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Carbon footprint and embodied 
nutrition evaluation of 388 recipes
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Yoshikuni Yoshida1

Food consumption, which delivers fundamental energy and essential nutrients to human beings, 
is crucial for achieving a series of sustainable goals. Alongside rising population growth and living 
standards, there has been a significant increase in food cultivation demands, supply chain complexities, 
and waste management. Therefore, to protect human health and the environment, promoting 
sustainable food systems and the uptake of sustainable dietary habits are vital. Yet, information on the 
environmental and health impact of dietary choices remains inconsistent across multiple evaluation 
methods, which fail to deliver essential ideas to consumers. In this study, we formulate an integrated 
approach using Environmentally Extended Input-Output analysis, covering the food supply chain 
from production to the distribution phase, complemented with a hybrid Life Cycle Assessment for 
cooking and disposal processes, to quantify the carbon footprint of specific recipes. Our dataset also 
includes the distinct nutritional values of each recipe. This dataset not only informs the food industry 
and recipe platforms, enabling more sustainable choices, but also helps individuals balance nutritional 
value with environmental impact, leading to more informed and sustainable dietary decisions.

Background & Summary
The global food system significantly contributes to numerous environmental crises, including climate change, 
deforestation, and water scarcity, and also presents numerous nutritional and health challenges. Specifically, it 
is responsible for 19–29% of total anthropogenic greenhouse gas (GHG) emissions, more than 70% of surface 
and groundwater usage1, and 37% of the Earth’s landmass occupation2. On the other hand, the consumption 
of different food products has a marked influence on the public health of each individual. For example, due to 
the unbalanced food supply and the global population burgeoning, a considerable portion of the global popu-
lation faces malnutrition issues, ranging from excessive intake of sugar, trans fat, and red and processed meat 
to deficiencies in essential nutrients like vegetables, fruits, and whole grains3–7. This imbalance contributes to 
overweight or obesity in one-third of the global population, while inadequate micronutrient intake affects 2 
billion people8,9, leading to a host of non-communicable diseases such as diabetes, stroke, and heart disease10. 
Notably, dietary risks were the leading cause of global disability-adjusted life-years (DALYs) from 1990 to 20138. 
Therefore, to foster a Net Zero and more sustainable future, it is imperative to stimulate demand-end changes 
and transition consumer dietary patterns, taking into account both environmental and health perspectives.

In response, scholars and policymakers have delved into the environmental and health outcomes of diverse 
global dietary patterns, identifying synergies that benefit human health and the environment at multiple levels. 
At the global level, scenario analyses have shown the potential benefits of reducing red meat consumption, 
which include not only improved public health but also a reduction in GHG emissions, water use, eutrophica-
tion, and other environmental impacts within planetary boundaries11–16. On the other hand, country-specific 
cases aim for more precise and granular analysis, focusing on the household or individual level. These studies 
explore sub-national socio-economic heterogeneity and involve discussions about environmental and health 
justice17–20. While these investigations establish general principles for healthy and sustainable food consumption, 
there remains a need for more accurate data on the environmental and nutritional impacts at the food-product 
level to guide consumer behavior7,21. However, the data’s accuracy can still be compromised by culinary prac-
tices, as consumers combine food products as ingredients and adopt various cooking methods.
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For the purpose of providing detailed diet information to consumers with their real-world dietary impacts, 
recent studies start noticing the importance of dish-level analysis22–24. For instance, scholars began leveraging 
aggregated scores to examine diets’ nutritional elements at the dish level, providing more precise nutrient intake 
estimates across varied dietary choices and patterns25–27. Simultaneously, the sustainable diet is also gaining 
attention in addition to the nutrition aspect. With the establishment of online recipe repositories, carbon foot-
print calculations for individual recipes are becoming more diverse and accessible22,28–31. Moreover, environ-
mental footprint analyses for recipes provided revelations on how ingredient substitutions, particularly with 
locally sourced foods, can significantly attenuate associated carbon footprints23,32. Despite these efforts, there 
is still a conspicuous gap in our collective understanding when it comes to the integrated assessment of both 
environmental and nutritional outcomes of dishes in existing research. In the real world, consumers do not 
consume food items directly, the majority convert food ingredients into different dishes and eat. Therefore, to 
provide consumers with understandable information, there is an urgent need for dish-level evaluation of the 
interconnected nutritional and environmental impacts to motivate a culinary behavioral change.

