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Abstract

Reconstructing accurate 3D surfaces from noisy point
clouds is a fundamental problem in computer vision. Among
different approaches, neural implicit methods that map 3D
coordinates to occupancy values benefit from the learning
capabilities of deep neural networks and the flexible topol-
ogy of implicit representations, achieving promising recon-
struction results. However, existing methods utilize stan-
dard (dense) 3D convolutional neural networks for feature
extraction and occupancy prediction, which significantly re-
stricts their capability to reconstruct details. In this paper,
we propose a neural implicit method based on sparse convo-
lutions, where features and network calculations only focus
on grid points close to the surface to be reconstructed. This
allows us to build significantly higher resolution 3D grids
and reconstruct high-fidelity details. We further build a 3D
residual UNet to extract features which are robust to noise,
while ensuring details are retained. A 3D position along
with features extracted at the position are fed into the occu-
pancy probability predictor network to obtain occupancy.
As features at nearby grid points to the query position may
not exist due to the sparse nature, we propose a normalized
weight interpolation approach to obtain smooth interpola-
tion with sparse data. Experimental results demonstrate
that our method achieves promising results, both qualita-
tively and quantitatively, outperforming existing methods.

1. Introduction

With the increasing availability of 3D sensors, such as
3D scanners and LiDAR sensors (including those fitted on
mobile phones), acquisition of 3D data becomes much eas-
ier. The raw data captured is often in the form of point
clouds, with unavoidable sensor noise. To support down-
stream applications, it is essential to obtain accurate 3D
surface reconstruction. However, this is a challenging task
as the input may contain significant noise and can have

flexible topology. To address this, classic methods per-
form 3D reconstruction using some implicit representa-
tions, such as radial basis functions [2] and Poisson recon-
struction [20, 21]. Nevertheless, traditional implicit repre-
sentations tend to lose fine geometric details, and have lim-
ited capability to handle noisy inputs. Deep neural networks
have recently been utilized to predict implicit fields that de-
pict 3D shapes [46, 48]. They typically use a neural net-
work to map 3D coordinates of arbitrary locations in space
to certain values, such as occupancy [31, 34] and signed (or
unsigned) distance to the nearest surface point of an ob-
ject [33, 38]. Thanks to their learning capabilities, such
methods can achieve better reconstruction results, both in
terms of quality of surface such as smoothness and details,
and robustness to noise.

To learn an implicit field, often a dense grid of 3D fea-
tures is extracted using convolutional layers. However, con-
volution in a 3D voxel grid brings in a huge computational
overhead compared to 2D convolution. Meanwhile, it is
wasteful as a large amount of empty space exists in the 3D
voxel grid. Sparse tensors only store locations where the
feature is non-zero which saves tremendous space without
information loss. Sparse convolution [9, 15, 41] is a gener-
alized convolution that directly conducts on sparse tensors,
which is a feasible way to tackle intensive usage of com-
putational resources and sparsity in high-dimension input
data. Similar to how image resolution determines image
quality in 2D, a higher resolution voxel grid can represent
3D objects better and provide abundant details. Sparse con-
volution mitigates the limit of memory cost, therefore, con-
volution can be conducted on a higher resolution voxel grid
and output the latent feature in demand.

To determine the reconstructed 3D shapes, occupancy
values are queried at arbitrary locations in the implicit field.
To achieve this, features at the 3D grid are interpolated as
in [14, 34], e.g. using tri-linear interpolation of features at
the 8 grid cell corners for the grid cell that encloses the
queried point. However, in our method because of the spar-
sity of sparse tensor, the queried point may be located in a
grid cell where only part of grid cell corners contain fea-
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Figure 1. Pipeline of our method. Using higher resolution sparse grids provides high fidelity sampling space for randomly sampled points.

tures, or if the queried point is further away from the sur-
face, it may happen that none of the grid cell corners of
the enclosing grid cell has features. We thus propose a
novel normalized linear interpolation for the sparse voxel
grid, which only relies on sparse features while ensuring a
smooth interpolation of them.

In summary, our contributions are:

• To the best of our knowledge, it is the first work that
exploits sparse convolutions for surface reconstruction
from noisy point clouds.

• To achieve this, neighboring voxels not originally oc-
cupied may be required to contain features for accurate
prediction, so a generative sparse de-convolution is uti-
lized to add appropriate voxels to the sparse grid for
feature sampling. We also propose a novel normalized
interpolation applicable to points where the enclosing
grid cell does not have features at all grid corners.

