Coquet 2009; Kool et al. 2019). Specifically, the choice of the 

two length-scale parameters reflects the characteristic tillage dimension and the 

spacings of the vertical taproots, such that the reduction of soil bulk density will lead 

to a more conductive soil in the vertical direction.   

Figure 6.9 shows the generated fields of saturated conductivity considered for the 

given stochastic parameters. The areas in red are more conductive, so the water will 

encounter less resistance travelling through these zones. Figure 6.10 shows the 

wetting front profile of R1 (at 0.5, 6 and 22 hours) during the simulation. Both R2 and 

R3 had a similar response.  
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Figure 6.9: Generated 3-D fields for simulations R1, R2 and R3 

 

Figure 6.10: Wetting front movement of R1 over time (a) 0.5 hours, (b) 6 hours when 

surface application is stopped, and (c) 28 hours 

As described above, a tracer was applied to the surface to allow for the front position 

to be more visible when excavating. The degree of saturation necessary for the 

tracer to be activated was not reported, so here it is assumed to be 85 %. In doing 

so, the positions for which the tracer was activated were able to be plotted by 

tracking the degree of saturation of each node. Figure 6.11 shows the simulated 

patterns of tracer activation at 28 hours. The top row of Figure 6.11 shows the 

positions of tracer activation in blue for R1, R2 and R3, where the bottom row shows 

the tracer activation as a translucent layer to visualise the variability in the full 

domain. It is clear that the presence of heterogeneity in the soil has resulted in non-

uniform flow within the soil mass.  Finally, Figure 6.12 shows a comparison between 

the experiment and simulations for a set of 2-D slices of the domain, highlighting the 

fingered nature of water movement. Additional slices and full tracer plots can be 

found in Appendix A. The given cross-sections are from selected planes chosen to 

illustrate the typical behaviour observed within the three-dimensional domain. Figure 
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6.12 illustrates the ability of the model to match the unstable flow behaviour seen 

experimentally in terms of the finger shapes and distribution. For all three cases, the 

range of simulated values lie inside the experimental range, showing a good 

estimation of tracer activation depth. For all realisations in Figures 6.12, it can be 

seen that the front has penetrated slightly less into the domain than is experimentally 

observed. This is a result of the stochastic nature of the model and highlights the 

need for multiple simulations. As the generated fields are random, it is entirely 

possible to attain results from both ends of the spectrum. It is possible that tuning of 

the model would have led to resulting depths that have a closer fit, but this would 

require straying away from the values reported in the literature. It is more important 

to match the finger characteristics, such as their distribution, which the model is able 

to demonstrate well. Table 6.2 contains further details related to Figure 6.12, 

indicating a good fit between the experimental and numerical maximum, minimum 

and average tracer activation depths. 
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Figure 6.11: (Top row) Tracer activation at 85 % degree of saturation for R1, R2, and 

R3. (Bottom row) Translucent tracer activation to see variability in activation position 

and fingered shapes 

 

Figure 6.12: Comparison between experimental and numerical results in terms of 

slices for R1, R2 and R3 

It is clear that the model is able to show the observed preferential movement of 

water through more permeable regions of the soil. The fields shown in Figure 6.9 

portray these regions and, as would be expected, their morphology matches that of 

the faster draining regions shown Figure 6.10 (c). Due to the localised distribution of 

flux, it is observed that -initially- the water penetrates the soil where the conductivity 

is highest, forming fingered flow along paths of least resistance. The driest area on 

the surface in Figure 6.10 (a) is a result of the conductivity being low as seen in the 
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field of R1 in Figure 6.9. As such, a lower flux is applied and it remains dry for longer. 

Similarly, the same area will drain much more slowly due to the decreased ability of 

water to move through the medium. This is confirmed by Figure 6.10 (c), where the 

same region has the highest degree of saturation on the surface at the end of the  

simulation. An alternate analysis was run without the inclusion of locally distributed 

flux, showing that it affected only the short-term variation in the response, with the 

long-term response not being significantly impacted. This is seen in Figure 6.13, 

where the left hand column shows the application of uniform flux, the right hand 

column shows the application of flux following Section 6.3, and (a-c) represent 0.2, 

1.4, and 5.5 hours respectively. As highlighted by the surfaces in (a-c), applying the 

flux in this manner allows for the local effects of surface variability to be accounted 

for, whereas the uniform application only accounts for the global variations in 

material heterogeneity.  
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Figure 6.13: Illustration of variable flux application where the left hand column is the 

results of a uniformly applied flux, the right hand column results from the variable 

application of flux, and (a-c) are the times 0.2, 1.4, and 5.5 hours respectively 

Table 6.2: Maximum, minimum and mean tracer activation depth for experimental 

and numerical results 
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 Max Depth Min Depth Mean Depth 

 m m m 

Experimental 0.4634 0.1286 0.2852 

R1 0.3857 0.1128 0.2417 

R2 0.3745 0.1226 0.2529 

R3 0.3865 0.1625 0.2531 

 

To highlight the fully 3-D nature of the presented analyses, profiles of flux were 

computed laterally and vertically at 7 hours. Figure 6.14 shows the computation of 

the lateral flux for a slice at depth 0.2 m within the advancing wetting front, 

highlighting that the movement of the advancing wetting front is influenced by the 

lateral conductivities of the medium. This is further seen in Figure 6.15, which shows 

the computation of the flux over a vertical slice at z = 0.5 m. The orientation of the 

arrows near to the wetting front interface are not regular, and show that the invading 

fluid phase is not propagating uniformly in the vertical direction. Whilst the order of 

magnitude of the lateral fluxes is smaller than that seen vertically, they do affect the 

motion of the fluid phase, requiring a fully 3-D analysis to gain a richer description of 

the problem. 
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Figure 6.14: Computation of lateral flux over a slice of the domain within the 

advancing wetting front 7 hours into the simulation 

 

Figure 6.15: Computation of vertical flux over a slice of the domain within the 

advancing wetting front 7 hours into the simulation 



117 
 

Whilst the overall front movement appears quite regular in Figure 6.10, the build-up 

and movement of water in certain zones behind the wetting front is what 

distinguishes the model from those which portray uniform flow. It is noted that 

regions of soil which are less permeable see a greater build-up of water as the 

movement of the wetting front is retarded due to the lower conductivity. These areas 

correspond to higher degrees of saturation and relate to regions at which the 

assumed tracer activation value is more likely to be satisfied. Similarly, the vertical 

fluxes computed in Figure 6.15 show the strong preferential nature of the flow due to 

the stronger intensity of the wetting front movement in certain regions. 

6.5 Uncertainty analysis of finger depths 

Monte Carlo (MC) approaches are frequently used to calculate statistical and 

associated convergence metrics. These methods usually employ relatively large 

numbers of realisations (hundreds) and, as such, are computationally expensive 

(Jiang et al., 2014; Nikolaidis et al., 2013; Seçgin & Kara, 2019). It is challenging to 

determine, a priori, the number of simulations required to achieve convergence of a 

particular statistical variable to a desired tolerance.  Whilst some investigators have 

considered such methods (Lerche and Mudford 2005), they generally require an 

undetermined number of runs to establish the required statistical values. An 

advantage of the correlated Whittle-Matérn method used for the present work is that 

far fewer simulations are required to reach convergence of stochastic measures than 

for MC analyses. This is demonstrated below, where the mean, maximum, and 

minimum finger depths obtained from increasing numbers of analyses are 

considered. The procedure used to compute the statistical values of these 

parameters is described in the following section, and can also be found in a recent 

paper presented by the author and colleagues (Ricketts et al. 2023). The parameters 

of interest are assumed to follow a normal distribution, such that confidence intervals 

for the given parameters can be calculated. This is the confidence level that the 

population mean of the mean, maximum, and minimum finger depths lie within a 

range of calculated values. 