To bridge this research gap, our dataset encompasses the environmental footprints, involving both the ingredi-
ents and the cooking methods, and the nutritional quality of recipes, as part of a broader endeavor to understand 
and promote sustainable dietary patterns. It should be noted that existing research generally adopts the Life Cycle 
Assessment (LCA) methodology in the context of calculating the carbon footprint of recipes7,11,33–35. Nevertheless, 
the research methodology involved in the establishment of this dataset is the Environmentally Extended 
Input-Output (EEIO) approach, a robust tool for assessing the environmental impacts of product systems36,37.  
Though both LCA and EEIO each have their unique application areas and strengths, compared to the LCA 
method requiring the scope definition, the EEIO method offers a comprehensive and systemic perspective that 
encompasses all stages within the entire supply chain38. Additionally, EEIO is based on extensive economic data 
and industrial statistics at global, national, or regional levels, ensuring high traceability and accuracy, making 
it outperforms in terms of comparability and standardization of results39,40. Hence, this method allowed us to 
quantify the life-cycle GHG emissions for each recipe, capturing both the ingredients and the cooking process 
involved.

Moreover, our dataset encompasses the nutrition as well as environmental footprints of popular recipes 
from Ajinomoto Co., which is a multinational corporation that specializes in food and amino science, produc-
ing seasonings, oils, and other food products. As noted, cultural traditions profoundly shape dietary habits, 
dictating food selection, preparation methods, meal times, dietary practices, and attitudes toward food29,41–44.  
In contrast to previous research that mainly concentrates on cuisines in Western countries, our research sheds 
light on dishes consumed by the Japanese population. It should be noted that Japan’s traditional dietary patterns, 
defined by high consumption of seafood, rice, vegetables, and a relatively low intake of red meat, have long been 
recognized for their health benefits45–47. However, these traditional practices are affected by a marked trend 
towards westernized dietary habits, characterized by a higher consumption of processed and fast foods45,48–50. 
Consequently, our dataset includes a broader range of recipes, covering not only traditional Japanese dishes but 
also dishes from other countries. This comprehensive coverage offers insights that may inform sustainable food 
policies not only in Japan but potentially in other nations grappling with issues of sustainable dietary transition 
as well.

Method
Since consumers typically consume dishes, rather than raw ingredients, this dataset recognizes the growing 
importance of dish-level analysis to bridge the research gap of analyzing diet by ingredients only. Hence, our 
focus is to establish a dataset to cover both the environmental outcomes and nutritional content of recipes. To 
achieve this, our dataset encompasses the environmental footprint, inclusive of ingredients and cooking meth-
ods, along with the nutritional quality of recipes as part of broader efforts to understand and promote sustaina-
ble dietary patterns, with each step of the dataset establishment presented in the Method section.

recipe data collection. To collect the data necessary for this study related to various dishes, we used the rec-
ipe site “Recipe Encyclopedia” operated by Ajinomoto Co., Inc., one of the largest food companies based in Japan51.  
The online recipes dataset provides a wide range of recipes, and the information related to each recipe is also 
detailed, hence it was chosen as the source of data collection for each dish. Therefore, by collecting the infor-
mation from the Recipe Encyclopedia of Ajinomoto we conducted a search using the names of ingredients as 
categorized by Ajinomoto Co., Inc. as indicated in Table 1, and the resulting recipes were added to the collection 
candidate list in the order of their recentness. Information in this table provides clarity on ingredients that were 
used to compile the recipe dataset.

The number of non-duplicate recipe data collected in this manner is 10,337. As of May 9, 2022, when the 
recipe data was collected, the total number of recipes recorded in the “Recipe Encyclopedia” was 11,956, with 
the collected recipe data accounting for 86.5% of all recorded recipes. We have deleted very similar recipes. The 
general flow chart of this dataset is shown in Fig. 1, and the collected recipe data then underwent the following 
preprocessing steps with details:

Step 1. recipe Selection. Since the focus of this study is on representative dishes and the most popular 
recipes within the collected recipes, we extracted recipes from the “Recipe Encyclopedia” that had received over 
1,000 saves by users as of May 9, 2022. We added rice recipes to these extracted recipes, and a total of 388 recipes 
were targeted for this study. The information pertaining to each recipe along with corresponding descriptive 
details in this database is presented in Table 2.
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Step 2. Ingredient name standardization. Ingredient names were standardized for uniformity, omitting 
any part of the name that indicated specific products, such as initial English letters or ‘AJINOMOTO’. This stand-
ardization process was conducted on all ingredients utilized in the 388 recipes. After removing duplicates from 
the ingredient list after processing, we ultimately acquired 349 unique ingredients.

