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High-Quality Animatable Dynamic Garment

Reconstruction from Monocular Videos
Xiongzheng Li, Jinsong Zhang, Yu-Kun Lai, Member, IEEE, Jingyu Yang, Senior Member, IEEE, and Kun

Li∗, Member, IEEE

Abstract—Much progress has been made in reconstructing
garments from an image or a video. However, none of existing
works meet the expectations of digitizing high-quality animatable
dynamic garments that can be adjusted to various unseen poses.
In this paper, we propose the first method to recover high-
quality animatable dynamic garments from monocular videos
without depending on scanned data. To generate reasonable
deformations for various unseen poses, we propose a learn-
able garment deformation network that formulates the garment
reconstruction task as a pose-driven deformation problem. To
alleviate the ambiguity estimating 3D garments from monocular
videos, we design a multi-hypothesis deformation module that
learns spatial representations of multiple plausible deformations.
Experimental results on several public datasets demonstrate that
our method can reconstruct high-quality dynamic garments with
coherent surface details, which can be easily animated under
unseen poses. The code is available for research purposes at
http://cic.tju.edu.cn/faculty/likun/projects/DGarment.

Index Terms—High-quality, animatable, dynamic, monocular.

I. INTRODUCTION

3
D human digitization [1]–[3] is an active area in computer

vision and graphics, which has a variety of applications in

the fields of VR/AR [4], [5], fashion design [6] and virtual

try-on [7], [8]. A fundamental challenge in digitizing humans

is the modeling of high-quality animatable dynamic garments

with realistic surface details, which can be adjusted to various

poses. However, traditional methods require manual processes

that are time-consuming even for an expert. Therefore, it is

necessary to develop new methods that efficiently generate

visually high-quality animatable dynamic 3D clothing without

specialized knowledge.

Learning-based clothing reconstruction methods have been

demonstrated to be feasible solutions to this problem. Early

methods [9]–[16] adopt a 3D scanner or a multi-view studio,

but the high cost and large-scale setups prevent the widespread

applications of such systems. For users, it is more convenient

and cheaper to adopt a widely available RGB camera. There-

fore, some works [17]–[21] attempt to reconstruct high-quality

clothed humans from an RGB image or a monocular video.
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However, these methods use a single surface to represent

both clothing and body, which fails to support applications

such as virtual try-on. Layered representation with garment

reconstruction [22]–[26] is more flexible and controllable, but

related research works are relatively rare. Some methods [22],

[23] adopt explicit parametric models trained on the Digital

Wardrobes dataset [22], which can be adjusted to various

unseen poses, but they fail to reconstruct garments with high-

frequency surface details (e.g., wrinkles). Other methods [24],

[26] try to register explicit garment templates to implicit fields

to improve reconstruction quality. However, this design leaves

out the body pose, which makes it impossible to control

or animate the garments flexibly. In addition, all the above

methods not only rely on expensive data for training, but are

also bounded by domain gaps and cannot generalize well to

the inputs outside the domain of the training dataset. Most

importantly, none of these works meet the expectations of

digitizing high-quality animatable dynamic garments that can

be adjusted to various unseen poses.

Therefore, our goal is to reconstruct high-quality animatable

dynamic garments from monocular videos. There are major

challenges that need to be overcome to achieve this: 1) a

large amount of scanned data is needed for supervision, which

tends to result in domain gaps and limited performance for

unseen data; 2) the absence of strong and efficient human

priors increases the difficulty of estimating dynamic and

reasonably wrinkled clothing directly from monocular videos;

3) recovering dynamic 3D clothes from monocular videos is

a highly uncertain and inherently ill-posed problem due to the

depth ambiguity.

In this paper, we propose a novel weakly supervised frame-

work to reconstruct high-quality animatable dynamic garments

from monocular videos, aiming to eliminate the need to simu-

late or scan hundreds or even thousands of human sequences.

By applying weakly supervised training, we greatly reduce the

required time of both data preparation and model deployment.

To the best of our knowledge, our method is the first work to

reconstruct high-quality animatable dynamic garments from a

single RGB camera without depending on scanned data.

To handle dynamic garment deformation from monocular

videos, we propose a learnable garment deformation network

that formulates the garment reconstruction task as a pose-

driven deformation problem. In particular, we utilize human

body priors [27] to guide the deformation of the spatial points

of garments, which makes the garment deformation more

controllable and enables our model to generate reasonable de-

formations for various unseen poses. To alleviate the ambiguity
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Reconstruction Animation

Fig. 1. Given a video of a person, our method can reconstruct high-quality and animatable garments, which enables new deformations for various unseen
poses to be generated.

resulted from estimating 3D garments from monocular videos,

we design a simple but effective multi-hypothesis displacement

module that learns spatial representations of multiple plausible

deformation. We observe that it is more reasonable to conduct

multi-hypothesis estimation to obtain garment deformation

than direct regression, especially for monocular camera set-

tings, as this way can enrich the diversity of features and

produce a better integration for the final 3D garments. The

prior works [22], [23], [25] focus on the geometry of the

clothes and do not attempt to recover the garment textures,

which limits their application scenarios. Therefore, we design

a neural texture network to generate high-fidelity textures

consistent with the image. Experimental results on several

public datasets demonstrate that our method can reconstruct

high-quality dynamic garments with coherent surface details,

which can be easily animated under unseen poses. An example

is given in Fig. 1. The code is available for research purposes

at http://cic.tju.edu.cn/ faculty/ likun/projects/DGarment.

