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Abstract

In this paper, we introduce a realistic and challeng-
ing domain adaptation problem called Universal Semi-
supervised Model Adaptation (USMA), which i) requires
only a pre-trained source model, ii) allows the source and
target domain to have different label sets, i.e., they share
a common label set and hold their own private label set,
and iii) requires only a few labeled samples in each class
of the target domain. To address USMA, we propose a col-
laborative consistency training framework that regularizes
the prediction consistency between two models, i.e., a pre-
trained source model and its variant pre-trained with target
data only, and combines their complementary strengths to
learn a more powerful model. The rationale of our frame-
work stems from the observation that the source model per-
forms better on common categories than the target-only
model, while on target-private categories, the target-only
model performs better. We also propose a two-perspective,
i.e., sample-wise and class-wise, consistency regulariza-
tion to improve the training. Experimental results demon-
strate the effectiveness of our method on several benchmark
datasets.

1. Introduction
Deep neural networks have achieved remarkable

progress in various tasks, such as image recognition [14],
machine translation [2], biomedical imaging [40], etc.
However, training a good neural network model remains
challenging as it requires huge amounts of labeled data that
are expensive to annotate. To this end, unsupervised do-
main adaptation (UDA) methods [13,48,55] were proposed
to train neural network models without annotated data by
transferring knowledge learned from a label-rich source do-
main to the unlabeled target domain. However, due to the
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Figure 1. Illustration of Universal Semi-supervised Model Adap-
tation (USMA). In this example, we begin with a source model that
has been pre-trained on a real-world domain dataset containing
categories ”Cat”, ”Dog”, and ”Rabbit”. The target domain con-
sists of a cartoon dataset with different categories, ”Cat”, ”Dog”,
and ”Bird”, each containing both labeled (Solid boxes) and unla-
beled samples (Dashed boxes).

gap between the source and target domains, it is still chal-
lenging for UDA methods to achieve good performance on
the target domain. To bridge such a domain gap, Semi-
supervised Domain Adaptation (SSDA) [25, 43] incorpo-
rates a few labeled target samples into the training and thus
significantly outperforms UDA, showing great potential for
applications.

Although promising, existing SSDA methods usually as-
sume that the source data is available during training, which
is impractical in many real-world scenarios where restric-
tions apply, e.g., data privacy and limited storage [28]. To



meet such new demands, a new research topic, namely the
model adaptation [28, 32, 33, 50, 57], has recently been pro-
posed with the aim of transferring knowledge from a pre-
trained source model rather than the source data. To sim-
plify the problem, most of these works assume that the
source and target domain share the same label set.

However, the above simplification significantly limits the
practical application of those methods due to the prevalence
of category gaps between the pre-trained source models and
the target data. For example, when adapting a product re-
trieval model pre-trained on a web dataset to real-world
ones collected from shelves of different supermarkets, there
are likely different subsets of common categories between
the pre-trained source model and each real-world dataset.
This issue is addressed by universal domain adaptation [60].

In this paper, we propose a new problem, called Uni-
versal Semi-supervised Model Adaptation (USMA), which
covers all aforementioned problems. USMA presents a
more realistic and, consequently, more challenging sce-
nario. An Illustration of USMA is shown in Fig. 1. A naive
solution for USMA is to apply a semi-supervised learning
method to fine-tune the pre-trained source model directly
with the target data. However, we observed that such a
naive solution is ineffective as the source model’s exten-
sive knowledge in the source domain impedes its learning
in the target domain: it works better for common cate-
gories shared by both the source and target domains, than
the target-private categories (i.e., categories in the target but
not in the source domain). This is justified by the opposite
performance of a reference model, i.e., a model with the
same architecture of the source model but pre-trained using
only the target data in a self-supervised way (Fig. 2). De-
spite such a disappointment, the complementary strengths
of the two models caught our attention: can we integrate the
appeal of the two to train a more powerful model that per-
forms well on both common and target-private categories?

