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A B S T R A C T   

Point clouds are widely used for structure inspection and can provide damage spatial information. However, how 
to update a digital twin (DT) with local damage based on point clouds has not been sufficiently studied. This 
research presents an efficient framework for assessing and DT synchronizing local damage on a planar surface 
using point clouds. The pipeline starts from damage detection via DeepLabV3+ on the pseudo grayscale images 
from the point depth. It avoids the drawbacks of image and point cloud fusion. The target point cloud is sepa
rated according to the detected damage. Then, it can be converted into a 3D binary matrix through voxelization 
and binarization, which is highly lightweight and can be losslessly compressed for DT synchronization. The 
framework is validated via two case studies, demonstrating that the proposed voxel-based method can be easily 
applied to real-world damage with non-convex geometry instead of convex-hull fitting; finite-element (FE) 
models and BIM models can be updated automatically through the framework.   

1. Introduction 

Vision-based non-destructive inspection has been widely used for 
structural health monitoring (SHM), including 2D images and 3D point 
clouds. Many image-based approaches [1–3] were developed for struc
tural surface damage detection, but 2D images cannot provide the 
damage spatial information for assessment and as-is model updating. 
Hence, the 3D point cloud data is utilized to solve this issue by offering 
depth information about the damage [1–3], which can be generated 
from photogrammetry, depth cameras, binocular cameras, terrestrial 
laser scanning (TLS), etc. However, the 3D survey is usually project- 
based with voluminous data. The post-processing of the obtained 
point cloud is also far from automated, which cannot achieve timely 3D 
damage assessment and digital twin (DT) synchronization, as well as 
provide feedback and decision-making to the physical entity in time. 
Little research has focused on efficient and automatic assessment for 3D 
local damage and as-is model updating during the survey. The only 
related one [4] is an approach for spalling detection by fusing point 
clouds and images derived from the iPhone LiDAR and camera. How
ever, it requires extra photos for damage detection and complex coor
dinate transformation for data fusion, which can bring in potential 
errors. Meanwhile, its method for damage volumetric assessment is 

based on convex-hull fitting, requiring elaborate manual separation for 
each convex component, which is not always practical because real- 
world structural damage usually has complicated non-convex geome
try. Furthermore, few previous efforts have been made in efficient data 
transmission for DT synchronization based on the point cloud. There
fore, it would be helpful to develop an efficient framework for 3D 
damage assessment, data transmission, and as-is model updating with 
local damage based on the point cloud during the survey. 

This work aims at vertical 3D damage on a planar surface, such as 
spalling and cracking, and focuses on the post-processing of the point 
cloud, which can provide sufficient spatial damage information. The 
proposed framework includes surface damage detection, spatial seg
mentation, data transmission, and DT synchronization. Firstly, surface 
damage detection is achieved via a pre-trained DeepLabV3+ model on 
the pseudo grayscale image derived from the point cloud depth infor
mation, avoiding the drawbacks of image and point-cloud fusion. Here, 
the DeepLabV3+ model is trained on real grayscale images from a public 
image set, including damage and non-damage images, which can 
distinguish natural damage from legitimate concave patterns. An 
experiment is conducted on the specimens with different crack widths 
and depths, demonstrating that the trained DeepLabV3+ model can be 
applied to pseudo grayscale images when damage satisfies certain 
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conditions. Then the generated damage bounding box and mask are 
utilized for damage spatial segmentation through morphological oper
ation from the surface until the maximum depth of the damage. After 
voxelization with appropriate resolution, the target point cloud can be 
converted into a highly lightweight 3D binary matrix representing the 
damage spatial geometry through voxelization and binarization, which 
can be further compressed through lossless running-length encoding 
(RLE) for efficient transmission. 

The transmitted 3D binary matrix can be utilized for damage volu
metric assessment and DT model updating with the local damage, 
including finite-element (FE) and BIM models. The proposed voxel- 
based fitting method for volumetric evaluation can be achieved by 
summing up the elements of the 3D binary matrix (i.e., empty voxel – 1, 
occupied voxel – 0). The method can be easily applied on real-world 
structural damage with complicated non-convex geometry instead of 
convex-hull fitting [4], and it does not require elaborate manual cutting 
for each component. Moreover, the FE geometric model can be updated 
automatically by deleting the corresponding void elements within the 
damage space, and the element ID list can be obtained by querying if the 
matrix element equals one. Moreover, as each matrix layer can be taken 
as a binary image, the damage contour in each layer can be fitted using 
an appropriate shape. Then, the damage geometry can be reconstructed 
by meshing through the contours across different layers and utilized for 
BIM model updating. Finally, the framework is validated via two case 
studies, including the synthetic groove on a specimen and the real-world 
building crack. 

This study mainly has four contributions:  

1) This study proposes an efficient framework for assessing and DT 
synchronizing 3D local damage using point clouds. After surface 
damage detection based on deep learning (DL), the bounding box 
and mask can be utilized for damage spatial segmentation to remove 
the redundant point cloud. The separated point cloud can be con
verted into a highly lightweight 3D binary matrix representing the 
damage spatial geometry, which can be further losslessly compressed 
for DT synchronization.  

2) Surface damage detection is achieved through a DeepLabV3+ model 
on pseudo grayscale images from the point depth. It avoids the 
drawbacks of image and point cloud fusion. The approach is vali
dated on specimens with variant crack widths and depths. The 
experiment demonstrates that the DL model trained from real gray
scale images can be applied to pseudo grayscale images for damage 
detection when the damage satisfies appropriate conditions. Mean
while, the model can distinguish natural damage from manual 
concave patterns by training on the annotated damage and non- 
damage images.  

3) The proposed voxel-based fitting method for damage volumetric 
assessment, which does not require elaborate manual cutting for 
each component, can be easily applied to 3D damage with compli
cated non-convex geometry instead of the convex-hull fitting in 
previous research.  

4) FE and BIM geometric models can be updated automatically with the 
local damage based on the transmitted 3D binary matrix. 

The rest of this paper is structured as follows: Section 2 overviews the 
related work for crack detection, point-cloud processing, and model 
synchronization. Section 3 presents the proposed framework. Section 4 
is the framework validation via case studies. Section 5 provides a 
dedicated discussion. Section 6 concludes the work. 

