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Time-Domain Sensitivity of the Tracking Error
S. O’Neil, Member, IEEE , S. G. Schirmer, Member, IEEE , F. C. Langbein, Member, IEEE , C. A. Weidner,

Member, IEEE , and E. Jonckheere, Life Fellow, IEEE

Abstract— A strictly time-domain formulation of the log-1

sensitivity of the error signal to structured plant uncertainty2

is presented and analyzed through simple but representa-3

tive classical and quantum systems. Results demonstrate4

that across a wide range of physical systems, maximization5

of performance (minimization of the error signal) asymptot-6

ically or at a specific time comes at the cost of increased7

log-sensitivity, implying a time-domain constraint anal-8

ogous to the frequency-domain identity S(s) +T(s) = I.9

While of limited value in classical problems based on10

asymptotic stabilization or tracking, such a time-domain11

formulation is valuable in assessing the reduced robust-12

ness cost concomitant with high-fidelity quantum control13

schemes predicated on time-based performance measures.14

15

I. INTRODUCTION16

In the realm of feedback control, traditional sensitivity17

analysis of a closed-loop system to uncertain parameters is18

accomplished in the frequency-domain. Standard definitions19

for the sensitivity examine the derivative of the closed-loop20

plant T (s) to differential perturbations in a given element21

K(s) given by ∂T (s)/∂K(s). As this measurement scales22

with the units used to describe the plant and parameter, a23

more useful formulation is the log-sensitivity of the closed-24

loop plant to variations in a given element through [1]25

∂T (s)/T (s)

∂K(s)/K(s)
=
∂T (s)

∂K(s)

K(s)

T (s)
. (1)26

While valuable from a frequency-domain perspective, this27

method does not yield information about how the log-28

sensitivity evolves with time, with time-domain considerations29

often being grouped into performance measures such as rise30

and settling times.31

Some researchers have proposed methods for analyzing32

the sensitivity of system performance in the time-domain,33

though the methods tend to be system-specific. In [2] and [3],34

methods for analyzing the sensitivity of the output transient35

response of distributed transmission lines and microwave cir-36

cuits are proposed. Additionally, [4] and [5] provide methods37
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for computing time-domain sensitivity measures for active 38

and passive circuits. In particular, [5] convincingly demon- 39

strates the computational efficiency of analytic methods over 40

brute-force comprehensive perturbation analysis. While pro- 41

viding valuable methods for computing sensitivity in the time- 42

domain, the current research in this area does not provide a 43

predictive model relating sensitivity to performance metrics. 44

This requirement for a predictive, time-domain model to 45

gauge trade-offs in robustness and performance is becoming 46

increasingly important in the field of quantum technology. 47

Control problems in this field ranging from fast state transfer to 48

the implementation of quantum gates are fundamentally time- 49

based and not well-described by existing frequency-domain 50

methods [6], [7], [8]. Furthermore, the eigenstructure of closed 51

quantum systems is characterized by poles on the imaginary 52

axis that preclude application of common small-gain theorem- 53

based robustness analysis methods such as structured singular 54

value analysis [9], [10]. 55

In this paper, we extend the concept of the log-sensitivity 56

from the frequency-domain analysis of transfer functions to 57

the time-domain analysis of a signal. In particular, we examine 58

the error signal e(t) = y(t) − r(t) of a Single-Input, Single- 59

Output (SISO) system to structured uncertainty in the system 60

parameters. We first demonstrate the methodology with two 61

classical systems and then extend the concept to quantum 62

systems where time-domain specifications, particularly read- 63

out time (i.e., the time at which the state of the system is mea- 64

sured), are crucial to system performance [11], [12], [13]. The 65

main contribution of this paper is to provide a characterization 66

of how the log-sensitivity of the error behaves as the output 67

approaches the desired reference input. We show that the log- 68

sensitivity of the error diverges to infinity as y(t) → r(t). 69

Furthermore, the manner in which the log-sensitivity diverges 70

is characterized by the multiplicity and character (real versus 71

complex) of the dominant eigenvalue(s) of the closed-loop 72

system and structure of the uncertain parameters. 73

In Section II, we establish the paradigm for calculation of 74

the log-sensitivity of the error in terms of a classical SISO 75

system with full-state feedback. Here, the pole-placement 76

simultaneously meets design specifications and provides zero- 77

steady state error as in [14]. In Section III, we derive the 78

time-domain log-sensitivity of the error, prove that the limit 79

of the log-sensitivity diverges as the output approaches the 80

desired steady-state value, and characterize this divergence in 81

terms of the dominant eigenvalue(s) of the closed-loop system. 82

In Sections IV, V, VI, and VII we apply our analysis to both 83

classical feedback systems and quantum systems, one subject 84

to dissipation and one that evolves unitarily. This latter case 85
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is particularly interesting due to the difficulty of applying86

classical robust control methods to closed quantum systems,87

save for some special cases [15], [16], [17].88

II. PRELIMINARIES89

We consider the general case of a SISO system with90

multiple states and the control objective of tracking a step91

input with zero error. The system is represented by92

ẋ = Ãx+ bu,

y = cx.
(2)93

Here, c ∈ R1×N and b ∈ RN×1 since we consider a SISO94

system. The matrix Ã ∈ RN×N is given by Ã = A1 + Sξ0 +95

S(ξ − ξ0). The nominal dynamics matrix is A1 + Sξ0 and96

ξ ∈ [ξ1, ξ2] is an uncertain parameter with nominal value97

ξ0 ∈ [ξ1, ξ2]. This uncertain parameter enters the dynamics98

additively through the matrix S.99

Assuming the system is controllable, we use state feedback100

to place the poles of the system in accordance with our design101

specifications. Introducing the unit step reference signal r(t),102

the system input is u(t) = −kx(t) + k0r(t) where k ∈ R1×N
103

is the vector of static feedback gains and k0 is the scalar gain104

used to scale the reference. Including the state feedback, we105

have the closed-loop state matrix A = Ã−bk = A1−bk+Sξ106

and the state equation becomes ẋ = Ax+bk0r(t). The nominal107

state matrix with feedback is now A0 = (A1 − bk) + Sξ0.108

We determine the time-domain state evolution as109

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)bk0r(τ) dτ

= eAtx(0) + k0e
At

∫ t

0

e−Aτ b dτ,

(3)110

since r(t) has unit magnitude. Without loss of generality and111

to simplify the exposition, we set x(0) = 0. Constraining our112

analysis to the zero-state response gives113

x(t) = k0(e
At − I)A−1b. (4)114

The term −A−1b enters as the vector of steady-state values of115

the step input-to-state response of the transfer function (sI −116

A)−1b = G(s). This follows immediately from evaluation of117

G(s)|s=0= −A−1b.118

Since our goal is to track a unity step input so that y(t) =119

cx(t) = r(t) = 1, we ultimately want −k0cA−1b = r0 = 1120

or k0 = −(cA−1b)−1. For simplicity, we write A−1b as the121

vector β. The output becomes122

y(t) = cx(t) = k0ce
Atβ − k0cβ = k0ce

Atβ + 1, (5)123

and we define the error signal as124

e(t) = r(t)− y(t) = −k0ceAtβ. (6)125

III. LOG SENSITIVITY OF THE ERROR126

With the time-domain error signal in (6), we define the127

log-sensitivity of the error to differential perturbations in the128

parameter ξ as129

s(ξ0, t) =
∂e(t)

∂ξ

ξ

e(t)

∣∣∣∣
ξ=ξ0

. (7)130

In general, the matrices A = A1 − bk + Sξ and S do not 131

commute. As such, calculation of the derivative of e(t) with 132

respect to the uncertain parameter ξ follows from [18] where 133

∂e(t)

∂ξ
= −k0c

∂

∂ξ
e(A1−bk+Sξ)tβ

= −k0c
(∫ t

0

e(t−τ)A0SeτA0dτ

)
β.

