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Abstract

Brain cell structure and function reflect neurodevelopment, plasticity, and aging;
and changes can help flag pathological processes such as neurodegeneration and
neuroinflammation. Accurate and quantitative methods to noninvasively disen-
tangle cellular structural features are needed and are a substantial focus of brain
research. Diffusion-weighted MRS (dMRS) gives access to diffusion properties
of endogenous intracellular brain metabolites that are preferentially located
inside specific brain cell populations. Despite its great potential, dMRS remains
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a challenging technique on all levels: from the data acquisition to the anal-
ysis, quantification, modeling, and interpretation of results. These challenges
were the motivation behind the organization of the Lorentz Center workshop
on “Best Practices & Tools for Diffusion MR Spectroscopy” held in Leiden, the
Netherlands, in September 2021. During the workshop, the dMRS community
established a set of recommendations to execute robust dMRS studies. This
paper provides a description of the steps needed for acquiring, processing, fitting,
and modeling dMRS data, and provides links to useful resources.

K E Y W O R D S

acquisition, dMRS, fitting, modelling, processing

1 INTRODUCTION

The discovery that MRI can probe the diffusion pro-
cess, and that the water in biological tissue was a
ready-made, endogenous probe of tissue microstruc-
ture, ushered in an exciting era of innovation and
development in diffusion-weighted MRI (dMRI). dMRI
has numerous applications in neuroscience and clini-
cal research. It also has several applications in clini-
cal routine, including detecting stroke1 and diagnosing
prostate cancer.2 With standard clinical MRI scanners,
dMRI achieves spatial resolution on the order of mil-
limeters, thanks to the abundance of water in tissue,
although by mapping diffusion measures dMRI can reveal
tissue structure on a microscopic length scale (microstruc-
ture). However, a challenge is the ubiquity of water in
issue and the heterogeneous nature of tissue microstruc-
ture, which leads to ambiguity in the interpretation of
dMRI measurements. Almost concurrently with dMRI,
diffusion-weighted MRS (dMRS) was developed to exploit
the compartmental specificity of MR-detectable molecules
other than water for diffusion-based microstructural
investigations.

Early metabolite-focused investigations used phospho-
metabolites by implementing phosphorus dMRS in the
brain and muscle.3,4 Subsequently, proton (1H)-dMRS
measurements were made using endogenous molecules
with discernible 1H resonances, which are thus detectable
and quantifiable with 1H-MRS techniques. In the brain,
for example, there are more than 10 detectable metabo-
lites in the mM concentration range (Figure 1A). Most
of them are predominantly intracellular and therefore
provide a probe of intracellular cytomorphology. Some
metabolites have nonuniform distributions across cell
types. For example, the makeup of metabolites is different
for neurons and astrocytes. Therefore, the relative concen-
trations of metabolites can be used to distinguish different
cell types. Although the exact distributions of metabolites

across cell types in unknown, it is generally accepted that
myo-inositol (Ins) and choline compounds (tCho = glyc-
erophosphocholine, GPC + phopsphorylcholine, PCho)
are preferentially found inside astrocytes and glutamate
(Glu) and NAA in neurons5–7 (Figure 1). Initially, mea-
surements were done in vitro,8 and later in vivo in animal
models9,10 and in humans.11 These early dMRS studies
delivered microstructural information on healthy and dis-
eased tissue, otherwise unattainable with dMRI.12 Subse-
quent and significant advances in MR hardware, acquisi-
tion techniques, modeling strategies, and computational
abilities have allowed dMRS studies to provide unique
insights on cellular morphology and physiology in health
and disease. The history is eloquently summarized in sev-
eral published reviews.13–17 In parallel, a better under-
standing of the factors that affect measurement accu-
racy in in vivo dMRS experiments led to more robust
and reproducible measurements of diffusion metrics. This
enabled meaningful dMRS studies in clinical popula-
tions and in animal models (see Figure 2). The result is
a steady increase in the number and variety of dMRS
studies across the MR community, also covering applica-
tions in tissues beyond the central nervous system (CNS)
(c.f. box 1).

BOX 1 dMRS outside the brain

Although most dMRS applications are focused on
the CNS, methods have also been developed in the
body for various applications18:

• To measure water diffusion properties, which
are not confounded by fat.19,20

• To measure fat properties within adipose tis-
sue.21 Best acquisitions schemes are described
in Refs.22–24. Specific vibration-compensation
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schemes that might be required are described in
Ref. 25.

• To measure diffusion of lipid molecules such
as intra- and extramyocellular lipids and less
abundant metabolites within skeletal mus-
cle.26,27 The optimal acquisition parameters for
dMRS in body applications will depend on the
size of the target molecule. In addition, the
proper quantification of the diffusion properties
of large molecules is challenging due to the con-
founding effect of physiological motion on the
diffusion measurement.

• To separate overlapping peaks such as lactate
and lipids.28–30

Despite the great promise of a specific, noninvasive tool
for measuring in vivo cytomorphology, the use of dMRS

in preclinical and clinical investigations remains limited.
Most dMRS studies are performed by a small number
of sites that are involved in developing dMRS method-
ology, or by groups in direct collaboration with experts
from these sites. These interesting studies are typically
small, proof-of-concept studies that show the potential of
dMRS. However, the sparse adoption of dMRS indicates
that methods are not yet simple and robust enough to
garner traction from independent and nonexpert users.

There are several challenges for a widespread adop-
tion of dMRS. Foremost is the absence of robust,
vendor-provided dMRS pulse sequences on commercial
(human and animal) scanners; and second is a simi-
lar absence of readily available pipelines for processing
and analyzing dMRS data. In addition, three other chal-
lenges may deter researchers from engaging in dMRS
studies: First, is the perception among researchers and
clinicians that dMRS studies are complex and diffi-
cult to perform. Second, dMRS results are inconsistent
across sites, originating from sensitivity to differences

F I G U R E 1 (A) MRS is the only neuroimaging tool providing in vivo noninvasive information on concentration of intracellular
neuronal and glial metabolites. Whereas total NAA (tNAA=NAA+NAAG) and Glu are found primarily in neurons, choline compounds
(tCho=PCho+GPC) and myo-inositol (Ins) are mainly located in glial cells. Other metabolites, such as total creatine (tCr=Cr+PCr) are
found in all cells. (Figure adapted from Palombo et al.14). (B) dMRI probes neural tissue microstructure via sensitization to the diffusion of
water in tissue. Analysis of dMRI data provides microstructural information at high spatial resolution but with no compartmental specificity
because water is distributed across cells and tissue compartments. (C) dMRS is based on sensitization of MRS to diffusion in a similar manner
to dMRI. The diffusion properties of neuronal (e.g., NAA) and glial (e.g., tCho) metabolites reflect the specific microstructural environment of
their host cell type. dMRI, diffusion-weighted imaging; dMRS, diffusion-weighted MRS; tCho, choline compounds; PCho, phosphorylcholine;
GPC, glycerophosphocholine; Glu, glutamate; NAAG, N-acetylaspartate glutamate; tCr, total creatine; Cr, creatine , PCr, phosphocreatine.
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F I G U R E 2 Number of dMRS publications per year. The dark blue tip corresponds to publications where dMRS is used to explore a
brain disease (human) or a model of brain disease (animal). These publications were identified with a PubMed search initially yielding 196
results, curated to 114 results. Search criteria were: “diffusion weighted magnetic resonance spectroscopy” OR “dw-mrs” OR
“diffusion-weighted mrs” OR “diffusion mrs” OR “diffusion weighted MR spectroscopy” OR “metabolites diffusion” OR “diffusion weighted
NMR spectroscopy” OR “diffusion MR spectroscopy” OR “diffusion NMR spectroscopy” OR “diffusion magnetic resonance spectroscopy”
OR “diffusion tensor spectroscopy”. All chemistry papers (typically identifying protein structures) were manually removed. Yoshizaki et al.,
Biophys J, 1982; Van Zijl et al., PNAS, 1991; Merboldt et al., MRM, 1993; Van Gelderen et al., J. Mag. Res., 1994; Wick et al., Stroke, 1995;
Pfeuffer et al., NMR Biomed, 1998; Pfeuffer et al., JCBFM, 2000; Shemesh et al., Nature Comm, 2014; Branzoli et al., NMR Biomed, 2014;
Lundell et al., NeuroImage, 2021 were manually added. These papers are referenced on the MRShub dMRS forum (https://forum.mrshub.
org/t/educationals-getting-started/946/3).

in acquisition, processing, and analysis methods. This
gives the impression that dMRS is not reliable enough,
for example, to provide biomarkers of disease. Finally,
the long acquisition time of dMRS experiments suggests
that dMRS is incompatible with investigations in clinical
populations.