2. Literature review 

2.1. Damage detection and characterization 

Research for vision-based damage detection and characterization has 
developed rapidly in recent years by leveraging deep learning. As pho
tographs and videos are the most common visual data for inspection, 
many image-based object detection and semantic segmentation ap
proaches based on deep neural networks (DNNs), such as YOLO [5], SSD 
[6], R-CNN [7], DeepLab [8], have been successfully applied to auto
matic visual inspection for buildings [9], bridges [6,8], roads [5,10], 
and many other infrastructures [6,11]. In addition to general visual 
inspection, these studies can use different technologies to extract the 2D 
damage characters for structural assessment and maintenance decision- 
making, such as damage types, locations, areas, lengths, widths, and 
directions. For example, with the pre-calibrated camera and distance 
sensor, the length and width of concrete cracking can be obtained at 1 
mm accuracy within the estimation error of <10% [12]. Moreover, by 
integrating GNSS and IMU parameters, the detected crack can be 
localized in the same coordinate system of the infrastructure model 
during drone inspection at an accuracy of just a few centimetres [13]. 

Although image-based damage detection and characterization have 
significantly progressed, they cannot provide the necessary depth in
formation for 3D damage assessment and geometric model updating. 
The high-resolution point cloud, derived from photogrammetry, depth 
cameras, binocular cameras, terrestrial laser scanning (TLS), etc., is 
expected to fill this gap. For example, spalling and crack can be detected 
using the luminance or depth variation of RGB point-cloud data from 
TLS [14,15] and then characterized approximately with the maximum 
depth. However, these approaches cannot distinguish between natural 
3D damage and legitimate concave patterns, such as handcrafted circles, 
brick joints, and decorative textures. Hence, the latest research proposed 

Fig. 1. Convex-hull fitting for damage quantification based on manual cutting [4].  
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a method based on mask R-CNN to achieve damage detection and seg
mentation. The mask geo-reference is achieved by the fusion of the 
image and point cloud [4]. This method can automatically distinguish 
target damage from the designed concaves. Still, it requires extra photo 
acquisition and complex coordinate transformation [16], which will 
bring in potential errors, especially when the image and the point cloud 
are obtained under different conditions (i.e., from different angles and 
distances). Therefore, developing an approach for surface damage 
detection and segmentation entirely based on the point cloud would be 
helpful. 

2.2. Data processing and damage quantification 

Point-cloud data processing approaches can be categorized into 
point-based and voxel-based. Previous spatial damage detection and 
assessment studies mainly belong to the former, which compare the 
point cloud with the ideal 3D model or the previous captures. For 
example, the point cloud of a damaged reinforced concrete (RC) column 
after seismic testing can be sliced into different layers and compared 
with a rectangle to distinguish the spalling and residual areas [17]. The 
point cloud captures of each component at different times can be 
compared with each other to identify damage and monitor its evolution 
[18]. Moreover, the damage volumetric quantification can be achieved 
with convex-hull fitting [4] based on the point cloud. However, it is 
prone to exaggerate the ground truth of the target volume for non- 
convex geometry, so it requires elaborate manual separation for each 
component, as the dash lines shown in Fig. 1, which is not always 
practical for real-world damage with complicated geometry. The point- 
based approaches lose sight of the benefit of voxels for volume calcu
lation and mitigation of point sparsity. Therefore, developing a voxel- 
based point-cloud processing approach for 3D damage detection and 
assessment would be helpful. 

2.3. Model synchronization and data compression 

The infrastructure DT for structure health monitoring (SHM) and 
maintenance is not only about 3D visualization but also involves 

communication and back-end services, such as FEA and BIM, as well as 
feedback to the physical entity. From the practitioners' view, one 
obstacle to DT application in practice is the difficulty of keeping model 
synchronization automatically in routine inspection [19]. The current 
3D scanning survey for local damage is still far from automated, and the 
DT models cannot be updated in time, so developing an approach for the 
“as-is” model updating with the detected local damage during the survey 
would improve the work efficiency. One of the bottlenecks is the 
communication complexity, i.e., the massive volume of point cloud data. 
It is a heavy load for data transmission in both time and cost, especially 
for some infrastructures under circumstances with limited communica
tion, such as bridges and tunnels. Therefore, it is necessary to only 
transmit the damage part in an efficient format instead of the raw point 
cloud. 

Additionally, compression can be utilized to decrease communica
tion complexity further. For example, previous studies proposed a few 
approaches to compress 3D point clouds using RNN with residual blocks 
[20] or a hierarchical auto encoder [21]. However, the transmitted data 
for DT synchronization is not necessarily a point cloud. It can be any 
format that distinguishes the 3D damaged space from the residual entity. 
Therefore, binarised voxels have become a promising way to reduce 
complexity significantly, and lossless run-length encoding (RLE) can be 
utilized for further compression. In the medical field, the 3D binary 
matrix through the volumetric RLE has already been proven successfully 
as an efficient approach for the transmission of 3D medical data, as 
shown in Fig. 2. Moreover, the transmitted binarised voxels can be 
employed to update the FE and BIM models. The latest research [4] has 
demonstrated the effectiveness of updating the FE model by deleting the 
corresponding elements less than the damage depth. The method is 
based on iteration and can be integrated into mainstream FE software 
programs. Moreover, the previous studies [22–25] have revealed the 
availability and workflow for damage modelling in geometry and se
mantics using IFC files. 

Fig. 2. Compression with 3D run-length encoding [26].  
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Fig. 3. Proposed framework for 3D damage assessment and DT synchronization.  
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3. Proposed framework 

3.1. Problem statement 

This research aims to propose an efficient framework to achieve 
spatial damage assessment and DT synchronization based on the 3D 
point cloud. The work focuses on point-cloud post-processing of vertical 
damages on a planar surface, such as spalling or relatively wide cracks. 
Hence, this work does not consider insufficient measurement situations 
due to technology limits, such as TLS for diagonal cracking or narrow 
cracks, which cannot provide sufficient damage face and depth infor
mation due to occlusion. In detail, the research problems are shown 
below.  

1. The existing surface damage detection relies on image and point 
cloud fusion. It requires extra photo acquisition, and if the photo 
cannot be taken under the same condition as the survey, i.e., from the 
same angle and distance, it will lead to complex coordinate trans
formation and potential errors. Therefore, developing an approach 
for surface damage detection entirely based on the point cloud is 
necessary.  

2. After detecting the surface damage area, an efficient point-cloud 
processing method is required for damage spatial segmentation. 
Meanwhile, the generated result, representing the 3D damage ge
ometry, should be lightweight enough for data transmission.  