(8) 134

To be precise, note that in the limit as ∆ξ → 0, we define 135

the directional derivative of eAt in the direction of S as in [18], 136

DS(t, A) = lim
∆ξ→0

1

∆ξ
(et(A1−bk+S(ξ0+∆ξ)) − et(A1−bk+Sξ0)) 137

= lim
∆ξ→0

1

∆ξ

(
et(A0+S∆ξ) − etA0

)
, (9) 138

where ∆ξ = ξ − ξ0. As shown in the Appendix, we can 139

express ∂
∂ξ e

At = MX(t)M−1 with X(t) defined in Eq. (60) 140

or (66). Here, M is the matrix of (generalized) eigenvectors 141

that induce the similarity transformation A0 =MJM−1 with 142

J the Jordan normal form of A0. Thus, 143

∂e(t)

∂ξ
= −k0cMX(t)M−1β. (10) 144

Dividing by e(t) while multiplying by ξ0, we produce the log- 145

sensitivity of the error 146

s(ξ0, t) =
∂e(t)

∂ξ

ξ

e(t)

∣∣∣∣
ξ=ξ0

=
ξ0cMX(t)M−1β

cMeJtM−1β
. (11) 147

Now consider the log-sensitivity in the case of perfect 148

tracking when y(t→ ∞) → 1 (equivalently e(t→ ∞) → 0). 149

Given a controllable linear system, by state feedback we 150

guarantee convergence of e(t) to zero, but only asymptotically 151

as t→ ∞. 152

To determine whether the limit of s(ξ0, t) as t→ ∞ exists 153

or if it diverges, we examine the ratio of the numerator N (t) 154

and denominator D(t) of the scalar s(ξ0, t). Our expression 155

for the log-sensitivity is now 156

s(ξ0, t) =
∂e(t)

∂ξ

ξ

e(t)

∣∣∣∣
ξ=ξ0

=
N (t)

D(t)
. (12) 157

For simplicity we introduce the following notation. Let cM = 158

z =
[
z1 z2 . . . zN

]
∈ C1×N , where zk = ⟨c, vk⟩, the 159

inner product of the row vector c with the k-th (generalized) 160

eigenvector of A0. Likewise, describing the rows of M−1 by 161

νk, we write the product M−1β as the column vector w ∈ 162

CN×1 with components wk = ⟨νk, β⟩, and let s̄mn be the 163

elements of the matrix S̄ =M−1SM . Let the eigenvalues be 164

ordered in increasing order of the magnitude of their real parts. 165

An eigenvalue λm is dominant if Re(λm) = maxn Re(λn). 166

Eigenvalues λm with s̄mn = s̄nm = 0 for all n can be ignored. 167

We now state the following main results of the paper: 168

Theorem 1: If A0 is diagonalizable with dominant, real 169

eigenvalue λ1 ≤ 0 with algebraic multiplicity one, then the 170

log-sensitivity s(ξ0, t) = ξ0s̄11t + R(t), where limt→∞R(t) 171

is finite, i.e., s(ξ0, t) diverges linearly as ξ0s̄11t as t → ∞ if 172

s̄11 ̸= 0. 173
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Proof: N (t) and D(t) in (12) take the form174

N (t) = ξ0

N∑
m,n=1

zmwns̄mnϕmn(t), (13a)175

D(t) =

N∑
m=1

zmwme
λmt, (13b)176

where177

ϕmn(t) = ϕnm(t) =

{
eλmt−eλnt

λm−λn
for λm ̸= λn,

teλmt for λm = λn,
(14)178

and λn are the eigenvalues of A0 = A1 − bk + Sξ0, in-179

cluding repeated eigenvalues. Recall that all eigenvalues have180

Re(λn) ≤ 0, ensuring marginal stability at a minimum, and181

orded in increasing order of the magnitude of their real parts182

so λ1 is the dominant pole. Factoring eλ1t from both N (t)183

and D(t), and defining184

ϕ̃mn(t) =

{
e(λm−λ1)t−e(λn−λ1)t

λm−λn
for λm ̸= λn,

te(λm−λ1)t for λm = λn,
(15)185

we write186

N (t)

eλ1t
= ξ0

N∑
m,n=1

zmwns̄mnϕ̃mn(t). (16)187

Noting that ϕ̃11(t) = t, ϕ̃m1(t), ϕ̃1n(t) contribute constant188

terms and all other ϕ̃mn(t) only contribute terms that expo-189

nentially decay to 0, we have190

N (t)

ξ0eλ1t
= z1w1s̄11t+ g0 +Nr(t) (17)191

where192

g0 =

N∑
n=2

z1wns̄1n
λ1 − λn

−
N∑

m=2

zmw1s̄m1

λm − λ1
(18)193

and the terms in N (t) that decay to zero as t→ ∞ are194

Nr(t) =
N∑

m,n=2

zmwns̄mnϕ̃mn(t)−
N∑

n=2

z1wns̄1n
λ1 − λn

e(λn−λ1)t
195

+

N∑
m=2

zmw1s̄m1

λm − λ1
e(λm−λ1)t. (19)196

For the denominator we have197

D(t)

eλ1t
= z1w1 +

N∑
m=2

zmwme
(λm−λ1)t = z1w1 +Dr(t), (20)198

where Dr(t) likewise decays to zero. Now, for some T > 0,199

we have |Nr(t)|< N0 and |Dr(t)|< D0 where N0 and D0 are200

bounds at which the ratio of N0 and D0 to z1w1 is negligible.201

Finally, we have202

s(ξ0, t) =
ξ0 (w1z1s̄11t+ g0 +Nr(t))

z1w1 +Dr(t)

= ξ0s̄11t+R(t),

(21)203

where204

R(t) =
ξ0 (g0 +Nr(t)−Dr(t)s̄11)

z1w1 +Dr(t)
. (22)205

Since limt→∞R(t) is finite, if s̄11 ̸= 0 then ξ0s̄11t is the 206

dominant term of s(ξ0, t) as t→ ∞. 207

Corollary 1: If A0 is diagonalizable with dominant, real 208

eigenvalue λ1 ≤ 0 with equal algebraic and geometric mul- 209

tiplicity ℓ > 1, s(ξ0, t) = ξ0(a0/b0)t + R(t), where R(t) 210

remains finite, i.e., for a0 ̸= 0, s(ξ0, t) again diverges linearly 211

as t → ∞ with slope ξ0a0/b0, where a0 and b0 are given 212

by a linear combination of the coefficients associated with the 213

dominant, repeated eigenvalue λ1. 214

Proof: N (t) and D(t) follow from (13a) and (13b). 215

Setting a0 =
ℓ∑

m,n=1
zmwns̄mn, and b0 =

ℓ∑
m=1

zmwm, we have 216

N (t) = ξ0

a0teλ1t +

N∑
m=1,n=ℓ+1
m=ℓ+1,n=1

zmwns̄mnϕmn(t)