Step 3. Ingredient mapping. For each of these 349 ingredients, they were matched to the most similar item 
in the Standard Tables of Food Composition in Japan52. The Standard Tables of Food Composition in Japan (2015, 
Seventh Revised Edition) provides a comprehensive categorization of 2191 foods into various groups like cere-
als, vegetables, meats, and more. The tables consider foods in their raw, cooked, and processed states, including 

Animal-Derived Products

Meat

Beef

Pork

Pork Belly

Chicken

Chicken Thigh

Chicken Wing Tip

Ground Meat

Mixed Ground Meat

Wiener/Sausage

Ham

Fish & Seafood

Tuna

Canned Tuna

Mackerel

Canned Mackerel

Salmon

Cod

Squid

Shrimp

Octopus

Sardine

Horse Mackerel

Others Eggs

Plant-Derived Products

Vegetables

Cabbage

Onion

Carrot

Bean Sprouts

Potato

Bell Pepper

Broccoli

Shimeji Mushrooms

Shiitake Mushrooms

Eryngii (King Oyster Mushroom)

Pumpkin

Cucumber

Radish

Eggplant

Chinese Cabbage

Bamboo Shoots

Grains & Grain Products

Udon Noodles

Soba Noodles

Somen Noodles

Pasta

Legumes & Legume Products
Tofu

Fried Tofu

Others

Hiziki (a type of seaweed)

Wakame (a type of seaweed)

Soymilk

Table 1. Ingredient for searching recipes.
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traditional Japanese cuisine. Each food item is analyzed for its nutrient components, including proteins, lipids, 
carbohydrates, vitamins, and minerals, providing a detailed overview of nutritional values per 100 g of edible 
portion, and energy values are calculated using energy conversion factors. This meticulous categorization and 
analysis make these tables a vital resource for dietary planning and analysis. In this research, we undertook a 
comprehensive analysis of various nutrients. Primary among these are the macronutrients, encompassing Energy 
(kcal), Carbohydrates (g), Protein (g), and Fat (g). Subsequently, we evaluated vitamins, specifically Vitamin 
A (μg), Vitamin C (mg), and Vitamin E (mg). In the realm of minerals, we assessed the concentrations of Zinc 
(mg), Calcium (mg), Iron (mg), Potassium (mg), Magnesium (mg), Folic Acid (μg), and Dietary Fiber (mg). 
Additionally, other parameters, including Saturated Fats (g), Cholesterol (mg), and Salt Equivalent (g), were also 
incorporated into our analysis.

Step 4. Ingredient quantity conversion. The quantities of ingredients listed in each recipe were con-
verted into a calculable form. While certain quantities, especially for water and seasoning, were indicated in mill-
iliters (ml), these were converted to grams (g). For small quantities such as “appropriate amount,” “a bit,” “a pinch,” 
etc., these were uniformly considered as 0 g. For expressions unique to ingredients, like “1 carrot,” “2 eggs,” etc., we 
used the “Estimated Quantity of Ingredients” table from the Ajinomoto site for conversion to grams.

Fig. 1 Flowchart of this dataset.

Information obtained from each 
recipe Description

Recipe ID A unique 6-digit number for each recipe for identification purposes

Recipe Name Name of the recipe (used exactly as expressed on the “Recipe Encyclopedia”)

Published Datetime Time when the recipe was posted

Modified Datetime Time when the recipe was last updated/modified

Servings Number of servings for the recipe

Cook Time Preparation and cooking time for the recipe (excluding marination and 
similar steps)

Ingredients Ingredients used in the recipe and their quantities

Directions Cooking instructions, preparation steps

Cuisine Style Type of cuisine (Japanese, Western, Chinese, Ethnic, etc.)

Cuisine Type Classification of the dish (main dish, side dish, soup, etc.)

Number Saved Number of times the recipe was saved

Table 2. Information Archive for Selected Recipes from the Recipe Encyclopedia.
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Step 5. Dish categorization. The primary objective in categorizing the dishes is to systematically analyze 
the environmental impact of individual ingredients, which can significantly differ based on their origin and pro-
duction methods. For each dish, based on the ingredients used, we classified the dishes under the following rules. 
The first rationale behind our categorization is for dishes with ingredients such as beef, pork, chicken, minced 
meat, other fresh meat, and processed meat, which are widely recognized to have considerable environmental 
footprints. Notably, among the dishes targeted in this study, there were no dishes that used multiple types of the 
aforementioned meat or seafood simultaneously. Thus, dishes using the corresponding ingredients were individ-
ually classified corresponding to the ingredient used.

The second rule was applied to grains, eggs, vegetables, mushrooms, and beans. Given the varied environ-
mental impacts between plant-derived ingredients, this rule aims to differentiate dishes based on their primary 
plant ingredient. For dishes that do not use meat or seafood as ingredients, they were classified according to the 
type of ingredient (grains, eggs, vegetables, mushrooms, beans) that was used in the largest quantity.

Estimation of Nutritional Composition and pricing by recipe-specific. The estimation of nutri-
tional composition was conducted using the weight of each ingredient used in the recipe and the nutritional 
composition per unit weight of each ingredient. For each ingredient in the recipe, the items correspond to the 
Japan-Standard Tables of Food Composition. Also, considering the parts that are removed and discarded during 
preprocessing, such as skin, bones, and shells of seafood, eggshells, and cores of vegetables, we only calculated the 
nutrients that can be taken from the edible part. The weight of the edible part was calculated using the waste rate 
listed in the Japan-Standard Tables of Food Composition applied to the amount listed in the recipe. In the calcu-
lation of the nutritional composition, we did not consider waste other than inedible parts as mentioned in Section 
2. Also, we ignored the loss or denaturation of nutrients caused by cooking and heating. The nutrient intake per 
serving from each recipe can be represented by the following Eq. 1.