To answer the above question, we propose a collab-
orative consistency training (CCT) framework which ex-
tends the vanilla consistency regularization applicable to a
single model [47, 53] to our double-model case. Specif-
ically, we propose to add additional regularization across
the two models, thereby allowing each model to exploit the
strengths of the other model to resolve its shortcomings. To
take full advantage of the proposed CCT framework, we fur-
ther propose to incorporate consistency regularization from
two perspectives, i.e., sample-wise and class-wise. Sample-
wise, we first augment each training sample into two views
and employ pseudo labeling to enforce consistency of high-
confidence predictions between not only the two views of
a single model but also those across two different models.
Class-wise, we propose a single loss function that incorpo-
rates both the class consistency prior (i.e., same prediction
across views) and the class sparsity prior (i.e., sparsity of

Figure 2. Left: The classification accuracy of samples from com-
mon label set. Right: The classification accuracy of the samples
from private label set. The blue curve shows the accuracy of the
network fine-tuning from the source pre-trained network while the
orange curve shows the accuracy of the network fine-tuning from a
network pre-trained with only target data through self-supervised
learning.

prediction vectors) into training.
Interestingly, we observed that the performance of the

two models converge to a similar point after training. There-
fore, without loss of generality, we choose the adapted
source model as the final model for reference. Our con-
tributions include:

• We define Universal Semi-supervised Model Adapta-
tion (USMA), a more realistic and challenging domain
adaptation problem to be solved.

• We propose a collaborative consistency training (CCT)
framework that leverages the complementary strengths
of a source-pretrained and target-pretrained model to
produce a more powerful one.

• We propose a two-perspective approach (sample-wise
and class-wise) for CCT.

• Extensive experimental results demonstrate the effec-
tiveness of the proposed methods.

2. Related Work
Semi-supervised Domain Adaptation. Semi-supervised
Domain Adaptation (SSDA) assumes few labeled samples
per category in the target domain [4, 15, 18, 22, 23, 25, 26,
29, 38, 43, 51, 54, 56], which yields cost-effective appli-
cations that require little labeling efforts. Most of those
works address the SSDA problem from two perspectives:
(i) domain alignment and (ii) self-training on target do-
main, i.e., entropy minimization, pseudo labeling. Saito et
al. [43] first introduce the SSDA problem and propose to
minimize entropy for feature extractor and align the source
and target domain by maximizing entropy for the classifier.
UODA [38] proposes to minimize the target entropy so that
the target feature can be compact, and maximize the source
entropy so that the source feature can be scattered, making
alignment easier. CDAC [25] proposes an adaptive cluster-
ing method to perform domain alignment and uses pseudo
labeling for self-training. ECACL [26] proposes to reduce
the domain gap by matching source and target prototypes.



AdaMatch [4] proposes to match the class distribution be-
tween source and target. Compared with the vanilla SSDA,
our proposed USMA is more challenging as it has no access
to source data, which is infeasible to perform domain align-
ment, and also needs to adapt models to a target domain that
has a different label set than the source domain.
Model Adaptation. Model adaptation (MA) was pro-
posed to implement domain adaptation without access to the
source data, thereby addressing the dilemma of data sharing
versus data privacy [28] in traditional domain adaptation.
Many works have been proposed to address the problem of
MA [8, 11, 19–21, 27, 28, 30, 33, 39, 41, 50, 52, 57–59], and
the methods can be roughly categorized into two streams:
generative [27, 59] and discriminative [28, 52, 57]. Gener-
ative methods usually model the generation of labeled im-
ages or features. 3C-GAN [27] proposes to synthesize the
target-style labeled training images via conditional GAN.
SoFA [59] proposes to generate reliable latent features for
domain alignment. On the other hand, discriminative meth-
ods usually require to fix the source classifier and fine-
tune the backbone. SHOT [28, 30] proposes to minimize
the target entropy while maximizing the mutual informa-
tion. AANet [52] proposes to incorporate a trainable clas-
sifier with the fixed classifier to jointly perform adapta-
tion. Though achieving good performance in unsupervised
or semi-supervised settings, these MA methods work under
the assumption that the source and target domains share the
same label set, which is not the case in USMA.
Universal Domain Adaptation. Universal DA [6, 10, 12,
24,31,34,44,45,60,61] resolves the class mismatch issue by
combining Open-set DA [46] and Partial DA [5]. Open-set
DA excludes some target domain categories (a.k.a. target-
private categories) not in the source domain, while Partial
DA excludes some source domain categories (a.k.a. source-
private categories) not in the target domain. Most works
focus on designing the criterion to reject target-private sam-
ples. UAN [60] proposes to use entropy as the criterion,
e.g., reject high entropy samples and exclude them from do-
main alignment. Fu et al. [12] propose the joint use of en-
tropy, confidence and classifier consistency as the criterion.
DANCE [44] also uses entropy as the criterion and proposes
an entropy separation loss to reject the target-private sam-
ples. OVANet [45] trains one-vs-all classifiers to learn the
distance between the source positive and nearest negative
classes and use such distance as the criterion. Instead of re-
jecting open-set samples as in universal DA, USMA aims
to classify them correctly in a semi-supervised way given
few labeled samples in the target-private categories, which
is more challenging.