• Experimental results show that our network architec-
ture with higher-resolution, sparse voxel grids pro-
vides more accurate implicit field results, outperform-
ing other methods for reconstruction at both scales:
single objects and indoor scenes.

2. Related Work
3D reconstruction is a problem of widespread concern.

Generally speaking, it involves the conversion from a par-
tial observation of a 3D model (images or irregular 3D rep-
resentation like point clouds) to a comprehensive and com-
plete 3D structure. In this paper, we specifically address the
problem of reconstructing smooth mesh surfaces from noisy
point clouds.

2.1. Traditional Surface Reconstruction Methods

Poisson reconstruction [20, 21] and RBF (radial basis
function) method [2] were representative methods for im-
plicit surface reconstruction. However, RBF and Poisson
methods both need the orientation of each point in the
point cloud, which restricts the applicability of the method.

Meanwhile, the computational overhead to solve the equa-
tion in the RBF method is substantial, especially when the
input point cloud has a large number of points. Addition-
ally, Moving Least Squares (MLS) method [1] reconstructs
the surface by finding a suitable local area to constitute a
polynomial. But it has limited capability of reconstructing
details especially when the input point cloud contains much
noise.

2.2. Learning 3D Shapes by Neural Networks

Deep neural networks work by learning from a large
amount of data and have shown their capability in many
3D computer vision tasks. Besides, they can be regarded
as a universal approximator to any function. For surface
reconstruction, 3D shapes can be represented using either
explicit or implicit representations. Explicit representation
of 3D models directly represents the geometry such as co-
ordinates, allowing its appearance to be directly rendered.
However, they can either be expensive to represent details,
or not sufficiently flexible with topological changes. In con-
trast, the implicit function is easier to be approximated by a
deep neural network, although the output geometry cannot
be directly rendered, relying on algorithms such as March-
ing Cubes for isosurface extraction to obtain an explicit rep-
resentation for rendering.

Explicit representations. Point clouds, voxels and
meshes are considered to be the most popular explicit repre-
sentations of 3D models. A point cloud consists of a certain
number of points whose coordinates can be output by a neu-
ral network. PointNet [35] based auto-encoders [28, 45, 49]
have been applied to the completion task, and the output
is often reshaped to a point cloud that has a fixed number
of points. Every three channels in output are viewed as
x, y, z coordinates to form a single point. Similarly, Fan
et al. [13] use a point cloud as the output of the recon-
struction task from a single image. However, limited by the
number of points in the point cloud, the reconstruction re-
sults are relatively coarse with missing details. Point clouds
also lack a regular structure, making learning more diffi-
cult. AtlasNet [17] shapes points to a patch by directly con-



necting 3D points that are originally connected in the 2D
plane. Voxel-based 3D reconstruction has been attempted
by [10, 26], but such methods have very high memory re-
quirements. To solve the computation overhead in terms of
the 3D voxel grid, several methods have been proposed us-
ing spatial partitioning such as octree-based methods [43]
and sparse voxel grids [9, 12, 18]. Meshes have a complex
topology, for the reconstruction task, the neural network is
trying to convolve features at vertices and faces in [19].
However, mesh-based methods cannot easily model topo-
logical changes.

Implicit representations. Indicator/occupancy func-
tions and signed distance functions are two classic types of
implicit methods to represent 3D shapes. Related computer
vision tasks like 3D reconstruction from a single image have
been implemented in [31]. For the indicator/occupancy
function, if the sampled point is located inside an object, the
occupancy value will be 1. Otherwise, occupancy value of
0 indicates that the sampled point is located outside the ob-
ject. The decision boundary defines surfaces of the object.
This idea has also been explored by IM-NET [5], which
generates shapes with this paradigm. The idea to approx-
imate implicit fields by a neural network is also applied
in signed distance functions (SDFs) [8, 23, 30, 33, 38–40]
while the signed distance from a sampled point to its clos-
est surface is recorded. The zero level set of signed dis-
tances depicts the surface. The implicit function maps any
location in space to a real number, which is naturally dif-
ferentiable. However, if the learning-based method over-
focuses on global information of input, the reconstruction
results tend to be close to model retrieval from the training
set [44]. To solve this, Takikawa et al. [40] use Level of De-
tail (LOD) to better extract multi-scale latent features. Lo-
cal information is also important, some methods [25,34] use
convolution layers to better extract latent features fetched to
the decoder. Both methods are based on interpolation over
a certain plane or voxel grid, and the difference between
them is how sampling planes are arranged. For [34], indoor
scene reconstruction relies on voxel grid sampling, but the
low resolution voxel grid lowers the representation capabil-
ity of the 3D shape. Tang et al. [42] also use an occupancy
network, but they propose to use test time augmentation that
improves the capability of their model for specific inputs.
However, the extra iteration time in the inference stage low-
ers the capability and flexibility of the model. Similarly, the
methods [23, 33, 40] leverage the inference time optimiza-
tion to acquire details of the geometry from coarse or par-
tial input. When the model encounters unseen input without
corresponding SDF values, the generated mesh may not be
ideal.