Our main contributions can be summarized as follows:

• We design a weakly supervised framework to re-

cover high-quality dynamic animatable garments from

a monocular video without depending on scanned data.

To the best of our knowledge, no other work meets the

expectations of digitizing high-quality garments that can

be adjusted to various unseen poses.

• We propose a learnable garment deformation network

that formulates the garment reconstruction task as a

pose-driven deformation problem based on human body

priors. This enables our model to generate reasonable

deformations for various unseen poses.

• We propose a simple but effective multi-hypothesis dis-

placement module that learns spatial representations of

multiple plausible deformations. In this way, we can al-

leviate the ambiguity brought by estimating 3D garments

based on monocular videos.

II. RELATED WORK

A. Clothed Human Reconstruction

Clothed human reconstruction is inevitably challenging due

to complex geometric deformations under various body shapes

and poses. Some methods [18], [28]–[33] explicitly model 3D

humans based on parametric models like SMPL [27], and as

a result may fail to accurately recover 3D geometry. Zhu et

al. [34] combine a parametric model with flexible free-form

deformation by leveraging a hierarchical mesh deformation

framework on top of the SMPL model [27] to refine the 3D

geometry. These methods predict more robust results, but fail

to reconstruct garments with high-frequency surface details.

Contrary to parametric-model-based methods, non-parametric

approaches directly predict the 3D representation from an

RGB image or a monocular video. Zheng et al. [35] propose an

image-guided volume-to-volume translation framework fused

with image features to reproduce accurate surface geometry.

However, this representation requires intensive memory and

has low resolution. To avoid high memory requirements,

implicit function [19], [36] representations are proposed for

clothed human reconstruction. Saito et al. [19] propose a pixel-

aligned implicit function representation called PIFu for high-
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Fig. 2. Overview of our method. At the core of our method lies a learnable garment deformation network that predicts reasonable deformations for the input
video. For each frame, we first design an MLP to obtain a high-level embedding X based on the SMPL pose and define three learnable matrices G1, G2, G3

to get three deformations D1, D2, D3. Then, we connect them as the input of an MLP that outputs the final deformation D. This design can enrich the
diversity of features and help produce aggregated displacements for more reasonable garment deformation. These displacements are added to the garment
template, which is then skinned along the body according to pose parameters θ and blend weights Wc to produce the final result. We train the network using
Limg and Lcloth loss function in a weakly supervised manner, which removes the need for ground-truth data.

quality mesh reconstructions with fine geometry details (e.g.,

clothing wrinkles) from images. However, PIFu [19] and its

variants [37]–[43] may generate implausible results such as

broken legs. Feng et al. [20] propose a new 3D represen-

tation, FOF (Fourier Occupancy Field), for monocular real-

time human reconstruction. Nonetheless, FOF cannot represent

very thin geometry restricted by the use of low-frequency

terms of Fourier series. Recently, inspired by the success of

neural rendering methods in scene reconstruction [44], [45],

various methods [46]–[51] recover 3D clothed humans directly

from multi-view or monocular RGB videos. Although these

approaches demonstrate impressive performance, they fail to

support applications such as virtual try-on, because they use

a single surface to represent both clothing and body.

B. Garment Reconstruction

In comparison to clothed human reconstruction using a

single surface representation for both body and clothing,

treating clothing as separate layers on top of the human

body [22]–[26], [52]–[56] allows controlling or animating

the garments flexibly and can be exploited in a range of

applications. Some methods [22]–[26], [52], [53] address the

challenging problem of garment reconstruction from a single-

view image. Bhatnagar et al. [22] propose the first method to

predict clothing layered on top of the SMPL [27] model from a

few frames of a video trained on the Digital Wardrobes dataset.

Jiang et al. [23] split clothing vertices off the body mesh

and train a specific network to estimate the garment skinning

weights, which enables the joint reconstruction of body and

loose garment. SMPLicit [25] is another approach that builds

a generative model which embeds 3D clothes as latent codes

to represent clothing styles and shapes. As a further attempt,

Moon et al. [52] propose Clothwild based on SMPLicit [25]

to produce robust results from in-the-wild images. Although

these methods regard clothing and human body as independent

layers, they fail to recover high-frequency garment geometry.