 , (23) 217

where the sum does not include repeats of the ordered pair 218

(m,n) and 219

D(t) = b0e
λ1t +

N∑
m=ℓ+1

zmwme
λmt. (24) 220

Then (21) is modified as 221

s(ξ0, t) = ξ0(a0/b0)t+R(t), (25) 222

where R(t) again remains finite. 223

Remark 1: Note that if A0 has a real dominant eigenvalue 224

λ1 of matching algebraic and geometric multiplicity m, the 225

theorem extends to repeated eigenvalues λn ̸= λ1 of arbitrary 226

multiplicity. Any terms that enter (17) and (20) generated by 227

some λn for n ̸= 1 necessarily have |Re(λn)| > |λ1| under the 228

assumption of the dominant eigenvalue λ1. If λn is a simple 229

root, upon factoring of λ1 from N (t) and D(t), such terms 230

are either constant or exhibit an exponential time dependence 231

e(Re(λn)−λ1)t = e−σnt. If λn is a repeated root with non- 232

trivial Jordan block of multiplicity ℓ these terms take the form 233

tℓ−1e−σnt. In either case, such terms → 0 as t → ∞, are 234

subsumed in Nr(t) and Dr(t) and grouped into R(t). Any 235

constant terms contributing to N (t), remain finite as t → ∞ 236

and are also included in R(t). The result of the theorem is 237

thus unchanged. 238

We now consider damped, complex conjugate eigenvalues. 239

In the remainder of the paper j is the imaginary unit. 240

Theorem 2: If the dominant eigenvalue of A0 = A1− bk+ 241

Sξ0 appears in a complex conjugate pair −σ±jω, σ ≥ 0, then 242

s(ξ0, t) = (tf(t) + g(t) +Nr(t))/(h(t) +Dr(t)) where f(t), 243

g(t), h(t) are periodic functions with period π/ω and Nr(t), 244

Dr(t) → 0 as t→ ∞ with rate given by (Re(λ3)+ σ). Thus, 245

s(ξ0, t) has no limit as t→ ∞, periodically taking divergingly 246

large local maxima and local minima. 247

Proof: Following the same procedure as for Theorem 1, 248

denote the dominant complex eigenvalue pair as λ1,2 = −σ± 249

jω. Factoring the real part of the dominant pole-pair gives 250

N (t)/ξ0e
−σt = tz1w1s̄11e

−jωt + tz2w2s̄22e
jωt

251

+
∑

(m,n) ̸=(1,1)
(m,n) ̸=(2,2)

zmwms̄mnϕ̂mn(t), (26) 252
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where253

ϕ̂mn(t) =

{
e(λm+σ)t−e(λn+σ)t

λm−λn
for λm ̸= λn,

te(λm+σ)t for λm = λn.
(27)254

The last term in (26) generates 2N − 4 terms of the form255

z(1,2)wns̄(1,2),n

λ(1,2) − λn
(e±jωt − e(λn+σ)t) (28)256

and 2N − 4 terms of the form257

zmw(1,2)s̄m,(1,2)

λm − λ(1,2)
(e(λm+σ)t − e±jωt) (29)258

along with the pair259

z1w2s̄12
λ1 − λ2

(e−jωt − ejωt),
z2w1s̄21
λ2 − λ1

(ejωt − e−jωt). (30)260

Recalling that Re(λℓ) < −σ, ∀ℓ ̸= 1, 2, we rewrite the last261

term of Eq. (26) as262 (
z1w2s̄12
λ1 − λ2

− z2w1s̄21
λ2 − λ1

)
(e−jωt − ejωt)+263 (

N∑
n=3

z1wns̄1n
λ1 − λn

−
N∑

m=3

zmw1s̄m1

λm − λ1

)
e−jωt+264 (

N∑
n=3

z2wns̄2n
λ2 − λn

−
N∑

m=3

zmw2s̄m2

λm − λ2

)
ejωt+Nr(t), (31)265

where Nr(t) contains all terms that decay to zero as t→ ∞.266

Recalling that the eigenvalues are ordered in decreasing value267

of Re(λk), we note that the dominant term in Nr(t) goes to268

zero as e(λ3+σ)t. Regrouping terms that do not decay to zero269

in (26) and (31), yields270

tz1w1s̄11e
−jωt + tz2w2s̄22e

jωt
271

+

(
z1w2s̄12
λ1 − λ2

− z2w1s̄21
λ2 − λ1

+

N∑
n=3

z1wns̄1n
λ1 − λn

272

−
N∑

m=3

zmw1s̄m1

λm − λ1

)
e−jωt +

(
z2w1s̄21
λ2 − λ1

− z1w2s̄12
λ1 − λ2

273

+

N∑
n=3

z2wns̄2n
λ2 − λn

−
N∑

m=3

zmw2s̄m2

λm − λ2

)
ejωt

274

= tz1w1s̄11e
−jωt + tz2w2s̄22e

jωt +Qe−jωt +Rejωt
275

=: tf(t) + g(t). (32)276

In the denominator, following the factoring of e−σt, we have277

D(t)

e−σt
= z1w1e

−jωt + z2w2e
jωt +

N∑
n=3

znwne
(λn+σ)t

= z1w1e
−jωt + z2w2e

jωt +Dr(t)

= h(t) +Dr(t).

(33)278

Here, Dr(t) denotes the terms in denominator that go to zero279

exponentially with dominant term e(λ3+σ)t. For N = 2, the280

denominator is given exactly by the expression in (33) with281

Dr(t) = 0.282

To bound |D(t)/e−σt|, note that |Dr(t)| achieves its283

maximum for t ∈ [0, π/ω). Furthermore, the complex284

exponential terms in h(t) will vary between ±2|z1w1|. 285

Thus, the maximum value the denominator can attain is 286∣∣(2|z1w1|) + maxt∈[0,π/ω) Dr(t)
∣∣. 287

To analyze the behavior of the ratio of N (t) to D(t), we 288

must examine the periodic behavior of D(t). Since zm and wn 289

are, in general, complex, we must find where |D(t)|= 0 or is a 290

minimum. This yields the following condition for |D(t)/e−σt| 291

as an asymptotic minimum: 292

|z1w1|2+|z2w2|2+2Re(z1w1z
∗
2w

∗
2) cos(2ωt) 293

− 2 Im(z1w1z
∗
2w

∗
2) sin(2ωt) = 0. (34) 294

Recalling that v1 and v2 (the eigenvectors associated with the 295

dominant complex pole pair) are complex conjugates, we have 296

z1 = z∗2 and w1 = w∗
2 . Combining the trigonometric functions 297

to a single cosine term yields the equivalent, simplified, 298

condition for the minimum of D(t): 299

cos (2ωt− ϕ01) = −1, (35) 300

where 301

ϕ01 :=

{
ϕ, Re(z1w1z

∗
2w

∗
2) > 0,

ϕ+ π, Re(z1w1z
∗
2w

∗
2) < 0,

(36) 302

and 303

ϕ := arctan

(
− Im(z1w1z

∗
2w

∗
2)