3. Methodology
In this section, we first present the definition of USMA,

and then detail the proposed collaborative consistency train-

ing framework. Finally, we propose two novel loss func-
tions that regularize collaborative consistency in a sample-
wise and class-wise manner respectively. Our framework is
illustrated in Fig. 3.

3.1. Problem Definition

Universal Semi-supervised Model Adaptation (USMA)
aims to learn a model F that achieves high prediction accu-
racy on target domain data using only Fs and Dt, where

• Fs denotes a source model pre-trained with the source
data Ds = {(xs

i ,y
s
i )},ys

i ∈ Cs sampled from a differ-
ent distribution than the target domain,

• Dt = Dl
t ∪ Du

t = {(xtl
i ,y

tl
i )}

ntl
i=1 ∪ {(xtu

j )}ntu
j=1,y

tl
i ∈

Ct denotes a target dataset consisting of ntl labeled and
ntu unlabeled samples (ntl ≪ ntu),

• Label sets Cs ̸= Ct.
To facilitate discussion, we denote C = Cs ∩ Ct as the

common label set, and have C̄s = Cs\C and C̄t = Ct\C
that denote the label sets of private categories of source and
target domains respectively. Following [60], we define the
commonness of label sets ξ as |Cs∩Ct|

|Cs∪Ct| .

3.2. Collaborative Consistency Training

As Fig. 3 shows, the key insight of our framework is that
the final model F (·|θ) can be derived from the collaborative
training of F (·|θs) and F (·|θt) that enforces consistent pre-
dictions in-between, where F (·|θs) = Fs is the model pre-
trained with source data (a.k.a. source model) and F (·|θt)
is the target model pre-trained with Dt in a self-supervised
learning manner (a.k.a. target only model). Both F (·|θs)
and F (·|θt) share the same network architecture but have
different parameters θs and θt. Specifically, F (·|θ) consists
of a backbone and a classifier. The backbones of F (·|θs)
and F (·|θt) are pretrained with different data, while the
classifiers are both randomly initialized. The output dimen-
sion of the classifiers of F (·|θs) and F (·|θt) is |Ct|. The ra-
tionale of our approach stems from the observation (Fig. 2)
that: i) for samples with common labels C, despite the do-
main gaps, F (·|θs) outperforms F (·|θt) in prediction accu-
racy from its rich prior knowledge in C; ii) while for samples
with target private labels C̄t, F (·|θt) achieves a higher pre-
diction accuracy than F (·|θs). Such an observation implies
that F (·|θs) and F (·|θt) learn complementary information
of C and C̄t (Ct = C ∪ C̄t ) in the target domain respectively.

To harness this, we introduce a Collaborative Consis-
tency Training (CCT) framework. This involves creating
dual views of each sample in the unlabeled target data Du

t

through augmentations. Unlike traditional consistency reg-
ularization, which enforces internal consistency within a
single model, we introduce cross consistency. This aligns
predictions between the two models F (·|θs) and F (·|θt),
enabling them to learn more discriminative features for both
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Figure 3. Illustration of the proposed collaborative consistency training (CCT) framework. Left: the overall pipeline of CCT. Right: The
detailed consistency loss of CCT. The backbone of F (·|θs) is initialized with the source-pretrained model, while the backbone of F (·|θt)
is initialized with the self-supervised pre-trained model using target data. P′,P′′ ∈ RN×C are the batch predictions of two views, where
N is the batch size and C is the number of classes.

common and private classes. We further enrich CCT by im-
plementing both inner and cross consistency from sample-
wise and class-wise perspectives. Subsequent sections de-
tail these regularization techniques.

3.3. Sample-wise Consistency Regularization

For each unlabeled target sample xi ∈ Du
t , we apply

two different augmentations to it and get its two views x′
i

and x′′
i , respectively.

Sample-wise Inner Consistency Regularization. We fol-
low the vanilla consistency regularization in SSL [47, 53]
and use the pseudo labels generated by one sample view x′

i

to supervise the training of the other sample view x′′
i . For

each sample, the loss function can be formulated as:

Linner
sample =−

C∑
i=1

1(F (x′|θs)i ≥ τ) log(F (x′′|θs)i)

−
C∑
i=1

1(F (x′|θt)i ≥ τ) log(F (x′′|θt)i),

(1)

where C = |Ct| is the number of classes in the target do-
main, τ is the threshold. As indicated in [53], Linner

sample reg-
ularizes both networks to be invariant to input noises (i.e.,
different views) and makes them more robust.
Sample-wise Cross Consistency Regularization. While
in USMA, the aforementioned inner consistency regulariza-
tion is not sufficient as it suffers from the poor performance
of the source model F (·|θs) on target private categories C̄t.
Our sample-wise cross consistency regularization addresses
this issue by collaboratively training F (·|θs) and the target
model F (·|θt) together:

Lcross
sample =−

C∑
i=1

1(F (x′|θs)i ≥ τ) log(F (x′′|θt)i)

−
C∑
i=1

1(F (x′|θt)i ≥ τ) log(F (x′′|θs)i),

(2)

where the highly-confident predictions of F (x′|θt) are used
as pseudo labels of F (x′′|θs) and the highly-confident pre-

dictions of F (x′|θs) (mostly samples of C) are used as
pseudo labels of F (x′′|θt).
Sample-wise Consistency Loss. Combining the inner and
cross consistency loss, we have our final sample-wise con-
sistency loss as:

Lsample =
1

2
(Linner

sample + Lcross
sample). (3)

Remark. The above objective indicates that each sam-
ple receives supervision from two pseudo labels. Since the
two networks have learned complementary information, we
argue that it is highly likely that at least one of them is cor-
rect. Furthermore, as indicated by [1] that DNNs tend to fit
clean labels before noisy ones, our networks will prioritize
the fitting of such correct pseudo labels. This helps our net-
works learn better representations and provides more reli-
able pseudo labels for subsequent training steps, thus form-
ing a virtuous circle of training.

3.4. Class-wise Consistency Regularization

Being orthogonal to our sample-wise consistency regu-
larization, our class-wise consistency regularization facili-
tates the proposed CCT through the incorporation of class
consistency prior and class sparsity prior that takes the re-
lation among samples in a batch into consideration. Similar
to the above section, we denote x′

i and x′′
i as the two views

of an unlabeled target sample xi ∈ Du
t and have: 1) Class

Consistency Prior. The predictions of x′
i and x′′

i should be
the same over all classes. 2) Class Sparsity Prior. The pre-
dictions of x′

i and x′′
i should be unit vectors with a single

1.0 for one class and 0 for all the other classes.
Class-wise Inner Consistency Regularization. Suppose
P′,P′′ ∈ Rn×C are the batch predictions of F (x′|θs) and
F (x′′|θs) respectively, where n is the batch size, C is the
number of classes, and P(j,k) represents the softmax con-
fidence of classifying the jth sample into the kth class, we
compute the correlation matrix of P′ and P′′ as:

R = P′⊤P′′. (4)



It can be observed that R(j,k) represents the inner product
similarity between the j-th and k-th column of P′ and P′′,
respectively. Such a cross-correlation matrix R allows us to
incorporate i) the class consistency prior by maximizing
the similarity between the same classes (diagonal values)
and ii) the class sparsity prior by minimizing the similarity
between different classes (off-diagonal values). 1

Since R is asymmetric and the row summations are dif-
ferent, we convert it to be symmetric and normalize its rows
and columns:

R̂ = ϕ
(
(R+R⊤)/2

)
, (5)

where ϕ(·) represents a row normalization where each ele-
ment is divided by the row sum. With R̂, we can formulate
our class-wise inner consistency loss as:

Linner
class = − 1

2C

(
Tr(R̂s) + Tr(R̂t)

)
, (6)

where Tr(·) is the trace of a matrix, R̂s and R̂t are the
computed matrices from F (·|θs) and F (·|θt), respectively.
With the normalization in Eq. 5 (i.e., the sum of values in
each row or column equals to 1), minimizing the above loss
function not only maximizes the diagonal values but also
minimizes the off-diagonal values, which incorporates the
proposed two priors simultaneously.
Class-wise Cross Consistency Regularization. We extend
the above inner consistency regularization to a cross con-
sistency one as follows. Let P′

1,P
′′
2 ∈ Rn×C be the batch

predictions of F (x′|θs) and F (x′′|θt) respectively, we com-
pute the cross-correlation matrices as:

R1 = P′
1
⊤
P′′

2 , R2 = P′
2
⊤
P′′

1 . (7)

Similar to the sample-wise consistency, we compute the
consistency between one network’s one view prediction
with the other network’s the other view prediction, leading
to two cross-correlation matrices. As done above, we con-
vert R1 and R2 to symmetric ones and normalize its rows
and columns:

R̂i = ϕ
(
(Ri +R⊤

i )/2
)
, i = 1, 2. (8)

Then, we have our class-wise cross consistency loss as,

Lcross
class = − 1

2C

(
Tr(R̂1) + Tr(R̂2)

)
, (9)

Class-wise Consistency Loss. Similar to the sample-wise
one, our final class-wise cross-consistency loss is:

Lclass =
1

2
(Linner

class + Lcross
class ). (10)

1This works as when two columns are similar, there will be two non-
zero values (two classes) for one sample, which violates the sparsity prior.