These challenges were the motivation behind the
organization of the Lorentz Center workshop on “Best
Practices & Tools for Diffusion MR Spectroscopy”
(https://www.lorentzcenter.nl/best-practices-en-tools-
for-diffusion-mr-spectroscopy.html) held in Leiden, the
Netherlands, in September 2021. The community of dMRS
developers, together with that of MRS quantification
experts, has established a set of common goals to make all
components of the dMRS pipeline, from acquisition via

processing and analysis to modeling, readily available and
openly accessible.

This paper provides step-by-step recommendations
that were identified during the workshop for planning
and executing a robust dMRS study. Throughout this
paper, we will assume that the reader has knowledge
of basic MRS concepts and is interested in incorporat-
ing dMRS in their research protocols. The focus is on
the brain, but most recommendations from sections 2–4
hold for non-CNS applications (c.f. box 1). In the first
section, we provide an overview of dMRS pulse sequences
used for data acquisition, and we clarify under which
conditions each should be used. We provide guidelines
for choosing diffusion-weighting schemes and optimal
diffusion-weighting parameters, depending on the desired

https://forum.mrshub.org/t/educationals-getting-started/946/3
https://forum.mrshub.org/t/educationals-getting-started/946/3
https://www.lorentzcenter.nl/best-practices-en-tools-for-diffusion-mr-spectroscopy.html
https://www.lorentzcenter.nl/best-practices-en-tools-for-diffusion-mr-spectroscopy.html
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outcome of the experiment. In the second section, we lay
out the processing steps that are required to maximize
data quality by minimizing controllable inaccuracy and
uncertainty affecting dMRS metrics. The third section is
dedicated to practices related to spectral fitting of dMRS
data for optimal retrieval of dMRS metrics such as metabo-
lite ADC. The fourth and final section discusses key
aspects of the dMRS signal in relation to brain microstruc-
ture and proposes the randomly oriented infinite cylinders
model as an acceptable minimal biophysical model, within
a given applicability framework. Finally, some examples of
future directions for dMRS are listed.

2 DMRS ACQUISITIONS

In this section, we will cover the acquisition of dMRS
data, spanning from the choice of the sequence to the
experimental setup itself.

2.1 Choosing the right pulse sequence

The choice of the dMRS sequence is governed by the
research question (e.g., what parameters are of inter-
est) and the locally available sequences and hardware
(e.g., what are the limitations). dMRS beginners can find
contacts for available sequences on the dMRS section
on MRShub (https://forum.mrshub.org/t/sequences-and-
acquisitions-strategies-for-dw-mrs/934).

2.1.1 STE versus SE

There are two broad categories of DW-sequences:
those based on a stimulated echo (STE), in which the
diffusion-weighting gradient moment builds up during
the mixing time (TM) (being essentially the diffusion
time [td]); and those based on a spin echo (SE), in which

diffusion-weighting gradient moment builds up entirely
within the TE.

The advantage of STE-based sequences is that very
large b-values can be achieved while maintaining short TE.
In addition, STE-based sequences enable long td (particu-
larly important when probing slowly diffusing metabolites
and large diffusion restriction barriers). However, half of
the signal is lost when using STE. The advantage of SE is
essentially that it retains full signal. However, in practice,
reaching long td or very large b-values requires long TE,
which will in turn result in significant signal loss due to T2
relaxation (and due to J-modulation for metabolites such
as Glu or Ins).

Recommendations about the choice of sequence are
summarized in Table 1. Sequence parameters (TE, TR)
need to be carefully chosen depending on field-specific
relaxation parameters.31 Animal and human scanners
have different hardware capabilities; hence, different pulse
sequences are presented here.

2.1.2 Pulse sequences for human scanners

STE-based diffusion measurements on human scanners
are preferably performed using STEAM11,32 (Figure 3A).
Because long TM enables high b-values while keeping
diffusion-weighting gradient strengths relatively low, for
example, not larger than spoiler or slice-selection gradi-
ents, cross terms might be significant and must be taken
into account (see box 2).

BOX 2 Cross terms

Diffusion gradients are the main contributor, but
other gradients in the sequence also contribute to
the diffusion weighting. As described in Ref. 36,
the calculation of the b-value follows:

T A B L E 1 Overview of recommended sequences for human and animal scanners, depending on the research question

Interested in Stimulated echo or spin echo? Human scanner Animal scanner

Mostly singlets (tNAA, tCho, tCr) Spin echo BPFG-sLASER SE-LASER

J-coupled metabolites (Glu, Ins, Tau) Stimulated echo PFG-STEAM STE-LASER

Very high b-values Stimulated echo PFG-STEAM STE-LASER

Long diffusion times Stimulated echo PFG-STEAM STE-LASER

Advanced encoding: OG, DDE Spin echo OG/DDE-sLASER OG/DDE-LASER

Abbreviations: (B)PFG, (bipolar) pulsed field gradients; DDE, double diffusion encoding; Glu, glutamate; Ins, myo-inositol; LASER, localization by adiabatic
selective refocusing; OG, oscillating gradients; SE, spin echo; STE, stimulated echo; Tau, taurine; tNAA, N-acetylaspartate+N-acetylaspartylglutamate; tCr,
Cr+ phosphocreatine; tCho, phosphocholine+ glycerophosphocholine.

https://forum.mrshub.org/t/sequences-and-acquisitions-strategies-for-dw-mrs/934
https://forum.mrshub.org/t/sequences-and-acquisitions-strategies-for-dw-mrs/934
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when Gdiff (diffusion gradients) and Gothers (other
gradients, typically localisation gradients and/or
spoilers) are intertwined, like in the STEAM-based
and sLASER-based dMRS sequences, a cross term
∫ Gdiff ∫ Gothers appears. To estimate the true
b-value, this term must be calculated and taken
into account because it grows with the diffusion
gradient strength (unlike ∫ Gothers ∫ Gothers, which
is a constant contribution at all b-values).

The calculation of the true b-value can be
incorporated directly into the sequence code or
calculated a posteriori based on the sequence
chronogram. Examples of codes are openly avail-
able on MRS hub (https://forum.mrshub.org/t/
processing-for-dw-mrs/935) to numerically com-
pute the b-value based on the chronogram. It is
possible to check in a phantom whether cross
terms should be accounted for. Note that standard
MRS sequences are slightly diffusion-weighted.
The residual b-value with no diffusion gradient
depends on the hardware system and can reach up
to∼0.5 ms/μm2 for a LASER on an animal scanner
with strong gradients.

Another popular approach to compensate for
cross terms consists of acquiring data with dif-
fusion gradients of opposite polarities.37,38 The
geometric mean of these signals is free from
cross terms, although strictly speaking this is only
valid in the limit of monoexponential attenua-
tion and under the assumption of homogenous
diffusion within the voxel. Another advantage of
this method is that it also compensates for any
static background gradients that cannot be fore-
seen. Alternatively, the diffusion-encoding gradi-
ent waveforms can be designed to minimize the
error due to cross terms.39

In general, the contribution of cross terms
should be kept minimal because they can lead
to a poorly defined diffusion time and affect the
modeling of microstructural features. Note that,
besides cross terms, care should be taken to avoid
that diffusion gradients cancel out spoiling/coher-
ence pathway selection gradients (which can, for
example, be achieved by using different gradient
directions).

For SE-based volume selection, the semi-LASER
(sLASER) sequence40 (for which LASER stands for
“Localization by Adiabatic SElective Refocusing”41) is now
generally preferred over PRESS because it is robust to
B1

+ inhomogeneities and offers large RF pulse band-
width to minimize chemical shift displacement error.
Diffusion-weighting gradients can be inserted in a “dou-
ble bipolar” fashion,13 as shown in Figure 3C, thus
maximizing diffusion weighting and compensating for
eddy currents (EC).

