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A B S T R A C T   

Peach instance segmentation is a crucial part to locate peaches and classify their ripeness stages to build an 
automatic peach harvesting or monitoring machine. This paper proposes a large and high-quality peach dataset 
called NinePeach, and a new one-stage instance segmentation model. The NinePeach dataset aims to reproduce 
real-world field conditions, encompassing various factors that can significantly influence the accuracy of peach 
detection, such as varying natural light intensity, instances of multiple fruit adhesion, and occlusion caused by 
stems and leaves. This is the largest and the most varied peach dataset among publicly available peach datasets to 
our best knowledge. Our proposed one-stage segmentation model does not require Region Proposal Network 
(RPN) to generate bounding box proposals, it directly identifies object instances by their centre locations and 
sizes and predict their category at the same time. The proposed model incorporates channel attention and spatial 
attention mechanisms to enhance object detection capabilities in crucial channels and spatial locations. Exper
imental results show that the state-of-the-art Mask RCNN performs 69.91% average precision (AP) with Swin-T 
backbone, our model surpasses it with the same backbone, achieving the highest 72.12% AP, and delivering more 
precise mask and boundary predictions. Specifically, our model is capable of accurately detect peaches under 
various conditions, such as peaches partially obscured by leaves, peaches partially exposed or overlapped. These 
advancements present promising prospects for the application of this technology to other fruits or crops.   

1. Introduction 

Peach is a kind of widely popular fruit that predominantly grown in 
Asia and Europe, with China being the largest producer of peaches in the 
world in both 2021 and 2022, with a production volume of around 16 
million metric tons. The European Union is the second largest producer, 
with a production of about 2.9 million metric tons in the same period 
(USDA Foreign Agricultural Service, 2022). So far, the harvesting of 
peaches has mainly relied on manual labor, which demands substantial 
human and material resources, resulting in labor-intensive and time- 
consuming processes that can be costly and inefficient. In an effort to 
automate and mechanize the monitoring and collection of peaches, 
automatic classification of peaches according to their ripeness stage is an 
essential element. Accurate identification of peach ripeness stage plays a 
crucial role not only in ensuring precise peach yield prediction, effective 
field management, and optimal crop production, but also in achieving 
high quality of peach postharvest consumption and marketing. The stage 

of harvested peach is a key factor that significantly affects its shelf life 
and market value. 

In the past few years, researchers have developed many methods to 
help detect fruit and classify its ripeness stage automatically. There are 
primarily two approaches for identifying fruit ripeness stage: destructive 
and non-destructive methods. Destructive methods utilize indices that 
are based on internal attributes, such as titratable acidity, soluble solids 
content, and total soluble solids, to determine fruit ripeness. Shinya et al. 
(2013) conducted research on peach ripeness by analyzing features such 
as fruit mass, soluble solids content, ground skin color, spectral absor
bance difference at 670 nm and 720 nm index, as well as fruit/flesh 
firmness and uniaxial compression strength. Usenik et al. (2014) iden
tified the ripening stage of four plum cultivars by the measurement of 
plums peel, flesh color, soluble solids content and firmness and the 
sensorily evaluation on eating quality. Azodanlou et al. (2004) applied a 
novel concept using solid phase microextraction (SPME) and measure
ment of total volatile compounds to distinguish between various stages 
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of strawberry ripeness. However, such methods can be laborious and 
costly, as they require expensive equipment and cause the destruction of 
the fruit. In contrast, non-destructive methods are more economical and 
efficient, such as RGB imaging, multispectral imaging, and near-infrared 
hyperspectral imaging, enabling the identification of fruit ripeness 
without damaging the fruit. An optical imaging based method was 
formulated to assess different external properties on the identification of 
four successive banana maturity stages (Xu et al., 2022) Tan et al. (2010) 
evaluated the oil palm ripeness and oil content by the use of color fea
tures from images captured by an RGB camera. 

It is noteworthy that deep learning recently has been used as a non- 
destructive method to identify and classify the fruit ripeness stage using 
fruit images as inputs. Firstly, fruit ripeness classification stands as one 
of the popular domains where deep learning methods have found 
widespread application within the agricultural sector. (Kamilaris & 
Prenafeta-Boldú, 2018). In this kind of task, there is usually only one 
fruit in an image, as well as only one target that models are trained to 
predict. Four different ripeness stages of banana were classified using 
proposed convolution neural network (CNN) and compared with the 
state-of-the-art CNNs using transfer learning (Saranya et al., 2021). 
Suharjito et al. (2021) proposed a new data augmentation method called 
“9 angle crop” and created a mobile application to classify the ripeness 
levels of oil palm fresh fruit bunch using many lightweight CNNs like 
MobileNets (Howard et al., 2017; Sandler et al., 2019), EfficientNet (Tan 
& Le, 2020) and NASNet (Zoph et al., 2018). Besides, a number of other 
research studies employed vanilla and customized CNNs to predict 
different fruit ripeness stages. For instance, AlexNet (Krizhevsky et al., 
2012) was utilized for tomatoes (Das & Singh Yadav, 2020), DenseNet 
(Huang et al., 2018) and Inception-v3 (Szegedy et al., 2015) for mul
berries (Miraei Ashtiani et al., 2021), and VGG (Simonyan & Zisserman, 
2015) for grapes (Ramos et al., 2021). 