Unlike previous works, to reconstruct high-quality garment

geometry, Deep Fashion3D [24] uses an implicit Occupancy

Network [57] to model fine geometric details on garment

surfaces. Zhu et al. [26] extend this idea by proposing a

novel geometry inference network ReEF, which registers an

explicit garment template to a pixel-aligned implicit field

through progressive stages including template initialization,

boundary alignment and shape fitting. Zhao et al. [53] utilize

the predicted 3D anchor points to learn an unsigned distance

function, which enables the handling of open garment surfaces

with complex topology. However, these methods cannot deal

with dynamic clothing, thus they are not suitable for dynamic

garment reconstruction.

Other methods [9], [58]–[61] try to reconstruct dynamic

clothing from video. Garment Avatar [58] proposes a multi-

view patterned clothing tracking algorithm capable of captur-

ing deformations with high accuracy. Li et al. [9] propose

a method for learning physically-aware clothing deforma-

tions from monocular videos, but their method relies on an

individual-dependent 3D template mesh [59]. SCARF [60]

combines the strengths of body mesh models (SMPL-X [62])

with the flexibility of NeRFs [45], but the geometry of clothing

is sometimes noisy due to the limited 3D geometry quality for

NeRF reconstruction. REC-MV [61] introduces a method to

jointly optimize the explicit feature curves and the implicit

signed distance field (SDF) of the garments to produce high-

quality dynamic garment surfaces. These solutions show their

strength in reconstructing high-fidelity layered representations
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with garments that remain in consensus with the input person.

However, this design leaves out the body pose, which makes

it impossible to control or animate garments flexibly.

In this paper, we design a weakly supervised framework

to recover high-quality dynamic garments from a monocular

video without depending on scanned data. In the meanwhile,

we propose a learnable garment deformation network which

enables our model to generate reasonable deformations for

various unseen poses.

III. METHOD

Our goal is to reconstruct high-quality animatable dynamic

garments from a monocular video, which effectively enables

personalized clothing animation. Previous works not only rely

on expensive data, but are also bounded by domain gaps

and cannot generalize well to inputs outside the domain of

the training dataset. Therefore, we propose to reconstruct

clothes in a weakly supervised manner, thus addressing the

main drawbacks of previous works in terms of cost. Given a

monocular video which consists of a clothed human under

random poses, we first extract human-centric information

such as segmentation maps and normal maps [63]–[66] to

help obtain consistent geometry details with the input video

(Sec. III-A). To enable the generation of animatable dynamic

garments for various unseen poses, we propose a learnable

garment deformation network based on human body priors

which formulates the garment reconstruction task as a pose-

driven deformation problem (Sec. III-B). In addition, different

from previous works which estimate a unique displacement

vector for each garment vertex, our method leverages a

multi-hypothesis deformation module to alleviate the depth

ambiguity and provide integrated deformations for the final

reconstructed garments (Sec. III-C). The overview of our

method is illustrated in Fig. 2.

A. Human-Centric Information Extracting

To get rid of costly data preparation, we design a weakly

supervised framework to recover high-quality dynamic gar-

ments from monocular videos, and we extract human-centric

information which is helpful to obtain consistent geometry

details with the input. Specifically, given a monocular video

I = {I0, ..., In−1}, where n is the number of frames, we

first use a state-of-the-art human pose estimation method [67]

to estimate the pose parameters θ ∈ R
72 and the shape

parameters β ∈ R
10 of a SMPL human body model [27],

as well as the weak-perspective camera parameters c ∈ R
3 for

each frame. The pose parameters θ and the shape parameters

β represent 3D rotations of human body joints and PCA

(Principal Component Analysis) coefficients of T-posed body

shape space, respectively. Second, we obtain the binary masks

Ms = {Ms0, ...,Msn−1} of the input I using a robust human

parsing method PGN [68]. Note that the output of PGN is

a set of segmentation masks, where each pixel corresponds

to a human body part or clothing type. We remove the

masks of the human body, leaving only the ones of the

clothing, and transform segmentation masks to binary masks.

Third, we use PIFuHD [37] to estimate the image normals

Nor = {Nor0, ...,Norn−1} of the input I and multiply them

by the binary masks S to get the normal map of the garment.

Finally, we obtain the smooth garment template T of the first

frame under T-pose based on the work of Jiang et al. [23].

The information above helps reduce the complexity inherent to

our garment reconstruction. Our template supports six garment

categories, including upper garment, pants, and skirts with

short and long templates for each type.

B. Garment Deformation Network

The absence of strong and efficient human priors increases

the difficulty of estimating dynamic and reasonably wrinkled

clothing directly from a monocular video. Different from

previous works which extract features from images to generate

clothing deformations, we observe that the garment defor-

mation is caused by changes in pose. Therefore, we design

a garment deformation network which enables our model to

generate reasonable deformations for various unseen poses. To

achieve this, we use a parametric SMPL model [27] to guide

the deformation of the spatial points of garments [69], which

enables explicit transformation from template space to current

posed space. With the SMPL model, we can map the shape

parameters β and the pose parameters θ to a body mesh Mb.