2.1.3 Sequences for small animal scanners

dMRS sequences tailored for humans can also be used
in small animal scanners. However, one can take advan-
tage of rodent scanners’ specificities to alleviate some
limitations of human scanner sequences. In particular,
stronger gradients and less conservative specific absorp-
tion rate limits enable the use of shorter TE and additional
RF pulses. This allows a block-based sequence design
in which diffusion weighting and localization are inde-
pendent, resulting in the absence of cross terms (box 2)
between diffusion and localization gradients. In practice,
the localization is achieved using a full LASER module,
whereas the diffusion block is built around nonselec-
tive STE35 or SE42,43 (Figure 3D). Localization with the a
semi-adiabatic DW-SPECIAL sequence (for which SPE-
CIAL stands for “SPin ECho, full Intensity Acquired
Localised”) is also possible.44,45

2.1.4 About water

Water suppression schemes are the same as for con-
ventional MRS acquisition. However, when metabolite
signals are too weak in individual transients for esti-
mating scan-to-scan frequency, phase, and amplitude
alterations (see section 3), preserving the water signal
with a metabolite cycling approach is recommended to
observe both water and metabolites.46 This is already
available for diffusion-weighted-STEAM (DW-STEAM)
and DW-sLASER.47–49 Another option is to de-optimize
water suppression so that some clean residual signal is still
visible. Because water signal arising from CSF may con-
tribute substantially at low b-values (<∼1 ms/μm2) and
may not represent metabolite signal distortions properly, it
can be suppressed with a water-selective fluid-attenuated
inversion recovery module at the start of the sequence48,50

while preserving water signal from parenchymal
tissues.

https://forum.mrshub.org/t/processing-for-dw-mrs/935
https://forum.mrshub.org/t/processing-for-dw-mrs/935
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F I G U R E 3 Chronograms of typical dMRS pulse sequences. (A) STE-based STEAM, using a pulsed field gradient scheme11; (B) SE-based
PRESS, using a bipolar pulsed field gradient scheme33; (C) SE-based sLASER, using a double bipolar pulsed field gradient scheme34; (D)
STE-based block-design STE-LASER, using a pulsed field gradient scheme.35 The STE block (in pink) can be replaced by a SE block. While the
first three sequences can be used in humans, the last one is difficult to achieve in humans due to SAR and TE. Figure adapted from Palombo
et al.14 SAR, specific absorption rate; SE, spin echo; sLASER, semi-localization by adiabatic selective refocusing; STE, stimulated echo.

2.2 Experimental setup and challenges

2.2.1 Optimizing data quality

Methods for acquisition of optimal MRS data have
been described in recent consensus papers,51,52 and
strategies to improve the quality of spectra with
motion compensation have been published.53 Nev-
ertheless, in the context of dMRS, some parameters
that can influence the diffusion measurements,
and that must be managed very carefully, are
summarized in Table 2 and detailed below when
necessary.

2.2.2 Pilot study on phantom

It is strongly recommended to test a newly implemented
dMRS sequence on a phantom before acquiring data in
vivo. For a standard set of low b-values, it is possible to use
a simple agarose phantom (water alone in a phantom is
more prone to mesoscopic flows and not ideal, particularly
for longer td). However, metabolites’ diffusion is about 4–5
times slower than that of water, and a water-based phan-
tom cannot be used to assess the quality of a sequence at
high b-values (>3–4 ms/μm2). Ethylene glycol is a cheap
liquid that has a diffusion coefficient at room temperature
of about 0.1 μm2/ms and a simple NMR spectrum. Its use
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T A B L E 2 Checklist for a successful dMRS acquisition.

Experimental devices/tools

Temperature In animals (*): monitor and maintain stable body temperature

Motion • Store individual transients for correction during processing

• In humans: use cardiac-triggering (+ respiratory-triggering for applications outside the CNS)

• In animals: use appropriate animal holder
Vibration (gradient-induced) Suggestions for STE-acquisition: possible to add an additional set of gradients preceding the

excitation, and matching the diffusion encoding gradients and diffusion time

Sequence parameters and acquisition management

Minimal b-value Ensure minimal gradient strength required for efficient spoiling of spurious echoes

b range • ADC measurement: max b-value ∼3–5 ms/μm2

• Kurtosis: max b-value ∼8–10 ms/μm2

• Fully dispersed neurites model: max b-value ∼20 ms/μm2 (td value is also important, cf.
section 5)

• Bi-exponential analysis: max b-value ∼25 ms/μm2

Number of directions • For rotation invariant powder averaging (cf. section 5)

◦ Three directions minimum in a gray matter voxel with low FA
◦ 12 directions in a white matter voxel with high FA

• For DTS

◦ Six directions minimum
◦ Three directions to compute the trace only

Transients (*) Store individual transients for phase and frequency correction in processing

Voxel size (*) Large enough to detect one singlet signal (typically tNAA) at bmax in single shot (for processing),
unless water signal can be used in a metabolite-cycling experiment

Interleaved acquisitions (*) Mitigates biases due to frequency, shimming, sensitivity drifts, and metabolic variations

Phase cycling Ensure proper phase cycling across b-values and diffusion encoding directions, in particular if
single acquisitions are discarded based on data quality

Additional acquisitions required for processing

Macromolecules (*) Acquire MM using inversion recovery+high b-value to eliminate residual metabolite signal

Eddy current correction (*) Acquire water signal with identical gradient scheme as metabolite scans or when not possible
data with opposite gradient polarity

Note: (*) contain more details in the main text. This table only describes what is specific to dMRS in comparison with MRS. The prior is a successful MRS
acquisition.
Abbreviations: CNS, central nervous system; dMRS, diffusion-weighted MRS; DTS, diffusion tensor spectroscopy; FA, fractional anisotropy; MM,
macromolecules; STE, stimulated echo; tNAA, N-acetylaspartate+N-acetylaspartylglutamate.

is recommended at high b-values.35 On human scanners, it
is also possible to use the standard “Braino” phantom54 for
b< 1.6 ms/μm2, or a National Institute for Standards and
Technology phantom55 to access a wider range of diffusiv-
ities. A few basic measurements to evaluate in such freely
diffusing liquids are:

• A monoexponential decay of the signal as a function
of the b-value (when changing gradient strength),
corroborating the expected diffusion coefficient (at

room temperature, agarose phantom, or water-based
phantom: ∼2 μm2/ms, ethylene glycol phantom:
∼0.1 μm2/ms),

• A constant diffusion coefficient when the td is changed,
• Isotropy of the above measurements.

If these observations are not matched, the sequence
needs to be revised (often pointing toward a miscalculation
of the b-value and cross terms, see box 2).
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2.2.3 Experimental devices/tools

Animal setup (c.f. table 2)
A stable anesthesia level should be maintained to avoid
potential bias.56 Animal holders and fixation are excellent
tools to minimize motion during the acquisition (Table 2).

2.2.4 Sequence parameters and acquisition
management

Handling signal accumulation via repeated transients
(c.f. table 2)
Care should be taken to perform phase cycling instead of
having the same phase on all transients (which might be
the case by default for some systems when storing individ-
ual transients, e.g., when using “number of repetitions” in
Bruker’s ParaVision, Billerica, MA, USA) (Table 2).

There is no consensus as to whether the number of
transients per b-value should be increased with b-value.
There are, however, arguments for doing so, when prac-
tically feasible. First, some fitting softwares, such as
LCModel57 (see section 3), will provide more consistent
signal quantification if averaged spectra across b-values
have a comparable SNR, but more robust fitting tools such
as FiTAID with 2D prior knowledge may not require the
same consistency. Second, more transients might be cor-
rupted by motion artifacts at high b-values, which will
then be discarded during processing. So one may want
to acquire more transients to start with. On the other
hand, acquiring enough transients at high b-values to
match low b-value SNR might be too time-consuming,
especially in human applications. Optimized acquisition
schemes can be further tested with simulations depending
on the application, the fitted model, the available time for
the acquisition, etc. Some authors have already proposed
optimized b-value schemes for an accurate estimation of
NAA diffusion coefficient in the corpus callosum, using
coefficient of variation as a criterion, although without
considering a varying number of transients per b-value.58

VOI size (c.f. table 2)
Volume of interest (VOIs) should be carefully adjusted to
yield just the minimally acceptable SNR in the region of
interest, typically to allow for the main metabolite peaks
to be visible on individual transients at the highest b-value
to allow for efficient frequency and phase correction (see
section 3). However, too large a voxel may result in
artifactual signal attenuation due to bulk rotation. Indeed,
for a given rotation angle, the absolute displacement at the
extremity of the voxel is larger for a larger voxel, hence
resulting in larger phase variation. More quantitatively, it
can be shown that, for short diffusion gradients and small

rotation 𝜃 of the sample during the diffusion time, signal
loss scales like the sine cardinal (sinc) of L*𝜃, where L is the
voxel size along the direction perpendicular to diffusion
gradient (Table 2).

Cardiac triggering
Whereas small translational motion can be corrected for
by adjusting individual frequency/phase shifts during pro-
cessing (see section 3) or by using prospective motion
correction methods,53 the effect of physiological motion
(cardiac/CSF pulsation) might result in amplitude drops,
particularly in humans at high b-values59,34 and for VOIs
located close to the ventricles. The use of cardiac triggering
with an optimal trigger delay in combination with retro-
spective processing correction (see subsection 3.2.) allows
to minimize bias. Fluid-attenuated inversion recovery to
null water signal from CSF when using metabolite cycling
is not feasible in combination with triggering. Similarly,
cardiac triggering places limits on the length of the water
suppression module and may also cause TR to be differ-
ent from transient to transient and increase acquisition
time. In body applications, both cardiac and respiratory
triggering might be necessary.