Analysis. We also devise a simple analysis of class-wise
consistency, showing that it integrates all the merits claimed
by Mutual Information Maximization [28], Minimum Class
Confusion [16], and sample-wise consistency. This is
achieved by simultaneously addressing three objectives: i)
consistency regularization, ensuring that predictions de-
rived from distinct augmented views remain consistent, i.e.,
P′ = P′′; ii) entropy minimization, facilitating the sharp-
ening of softmax predictions for individual samples, i.e., the
rows of P are one-hot-like; and iii) prediction diversifica-
tion, penalizing collapsed solutions in which the majority
of samples are predicted to a single class, i.e., the rows of
P are distinct. Specifically, without loss of generality, as-
suming that the batch prediction is a square matrix, it can
be verified that the optimal solutions of the class-wise con-
sistency are equal to the ones of the following optimization
problem:

min
P1,P2

∥1
2
(P⊤

1 P2 +P⊤
2 P1)− In∥F , (11)

s.t. Pi1n = 1n, Pi ≥ 0, i = 1, 2. (12)

The optimal solution for this convex optimization problem
is P1 = P2, which are permutation matrices that achieve
the three aforementioned objectives. In addition, our class-
wise cross consistency further benefits the co-learning of
the two networks.

3.5. Overall Objective Function

Both the proposed Lsample (Eq. 3) and Lclass (Eq. 10)
are designed for the unlabeled sample Du

t , while for the la-
beled samples in Dl

t, we employ the cross entropy loss:

LCE = −
∑

(x,y)∼Dl
t

y[log
(
F (x|θs)

)
+ log

(
F (x|θt)

)
].

(13)

Summing up the three loss functions, we have our overall
objective:

min
θs,θt

LCE + λ1Lsample + λ2Lclass, (14)

where λ1 and λ2 are hyper-parameters control the trade-off
between losses.
Choice of Final Model. We observe that the performance
of F (·|θs) and F (·|θt) converge to a similar point after
training. Therefore, without loss of generality, we choose
F (·|θs) as the final model for inference.

4. Experiments
4.1. Experimental Setup

Datasets. We evaluate our method on several popular
benchmark datasets, including Office [42], DomainNet [37],



Table 1. H-score on DomainNet under the settings of 3-shot and 5-shot using ResNet34 as backbone networks.

R → C P → C C → S R → P S → P R → S Mean
Method 3-shot 5-shot 3-shot 5-shot 3-shot 5-shot 3-shot 5-shot 3-shot 5-shot 3-shot 5-shot 3-shot 5-shot

CE 50.8 58.0 53.0 57.3 47.1 54.6 50.3 57.7 53.5 58.8 43.6 50.6 49.7 56.2
MixMatch 48.0 66.5 50.5 65.2 44.4 57.6 50.1 64.6 50.2 65.3 44.2 58.1 47.9 62.8
FixMatch 52.5 68.6 48.2 66.4 49.8 61.1 52.8 68.5 48.6 68.2 43.0 64.2 49.2 66.2
UMA 42.7 60.4 46.2 58.5 41.7 51.2 42.9 56.8 40.4 51.6 40.2 50.5 42.3 54.8
MME 56.7 66.5 58.9 64.1 45.0 55.2 49.9 62.4 52.7 63.8 42.8 51.2 51.0 60.5
CDAC 59.0 71.4 59.2 72.3 50.8 64.7 62.3 70.1 62.3 70.5 51.9 63.1 57.6 68.7
MCL 62.0 74.8 65.2 73.5 53.4 65.1 60.9 72.5 64.7 70.9 54.9 63.1 60.2 70.0
AdaMatch 59.5 73.3 62.1 71.4 52.0 64.7 60.5 73.1 65.9 73.1 51.6 60.8 58.6 69.4
SHOT++ 55.6 66.8 59.4 68.1 51.0 58.5 56.1 63.3 56.7 60.8 45.4 53.6 54.0 61.9

CCT 69.9 77.7 69.0 77.4 58.6 66.8 66.7 75.5 67.4 75.3 56.2 66.9 64.6 73.3

Table 2. H-score on Office-Home under the settings of 3-shot and 5-shot using ResNet34 as backbone networks.