The mapping can be summarized as:

Mb(β, θ) = Wb(Tb(β, θ), J(β), θ,Wb),

Tb(β, θ) = B + Bs(β) + Bp(θ),
(1)

where Wb is the linear blend skinning function of the human

body, J(β) is the SMPL body’s skeleton, and Wb is the blend

weights of each vertex of SMPL. Bs(β) and Bp(θ) are the

pose blendshape and shape blendshape, respectively. As most

clothes follow the deformation of the body, we share garment

pose parameters θ with SMPL and use SMPL’s skeleton J(β)
as the binding skeleton of the garment. In this way, we define

our cloth mesh Mc as follows:

Mc(β, θ) = Wc(Tc(θ), J(β), θ,Wc),

Tc(θ) = T +Dθ,
(2)

where Wc is the linear blend skinning function of the garment,

Wc is the blend weights of each vertex of the garment, T is

the smooth garment template and Dθ is the high-frequency

displacement over the garment template.

For the pose θ of each frame, we design a four-layer

Multi-Layer Perceptron (MLP) with ReLU activation function

to obtain a high-level embedding X , and further obtain the

garment vertex deformations Dθ with a learnable matrix

G ∈ R
x×N×3 (where x is the dimensionality of the high-

level embedding and N is the number of vertices of the

garment mesh). This non-linear mapping from θ to Dθ allows

modeling high-frequency details, such as wrinkles caused by

different poses, which are beyond the representation ability of

the linear model. For each vertex on the garment template,

instead of directly using the skinning weights of SMPL, we

assign its blend weights equal to those of the closest body

vertex and allow the blend weights to be optimized during

training to make the garment mesh independent from the

SMPL. Our garment deformation network can reconstruct
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Fig. 3. An overview of our neural rendering pipeline. Given the reconstructed mesh with the descriptors and the camera, we first project the mesh onto the
image plane, using descriptors as pseudo-colors. We then use the rendering network to transform the pseudo-color images into a photo-realistic RGB image.

pose-dependent garments, which enables the generation of

reasonable deformations for various unseen poses.

C. Multi-Hypothesis Displacement

Recovering 3D clothes from monocular videos is a highly

uncertain and inherently ill-posed problem. We propose a

multi-hypothesis displacement module that learns spatial rep-

resentations of multiple plausible deformations in the learnable

garment deformation network. Since each pixel of the image

corresponds to innumerable points in the 3D space, it is

difficult to specify a unique 3D point corresponding to a given

pixel. To alleviate the depth ambiguity brought by estimating

3D garments from monocular video, different from previous

works which estimate a unique displacement vector for each

garment vertex, we design a cascaded architecture to generate

multiple displacements using the high-level pose embedding

X . More specifically, we first define three learnable matrices

to get three deformations and encourage gradient propagation

through residual connections. Then, we connect the three

hypothetical deformations as the input of an MLP that outputs

the final deformation. These procedures can be formulated as:

X = σ(FMLP1
(θ)),

D1 = σ(X ·G1 + b1),

D2 = σ(D1 +X ·G2 + b2),

D3 = σ(D2 +X ·G3 + b3),

Dθ = FMLP2
(D1, D2, D3),

(3)

where X is the high-level embedding mentioned in Sec. III-B,

σ denotes the ReLU activation function, G∗ and b∗ are the

learnable matrices and bias terms respectively, and FMLP∗

represents Multi-Layer Perceptron. For simplicity, we use * to

represent an arbitrary subscript. With this design, our model

can first predict multiple displacements, which can enrich the

diversity of features, and then aggregate them to produce more

reasonable displacements for the 3D garments. Finally, these

displacements are added to the garment template to obtain

the result in T-pose, which is then skinned along the body

according to pose parameters θ and blend weights Wc to

produce the final result.

D. Loss Function

The loss function of our weakly supervised network in-

cludes the constraints from the image and the geometric

constraints of the clothes, which not only produces image-

consistent details, but also keeps the garment stable. The

overall loss function is

L = Limg + Lcloth. (4)

• Image Loss. To generate garment geometry and shape

that are consistent with the input, we regularize the shape

of clothing by projecting it onto an image, and compute the

loss with the target mask Si and we utilize the predicted

normal map to further refine the geometry shape. We define

the following image loss:

Limg = λmask||Fmask(Mi, c)− Msi||2

+ λnormal||FVGG(Fnormal(Mi, c))−FVGG(Msi · Nori)||2,
(5)

where λmask and λnormal are the weights that balance the

contributions of individual loss terms. Fmask is a differentiable

renderer [70] that renders the mask of garment mesh Mi

corresponding to the i-th frame, given the camera parameters

c. Fnormal outputs the normal map in a similar way to Fmask,

Msi ·Nori is the normal map of the garment as mentioned in

Sec.III-A, and FVGG is the VGG-16 network used to extract

image features to help measure their similarity.