=
∑ × − ×

N
Q (1 D ) N

S (1)j
i i i ij

Here, Nj represents the amount of nutrient j that can be taken when one serving of a certain dish is eaten. Qi 
represents the weight listed in the recipe of ingredient i used in this dish [g]. Di is the waste rate of ingredient i, 
and Nij is the content of nutrient j per 1 g of the edible part of ingredient i. For unmeasured nutrients and trace 
nutrients, we calculated them as 0. S is the number of servings per recipe.

Next, regarding the price per serving for each dish, we calculated only the costs necessary to purchase the 
ingredients used in the dish. To note, costs associated with the storage, cooking, and disposal of ingredients are 
not included in the price of the recipes in the current study. Moreover, we used the household consumption sur-
vey from the Family Income and Expenditure Survey by the Statistics Bureau of Japan to obtain data on house-
hold consumption patterns to accurately assess the carbon footprint of food53. This data shed light on the average 
monthly expenditure on various food items procured by Japanese households as well as their unit prices, which 
is integral to our evaluation process, enabling us to correlate price information with recipe ingredients, so as to 
conduct our carbon footprint assessments of the 388 recipes. Figure 2 presents the flowchart of this calculation. 
However, in calculating the purchase price of each food item, since the household survey does not conduct sur-
veys on the purchase price for one-person households, we used data from households of two or more. In addition, 
due to differences in the standard physical unit across food items in the purchase price data we used, we converted 
all data to a price per 100 g. During this process, milliliters, as used in condiments and beverages, were uniformly 
approximated as 1 g. The household survey does not distinguish between domestic and imported goods; there-
fore, the purchase prices for each food item used in this study include both domestic and imported goods.

As illustrated in Fig. 2, for some food items lacking purchase price data in the household survey, we calcu-
lated these using price information from the 2015 retail price statistics survey54. This method of purchase price 
calculation was applied to 53 food items, such as “chikuwa” and “cake”. Below, we explain the specific calculation 
method. In the retail price statistical survey, considering representativeness, we targeted prefectural capitals and 
cities with populations of 150,000 or more. Based on the average annual retail price and the weight of surveyed 
items in each city, we calculated the price per 100 g and took this as the relevant item’s price. However, the retail 
price statistics survey aims to follow the price changes of specific products for each food item, and there could 
be differences in the purchase prices in the household survey. Therefore, we considered the difference between 
prices and purchase prices and performed a correction for the prices. The correction was calculated as a ratio 
of the average purchase price in the household survey and the price in the retail price statistics survey for items 
listed in both surveys and the average of this ratio was taken as the correction coefficient.

This correction coefficient was then applied to the retail price to adjust it to the average purchase price. For 32 
items such as “other noodles” and “other leafy vegetables”, which represent all foods in a certain category except 
for specific foods, neither the household survey nor the retail price statistics survey provided price information. 
For these food items, we used the average purchase price of food items in the same category. As an example, 
the purchase price of “other processed meat” was taken as the average purchase price of “ham”, “sausages”, and 
“bacon”. Also, for “shumai” and “cocoa/cocoa beverages”, while they are not items that bundle the same cate-
gory into one, neither the household survey nor the retail price statistics survey provides price information. 
Therefore, we used the purchase price of similar food items as a substitute for the purchase price of these food 
items. The purchase price of “shumai” was substituted with the purchase price of “gyoza”, and the purchase price 
of “cocoa/cocoa beverages” was substituted with the purchase price of “coffee beverages”. In this manner, we 
calculated the average purchase price per 100 g and the purchase price for each food item. Then, by dividing 
the annual per-person expenditure on each food item by the price per 100 g, we calculated the annual purchase 
quantity (physical unit: 100 g) of each food item.
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For each ingredient, we used the item that best corresponds to the 200 food items, and the average purchase 
price of that food item was used as the price of the relevant ingredient. The price of each dish is determined by 
the sum of the product the weight of each ingredient used in the recipe and the price of each ingredient. Unlike 
the calculation of the nutritional composition, the weight of each ingredient includes the weight of inedible 
parts. The price P per serving of each dish can be represented by the following Eq. 2.

P
Q P

S (2)
i i i=

∑ ×

Here, Pi represents the average purchase price per weight of ingredient i [JPY/g].

Estimation of the carbon footprint of recipes. To ascertain how much GHG emissions are necessitated 
by the consumption of each recipe overall, we estimated the carbon footprint at three stages: production and sales, 
cooking, and disposal. Similar to nutrients, in order to compare dishes, we divided the total carbon footprint by 
the number of servings per recipe to calculate the carbon footprint per serving. The carbon footprint E of each 
dish can be calculated using Eq. 3.