Water suppression
Diffusion weighting is rather helpful regarding water
suppression. Because water diffuses faster than metabo-
lites, diffusion gradients strongly attenuate the water sig-
nal. However, when the TM is very long (typically to
study td > 500 ms), the water suppression might degrade.
Although the water signal should be completely crushed
before excitation, if a small amount of water was not
crushed properly, this residual signal will relax during the
TM. The crushers scheme must be carefully optimized, but
it is sometimes challenging. In practice, adding a water
suppression pulse during the TM can help crush the resid-
ual signal when using a long TM.60

2.2.5 Additional acquisitions required for
processing

Macromolecules
For a TE shorter than ∼80–100 ms, contributions of
macromolecules (MM) cannot be neglected,61 especially
at high b-values in which contributions of MM become
more prominent relative to metabolites due to slow MM
diffusion (Figure 4 in 17). It is recommended to acquire
an experimental MM spectrum for subsequent unbi-
ased quantification of metabolites (see section 4). This is
achieved using metabolite-nulling by inversion-recovery
(or double inversion recovery).62 Suppression of residual
metabolite signal can be further improved by performing
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F I G U R E 4 Examples illustrating the importance of phase and frequency correction at (A) b= 0.6 ms/μm2 and (B) at b= 4 ms/μm2.

the acquisition at high b-values (typically 10 ms/μm2)63 or
as described in Ref. 61 but always using the specific dMRS
sequence for acquisitions. MM signals can also be used as
an endogenous sensor for motion64 (see section 3).

Eddy current correction
Eddy current correction (ECC) may be required, in par-
ticular on human scanners when high gradient strength
is used. ECC relies on measuring the temporal phase
of the water signal.65 Hence, unless metabolite cycling
is used, non-water–suppressed spectra must be acquired
as reference for all diffusion conditions requiring ECC.
In that case, it is important that the water signal
dominates these reference scans. Note that this is not
always possible at high b-values due to faster water dif-
fusion, unless the water-suppressed spectrum is sub-
tracted from the non-water–suppressed spectrum.66 An
increased number of transients also ensures a high-water
SNR: A noisy reference scan used for ECC will intro-
duce artifacts during processing. In applications in which
water peak-based ECC is not possible, suppression of EC
effects may be feasible using a bipolar diffusion-encoding
scheme under the assumption of a linear system response
in which EC effects cancel out for opposite readout
polarities.28,67

3 PROCESSING STEPS SPECIFIC
TO DMRS DATA

dMRS and general MRS data processing share most steps.
Because an excellent consensus paper already exists on
MRS processing,68 the objective of this section is to
emphasize where additional care is required for dMRS. A
robust and accurate processing is particularly important
for dMRS. Indeed, the estimation of diffusion measures
like ADC relies on the measurement of the attenuation
of the signal across multiple acquisitions (each with dif-
ferent diffusion-weighting conditions) and is thus prone
to error propagation. For example, a 5% underestimation
of the signal of a given metabolite at b= b0 + 3 ms/μm2

will lead to a 15% overestimation of its ADC in a typical
measurement setup (ADC∼ 0.12 μm2/ms; 30% expected
signal attenuation between b0 and b0 + 3 ms/μm2). At
lower b-values (e.g., b0 + 1 ms/μm2), the same error on
metabolite quantification can lead to a 42% overestimation
of the ADC. Although precision is better at higher b-values,
the accuracy of ADC estimation is corrupted by kurtosis
from b= 3–5 ms/μm2 (see subsection 5.2). Moreover,
diffusion gradients make diffusion-weighted spectra even
more sensitive to the subject’s motion and scanner insta-
bilities. Processing can help mitigate the effect of small
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bulk or physiological motion artifacts, which results in fre-
quency/phase drifts (translational motion) and amplitude
fluctuation (rotation, compressive motion).16 An overview
of the current toolboxes available for processing (and fit-
ting; see section 4) dMRS data is provided in Table 3.

The dMRS community tends to use custom-made Mat-
Lab (MathWorks, Natick MA) routines, passed on and
incrementally modified by users. From a survey carried
out during the 2021 Lorentz Center workshop (Leiden, the
Netherlands), most pipelines contained the recommended
processing steps detailed in this section. Although some
of these pipelines are shared along with publications on
a git platform, they are not necessarily easy to find for
newcomers. In Table 3, we provide a summary of the
available toolboxes/packages that can be used for dMRS
data processing. Because the functions to be used might
vary with package updates, more details about how to use
these packages for dMRS processing can be found in the
dMRS section on MRShub (https://forum.mrshub.org/t/
processing-for-dw-mrs/935).

3.1 dMRS specificities for processing
steps shared with conventional MRS

For the following steps, the reader can refer directly to
Ref. 68:

• RF coil combination (3.2.1 in Ref. 68)

◦ The amplitude, phase, and noise terms necessary for
coil combination can generally be determined from
the b0 unsuppressed water data for dMRS.

• Phase and frequency drifts correction (3.1.3 in Ref. 68)

◦ The effect of phase and frequency correction is par-
ticularly important at high diffusion weighting when
the phase shift between scans is larger (Figure 4).

• Outlier removal (3.1.2, Table 2, and Figure 4 in Ref. 68).

◦ The outlier removal must be carried out at a given set
of b-value and direction. If more than 30% of the tran-
sients are affected, it is advised to discard the dataset.
See subsection 3.2.

◦ After the individual transients are averaged and
sorted, it is still possible that the resulting spectrum
is corrupted by motion. See subsection 3.3 for further
motion detection.

• ECC (see section 2)

◦ When water data at high b-value are too noisy for
ECC, an alternative (during processing) is to decou-
ple the water signal from the noise with a singular
value decomposition (SVD) and use the synthetic
FID for the ECC.

3.2 Specific considerations for a
metabolite-cycling approach

With a metabolite-cycling approach (see section 2), the
nonsuppressed water signal can be beneficial for compen-
sating motion-related signal loss.48

Because this technique does not use water suppression,
it is susceptible to sideband artifacts80 that can affect spec-
tral quality if any hardware component is malfunction-
ing and fluctuating, for example, with the power source.
Therefore, spectra should be carefully inspected for arti-
ficial resonance peaks, which appear at the base modu-
lation frequency or its higher harmonics (e.g., multiples
of 50 Hz). However, due to its 10,000-fold higher SNR,
water is a particularly useful internal reference not only
to improve coil-channel averaging, phase, and eddy cur-
rent correction but also to compensate for signal loss
due to motion.48 This motion compensation is based on
the assumption that a certain quantile of transients at
a given b-value remains unaffected by motion (e.g., 25%
quantile of transients) and thus can serve as an internal
reference for rescaling motion-induced decay/dephasing.
When using cardiac triggering (see section 2), the effective
TR may vary across transients and thus induce T1-related
amplitude fluctuations between b-values if not taken into
account. It is then suggested to apply a correction factor
(1-exp(-TReff/T1)) prior to defining the reference level.81

Note that motion compensation may fail when all tran-
sients are compromised by motion (e.g., if only a small
number of transients is acquired, if all transients are sim-
ilarly distorted due to table vibrations, or if at extremely
high b-values the water has decayed to the level of metabo-
lite amplitudes).