3. 3D damage assessment and DT model synchronization, such as FE 
and BIM models, must be achieved automatically from the trans
mitted data. 

3.2. Overall design 

The overall design of the proposed framework is shown in Fig. 3, 
including data preparation, surface damage detection, point cloud 

processing, and DT synchronization. In data preparation, the target 
planar surface in the raw point cloud is calibrated through normal lines 
and rotation matrices. The surface damage detection is achieved 
through the state-of-the-art semantic segmentation model (i.e., Deep
LabV3+) on a pseudo grayscale image from the point depth. The point 
cloud processing for damage spatial segmentation is achieved through 
voxelization and binarization. The result representing the spatial dam
age geometry is a highly lightweight 3D binary matrix and can be 
losslessly compressed for data transmission. Finally, the DT model 
synchronization (i.e., FE and BIM models) and damage volumetric 
assessment can be achieved automatically from the transmitted 3D bi
nary matrix. 

3.3. Data preparation 

In the beginning, the target surface plane in the point cloud can be 
fitted using the M-estimator Sample Consensus (MSAC) algorithm by 
finding a plane that has a maximum allowable distance from an inlier to 
it [27]. The MSAC algorithm is a variant of the Random Sample 
Consensus (RANSAC) algorithm, which can partially compensate for the 
undesirable effect in noise threshold selection [28]. Then, the point 
cloud can be calibrated by adjusting the surface normal line perpen
dicularly to the horizontal plane, i.e., parallel to the z-axis drawn 
vertically in the coordinate system. The calibration can be achieved by 
multiplying the rotation matrix M, indicated in Eq. (1). 

M =

⎡

⎣
cosβ 0 sinβ

0 1 0
− sinβ 0 cosβ

⎤

⎦ (1) 

Where β is the pitch angle between the surface normal line and the z- 
axis. 

This process can be illustrated by checking the verticality of a 
damaged RC column based on point clouds, as shown in Fig. 4. The 

Plane Fitting
Damaged RC Column

Point Cloud After Calibration

Fig. 4. Plane fitting and calibration of point cloud to check damaged column verticality.  

Fig. 5. Pseudo grayscale images derived from point-cloud depth information.  
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column base upper surface is fitted using the MSAC algorithm and 
calibrated through the above rotation matrix. It is worth noting that the 
normal points on the target surface should be sufficiently greater than 
the damage face points, which is required for surface plane fitting. 

3.4. Surface damage detection and segmentation 

3.4.1. Depth-to-grayscale transformation 
In previous research [4], surface damage detection on a point cloud 

is achieved through image processing or deep learning on 2D images 
(usually RGB) and fusion with the point cloud. It requires extra photo 
acquisition with a built-in camera. If the photo cannot be taken under 
the same condition as the survey, i.e., from the same angle and distance, 
it will lead to complex coordinate transformation and potential errors. 
This work aims to solve this issue by achieving surface damage detection 
with pseudo grayscale images entirely based on the point-cloud depth 
information. 

Assuming the deeper spot in the damaged space has lower luminance 
(i.e., lower grayscale level), the pseudo grayscale images can be gener
ated through the pipeline shown in Fig. 5. Here, the point cloud for the 
manual groove on a specimen is taken as an example. The resolution in 
grid meshing is considered consistent for the following voxelization and 
downstream tasks so that it can be determined by damage conditions 
and assessment requirements. For example, the assessment for the 
building crack in the maintenance manuals [29–31] is at the millimetre 
level, so the survey for cracking is usually achieved with high-resolution 
TLS scanning, and the grid resolution is set as 1 mm. In contrast, the 
assessment for spalling, which is much broader than crack with more 
relaxed inspection standards, can be achieved using the iPhone LiDAR 
under 1 cm resolution for both volumetric quantification and FE model 
updating in the previous research [4]. 

Initially, grid meshing is applied on the point cloud to tighten the 
point sparsity. As seen in Fig. 6, multiple points can be in a single grid, 
and the depth matrix is generated with the maximum point depth in the 
grid. Notably, this process will not lead to the loss of information related 
to the crack. In contrast, it will enhance the impact of the maximum 
depth in the grid because the deepest point represents the depth of a 
single grid. 

Then, the depth-to-grayscale transformation for pseudo grayscale 
images is achieved through Eqs. (2)–(4). d is the depth value for each 
element in the depth matrix; dth is the depth threshold for normalization 
(i.e., d = dth,∀d > dth); Imean is the average grayscale level of the training 
image set I; Dgray is the generated grayscale level for each pixel in a 
pseudo grayscale image. Moreover, the ratio k of the minimum damage 

depth d′min to the depth threshold dth is an essential indicator for suc
cessful transformation, indicated in Eq. (5). 

D = 1 −
d

dth
(2)  

K =
Imean

Dmean
(3)  

Dgray = K⋅D (4)  

k =
d′min

dth
(5) 

Here, a realistic damage image set I [32] is utilized to train a DNN 
model for surface damage detection on the real grayscale images and 
then apply the model on the pseudo grayscale images. The pseudo im
ages are scaled to the same average grayscale level of the damage image 
set I (i.e., Imean), which is beneficial for the model's performance. As the 
pseudo grayscale images are entirely generated from the point-cloud 
depth information, this method overcomes the angle and distance dif
ference between the point cloud and the photo (see Fig. 6), thereby 
avoiding complex coordinate transformation and potential errors within 
data fusion. 

3.4.2. DeepLabV3+ model 
Surface damage detection on the generated pseudo grayscale images 

can be achieved via image processing such as OTSU's method [33] 
through exhaustively searching the optimal threshold to maximize inter- 
class variance (Eq. (6)) based on grayscale. The result can reflect the 
depth difference between the surface and the damaged areas. However, 
it cannot distinguish between natural damage and legitimate concave 
patterns, such as handcrafted holes, brick joints, and decorative tex
tures. Hence, deep learning is utilized to solve this issue for surface 
damage detection. 

σ2
w(t) = ω0(t)σ2

0(t) +ω1(t)σ2
1(t) (6) 

Where, ω0 and ω1 are the probabilities of the two classes (i.e., 
background and damage areas) separated by a threshold t; σ2

0 and σ2
1 are 

variances of these two classes. 
This work uses the state-of-the-art semantic segmentation model 

DeepLabV3+, which combines the Atrous Spatial Pyramid Pooling 
benefits and the Encoder-Decoder architecture for surface damage 
detection and segmentation on grayscale images. Here, the supervised 
learning approach for crack detection is taken as an example and can be 

(a) (b)
Fig. 6. (a) training loss and validation loss; (b) training MIoU.  
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easily extended to detect other surface damages (such as spalling) by 
using the corresponding annotated images to train the model. 