Secondly, based on fruit ripeness classification, some studies have 
focused on using deep learning methods to detect the locations of mul
tiple fruits in one image. The four coordinate positions (called bounding 
boxes) of all fruit in the image are the targets to be predicted by training 
models. A kiwifruit detection system was developed for field images 
using the Faster R-CNN (Ren et al., 2016) and implemented using ZFNet 
(Zeiler & Fergus, 2013), which mitigates the subjectivity and limitations 
associated with manually selected kiwifruit features (Fu et al., 2018). 
Xiao et al. (2021) employed a two-step approach to detect apples, first 
utilizing Fast-RCNN (Girshick, 2015) to predict the locations of apples 
and then utilizing GoogLeNet (Szegedy et al., 2014) to predict apple 
ripeness. YOLOv3 (Redmon & Farhadi, 2018) is an efficient object 
detection model along with its previous YOLO variants (Redmon et al., 
2016; Redmon & Farhadi, 2016). Therefore, it was frequently utilized to 
detect fruit like strawberry (Zhou et al., 2021) and green cucumber (Bai 
et al., 2022). Besides, a number of other studies were based on YOLOv3 
to improve detection performance. For example, DenseNet was used to 
replace the original transport layer of YOLOv3, resulting in the network 
detection of apples at different maturity stages with better performance 
than the original YOLOv3 (Tian et al., 2019). Liang et al. (2020) pro
posed a method to detect litchi fruits and stems at nighttime environ
ment, which adopted YOLOv3 to locate the anchor boxes of litchi fruits 
and then employed U-Net (Ronneberger et al., 2015) to perform fruiting 
stems segmentation. 

Thirdly, some research has concentrated on the pixel-level and 
instance-level classification of fruit ripeness by segmenting the pixels of 
the fruit in an image. As the pioneer of instance segmentation models, 
Mask RCNN (He et al., 2017) and its modified version were most 
frequently adopted to segment fruit instances. Santos et al. (2019) 
demonstrated that Mask RCNN can effectively detect, segment, and 
track grape clusters, which exhibits significant variability in shape, 
colour, size, and compactness. A strawberry fruit detector was con
structed based on Mask RCNN to overcome the difficulties of poor uni
versality and robustness for traditional machine vision algorithms (Yu 
et al., 2019). In the same way, Pérez-Borrero et al. (2020) proposed a 

methodology for instance segmentation of strawberries using a modified 
version of Mask RCNN. A Mask RCNN was enhanced to accept dual- 
mode data fusion of RGB and depth images for a robust visual recog
nition for fruit and stem of cherry tomatoes (Xu et al., 2022). Hameed 
et al. (2022) proposed a score-based mask edge improvement of Mask- 
RCNN to segment fruit and vegetable images in a supermarket envi
ronment. A Mask RCNN was modified by fusing an attention module into 
the backbone network to enhance its feature extraction ability to pre
cisely segment apples in an orchard (Wang & He, 2022). Similarly, Jia 
et al. (2022) proposed a green overlapped apples segmentation network, 
which extended Mask RCNN by adding an attention mechanism to 
prediction head for focusing more on the informative pixels but also 
suppressing the noise. 

Furthermore, there are also some other different models used for 
fruit instance segmentation. An edge-guided based fruit segmentation 
model EdgeSegNet was proposed, which included modules specially 
designed to locate potential target areas and sharpen the edges (Sheng 
et al., 2023). Jia et al. (2021) designed an anchor-free model FoveaMask 
for segmentation of green fruits, in which a position attention module is 
introduced into the embedding mask branch to aggregate the effective 
information pixels and improve robustness ability. 

It can be seen that whilst the above research has achieved some 
success in predicting fruit ripeness there are still some unresolved issues. 
First, fruit images with pixel-level ripeness annotations are essential to 
train a fruit ripeness classification model, while collecting and labelling 
them are time-consuming and laborious tasks and only few datasets are 
publicly available. Second, a lot of the current fruit instance segmen
tation models are based on Mask RCNN. As a two-stage segmentation 
method, Mask RCNN first generates instance bounding boxes using a 
detector and then classifies each pixel within every box. Compared with 
one-stage methods that produce pixel-wise classification maps and 
cluster them into instances, two-stage methods usually have better 
segmentation performance but typically produce a great number of 
proposal boxes, resulting in long inference time and large computational 
resources usage. Specifically, two-stage methods are not suitable for 
real-time instance classification or segmentation task which usually runs 
on mobile and embedded devices, as the resources and latency are 
highly restricted. 

This work presents a peach dataset and a one-stage attention-based 
peach instance segmentation method to perform accurate peach locali
zation in natural orchard environments. The main contributions of this 
research include:  

1. A new large high-quality annotated peach dataset called NinePeach, 
which contains images of nine cultivars of peach in different ripeness 
stages under natural illumination.  

2. A new one-stage and anchor-free instance segmentation model to 
detect peaches and classify their ripeness stage simultaneously. The 
proposed model removes the need for region proposal network 
(RPN) and the design of anchor generators. Channel attention and 
spatial attention are deployed in our model to enhance the percep
tion ability.  

3. The new model performs at the highest 72.12 % average precision 
(AP), surpassing the state-of-the-art Mask RCNN with the 69.91 % AP 
and produces more precise and smooth boundary predictions. 