=
+ +

E
(E E E )

S (3)
p c d

Here, Ep is the carbon footprint of the production and sales process [g], Ec is the carbon footprint of the cook-
ing process[g], Ed is the carbon footprint of the disposal process, and S is the number of servings per recipe[g]. 
Firstly, to calculate the carbon footprint from supply-chain, which indicates the emission associated with the 
production and retail process, we applied the emission intensity generated from Embodied Energy and Emission 
Intensity Data for Japan Using Input-Output Tables (3EID)55, which originated from the EEIO method. To 
note, the consumer price is adopted. The difference and reason for adoption on consumer price is previously 
discussed in our previous study56. The carbon footprint Ep of the production and sales process of each dish can 
be calculated using Eq. 4.

∑= × ×E Q P I
(4)

p
i

i i i

Here, Qi is the weight of ingredient i used in this dish [g], Pi is the average purchase price per weight of ingre-
dient i [JPY/g], and Ii is the GHG emission unit of ingredient i [g/JPY]. However, for each dish, there may be 
food waste, such as leftovers and disposal. Since the ingredients that make up these food losses are not actually 
consumed, the carbon footprint emitted to produce and sell the ingredients of the food loss and the carbon 
footprint emitted to produce and sell the consumed ingredients must be considered separately. Ep is the carbon 
footprint of the production and sales process of all the ingredients necessary for a dish [g], including the carbon 
footprint of the food waste. To note, we would like to highlight that the methodology for estimating the carbon 
footprint from the production process has been extensively covered in prior studies. As for our approach to 
addressing the inconsistencies between intensities in the 3EID dataset and the consumption data, we referred to 
our previous dataset57. The calculation of the carbon footprint due to the food waste portion in the production 
and sales process will be described later in the section on the carbon footprint of the disposal process.

Fig. 2 Flowchart of the unit price of food items purchased in this dataset.
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Estimation of Energy Consumption required for Each Cooking Method. Many preceding studies 
pertaining to the calculation of carbon footprint associated with cooking have established several menus, actually 
performed cooking, measured the consumption of gas or electricity used in the process, and then multiplied the 
carbon dioxide emission unit per energy type until it reaches the consumer, to calculate carbon dioxide emissions. 
However, such calculation methods necessitate actual cooking and measurement of each dish and can only calcu-
late the carbon dioxide emissions of the dish in the set menu. On the other hand, Inaba et al.58 proposed a method 
for estimating CO2 emissions from home cooking, taking into account the thermal efficiency of cooking utensils 
and temperature rise according to each cooking method. In this study, we referred to the estimation method of 
Inaba et al. and calculated the carbon footprint of the cooking process based on the ingredients and cooking 
methods described in the recipe of the dish.

Cooking utensils are primarily divided into those that use electricity or gas (city gas or LP gas, this study 
assumes city gas for the calculation). Therefore, this study calculated by multiplying the CO2 emission unit per 
each power consumption or gas consumption used in cooking utensils. The electric cooking utensils targeted 
are microwaves, ovens, and rice cookers. When using electric cooking utensils, the recipe often clearly states 
the output and cooking time, such as “heat in a 500 W microwave for 5 minutes” or “bake in a 180 °C oven for 
10 minutes”. From the output, the power consumption can be understood, and it can be calculated in conjunc-
tion with the cooking time to easily determine the power consumed during cooking.

On the other hand, when cooking with gas-fired cooking utensils such as gas stoves, the recipe may be clearly 
stated, such as “burn on high heat for 5 minutes”, or ambiguously stated, such as “boil until the vegetables are 
heated” or “fry until it turns fox-colored”. In the former case, by investigating the gas flow rate during high, 
medium, and low heat through experiments, if the cooking time is known, the approximate gas consumption 
can be estimated. However, in the latter case, it is very difficult to estimate in the same way because neither the 
size of the gas output nor the cooking time is shown.

Therefore, considering the thermal efficiency of gas cooking utensils, we estimated the amount of energy 
that needs to be transmitted to ingredients and water/oil according to each cooking method such as “boiling”, 
“grilling”, and “frying”. In this case, even if the size of the gas output and the cooking time are not known, if the 
ingredients used and their quantities and the cooking method are known, the required energy amount for cook-
ing can be approximated.

The thermal efficiency of the gas cooking utensils was taken as the value obtained by dividing the amount 
of energy used to raise the temperature and evaporate food ingredients and water/oil by the amount of energy 
provided by gas required for actual cooking. This study, like Inaba et al.58 used the thermal efficiency calcu-
lated using the results of cooking experiments by Mizuno et al.59. Thermal efficiency varies depending on low, 
medium, and high heat, the presence or absence of a lid, and heating and boiling times. In this study, to make 
calculations simple, the thermal efficiency in the case of medium heat without a lid was used, regardless of the 
dish and cooking method.