Re(z1w1z∗2w
∗
2)

)
(37) 304

with arctan defined to be in the first or fourth quadrant. We 305

thus, expect the denominator to approach zero cyclically with 306

a period T = π/ω. 307

Thus, |D(t)| remains bounded from above, but approaches 308

zero periodically, which produces “spikes” in the log- 309

sensitivity characterized by 310

|s(ξ0, tn)|=
∣∣∣∣N (tn)

D(tn)

∣∣∣∣ = ∣∣∣∣ tnf(tn) + g(tn) +Nr(tn)

h(tn) +Dr(tn)

∣∣∣∣ , (38) 311

where tn = t0 + nπ/ω and t0 is the first time at which D(t) 312

achieves a local minimum. In the case of N = 2, this is given 313

exactly by t0 = (π + ϕ01)/(2ω). 314

Corollary 2: If A0 contains m eigenvalues of the form 315

λm = σ ± jωm with σ = min
λn

|Reλn| and ωm = mω0 (i.e. 316

the eigenfrequencies are commensurate) the ω of Theorem 2 317

determining the periodic behavior of s(ξ0, t) is ω0. ■ 318

Remark 2: If the {ωm} of Corollary 2 are rationally inde- 319

pendent so that
∑

n βnωn = 0 ⇒ βn = 0, ∀n the quasi- 320

periodic behavior of s(ξ0, t) of Theorem 2 is non-trivial and 321

determined by expansion of all purely oscillatory terms of (26) 322

in ωm. 323

Theorem 3: If A0 has algebraic multiplicity ℓ in the dom- 324

inant eigenvalue λ1 with geometric multiplicity 1, s(ξ0, t) 325

diverges as a polynomial F (t) =

(
ℓ∑

n=0
fn(t)t

n

)
/
(

z1wℓ

(ℓ−1)!

)
326

as t→ ∞. 327

Proof: Calculating the components of N (t) = ξ0zX(t)w 328

from the results of the Appendix yields the following: 329

Since X1(t) is identical to the X(t) of a diagonal- 330

izible matrix with ℓ repeated eigenvalues, zX1(t)w = 331

eλ1t (ta−ℓ+2(t) + a−ℓ+1(t)) where a−ℓ+2(t) and a−ℓ+1(t) 332

are given by the terms in parentheses of (23) multiplying t 333

or not, respectively, after factoring of eλ1t. 334
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Taking the products zX2(t)w and zX3(t)z updates (63)335

and (64) to sums of scalar products with s̄mrzΠmsw =336

s̄mrzmws and s̄qmzΠpmw = s̄qmzpwm. So,337

zX2(t)w = eλ1t
ℓ∑

m=0

bm−ℓ+1(t)t
m, (39)338

zX3(t)w = eλ1t
ℓ∑

m=0

cm−ℓ+1(t)t
m, (40)339

where bm(t) and cm(t) are composed of the terms in (63)340

and (64) grouped by like powers in t after factoring of eλ1t.341

Note that the largest power of t in the polynomials zX2(t)w342

and zX3(t)w is ℓ. Moreover,343

zX4(t)w = eλ1t
2ℓ−1∑
m=3

dm−ℓ+1(t)t
m, (41)344

where dm(t) consists of those terms in powers of tm following345

the factoring of λ1. As such,346

N (t)

ξ0eλ1t
= z (X4(t) +X3(t) +X2(t) +X1(t))w347

=

2ℓ−1∑
m=0

tm(dm−ℓ+1(t) + cm−ℓ+1(t) + bm−ℓ+1(t)+348

am−ℓ+1(t)) =

2ℓ−1∑
m=0

tmfm−ℓ+1(t) (42)349

Note that for m > ℓ, fm(t) = dm(t). Also, since Re(λn) <350

Re(λ1) ≤ 0, ∀n ̸= 1, fm(t) consists of two types of terms:351

(1) those that contain a factor of e(λn−λ1)t and decay to zero352

and (2) terms, which are constant or purely oscillatory and do353

not decay to zero as t→ ∞.354

The denominator has the more tractable expression355

D(t) =

N∑
m=1

eλmtzmwm +

ℓ−1∑
p=1

ℓ∑
q=p+1

eλ1tzpwqt
(q−p)

(q − p)!
. (43)356

The largest power of t in D(t) is ℓ − 1 with coefficient357

eλ1tz1wℓ/(ℓ − 1)!. Taking the ratio of N (t)/ξ0D(t) and358

cancelling common factors of eλ1t and tℓ−1 yields359

2ℓ−1∑
m=ℓ−1

fm−ℓ+1(t)t
(m−ℓ+1) +

ℓ−2∑
m=0

fm−ℓ+1(t)t
−(ℓ−1−m)(

N∑
n=1

t1−ℓznwne(λn−λ1)t +
ℓ−1∑
p=1

ℓ∑
q=p+1

zpwq

(q−p)! t
(q−p+1−ℓ)

)360

=

2ℓ−1∑
m=ℓ−1

fm−ℓ+1(t)t
(m−ℓ+1) +O(t−1)

z1wℓ

(ℓ−1)! +O(t−1)
(44)361

where O(t−1) → 0 as t → ∞ as 1/t or faster (i.e. with rate362

t−n or e(λn−λ1)t). TakingRe-indexing m for clarity we have363

s(ξ0, t) = ξ0
N (t)

D(t)
= ξ0

ℓ∑
m=0

fm(t)tm +O(t−1)

z1wℓ

(ℓ−1)! +O(t−1)
364

= ξ0

ℓ∑
m=0

fm(t)tm

z1wℓ

(ℓ−1)!

+R(t) (45) 365

where R(t) → 0 as t→ ∞. Then, as t→ ∞, we have 366

N (t)

D(t)
→

ℓ∑
m=0

fm(t)tm

z1wℓ

(ℓ−1)!