Method A → C A → P A → R C → A C → P C → R P → A P → C P → R R → A R → C R → P Mean

3-shot

CE 51.8 73.9 69.9 49.9 70.7 65.6 57.8 51.1 68.9 55.7 54.0 74.6 62.0
MixMatch 51.3 77.6 73.3 51.8 76.4 69.7 56.8 51.1 72.2 58.3 53.4 78.5 64.2
FixMatch 50.6 76.2 67.5 39.9 76.6 66.9 53.9 56.7 67.4 47.1 51.8 75.4 60.8
UMA 54.6 76.3 71.3 52.1 73.7 63.3 57.2 52.5 68.8 54.0 56.4 76.2 63.0
MME 55.6 77.1 72.3 55.2 75.3 68.8 60.0 53.6 72.5 61.4 57.8 77.3 65.6
CDAC 55.7 76.3 72.0 54.0 75.4 68.9 54.5 58.8 72.3 60.6 57.1 76.9 65.2
MCL 54.2 74.2 71.6 54.6 77.6 66.6 54.5 59.6 73.4 60.0 55.8 77.3 65.0
AdaMatch 52.2 71.4 71.1 55.4 78.6 65.4 55.5 59.7 74.9 59.2 54.0 77.8 64.5
SHOT++ 54.9 80.3 74.2 53.3 73.9 70.8 55.9 52.3 76.9 50.2 52.7 79.3 64.6

CCT 57.8 80.6 77.3 61.0 79.4 76.9 62.6 57.8 77.1 63.4 59.2 80.2 69.4

5-shot

CE 56.5 77.1 73.2 58.7 75.2 69.4 61.4 56.5 73.2 60.6 57.2 78.9 66.5
MixMatch 59.1 81.5 76.7 61.3 80.2 75.3 62.6 59.9 77.3 62.6 58.5 83.6 70.2
FixMatch 59.1 80.8 76.7 58.5 79.9 72.4 60.3 61.6 78.0 61.7 62.5 80.0 69.3
UMA 55.8 77.6 72.3 56.4 76.7 68.5 60.0 59.9 75.3 55.6 52.4 77.7 65.7
MME 62.2 80.5 74.3 63.1 81.6 73.4 62.6 61.9 76.5 64.0 62.4 83.1 70.5
CDAC 64.0 80.6 76.3 61.5 80.2 71.8 60.1 62.5 76.1 61.4 59.7 78.3 69.4
MCL 63.5 79.5 76.9 63.1 80.4 73.5 61.1 64.3 78.2 61.8 59.4 79.7 70.1
AdaMatch 57.6 78.7 76.3 59.1 82.1 70.1 60.3 63.4 78.1 61.1 61.2 80.4 69.0
SHOT++ 54.6 80.3 75.2 62.2 75.0 74.1 62.9 55.5 77.5 64.1 50.9 80.6 67.7

CCT 65.9 82.2 79.3 67.3 82.1 77.9 67.9 65.6 78.9 67.5 63.6 83.9 73.5

Table 3. H-score on Office under the settings of 5-shot and 10-shot
using ResNet34 as backbone networks.

W → A D → A
Method 3-shot 5-shot 3-shot 5-shot

CE 60.4 61.2 60.9 61.6
Mixmatch 61.2 69.7 62.6 69.4
Fixmatch 62.4 63.4 61.0 67.4
UMA 60.1 61.5 58.7 62.4
MME 64.7 69.0 64.3 69.1
CDAC 64.5 68.5 63.9 67.8
MCL 65.9 68.8 66.0 68.1
AdaMatch 62.8 65.4 64.1 67.4
SHOT++ 64.0 68.3 64.5 68.2

CCT 68.3 71.3 67.9 70.7

and Office-Home [49], with different Cs, Ct and ξ (see
Sec. 3.1). Similar to most recent works [25,56], we conduct
3-shot (3 labeled samples per class in the target domain) and
5-shot experiments on all datasets. DomainNet [37] was
first introduced as a multi-source domain adaptation bench-
mark comprising 6 domains with 345 categories. Follow-
ing [25, 43], we select the Real, Clipart, Painting, Sketch

domains with 126 categories for evaluation. The first 80
classes are used as Cs and last 96 classes are used as Ct,
hence |C| = 50 and ξ = 0.4. Office-Home [49] is a popular
domain adaptation benchmark, which consists of 4 domains
(Real, Clipart, Product, Art) and 65 categories. We use the
first 43 classes as Cs and the last 35 classes as Ct, hence
|C| = 13 and ξ = 0.2. Office [42] contains 3 domains
(Amazon, Webcam, and DSLR) with 31 classes. Similar
to [25,43], we conduct experiments from DSLR to Amazon
and Webcom to Amazon to evaluate on the domain with
enough examples. The first 25 classes are set as Cs and the
last 25 classes are set as Ct, hence |C| = 19 and ξ = 0.6.
Evaluation Criterion. Following [12], we use H-score to
evaluate the performance of our method, which is defined
as:

H = 2 ·
aC · aC̄t

aC + aC̄t

, (15)

where aC and aC̄t
represent the accuracy for the common

class Ct and the target private class C̄t, respectively.