The DeepLabV3+ model is trained on a public crack image set [32], 
which includes 9584 crack and 1411 non-crack images. The images are 
all transformed into grayscale images and split into the training, vali
dation, and test sets (i.e., 80%:10%10%). The pre-trained MobileNet-v2 
based on the PASCAL VOC dataset [34] is employed as the backbone for 
feature extraction. The training condition is shown in Table 1. The 
training loss and MIoU are presented in Fig. 7. The performance on the 
test set is evaluated using mean Intersection over Union (MIoU) and 
mean Pixel Accuracy (MPA), which are 80% and 88%, respectively. It 
demonstrates that the trained DeepLabV3+ has excellent performance 
for crack detection and segmentation on real grayscale images. More
over, the model can distinguish between natural cracks and legitimate 
concave patterns such as handcrafted holes and brick joints. 

To test the trained model performance on the pseudo grayscale im
ages, four specimens created in the lab with variant crack widths and 
depths are utilized in this work, as shown in Fig. 7. The RealSense LiDAR 
Camera L515 is used for crack scanning to generate point clouds. The 
real RGB images are derived from the RGB information for each point 
using the built-in camera, and its grayscale images are calculated 
through Eq. (7). The pseudo grayscale images are generated through the 
pipeline in Fig. 6 with a resolution of 1 mm and dth = dmax. 

Gray = 0.2989*R+ 0.5870*G+ 0.1140*B (7) 

The proposed approach is tested by comparing the model perfor
mance on the pseudo grayscale images with its performance on the real 
grayscale images, and the latter is taken as the ground truth for 

segmentation. The model performance is evaluated using the MIoU (Eq. 
(8)) and the MPA (Eq. (9)) for binary segmentation, i.e., crack (positive) 
and background (negative) pixels. IoUpos and IoUneg denote positive and 
negative Intersection of Union; Ppos and Pneg represent positive and 
negative precision; TP, FP, TN, and FN denote true positive, false posi
tive, true negative, and false negative pixels, respectively. 

MIoU =
IoUpos + IoUneg

2
=

TP
TP+FP+FN + FN

TN+FN+FP

2
(8)  

MPA =
Ppos + Pneg

2
=

TP
TP+FP +

TN
TN+FN

2
(9) 

The segmentation results through the trained DeepLabV3+ model on 
both real and pseudo grayscale images are demonstrated in Fig. 7. Here, 
the crack depth is the vertical depth detected by LiDAR. As can be seen, 
in the experiment for the cracking with width > 5 mm and depth > 6 
mm, the trained DeepLabV3+ model can achieve excellent crack 
detection and segmentation performance (i.e., MIoU = 84.60%, MPA =

97.20%) on the pseudo grayscale images, which are entirely derived 
from the point depth. The failure on the fourth beam is because the crack 
is too narrow, and the LiDAR cannot obtain sufficient points within the 
cracking space due to occlusion. Notably, although this approach is 
illustrated with crack detection and segmentation, it is also available to 
detect other volumetric damages on a planar surface, such as spalling. 

The experiment demonstrates that when structural damages satisfy 
certain conditions (e.g., cracking width > 5 mm and k > 0.17 in the 
experiment), a pre-trained DNN model from the real grayscale damage 
images with annotation can achieve excellent performance for surface 
damage detection and segmentation on the pseudo grayscale images, 
which are entirely derived from the point depth with appropriate reso
lution. This approach avoids the drawbacks of image and point cloud 
fusion, such as extra photo acquisition, complex coordinate trans
formation, and potential data fusion errors. Notably, the resolution se
lection is affected by the survey equipment, such as the 1 cm resolution 
with iPhone LiDAR in the previous research [4]. The model performance 
may degrade when using a relatively low resolution to generate pseudo 

Table 1 
Model training configuration.  

Architecture Input Split Total 
Epochs 

Batch 
Size 

Learning 
Rate 

DeepLabV3+ 448 ×
448 

80%:10%:10% 100 8 0.00005  

Crack width 10~20mm, depth 16~41mm (k=0.39)

Crack width 6~16mm, depth 10~37mm (k=0.27)

Crack width 5~11mm, depth 6~35mm (k=0.17)

Crack width 1~5mm, depth 1~14mm (k=0.07)

Different Cracking Specimens Real Grayscale Pesudo Grayscale

1

2

3

4

Fig. 7. Damage segmentation using DeepLabV3+ model on the pseudo grayscale images.  
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grayscale images. At that moment, a new model would be required 
based on the reduced training images with the corresponding resolution. 
Additionally, the model can distinguish natural structural damages from 
legitimate concave patterns by training through the annotated damage 
and non-damage images. 

3.5. Damage spatial segmentation 

3.5.1. Spatial voxelization 
After surface damage detection and segmentation, the damage can 

be masked with a bounding box. Then, the point cloud section involving 
target damage can be separated as a cuboid according to the bounding 
box from the surface until the maximum depth along the depth direc
tion, i.e., the z-axis, as shown in Fig. 8. The separated cuboid section can 
be fully voxelized with an appropriate resolution, which should be 
consistent with the grid resolution in the previous stage and suitable in 
downstream tasks for damage assessment. As seen in Fig. 8, the cuboid 

after voxelization includes three different types of voxels, i.e., (1) the 
empty voxels in the damage space, (2) the occupied voxels by the entity 
surface and damage face, and (3) the unobserved voxels due to occlu
sion. The benefit of doing this is that the enclosed damage space and the 
entity can be distinguished using the status of each voxel, i.e., the empty 
and the occupied voxels. Here, the voxel status is defined as occupied 
even if only a single point is included, so the voxelization will not lead to 
losing the point information. In contrast, it will enlarge the single-point 
impact, which is beneficial for assessment reliability. 

In principle, voxelization can be implemented through the Octree 
[35], but in practice, the observed occupied voxels on the surface can be 
easily obtained by using the floor-like integerization for point co
ordinates according to the resolution, as shown in Fig. 9. Here, the 
integer coordinate (x, y, z) of each node at the corner corresponds to the 
position of each occupied voxel in the cuboid. 