2. Materials and methods 

2.1. Peach images collection 

Peach images were collected from the experimental orchard in 
Huazhong Agricultural University, Wuhan, China. The collection was 
conducted during May to June 2022 and included nine cultivars of 
peaches: Dahongpao, Qingfeng, Chunmei, Chunmi, Chunxue, Songsen, 
Maotao, Youpantao, and XiahuiNo5. The image capture device used was 
a smartphone whose specifications are detailed in Table 1. The images 
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were originally captured and stored in JPEG format at a resolution of 
4000 × 3000 pixels. 

The camera was positioned at a distance of 30–50 cm from the peach 
and captured images from various angles. It is worth noting that all the 
peach images were acquired under natural lighting conditions and in 
real-world production settings, where the peaches exhibited diverse 
physical configurations. These configurations include but are not limited 
to isolated peaches, peaches that are in close proximity to one another, 
peaches that are partially obscured by leaves or stalks, and peaches that 
are illuminated from the opposite side. Samples of images from each 
kind of peach are presented in Fig. 1. 

2.2. Peach images annotation 

A total of 3849 images were selected to form a dataset, representing 
nine cultivars of peaches that have been classified into three distinct 
stages of ripeness: unripe, semi-ripe, and ripe. Two annotators were 
independently in charge of carrying out the image labeling process and 
one reviewer would make decisions when it comes to controversial 
cases. All cultivars of peach were annotated individually. 

The instance category distribution of 3849 peach images is presented 
in Fig. 2. Some cultivars lack ripe stage images due to objective 

conditions. For example, there are relatively fewer Chunmi and Songsen 
trees, and their ripe fruits are dropped by weather or picked by animals, 
whilst Maotao takes longer time to become ripe than other cultivars, 
which exceeded our collection schedule. Therefore, “long-tail” phe
nomenon exists in our dataset, which is discussed below. 

Similar to the MS COCO (Lin et al., 2014), three different sizes of 
objects are defined based on the instance area using the following 
criteria: small area (≤322), medium area (322 ~ 962) and large area 
(>962). 

Each image was manually labeled using Label-Studio (Tkachenko 

Table 1 
Specifications of the mobile device used.  

Device Specifications 

System OS Android 11 

CPU Octa-core (1x3.2 GHz Kryo 585 & 3x2.42 GHz Kryo 585 & 
4x1.80 GHz Kryo 585) 

Main Camera 
Sensor 

Sony IMX598(1/2″) 

Focal Length 4.7 mm  

Fig. 1. Samples of our dataset contains 9 cultivars of peaches. All images are collected from different angles under natural light.  

Fig. 2. Instance category distribution of our peach collection.  
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et al., 2020), generating a ground truth labelled image that contains 
individual segmentation masks of all peaches depicted in the image. The 
labeling process adhered to a rigorous standard, which involved 
generating a precise mask for each peach captured in the image, even in 
challenging scenarios where peaches may had appeared nearly imper
ceptible due to distance, occlusions, or their proximity to the image 
boundaries. A sample of annotation is shown in Fig. 3. 

To reduce the computational requirements of the models, the images 
were resized to 1024 × 768 pixels. For every cultivar of peach, the 
images were randomly split with a ratio of 7:3 for training and valida
tion sets respectively. Then the individual training sets and validation 
sets were combined to form a total training set of 2690 images and a 
total validation set of 1159 images. To alleviate the “long-tail” problem, 
we increased the number of semi-ripe and ripe instances by over
sampling 750 randomly selected images that did not contain unripe 
instances to make the category distribution more balanced. The used 
data augmentation methods included random angle rotation, random 
jitter, and random flipping. The instance category distribution of our 
dataset can be seen at Table 2. Thus the balanced dataset called Nine
Peach was created to contain 3240 images for training and 1359 images 
for validation. 

2.3. Proposed model 

Our proposed model was designed to simultaneously segment 
instance masks and predict their categories using full instance mask 
annotations as supervision instead of the bounding boxes of masks. 
Specifically, the proposed model is anchor-free and gets rid of the 
bounding box prediction, which would reduce much calculation and 
resource consumption. The architecture of the proposed model is illus
trated in Fig. 4. The model consists of three parts: a backbone, a feature 
pyramid network, and a shared detection head following the pipeline 
from SOLOv2 (Wang et al., 2020). 

In contrast to Mask RCNN, our model does not rely on a region 
proposal network (RPN) to generate proposals. Specifically, our model 
directly identifies object instances by their centre locations and sizes. To 
determine object locations, the input image would be divided into a 
uniform grid of size S × S, resulting in S2 possible center location class. If 
the centre of an object falls within a grid cell, then that cell is responsible 
for predicting the object’s semantic category and segmenting its 
instance. Later in the article, we also demonstrate that our model out
performs original baseline due to embedding of the convolutional block 
attention, which enables the model to focus on objects in key channels 
and spatial locations. 