Hybrid representations. It is popular and efficient to
combine the implicit and explicit representations to acquire
better results. Deep marching cubes algorithm [24] is pro-

posed to make the marching cubes differentiable, allow-
ing end-to-end training for mesh reconstruction from point
cloud input. Neural marching cubes method [6] instead con-
siders a differential solution for mesh reconstruction from
general implicit fields. Octree has been used as a “scaffold-
ing” in [29] and an implicit Moving Least Squares (MLS)
representation is extracted from each octant within the oc-
tree. Similarly, Shen et al. [37] propose a deformable tetra-
hedral grid from which the surfaces are extracted. For the
generation task, the methods [3,27,36] also build an implicit
field on an explicit grid. Our method can also be regarded
as a hybrid method, where the sparse voxel grid provides
an adaptable sampling space that facilitates the input of the
implicit function.

3. Approach
Our method uses a neural network to approximate an im-

plicit function outputting occupancy values. This implicit
function takes a randomly sampled point’s coordinates and
its corresponding features as input. The features of the
point are interpolated in the latent space encoded from an
input noisy point cloud. The ground-truth occupancy val-
ues of points to supervise the learning are obtained from
the ground-truth meshes as in [31]. The whole pipeline as
shown in Figure 1 is formed by an encoder-decoder compo-
nent and an occupancy predictor. The details are described
in the following subsections.

3.1. Sparse Convolution based Encoder-Decoder

Encoder-decoder is a widely used structure to deal with
computer vision tasks. Our model also takes this fashion
to convert the noisy point cloud into latent code by an en-
coder. The encoder is inspired by the PointNet [35] which
can directly process the point cloud. It extracts the feature
of each point in the noisy point cloud. Then, the point cloud
with its per-point feature is voxelized to a voxel grid to fa-
cilitate convolution. It is arguable that the higher resolu-
tion of the voxel grid will bring higher fidelity towards the
original input. However, the curse of dimensionality limits
the upper bound of resolution in many related works us-
ing voxelization [10, 34]. As surfaces are being modeled,
there is a reasonable sparsity of the input noisy point cloud,
thus plenty of voxels among the dense voxel grid are re-
dundant as no features are assigned to them. Therefore, we
use sparse convolution to solve this problem. Sparse con-
volution conducts convolution on sparse tensors where re-
dundant voxels are skipped. A denser but sparse voxel grid
can be acquired, which also has the capability of recovering
more details of the 3D model. Meanwhile, the storage of
tensors will also be reduced since locations with zero fea-
tures will be ignored. The parameter for the voxelization
is set by s × s × s (s = 80 in our experiments, but could
be higher). Subsequently, a sparse 3D-UNet module with
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Figure 2. Our sparse Res-UNet network architecture where convolutions are conducted on the sparse grid.

residual blocks as shown in Figure 2 is attached to extract
local to global information from this voxelized point cloud.
This module will output a sparse voxel grid with feature la-
tent codes at (selected) grid points, which is crucial to the
reconstruction task.

3.2. Occupancy Predictor

Given an arbitrary sample point p and its correspond-
ing feature obtained from the output of the encoder-decoder
by interpolation ψ(p,x), an occupancy predictor that is es-
sentially a fully connected network fθ(p, ψ(p,x)) predicts
the occupancy value of p. After training with randomly
sampled points and their occupancy values, our network
approximates an implicit function outputting occupancy of
any point in space. For a 3D shape, occupancy values 0, 1
mean outside and inside of the 3D object respectively, and
the decision boundary (occupany = τ ) will be used to de-
scribe the surface of 3D models (through Marching Cubes
based isosurface extraction).