The confidence interval (CI) can be calculated as follows 

CI = �̅� ± 𝑡̅ 𝜎

√𝑛𝑠
= �̅� ± 𝑡̅SE        (6.5) 
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where �̅�, 𝜎 and 𝑛𝑠 indicate the sample mean, sample standard deviation and sample 

size respectively, and SE is the standard error. The parameter 𝑡̅ is the t-score which 

is used as a correction for the sample size (Campbell 2021). Thus, CI is determined 

and this gives the level of certainty that the population mean �̅�𝑃 lies within the 

following range  

�̅� − 𝑡1SE ≤ �̅�𝑃 ≤ �̅� + 𝑡2SE        (6.6) 

where 𝑡1, 𝑡2 are the lower and upper t-scores respectively. The calculated sample 

mean values, standard deviations, mean normalised standard deviations, SE, and t-

scores 𝑡1 and 𝑡2 are given in Table 6.3 for each investigated parameter in the 12 

simulations. The final calculated ranges are given in Table 6.4. 

Table 6.3: Sample mean, standard deviation, mean normalised standard deviation, t-

scores 𝑡1 and 𝑡2, and standard error 𝑆𝐸 for the mean, minimum, and maximum finger 

depths of the 12 simulations 

  

Mean 

(m) 

Standard 

deviation 

(m) 

Mean 

normalised 

standard 

deviation 

(m) SE t1 t2 

Mean finger 

depth 0.25315 0.00558 0.02205 0.00167 6.78633 5.34001 

Minimum 

finger depth 0.15657 0.02127 0.13586 0.00619 6.82084 4.67182 

Maximum 

finger depth 0.35249 0.02518 0.07144 0.00730 5.24333 4.86392 
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Table 6.4: Final calculated ranges of the 12 simulations 

  

Lower bound 

(m) 

Upper bound 

(m) 

Mean finger depth 0.24182 0.26206 

Minimum finger depth 0.11436 0.18549 

Maximum finger depth 0.31424 0.38521 

 

For each individual parameter, the certainty in the calculated intervals was calculated 

as ≥ 99.7% with 12 simulations or more. When comparing the experimental depths 

given in Table 6.2 against those Table 6.4, it is clear that the calculated ranges are 

within the tolerance of the experimental data. The convergence of the confidence 

intervals can be seen in Figure 6.16, where a sufficiently high level of confidence is 

achieved for each of the investigated metrics. This study suggests the number of 

realisations required to achieve statistical significance may be determined by 

conducting successive analyses until the required confidence level is achieved. 

Finally, it is also possible to show the evolution of the confidence interval for a 

desired level of confidence. Here, 95% confidence was chosen, and the confidence 

interval was calculated as the number of simulations increased. This is seen in 

Figure 6.17, which shows that the interval stabilises as the number of observations is 

increased. In addition, we infer that the number of simulations required to achieve 

relatively high confidence levels is much fewer than required by the comparable MC 

process. Figure 6.18 shows box and whisker plots of tracer activation depth for the 

experimental profile and the 12 simulations, further highlighting the ability of the 

model to represent the physical problem and lie within the experimental range. 
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Figure 6.16: Confidence in the calculated intervals of the investigated parameters of 

finger depth 

 

Figure 6.17: Convergence of confidence intervals for finger characteristics at 95% 

confidence 
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Figure 6.18 Box and whisker diagrams of tracer activation depth for the experimental 

data and 12 simulations conducted. The green triangle represents the mean value of 

tracer activation depth 

In situations where numerical results may vary considerably between different 

stochastic realisations (e.g. finger penetration depths and patterns), it may be 

beneficial to be able to determine a range of values for the relevant parameter with a 

high, and quantifiable, degree of certainty. For complex field scale analyses, such as 

3-D slope stability problems, the presented approach would enable the quantification 

of risk of failure to a defined degree of certainty. 

6.6 Conclusions 

The heterogenous nature of soils has a strong influence on hydrological flow 

processes. In order to describe non-uniform moisture flow in soils using the finite 

element approach, it is necessary to represent spatial variations in the material 

properties that govern flow behaviour. The random field from which such properties 

are derived should have an intrinsic correlation length, otherwise the associated 

simulations are not objective with respect to mesh grading. The Gaussian random 

field approach provides an effective means of representing a field of material 

properties for a body of soil. A proper simulation of the soil transport processes also 

requires spatial variations of boundary infiltration properties to be considered. The 

new method proposed of using overlapping kernel functions covering the infiltration 

boundary provides an effective means of simulating non-uniform inflow into a domain 
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whilst maintaining mass balance at all times. This allows for the material 

heterogeneity seen at the surface of the domain to have influence over the applied 

boundary condition, as would be the case in real life systems. 

Incorporating the new field generation algorithm into a 3-D finite element model for 

moisture transport allows non-uniform flow behaviour within soil bodies to be 

simulated in a realistic manner.  A set of validation analyses that considered moisture 

infiltration into a layer of sandy loam showed that the new proposed model is able to 

represent the characteristics of non-uniform moisture flow into and through a 

heterogeneous body of soil with good accuracy.  The method achieves relatively high 

confidence levels for characteristic stochastic variables with relatively few 

simulations (e.g. a 99.7% CI with 12 realisations). In addition, the method allows a 

required level of confidence -for a set of stochastic variables- to be determined by 

undertaking successive analyses until the desired value is achieved. Due to its 

inherent computational convenience and efficiency, the proposed technique is 

suitable for large field-scale problems, where the statistical significance can be 

determined with a comparatively low number of simulations.   
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Chapter 7 

Three-dimensional unsaturated flow in heterogeneous water 

repellent soil 

7.1 Introduction 

It has been established that material variability can lead to distinct unstable hydraulic 

behaviour, and that it is prominent in soils due to their largely varied display of spatial 

heterogeneity. This behaviour is amplified when the wettability of the medium is non-

uniform, specifically if the soil becomes hydrophobic. When soil is naturally water 

repellent (WR), there is often spatial variability of wettability (Woods et al. 2007), 

such that a network of preferential flow paths is created. As water infiltrates, the 

water repellent regions will impede flow, resulting in preferential pathways in regions 

where the soil is wettable. This leads to highly preferential fingered flow, and can 

result in rapid movement of contaminants, or induce localised erosion due to the 

fingered behaviour of the flow. The WR properties of soil can be induced artificially 

through addition of chemicals, via contamination, and as the consequence of natural 

processes such as wildfire, which can lead to events such as flash flooding. With the 

risk of extreme weather events increasing, and associated rise in wildfire induced 

water repellency, the need to model and predict the behaviour of soil transport 

processes is ever more necessary. 

Many modelling approaches for soil typically consider the soil to be fully wettable, 

making it challenging to have a representation of the material that is consistent with 

non-wettable behaviour. Similarly, even with constitutive components that can 

represent hydrophobicity, the heterogeneity of the soil properties need to be 

accounted for. Previous modelling studies of fingered flow in water repellent soils 

have considered hysteresis as a driving factor for the flow dynamics (Nieber 1996; 

Nieber et al. 2003). The effects of hysteresis were brought into the solution of the 

mass balance equation, based on Richard’s equation, and was seen to be the cause 

of persistence in fingered flow. The heterogeneity of the medium was also 

considered by Ritsema et al. (1998), where the formation and recurrence of fingers 

were simulated based on a numerical solution comprising coupled water and air flow 
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in a 2-D domain. The authors claimed that the spatial variability of wettability, inferred 

by a non-homogenous medium, will cause fingers to become permanent preferential 

pathways. In many cases, it is seen that the heterogeneity of the medium is an 

influential factor in flow related process as in soil, suggesting that -in addition to the 

material variability- the wettability of the medium should also vary spatially. 

In this chapter, an investigation into the modelling of hydrophobic soil is presented. 

As in the previous chapter, local spatial variations in material parameters are 

accounted for using Gaussian random fields. The development of the model is first 

discussed, and then applied to replicate a field scale experiment carried out by 

Lipsius & Mooney (2006). A key component is the relationship used to represent the 

saturation-capillary pressure relationship responsible for defining water entry 

pressures. For wettable soil, as in Chapter 6, this can be done with the standard van 

Genuchten relation (van Genuchten 1980). For hydrophobic soil, this is not 

applicable; thus, an alternative and its use with random fields is employed (Foroughi 

et al. 2022). Results from 3 representative simulations are presented based on the 

provided experimental data, and quantified using confidence interval calculations as 

in the previous chapter. 