Implementation Details. Similar to [25, 43], we use



Table 4. H-score on Domainnet under the settings of 5-shot using ResNet34. The first row means only LCE (Eq. 13) is utilized.

Linner
sample Linner

class Lcross
sample Lcross

class R → C P → C C → S R → P S → P R → S Mean

(a) 58.0 57.3 54.6 57.7 58.8 50.6 56.2
(b) ✓ 68.6 66.4 61.1 65.5 68.2 64.2 65.7
(c) ✓ ✓ 71.8 67.9 65.2 70.4 70.9 64.7 68.5
(d) ✓ ✓ 76.2 75.8 66.3 74.4 72.9 64.8 71.7
(e) ✓ ✓ 77.6 77.2 67.2 73.8 74.8 66.0 72.8
(f ) ✓ ✓ ✓ ✓ 77.7 77.4 66.8 75.5 75.3 66.8 73.3

(a) H-score w.r.t. |C̄t|. (b) H-score w.r.t. |C| (c) H-score w.r.t. |Dl
t|/C

Figure 4. (a) H-score w.r.t. |C̄t| in task R → C of Office-Home with ξ = 0.23. (b) H-score w.r.t. |C| in task R → C of Office-Home. (c)
H-score w.r.t. number of labeled samples per-class in task R → C of Domainnet.

Resnet34 [14] as the backbone network where the classifier
consists of a L2 normalization layer that projects feature
into a spherical feature space and a linear layer. Follow-
ing [28], we pre-train the source model with label smooth-
ing [35] for 50 epochs. For the pre-training of the target-
only network, we train the network for 50 epochs with su-
pervised contrastive loss [17] for the labeled samples and
SimCLR [7] loss for the unlabeled samples. Moreover, we
use RandAugment [9] as the augmentation for x′′ and stan-
dard random resize, flip and crop as the augmentation for
x′. For the adaptation phase, the experimental settings (i.e.,
optimizer, batch size, etc.) are the same as MME [43]. We
set λ1 as 1, and λ2 as 1 for Domainnet and 0.5 for Office
and Office-Home. All experiments are implemented with
PyTorch [36] on a single NVIDIA 2080Ti.

4.2. Comparison Experiments

We compared our method with i) baseline methods: only
train the labeled target samples with cross-entropy loss
(CE), ii) semi-supervised domain adaptation (SSDA) meth-
ods: MME [43], CDAC [25], MCL [54] and AdaMatch [4],
iii) semi-supervised learning (SSL) methods: MixMatch [3]
and FixMatch [47], iv) a semi-supervised model adaptation
(SSMA) method: SHOT++ [30], and v) a universal model
adaptation method: UMA [20]. To make a fair compar-
ison, we implement them with the same F (·|θs) as used
in our method. Note that we only report the results using
F (·|θs) as it outperforms those using F (·|θt). The imple-
mentation details of the compared methods can be found in
the supplementary file. The results on the three benchmark
datasets are shown in Table 1, 2 and 3, respectively. It can

be observed that our method significantly outperforms the
state-of-the-art SSL, SSDA, SSMA, and UMA methods in
terms of H-score.
Results. As Table 1 shows, our method outperforms all
previous methods in all domains on Domainnet, achiev-
ing 64.6% and 73.3% mean H-scores under 3-shot and
5-shot settings, respectively. Notably, our method sur-
passes the State-of-the-Art (SOTA) SSDA technique, i.e.,
AdaMatch [4], by substantial margins, demonstrating the
superiority of the proposed method. Furthermore, it is im-
perative to highlight that certain methods falter even in the
3-shot setting, exhibiting performance inferior to the basic
CE method. In contrast, CCT consistently maintains its sta-
bility and superiority. As Table 2 and 3 show, CCT still
works effectively and outperforms all the previous meth-
ods on Office-Home and Office significantly, which further
demonstrates the efficacy of the proposed method.