= F (t), (46) 367

so that s(ξ0, t) = ξ0N (t)/D(t) → ∞ as a polynomial in tm. 368

Before concluding, note that we can lift the assumption of 369

distinct eigenvalues for λn ̸= λ1. By assumption, |Reλn| > 370

|Reλ1| for all n > 1 so that any terms in (44) generated by a 371

Jordan block not associated with λ1 decay as e(Re(λn)−Re(λ1))t 372

and are subsumed in O(t−1) leaving the result of the theorem 373

unchanged. 374

Remark 3: Note that if the dominant eigenvalues are char- 375

acterized by Reλ1 = 0, the results of this section still hold. 376

This is easily verified by noting that factoring of eλ1t does not 377

change the leading terms of N (t) or D(t) and any remaining 378

terms of the form eλkt for k > 1 decay to zero as t → ∞ 379

under the assumption of feedback stabilization from Section II. 380

IV. CLASSICAL EXAMPLE – SPRING-MASS SYSTEM 381

We first examine the case of an undamped spring-mass 382

system we wish to position at xfinal = 1m with an actuating 383

force on the mass that provides the step-input. Taking the 384

spring as the uncertain variable with nominal value of k = 385

ξ0 = 4N/m2, the state-equation for the nominal system is: 386[
ẋ1
ẋ2

]
=

[
0 1
−ξ 0

] [
x1
x2

]
+

[
0
1

]
u. (47) 387

Here, x1 is the mass position, and x2 is the velocity. We choose 388

x1 as the measured output, so c =
[
1 0

]
. 389

Variations about the nominal value of the spring constant 390

enter the dynamics additively through the structure matrix as 391

(∆ξ)S where S =

[
0 0
1 0

]
. 392

A. Real Dominant Eigenvalue 393

We first choose real, distinct eigenvalues for rapid conver- 394

gence with no oscillation. Choosing λ1 = −2 and λ2 = −5 395

produces a step response with zero overshoot, rise time of 396

1.23 s, and settling time of 2.21 s. The resulting limiting 397

behavior of |s(ξ0, t)| is shown in Fig. 1. In accordance with 398

Theorem 1, the log-sensitivity diverges linearly with a slope 399

given by |ξ0s̄11|= 4/3. 400

B. Complex Dominant Eigenvalue Pair 401

We now choose eigenvalues of −1 ± jπ/5 to yield a 402

system with lighter damping and oscillatory dynamics. This 403

provides a more gentle response with an overshoot of 0.67, 404

rise time of 2.24 s, and settling time of 3.52 s. For the log- 405

sensitivity of the error, we first note that Re(z1w1z
∗
2w

∗
2) = 406

−0.197 and Im (z1w1z
∗
2w

∗
2) = −0.409. Not considering the 407

additional factor of π in ϕ01 produces an erroneous first zero 408

crossing time of t0 = 1.61 s. Taking into account the sign 409
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Fig. 1. Spring-mass system with λ1 = −2, λ2 = −5, ξ0 = 4, and
s̄11 = −1/3. Note the linear divergence of |s(ξ0, t)| with a slope of
4/3.

Fig. 2. Divergence of |s(ξ0, t)| for the spring-mass system with a
complex eigenvalue pair at s = −1 ± jπ/5. The top plot shows both,
e(t) and |s(ξ0, t)|, on a linear scale, and the bottom plot shows both on
a log-scale. Note that s(ξ0, t) displays local maxima every π/ω = 5 s
as the error periodically goes to zero.

of Re(z1w1z
∗
2w

∗
2) agrees with the expected periodic behavior.410

Specifically, t0 = (π + ϕ01)/(2ω) = 4.107 s with expected,411

asymptotic recurrence times of tn = t0+(π/ω)n as stated in412

Theorem 2. The results are shown in Fig. 2. Note that the local413

maxima for |s(ξ0, t)| and local minima for e(t) correspond to414

the values of tn predicted by Theorem 2.415

V. CLASSICAL EXAMPLE—RLC CIRCUIT416

Extending the procedure to a slightly more complex sce-417

nario, we consider an RLC circuit as depicted in Fig. 3.418

The voltage source provides a step input of 1V. The control419

objective is tracking this step input voltage at the capacitor420

voltage in the rightmost branch. The inductance in the system421

is the uncertain parameter with a nominal value of 2H. This422

Fig. 3. RLC circuit with three states consisting of the two capacitor
voltages and single inductor current. The input is a voltage step at t = 0
and the output is the capacitor voltage x1(t) in the rightmost branch.

Fig. 4. Divergence of |s(ξ0, t)| for the third order circuit with λ1 = −1,
λ2 = −2, and λ3 = −4. As predicted, the log-sensitivity of the error
diverges linearly with time.

provides the following state-space set-up 423ẋ1ẋ2
ẋ3

 =

−1 1 −1
1 −2 0
ξ 0 −ξ

x1x2
x3

+

01
0

u. (48) 424

The nominal inverse inductance is ξ0 = 1/2 and we have 425

S =

0 0 0
0 0 0
1 0 −1

 . (49) 426

The current through the inductor is taken as x3 and the voltage 427

across the output capacitor is x1. Since we measure x1 as the 428

output, the output vector is c =
[
1 0 0

]
. 429

A. Real Dominant Eigenvalue 430

We first consider real eigenvalues and a dominant eigenvalue 431

of λ1 = −1. The system response has a rapid rise time 432

of 0.49 s and a large overshoot of 30%. This overshoot 433

is attributable to the negative residue of λ2 = −2 which 434

generates a non-monotonic convergence of y(t) to the steady 435

state yss = 1. The behavior of the log-sensitivity with time 436

is shown in Fig 4. In accordance with Theorem 1, the log- 437

sensitivity diverges with slope |ξ0s̄11|= |0.5(−3.167)| = 1.58. 438

Contrasted with this long-term behavior, we note a local 439

maximum of |s(t, ξo)| at t = 0.701 s when the step response 440

passes through y(t) = 1, attributable to the transient dynamics. 441
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Fig. 5. |s(ξ0, t)| diverging over time for a third-order circuit with
dominant complex eigenvalue pair λ1,2 = −2 ± jπ/10. The top
panel displays |s(ξ0, t)| and e(t) on a linear scale, and the lower panel
displays the same on a log-scale. Note the periodic maxima of |s(ξ0, t)|
and corresponding minima of e(t) with period 10 s.