Section 7.2 presents the numerical developments of the model from that of Chapter 

6; Section 7.3 presents the simulated tracer tests and quantifies the observed 

infiltration profiles based on the dye coverage percentage; and Section 7.4 gives the 

main conclusions of the chapter. 

7.2 Modelling considerations 

7.2.1 Constitutive relations to account for hydrophobicity 

In the previous chapter, the saturation-capillary pressure relationship used was the 

standard van Genuchten relation. Whilst this is suitable for considering wettable 

unsaturated soil, the behaviour of hydrophobic soil may not be so well represented. 

The difficulty in representing the relationship between suction and degree of 

saturation lies in the water entry pressure (WEP) needed for a fluid to enter into the 

soil. If the soil is not WR, then the WEP is in the positive suction range. On the other 

hand, for hydrophobic soil, the WEPs needed for infiltration can be in the positive 

pore-water pressure range (i.e. negative suction). This can be seen in Figure 7.1 

(after Zheng et al., (2021)), where conceptual illustrations of soil water retention 
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curves for fine and coarse grained soils, as well as WR soils, are shown. The van 

Genuchten relation cannot account for the positive pore-water pressures that are 

characteristic of WR soil, suggesting that the approach of Chapter 6 will need to be 

modified for these layers. 

 

Figure 7.1: Illustrative example of the soil water retention curves resulting from soils 

with differing unsaturated hydraulic properties (reproduced from Zheng et al., (2021)) 

Recently, Foroughi et al., (2022) proposed a new saturation-capillary pressure 

relationship for porous media of varying wettabilities, which proved to be more 

flexible and accurate than existing relationships. The relationship matched well 

against a wide range of experimental data, measured from rocks, soil, bead and 

sand packs, and manufactured fibrous materials. This relationship can be written as 

𝑆𝑙 = (
1

π
(

π

2
− tan−1 (

𝑠−𝐴

𝐵
)))

1

𝐶
       (7.1) 

where 𝐴 is an indicator of wettability, 𝐵 is the curvature index, and 𝐶 is the saturation 

exponent. Whilst there is no fundamental basis for the functional form, the given 

parameters of the function can be interpreted physically. The most important in this 

study is 𝐴, where 𝐴 > 0 indicates a wettable or hydrophilic medium, 𝐴 < 0 indicates 

hydrophobicity, and 𝐴 ≈ 0 suggests a mixed-wettable medium where locally the 
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medium could be hydrophobic or hydrophilic. The effects of changing the non-

dimensional equivalent of parameters 𝐴, 𝐵, and 𝐶 can be seen in Figure 7.2. The 

given relation (7.1) is adopted in the current study based on its ability to represent 

the saturation-pressure relationship observed in a wide range of mixed wettable 

media. 
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Figure 7.2: Effects of fluctuation in parameters: (a) �̅�, (b) �̅�, and (c) 𝐶, where the 

dimensionless form was attained using Leverett J-function scaling (Leverett 1941) 

(reproduced from Foroughi et al., (2022)) 
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7.2.2 Random field application 

As in the previous chapter, random fields generated through the solution of equation 

(4.30) are applied to represent material heterogeneity. A key difference here is that 

the domain is now considered as a layered domain, where layers can be defined by 

material type. The layers could be used to define soil types, such as sand or clay, or 

levels of wettability. It is noted that the model is capable of accounting for different 

soil types coupled with differing wettabilities. However, here the focus is on the 

description of layers defining levels of wettability for a given soil type as this is the 

case for the practical example that follows in Section 7.3. To describe the application 

of correlated random fields under this configuration, the domain given in Figure 7.3 is 

considered, where a soil mass is illustrated with a water repellent top layer (a) and a 

wettable sublayer (b). 

 

Figure 7.3: Illustrative domain for layered hydrophobic soil, composed of a water 

repellent layer (a), and a wettable layer (b) 

In Chapter 6, the generated Gaussian random fields were chosen to directly 

represent the saturated conductivity 𝐾𝑠, and the van Genuchten parameters 𝛼𝑣𝑔 and 

𝑛𝑣𝑔, leading to spatial variation in the SWRC and conductivity relations amongst 

other constitutive components. In wettable regions, such as Figure 7.3 (b), the model 

behaves in the same way as that described in the previous chapter. However, for the 
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hydrophobic layer, Foroughi et al.’s, (2022) relationship is adopted and spatial 

variation in the water retention function is accounted for by varying the parameters of 

equation (7.1), namely 𝐴, 𝐵, and 𝐶, throughout the layer.  

Along with these parameters, 𝐾𝑠 is also varied as in the wettable layers, which allows 

the unsaturated conductivity to vary spatially as before. The relative coefficient of 

unsaturated hydraulic conductivity 𝐾𝑟 for the WR layer is calculated as in the 

previous chapter -equation (6.4)- and is parameterised using the particle size terms 

𝑑60 and 𝑑10, the grain sizes for which 60% and 10% are finer respectively. This is 

related through 𝑛𝑣𝑔 in the relationship for 𝐾𝑟, such that 

𝑛𝑣𝑔 =
𝐶1

log10 𝐶𝑢
+ 1         (7.2) 

where 𝐶1 is a model constant suggested as 1.07, and 𝐶𝑢 is the coefficient of 

uniformity, defined as  

𝐶𝑢 =
𝑑60

𝑑10
.          (7.3) 

Thus, in addition to 𝐾𝑠, 𝐴, 𝐵, and 𝐶, the terms 𝑑60 and 𝑑10 are varied spatially, such 

that 𝑛𝑣𝑔 can be calculated for each spatial position.  

The model is set up so that an arbitrary number of random fields can be generated 

with different spatial distributions assigned to material parameters. Here, the 

correlation structure of the particle size data is assumed to follow that of 𝐾𝑠, meaning 

that larger particle sizes relate to more conductive regions, where the contrary is also 

true. 

7.2.3 Transition region 

Often when modelling layered materials, the interface between layers is assumed to 

be uniform, such that the material is not mixed (Romano et al. 1998; Liu et al. 2015; 

Ahmadi et al. 2016). In many cases, it is not representative of the problem to have 

such idealised transitions between phases (Heilig et al. 2003), especially when the 

layers represent the same material. For naturally induced WR, be it through wildfire 

or contamination, the level of repellency is generally very high near the surface and 

decays with depth (Woods et al. 2007). One approach to represent this is to assume 

a localised mixture of wettable and WR regions being present within a representative 

elementary volume, with the ratio of each fraction varying with depth. As the model 
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considers discrete water retention functions in each layer, by interpolating between 

them based on the depth in a predefined transition zone, a combined water retention 

function can be calculated. This, for example, could be based on an assumption that 

the ratios of each fraction within a transition layer varies with depth. Similarly, other 

material parameters can be varied that are shared between the zones, such as 𝐾𝑠 

and 𝑛𝑣𝑔. 

To illustrate this, consider a 10 cm soil column composed of two layers of 5 cm 

length whose saturated conductivity varies between layers. A large transition zone of 

8 cm is assumed to illustrate the effects, starting at 𝑥tmin = 1 cm depth, and ending at 

𝑥tmax = 9 cm depth. Initially, two random fields 𝑓1, 𝑓2 are generated for the full 

domain, and scaled based on the desired material properties of each layer. The 

interpolated field is then calculated as 

𝑓𝐼 = (1 − 𝜗)𝑓1 + 𝜗𝑓2         (7.4) 

where ϑ is the sigmoid function, calculated as 

ϑ =
1

1+𝑒𝜔𝜖(𝑥)          (7.5) 

where ω is a smoothness coefficient of the sigmoid function, and 𝜖 varies with a 

given depth 𝑥. By varying the value of ω, the smoothness of the sigmoid function can 

be changed, such that sharp or slow transitions between 𝑓1 and 𝑓2 can be achieved. 