Microwave. When using an electric range, the amount of power consumption can be estimated from the out-
put of the microwave and the cooking time. The actual power consumption is higher than the output of the micro-
wave due to losses during the conversion from electricity to heat. The conversion efficiency was set by referring 
to the maximum output and power consumption of an actual product (Panasonic Corporation’s single-function 
range NEFL222). Therefore, the power consumption when cooking with a microwave can be estimated using 
Eq. 5.

Microwave power consumption(J) (P T )/ m (5)m m= × Δ η

Here, Pm is the high-frequency output of the microwave [W], ΔTm is the cooking time of the microwave 
[sec], and ηm is the conversion efficiency of the microwave (0.71).

Oven. The power consumption when using an oven can be estimated in the same way as a microwave. In the 
case of an oven, without considering the conversion efficiency, the power consumption of the oven function of an 
actual product (Panasonic Corporation’s oven range NE-UBS5A) was used for estimation. The power consump-
tion can be estimated by multiplying the oven’s power consumption by the cooking time.

rice cooker. Not only for dishes where cooking with a rice cooker is stated in the cooking procedure of the 
recipe, such as rice and mixed rice, but also for dishes where rice is directly used as one of the ingredients, such 
as fried rice and rice bowl dishes, it was assumed that cooking was done using a rice cooker. When cooking with 
a rice cooker, the power consumption was set as constant, regardless of the amount of rice cooked in the dish. 
The necessary power consumption was based on an actual product (Panasonic Corporation’s IH Jar Rice Cooker 
SR-VSX101), and set for cooking time (156 Wh per cycle) and warming time (13.9 Wh per hour). When cooking 
with a rice cooker, it was set to keep warm for 2 hours, and the power consumption was the sum of the power 
consumption for one cycle of cooking and 2 hours of keeping warm, uniformly set at 183.8 Wh.

Simmering. In the case of cooking methods that involve “simmering”, we assumed the method involves heat-
ing for a certain period of time after boiling water. In this case, the energy consumption required for cooking 
can be divided into three major parts: the energy required to boil water, the energy required to maintain the 
temperature of the water after boiling, and the energy required to heat the ingredients. These can be represented 
by Eqs. 6, 7, and 8.
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Energy consumption until water boils (J)
m c K

h (6)
w w b=

× × Δ
η

=
× × × Δ

η

Energy consumption for maintaining the temperature of the water after boiling(J)
v S H T

b (7)
p w

Energy consumption for heating ingredients(J)
Q c K

b (8)
i i i b=

∑ × × Δ

η

Here, mw is the amount of water used [g], cw is the specific heat of water [J/(g·K)], ΔKb is the temperature dif-
ference [K] from room temperature (20°C) to boiling point (100°C), ηh is the heat efficiency during heating, v is 
the evaporation amount of water per unit area of the pot [g/(min·cm2)], Sp is the bottom area of the pot [cm2], Hw 
is the latent heat of evaporation of water [J/g], ΔT is the heating time after boiling [min], ηb is the heat efficiency 
after boiling, Qi is the amount of ingredient i used [g], and ci is the specific heat of ingredient i [J/(g · K)]. When 
the cooking method is “simmering”, the amount of water used in the recipe is stated, so mw uses the amount of 
water stated in each recipe. In addition, since ΔT is often not stated in the recipe, for simplicity of calculation, 
2/3 of the total cooking time required for the recipe was used.

Boiling. When the cooking method is “boiling”, similar to “simmering”, the energy consumption required for 
cooking can be divided into three parts: the energy required to boil the water, the energy required to maintain the 
temperature of the water after boiling, and the energy required to heat the ingredients. This can be determined by 
the sum of Eqs. 6, 7, and 8. When the cooking method is “boiling”, the amount of water used in the recipe is often 
not stated. When boiling ingredients, enough water is needed to cover the entire ingredients, so in this study, we 
referred to Kagome’s site60, and used a value of 5 times the weight of the ingredients for mw. Also, as with “sim-
mering”, ΔT is often not stated in the recipe, and for simplicity of calculation, it was set uniformly at 10 minutes.

Steaming. When the cooking method is “steaming”, similar to “simmering” and “boiling”, the energy con-
sumption required for cooking can be divided into three parts: the energy required to boil the water, the energy 
required to maintain the temperature of the water after boiling, and the energy required to heat the ingredients. 
This can be determined by the sum of Eqs. 6, 7, and 8. Even when the cooking method is “steaming”, the amount 
of water used in the recipe is often not stated. The amount of water needed to steam the ingredients was set at 60% 
of the pot. In this study, the depth of the pot was set at 15 cm, and the amount of water needed to “steam” was set 
from the bottom area of the pot. Also, as with “simmering”, ΔT is often not stated in the recipe, and for simplicity 
of calculation, 2/3 of the total cooking time required for the recipe was used.