B. Complex Dominant Eigenvalue Pair442

Next, we choose complex eigenvalues of λ1,2 = −2 ±443

jπ/10. As seen in Fig. 5, |s(ξ0, t)| does not approach a444

limiting value as t→ ∞, but grows unbounded with periodic445

local maxima at a period of π/ω = 10 s, in accordance446

with Theorem 2. We also note a first spike in |s(ξ0, t)| at447

t = 0.350 s when y(t) passes through 1 during the transient448

response. The next local maximum occurs at the predicted449

time of t0 = (π + ϕ01)/(2ω) = 10.49 s. The subsequent450

local maxima in |s(ξ0, t)| follow at the expected times of451

tn = (t0 + (π/ω)n) = (10.49 + 10n)s.452

VI. OPEN QUANTUM SYSTEMS EXAMPLE – TWO453

QUBITS IN A CAVITY454

A. System Description and Problem Formulation455

We now examine how the postulated long-term behavior456

of the log-sensitivity applies to non-classical systems. We457

consider a simple, open quantum system with a globally458

asymptotic steady state, as detailed in [19]. This asymptotic459

convergence facilitates similarity with the behavior of classical460

systems.461

Consider two qubits (quantum mechanical two-level sys-462

tems) collectively coupled to one another via a lossy cavity,463

as originally detailed in [20]. As an open quantum system,464

the dynamics are governed by the time-dependent Liouville465

equation466

d

dt
ρ(t) = [H, ρ(t)] + L(Vγ)ρ(t), (50)467

where the cavity has been adiabatically eliminated [20], H is468

the Hamiltonian that determines the evolution of the system,469

Vγ a constant dissipation operator, ρ(t) the density operator470

that encodes the state information, and [·, ·] the matrix com-471

mutator. For this specific two-level system, we have [19] 472

H =


0 α2 α1 0
α∗
2 ∆2 0 α1

α∗
1 0 ∆1 α2

0 α∗
1 α∗

2 ∆1 +∆2

 , Vγ =


0 γ2 γ1 0
0 0 0 γ1
0 0 0 γ2
0 0 0 0

 .
(51) 473

The terms α1 and α2 represent the driving fields of the qubits, 474

and ∆1 and ∆2 represent the detuning parameters, i.e., the 475

difference between the driving field frequency and the qubit 476

resonance frequency for qubits 1 and 2, respectively. The 477

terms γ1 and γ2 in the matrix Vγ provide the strength of the 478

decoherence acting on the first and second qubit, respectively. 479

We take the nominal values of αn and γn as 1, ∆1 as −0.1, 480

and ∆2 as 0.1. 481

We consider the following perturbations to these parameters 482

in accordance with [19] and the associated structure matrices 483

where δmn denotes a 4 × 4 matrix with a one in the (m,n) 484

location and zeros elsewhere: 485

• Perturbations to α1 with S1 = δ13 + δ31 + δ24 + δ42, 486

• Perturbations to α2 with S2 = δ12 + δ21 + δ34 + δ43, 487

• Perturbations to ∆1 with S3 = δ33 + δ44, 488

• Perturbations to ∆2 with S4 = δ22 + δ44. 489

The equations of motion do not readily lend themselves to 490

analysis in the common state-space formalism, but we can 491

use the Bloch formulation to accomplish this. We choose an 492

orthonormal basis of the N × N Hermitian matrices {σn} 493

where the first N2 − 1 elements are traceless, and σN2 = 494

(1/
√
N)IN2 with N the dimension of the system. We define 495

Amn = Tr(jH[σm, σn]), (52a) 496

Lmn = Tr(V †
γ σmVγσn − 1

2
V †
γ Vγ{σm, σn}), (52b) 497

rm(t) = Tr(σmρ(t)). (52c) 498

With N = 4, this yields in ṙ(t) = (A + L)r(t) with A,L ∈ 499

R16×16 and r(t) ∈ R16. Together with r0 = r(0), we have the 500

standard equations that represent an autonomous state-space 501

system with free response r(t) = et(A+L)r0. 502

The system has a single zero eigenvalue, and the nullspace 503

of A + L provides the steady-state associated with this zero 504

eigenvalue, denoted as rss. We define the output as the scalar 505

y(t) = rTssr(t) where 0 ≤ y(t) ≤ 1, and y(t) represents the 506

overlap of the current state with the steady-state. We define the 507

overlap error as 1−y(t) = 1−rTssr(t). Noting that for any state 508

ρ(t), rN2 = Tr
(
(1/

√
N)ρ(t)

)
= 1/

√
N as a consequence 509

of the constancy of the trace for density matrices, we have 510

1 = rT1 r(t), where r1 is a vector of all zeros save for the N2- 511

th entry, which is
√
N . We can then simplify the expression 512

for the error as (r1 − rss)
T r(t) = cr(t) where c ∈ RN2×1

513

consisting of cn = −rssn for n = 1, . . . , N2 − 1 and cN2 = 514

N−1√
N

. Specifically for this case we have c16 = 3
2 . 515

Perturbations S1 through S4 map linearly to the Bloch 516

formulation [21], [22], [23], [24] via (52a) to produce a 517

structure matrix S̃ ∈ R16×16. Thus, a differential perturbation 518

of the form ∆ξSn for n ∈ {1, 2, 3, 4} in (50) maps to 519

∆ξS̃, and we have the following perturbed form of the time 520

evolution of the overlap error: 521

e(t) = cet(A+L+∆ξS̃)r0. (53) 522
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Fig. 6. Divergence of |s(ξ0, t)| for perturbations to the driving fields
α1,2, with slope given by |ξ0s̄22| = |(1)(0.00344)| = 0.00344.

This allows us to compute the derivative of e(t) with respect523

to perturbations in ξ structured as S̃ in accordance with (9)524

and (11).525

Before proceeding to the behavior of s(ξ0, t) we note:526

1) In contrast to the two classical examples, there is no full-527

state feedback that modifies the dynamics of the system.528

The control is accomplished through the driving fields529

αn and detuning ∆n to modify the evolution of the state530

in an a priori manner.531

2) As opposed to the classical case studies, we do not532

assume a zero initial state. The probability that the two-533

qubit ensemble is in some state at t = 0 requires a534

non-zero ρ0 or equivalently r0 ̸= 0.535

Despite these differences, the mathematical form of e(t) is536

identical to the classical formulation and amenable to the same537

results derived in Section III.538

B. Log-Sensitivity of the Error539

In accordance with (9) and (11), we calculate the derivative540

of the error to perturbations in α and ∆ by541

∂e(t)

∂ξ
= lim

∆ξ→0

1

∆ξ
c(et(L+A+∆ξS̃) − et(A+L))r0

= DS̃(t, A+ L).

(54)542

The two dominant eigenvalues of A+L are λ1 = 0, followed543

by a purely real eigenvalue of λ2 = −0.0035. The s̄11 term is544

zero for all perturbations considered and does not contribute545

to the sum for s(ξ0, t). Thus, in accordance with Theorem 1,546

we anticipate that the behavior of s(ξ0, t) is dominated by λ2547

and the associated structure term s̄22, and we expect the slope548

of the divergence to be equal to |ξ0s̄22|.549

The result for a differential perturbation in the driving fields550

α1 or α2 is illustrated in Fig. 6. With a nominal value of551

α1 = ξ0 = 1 and s̄22 = 0.00344, the predicted slope of552

0.00344 is borne out by Fig 6. A perturbation to α2 with553

structure S2 yields the same result.554

The case for a perturbation to the detuning parameters is555

illustrated in Fig. 7. As predicted by Theorem 1, we observe556

a slope of |ξ0s̄22| = |(±0.1)(0.0351)| = 0.00351.557

Fig. 7. Divergence of |s(ξ0, t)| for perturbations to the detuning pa-
rameters ∆1,2 with slope given by |ξ0s̄22| = |(−0.1)(−0.0351)| =
0.00351.

VII. CLOSED QUANTUM SYSTEM EXAMPLE – PERFECT 558

STATE TRANSFER 559

A. System Description and Problem Formulation 560

Consider a system designed to facilitate perfect state transfer 561

in a chain of N particles characterized by spins [25], [26]. 562

Though the procedure is generally applicable to multiple 563

excitations, for simplicity we restrict our attention to the case 564

of transfer of a single excitation without dissipation. This is 565

the so-called single excitation subspace. 566

As in [25], we represent the state of the system as a column 567

vector ψ ∈ CN with a one in the n-th entry to denote a 568

single excitation is associated with the n-th spin. The design 569

goal is to transfer the single excitation from spin 1 (ψIN = 570[
1 0 0 · · · 0

]T
) to N (ψOUT =

[
0 0 · · · 1

]T
) at a 571

finite time T = π/λ. Here, λ is a parameter chosen to regulate 572

the speed of the transfer. By engineering the nearest-neighbor 573

couplings in accordance with Jn = λ/2
√
n(N − n) where 574

Jn is the coupling between spins n and n + 1, we create a 575

Hamiltonian with Jn in the (n, n+1) and (n+1, n) positions 576

for n = 1, 2, . . . , N − 1 and zero otherwise. 577

The dynamics governing the system are given by the au- 578

tonomous system 579

ψ̇(t) = −jHψ(t), ψ(0) = ψIN (55) 580

with solution ψ(t) = e−jHtψIN. Since the overlap ψT
OUTψ(t) 581

is complex, we transform this to the Bloch formulation to 582

retain congruence with the previous sections and ensure a real 583

fidelity and complementary error. 584

We use the generalized Gell-Mann basis [27] of traceless, 585

Hermitian N2×N2 matrices for σ1 through σN2−1 with σN2 586

as described in Section VI. Applying (52a) and (52c) to the 587

system of (55), we get 588

ṙ(t) = Ar(t), rIN = r(0), (56a) 589

r(t) = eAtrIN, (56b) 590

e(t) = cr(t). (56c) 591

rIN is the Bloch-transformed version of ρIN = |ψIN⟩ ⟨ψIN|, 592

rOUT is the transformed version of ρOUT = |ψOUT⟩ ⟨ψOUT|, c 593
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Fig. 8. Plot of |s(ξ0, t)| and |e(t)| on a linear scale for a two-chain
with perturbation on the J1 coupling.