The sigmoid function is chosen to allow a smooth transition between  layers, an 

assumption which is addressed at the end of this section. Equation (7.5) is largely 

dependent on 𝜖, and is calculated using a simple linear interpolation based on the 

beginning and end of the transition zone as 

ϵ(𝑥) =
(𝑥−𝑥tmin)(ϵmax−ϵmin)

𝑥tmax−𝑥tmin
+ ϵmin       (7.6) 

where ϵmax, ϵmin define the range of the sigmoid function which is used for 

interpolation. This is illustrated in Figure 7.4, where (a) shows the sigmoid function, 

and (b) gives 𝑓1, 𝑓2, and the interpolated field 𝑓𝐼. Here, ω = 0.5 and 𝜖max, 𝜖min are 

defined as 10 and -10 respectively, which ensures an initially smooth transition 

between the fields to avoid sharp jumps in the interpolated parameter. This is done 

with the intention of the region being easier to visualise, purely for illustrative 

purposes. In reality, this region could be much smaller (Heilig et al. 2003). 
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Figure 7.4: Field interpolation regime where (a) gives the change in 𝜗 with depth, 

and (b) shows the interpolation between the two fields 𝑓1, 𝑓2 based on 𝜗. The fields 

are transitioned over the grey region of 𝑥tmin to 𝑥tmax 

The same procedure can be carried out for interpolation between the SWRCs for 

each layer, and is demonstrated in the following section. 

Through this method, the transition region and its smoothness can be defined in an 

intuitive manner, such that the transition between layers with depth follows the path 

of a sigmoid function. However, this does assume that the transition will be smooth 

between layers, with uncertainty not been accounted for. In reality, it is likely that the 

transition from one layer to another does not happen at the same rate across the 

domain. This would be better represented by gaussian processes to define the 

region of depths of the transition zone. 

7.3 Application: field infiltration experiment 

With the details of the model’s developments relative to Chapter 6 having been 

discussed, it is applied to a heterogeneous soil mass. The main difference here, as 

compared to the example considered in Chapter 6, is the representation of distinct 

flow behaviour due to the presence of water repellency.  
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Specifically, the field experiment carried out by Lipsius & Mooney (2006) is considered, 

where field infiltration experiments were carried out to investigate the influence of 

water repellency on flow patterns. The soil considered was contaminated with heavy 

metals (Chromium and Arsenic) due to the leaching of wood preservatives from 

impregnated wood located at an industrial site in Bavaria, Germany. Also, it was 

observed that polycyclic aromatic hydrocarbons had entered the topsoil from tar-oils 

(Hopp et al. 2006). Both result in alterations of chemical and physical soil properties, 

and resulted in strong water repellency and the prevention of plant growth. The soil 

physical properties, including bulk density, particle size data, and the saturated 

conductivity, are given in Table 7.1. 

Table 7.1: Soil properties of the experimental site, where 𝑛𝑂 is the number of 

observations (Lipsius and Mooney 2006) 

Depth 

(cm) 𝑛𝑂 

Bulk 

density (g 

cm^-3) >2mm (%) 

630 𝜇m-

2mm  (%) 

200-630 

𝜇m  (%) 

63-200 

𝜇m (%) 

<63 

𝜇m  

(%) 

𝐾𝑠 (cm 

d^-1) 

1 - 10 18 1.51 0.4 40.6 48.6 9.9 0.6 500 

10 - 19 20 1.56 0.5 37.4 53.5 8.1 0.4 664 

19 - 22 4 1.55 0.7 30.9 58.7 8.9 0.5 745 

22 - 50 1 1.71 0.2 26.2 62.6 10.6 0.4 2500 

>50 20 1.6 0.1 23.5 65.5 10.7 0.4 850 

 

In both the spring and summer, dye tracer infiltration experiments were conducted 

such that the effects of seasonal variability could be quantified. 2 m2 plots were 

chosen based on the absence of vegetation and a non-sloped surface, as it was 

thought that the level of contamination should be higher in these regions. Brilliant 

Blue FCF (C.I. 42090) of concentration 2 g L-1 was irrigated manually on two plots, 

using a watering can, with different irrigation rates applied to each: (i) 10 mm/h, and 

(ii) 14.3 mm/h. The rate of application varied due to ponding and surface runoff. The 

following day, the plots were excavated to a depth of 1 m, and the profiles were 

photographed for later image analysis. Ten profiles were sampled in roughly 40 cm 

intervals for each plot. As the seasonal variability was found to be negligible between 
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the spring and summer (Lipsius and Mooney 2006), the following analysis considers 

the case of 10 mm/hr irrigation rate in the summer period. 

As stated in Section 7.2, random fields are employed to represent variation in 𝐾𝑠, 𝐴, 

𝐵, 𝐶, α𝑣𝑔, 𝑛𝑣𝑔, 𝑑60, and 𝑑10, where the variability of the given parameters propagate 

throughout the relations used in calculating the constitutive components of the 

model, similar to that seen in Figure 6.2. The mean and standard deviations of the 

given parameters are based on the experimental data reported in Lipsius & Mooney 

(2006) where available, with their values being presented in Table 7.2. To avoid non-

physical scaling of the fields, the assumed normal distributions of the parameters are 

capped at 3σ from the mean. As the correlated structure of the soil was not given, 𝑙 

was assumed to be 0.2 m vertically, and 0.1 m in both horizontal directions to 

account for local variations in material properties.  

Table 7.2: Random field mean and standard deviation values 

  
𝐾𝑠 𝛼𝑣𝐺 

 
𝑛𝑣𝐺 𝑑60 𝑑10 𝐴 𝐵 𝐶 

WR Mean 6.74E-05 - - 0.3471 0.1215 -50 500 1 

 

Standard 

Deviation 1.34E-05 - - 0.0062 0.0008 750 3 0.05 

Wettable Mean 1.58E-04 4.513E-04 3.2278 - - - - - 

 

Standard 

Deviation 5E-05 7.00E-05 0.0732 - - - - - 

 

The most influential spatially varying parameter for the WR layer is 𝐴, as this is what 

largely controls the WEP and the level of water repellency that a given position in the 

domain has. Larger variations in 𝐴 across the domain will lead to more unstable flow, 

with strongly pronounced fingering behaviour. It also allows for positive pore-water 

pressures to be assigned as WEPs, as suggested by Figure 7.1.  

The simulation domain is defined as a 1 m cube, discretised by regular hexahedral 

elements of element length 2 cm (with appropriate convergence checks undertaken), 

and can be seen in Figure 7.5 (a) along with the applied boundary conditions. The 

rainfall flux boundary condition was applied using the variable application method 

outlined in the previous chapter. Based on the numerical formulation, the remaining 

boundaries are assumed insulated. An initial timestep of 10 seconds was used, 
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which was then increased to 100 seconds when the wetting front became less sharp, 

this approach was found to yield convergent results. The layered configuration of the 

soil is seen in Figure 7.5 (b), where the transition zone spans 15 cm of the domain, 

labelled in red.  

 

Figure 7.5: Numerical domains showing (a) the mesh and applied boundary 

conditions, and (b) the size and type of soil layers 

The top part of the soil is assumed fully hydrophobic, and the bottom section 

assumed wettable. The size of the water repellent and transition layers were based 

on the top 10 cm of the experimental plots displaying signs of heterogeneous water 

repellency (Lipsius and Mooney 2006). The heterogeneity in the level of WR is due 

to the way that the solutes would have infiltrated the soil over time, permeating in a 

non-uniform manner. As they move preferentially though the soil, this renders certain 

regions as more WR than others, with the overall level decreasing from the surface 

with depth. By assuming a sigmoidal variation with depth in the fractions of wettable 

and WR soil at any particular location, the variation in WR with depth is represented. 