Detected Damage and Bounding Box Z X

Y

Damage Section and Spatial Voxelization

Fig. 8. Separated cuboid damage section and spatial voxelization.  

Raw Point Cloud Occupied Voxel Coordinates

Fig. 9. Voxelization through floor-like integerization.  

Z X
Y

Binary mask

Mophological 
Operations

Layer 5 Layer 15 Layer 25

Surfac
e 

Lay
er Slicing

Fig. 10. Surface binary mask and following morphological operations.  
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3.5.2. Binarization and morphological operation 
The binary mask for the detected damage on the surface is shown in 

Fig. 10, including the damage area (white pixels – 1) and the background 
area (black pixels – 0). It can be utilized as the damage mask directly on 
the surface layer of the separated cuboid damage section when grid 
meshing and voxelization have the same resolution. Otherwise, the mask 
needs to be resized. 

After assigning occupied voxels with 0 and empty voxels (including 
unobserved voxels) with 1, each layer (or slice) of the voxelized cuboid 
along the depth direction can be taken as a binary image. Then, the 
empty voxels, occupied voxels, and unobserved voxels in the following 
layers along the depth direction can be updated through morphological 
operations, as shown in Algorithm 1. The Hadamard product enables the 
damage area to shrink when new occupied voxels arise in the current 
layer, and image closing can remove the outlier pixels enclosed in the 
damage area. Finally, the result is a highly lightweight 3D binary matrix 
representing the damage spatial geometry.   

Notably, this processing method relies on the detected damage face 
points and will not lead to the loss of the damage space. For example, if 
the equipment cannot perceive the damage face in a few layers, these 
layers will inherit the damage mask of the previous layer. Hence, the 
damage area in each layer will only change as the new occupied voxels 
arise, i.e., new damage face points are detected. This is beneficial for 
assessment reliability based on the perceived point cloud. 

3.6. Digital-twin synchronization 

3.6.1. Data compression and transmission 
The transmission data includes the generated 3D binary matrix 

representing the damage spatial geometry and the corner point co
ordinates of the segmented cuboid on the surface for geo-referencing. 
Here, the 3D binary matrix is much lighter than the original point 

Binary Matrix (3D)

1st Slice (2D)
2nd Slice (2D)

...
Max-depth Slice (2D)

RLE Huffman Encoding Bitstream

Compression and Encoding

Fig. 11. 3D Binary matrix compression and transmission.  

(a) Ground truth

(b) Convex-hull fitting 
without manual cutting

(c) Voxel-based fitting

Volumetric difference

Fig. 12. Comparison of convex-hull fitting and voxel-based fitting: (a) ground truth; (b) convex-hull fitting without manual separation; (c) voxel-based fitting.  
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cloud and can be further compressed through the lossless RLE before 
transmission, as shown in Fig. 11. The compression efficiency can be 
evaluated with compression ratio (CR), indicated in Eq. (10). 

Compression Ratio =
Uncompressed Size
Compressed Size

(10)  

3.6.2. Damage volumetric assessment 
The damage volume assessment aims to evaluate the residual bearing 

capacity of the damaged structure by quantifying the damaged void 
space. The latest research [4] uses convex-hull fitting to achieve damage 
volumetric quantification, but this method requires handcrafted cutting 
for each convex component. Otherwise, it will exaggerate the damage 

volume. However, elaborate manual cutting is time-consuming and is 
not always available for real-world structural damage with complicated 
non-convex geometry. Hence, voxel-based fitting is proposed to solve 
this issue in this work. 

A point cloud for cracking is shown in Fig. 12. Here, it assumes the 
crack is wide enough, and the survey provides sufficient points for 
damage spatial assessment. As can be seen, the damage space is a non- 
convex geometry, which can be manually separated into three convex 
polyhedrons for convex-hull fitting, as shown in Fig. 12(a). According to 
previous research [4], the sum of these three volumes can be taken as the 
ground truth. Fig. 12(b) shows the convex-fitting result for the intact 
point cloud without manual separation, and Fig. 12(c) demonstrates the 
voxel-based fitting result. As can be seen, the convex-hull fitting without 
manual separation tends to exaggerate the damage volume with the 
purple-marked volume, and the voxel-based fitting is much closer to the 
ground truth. In practice, the voxel-based fitting volume can be easily 
obtained by summing up the value of the transmitted 3D binary matrix 
(i.e., empty voxel – 1 and occupied voxel – 0) to figure out the voxel 
amount and then multiplying it with the volume of the unit voxel. 

3.6.3. Model synchronization 

3.6.3.1. FE model geometric updating. Here, the element for FEA has the 
equivalent resolution of grid meshing and voxelization in Sections 3.4 
and 3.5. The latest research [4] demonstrates that the FE model can be 
updated geometrically by removing the elements less than the damage 
depth, but the algorithm is based on loop iteration. In principle, with the 
generated 3D binary matrix, the more efficient method to update the FE 
geometric model is to apply the Hadamard product on the corresponding 
cuboid (after geo-referencing) in the FE model, as shown in Fig. 13. Its 
time complexity is O(n), where n = l × w × d (l, w, and d are numbers of 
elements in the matrix along length, width, and depth, respectively), and 
space complexity is O(1). 

However, most commercial FE software cannot support the above 
manipulation, and the elements are usually denoted with indices rather 
than a matrix, such as in Abaqus and Ansys. Hence, the empty voxel 
coordinates are retrieved by querying with the matrix element equal to 1 
and then used to generate the damaged elements' indices. Finally, the FE 
model can be updated geometrically by deleting the corresponding el
ements or setting them invalid for the calculation. The pseudocode of 
this procedure is shown below as Algorithm 2. Its time complexity is 
O(n) + O(m) as querying across the matrix – O(n) and adapting identi
fied void element IDs – O(m), where n is the number of elements and m is 
the number of damaged elements in the matrix, which is superior to the 
previous method [4] with time complexity of O(3 × n × log2n). Addi
tionally, its space complexity is O(m). 