3.3 Specific considerations for short TE
dMRS: macromolecules

Acquisition of a MM spectrum is briefly described in
section 2, and more detailed information can be found
in Ref. 61. Some MM spectra are openly available
(https://mrshub.org/datasets_mm/). For dMRS, some spe-
cific details about MM should be considered: At very high
b-values, MM account for half of the signal (Figure 4 in
Ref. 17). In vivo MM should be acquired with the same
sequence as the dMRS signals using a single or double
inversion recovery module. The MM signal that is used for
fitting needs a very low noise level, and experts in the field
use two different methods: acquiring a very high number
of MM spectra until the noise level is barely detectable;
or fitting the average MM spectrum82 and including the
resulting fit (noise-free by default, but requires confidence
in the fit) in the basis set.

https://forum.mrshub.org/t/processing-for-dw-mrs/935
https://forum.mrshub.org/t/processing-for-dw-mrs/935
https://mrshub.org/datasets_mm/
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MM can also be used as an internal probe for residual
motion effects for averaged spectra (per DW condition).
MM have a very low ADC (∼0.005–0.01 μm2/ms); hence,
their signal is virtually unaffected by diffusion weight-
ing. To evaluate residual motion effects, one can visually
inspect stack plots of spectra (before fitting) for gross signal
drop or assess changes in MM signal by integrating its peak
at 0.9 ppm. This can be done prior to fitting by inspecting
visually stack plots of spectra for gross signal drop or by
integrating the MM peak at 0.9 ppm.64 If the MM fit is reli-
able, it can also be done after spectral fitting by measuring
the MM ADC. The MM decay is monoexponential up to
very high b-values.35

4 SPECTRAL FITTING FOR
ESTIMATING METABOLITE
DIFFUSION PARAMETERS

Quantitative information is extracted from an acquired
MR spectrum by fitting a physics-informed model
to it. The expert consensus recommends the use of
linear-combination modeling, usually based on nonlinear
least-squares optimization, for most in vivo MRSapplica-
tions,68 and is also recommended for dMRS. The objective
of this section is to discuss and emphasize aspects of spec-
tral fitting of particular importance to dMRS, and suitable
methods to incorporate diffusion modeling into the spec-
tral fitting process. Along with a careful processing (c.f.
section 3), a well-designed fitting pipeline can mitigate
critical issues routinely encountered with dMRS such as
motion dephasing, lineshape distortions, eddy currents,
and frequency drift.83

4.1 Basis sets and macromolecular
signals

Diffusion weighting changes metabolite-specific signal
amplitudes, not J-evolution. Thus, metabolite basis sets are
unaffected by diffusion encoding and can be simulated as
for conventional MRS.68 Note that for spin echo sequences,
longer TEs required to achieve strong diffusion weighting
will exhibit greater fit uncertainty due to low SNR,
particularly for overlapping metabolite signals.84 To ease
the fitting of dMRS data, predefined basis sets are increas-
ingly made publicly available and will be collected and
curated by the MRS community (MRS Hub, basis-sets
[https://mrshub.org/datasets_basissets/]). When these
predefined basis sets are used, one has to take care to
select those matching the dMRS sequence and TE.

For TE< 80–100 ms, it is advised to include an exper-
imentally measured MM pattern in the basis set (c.f.
section 2).61 If experimentally measured MM are not

available, the MM signals should be modeled with param-
eterized individual MM components (e.g., MM09, MM12)
that are included in many contemporary fitting algo-
rithms. To reduce the degrees of freedom and prevent
variability of final ADC estimation, the parameterized MM
should be derived at the highest b-value and kept constant
in shape for the other diffusion weightings.

4.2 Sequential and simultaneous
spectral fitting

DW spectra span an interrelated 2D space defined by
the spectral (time/frequency) and diffusion (dephasing)
dimension. Both dimensions have to be addressed: (i)
The spectral dimension is decomposed into contribu-
tions from individual metabolite patterns (basis sets) by
linear-combination modeling68; (ii) the signal decay along
the diffusion dimension is fitted to the metabolite ampli-
tude estimates, either using an abstract diffusion signal
representation (e.g., mono-/biexponential, kurtosis, diffu-
sion tensor spectroscopy) (see subsection 4.2.1.) or a signal
model directly related to tissue microstructure (e.g., cylin-
ders, spheres, multi-compartment)85 (see section 5). To
achieve accurate fitting along the diffusion dimension, cor-
rect b-values should be calculated, including slice-selective
and crushing gradients, and cross terms (c.f. box 2).

With recently available software, a dMRS dataset can
be fitted either in a sequential (1D) or simultaneous (2D)
mode. In sequential mode, fitting along the diffusion
dimension is performed in a separate post hoc optimiza-
tion after sequential (traditional) spectral fitting, whereas
simultaneous fitting explicitly incorporates the diffusion
model into the spectral fitting process. Simultaneous fit-
ting is not yet a subject of consensus or recommendation
but is a very promising approach; hence, the underlying
concepts are introduced in this part.

4.2.1 Common signal representations

There are different diffusion signal representations pos-
sible, depending on the acquisition parameters (b-values
sampled, maximum b-value used in an experiment [bmax],
number of directions). It has become established practice
to use a monoexponential representation for b≤ 5 ms/μm2,
a kurtosis or biexponential for b≤ 10 ms/μm2, and a biex-
ponential for b> 10 ms/μm2.35 ADC values calculated
using a monoexponential representation across different
species and different diffusion times are summarized in
Valette et al.86 The RMS error of the residuals of the biexpo-
nential fit for a specific metabolite can serve as a predictor
for its SD from a Gaussian noise model. It is a useful

https://mrshub.org/datasets_basissets/
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measure to determine whether or not a microstructural
model is applicable (C.f. section 5). However, it is impor-
tant to note that the fast and slow diffusion components
cannot be interpreted as individual cellular compartments.
If at least six directions are acquired, it is also possible to
compute the diffusion tensor from each monoexponential
decay.87 For the MM, a monoexponential representation
is usually sufficient, although at very high b-values this
assumption may start to break down.35 These representa-
tions describe diffusion using only a few parameters (two
for monoexponential, three for kurtosis, and four for biex-
ponential), which prevents overfitting (although introduc-
ing constraints on metabolite diffusion, which can affect
tissue modeling).

4.2.2 Sequential (1D) fitting

In sequential fitting, the spectrum arising from each sep-
arate diffusion encoding (b-value, direction, td, or encod-
ing scheme) is fitted independently. Most fitting tools
include baseline estimation (e.g., adding a smooth spline
or polynomial), and the baseline flexibility is a major
contributor to uncertainty and variance in the fitting pro-
cess.34,88–91,69 Therefore, care should be taken to prevent
the baseline from introducing additional variability and
systematic differences into the estimates of metabolic dif-
fusion properties at different b-values. It is advisable to
not over parameterize the baseline and keep it similar
between b-values with the same number of spline knots
or low-degree polynomials (e.g., to include residual water
artifacts). If possible, relative metabolite frequency shifts
in individual spectra should be constrained to a mini-
mum to prevent inconsistent models at different b-values
and limit the degree of freedom of the overall fitting
process.

Fit results for metabolites with similar spectral patterns
are difficult to reliably separate, and it is common practice
to indicate the total combined estimated area for corre-
lated groups of metabolites (e.g., tNAA=NAA+NAAG,
tCr=Cr+PCr, tCho=PCho+GPC). Separate estimates of
strongly overlapping signals will have lower precision. The
use of such sums in diffusion analysis implies that the dif-
fusion properties of the constituents are comparable; how-
ever, that is not at all a given, either because the molecules
are of substantial difference in size and molecular weight
(e.g., PCho and GPC, and Cr and PCr) or cellular loca-
tion (e.g., glutamine) and Glu). If the diffusion properties
are expected to be similar, it may be beneficial to use soft
constraints to regularize the relative concentration ratios
of such connected metabolites to a predefined value to
obtain more consistent results and prevent overfitting. If
diffusion properties differ, this approach will fail.

After sequential spectral fitting, the diffusion-weighted
individual metabolite amplitude estimates or their sums
(one per diffusion encoding) can be fitted using a signal
representation or a tissue model.85

4.2.3 Simultaneous (2D) fitting

In simultaneous fitting, all spectra from all diffusion encod-
ings are fitted in a single step.83 Spectral parameters are
adapted for each b-value, direction, td, or encoding scheme
under the constraints of separate priors on the selected
diffusion model for each metabolite or for the MM. For
example, in an experiment with increasing b-value, ampli-
tude decays for each metabolite could be constrained
to a (multi-)exponential decay function along the diffu-
sion dimension. As in general, simultaneous fitting con-
straints can be applied to width, phase, or relative fre-
quency parameters to be consistent for the whole data
set—although care should be taken not to overconstrain
the model given that lineshapes may alter based on EC
(possibly not fully compensated and thus dependent on
diffusion gradient strengths). Simultaneous fitting allows
to introduce assumptions on equal diffusion behavior for
multiple metabolites to stabilize the fits at each b-value
(e.g., equal ADCs for metabolites like scyllo-inositol and
Ins, or monoexponential decay for the MM, or even more
complex models for particular metabolites). Moreover,
the use of concentration ratio constraints for overlapping
metabolites with differing diffusion properties is feasible
and may promise to help segregation of metabolite pat-
terns with differing diffusion properties (although without
sufficient SNR, spurious effects from overfitting could still
result when allowing parameters to adapt). Simultaneous
fitting likely also aids baseline estimation (by constraining
its parametrization to a specific decay model) and line-
shape parametrization (which is difficult at high b-values
due to low SNR).81

The biexponential representation is good to stabilize
simultaneous fitting for b> 10 ms/μm2 because it repre-
sents the signal well, is easy to implement, and has a min-
imum number of free parameters. It is useful when fitting
diffusion properties of J-modulated or low concentration
metabolites like Glu, Ins, or glucose). Indeed, a recent
study on a set of synthetic dMRS spectra found a more
reliable estimate of diffusion and tissue properties when
simultaneous fitting is applied.92 This is supported by Tal
et al.,93 showing that simultaneous 2D fitting improved
precision by at least 20% compared to 1D fitting.