Similarly, coupling this with the random fields for local spatial variations in the 

hydraulic behaviour allows for the heterogeneity of both the material and level of 

hydrophobicity to be represented. Figure 7.6 gives example fields based on the 

values given in Table 7.2 for 𝐾𝑠 and 𝑛𝑣𝑔, where the variations in the mean values 

reflect the changing properties in the transition zone between layers.  
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Figure 7.6: Random field realisations to highlight the transitional behaviour for (a) 𝐾𝑠 

and (b) 𝑛𝑣𝑔 

As mentioned above, the SWRC for the transition region is calculated as an 

interpolation between the respective layers’ constitutive relation. At a depth of 0.05 

m, the WR relationship is used to compute the degree of saturation, as highlighted in 

Figure 7.7 (a). As the depth increases through the transition zone to 0.2 m, the curve 

is interpolated, finally being fully WR as the depth reaches 0.2 m. The curves 

presented in Figure 7.7 (a) are the SWRCs based on the mean values given in Table 

7.1, where in the model, the presented curves for a given depth will strongly vary as 

in Figure 7.7 (b) (for a depth of 0.0125 m). In Figure 7.7 (b), curves were plotted 

based on the full variation of parameters given in Table 7.1 to show the banding of 

the SWRC that is present in the model for a specific depth in the transition zone. It is 

seen that the WR section exhibits more variability compared to the wettable section. 
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Figure 7.7: Illustration of (a) Average interpolated SWRCs between the wettable and 

water repellent soil, where the dashed line at a depth of 0.125 m is the middle of the 

transition zone; and (b) the variation in the interpolated SWRC at depth of 0.125 m 

7.3.1 Tracer simulation results 

Three representative simulations R1, R2, and R3 are presented from a set of 20 

analyses. These are illustrative of the full behaviour that the model can represent, 

which is then quantified in Section 7.4.2 based on the dye coverage. For further 

results from the simulations conducted, see Appendix B. Figure 7.8 shows the 

wetting front movement at 1000, 6000, 10000, and 98000 seconds for R2, where 

both R1 and R3 had similar responses. 
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Figure 7.8: Wetting front movement in terms of the degree of saturation 𝑆𝑙 of R2 at 

(a) 1000, (b) 6000, (c) 10000, and (d) 98000 seconds 

As described above, a tracer applied to the surface allowed for imaging of the 

infiltration profiles. The degree of saturation necessary for the tracer to be visualised 

was assumed to be 35%, and this allowed the tracer position to be tracked at each 

node throughout the simulations. In the previous chapter, the degree of saturation 

required for the tracer to be visible was much higher. Wang et al. (2003) had 

difficulties visualising the applied tracer, hence a higher value was chosen to reflect 

this difficulty. When conducting similar experiments for WR soil, Lipsius & Mooney 

(2006) reported no difficulties in the tracer being observed, and as such, it can be 

assumed that a lower degree of saturation was necessary for it to be seen. 

Figure 7.9 shows the tracer activation regions for R1, R2, and R3 at the final 

timestep of 26.5 hours, where the top layer shows this in blue. The bottom layer 
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shows this same area as a translucent layer to visualise the non-uniform nature of 

the tracer regions. 

 

Figure 7.9: Tracer activation regions at 35% 𝑆𝑙 for R1, R2, and R3, where the top row 

shows the tracer in blue, and the bottom shows the same as a translucent layer 

Finally, slices were taken from the three presented simulations to compare with the 

experimental images based on the dye coverage percentage and the spatial 

distribution of the fingered shapes. These can be seen in Figure 7.10, were (a), (b), 

and (c) are the experimental images, and (d), (e), and (f) are the numerical slices 

taken from R1, R2, and R3 respectively. The specific slices that are presented were 

chosen based on their ability to match well with the limited experimental data, whilst 

also being representative of the overall model response. Further slices can be seen 

in Appendix B. The percentage of dye coverage can be used to compare the results 

of the numerical simulations against the experimental observations, indicating the 

ability of the model to represent the overall wetting front response. 
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Figure 7.10: Tracer activation regions and their respective dye coverages for vertical 

and horizonal projections, where: (a-c) are the experimental observations (Lipsius 

and Mooney 2006), and (d-f) are slices of R1, R2, and R3 respectively 
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It is clear that the range of responses seen in Figure 7.10 (a-c) are well represented 

by the numerical results (d-f). This is in terms of the spatial distribution of tracer 

activation and dye coverage percentages. One aspect that does not compare well is 

the large dye coverage in the first bar of the horizontal projection of (d-f), relating to 

tracer activation in the surface elements. This is a result of the fluid being forced into 

the body based on the numerical process of applying a flux. In reality, and as stated 

in the original study, water would infiltrate at a variable rate, where runoff and 

ponding were observed. To account for this in the model, additional layers of 

elements could be introduced to the surface acting as a region for pressure to build 

up to represent a ponding layer. In this way, water would infiltrate at a pace directly 

dictated by the material, as opposed to the numerical scheme. On the other hand, 

the dye coverage of the later regions is well within the experimental range, showing 

an adequate match with the test data. Importantly, the model exhibits infiltration 

patterns that have the same characteristics as those observed in the experiments. To 

further improve the results, the model could be tuned to selected input material 

properties. The presented results are based on the available experimental material 

data, but with careful parameter tuning, it is possible that a better fit could be 

achieved in terms of the tracer profiles. This could allow for uncertainty in 

experimental readings to be taken into account, rather than assuming there is no 

associated error. 

As the model will behave similarly to that of Chapter 6 in wettable regions, similar 

conclusions on the water movement can also be made. Namely that less conductive 

regions see a larger build-up of water as it struggles to pass through, suggesting the 

increased chance that the tracer will be active in said region. Conversely, the more 

conductive regions allow for faster passage of the wetting front, taking the tracer with 

it. Similarly, Figure 7.8 (b) illustrates the change in hydraulic response through the 

domain as the transition region is reached. The flow becomes more diffuse due to 

the smaller variation in the SWRC for the wettable regions. This is in agreement with 

the assumed behaviour of the medium, such that the water repellency should induce 

highly unstable flow that becomes more stable as it transitions into the wettable 

layer.  

Due to the water repellency in the top layer, there is a period of time in the simulation 

for which the pore water pressure builds up at the surface. This lasts until the WEP is 
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achieved for a given position, after which the water enters the soil body in a 

preferential manner. This can be seen in Figure 7.11, where (a) shows the build-up of 

fluid at the surface, (b) shows a time after the WEP has been surpassed, and (c) 

gives a point further into the simulation to show the water passing through the 

hydrophobic layer in a fingered fashion. 

 

Figure 7.11: Illustration of (a) a build-up of degree of saturation on the surface due to 

hydrophobicity at 16 minutes, (b) the fluid phase infiltrating after the pore water 

pressure has surpassed the water entry pressure at 33 minutes, and (c) a later stage 

to show the resulting fingered nature of the flow at 1 hour 

The results given in (a-c) are at times 16 minutes, 33 minutes, and 1 hour 

respectively. It is clear that in (a), the degree of saturation -and therefore porewater 

pressure- is much higher than that of the later plots. As the WEP is dependent on the 

SWRC at the given position on the surface, which vary based on the material 

variability, the water begins the infiltrate at different times causing highly unstable 

behaviour. The flux is still being applied in (a-c), showing that once the WEP has 

been surpassed, the applied fluid will infiltrate into the soil body with less resistance. 

To further illustrate the unstable flow patterns that result from the material variability, 

the flux of the invading fluid was computed for slices within the wetting front. These 

are seen in Figure 7.12, where (a) is the lateral flux within the wetting front at depth 

0.2 m, and (b-c) shows the flux for perpendicular vertical slices at z = 0.5 m and x = 

0.5 m for 2.5 hours into the simulation. As in the previous chapter, the fully 3-D 

nature of the flow is observed, where strong lateral fluxes are highly influential over 

the movement of the fluid phase. 
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Figure 7.12: Computation of the (a) lateral and (b-c) vertical flux profiles at 2.5 hours, 

where (b) and (c) are perpendicular 
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7.3.2 Uncertainty analysis of dye coverage 

To quantify the how representative the presented simulations are in terms of the 

global behaviour of the model, the same approach as in Chapter 6 is applied here, 

taken from Ricketts et al. (2023). In Chapter 6, the finger depths were characterised 

in terms of their confidence intervals, showing that for a very low number of 

simulations, a high confidence can be attained for a certain calculated range. The 

evolution of the confidence interval for a given level of confidence was then also 

shown. Here, the dye coverage is quantified in both the horizontal and vertical 

projections as this can be directly compared with the experimental data. In total, 20 

simulations were conducted to assess the level of confidence. For each simulation, 

slices from each element layer in the x and z plane were taken of the tracer 

activation solution such that the maximum, minimum and mean dye coverage of the 

histograms could be collected for each slice. For a given simulation, this resulted in 

80 slices due to the chosen element size. Once collected, the mean value of the 

maximum, minimum and mean dye coverage of all slices of a given simulation was 

taken. Finally, the confidence intervals were calculated over the mean of the 

maximum, minimum and mean dye coverage, resulting in 3 values of confidence and 

their respective ranges for each of the 20 sequential simulations. 