3.6.3.2. BIM model geometric and semantic updating. The damage con
tour in each layer (or slice) of the transmitted 3D binary matrix can be 
fitted with an appropriate shape. For example, the circles or ellipses 
fitting for spalling can indicate the damage centroid and radius 
(including major and minor radius) in each layer, which is useful for 
damage recording and assessment. The 3D damage geometry can be 
constructed automatically from the transmitted matrix through com
mercial software like Dynamo. Then, the BIM model can be further 
updated with the damage geometry following the pipeline shown in 
Fig. 14 according to previous research [23,36,37]. The fitted damage 
polyhedron can be taken as an entity and assigned with IfcVoidingFea
ture, which is a modification of an element to reduce its volume. After 
setting its parameter PredefinedType to CUTOUT, the damage geometry 
can be subtracted from the intact component via the DamagedGeome
tryCutout relationship. 

4. Proof of concept 

4.1. Experiment preparation 

A public TLS point cloud dataset [15,38] for synthetic grooves and 
real-world cracking is utilized for framework validation. The synthetic 
grooves are created on a specimen with different widths (from 1 mm to 

3D Binary Matrix

Fig. 13. Proposed FE model geometric updating via Hadamard product.  
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Fig. 15. (a) Synthetic grooves; (b) Real-world building crack.  

Point Cloud of Synthetic Groove Pseudo Grayscale Image Mask and Bounding Box

Fig. 16. Groove detection on a pseudo grayscale image.  

Fig. 14. BIM model updating with the local damage geometry [37].  
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10 mm), and the cracking happens on a building wall, as shown in 
Fig. 15. The survey is taken using a high-quality laser scanner (Z + F 
IMAGER® 5016) at 5 m with an incidence angle of 0◦. The scanner's 
range resolution is 0.1 mm, and the linearity error is <1 mm + 10 ppm/ 
m. The blue rectangles indicate the selected point clouds for the 
experiment. CloudCompare and MATLAB are utilized for point-cloud 
processing. Dynamo is used to reconstruct the 3D damage geometry 
automatically, and Abaqus is used for updating the FE geometric model. 

4.2. Case 1 – Synthetic groove 

4.2.1. Groove detection and spatial segmentation 
As the wider groove has a better scanning performance for its in

ternal space, the biggest groove with a 10 mm width is adopted for the 
experiment, shown as blue-marked in Fig. 15(a). As indicated in previ
ous research [15]. its spatial geometry can be described effectively using 
the point cloud for damage detection. The target groove is initially 
cropped from the point cloud, and the surface plane is fitted using the 
MSAC. The pitch angle β of the fitted surface is − 0.0218 rad, so the point 
cloud can be calibrated through Eq. (1), i.e., rotation around the y-axis 
by β, to make sure the fitted surface plane is horizontal. 

The pseudo grayscale image for the cropped section is generated 
based on the point depth information through the pipeline in Fig. 5, with 
an average grayscale of 124. The grid resolution is 1 mm. Because the 
trained DeepLabV3+ model cannot recognize synthetic damage (like 
grooves), the OTSU thresholding method is adopted here for groove 
segmentation on the surface. The groove region, i.e., the mask and the 
bounding box, can be generated, as shown in Fig. 16. 

Then, a 3D cuboid involving the groove is separated according to the 
bounding box from the surface plane until the maximum depth. The 
cuboid can be voxelized spatially with the same resolution as grid 
meshing in the above stage, i.e., 1 mm. The occupied voxels by the entity 
surface and the damage face are set to 0; the empty voxels (including 
unobserved voxels) are set to 1. Subsequently, the spatial segmentation 
for the groove is achieved through Algorithm 1 in Section 3.5.1. The 
voxelized cuboid's layers (or slices) can be shown in Fig. 17, where 
empty voxels are white and occupied voxels are black. Finally, a 3D 
binary matrix M (200 × 35 × 21) representing the groove spatial ge
ometry is generated as a “.mat” file. 

4.2.2. DT synchronization 

4.2.2.1. Data compression and transmission. The original point cloud of 
the target section in Fig. 15(a) has 9.5428 × 104 points and can be saved 
as a “.pcd” file of 2.18 MB. In contrast, the generated 3D binary matrix is 
saved as a “.mat” file of only 2252 bytes. Compared to transmitting the 
full-scale point cloud, the proposed method can decrease communica
tion complexity by over 99%. The matrix can be further compressed 
through RLE to 977 bytes. The compression rate (CR) reaches 56.62%. It 
is also smaller than the produced matrix (i.e., “.mat” file, 1638 bytes) 
through the method in previous research [4], which represents the 
maximum depth in each grid on the target surface. Meanwhile, the x-y 
coordinates (m) of the bounding box diagonal corner points, i.e., (0.029, 
0.197) and (0.042, 0.018), are utilized for geo-referencing of the target 
groove section on the surface plane. It demonstrates that the proposed 
framework can enable highly efficient data transmission for DT 

Fig. 17. Each layer (or slice) for the groove in the voxelized section.  

Fig. 18. Groove volumetric assessment with convex-hull and voxel-based fitting.  
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synchronization of the target groove. The generated data through 
voxelization and binarization is significantly lighter than the original 
point cloud, which can support the timely as-is model updating during 
the survey. 

4.2.2.2. Groove volumetric assessment. As the target vertical groove is a 
simply convex geometry, the convex-hull fitting method in the previous 
research [4] can be implemented directly on the groove point cloud 
without handcrafted separation, and the volume result is 25,687 mm3. 
The voxel-based fitting assessment can be achieved by summing up the 
Boolean values of the transmitted 3D binary matrix (i.e., the unit voxel is 
1 mm3), and the result is 25,231 mm3. As can be seen, the result dif
ference between the two fitting methods is <2% for the target groove. It 
demonstrates the effectiveness of the proposed voxel-based method for 

volumetric assessment of the 3D damage having a convex geometry 
based on appropriate resolution (Fig. 18). 

4.2.2.3. FE model geometric updating. A model for FEA is established in 
Abaqus with the equivalent resolution of voxelization. Initially, the 
target groove section (corresponding to the transmitted 3D binary ma
trix) can be localized in the FE model using the diagonal corner point 
coordinates. Then, the ID list of the empty elements can be obtained by 
retrieving the matrix element that equals 1. Finally, the FE model can be 
updated automatically by deleting the empty elements in the groove 
using the Python-based script, as shown in Fig. 19. It demonstrates that 
the proposed framework can automatically enable FE model geometric 
updating with the 3D local damage. 

4.2.2.4. BIM model updating. The groove contour in each layer can be 
fitted with ellipses based on centroids, major and minor axes, as shown 
in Fig. 20(a), indicating the critical damage features, such as location, 
width, and length. The fitted ellipses can be generated in Dynamo using 
Ellipse.ByOriginRadii through visual programming, as shown in Fig. 20 
(b). Finally, the groove geometry can be reconstructed, as shown in 
Fig. 20(c). 