produces the error from the current state in the same manner594

as Section VI, and A is the Bloch-transformed Hamiltonian.595

B. Log-Sensitivity of the Error596

With the purely coherent dynamics of (55), perturbations597

of the Hamiltonian map linearly to the Bloch formulation598

via (52a). For an N -chain we consider the N − 1 possible599

perturbations to coupling strengths. These are structured as600

Sn, an N ×N matrix with zeros everywhere save for ones in601

the (n+1, n) and (n, n+1) positions. This is then mapped to602

an N2 × N2 matrix in the Bloch formulation via (52a) with603

S interchanged with jH .604

In the Bloch formulation, the matrix A has N eigenvalues605

at zero and the remaining N2 − N eigenvalues in purely606

imaginary complex conjugate pairs. In accordance with The-607

orem 2, we expect the log-sensitivity to exhibit oscillations of608

increasing magnitude that achieve local maxima with a period609

given the fundamental frequency of the set {ωn}; more general610

chains would show aperiodicity [28].611

Given that A is a normal matrix, we decompose it as A =612

V ΛV † where V V † = I . Retaining the same notation as in613

Section III, we have zn = ⟨c, vn⟩ and wl = ⟨v†l , r0⟩ where vk614

is the n-th column of V and v†l is the conjugate transpose of615

the l-th column of V . We then compute s(ξ0, t) in accordance616

with (9) and (11).617

In Figs. 8 and 9 we show the behavior of a two-chain with618

λ = π/5 and perturbation on the coupling between the two619

spins with nominal value J1 = π/10. Fig. 10 depicts the same620

for a chain of three spins and perturbation on the 2–3 coupling621

with nominal value J2 =
√
2π/10. In both cases, s(ξ0, t)622

does not have a defined limit, demonstrates the periodic spikes623

at times of perfect state transfer, and grows with time in624

accordance with Theorem 2 and the accompanying corollary.625

Additionally, there is no contradiction with the assertion626

of earlier work [7], that under the conditions for perfect627

state transfer (superoptimality) the sensitivity of the error628

goes to zero. Though, [7] states this characteristic holds629

for rings, we can see that it also holds for the chains630

engineered for perfect state transfer considered here. For631

Fig. 9. Plot of |s(ξ0, t)| and |e(t)| on a log scale for a two-chain with
perturbation on the J1 coupling.

Fig. 10. Plot of |s(ξ0, t)| and |e(t)| on a log scale for a three-chain
with perturbation on the J2 coupling.

N = 2, calculation of the output matrix in accordance 632

with Section VI yields c =
[
0 0 1√

2
1√
2

]
with r(t) = 633[

0 1√
2
sin(π5 t)

1√
2
cos(π5 t)

1√
2

]T
. The resulting error is 634

e(t) = cr(t) = 1
2

(
1 + cos(π5 t)

)
, and the sensitivity is 635

∂e(t)/∂ξ = t sin(π/5t). Thus, ∂e(t)/∂ξ = 0 if t = tn = 636

5(2n+ 1). Regarding the log-sensitivity, we have 637

lim
t→tn

∂e(t)

∂ξ

ξ

e(t)

∣∣∣∣
ξ0

=
0

0
. (57) 638

Applying L’Hopital’s rule to this indeterminate form yields 639

lim
t→tn

π
10

(
sin(π5 t) +

π
5 t cos(

π
5 t
)

− π
10 sin(

π
5 t)

=
π(2n+ 1)

0
, (58) 640

which is consistent with the expected result for the log- 641

sensitivity. A similar argument holds for the case of N = 3 642

with perturbation on the 2–3 coupling. For this scenario, 643

∂e(t)

∂ξ
= −

√
2

4
t sin

(π
5
t
)
+

√
2

8
t sin

(
2π

5
t

)
, 644

e(t) =
5

8
+

1

2
cos
(π
5
t
)
− 1

8
cos

(
2π

5
t

)
. 645
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TABLE I
FIDELITY VS LOG-SENSITIVITY FOR TWO- AND THREE-CHAINS AT FIRST

FIDELITY MAXIMUM t = 5 UNDER COUPLING PERTURBATION.

N = 2, 1–2 Coupling N = 3, 2–3 Coupling
Fidelity |s(ξ0, t)| Fidelity |s(ξ0, t)|
1.0 66664.00 1.0 24998.00
0.9999 311.95 0.9999 220.72
0.99899 97.271 0.99899 69.195
0.98999 29.264 0.98996 21.079
0.90001 7.4949 0.90008 5.6196