The dye coverage reported in Lipsius & Mooney (2006) suggested that between 8 and 

40 % of the domain was dyed. This is accounting for both 25 mm and 50 mm applied 

head, as well as both spring and summer results. Both the 50 mm and spring results 

showed a much larger coverage, leading to the wide range of dye coverage. For the 

case of 25 mm in the summer period, as seen in Figure 7.10 (a-c), these 

percentages are much lower. 

Table 7.3 shows the mean, and upper and lower bounds for the maximum, minimum 

and mean dye coverage for both the horizontal and vertical projections calculated 

using data from all 20 simulations. It can be seen that the range of the values vary, 

but are small enough to show model consistency, suggesting that the response of 

the model is consistent whilst allowing for highly varied infiltration patterns. The 

percentage values given for the maximum dye coverage are typically larger than the 

experimental equivalent, but as suggested previously, this can be attributed to the 

numerical application of flux. Similarly the percentage values match well with those 

given in the histograms of Figure 7.10 (a-c). The confidence in the confidence 
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intervals of the observed quantities is ≥ 99% for the horizontal projection, and ≥ 99% 

for the vertical projection. 

Table 7.3: Calculated ranges of dye coverage based on all 20 simulations for the 

maximum, minimum and mean dye coverage in both horizontal and vertical 

projections 

Projection Dye Coverage Lower Bound (%) Mean (%) Upper Bound (%) 

Horizontal Minimum 2.34 2.94 3.98 

 
Mean 12.26 13.03 13.89 

 
Maximum 81.85 85.11 88.73 

Vertical Minimum 3.46 4.23 5.01 

 
Mean 12.26 13.03 13.89 

 
Maximum 20.10 21.58 22.79 

 

The convergence of the confidence in the calculated intervals can be seen in Figure 

7.13 (a) and (b). As the number of simulations increases, the confidence in the 

calculated interval converges to above 95%, as seen in Figure 7.13 (a). Similarly, as 

in Chapter 6, the evolution of the confidence intervals for a given level of confidence 

was also calculated. This is shown in Figure 7.13 (b), where the convergence of the 

confidence intervals for an assumed confidence of 95% is observed. Figure 7.13 (a) 

and (b) relate to the horizontal dye coverage statistics, but the same observations 

and conclusions are seen for the vertical projection also, as in Figure 7.14 (a) and 

(b). As is expected, there is more uncertainty in the vertical dye coverages due to the 

larger variations in the vertical histograms in Figure 7.10 and the additional plots in 

Appendix B. 
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Figure 7.13: (a) Confidence in the calculated intervals of the investigated parameters 

of dye coverage in the horizontal projection, and (b) the convergence of confidence 

intervals for dye characteristics at 95% confidence 

 

Figure 7.14: (a) Confidence in the calculated intervals of the investigated parameters 

of dye coverage in the vertical projection, and (b) the convergence of confidence 

intervals for dye characteristics at 95% confidence 

7.3.3 Effects of field anisotropy 

In the previous sections of this chapter, the fields were assumed to have larger 

correlation lengths in the vertical direction, as seen in Figure 7.6 (a). To highlight the 

relative effects of this scaling, the 20th simulation was carried out again for an 

isotropic field, and another anisotropic field where 𝑙 was assumed to be 0.4 m in the 

horizontal direction. In all cases, 𝑙 in the vertical direction was kept consistent as 0.2 

m. To illustrate this, the fields of 𝐾𝑠 are given in Figure 7.17 (a-c), where it is clear 

how the correlation structure changes based on the scaling. The resulting tracer 
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activation plots are given in (d-f). It can be seen that this level of variation in 

anisotropy is not high enough to cause large differences in the flow paths, and 

resulting tracer activation regions. The behaviour is much the same regardless of 

this level of anisotropy, and can be attributed to the fields representing localised 

variations in material parameters.   

 

Figure 7.17: The effects of field anisotropy of material properties on tracer 

distribution patterns, where the horizontal and vertical correlation lengths are: 0.1 

and 0.2 m (a)(d), 0.2 and 0.2 m (b)(e), and 0.4 and 0.2 m (c)(f) respectively. Shown 

are the random fields (a-c) and resulting tracer profiles (d-f) 

7.4 Conclusions 

This chapter has presented a detailed look into model development for the 

representation of hydrophobic soils, as well as the fingered flow they induce. The 

considerations presented in Section 7.3 are the key components that allow the 

model to account for water repellency and layered soils. One such component was 

the adoption of an alternative SWRC which allowed for the soil to have water entry 

pressures that are characteristic of water repellent soil. In this way, the pore water 

pressure can build up on the surface where the boundary condition is applied, 

mimicking the resistance to infiltration that WR soils exhibit. The variability of the 

WEP also has influence over the flow in the soil body. Once the fluid phase has 
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entered the media, the variation in WEP leads to highly unstable fingered flow in the 

water repellent and transition regions, becoming more diffuse when reaching the 

wettable layers.  

The flow patterns observed in the non-wettable layers are synonymous with the 

hydraulic behaviour of water repellent soils, highlighting the model’s ability to 

represent complex flow phenomena under the given material type. The dye coverage 

of the soil profiles, as in the experiments, was used to quantify the model response, 

and is seen to match well with the experimental observations. The calculation of 

strong confidence values suggests the presented results are representative of 

overall model behaviour. Similarly, the image analysis conducted on the numerical 

slices indicate that the model behaviour is representative of the experimental 

behaviour.  

Consideration was also given to the transition region between soil layers. By 

assuming a variation of mixture between the interfacing layers with depth, the 

naturally non-unform transition between soil layers is represented. In addition, the 

SWRC follows the same variation with depth, and can account for the combination of 

the two material SWRCs for the given representative elementary volume of soil. The 

combination of both wettability types for a given element, as well as the resulting 

SWRC, allows the model to predict highly unstable fingered behaviour. 

Finally, as in the previous chapter, the necessity of conducting the analyses in 3-D is 

also shown. Strong lateral fluxes are observed in the region of hydrophobicity, both 

within the fully WR layer and transition zone, suggesting that a 1- or 2-D analysis  

would not capture the full effects, leading to much more conservative hydraulic 

behaviour. The computations also reiterate the non-unform wetting front movement 

due to strong localise fluxes.
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Chapter 8 

Conclusions and further work 

8.1 Introduction 

This chapter provides a summary of the work presented in this thesis, gives the 

principal conclusions from the research, and provides suggestions for further work. 

In Chapter 2, a review of topics relating to the modelling of heterogeneous 

unsaturated soil for both hydrophilic and hydrophobic soils was presented. The 

following areas were addressed; the modelling of transport processes in saturated 

and unsaturated soil; the effects of heterogeneity on soil hydraulic behaviour; soil 

modelling through stochastic methods; an introduction to random field generation 

methods; an overview of soil hydrophobicity; the modelling of water repellent soils. 

Chapters 3 and 4 presents the theoretical and numerical formulations for the process 

of moisture transfer and random field generation. These techniques are used in the 

work described in the subsequent three chapters, and their main conclusions are 

given in Section 8.2  

Section 8.3 reviews and presents the main conclusions from Chapter 5, which 

considered the reduction of error in the near-boundary when generating correlated 

random fields through the SPDE approach; Section 8.4 reviews and draws 

conclusions on the contents of Chapter 6 in which unstable preferential flow was 

modelled; Section 8.5 reviews and concludes on Chapter 7 where the complex flow 

observed in water repellent soil was considered. 