Moreover, simultaneous fitting can incorporate addi-
tional shared information between individual or aver-
aged transients, such as line broadening and shape, phase
(zero and first order), diffusion-orientation, spectral edit-
ing, or relaxation. This can reduce fitting uncertainties;
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mitigates signal distortions; and enhances robustness of,
for example, multiparametric dMRS.83,94 Nevertheless,
a crucial challenge remains to establish and validate
dynamic models to ensure unbiased results.94

4.3 Comparability of results between
fitting algorithms and methods

It should be noted that the fitting of in vivo MRS data rep-
resents a complex, ill-posed optimization problem, and
there are many available algorithms to solve it. Recent
studies have revealed that fitting results can vary sub-
stantially not just between fitting algorithms89,95,96 but
also within any given algorithm,95,96 depending on highly
sensitive fit options and settings. Preliminary evidence
from the 2021 dMRS workshop suggests that dMRS is no
exception to this, and given the strong impact of error
propagation on the estimated ADC, achieving optimal
spectral fitting performance and continued comparison
across methods is critical. As the field of dMRS develops,
it will be important to benchmark and validate emerging
fitting methods, ideally against synthetic data with known
ground truth.

5 MODELING: LINKING THE
DIFFUSION PROPERTIES TO
TISSUE MICROSTRUCTURE

In this section, we will focus on the consensus and recom-
mendations regarding the biophysical modeling of purely
intracellular metabolites to infer histologically meaningful
descriptions of brain microstructure from dMRS. We high-
light three points of consensus that set out the currently
accepted minimal model of metabolites’ diffusion in brain
tissue. We then provide guidelines on how to adapt this
minimal model to typical experiments.

5.1 The minimal model of metabolite
diffusion in brain tissue: randomly
oriented infinitely long straight cylinders

The randomly oriented infinite cylinders model is a sim-
ple analytical model of diffusion in infinitely long (i.e.,
diffusion is only restricted in transverse directions) and
randomly oriented cylinders (i.e., reflecting mesoscopic
isotropy). This section describes why it is a reasonable
biophysical model to extract microstructural informa-
tion from brain metabolite diffusion, and the conditions
that need to be fulfilled for it to be applicable. Specific

experimental conditions (e.g., pathology, development)
might affect the relevance of this model.

5.1.1 Intracellular brain metabolites exhibit
non-Gaussian diffusion

At high b-values and for typical diffusion lengths of
5–15 μm, the dMRS signal from intracellular brain metabo-
lites exhibits non-monoexponential decay (Figure 5A).
This provides a hint about the length scale of struc-
tures hindering metabolite diffusion (a few μm). Mono-
exponential behavior breaks for b-values >3–5 ms/μm2.
This has first been observed with early measurements
of NAA diffusion in brain cells at various td and to
high b-values (up to b= 30 ms/μm2).97 Other intracellular
metabolites exhibit similar non-monoexponential decays,
as reported in subsequent studies.35,98 Multi-exponential
(usually bi-exponential) signal representations sometimes
used to characterize the signal decays at high b-values
do not inform about cytoarchitecture. Biophysical mod-
els are thus built to extract meaningful cytoarchitectural
parameters.

5.1.2 Correlation between relaxation
and diffusion properties is negligible
for intracellular brain metabolites

Correlation between diffusion and relaxation properties
may arise from the presence of different compartments,
each with its own relaxation times and diffusion proper-
ties (e.g., cytosolic versus mitochondrial compartments).
The studies summarized in Table 4 suggest that for
35≲TE≲ 70 ms, TM≲ 250 ms and td ≲ 250 ms, minimal to
no correlation between relaxation and diffusion proper-
ties exist for intracellular brain metabolites (Figure 5A).
Therefore, the diffusion measurements performed within
this regime carry information about the cellular microar-
chitecture, unbiased by the inherent relaxation processes.
This also suggests that experiments performed within
this experimental regime should yield comparable results
across studies.

5.1.3 Purely intracellular brain metabolites
exhibit signatures of microscopic anisotropy

The non-Gaussian nature of metabolite diffusion can
have different origins. Experimental evidence supports the
hypothesis that one of the major sources is the microscopic
fractional anisotropy (μFA) of the brain microstructure.
Microscopic anisotropy represents the level of anisotropy



16 LIGNEUL et al.

F I G U R E 5 (A) Intracellular metabolites exhibit non-Gaussian diffusion, and correlation with relaxation properties is weak. The gray
curve (right panel) represents the logarithm of the normalized signal decay in the case of Gaussian diffusion (e.g., free diffusion). The green
curve (right panel) represents the logarithm of the normalized signal decay, coming from tNAA. The data were simulated for the Lorentz
workshop pregame and are available on github (https://github.com/dwmrshub/pregame-workshop-2021). Data always originates from large
voxels, as exemplified in the left panel. (B) Intracellular brain metabolites μFA is high, and their diffusion properties match with diffusion in
elongated fibers. (Left, green curve) Intracellular metabolites exhibit a strong modulation with the angle between diffusion directions in
DDE-MRS experiment, reflecting a high μFA. (Right, green curve) Their ADC from very short to very long td is well represented by diffusion in
long cylinders (right, gray curves) in contrast to diffusion in spheres. (Bottom) The randomly oriented infinite cylinders model is characterized
by the diffusivity Dintra along the cylinder and the radius R. If td is too long and/or bmax is too low, the acquisition does not support the
estimation of the radius R, and the model can be simplified to randomly oriented sticks, with Dintra as the only parameter. Dintra, intracellular
diffusivity; DDE, double diffusion encoding; μFA, microscopic fractional anisotropy; tNAA, N-acetylaspartate+N-acetylaspartylglutamate;
td, diffusion time.

https://github.com/dwmrshub/pregame-workshop-2021
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T A B L E 4 Summary of studies reporting potential dependence between the TE used and the measured diffusion properties.

Publications B0 field & Sample TE range (ms) td (ms) Conclusions

Assay & Cohen, 199899 11.7T 70–200 35 & 95 NAA bi-exponential fit depends on TE

Ex vivo rat brain

Assaf & Cohen, 199997 11.7T 70–550 125 NAA signal decay depends on TE

Excised bovine optic nerve

Branzoli et al., 2014100 7T 40–160 44–246 No TE dependence for TE< 90 ms (except
tCr at td = 246 ms).In vivo human brain

Ligneul et al., 201735 11.7T 33–73 20–253 No TE dependence for ADC or ADCs
of fast and slow components (from
bi-exponential fit)

In vivo mouse brain

Mougel et al., 2022101 11.7T 50–110 20 No TE dependence for ADC and Kurtosis
(except very small ADC variation for tCr)In vivo mouse brain

Abbreviations: tCr, tCr, Cr+ phosphocreatine; td, diffusion time.

at the microscopic scale (i.e., in the range of the diffu-
sion length probed, 5–15 μm) and not at the (macroscopic)
voxel size scale (known in dMR as fractional anisotropy
[FA]). For instance, if metabolites were mostly located in
round cell bodies, the measured μFA and FA would be
close to 0. On the other hand, if they were mostly located
in thin and elongated fibers, randomly oriented within the
spectroscopic voxel, then measured μFA would be close to
1, but FA would still be close to 0.

Several studies using single diffusion-encoding acqui-
sitions and high b-values have demonstrated that the
diffusion of intracellular metabolites exhibits signatures
of microscopic anisotropy, both in rodent gray mat-
ter (GM)102,103 and in human white matter (WM).104

More recently, from powder-averaged data acquired at
high b-values, it has been measured that the μFA of
NAA nears 1 in human WM.105 A few works explor-
ing metabolite ADC over a wide range of td also sug-
gest that metabolites are primarily located in elongated
fibers.6,86,106

Double diffusion encoding (DDE) acquisitions are
challenging but provide more direct measures of μFA.
General considerations for DDE in dMRI and dMRS
have been covered in recent reviews.107,108 Pioneering
DDE studies reported high μFA for all intracellular
metabolites42,109 but slightly higher for NAA (a neuronal
metabolite) than for Ins (a glial metabolite). More recent
work reports similar results both in the rodent and the
human brain.110,111

The diffusion of intracellular metabolites is
anisotropic at the microscopic scale in both GM and
WM and should therefore represent a key compo-
nent for any biophysical model of metabolite diffusion
(Figure 5B).