Applying the same procedure as (57) and (58) to the equations646

above yields the same result: the sensitivity ∂e(t)
∂ξ → 0 as647

t → tn. However, the log-sensitivity goes to infinity at each648

tn determined by the fundamental frequency ω = π
5 of the649

pair {π
5 ,

2π
5 }.650

Furthermore, we note the trade-off between the error and651

the log-sensitivity – the periods of near-zero error (near perfect652

fidelity) correspond to those with the greatest log-sensitivity.653

Table I shows the trade-off between log-sensitivity and fidelity654

numerically.655

VIII. DISCUSSION AND CONCLUSIONS656

We have shown that the log-sensitivity of the error can be657

reliably computed from a time-domain perspective. More im-658

portantly, this robustness measure is applicable to a spectrum659

of classical and quantum systems and exhibits the same key660

characteristic: as performance increases (error gets smaller)661

the measure of performance is more sensitive to parameter662

variation.663

Within the context of previous work on the robustness of664

energy landscape shaping, we begin to see the pattern of665

results regarding error versus log-sensitivity unified under this666

time-domain specification. In [7], we demonstrate that when667

conditions for superoptimality prevail in a ring, the sensitivity668

to parameter variation vanishes. As shown here in Section VII669

we obtain the same for chains. More importantly, while the670

sensitivity vanishes, the log-sensitivity diverges at the instants671

of perfect state transfer, as predicted by the theory. In [29], the672

trend of lower fidelity controllers exhibiting lower sensitivity673

to decoherence was observed by calculating the derivative674

of the error through a finite difference approximation, in675

agreement with the analytical methods presented here. While676

the overall trend suggested discordance between lower error677

and lower sensitivity, the trend was far from uniform. In678

the present paper, the sharp roll-off of the log-sensitivity679

in the range of peak fidelity seen in Table I suggests a680

justification for this variability of log-sensitivity for extremely681

high-fidelity controllers. Taken together, this indicates that682

designing controllers with an acceptable error and guaranteed683

robustness margin is possible.684

Next, we note that the methodology of this paper is ap-685

plicable to both open and closed quantum systems. Previous686

work on the application of classical robust control techniques687

to quantum systems has focused on open quantum systems688

(i.e., those with dissipative behaviors that produce left-half689

plane poles), such as the µ-analysis of [19] or a classically-690

inspired stability margin [30]. While [15], [16], [17], [31]691

apply H∞ methods with great success to a specific class of 692

optical systems described as linear quantum stochastic dif- 693

ferential equations, dissipation is still a necessary component 694

to ensure application of the bounded real lemma. While [32] 695

concludes that a tradeoff between performance and robustness 696

is necessary in closed quantum systems, the approach is purely 697

stochastic, based on the expected value versus the variance of 698

the optimization functional. 699

In terms of future work, while we have shown a classical 700

trend between the error and log-sensitivity, we have not shown 701

any guaranteed robustness bounds along the lines of the 702

identity S(jω) + T (jω) = I . Secondly, the behavior of the 703

log-sensitivity at the transition from complex to repeated, real 704

eigenvalues still requires attention. Furthermore, to bolster 705

applicability to quantum networks, extension to non-linear 706

and non-autonomous systems with time-varying controls and 707

non-linear performance measures such as concurrence [33] to 708

measure entanglement is necessary. 709
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APPENDIX808

We use the Jordan decomposition to derive a general809

formula for the matrix derivative. Any square matrix A of810

dimension N over the field of complex numbers is similar811

to a Jordan normal form A = MJM−1, where J is the812

direct sum of ℓ Jordan blocks, each with dimension nm so813

that
∑ℓ

m=1 nm = N [34]. There are two cases. If all Jordan814

blocks have dimension 1 then A is said to be diagonalizable. If815

there are eigenvalues whose geometric multiplicity is smaller816

than their algebraic multiplicity then the Jordan decomposition817

has nontrivial Jordan blocks. Since the diagonalizable matrices818

form an open and dense subset in the space of matrices, this819

case is generic.820

A. Generic Case: Diagonalizable A821

When A0 is diagonalizable, A0 = MΛM−1, eA0t =822

MetΛM−1 where Λ is a diagonal matrix of eigenvalues λm.823

We then have [18]824

∂

∂ξ
eAt =M(S̄ ⊙ Φ(t))M−1, (59)825

where S̄ = M−1SM , ⊙ is the Hadamard product, and the 826

elements ϕmn(t) of Φ(t) are as defined in (14). Let {êm} ∈ 827

RN be the set of natural basis vectors for RN with a 1 in 828

the m-th position and zeros elsewhere. Define a basis for the 829

N × N space of linear operators on RN as Πmn = êmê
T
n . 830

Then ∂eAt

∂ξ =MX(t)M−1 with 831

X(t) =
∑
m,n

s̄mnϕmn(t)Πmn = 832

∑
m,n

λm=λn

s̄mnte
λmtΠmn +

∑
m,n

λm ̸=λn

s̄mn
eλmt − eλnt

λm − λn
Πmn (60) 833

where s̄mn is the element in the m,n position of S̄. 834

B. Non-Generic Case: Non-Trivial Jordan Decomposition 835

Consider the case of algebraic multiplicity ℓ in the dominant 836

eigenvalue λ1 with geometric multiplicity 1 and the remaining 837

N − ℓ eigenvalues distinct. Note that application of the 838

following is restricted to the case where a versal deformation 839

of the Jordan normal form J in terms of ξ does not admit a 840

bifurcation in the spectrum of A [35], [36], which would break 841

the degeneracy and default to the generic case of Section A. 842

Write the matrix exponential MeJtM−1 as 843

M

(
N∑

m=1

eλmtΠmm +

ℓ−1∑
p=1

ℓ∑
q=p+1

eλ1t
t(q−p)

(q − p)!
Πpq

)
M−1.

(61) 844

Let λm = λ1 for m = 1 to ℓ so that the first eigenvalue not 845

identical to λ1 is λℓ+1. In accordance with Eq. (8), we have 846

MeJ(t−τ)S̄eJτM−1
847

=M

(
N∑

m,n=1

eλmte(λn−λm)τΠmmS̄Πnn+ 848

N∑
m=1

ℓ−1∑
r=1

ℓ∑
n=r+1

eλmte(λ1−λm)τ τ (n−r)

(n− r)!
ΠmmS̄Πrn+ 849

N∑
m=1

ℓ−1∑
p=1

ℓ∑
q=p+1

eλ1te(λm−λ1)τ
(t− τ)(q−p)

(q − p)!
ΠpqS̄Πmm+ 850

ℓ−1∑
p=1
r=1

ℓ∑
q=p+1
n=r+1

eλ1t
(t− τ)(q−p)τ (n−r)

(q − p)! (n− r)!
ΠpqS̄Πrs

M−1
851

=M [X1(t) + X2(t) + X3(t) + X4(t)]M
−1. (62) 852

Calculation of M
[∫ t

0
eJ(t−τ)S̄eJτdτ

]
M−1 produces the fol- 853

lowing: 854

Firstly,
∫ t

0
X1(τ)dτ = X1(t) produces the same result 855

as a fully diagonalizable matrix with ℓ repeated eigenvalues 856

λ1 with solution given by the term in parentheses in (23). 857

Secondly, 858

∫ t

0

X2(τ)dτ =

ℓ∑
m=1

ℓ−1∑
r=1

ℓ∑
n=r+1

eλ1t
t(n−r+1)

(n− r + 1)!
s̄mrΠmn 859
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+

N∑
m=ℓ+1

ℓ−1∑
r=1

ℓ∑
n=r+1

(
n−r∑
i=0

(−1)ieλ1t(n− r)! t(n−r−i)

(n− r − i)! (λ1 − λm)(i+1)
860

+
(−1)(n−r+1)(n− r)! eλmt

(λ1 − λm)(n−r+1)

)
s̄mrΠmn = X2(t). (63)861

Likewise,862 ∫ t

0

X3(τ)dτ =

ℓ∑
m=1

ℓ−1∑
p=1

ℓ∑
q=p+1

eλ1t
t(q−p+1)

(q − p+ 1)!
s̄qmΠpm863

+

N∑
m=ℓ+1

ℓ−1∑
p=1

ℓ∑
q=p+1

(
q−p∑
i=0

(−1)ieλ1t(q − p)! t(q−p−i)

(q − p− i)! (λ1 − λm)(i+1)
864

+
(−1)(q−p+1)(q − p)! eλmt

(λ1 − λm)(q−p+1)

)
s̄qmΠpm = X3(t). (64)865

Integrating on X4(t) provides866 ∫ t

0

X4(τ)dτ867

=

ℓ−1∑
p=1
r=1

ℓ∑
q=p+1
n=r+1

eλ1tt(q−p+n−r+1)

(q − p+ n− r + 1)!
ΠpqS̄Πrn = X4(t). (65)868

We thus have ∂eAt

∂ξ =MXM−1 with869

X(t) =

4∑
m=1

Xm(t). (66)870
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