Finally, Section 8.6 presents the overall conclusions, and suggestions for further 

research are made in Section 8.7. 

8.2 Theoretical and numerical formulation 

In Chapters 3 and 4, the theoretical and numerical formulations were derived for 

moisture transfer in unsaturated soils and Gaussian random field generation based 

on the solutions of SPDEs. Chapter 3 focused on the theoretical components, where 

the governing equations were derived based on mass balance and Darcian flow over 

representative elementary volumes of soil. This approach is well-established for 
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coupled models and has been effective for representing hydraulic flow processes in 

homogeneous soils. However, it does not inherently account for the impacts of 

heterogeneity. 

Similarly, the random field generation method presented indicates its adequacy as a 

tractable and computationally efficient approach for producing correlated random 

fields. The problem formulation is also based on a PDE, as in the case for the 

theoretical formulation, meaning that their solutions can be approached in similar 

ways. This is in fact the case, where finite elements (FE) are used to solve the given 

PDEs numerically. As well as seeing vast amount of development over the past few 

decades, the use of FE means that further model development is not impeded. It is 

known that certain physical processes are better represented by different numerical 

methods, but by using FE, a wide range of dynamic processes may be considered 

with the present approach. Similarly, more advanced FE approaches can be used to 

expand the model for different scenarios, such as unfitted methods. It also allows for 

well documented optimisation techniques to be implemented, such as adaptive 

meshing and time-stepping, or simple parallelisation in matrix assembly.  

Another significant benefit comes from similarities in the model architecture in terms 

of solving both the moisture transfer and random field generation problems. In both 

cases, the matrices are very similar, so routines for matrix assembly -as well as 

solving the matrix equations- can be used interchangeably, allowing the problems to 

be solved over the same domain topology. 

8.3 Error reduction in SPDE based random field generation 

In Chapter 5, a new approach to mitigate error in the near-boundary region of 

random fields generated through SPDEs was presented. The method considered a 

reframing of the standard Robin boundary condition as a weighting between its 

Dirichlet and Neumann components, denoted the weighted D-N approach. In this 

way, the weighting between them could be tuned to alter the correlation structure 

near the boundary with the aim of reducing error.  

Systematic assessment of the optimal weighting parameter α through autocorrelation 

function evaluation showed that this approach has a better overall match than all 

other applied boundary conditions, also matching well on more complex geometries. 
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The functions for α based on the parametric study enables its optimal value to be 

determined for other domains and desired length-scales. 

As such, the weighted D-N approach is recommended as being the applied 

boundary condition when formulating the stochastic PDEs to be solved. Whilst both 

proposed choices of the Robin coefficient λ perform equally well, λ = 𝜆2 is a more 

practical choice. When λ = 𝜆2, the resulting covariance functions show that changing 

the weighting parameter α leads to more uniform variation in resulting covariance 

structure, providing a more linear relationship than if λ = 𝜆1. This suggests that 

choosing an α with small variations from its fitted value will have less of an impact on 

the final correlation structure than if λ = 𝜆1, making it more consistent when applying 

the condition outside of the tested range or on less regular domains. The other main 

advantage, as opposed to the Neumann boundary condition with extension, is the 

lack of dependence on an extended domain. In this case, the computational domain 

was chosen as a cube with relatively low numbers of elements, so computational 

expense did not need to be considered when solving over an extended domain. If 

the field generation method was conducted over a finer mesh, as in the subsequent 

chapters, then this dependence could cause complications. Finally, the weighted D-N 

approach was shown to be significantly more accurate for larger values of 𝑙 as 

opposed to the Robin condition with  λ = 1.42𝑙, thus providing better control over the 

resulting correlation structure where the formulation begins to break down. 

The relationships presented are given in relative terms, so are applicable to a wider 

range of domains and engineering problems. The proposed boundary condition is 

aimed at giving a more sufficient approximation of the correlation structure of said 

parameters, allowing for a more robust quantification of uncertainty through 

numerical analyses. 

8.4 Simulation of unstable flow in unsaturated soils 

Chapter 6 described the use of Gaussian random fields in representing material 

heterogeneity to model non-uniform flow in unsaturated soil. Similarly, a new way to 

apply boundary conditions in a heterogeneous manner was presented, this being 

based on the material’s inherent spatial variability at its surface. The model was then 

validated by simulating field-based tracer experiments to replicate the vertical 

infiltration profiles observed. Finally, the presented results were quantified in terms of 
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the finger characteristic uncertainty to show that the presented results were 

representative. 

The Gaussian random field approach provides an effective means of representing a 

field of material properties for a body of soil. Conventional methods for computing 

correlated fields that rely on the formation and inversion of covariance matrices are 

computationally expensive and unsuitable for large 3-D simulations. The alternative 

method proposed, which requires the solution of a system of discretised partial 

differential equations derived from a Whittle-Matérn prior, is far more computationally 

efficient. This method has the added advantage that the resulting system of finite 

element equations has essentially the same structure as those used to solve the 

transport problem. A proper simulation of the soil transport processes also requires 

spatial variations of boundary infiltration properties to be considered. The new 

method proposed of using overlapping kernel functions covering the infiltration 

boundary provides an effective means of simulating non-uniform inflow into a domain 

whilst maintaining mass balance at all times. 

Incorporating the new field generation algorithm into a 3-D FE model for moisture 

transport allows non-uniform flow behaviour within soil bodies to be simulated in a 

realistic manner. A set of validation analyses that considered moisture infiltration into 

a layer of sandy loam showed that the new proposed model is able to represent the 

characteristics of non-uniform moisture flow into and through a heterogeneous body 

of soil with good accuracy. The method achieves relatively high confidence levels for 

characteristic stochastic variables with relatively few simulations (e.g. a 99.7% CI 

with 12 realisations). The proposed technique, given its computational ease, is 

suitable for larger field-scale problems, where the statistical significance can be 

determined using a relatively low number of simulations. 

8.5 Simulation of unstable flow in hydrophobic unsaturated soil 

Chapter 7 presented the extension of the model such that it is able to simulate 

layered soils of mixed wettabilities. The constitutive components of the model were 

modified to account for increasing levels of water repellency in low wettability layers 

as current relations struggle to represent appropriate water entry pressures. 

Similarly, the transition region between layers was considered, with the proposed 

method accounting for an averaged level of mixture of the material with depth. The 
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model was then applied in representing field tracer experiments to match with the 

observed vertical profiles. Finally, the uncertainty in the results was quantified based 

on the dye coverage of the numerical domain, and the effects on tracer activation 

regions due to variations in field anisotropy were given.  

Once more, the inclusion of correlated random fields was proven to be sufficient in 

introducing material heterogeneity, leading to highly unstable flow. By using the 

alternative saturation-capillary pressure relation and spatially varying its parameters, 

the local variations lead to fingered vertical profiles which matched well with the 

experimental observations. Similarly, the proposed method to account for the 

transition between material layers allowed for a more realistic response in the 

wetting front when passing through said region. By assuming an averaged mixing of 

the adjacent layers in terms of their level of wettability with depth, this depicted a 

more realistic representation of the domain in this area. Its implementation is highly 

flexible, and allows for arbitrarily sized transition zones whose smoothness can also 

be defined.  

As before, the use of confidence interval calculations was seen to be suitable in 

determining convergence criteria for multi-simulation regimes. This allows one to run 

a very low number of simulations, whilst also ensuring that the results that have been 

obtained are representative of the population response of the model. With only 13 

simulations, the population ranges of the maximum, minimum and mean dye 

coverages were calculated to 95% confidence. This number of simulations is orders 

of magnitude less than what would be required in a traditional Monte Carlo 

approach. Quantifying model responses in this way gives a good descriptor of the 

typical behaviour a model can portray, but is dependent on the indicators used for its 

quantification. 