• Clothing Loss. Using only the image loss is inclined to

produce unstable results. Thus another clothing loss term is

added to enhance stability of the reconstructed garments:

Lcloth = λedge||E − ET ||
2

2
+ λface||∆(NF )||

2

2

+ λangle||Θ||2
2
+ λcollision

Vb∑

j=0

max(ε− dj · nj , 0)
2.

(6)

E is the predicted edge lengths, ET is the edge lengths on

the template garment T, NF is the face normals, ∆(·) is

the Laplace-Beltrami operator, and Θ is the dihedral angle

between faces. λedge, λface, λangle and λcollision are the balancing

weights. where dj is the vector going from the j-th vertex of

the body vertices Vb to the nearest vertex of the garment, nj

is the normal of the j-th body vertex, ε is a small positive

threshold. On the one hand, inspired by [71], [72], the first
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three terms of Lcloth ensure the clothing is not excessively

stretched or compressed and enforces locally smooth surfaces.

On the other hand, the last item of Lcloth is used to handle the

collision between the clothes and the body.

E. Implementation Details

Our model is implemented using Tensorflow, and we train

our model for 10 epochs with a batch size of 8 using the

Adam optimizer [73] with a learning rate of 1 × 10−4. The

embedding dimensions of the MLP used to obtain the high-

level embedding are set to 256, 256, 512 and 512, respectively,

and the learnable matrix is initialized using the truncated

normal distribution. We choose the weights of the individual

losses with λmask = 500, λnormal = 1500, λedge = 100, λface =

2000, λangle = 1 and λcollision = 100. For a video of about 600

frames in length with a resolution of 512 × 512, we train our

model with a Titan X GPU in half an hour.

IV. NEURAL TEXTURE GENERATION

The prior works [22], [23], [25] focus on the geometry of

the clothes and do not attempt to recover the garment textures,

which limits the application scenarios. Texture is extremely

complex: it resides in high-dimensional space and is difficult to

represent. Therefore, to cope with the complexity of textures,

we propose a neural texture network to obtain photo-realistic

results. As different garment meshes have different topologies,

it is computationally expensive to generate a UV map every

time. Inspired by [75], [76], our main idea is to combine

the point-based graphics and neural rendering. Below, we will

explain the details of our method. An overview of our neural

rendering pipeline is illustrated in Figure 3.

Based on the multi-hypothesis displacement module, we

get the relatively accurate geometry of clothing mesh Mc,

which allows the neural texture network to focus on texture

information. We first attach descriptors S = {S1, ..., SN}
which serve as pseudo-colors, to the garment mesh vertices

V = {V1, ...,VN}. We first project the mesh onto the image

plane to obtain pseudo-color image Rimg , then use the neural

texture network to transform the pseudo-color image Rimg

into a photo-realistic RGB image Iimg . Specifically, given the

pseudo-color image and the ground truth image, we adpot a

UNet-based neural texture network to map the initial mesh

projections to the final output image. The neural texture

network consists of 8 blocks of downsampling and 8 blocks

of upsampling convolutional layers. Each downsampling block

consists of a convolution layer with BatchNorm operations

followed by ReLU activations; each upsampling block consists

of a transposed convolution layer with BatchNorm operations

followed by ReLU activations.

Using the ground-truth image Igt, we optimize our neural

texture network by minimizing the differences between the

rendered image Iimg and ground-truth RGB image Igt. to

obtain higher quality results, we adopt a two-stage training

strategy. In the first stage, we optimize the descriptor to obtain

a better initial value for the second stage. Specifically, during

the first stage, we train the model using the Adam optimizer

with a learning rate of 1 × 10−4 and the batch size of 4 for

25 epochs by minimizing the perceptual loss between pseudo-

color image and ground-truth image:

Lpse = ||FVGG(Rimg)−FVGG(Igt)||2, (7)

where FVGG is the image features extracted from the VGG-16

network which is used to ensure the perceptual similarity.

During the second stage, we train the model for 25 epochs

using the Adam optimizer with a learning rate of 1 × 10−4

which is decayed by a factor of 0.5 every 10 epochs:

Lrender = ||FVGG(Igt)−FVGG(Iimg)||2

+ λrender||Igt − Iimg||1,
(8)

where λrender is the balancing weight and is set to 100 in our

experiments. The overall training time is around 1.5 hours with

a Titan X GPU.

V. EXPERIMENTS

A. Datasets

To demonstrate the effectiveness of our proposed method,

we conduct experiments on four different datasets: People-

Snapshot [18], CAPE [74], IPER [77] and our captured data.

People-Snapshot [18], IPER and our captured data contain dif-

ferent monocular RGB videos captured in real-world scenes,

where subjects turn around with a rough A-pose in front of

an RGB camera. In addition, IPER and our captured data

also contain videos of the same person with random motions.