5.1.4 Randomly oriented infinite cylinders
model

The previous sections set out the reasons why the ran-
domly oriented infinite cylinders model is a reasonable
“minimal” biophysical model for brain metabolite diffu-
sion. It effectively mimics the geometry of cellular pro-
cesses (neuronal and glial), which is where metabolites
are primarily located (only being minimally located in cell
bodies).

• Analytical expression: The signal attenuation K from a
given cylinder with orientation n by a diffusion gradi-
ent pair with orientation g can be written as a func-
tion of the acquisition parameters (g, 𝛥, 𝛿) and the
model parameters Dintra (intracellular diffusivity) and R
(cylinder radius), either using the short gradient pulse
approximation112 or the van Gelderen’s formula in the
case of longer pulses.12 The orientation distribution
of the cylinders can be then factored out by averag-
ing the signal over a reasonably large number of dif-
fusion directions, the so-called directional average or
powder-average, S:

S(g, 𝛿, 𝛥;Dintra,R) =
∫ 𝜋

0 sin(𝜃) K(g, 𝜃, 𝛿, 𝛥;Dintra,R)d𝜃

∫ 𝜋

0 sin(𝜃)d𝜃
,

leaving Dintra and R to be estimated. Here, θ is the angle
between the direction of the cylinder’s main axis n and the
direction of g.

• Open-source implementations of the randomly oriented
infinite cylinders model: Widely used in the dMRI
community, several toolboxes contain implementations
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of this model (e.g., MISST [http://mig.cs.ucl.ac.uk/
index.php?n=Tutorial.MISST], DMIPY [https://github.
com/AthenaEPI/dmipy]). A list of these packages
and examples of simple scripts can be found on
MRS hub (https://forum.mrshub.org/t/modeling-dw-
mrs-data/943). We also list educational resources to
help get a feeling of the contributions of different
parameters (e.g., DIVE [https://git.fmrib.ox.ac.uk/fsl/
DIVE/-/blob/master/README.md]).

5.1.5 Conditions of applicability

• TE regime: As described in 4.1.2, for data acquired
with 35≲TE≲ 70 ms at 7T≤B0 ≤ 11.7T, it is possible to
ignore T2 effects. Due to T2 dependence to magnetic
field, for B0 ≤ 3T the upper bound on TE is expected
to be higher; for B0 ≥ 11.7T the lower bound on TE is
expected to be higher.

• Number of directions: The number of directions needed
to achieve a rotation invariant powder averaging
increases with the term b⋅Dintra

113 and with macroscopic
anisotropy in the voxel. In mostly isotropic voxels (e.g.,
in the rodent GM), as few as three directions might be
sufficient.113 In a very anisotropic voxel (such as in high
FA human WM), with ideal SNR conditions a total of
12 directions should provide a rotational invariance up
to very high b-values. However, in practice other noise
sources might dominate when fewer than 12 directions
are used, even in isotropic voxels.105

• Limitations and considerations on td: For SE-based pulse
sequences (see section 2), the minimum td and TE
are often constrained by the gradient duration and
must be kept constant unless td-dependence is explored.
td-dependence goes beyond the scope of this paper and
requires different modeling. To gain higher sensitivity
to fiber radius R, shorter tds are preferred.

As general guidelines for the randomly oriented infi-
nite cylinders analysis, we recommend designing the
acquisition to reach a maximum b-value of ∼20 ms/μm2,
keeping TE and td constant and as short as possible.

For typical td ∼ 40–80 ms, the effect of branching (i.e.,
metabolites exchanging between cell ramifications) is neg-
ligible, and exchange between soma and cellular fibers
might be negligible.6,114 However, cytoarchitectural fea-
tures with a characteristic length scale comparable to
a diffusion length along fibers (5–10 μm) might impact
Dintra estimated by the randomly oriented infinite cylin-
ders model. These features could be115:

• Spines, occurring at ∼1–2 spines/μm,
• Undulations, occurring over a wavelength ≲10–16 μm,

• Beading/fiber diameter variations occurring over a
length scale of 5–8 μm.

The impact of restriction due to somas of radius 12 μm
might also be nonnegligible.114

For td ≳ 100 ms, branching affects the diffusion prop-
erties,6,114 and sensitivity to the radius extracted from the
randomly oriented infinite cylinders model is reduced
because the diffusion length relative to the radius
is too big (4tdDintra≫R2). Likewise, in cases of low
bmax (b-value≪td/R2, e.g., b-value≪10 ms/μm2 for fiber
R= 2 μm and td = 40 ms) or low SNR, the signal attenu-
ation cannot be used to extract the fiber radius from a
randomly oriented infinite cylinders model (see subsec-
tion 5.2). A model of randomly oriented sticks should be
considered instead (i.e., cylinders with zero radius):

K(b, 𝜃;Dintra) = exp
[
−bDintra cos (𝜃)2

]
.

The powder-average signal can then be expressed as:

S(b,Dintra) =
√

𝜋

4bDintra
erf

(√
bDintra

)
,

where erf denotes the error function. If the sticks’ orienta-
tions are uniformly distributed on the sphere (i.e., FA= 0),
the ADC along any arbitrary direction derived from low
b-values is then Dintra/3.

• Modified randomly oriented infinite cylinders model
for very anisotropic voxels (e.g., WM): The randomly
oriented infinite cylinders model is based on the
assumption that, within a large spectroscopic voxel, the
cellular processes (i.e., neurite and glial processes) are
randomly oriented. This condition is usually met for
GM voxels or when using enough diffusion directions
to yield a reliable powder average. However, it may not
be met when using few diffusion directions in voxels
located primarily within WM tracts, where the prefer-
ential orientation of the cell processes may significantly
impact the measured diffusion signal. In this case, the
randomly oriented infinite cylinders model should be
modified to account for the specific orientation distri-
bution of fibers within the spectroscopic voxel.

The simplest way to do so is to acquire dMRI data suit-
able for diffusion tensor imaging (DTI) analysis together
with the dMRS data and estimate the distribution of prin-
cipal fibers directions from the DTI analysis (as explained
in the Supporting Information of Ref. 103). The fraction
of WM fibers within the voxel, f WM, can be estimated by
counting the fraction of pixels in DTI images within the

http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.MISST
http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.MISST
https://github.com/AthenaEPI/dmipy
https://github.com/AthenaEPI/dmipy
https://forum.mrshub.org/t/modeling-dw-mrs-data/943
https://forum.mrshub.org/t/modeling-dw-mrs-data/943
https://git.fmrib.ox.ac.uk/fsl/DIVE/-/blob/master/README.md
https://git.fmrib.ox.ac.uk/fsl/DIVE/-/blob/master/README.md
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spectroscopic voxel and that have high FA (e.g., ≥0.4); and
cL ≥ 0.4, cP ≤ 0.2, and cS ≤ 0.35.116 cL, cP, and cS are the
coefficients of linearity, planarity, and sphericity, respec-
tively. Note that this assumes maximal fiber anisotropy in
WM (i.e., a worst-case scenario). The total signal attenua-
tion for the modified randomly oriented infinite cylinders
model then comprises two contributions: one coming from
metabolites’ diffusion in the GM (pure randomly oriented
infinite cylinders), and the second coming from metabo-
lites’ diffusion in the WM modeled as diffusion within
fibers distributed according to P(θi):

S(g, 𝛿, 𝛥;Dintra,R)

= (1 − fWM)
∫ 𝜋

0 sin(𝜃) K(g, 𝜃, 𝛿, 𝛥;Dintra,R)d𝜃

∫ 𝜋

0 sin(𝜃)d𝜃

+ fWM

∑N
i=1P(𝜃i)K(g, 𝛿, 𝛥;Dintra,R, 𝜃i)∑N

i=1P(𝜃i)
,

where the distribution P(θi) is the distribution of angles θi
between the first eigenvector of the diffusion tensor and
the diffusion-sensitizing gradients and is experimentally
determined (hence the discrete summatory rather than
a continuous integral). As already mentioned, if sensitiv-
ity to R is poor, then the signal attenuation K should be
modeled as diffusion within sticks.

Conditions of applicability for diffusion time, b-value
range and tissue composition are summarized in Table S2
for signal representations (monoexponential, kurtosis, and
biexponential fits) and the randomly infinite oriented
cylinders/sticks models.