While existing methods tend to use simple trilinear in-
terpolation, the use of sparse convolutions means that for
a given point, its enclosing unit grid cell may have some
or even all cell corners without features. We consider the
following two cases:

1) If none of 8 cell corners have learned features in the
sparse grid, the sampled point is likely to be further away
from the surface to be reconstructed. We use a Gaussian
kernel weighting to combine features of all grid points,
where the contributing weight for a grid point with center
coordinates xi is defined as

wi = expxi∈x

−∥p− xi∥22
2σ2

(1)

where x is the set of all the grid cells with features, and p
indicates a sampled point, and σ is the Gaussian kernel size.
The interpolated feature at p is calculated as

γ(p,x) =

∑n
i=1 Vxi

wi∑n
i=1 wi

. (2)

where Vxi
indicates the feature of grid cell xi. Note that

although in principle all grid points with features are in-
volved, the local support nature of Gaussian kernels means
that only relatively nearby grid points have reasonable con-
tributions.

2) If at least one of the 8 cell corners of the unit grid cell
that encloses p has features, then the sampled point is close
to the reconstructed surface. Trilinear interpolation can give
smooth interpolation results. However, standard trilinear in-
terpolation can involve grid points without calculated fea-
tures, and using a zero feature vector for these would lead
to unsmooth features, resulting in bumpy surfaces. We thus
propose a normalized trilinear interpolation scheme, which
is conceptually equivalent to propagating features from ex-
isting cell corners to missing cell corners, but without the
need to modify sparse tensors. Such interpolation operation
is denoted as λ(p,x) and the details will be given in the
next subsection.

Let cp be the enclosing unit grid cell (including its 8 cor-
ners) for an arbitrary position p, our feature interpolation is
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its enclosing grid cell contains corners with features, and its cor-
responding feature is obtained via normalized interpolation with
Q11’s weight excluded.

formally defined as

ψ(p,x) =

{
λ(p,x) If cp ∩ x = ∅
γ(p,x) otherwise

(3)

3.3. Normalized Trilinear Interpolation

As mentioned above, we modify the traditional trilin-
ear interpolation to provide smooth interpolation for sparse
grids. The outcome of the trilinear interpolation is normal-
ized by the sum of all valid weights. However, as shown
in Figure 3, a sampled point’s enclosing grid cell may not be
fully inside the voxel grid due to the sparsity of our sparse
voxel grid.

In 3D, the grid cell of a randomly sampled point has 8
vertices. Let Vijk denote the feature value of the vertex
point with index ijk, and x, y, z the sampled point’s rela-
tive coordinates with respect to its grid cell. The output of
the trilinear interpolation is calculated as:

Pxyz = V000 ∗ (1− x)(1− y)(1− z)

+V100 ∗ x(1− y)(1− z) + V010 ∗ (1− x)y(1− z)

+V001 ∗ (1− x)(1− y)z + V101 ∗ x(1− y)z

+V011 ∗ (1− x)yz + V110 ∗ xy(1− z) + V111 ∗ xyz

(4)

However, only those vertices inside the sparse voxel grid
have non-zero features and should be considered in the cal-
culation of the weight response to the sampled point. In this
situation, the interpolated outcome will be normalized by
the sum of these valid weights (for a dense voxel grid, this
sum is guaranteed to be one). This normalization enables
the interpolation of sampled points outside of the sparse
voxel grid, and thus ensures coherent point latent codes of
these points. It is helpful to get high-fidelity results. For a
unit grid cell, if a feature value Vijk is zero, its correspond-
ing indicator function 1 will be zero and the weight will be
ignored. Therefore, the sum of valid weights is calculated

as in Eq. (5). The normalized interpolation outcome Pxyz′
is calculated as in Eq. (6).

Wvalid = 1(1− x)(1− y)(1− z) + 1x(1− y)(1− z)+

1(1− x)y(1− z) + 1(1− x)(1− y)z + 1x(1− y)z+

1(1− x)yz + 1xy(1− z) + 1xyz (5)

Pxyz′ =
Pxyz

Wvalid
(6)

Furthermore, spectral normalization [32] is effective to
make a fully connected network achieve Lipschtz continu-
ity, which is beneficial to get a smooth surface. Lipschitz-
continuity is a uniform continuity for functions. For any
function, Lipschtz continuity guarantees it will not change
too fast as input changes. Similarly for our neural network,
its output occupancy value is not supposed to change too
fast for two adjacent sample points. As later shown in the
ablation study, its application brings considerable effect in
terms of surface smoothness.