Stir-fry. In the case of stir-frying on a gas stove, it is assumed that the heat balance between the gas stove and 
the bottom surface of cooking utensils such as pots and frying pans is the same, regardless of the method of cook-
ing. However, when “grilling” with a frying pan, unlike when “boiling”, “blanching”, “steaming”, or “frying”, parts 
of the frying pan’s surface area that do not hold food or water/oil occur. The heat received by these parts from the 
gas stove is released into the atmosphere without being transferred to the food or water/oil. Taking into account 
such heat losses to the atmosphere, in order to calculate the real energy required to heat the food, the following 
correction factor was multiplied by the heat efficiency (See Eq. 9).

α =Correction factor for frying pan( )
S
S (9)

s

f

Here, Ss represents the area covered by food [cm2], Sf is the bottom area of the frying pan [cm2].
Using the correction factor for the frying pan, the energy consumption required when the method of cooking 

is “grilling” can be calculated using Eq. 10.

=
∑ × × Δ

η × α
Energy consumption for heating the food(J)

Q c K
h (10)

i i i f

Here, ΔKf represents the temperature difference [K] of the food before and after stir-frying.

Frying. For the cooking method of frying, the energy consumption required for cooking can be divided into 
two parts: the energy required to raise the oil to the necessary temperature, and the energy needed to heat the 
food ingredients. In the case of “frying”, in addition to these two types of energy, energy is also needed for the 
evaporation of water from the food. However, the amount of water evaporation from the food differs significantly 
depending on the food and the way it is fried, and it is difficult to calculate, hence this study did not take into 
account the energy consumption needed for the evaporation of water from the food due to frying. As a result, it 
is necessary to note that the calculated energy consumption needed for cooking may be an underestimate of the 
actual energy consumption. The amount of energy needed to raise the temperature of the oil can be calculated 
in the same way as the energy needed to bring water to boil in cases of “boiling”, “blanching”, and “steaming”. 
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Moreover, the energy needed to heat the food is the same as the calculations for “boiling”, “blanching”, “steaming”, 
and “grilling”. The calculation formulas are shown in Eqs. 11 and 12.

Energy consumption required for raising oil temperature(J)
m c K

h (11)
o o o=

× × Δ
η

=
∑ × × Δ

η
Energy consumption for heating the food(J)

Q c K
h (12)

i i i d

Here, mo represents the amount of oil used [g], co represents the specific heat of the oil [J/(g·K)], ΔKo repre-
sents the temperature difference [K] from room temperature (20 °C) to frying temperature (180 °C), and ΔKd 
represents the temperature difference [K] of the food before and after frying.

Estimation of specific heat for each ingredient. In this section, we elucidate the specific heat of 
each food ingredient, which is crucial in calculating the carbon footprint of the cooking process of each dish. 
Obtaining data related to the specific heat of each ingredient used in the dishes targeted in this study was chal-
lenging. Therefore, barring the food ingredients whose specific heat is listed in the Thermal Property Handbook61, 
we utilized the specific heat calculated using estimation formulas.

Specific heat is minimally affected by heterogeneous structures, thus it can be calculated from the compo-
sition of water, protein, carbohydrates, and fats in food. The difference in specific heat between proteins and 
carbohydrates is small, hence they can be treated collectively as “solid matter.” Therefore, for low-fat foods that 
contain minimal fat, the specific heat can be calculated using the following Eq. 13, which MW + MS = 1.0:

c (1 0M 0 2M ) 4187 (13)W S= . + . ×

In this context, low-fat foods are those with a mass fraction of fat of 1% or less. Here, c represents the specific 
heat of the ingredient [J/(kg·K)], MW represents the mass fraction of moisture, and MS represents the mass frac-
tion of protein and carbohydrates.

Fats have different phase transition temperatures depending on their composition and crystallinity. If 
high-fat foods contain fats with high phase transition temperatures, the apparent specific heat will include the 
latent heat of phase transition, resulting in higher specific heat than low-fat foods. Therefore, it is necessary to 
measure the specific heat of high-fat foods, but near room temperature, it can be estimated using the following 
Eq. 14, which MW + MF + MS = 1.0:

= . + . + . ×c (1 0M 0 5M 0 33M ) 4187 (14)W F S

Here, MF represents the mass fraction of fat.
These estimation formulas apply when the sum of the mass fractions of water, protein, carbohydrates, and 

fats in food is 1.0. However, ingredients with a high proportion of ash, such as seasonings, may not be accurately 
estimated. Therefore, for ingredients with a mass fraction of ash of 0.1 or more, the specific heat is calculated 
using the following formula by Heldman and Singh62, where MW + MC + MP + MF + MM = 1.0:

= + + + +c 4187M 1424M 1549M 1675M 837M (15)W C P F M

Here, MC represents the mass fraction of carbohydrates, MP represents the mass fraction of protein, and MM 
represents the mass fraction of ash.