Furthermore, the groove component can be taken as an entity with 
IfcVoidingFeature, and the parameter PredefinedType is set to CUTOUT. 
Then, the groove geometry can be subtracted from the intact Building
Product based on the DamagedGeometryCutout relationship. Conse
quently, BuildingProduct will point to the specimen with 
componentGeometry, and DamagedGeometryCutout will refer to the 
groove with damagedGeometry. Finally, DefectAnnotation (including 
name, id, description, position, etc.) can be associated with the groove 
component to update the semantic information in the BIM model. The 
complete pipeline is shown in Fig. 14. 

4.3. Case 2 – Real-world building crack 

4.3.1. Crack detection and spatial segmentation 
In the second case, the framework is tested on the point cloud of a 

real-world building crack, as shown in Fig. 15 (2). The experiment 

Fig. 19. FE model geometric updating for synthetic groove.  

Fig. 20. BIM model geometric updating for synthetic groove.  
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adopts the blue-marked region, with the cracking width from 11 mm to 
30 mm. As the high-resolution TLS scanning can provide sufficient 
spatial information for the synthetic groove with a width of 10 mm (see 
Section 4.2.1), the point-cloud data under the same survey condition (i. 
e., the same equipment, angle, and distance) for the crack >11 mm is 
available for damage spatial assessment. The surface plane is fitted with 
the MSAC, and the point-cloud calibration is achieved through Eq. (1) 
with β = 0.0023 rad. The pseudo grayscale image is entirely derived 
from the point depth with a grid resolution of 1 mm and utilized for the 
crack segmentation on the surface through the pre-trained DeepLabV3+
model. The crack mask and bounding box are shown in Fig. 21. 

The 3D crack section (i.e., cuboid) is separated according to the 
bounding box from the surface plane until the maximum depth. The 
cuboid is voxelized spatially at a resolution of 1 mm. The occupied 
voxels by the entity surface and the damage face are set to 0; the empty 
voxels (including unobserved voxels) are set to 1. The spatial segmen
tation for the crack can be achieved through Algorithm 1 in Section 
3.5.1. The voxelized cuboid's layers (or slices) can be shown in Fig. 22, 

where empty voxels are white and occupied voxels are black. Finally, a 
3D binary matrix M (850 × 55 × 56) representing the crack spatial ge
ometry can be generated as a “.mat” file. 

4.3.2. DT synchronization 

4.3.2.1. Data compression and transmission. The original point cloud of 
the target crack section in Fig. 15(b) has 2.001331 × 106 points and is 
saved as a “.pcd” file of 53.4 MB. In contrast, the generated 3D binary 
matrix is a “.mat” file of only 58.6 KB. Compared with the full-scale 
point cloud, the transmission payload size decreases by over 99%. The 
matrix can be further compressed through lossless RLE until 16.9 KB. 
The compression rate (CR) reaches 71.16%. It is also smaller than the 
result (i.e., “.mat” file, 40.2 KB) through the method in previous research 
[4]. Meanwhile, the x-y coordinates (m) of the bounding-box diagonal 
corner points, i.e., (0.129, 0) and (0.184, 0.183), are utilized for geo- 
referencing of the target crack section on the surface. It demonstrates 
that the proposed framework can enable highly efficient data 

Point Cloud Pseudo Grayscale Crack Segmentation Mask and Bounding box

Fig. 21. Real-world crack detection with pseudo grayscale image via DeepLabV3+.  

Fig. 22. Each layer (or slice) for real-world cracking in the voxelized section.  
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transmission for DT synchronization of the real-world building crack. 
The transmitted data is significantly lighter than the original point 
cloud, which can support the as-is model updating during the survey. 

4.3.2.2. Damage volumetric assessment. The target real-world building 
crack is a complicated non-convex geometry, shown in Fig. 23(a), so it is 
impractical to apply elaborate handcrafted separation for each convex 
component to achieve volumetric assessment through the convex-hull 
fitting. In contrast, the voxel-based fitting can be easily applied for the 
damage volumetric assessment in this situation. As Section 4.2.2.2 has 
demonstrated the effectiveness of the voxel-based method for a convex 
geometry, the voxel-based fitting with an appropriate resolution can be 
closer to the ground truth than the convex-hull fitting for the intact point 
cloud without manual cutting, as shown in Fig. 23(b) and (c). In prac
tice, the voxel-based volumetric assessment can be achieved by sum
ming up the Boolean values of the transmitted 3D binary matrix (i.e., the 
unit voxel is 1mm3), and its result is 4.0652 × 105 mm3. This method 
can also be extended for volumetric assessment of other 3D damages 
having a non-convex geometry, such as the spalling in Fig. 1. It 

demonstrates that the proposed voxel-based method can be easily 
applied instead of the convex-hull fitting for volumetric assessment of 
the real-world damage having a non-convex geometry. 

4.3.2.3. Model updating. Like Section 4.2.2.3, an FE model can be 
established in Abaqus with the equivalent resolution of voxelization. 
The separated crack section (i.e., a cuboid) can be localized using the 
diagonal corner point coordinates in the FE model. Then, the ID list of 
the empty element can be obtained by retrieving the matrix element that 
equals 1. Finally, the FE model can be updated automatically by deleting 
the empty elements in the cracking space through a Python-based script, 
as shown in Fig. 24. It demonstrates that the proposed framework can 
update the FE geometric model efficiently and automatically for real- 
world building crack based on the point cloud. 

Furthermore, the crack contour in each layer can be fitted using a 
bounding box, as shown in Fig. 25, to indicate the cracking location and 
skeleton. Then, the crack spatial geometry can be generated by meshing 
the bounding boxes across different layers. Finally, the BIM model can 
be updated geometrically and semantically like in Section 4.2.2.4. The 
proposed framework for FE and BIM model updating with local damage 
is also available for other 3D structural damage, such as concrete spal
ling shown in Fig. 1. 