4. Implementation and Experiments
The key idea of our method is using a sparse voxel grid

to extend the resolution of sampling space to have a bet-
ter isosurface and acquire abundant detail. We take advan-
tage of the sparse tensor auto-differentiation library [9] to
implement our pipeline. Additionally, the multiresolution
isosurface extraction algorithm proposed in [31] has been
used to extract the explicit surface from the implicit field.
Experiments are conducted on two scales: single-object re-
construction and scene-level reconstruction.

4.1. Datasets

A subset of ShapeNet dataset [4] has been used for sin-
gle object reconstruction. As in [31, 34], 13 categories of
objects have been chosen. In total, there are 50,000 ob-
jects split into training/validation/test lists in 7 : 2 : 1 ratio.
For scene-level reconstruction, we focus on indoor scene re-
construction, the synthesized dataset proposed by [34] has
been used for training. To evaluate our method’s capabil-
ity on the unseen indoor scenes, another real-world scanned
dataset ScanNet [11] is used.

4.2. Loss Function

The occupancy predictor accomplishes the mapping be-
tween any location’s coordinates to an occupancy value.
The interval of occupancy value is between 0 and 1. It is
reasonable to use the binary cross-entropy (BCE) loss as
our loss function (7).

L = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (7)



where ŷi indicates the sample point’s occupancy value out-
put from the decoder, yi indicates the target occupancy
value processed from ground truth mesh. N is the total
number of sampled points. In our case, there are 2048 sam-
pled points for a single object and indoor scene reconstruc-
tion.

4.3. Network Training and Inference

To optimize our model, we choose the Adam optimizer
[22] with the initial learning rate 1e−4. A scheduler has
also been implemented to reduce the learning rate over
training iterations. This scheduler reads the average IoU
of the validation set in our implementation, and when this
metric is not numerically improved, the learning rate will be
decreased by a factor of 0.1. The input noisy point cloud is
sampled from the ground truth mesh surface. In our experi-
ments, there are 10, 000 points in the point cloud with 0.005
Gaussian noise as input to the encoder both for the single
object and indoor scene reconstruction. The training batch
size is 4 and the Gaussian weighted sampling σ = 0.25. In
the stage of inference, the threshold τ is set to 0.5 to decide
the level set for isosurface. The whole training is conducted
on a single Nvidia RTX3090 GPU.

5. Results and Evaluation
5.1. Metrics

Our pipeline achieves superior results both qualitatively
and quantitatively. We comprehensively compared our
method with others in four metrics, which are intersection
over union (IoU), L1 Chamfer distance (CD), normal con-
sistency (NC) and F-score. IoU is a classic method to com-
pare the similarity of two meshes. It is the ratio between the
area of intersection and the area of the union of two shapes.
Chamfer distance is a metric widely used in the evaluation
of point clouds. The output and ground truth meshes have
been processed by point sampling 100k points on their sur-
faces. Chamfer distance does not require the numbers of
points in the output S1 and ground truth S2 to be the same.
It measures the distance between each point in one set to
its nearest neighbor in the other set. Normal consistency
is calculated between the estimated normal of each triangle
polygon and the ground truth normal. Another metric we
use is F-score which is less sensitive to the outlier. F-score
is set with threshold η = 0.01 in our experiment. The pre-
cision is measured by the percentage of distances between
the reconstruction result and ground truth that are less than
the threshold; recall vice versa.

5.2. Results

Single object reconstruction ShapeNet dataset has
been tested in our experiment, and 13 different categories
of objects have been chosen (aeroplane, bench, cabinet, car,

Method CD ↓ IoU ↑ NC ↑ F-score ↑
PointConv [47] 0.126 0.689 0.858 0.644
DCC-DIF [23] 0.233 0.171 0.613 0.563
IF-Nets [7] 0.084 0.196 0.823 -
ONet [31] 0.087 0.761 0.891 0.785
Conv-ONet (323) [34] 0.057 0.863 0.912 0.900
Conv-ONet (3× 642) [34] 0.040 0.897 0.941 0.952
DP-CovONet [25] 0.042 0.896 0.941 0.951
Ours (803) 0.046 0.922 0.950 0.953

Table 1. Single objects reconstruction result, quantitative compar-
ison between our method and others.