2.3.1. Feature extraction (Backbone + FPN) 
Image feature extraction is the process of identifying and extracting 

relevant information or features from an image. Our model follows the 
paradigm from Lin et al. (2018), where the feature extraction part is 
made up of two parts: a backbone and a feature pyramid network. The 

underlying module extracts the low-level features such as edges and 
angles, while the high-level features are fed into a classifier to determine 
the object category. ResNet50/101 and Swin-T are used as backbone in 
our proposed model. ResNet (He et al., 2016) was proposed to solve the 
image classification task. It overcame the vanishing gradient problem 
that can occur in very deep neural networks by introducing residual 
blocks. The residual blocks allow information to flow directly from 
earlier layers to later layers without being affected by intermediate 
layers. This makes it easier for ResNet to learn useful features from the 
input image. Swin Transformer (Swin-T, Liu et al., 2021) is a recently 
proposed neural network for visual recognition tasks that has shown 
strong performance on several benchmarks. Swin-T uses a hierarchical 
architecture where image patches are progressively downsampled to 
multiple scales. This allows Swin-T to capture both local and global 
features in an image, which can be important for visual recognition 
tasks. Additionally, Swin-T incorporates a shifted window mechanism 
that improves the processing of spatially adjacent patches, further 
enhancing its ability to capture fine-grained details. Swin-T has also 
been shown to have strong generalization ability, which means it can 
learn to recognize objects even when they are presented in new or un
usual contexts. This is important for real-world applications where im
ages may be taken under varying conditions. The output of backbone is 
made of a set of feature maps at four different resolutions. 

The Feature Pyramid Network (FPN, Lin et al., 2017) was introduced 
to extend the backbone network, which is especially effective for the 
detection of targets at different scales. FPN works by taking the feature 
maps produced by backbone at different levels of the network, and 
building a feature pyramid that includes high-level features with strong 
semantics, as well as low-level features with strong spatial information. 
The final output of the FPN consists of a set of feature maps at four 
resolutions. 

Overall, the ResNet/Swin-T with FPN are powerful architectures for 
image feature extraction, as they leverage the strengths of both ResNet/ 
Swin-T and FPN to extract high-level and low-level features from the 
input image and combine them to accurately detect objects at different 
scales. 

2.3.2. Detection head (Kernel Branch + Feature Branch) 
Given the output of pyramid network, the detection head consists of 

two branches: kernel branch and feature branch, accepting each pyra

Fig. 3. Illustration of the image annotation. (a) Original image. (b) Individual instance masks. (c) Annotated image.  

Table 2 
The instance category distribution of our dataset.   

Original Balanced 

Category Train Validation Train Validation 

Unripe 3669 1717 3669 1717 
Semi-ripe 2768 1140 3312 1307 
Ripe 1403 589 1689 737 
Total 7840 3446 8679 3761  
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mid feature as input. The output of feature pyramid is noted as P. 
In the kernel branch, P is resized into a shape of S × S × C, and then a 

series of 4 convolution layers and a final 3 × 3 × D convolution layer are 
used to produce the kernel K ∈ RS×S×D. It should be noted that in the first 
of the four convolution layers, two additional input channels are 
concatenated which contain pixel coordinates normalized to the range 
of [ − 1,1] following CoordConv (Liu et al., 2018). In each grid, the kernel 
branch predicts D-dimensional outputs, which indicate the predicted 
convolution kernel weights. The final stage of the kernel branch involves 
the use of two convolution layers to generate predictions for the kernel 
and category, the last convolution layer used to predict category is a 
deformable convolution layer (DCN, Dai et al., 2017) . The weights of 
the detection head are shared among different levels. 

In the mask feature branch, P is firstly passed through Convolutional 
Block Attention Module (CBAM, Woo et al., 2018). CBAM introduced 
attention to design network architecture, which consists of Channel 
Attention Module and Spatial Attention Module. These two modules use 
max pooling and average pooling to get feature information from 
channels and spatial locations, please refer to Woo et al. (2018) for more 
details. By connecting Channel Attention Module and Spatial Attention 
Module, CBAM enables the model to increase its expressive ability, focus 
on important features and suppress unimportant ones. CBAM does not 
change the shape of the input features, therefore the shape of the output 
of CBAM remains the same as P. Then, feature pyramid fusion is applied 
to learn a unified and high-resolution mask feature representation. This 
is achieved through multiple stages of convolution layers, group 
normalization, ReLU activation, and 2 × bilinear upsampling, the FPN 
features (P2 to P5) are scaled into 1/4 of original image size. Similar to 
the use of CoordConv in kernel branch, normalized coordinates are also 
catenated with FPN feature P5, enabling model’s position sensitivity. A 
final 1 × 1 convolution layer is applied on scaled features (P2 to P5) to 
generate mask feature F ∈ RH×W×E. 

Here we set the D from the kernel branch equal to E, implying that 
the predicted kernel is for a 1 × 1 convolution. After the mask kernel Ki,j 

from the kernel branch and mask feature F from the mask branch are 
obtained, a dynamic convolutional operation is employed to generate 
the instance mask of S2 channels corresponding to S × S grids. The 
operation can be written as: 

Mi,j = Ki,j*F (1)  

where Ki,j ∈ R1×1×E is the convolution layer kernel predicted by the 
kernel branch, and Mi,j ∈ R1×H×W is the mask prediction containing only 
one instance whose centre is at grid cell (i, j). For example, if D and E are 
set equal to 4, the mask branch would generate an output with a shape of 
H × W × 4. The kernel branch would generate an output with a shape of 
S × S × 4, which can be viewed as S2 1x1 convolution kernels whose 
depths are 4, the dynamic convolutional operation would use two out
puts above to get the predicted mask. At last, the predicted mask would 
be post-processed to get the peach instance segmentation results. 