5. Discussion 

Although the proposed framework performs excellently on synthetic 
and real-world spatial damage in the case studies, it still has some lim
itations. For example, the accessibility of the target from the LiDAR 
plays an important role in the proposed methodology while capturing 
the point cloud with the required interpoint spacing, which is crucial to 
the performance of damage assessment and reality modelling. This study 
keeps the scanner 5 m apart from the target and perpendicular to the 
planner surface without any angles in the experiment. However, this 
configuration may not always be practical for a survey of damaged 
structures if they cannot be accessible like this. Hence, it is necessary to 
discuss the ambient and intrinsic factors affecting the proposed meth
odology's performance, summarising as distance, angle, and edge effect 
(or laser beam size). 

The distance from the scanner to the target influences measurement 
accuracy and point cloud density. As the distance grows, the measure
ment accuracy declines, so it is necessary to adapt the grid and voxel 
resolution accordingly. Although the accuracy remains acceptable 
within a specific distance range determined by the equipment, increased 
distance leads to a decrease in point density. This results in more empty 

Fig. 23. Volumetric assessment for the real-world building crack.  

Fig. 24. FE model geometrically updating for real-world cracking.  
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grids or voxels without enclosed points, consequently raising ambiguity 
in determining whether a voxel is void within a damaged volume. In 
such instances, appropriate computer vision methods based on image 
processing or deep learning are required to perform effective spatial 
denoising. 

The angle of incidence is directly related to the scanning field of the 
structural damage. The previous study [15] has shown that when the 
incidence angle is oblique, it causes a restricted visual field of the 
damage area due to occlusion, resulting in loss of information during 
inspection. Therefore, when it is impossible to conduct perpendicular 
scanning, it becomes necessary to perform scanning from different 
viewpoints to acquire sufficient damage spatial information. Then, the 
damage space can be reconstructed or potentially predicted through 
various technologies like neural radiance fields (NeRF) or 3D shape 
completion. This procedure can be carried out before transmission with 
point clouds or after transmission using the generated binary matrices 
through the proposed method. 

Although the damage size and depth may meet specific criteria for a 
high-quality point cloud description, the edge effect still exists. As 
defined in [15], this effect refers to using an average object distance 
when the laser beam covers multiple surfaces with varying depths along 
the edge. It will blur the damage boundary in the point cloud and can 
only be mitigated by reducing the size of the laser beam. Therefore, a 
modest enhancement of the points' depth along the edge would benefit 

damage segmentation in the pseudo grayscale images (i.e., equivalent to 
image sharpening) while also expanding the margin for reliable damage 
assessment. 

6. Conclusion 

This study presents a highly efficient framework for damage volu
metric assessment and DT synchronization based on the point cloud. It 
includes surface damage detection, damage spatial segmentation, and 
DT model synchronization. The surface damage detection is achieved 
through a pre-trained DeepLabV3+ model on the pseudo grayscale im
ages derived from the point cloud depth information. It avoids the 
drawbacks of using image and point cloud fusion, such as extra photo 
acquisition, complex coordinate transformation and potential errors. 
The approach is validated on the specimens created in the lab with 
different crack widths and depths. It demonstrates that the trained 
model from the real grayscale images for damage detection can be 
applied to the pseudo grayscale images when the damage satisfies 
certain conditions, such as appropriate width and normalization 
threshold. Meanwhile, the natural damage and manual concave patterns 
can be distinguished via the DeepLabV3+ model by training on the 
annotated damage and non-damage images. 

After surface damage detection, the bounding box and mask are 
utilized for damage spatial segmentation to remove the redundant point 
cloud. Then, the separated point cloud can be converted into a highly 
lightweight 3D binary matrix representing the spatial damage geometry 
through voxelization and binarization. Compared with the full-scale 
object's point cloud transmission, communication complexity can be 
significantly decreased (over 99%) by only transmitting the segmented 
target point cloud in a binary matrix. The binary matrix can be further 
compressed through lossless RLE (with a CR of over 50%) for efficient 
data transmission and practical downstream tasks. This approach ad
dresses the communication complexity challenge when DT synchronizes 
with voluminous point cloud data in 3D scanning surveys. 

Finally, the transmitted 3D binary matrix and the geo-referencing 
coordinates can be utilized for different downstream tasks, including 
SHM and reality modelling. For example, the damage volumetric 
assessment can be easily achieved by summing up the elements of the 
binary matrix (as void voxel – 1 and occupied voxel – 0). This voxel- 
based method doesn't require elaborate manual cutting for each 
component like the previous method based on the convex-hull fitting 
[4]. It can perform well for real-world damage with a complicated non- 
convex geometry under an appropriate resolution. Moreover, the FE 
model can be updated geometrically through the binary matrix with 
lower time and space complexity (see Table 2). The BIM model can also 

Fig. 25. Crack contour in each layer fitted with bounding boxes.  

Table 2 
Comparative analysis between proposed methodology and existing practices.  

Methodology 
(data form) 

Payload Volumetric 
Assessment 

FE complexity 
(time/space) 

BIM 
updating 

Project-based 
(full-scale 
PCD) 

Heavy Manually 
comparing 

O(P × N) Time- 
consuming O(M)

Research [4] 
(segmented 
PCD) 

Medium Manual cutting 
(convex) 

O(3 × n × log2n) n/a 
O(m)

Proposed 
framework 
(binary 
matrix) 

Light Automatically O(n)+ O(m) Fast 
O(m)

Note: PCD – point cloud data; the damage volumetric estimation in the current 
project-based survey is achieved by manually comparing the full-scale point 
cloud with an ideal 3D model; P is the number of all the points in PCD; N is the 
number of elements, and M is the number of damaged elements in the full-scale 
model; n is the number of elements and m is the number of damaged elements in 
the target section.  
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be updated automatically as an IFC file using appropriate patterns (such 
as ellipses and bounding boxes) to fit the damage contour in each layer. 

The intact framework is validated based on two case studies, i.e., a 
synthetic groove and a real-world building crack. A comparative anal
ysis, as shown in Table 2, demonstrates that the proposed framework is 
superior to the existing practices for damage assessment and reality 
modelling via 3D scanning. 

It is important to highlight that the proposed framework and ap
proaches hold promise for further study in extending their application to 
spatial damage on the object with a curved surface, such as cracks or 
spalling on a pillar. The proposed methodology can revolutionize the 
existing workflow for infrastructure maintenance surveys based on 3D 
scanning, which is unidirectional, time-consuming, and burdensome 
due to the large volume of point cloud data. Instead, it can facilitate near 
real-time damage assessment and reality modelling during the scanning 
process and provide timely feedback to the physical entity, effectively 
streaming the challenging 3D scanning survey into the infrastructure's 
DT. 
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