4.3. Ablation Study

We perform an ablation study on Domainnet to verify
the efficacy of each component of the proposed method.
For clarity, except for the most basic sample-wise inner
consistency, either sample/class-wise or inner/cross consis-
tency are jointly used. As Table 4 shows, starting from
Linner
sample (b) that represents the case when only the most

basic sample-wise inner consistency is used, adding the
sample-wise cross consistency loss (c) improves the per-
formance by 2.8% and a further incorporation of the class-
wise consistency losses (f) boosts the performance by 4.7%.
This demonstrates the efficacy of both the proposed collab-
orating consistency training framework, especially the cross



consistency, and the proposed class-wise consistency regu-
larization. In general, our final method outperforms its vari-
ant with only the basic sample-wise inner consistency regu-
larization by 7.6%. Surprisingly, we observed that the cross
consistency regularization could work effectively without
the inner consistency regularization (e), and performs even
better than inner consistency alone (d) by 1.1%. We con-
jecture that the inner consistency can be implicitly regular-
ized by the cross consistency, and they are compatible as the
network achieves better performance when they are com-
bined together. Furthermore, the 6% improvement of sam-
ple and class-wise inner consistency (d) over sample-wise
inner consistency alone (b) demonstrates the efficacy and
versatility of the proposed class-wise consistency.

4.4. Analysis Experiments

In this section, we conduct several additional experi-
ments to validate the versatility of our method. Further anal-
ysis experiments can be found in the supplementary file.

Varying Sizes of C̄t and C̄s. Similar to [60], with fixed
|Cs ∪ Ct| and ξ, we investigate how the performance of our
method changes with various sizes of C̄t. We conduct the
experiments on the task of Real → Clipart of Office-Home.
We set ξ as 0.23 and C = 15. Note that |C̄s| will change
correspondingly with |C̄t|. As Fig. 4a shows, our method
outperforms all the other methods for all |C̄t|. Furthermore,
compared with MixMatch [3] and FixMatch [47], the per-
formance gap increases as the size of |C̄t| increases, which
implies that our method (CCT) is more suitable for the sce-
narios with large target-private categories.

Varying Sizes of C. Similarly, we investigate how the per-
formance of our method changes with various sizes of C but
fixed |Cs ∪ Ct|. We conduct the experiments on the task of
Real → Clipart of Office-Home. We set |Cs ∪ Ct| = 65 and
|C̄t| = |C̄s|. The results are shown in Fig. 4b. Note that
when |C| = 0, we set C̄s = C̄t = 15 and report the ac-
curacy of target-private categories samples only. It can be
observed that our method (CCT) outperforms all the other
methods for all |C|. It is worth noting that our CCT can still
achieve decent performance when there is no intersection
between the source and target label sets.

Varying Sizes of Dl
t. Although we already show the supe-

rior performance of our method in the 3-shot and 5-shot set-
tings, it is still interesting to see how the performance of our
method changes under various number of labeled samples.
We conduct the experiments on the task of Real → Clipart
of Domainnet. As Fig. 4c shows, our method (CCT) consis-
tently outperforms MixMatch [3] and FixMatch [47] in all
cases. Specifically, when the number of labeled samples is
small, CCT surpasses the other methods.

Results on SSMA Benchmark. In addition to Uni-
versal Semi-supervised Model Adaptation (USMA), we

Table 5. SSMA Results on Office-Home 1-shot setting using
VGG16 as the backbone.

Method CE MME SHOT-IM++ SHOT++ CCT

Accuracy 57.4 62.7 65.2 66.1 68.3

also implement CCT on Semi-supervised Model Adapta-
tion (SSMA) benchmark. Following [30], we conduct ex-
periments on Office-Home 1-shot setting using VGG16 as
the backbone. The mean accuracy over 12 domain pairs is
shown in Table 5. It can be observe that CCT outperforms
the current SOTA: SHOT++ [30], which further demon-
strates the versatility of CCT.

5. Conclusions
In this paper, we introduce a more realistic and chal-

lenging domain adaptation problem called Universal Semi-
supervised Model Adaptation (USMA), where i) instead of
the source data, only the pre-trained source model is avail-
able; ii) the source and target domain do not share the same
label set; iii) and there are only a few labeled samples in
each class of the target domain. We show that USMA can-
not be resolved by naively fine-tune the pre-trained source
model using semi-supervised learning or semi-supervised
model adaptation methods. Thus, we propose a collabora-
tive consistency training framework that addresses USMA
by utilizing the complementary strengths of both the pre-
trained source model and its variant pre-trained on target
data only. Moreover, we propose a two-perspective (i.e.,
sample-wise and class-wise) consistency regularization that
helps to make full advantage of our framework, leading
to better performance. Experimental results show that our
method surpass existing semi-supervised learning, semi-
supervised domain adaptation and semi-supervised model
adaptation methods on various benchmark datasets.
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