2.4. Model training 

2.4.1. Loss function 
In this paper, the proposed model only generates the predictions of 

peach categories and peach masks. To simultaneously consider the 
performance of both predictions, the loss function is designed to consist 
of two major components: the classification loss Lclass and the mask loss 
Lmask, and λ is the weight factor of mask loss. 

L = Lclass + λLmask (2)  

where Lclass is the focal loss (Lin et al., 2018) for semantic category 
classification and Lmask is the dice loss (Sudre et al., 2017) for mask 
prediction. 

The Lclass is calculated as follows: 

Lclass = − α(1 − p)γ log(p) (3)  

where α is set to 0.25 and γ is set to 2.0 in our study. p is the probability 
of the predicted instance. Sigmoid operation is used in calculating p. 

The Lmask is calculated as follows: 

Lmask = 1 −
2
⃒
⃒Σx,y

(
px,y • qx,y

) ⃒
⃒

Σx,yp2
x,y + Σx,yq2

x,y
(4)  

where px,y and qx,y refer to the value of pixel located at (x, y) in predicted 
mask p and ground truth mask q. 

Fig. 4. The architecture of proposed model. It consists of three parts: a backbone, a feature pyramid, and a shared detection head.  
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2.4.2. Training details 
We train our proposed model and Mask RCNN on the NinePeach 

dataset. ResNet 50/101 and Swin-Transformer are used as backbone 
networks. For ResNet50/101 backbone, the batch size is set to 16 with 
27 K iterations in all, and the initial learning rate is set to 0.005 and 
divided by 10 at iteration 18 K and 24 K. For Swin Transformer back
bone, the batch size is set to 4 with 54 K iterations in all. The initial 
learning rate is set to 0.005 and divided by 10 at iteration 36 K and 48 K. 
Additionally, we also train our model on nine individual peach datasets 
separately to validate the generalization ability of our model. ResNet50 
is used as backbone network, the batch size is set to 16 with 10 K iter
ation, and the initial learning rate is set to 0.005 and divided by 10 at 
iteration 6 K and 8 K. We used stochastic gradient descent (SGD) opti
mizer, weight decay 0.0001, momentum 0.9. The learning rate is 
warmed up for the first 1000 iterations, then updates according to the 
StepLR method. 

The backbone is initialized with pre-trained weights on ImageNet 
(Krizhevsky et al., 2012) and all convolution layers in the detection head 
are initialize with normal distribution. The data augmentation strategies 
used in training contain random horizontal flip, resizing the input im
ages such that the shortest side is one of 640, 672, 704, 736, 768 or 800 
pixels while the longest is at most 1333. The number of grids for four 
feature map levels is (40, 36, 24,16). The loss weights for Lclass are set as 
{unripe:1.0, semiripe:1.5, ripe:2.0} to pay more attention on categories 
with fewer instances. The λ of the loss function L is set to 3 during 
training. 

2.5. Model inference 

2.5.1. Evaluation metrics 
The average precision (AP) and average recall (AR) are frequently 

used to measure the performance of segmentation models. The defini
tions of precision and recall are: 

Precision =
TP

TP + FP
(5)  

Recall =
TP

TP + FN
(6)  

where TP is the number of cases that the target is peach and is correctly 
detected, FP is the number of cases that the target is not a peach, but it is 
wrongly detected, and FN is the number of cases that the target is a 
peach, but it is not detected. 

AP is a standard measure for measuring the sensitivity of the network 
to a target object and is an indicator that reflects the global performance 
of the network. The higher the AP value, the better the detection ac
curacy of the proposed model is. Following the criterion of MS COCO, 
mean average precision (mAP) is used as our primary metric to evaluate 
the model performance, which is calculated by averaging 10 Intersec
tion over Union (IoU) thresholds ranging from 0.50 to 0.95 across all 
categories. Additionally, the AP values for IoU = 0.50 and 0.75, and for 
individual category are also computed. 

2.5.2. Inference details 
The data augmentation strategy used in inference is only resizing the 

input images such that the shortest side is 800 pixels while the longest is 
at most 1333 pixels. During the inference, preprocessed input image 
would be passed through the backbone network, the feature pyramid 
network, and the detection head to generate two predictions. The first 
prediction from kernel branch includes the predicted category scores 
and predicted mask kernels, while the second prediction from feature 
branch includes predicted mask features. Then the predicted mask ker
nels are utilized to perform a convolution operation on the predicted 
mask feature to generate predicted soft masks followed a sigmoid 
operation, with the value range being [0,1]. A threshold of 0.5 is used to 
convert predicted soft masks to binary masks. It is noted that the final 

category scores are calculated by pixel-wise multiplication of the pre
dicted category scores with binary masks, followed by division by the 
count of binary masks. Then we keep top 500 predictions and remove 
the redundant predicted masks via non-maximum suppression (NMS). 
Finally, the predicted masks would be reshaped and interpolated to 
original image size. 

3. Experiments and results 

3.1. Experiments 

In this study, experiments are based on Detectron2 (Wu et al., 2019) 
and have been carried out using Python 3.9.13 and PyTorch 1.13 on a 
computer with the specifications shown in Table 3. 