5.2 Considerations of noise
and maximum b-value

The accuracy and precision of the ADC, apparent kurto-
sis (Kapp), and randomly oriented infinite cylinders model
parameter estimates depend on σ, the SD of the Gaussian
noise underpinning the dMRS signal decay normalized
to the signal at b= 0 ms/μm2. The σ can be estimated
for measurements, for example, by computing the SD of
the residuals from fitting the bi-exponential representation
to normalized diffusion-weighted signals (Figure S1A) or
from denoising techniques that also provide an estimate of
the noise level.117

In Table 5, we show the simulated impact of noise
on the relative bias and coefficient of variation of the
different parameters. The ADC can be estimated accu-
rately and precisely (i.e., both relative bias and coefficient
of variation median and interquartile range <10%) with
bmax <5 ms/μm2 and 𝜎 ≤ 0.04. In contrast, Kapp can be

estimated accurately and precisely with bmax < 10 ms/μm2

only for low 𝜎 ≤ 0.01. Regarding the randomly oriented
infinite cylinders model with bmax ≤ 25 ms/μm2, Dintra can
be estimated accurately and precisely for 𝜎 ≤ 0.04, whereas
R can only be estimated accurately and precisely for very
low 𝜎≪ 0.01. If such a noise level cannot be achieved, we
recommend using the randomly oriented sticks model.

The general recommendation is therefore to
keep 𝜎 ≤ 0.04; to accurately estimate ADC (with
bmax <5 ms/μm2) and Dintra (with bmax ≤ 25 ms/μm2);
𝜎 ≤ 0.01 when trying to estimate Kapp (with
bmax < 10 ms/μm2); and 𝜎≪ 0.01 when trying to esti-
mate R (with bmax ≤ 25 ms/μm2). Choices made from
acquisitions to fitting (section 2–4) will impact 𝜎 and
should therefore be carefully set up.

5.3 Other models and representations

Beyond the monoexponential and kurtosis signal
representations and the randomly oriented infinite
cylinders/sticks biophysical models, we reference here
other models and representations that can be of interest
for the reader:

• Models and representations of dMRS diffu-
sion time-dependence: Computational models of
neuron-like digital substrates have been used to charac-
terize the metabolites diffusion time-dependence and
estimate from it microstructural features such as length
and branching order of cellular processes.6,7,114,118

• Models and representations of dMRS b-dependence at
high b (>10 ms/μm2): The effect of secondary struc-
tures like dendritic spines and astrocytic leaflets has
been investigated using signal representations and
dMRS measurements at high b values and 10< td < 100
ms119–121; the overall complexity of cellular morphol-
ogy has been investigated using signal representations
derived from a fractional order formulation of the
Bloch-Torrey equation.98

6 FUTURE DIRECTIONS

dMRS forms a lively research field that has taken off in
the last 10 years. Although dMRS faces challenges regard-
ing SNR, it has a great potential for probing, noninvasively,
cell type–specific microstructure and could benefit directly
from the latest developments in MRS and in dMRI. A
few challenges awaiting solutions in acquisition, process-
ing, fitting, and modeling are listed below. Solving these
would unlock much of the potential of dMRS, both as a
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T A B L E 5 Simulated impact of Gaussian noise (for different standard deviation σ) on the relative bias and CV of ADC, Kapp, and
randomly oriented infinite cylinders model parameters Dintra and R.

Representation or model bmax Parameter 𝝈= 0.01 𝝈= 0.02 𝝈= 0.04 𝝈= 0.1

Relative Bias: (Estimated−Ground Truth)/Ground Truth (%)

Mono-exponential 5 ADC −1 [−4; 1] 3 [−2; 7] 3 [−9; 14] −9 [−27; 34]

10 Not applicable - - - -

25 Not applicable - - - -

Kurtosis 5 ADC −2 [−7; 4] −2 [−12; 6] −4 [−19; 7] 6 [−27; 26]

Kapp 3 [−78; 21] −33 [−77; 22] −32 [−87; 25] −42 [−79; 12]

10 ADC −1 [−4; 3] 0 [−5; 8] 0 [−7; 10] −1 [−16; 27]

Kapp −2 [−9; 1] 3 [−16; 16] −25 [−38; 12] −40 [−78; 15]

25 Not applicable - - - -

- - - -

Randomly oriented
infinite cylinders

5 Dintra −7 [−22; −3] −18 [−41; −4] −31 [−45; −6] −30 [−45; −10]

R 22 [−39; 193] 113 [−17; 298] 143 [−36; 333] 178 [0; 391]

10 Dintra −3 [−8; 1] −7 [−16; 1] −15 [−35; −5] −29 [−52; −6]

R 2 [−61; 98] 44 [−34; 163] 87 [−27; 232] 217 [28; 486]

25 Dintra −1 [−4; 0] −2 [−7; 3] −5 [−15; 2] −18 [−34; 1]

R 1 [−40; 39] −3 [−46; 72] 1 [−48; 136] 90 [−7; 241]

CV: std[Estimated]/mean[Estimated] (%)

Mono-exponential 5 ADC 4 [2; 5] 5 [3; 7] 11 [8; 16] 26 [18; 38]

10 Not applicable - - - -

25 Not applicable - - - -

Kurtosis 5 ADC 4 [3; 6] 8 [5; 11] 13 [9; 19] 40 [23; 61]

Kapp 39 [13; 149] 74 [32; 191] 99 [34; 290] 119 [51; 224]

10 ADC 4 [3; 5] 7 [5; 9] 11 [9; 14] 21 [17; 31]

Kapp 10 [6; 16] 14 [10; 34] 47 [23; 73] 97 [35; 185]

25 Not applicable - - - -

- - - -

Randomly oriented
infinite cylinders

5 Dintra 11 [6; 26] 26 [17; 35] 34 [25; 40] 47 [37; 58]

R 99 [52; 156] 77 [41; 176] 99 [53; 242] 100 [44; 198]

10 Dintra 5 [3; 7] 12 [8; 17] 21 [14; 33] 41 [31; 50]

R 76 [42; 162] 88 [55; 170] 95 [71; 179] 72 [39; 166]

25 Dintra 3 [2; 4] 6 [4; 7] 12 [8; 15] 35 [23; 42]

R 49 [18; 121] 73 [39; 130] 85 [43; 166] 84 [58; 136]

Note: For each model parameter median [1st; 3rd] quartile values are reported. Data simulation: Analytical simulations were performed using the randomly
oriented infinite cylinders model assuming an acquisition that can be run on both clinical and preclinical scanners: PGSE acquisition with θ/γ= 60/15 ms;
b= 0, 1.5, 3, 5, 8.5, 15, 25 ms/μm2. The simulations were run for a range of realistic combinations of Dintra (=0.2, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50 μm2/ms) and R
(=0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 2.00 μm) values, with the addition of Gaussian noise corresponding to different σ levels. Impact of Gaussian noise on
parameter estimates: To estimate the fit accuracy at different bmax, a Monte Carlo approach (250 draws; Figure S1B) was used to extract the median and the
first and third quartiles of each parameter estimate. The fits were a mono-exponential decay for ADC, a kurtosis representation for ADC and Kapp, and a
randomly oriented infinite cylinders model for Dintra and R. Note that at each new draw, new noisy signal is created by adding Gaussian noise with the SD
estimated from the fitting residuals of the previous draw. Orange shadowed entries in the table highlight conditions where accuracy and precision was
considered too low, that is, relative bias and CV median and interquartile range >10%.
Abbreviations: CV, coefficient of variation; Dintra, intracellular diffusivity; PGSE, pulsed-gradient spin echo; R, radius.
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research tool and for clinical use. These developments are
interdependent and will benefit from each other:

• Faster scanning is crucial for clinical applications. A few
approaches will make this possible:

◦ Develop and validate simultaneous fitting
approaches as proposed in Ref. 83 and integrated in
FitAID72 and FSL-MRS,73

◦ Take advantage of the recent development of mul-
tiparametric acquisitions and use it to concurrently
measure relaxation and diffusion for instance or bet-
ter sample the q-td space,122

◦ Further develop and validate robust denoising
approaches,117

◦ Improve acquisitions methods (e.g., rapid diffusion
tensor acquisition123).

• Improve the spatial resolution and coverage with diffu-
sion MRSI.124,125

• Develop cross-modalities approaches (e.g., dMRI and
dMRS with a joint modeling of water and metabolites
diffusion).

• Interpret the data with a metabolic or microstructural
perspective (e.g., continuing the development of model-
ing to extract microstructural parameters, incorporation
into simultaneous fitting, and accounting for metabolic
complexity). Detailed authors contributions are speci-
fied in the Table S1
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Additional supporting information may be found in the
online version of the article at the publisher’s website.

FIGURE S1. Schematic to clarify the difference between
(A) the level of noise σ of the normalized dMRS signal
decay and (B) how Monte-Carlo simulations help estimat-
ing the model accuracy.
TABLE S1. Detail of author contributions (* equally con-
tributed).
TABLE S2. Conditions of applicability for diffusion time,
b-value range and tissue composition for signal represen-
tations (monoexponential, kurtosis, and biexponential
fits) and the randomly oriented infinite cylinders/sticks
models.
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