Method CD ↓ IoU ↑ NC ↑ F-score ↑
ONet [31] 0.203 0.475 0.783 0.541
PointConv [47] 0.165 0.523 0.811 0.790
SPSR [21] 0.223 - 0.866 0.810
SPSR (trimmed) [21] 0.069 - 0.890 0.892
ConvONet (643) [34] 0.042 0.849 0.915 0.964
DP-ConvONet [25] 0.042 0.800 0.912 0.960
Ours (643) 0.039 0.861 0.915 0.973
Ours (803) 0.038 0.874 0.916 0.976

Table 2. Quantitative comparison on the synthesized indoor scene
between our method and others.

chair, display, lamp, loudspeaker, rifle, sofa, table, tele-
phone, vessel). From Table 1, except Chamfer distance, it is
clearly indicated that our method outperforms other meth-
ods in other three metrics by considerable margins. Addi-
tionally, qualitative results of single object reconstruction
are shown in Figure 4, which also demonstrate the superior-
ity of our results. It should be noted that in this evaluation,
unlike [23, 33, 40], our model only takes noisy point cloud
as input, there is no need for latent code optimization with
corresponding occupancy values.

Indoor scene reconstruction The evaluation is con-
ducted on the dataset created by [34] and the real-world
scanned dataset ScanNet V2 [11]. Our method prevails
in all metrics when reconstructing complex indoor scenes,
which is shown in Table 2. Additionally, qualitative com-
parisons are displayed in Figure 5, where the surface of the
table can be successfully reconstructed using our method
where other methods fail. To validate the generalization
ability of our model, the evaluation has also been conducted
on ScanNet V2 dataset [11]. Even the model is trained on a
synthesized dataset, it can still handle complex scenes in the
real-world scanned dataset. From the perspective of quanti-
tative analysis, Table 3 shows that our model achieves state-
of-the-art performance on the real world scanned dataset.



Figure 4. Qualitative comparison between different methods for 3D object reconstruction on ShapeNet.

Method CD ↓ F-score ↑
ONet [31] 0.389 0.390
PointConv [47] 0.316 0.439
SPSR [21] 0.293 0.731
SPSR (trimmed) [21] 0.086 0.847
Conv-ONet (643) [34] 0.077 0.886
DP-ConvONet [25] 0.079 0.876
Ours 0.052 0.890

Table 3. Quantitative comparison on real-world scanned dataset
ScanNet V2 [11].

Handling different levels of noise To demonstrate the
model’s generalizability w.r.t. noise, we test input with dif-
ferent levels of noise and results are shown in Figure 6. Our
method is still able to deliver better results with smoother
and more detailed surfaces. Quantitatively, our method
achieves 0.2% and 1.6% better IoU than Conv-ONet [34]
under 0.002 and 0.007 Gaussian noise respectively.

Memory and efficiency analysis Table 4 indicates
that our method costs the least GPU memory even with
a higher voxel grid resolution. The saved GPU memory
could be used for a deeper network or more complex net-
work structure like attention modules. Our method is much
more efficient than test time optimization-based methods



Figure 5. Synthetic room reconstruction comparing our method with existing methods.

Method GPU Memory Inference Time

IGR [16] 5.03G 45.19s
IF-Nets [7] 5.76G 2.12s
Conv-ONet (643) [34] 9.71G 0.90s
Ours (643) 3.39G 5.09s
Ours (803) 3.60G 5.66s

Table 4. Sparse convolution significantly decreases the GPU mem-
ory overhead on 3D grid convolution, even with a higher resolu-
tion.

like IGR [16]. Although Conv-ONet [34] takes less infer-
ence time, it costs significantly more GPU memory.

6. Conclusion

We propose a novel method to tackle 3D reconstruc-
tion which is usually restricted by the resolution of sam-
pling grids. By only storing features at meaningful grid
points with sparse convolutions, our method is able to ex-
tract better features at different scales for shape reconstruc-
tion. We further develop a normalized interpolation scheme
along with Gaussian weighted approach for feature inter-
polation for sampled points near to and far away from the
reconstructed surface. The qualitative and quantitative re-
sults demonstrate our method achieves state-of-the-art per-

Noise 0.002 Noise 0.005 Noise 0.007

Input

Conv-ONet [34]

Ours

IGR [16]

Figure 6. Experiments show that under different levels of Gaussian
noise, our method still could reconstruct promising surfaces.

formance. Further work will focus on the generative pattern
of the sparse grid and outdoor street-level reconstruction.
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