We show that our proposed model achieves competitive results 
compared to Mask RCNN in quantitative evaluation on NinePeach 
dataset. Then, we provide a detailed ablation study of the detection head 
and class loss weights. We also separately train our model on individual 
peach datasets to explore the generalization ability of the model. Finally, 
the segmentation results are visualized, and the computational param
eters are calculated. We highlight the best result in following tables to 
better understand the model performance. 

3.2. Results 

3.2.1. Main results 
We train our model and state-of-the-art Mask RCNN using on Nine

Peach dataset, then compare their instance segmentation performance. 
Fig. 5 illustrates the training loss and periodic evaluation (14 check
points for Res50/101 and 6 checkpoints for SWIN) results of our pro
posed models with different backbones, the losses are converged and 
evaluation results are stabilized at the end of the training. The results are 
presented in Table.4. Our proposed model with a SWIN-T backbone 
achieves the highest AP of 72.12 % in all experiments. Besides, our 
model outperforms Mask RCNN on overall AP when using the same 
backbone. 

Firstly, with increasing backbone complexity and capacity, perfor
mance gains are progressively enhanced. For example, our model in
creases about 1.66 % and 5.79 % AP when changing ResNet50 to 
ResNet101 and Swin-T. This observation means the FPN and the 
detection head need more representative features generated by a 
stronger backbone as the condition for segmentation. 

Secondly, our model has a lower AP75 and a higher AP50 than Mask 
RCNN, which indicates that our model is stricter when outputting pre
dictions. This suggests a slight confidence reduction which is caused by 
the pixel-wise calculation on predicted category scores with binary 
masks in the inference phrase. 

Thirdly, compared to Mask RCNN which has relatively higher APsmall 
and APmedium, our model tends to have better performance in predicting 
large peach instances, which is similar to related work (Yu et al., 2019). 
We indicate this situation benefits from the mask feature fusion in the 
mask feature branch, which fuses features of different scales to get a 
unified and high-resolution feature representation. 

Finally, our proposed model outperforms Mask RCNN on every 
category AP, which demonstrates it has better segmentation perfor
mance. Notably, both models are relatively good at predicting ripe 
peach instances. We believe the complexity of segmenting ripe instances 

Table 3 
Specifications of the computer used for experiments.  

Device Specifications 

System OS Cent OS 7 
CPU Inter Xeon Gold 6152 @2.1 GHz 
Graphics Nvidia Tesla V100 
Memory 32.0 GB  
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is reduced because the ripe peach not only has conspicuous color to 
distinguish, but also appears alone usually as a result of falling naturally 
and fruit thinning artificially. 

3.2.2. Ablation results 
We conduct a series of ablations to investigate the impact of different 

components in detection head and different loss weights in loss function 
on segmentation performance. 

Detection Head. The detection head plays a critical role in our 
model. Table 5 shows the ablation result on the component of the 
detection head. Compared to vanilla baseline, adding coordinates and 
replacing the last convolution with deformable convolution attains 2.11 
% and 2.47 % AP gains. Besides, adding the CBAM for stronger spatial 
perception ability gives significant 4.55 % AP improvement. Our pro
posed model leverages above three components and improve the base
line by 5.66 % AP. 

Class Loss Weights. As the category distribution of the dataset is 
imbalanced, different weights for different categories are needed to 
reduce the imbalance. Table 6 shows some ablation results on different 
loss weights set for three categories. The loss weight settings {un
ripe:1.0, semiripe:1.5, ripe:2.0} demonstrated the best performance, 
emphasizing the importance of specific losses and thereby enhancing 
model performance. However, overly imbalanced weight settings 
{1:2:3} which pays much more attention on semiripe and ripe instances 
deteriorates model performance. 

3.2.3. Individual model training and evaluation results 
We separately train our proposed model with Res50-FPN backbone 

on nine individual peach datasets and evaluated the model with the 
same backbone trained using NinePeach on nine individual peach 
datasets. The results are shown in Table 7. The evaluation results of the 
model trained using NinePeach performs better compared to those of 
models trained using individual peach datasets. The average AP 
improvement stands at 21.05 %, with Songsen showing the most sig
nificant enhancement at 36.61 %. We indicate that after merging the 
datasets, not only the distribution of peach categories becomes more 
balanced, but also the model has more data samples for learning the 
characteristics and patterns of peaches in different ripeness stage, thus 

improving the generalization ability. 

3.2.4. Visualization 
We visualize the peach segmentation performance of our proposed 

model in Fig. 6. As shown in Fig. 6(a), besides the easy cases when the 
peaches are fully visible and can be segmented accurately, our model is 
capable of detecting peaches in more complex cases. Specifically, when 
the peaches overlap with each other or are partially obscured by tree 
branches or leaves, our model still performs well on identifying them 
accurately. The good segmentation performance shows the feasibility of 
the dynamic convolution operation in the detection head, of which two 
operators are mask features and mask kernels that both are learned from 
the output of the feature pyramid network. It is worth noting that our 
model not only detects multiple peaches of varying sizes within a single 
image accurately, but also generates almost as smooth boundary as the 
ground truth, benefitting from fused and high-resolution and mask 
feature representation after CBAM operation. Fusing features of 
different scales that merges the information of peaches of varied sizes to 
a unified feature enables the model to make predictions of varying sizes 
at the same time. The high-resolution mask feature brings larger pre
dicted masks which means negligible loss when reshaping them back to 

Fig. 5. The training loss and evaluation results of our model.  