CAPE [74] is a dynamic dataset of clothed humans which

provides raw scans of 4 subjects performing simple motions.

These four datasets are used to evaluate the quality of the 3D

reconstructions, IPER and our captured data are also used to

show the results of garment animation. The SMPL parameters

provided by CAPE [74] and People-Snapshot [18] are used.

For the input video, 80% is used for training (Reconstruction)

and 20% is used for testing (Animation).

B. Comparison

We compare our method against the state-of-the-art garment

reconstruction methods that release the codes: Multi-Garment

Net (MGN) [22], BCNet [23], and SMPLicit [25], both

qualitatively and quantitatively. Note that these methods all

apply supervised learning, either using 3D scans or synthetic

datasets to train the models, while we propose to reconstruct

clothes in a weakly supervised manner without 3D supervision.

TABLE I
QUANTITATIVE COMPARISON ON CAPE DATASET.

Method
00032 00096 00159 03223

CD↓ CCV↓ CD↓ CCV↓ CD↓ CCV↓ CD↓ CCV↓

SMPLicit 1.611 - 1.866 - 1.811 - 1.599 -
MGN 1.328 2.927 1.850 2.055 1.345 2.959 1.452 2.983
BCNet 1.591 3.877 1.240 4.212 1.270 2.305 1.477 2.350
Ours 1.098 1.819 1.049 1.217 1.087 0.961 1.072 0.713

Qualitative Comparison. In Fig. 4, we show the visual results

of the same person in three different poses. It can be seen

that for different poses, our reconstruction method produces
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Input          SMPLicit             MGN            BCNet                Ours Input         SMPLicit         MGN         BCNet          Ours

Fig. 4. Reconstructed garments by SMPLicit [25], MGN [22], BCNet [23] and our method on CAPE dataset [74]. The inputs are four frames of a motion
sequence.

TABLE II
QUANTITATIVE EVALUATION FOR MULTI-HYPOTHESIS DISPLACEMENT

MODULE ABLATION STUDY (CM).

Method
00032 00096 00159 03223

CD↓ CCV↓ CD↓ CCV↓ CD↓ CCV↓ CD↓ CCV↓

w/o MHD 1.167 1.835 1.130 1.204 1.198 1.076 1.159 0.743
MHD2 1.105 1.828 1.051 1.203 1.090 0.968 1.079 0.719
MHD3 1.098 1.819 1.049 1.217 1.087 0.961 1.072 0.713

MHD4 1.110 1.829 1.059 1.193 1.087 0.972 1.086 0.718
MHD5 1.106 1.820 1.057 1.194 1.083 0.960 1.089 0.720
MHD6 1.105 1.828 1.056 1.206 1.089 0.961 1.085 0.718

different deformations consistent with the image, while MGN

[22] and SMPLicit [25] can only produce smooth results.

BCNet [23] can generate some details, but not as rich as

TABLE III
QUANTITATIVE EVALUATION FOR LOSS FUNCTION ABLATION STUDY

(CM).

Method
00032 00096 00159 03223

CD↓ CCV↓ CD↓ CCV↓ CD↓ CCV↓ CD↓ CCV↓

w/o Cloth Loss 1.397 1.844 1.552 1.243 1.677 0.924 1.580 0.725
w/o Image Loss 1.172 1.808 1.128 1.275 1.174 0.967 1.158 0.781

Full 1.098 1.819 1.049 1.217 1.087 0.961 1.072 0.713

ours. In Fig. 5, since the person maintains a rough A-pose

during rotation, we only show the results of the first frame of

the video. It can be seen that MGN [22] and SMPLicit [25]

cannot get accurate clothing styles. While BCNet [23] can

get visually reasonable shapes, it cannot produce geometric
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Input                   SMPLicit                                  MGN                           BCNet                             Ours

Fig. 5. Reconstructed garments by SMPLicit [25], MGN [22], BCNet [23] and our method on People-Snapshot [18] dataset (top four rows) and our captured
data (bottom two rows).

details that are consistent with the input, or even produces

wrong details. On the contrary, our approach benefits from the

weakly supervised framework and reconstructs high-quality

garments which faithfully reflect the input appearances. The

elegant design of the multi-hypothesis displacement module

also enables back surfaces with reasonable details to be gener-
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Input                                REC-MV                                        Ours

Fig. 6. Reconstructed garments by REC-MV [61] and our method on People-
Snapshot [18] dataset.