8.6 Overall conclusions 

An overarching theme from conducting an extensive literature review is that many 

studies adopt a 2-D idealisation of flow problems in soil. As is shown in both 

Chapters 6 and 7 for the case of fingered flow problems, the nature of the resulting 

flow is fully 3-D, meaning that to represent the problem fully, a 3-D analysis is 

required. Whilst fingered flow is an exaggerated case of a general flow problem, the 



159 
 

conclusion on the necessary dimensions of the simulation remain valid as this 

distinct behaviour amplifies the difference between 2-D and 3-D representations.  

Similarly, material heterogeneity is a strong cause of non-linear responses, which is 

especially true in soil hydraulic responses. Many modelling approaches assume a 

homogeneous domain, but this is not the case in physical systems, especially in 

porous or particulate media. In the presented model, the heterogeneity of the 

material is the driving factor in the non-uniform wetting response, as is the case in 

real life, highlighting its importance in numerical analyses. Heterogeneity of boundary 

conditions should also be accounted for. Their application allowed for the local 

variations in material properties at the surface to dictate the influx of water into the 

domain based on the conductivity. Whilst this is largely a short-term response, the 

flow paths that are generated based on the local variations supply water into the 

media in a much more non-uniform manner, and lead to more discrete fingered 

behaviour. 

The inclusion of Gaussian random fields generated through the SPDE approach 

allows highly flexible integration with FE based codes, and is more than suitable for 

representing spatially varying material properties. Based on the numerical approach 

of FE, the solution of the SPDE and moisture transfer matrix equation are carried out 

in a similar fashion, reducing algorithmic complexity. Even if FE was not employed, 

the solution of the SPDE is agnostic to the choice of solution method, making it a 

suitable method of random field generation for many different numerical approaches. 

Algorithmic flexibility, nodal based solutions, as well as its highly sparse matrix 

representation makes it an attractive option in introduction random fields to existing 

code bases.  

Similarly, the reassurance that the correlation structure in the near-boundary region 

will be representative of the assumed covariance function due to the proposed 

boundary conditions in Chapter 5 is advantageous. The problem formulation relies 

on bounding a problem defined over three dimensional real space to a discrete 

domain, introducing errors in the near-boundary. This is common in a number of 

numerical approaches for many different problems as the domain must be defined. 

The boundary conditions proposed in Chapter 5 present an attractive alternative 

based on rigorous testing, such that the correlation structure in the near-boundary 
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region can be well defined, whilst also taking advantage of the efficient generation 

method for the correlated fields. 

When considering the objectives of the present study laid out in Chapter 1, it can be 

seen that all four objectives have been achieved. They largely focused around the 

development of a stochastic model that can represent fingered flow for soils of 

wettability. The ability of the model to represent this type of unstable flow has been 

demonstrated in Chapters 6 and 7, fulfilling the first and third objectives. Similarly, 

through the development of a novel approach to deal with the associated error of 

random field generation in the SPDE approach, the second objective has also been 

met. This revolved around finding a tractable way to use random fields to represent 

material heterogeneity whilst maintaining a consistent correlation structure across 

the numerical domain. Lastly, the final objective was to validate the model against 

experimental results. Coupling heterogeneous flux application with the material 

variability allows physical flow processes to be represented with a high level of 

fidelity, and for both the unsaturated hydrophilic and hydrophobic cases, the model 

response was shown to produce infiltration patterns that are representative of 

complex field observations. 

8.7 Suggestions for further work 

An attractive extension of the model would be the use of a constitutive relation for 

the saturation-capillary pressure that could account for the level of mixing directly in 

the transition region. This would remove the need to interpolate between 

relationships, and would allow for a more flexible representation depending on the 

closed form. Generally, this would require a multimodal SWRC, and numerical 

testing could be conducted using the model to perform standard testing for the 

determination of SWRCs. Similarly, the transition zone convention could be easily 

extended with Gaussian processes (GPs). The interface between the two layers, be 

it a change in material or wettability, could be represented by a GP such that the 

interface becomes non-uniform as it would be physically. From this, the transition 

region would still vary with depth as you go from one layer to the other in the vertical 

direction, but laterally, the level of mixing would vary spatially. Overall, this would 

give a more realistic representation of the interfaces between soils layers as to 

assume they are perfectly horizontal with no variation is an oversimplification. 
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Another extension would be the addition of a coupled chemical phase that can 

explicitly represent the applied tracer. For many infiltration experiments, it is 

necessary to apply a tracer, so having an explicit representation of its movement with 

the moisture phase through advection-diffusion processes would give more 

representative profiles. This could be done simply through coupling with the non-

uniform moisture phase, but the presence of random fields means it would be 

desirable to add spatial variability to the underlying advection-diffusion process. 

Further extension would be the parallelisation of the code base. Currently it runs in a 

serial fashion, but extension to multi-core or multi-processor execution would give a 

significant decrease in computational time. In the first instance, the matrix assembly 

routines should be re-written to account for this. Following this, current high 

performance computing solutions should be explored, such as domain 

decomposition techniques or distributed-memory solvers.  

It is clear from the literature that hysteresis in the hydraulic behaviour of soils should 

be considered more widely. It is often difficult when modelling to know when the 

response changes from drying to wetting, and vice versa, which in turn makes it 

difficult to know whether to use the drying or wetting curve of the associated 

medium. They are often quite different in terms of their characteristics, so knowing 

which to use at a given point in a simulation is important choice. Similarly as 

important is the hysteretic response of water repellent media. More work needs to be 

done to understand these effects and how they can be represented numerically. 

The presented work has considered solely numerical development, but experimental 

investigation into the variability of soil material properties is just as important. It is 

accepted that soil material parameters follow a Gaussian distribution across the 

domain, but this could warrant further investigation for different material parameters. 

Similarly, the distribution of naturally induced water repellency -depending on the 

method of induction- should be investigated. The process over which hydrophobicity 

is induced could impact the spatial variability of wettability present in the soil. For 

example, chemicals invading the soil will do so non-uniformly, so at different points 

the depth of water repellency will vary. This is also true for wildfire affected soil, as 

the superheating of the soil will reduce with depth, leading to non-homogenous 
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wettability. Based on the experimental investigations, the model can be further 

developed to reflect the findings, making it more representative of the wider problem. 

In a similar fashion, the representation of material heterogeneity through random 

fields is applicable to any materials where heterogeneity is present. The presented 

work is merely applied to soil mechanics problems as a way to illustrate the effects of 

material heterogeneity on flow related processes, and is equally applicable to other 

materials. For example, cementitious materials exhibit spatial variability in their 

mechanical properties, which could be represented by random fields to see their 

effects on mechanical or flow related processes. Similarly, geometric variability could 

be easily expressed in terms of random fields. Whilst this has not been touched upon 

in the current study, random fields could be used to represent local variation in 

material geometries, such as rough surfaces. The effects of roughness on flow could 

then be quantified. 

Finally, the model could be readily extended to related research domains in soil 

mechanics, such as wildfire and slope stability. As seen in the literature, slope 

stability problems benefit from the consideration of material heterogeneity. Coupling 

the moisture transfer and mechanical response would allow for these processes to 

be represented. A nice extension would be a FE and material point method coupled 

model, such that the large deformation behaviour, which the finite element method 

struggles to deal with, can be modelled accurately. Similarly, extending the model to 

couple heat and moisture transport with the ability to account for severe water 

repellency makes it well suited to deal with the material response observed during 

and post fire. Mechanisms for hysteretic water repellency would need to be 

developed, as well as complex boundary conditions to account for runoff and 

erosion. With the increase in severe wildfire events due to an ever-changing climate, 

it is becoming ever more important to represent its associated complex phenomena. 
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Appendix A 

Additional tracer plots 

The following contains additional tracer plots to supplement those shown in Chapter 

6. 

 

Figure A1: Slices of the domain to highlight the tracer activation region at 85% 

degree of saturation 
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Figure A2: Tracer activation regions at 85% degree of saturation 
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Appendix B 

Additional hydrophobic simulation results 

The following contains additional results from the analyses conducted in Chapter 7. 

For the full range of 800 slices, see: https://github.com/EJRicketts/Thesis-

HydrophobicSlices 
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Figure B1: Slices of the domain and their respective dye coverages to highlight the 

tracer activation region at 35% degree of saturation 

 