Table 4 
Instance segmentation AP on NinePeach dataset.  

Model Backbone AP AP50 AP75 APsmall APmedium APlarge APunripe APsemiripe APripe 

Mask RCNN Res50-FPN  65.02  75.53  70.93  17.47  36.10  77.31  63.98  59.65  71.43 
Res101-FPN  66.02  75.91  71.76  13.01  33.93  78.29  64.92  60.25  72.99 
SWIN-FPN  69.91  83.11  76.26  24.26  45.81  76.47  64.57  64.09  76.08 

Our Model Res50-FPN  66.33  78.59  68.95  13.92  32.03  76.57  65.21  61.93  71.86 
Res101-FPN  67.99  77.73  70.84  11.21  32.41  78.75  65.76  62.39  75.84 
SWIN-FPN  72.12  83.76  75.49  11.52  40.25  82.19  68.24  69.26  78.87  

Table 5 
Ablation on different components of the detection head.  

Model AP AP75 AP50 APunripe APsemiripe APripe 

Vanilla  59.81  77.00  62.48  53.52  58.03  67.88 
+Coord  61.92  76.22  64.54  57.63  58.57  69.57 
+DCN  62.28  74.56  63.83  60.39  57.42  69.04 
+CBAM  64.36  76.57  66.60  61.91  61.32  69.84 
Our model  65.47  77.29  68.13  63.42  62.31  70.67  

Table 6 
Ablation on different weights for class loss.  

Weights AP AP50 AP75 APunripe APsemiripe APripe 

1.0: 1.0: 1.0  65.02  77.86  67.53  63.94  59.97  71.18 
1.00:1.25:1.75  63.59  75.79  65.70  61.64  59.47  69.66 
1.0: 1.5: 2.0  66.33  78.59  68.95  65.21  61.93  71.85 
1.00:1.75:2.25  65.33  77.64  67.71  63.89  60.49  71.62 
1.0: 2.0: 3.0  63.06  74.14  65.60  60.75  58.10  70.34  

Table 7 
Individual model training and evaluation results on nine peach datasets.   

Individual training Evaluation 

Peach AP AP50 AP75 AP AP50 AP75 

1.Dahongpao  39.52  57.74  38.44  57.48  69.92  59.69 
2.Qingfeng  48.96  66.73  48.66  76.77  84.30  79.84 
3.Chunmei  37.92  56.41  38.19  72.78  82.70  77.12 
4.Chunmi  46.55  59.38  45.74  49.38  56.64  51.07 
5.Chunxue  50.81  68.38  52.68  73.87  82.98  79.30 
6.Songsen  32.60  59.77  31.54  69.21  76.17  74.75 
7.Maotao  46.06  62.08  46.65  53.90  61.13  55.69 
8.Youpantao  38.34  57.47  37.13  61.71  73.62  64.84 
9.XiahuiNo5  54.59  70.33  55.32  69.76  78.52  72.02 
Average  43.93  62.03  43.82  64.98  74.00  68.26  
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original sizes. 
However, there are few cases we called wrong prediction and 

missing prediction output by our model as shown in Fig. 6(b). Wrong 
prediction means that two or more objects are wrongly predicted to be 
one object, or a part of background part is wrongly predicted as a peach. 
We assume wrong prediction occurs when some parts in the image have 
similar features with each other or with known category feature, which 
makes the model regard them as the same object or target objects. One 
the other hand, if peaches are too obscured to be discovered or look like 
background because of misleading light conditions, the model tends to 
ignore them or treat them as the background, resulting in the problem of 
missing prediction in these scenarios. 

Furthermore, we compare the peach segmentation performance be
tween our model and Mask RCNN in Fig. 7. The red and blue boxes are 

used to emphasize the difference. In case Fig. 7(a), Mask RCNN 
ambiguously predicts the leaf as a part of the peach, while our model can 
segment the peach without leaf clearly. It can be observed that our 
model produces more precise and smooth boundary predictions than 
Mask RCNN. Fig. 7(b) shows a challenging case where a peach is 
occluded by leaves and stalks at the same time. Our model segments the 
peach almost perfectly, it accurately detects the peach in most of the 
regions, especially those along the tricky boundaries, while Mask RCNN 
cannot clearly segment the boundaries between peach and leaves and 
stalks, producing much more inaccurate and incomplete predictions. In 
Fig. 7(c), Mask RCNN predicted one peach separated by a leaf as two 
individual peaches, whilst our model predicted the separated parts as a 
one object. 

(a)                                                                                                             (b)               

Wrong prediction

Missing prediction

Fig. 6. (a) Examples of proposed model segmentations. (b) Examples of non-accurate proposed model.  

Fig. 7. Segmentation comparison between Mask RCNN and our proposed model. Top is Mask RCNN, below is our model.  
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3.2.5. Computational parameters 
We compare the number of learnable parameters, the number of 

floating-point operations, inference speed and maximum GPU memory 
usage during training between our proposed model and Mask RCNN 
using the same backbone ResNet50-FPN. The results are shown in 
Table 8. 

Learnable Parameters(Params). The learnable parameters are the 
weights and biases associated with the model’s layers, which are learned 
during the training process and are used to make predictions. The 
number of learnable parameters in a model is an indicator of its capacity. 
Our model has 2.24 M more parameters than Mask RCNN, most of which 
are introduced by convolution layers. This means that our model is more 
complex and requires more data for training. 