Input w/o MHD Full

Fig. 7. Qualitative results of multi-hypothesis displacement module ablation
study.

ated, given the input of the front view. To further demonstrate

the effect of our model, we also compare our method with a

video-based method REC-MV [61]. In the current REC-MV

source code, there is an absence of data preprocessing code,

e.g., estimating the feature lines of the clothes from the input,

which is based on their previous work called Deep Fashion3D

[24] and is currently not accessible. Therefore, we can only

make a qualitative comparison on the People-Snapshot dataset,

because the preprocessing data of the People-Snapshot dataset

is released. In Fig. 6, since the person maintains a rough A-

pose during rotation, we only show the results of the first

Input w/o Cloth Loss Fullw/o Image Loss

Fig. 8. Qualitative results of loss function ablation study.

Input              Ours-MGN               Ours

Fig. 9. Qualitative results of garment template ablation study.

frame of the video. It can be seen that our model can not only

reconstruct the garment geometry consistent with the image,

but also keep the garment stable. Compared to our method,

the training time of REC-MV is around 18 hours with an

RTX 3090 GPU, while we train our model with a TITAN

X GPU in half an hour. Besides, the results of REC-MV

could not be animated. More dynamic results can be found

in supplementary video.

Quantitative Comparison. We test our method and the state-

of-the-art methods with the rendered images from CAPE

[74] dataset. Note that we use all the subjects with raw

scans (‘00032-shortshort-hips’, ‘00096-shortshort-tilt-twist-
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AnimationReconstruction ReconstructionAnimation

Fig. 10. Garment animation results.

TABLE IV
QUANTITATIVE EVALUATION FOR GARMENT TEMPLATE ABLATION STUDY

(CM).

Method
00032 00096 00159 03223

CD↓ CCV↓ CD↓ CCV↓ CD↓ CCV↓ CD↓ CCV↓

Ours-MGN 1.246 1.896 1.078 0.968 1.135 1.039 1.201 0.979
Full 1.098 1.819 1.049 1.217 1.087 0.961 1.072 0.713

TABLE V
QUANTITATIVE EVALUATION FOR GARMENT ANIMATION (CM).

Method
00032 00096 00159 03223

CD↓ CCV↓ CD↓ CCV↓ CD↓ CCV↓ CD↓ CCV↓

reconstruction 1.098 1.819 1.049 1.217 1.087 0.961 1.072 0.713

animation 1.103 2.543 1.081 2.065 1.097 1.076 1.112 0.743

left’, ‘00159-shortlong-pose-model’, ‘03223-shortlong-hips’)

from CAPE [74] dataset, and for brevity, only the ID of the

subject is kept in the table in the rest of this section. We first

align the garment meshes generated by different methods to

the ground truth meshes across all frames for a video and

then compute the the final average Chamfer distance between

the reconstructed garments and the ground truth meshes for

accuracy measurement. To evaluate the temporal consistency

of the reconstructed meshes, we measure the consistency of

corresponding vertices (CCV), which is the root mean squared

error of the corresponding vertices’ distances in adjacent

frames. As shown in Table I, our method outperforms other

methods in reconstruction accuracy, which indicates more

realistic reconstruction results from a single RGB camera.

C. Ablation Study

Multi-Hypothesis Displacement. To validate the effect of the

multi-hypothesis displacement module, we compare the per-

formances of using different numbers of hypotheses. Specifi-

cally, given the high-level embedding of the pose, we define

different numbers of learnable matrices to get deformations

and encourage gradient propagation through residual connec-

tions. Then, we connect these hypothetical deformations as the

input of an MLP to output the final deformation. Table II gives

the quantitative results on CAPE dataset [74]. We calculate the

average Chamfer distance between the aligned reconstructed

garments and the ground truth meshes across all frames for

a video and consistency of corresponding vertices (CCV)

between adjacent frames. As shown in Table II, different

numbers of hypotheses achieve similar accuracies, and all have

higher accuracies than w/o MHD. In the rest of this section,

we utilize MHD3 as our full model. Some visual results are

shown in Fig. 7. It can be seen that our full model addresses

the problems faced by w/o MHD, such as messy details and

over-smooth back surfaces. At the same time, it also proves the

effectiveness of our multi-hypothesis module, which can learn

the dynamic deformations of clothes well from monocular

video.

Loss Function. We study the effects of different loss functions

on garment reconstruction. Our method is compared with two

variants: one supervised without clothing loss function (w/o

Cloth Loss), and the other supervised without image loss

function (w/o Image Loss). In the same way as before, we

calculate the average Chamfer distance between the aligned

reconstructed garments and the ground truth meshes across
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Input      Reconstruction          Result Input       Reconstruction          Result

Fig. 11. Neural texture generation by our method on Cape dataset (left three columns) and People-Snapshot dataset (right three columns).

all frames for a video ywand consistency of corresponding

vertices(CCV) between adjacent frames. Table III gives the

quantitative results in terms of the Chamfer distance and

consistency of corresponding vertices (CCV). Our full model

achieves the best performance, which verifies the importance

of adopting both the image loss and the clothing loss. As

shown in Fig. 8, the variant without the clothing loss generates

messy meshes, while the variant without the image loss

generates smooth meshes. In contrast, our full model can not

only reconstruct the garment geometry consistent with the

image, but also keep the garment stable.