Floating-point Operations(FLOPs). FLOPs refers to the computa
tional workload or complexity of the model during inference, which is 
calculated based on the operations performed in the model’s layers such 
as matrix multiplications, convolutions, and activations. As FLOPs is not 
a well-defined concept and it is dependent on specific input data (FAIR, 
2021), the built-in analyze function from Detectron2 was adopted to 
calculate the FLOPs. Our model has more 38.5G FLOPs than Mask 
RCNN, showing that our model has higher computational complexity. 

Inference Time. Here we report the pure inference time in a batch, 
which specifically measures the time it takes for the model to compute 
predictions once the input data is fed into the model. Our model is 25 % 
faster than Mask RCNN during inference, which indicates our model is 
relatively faster to execute. 

Maximum GPU Memory Usage. The maximum GPU memory usage 
indicates the peak memory consumption by the model during the 
training progress, which is the highest value of “max_mem” in the log. 
Our model saves 2593 M GPU memory than Mask RCNN, which makes it 
possible to train with larger batch and run on edge devices. 

In summary, Mask RCNN has fewer Params and FLOPs but longer 
inference time and more GPU memory usage as a result of abundant 
anchors generated during training and inference. Despite having more 
Params and FLOPs, our model manages to keep inference time and GPU 
usage relatively low. It maintains better accuracy and precision than 
Mask RCNN while delivering results faster. Our model is able to perform 
a larger number of FLOPs quickly, striking a fine trade-off between 
performance and complexity. This efficiency can be attributed to the 
detection head that is anchor-free and shared between different feature 
map levels, which allows our model to maximize computational power 
while minimizing memory requirements and enables our model can be 
potentially deployed on GPUs with limited memory capacities. 

4. Discussion 

4.1. The details of NinePeach dataset 

To the best of our knowledge, there is no official standard for clas
sifying the ripeness of peaches on trees. With the cooperation with a 
botanist specializing in peach, we determine the peach ripeness into 
three stages subjectively. The only criteria we set is that annotators must 
choose their first judgment when meeting ambiguous cases. Similar to 
other large datasets, NinePeach dataset also has a long-tail phenomenon, 
which refers to a situation where few categories have a high frequency of 
occurrence, while the majority of categories have relatively few in
stances, forming a “long tail” in the distribution curve. We additionally 
oversampled the images to increase the number of instances of fewer 

categories and set different weights for different categories to alleviate 
this problem. The improved dataset has a balanced category distribu
tion, facilitating the training of a large and well-performing peach 
instance segmentation model. 

4.2. The limitations of the proposed model 

Our proposed model demonstrates accurate peach detection capa
bilities, even when peaches are obstructed by tree branches or leaves. 
However, in few cases where certain regions within the image exhibit 
similar features with each other or with known category features, our 
model may generate false prediction, and missing prediction occurs 
when peaches are too obscured or look like background due to lighting 
conditions. We attribute these unreliable predictions to the larger 
receptive field of our model and the misleading illumination conditions 
of the image. 

The incorporating of CBAM has led to a noteworthy 4.55 % increase 
in AP, but it has also augmented the complexity of the model, with the 
extensive use of convolution operations resulting in an elevation of both 
learnable parameters and floating-point operations. The potential 
improvement directions of our method are to reduce unreliable pre
dictions and reduce computational complexity. 

5. Conclusion 

Precise identification of peach ripeness stage plays a crucial role in 
developing automated harvesting systems for large peach orchards, as it 
enhances picking efficiency and reduces production costs. Motivated by 
this, a high-quality peach dataset called NinePeach and a one-stage 
peach instance segmentation model were constructed in this paper. 
The NinePeach dataset comprises a total of 4599 peach images, cate
gorized into three distinct stages of ripeness: unripe, semi-ripe, and ripe. 
This dataset aims at reproducing the actual situation in the field, 
including images with factors like different intensity of natural light, 
multi-fruit adhesion, and occlusion caused by stems and leaves. 

Our proposed one-stage peach instance segmentation model does not 
require an RPN to generate bounding box proposals. The prediction of 
masks is obtained through dynamic convolution operations on the mask 
feature and kernel feature outputted from two branches. Channel 
attention and spatial attention are considered to enhance the ability of 
detecting objects in key channels and spatial locations, which brings a 
significant positive impact on model performance. Benefits from the 
anchor-free and memory-friendly design, our proposed model achieves a 
delicate balance between model performance and complexity, man
ifested by the fact that it utilizes fewer GPU resources while delivering 
faster and better predictions compared to Mask RCNN. 

At present, the released large peach dataset provides a foundation for 
further peach-related studies and reduces their workload. The proposed 
model is able to accurately detect peaches and generate smooth 
boundaries of them, even in some cases where peaches are occluded, 
which establishes a robust basis for further work like peach pick point 
estimation and peach diseases monitoring. These advances create op
portunities for offering practical solutions for farmers, applying this 
technology to other fruits or crops and considering the ever-evolving 
nature of agriculture. 

In future research, a lightweight neural network will be explored for 
efficient feature extraction to enhance real-time performance in peach 
detection. The next step is to address the issue of unreliable predictions, 
reducing the computational complexity of the model for potential 
deployment in mobile or embedded applications. 
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