Garment Template. We study the effects of different paramet-

ric garment templates on garment reconstruction. We compare

our method with a variant template generated by MGN (Ours-

MGN). In the same way as before, we calculate the average

Chamfer distance between the aligned reconstructed garments

and the ground truth meshes across all frames for a video and

consistency of corresponding vertices (CCV) between adjacent

frames. Table IV gives the quantitative results in terms of the

Chamfer distance and consistency of corresponding vertices

(CCV). Our full model achieves slightly better performance

than Ours-MGN. Both Ours-MGN and our full model out-
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perform other state-of-the-art (SOTA) methods. As shown in

Fig. 9, Ours-MGN also reconstructs the garment geometry

consistent with the image, but at the neckline and cuffs, there

are a lot of messy triangle faces.

D. Garment Animation

We utilize a parametric body model of SMPL [27] which

makes the garment deformation more controllable, in order

to handle dynamic garment reconstruction from monocular

videos. Thanks to the design of the learnable garment defor-

mation network, our method can generate reasonable defor-

mations for unseen poses. Specifically, we train the model

using our captured videos and test it with random unseen

pose sequences. Table V gives the quantitative results in

terms of the Chamfer distance, as well as the consistency of

corresponding vertices (CCV) between adjacent frames. As

shown in the Table V, our method achieves similar accuracy

on unseen poses. Figure 10 shows that our method can still

produce garments with well-preserved personal identity and

clothing details of the subjects under various novel poses,

which enables dynamic garment animation. More dynamic

results can be found in supplementary video.

Input                       MGN                    BCNet                       Ours

Fig. 12. Reconstructed loose garment by MGN [22], BCNet [23] and our
method on our captured data.

Input                               Segmentation                                   Result                       
Fig. 13. An example of imprecisely reconstructed clothing due to wrong
segmentation result.

E. Texture Generation

Figure 11 shows some qualitative results by our neural

texture generation method. As shown in the figure, our method

can not only obtain high-quality garment geometry, but also

produce high-fidelity textures consistent with the image. More

dynamic results can be found in the supplementary video.

 

Reconstruction Animation

Fig. 14. Examples of failure cases for collars and extreme poses.

F. Discussion and Limitations

Although we have achieved high-quality animatable dy-

namic garment reconstruction from a single RGB camera,

there are still some cases that we cannot solve well:

Loose Clothing. The results of cases with loose clothes may

not be good, due to less relevance between body and clothing.

Figure 12 shows some comparison results. Our method can

obtain visually reasonable clothing shapes, but cannot recover

folded structures consistent with the image. In further work,

we will design a temporal fusion module that uses information

from adjacent frames to improve the representation of the

framework and generate higher quality animatable dynamic

garments.

Collars. While our method can reconstruct garment meshes

with high-quality surface details from a monocular video, it

fails to reconstruct collars due to the lack of supervision of

the collars. Fig. 14 gives some examples of such cases. We

will explore a post-processing to extend our method to address

this.

Extreme Poses. Although our method can generate reasonable

deformations for unseen poses, it may produce incorrect results

for extreme poses. Fig. 14 gives some examples of extreme

poses cases. This could be solved by adding garment priors

and training with more poses in the future work.

Segmentation and Normal Estimation. By applying weakly

supervised training, we eliminate the need to simulate or scan

hundreds or even thousands of sequences. Instead, our method

uses predicted clothing segmentation masks and normal maps

as the 2D supervision during training. The errors of segmen-

tation and normal estimation could have negative effects on

the training process and lead to imprecise reconstruction. Fig.

13 gives some examples of wrong clothing segmentation.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 13

VI. CONCLUSION

In this paper, we aim to solve a meaningful but chal-

lenging problem: reconstructing high-quality animatable dy-

namic garments from monocular videos. We propose a weakly

supervised framework to eliminate the need to simulate or

scan hundreds or even thousands of sequences. To the best

of our knowledge, no other work meets the expectations

of digitizing high-quality garments that can be adjusted to

various unseen poses. In particular, we propose a learnable

garment deformation network that formulates the garment

reconstruction task as a pose-driven deformation problem. This

design enables our model to generate reasonable deformations

for various unseen poses. To alleviate the ambiguity brought

by estimating 3D garments from monocular videos, we design

a multi-hypothesis deformation module that learns spatial

representations of multiple plausible deformation hypotheses.

In this way, we can alleviate the ambiguity brought by

estimating 3D garments based on monocular videos. The

prior works [22], [23], [25] focus on the geometry of the

clothes and do not attempt to recover the garment textures,

which limits their application scenarios. Therefore, we design

a neural texture network to generate high-fidelity textures

consistent with the image. Experimental results on several

public datasets demonstrate that our method can reconstruct

high-quality dynamic garments with coherent surface details,

which can be easily animated under unseen poses.
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