Carbon footprint of the cooking process. In this section, we discuss the calculation of the carbon foot-
print during the cooking process of various dishes, utilizing the previously estimated energy consumption val-
ues for each cooking method. However, most dishes are prepared through more than one cooking method. For 
instance, the preparation of macaroni gratin is outlined in the listed steps and depicted in Fig. 3, by illustrating 
the flowchart of the cooking process.

It becomes clear from the cooking procedure that macaroni gratin is prepared through various methods, 
including boiling, baking, simmering, and oven-cooking. For such dishes, it’s impossible to estimate the carbon 
footprint of the cooking process using a single cooking method. Furthermore, assuming that the heat energy 
absorbed by the ingredients during cooking remains constant when the final temperature is the same, it’s inap-
propriate to simply add up the carbon footprints calculated for each cooking method. Hence, in this study, for 
dishes cooked using multiple methods, we used the average of the carbon footprints calculated for each method.

However, in cases where both electric and gas cooking appliances are used for a dish, given that electric appli-
ances are often used for preliminary preparations and final touches, the carbon footprint for the cooking process 
was taken as the average carbon footprint calculated for the gas cooking methods plus the carbon footprint from 
the electric appliances.

The carbon footprint from cooking with electric appliances was obtained by multiplying the estimated power 
consumption by the CO2 emission coefficient per kWh. The CO2 emission coefficient for electricity used here 
is based on the definitive value for the fiscal year 2020 (441g- CO2/kWh) provided by TEPCO Energy Partner, 
Inc.63. Similarly, the carbon footprint from cooking with gas appliances was obtained by multiplying the esti-
mated energy consumption by the CO2 emission coefficient per MJ for city gas. The CO2 emission coefficient 
for city gas per MJ used here was calculated using the standard calorific value of city gas and the CO2 emission 
coefficient per cubic meter of city gas (49.9g- CO2/MJ) as announced by the Tokyo Gas Group64.
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From the above, the carbon footprint Ec of each cooking process [g] can be calculated as follows:

E W 441
W

n
49 9

(16)c e
i
n

g,i= × +
∑

× .

Here, We is the total power consumption [kWh] used by electric cooking appliances, Wg,i is the energy con-
sumption [MJ] of cooking method i using a gas cooking appliance, n is the number of types of cooking methods 
using a gas cooking appliance for each dish. Table 3 below provides a list of the values used for each constant in 
the calculation of the necessary energy consumption for each cooking method.

Carbon footprint of the disposal process. In the consumption of food, a large amount of food waste is 
generated. Especially in Japan, most of the food waste generated at home is incinerated or landfilled, emitting a lot 
of CO2 in the process. Furthermore, the mass production of food waste has become a social issue in recent years, 
with food waste generated from homes alone amounting to approximately 2.61 million tons in 201965. Energy is 
used and CO2 is emitted in all processes until food waste is generated, including production, storage, processing, 
transportation, consumption, and disposal. Thus, the carbon footprint associated with food waste has a signifi-
cant impact on the carbon footprint of meals, making it a crucial aspect to consider. However, there is hardly any 
research on the carbon footprint of food waste generated from each dish.

Therefore, this study calculated the total amount of food waste generated from each dish by multiplying the 
food ingredients used in the dish by their respective waste rates and summing them. The CO2 emitted during the 
process of treating that food waste is regarded as the carbon footprint of the waste process.

Food waste is generated at various stages from production to actual consumption. First, in the production 
process, products that are unsuitable or have minor defects that do not affect consumption are discarded and 
not shipped as products. In the distribution and sales process, waste is generated due to attrition during trans-
portation, in warehouses, and on store shelves, as well as unsold goods. Even after being sold to consumers, 
inedible parts such as skin, bones, and shells of seafood, eggshells, and vegetable skins and cores are removed 
and discarded during the pre-cooking process. In the edible part excluding the inedible part, the following three 
types of waste occur:

Fig. 3 Flowchart of cooking macaroni gratin.
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 1) Leftovers: Food that was used as an ingredient in cooking or was eaten as is, but was left unfinished and 
discarded.

 2) Direct Waste: Food that could have been used as an ingredient in cooking or could have been eaten as is, 
but was discarded as is due to the expiration of the best-before date, etc.

 3) Excessive Removal: During cooking, parts that are edible are excessively removed while removing inedible 
parts are discarded. Specifically, this refers to parts that are removed in excess of the waste rate in the “ 
Japan-Standard Tables Of Food Composition” by the Ministry of Education, Culture, Sports, Science and 
Technology. It also includes edible parts that had to be removed due to spoilage.

In this study, we focus only on the food waste that occurs after the food reaches the consumer, including 
inedible parts, leftovers, direct waste, and excessive removal generated in each dish. Note that we collectively 
refer to food waste caused by leftovers, direct waste, and excessive removal, excluding inedible parts, as “food 
loss”. The weight of the inedible part of the food waste can be calculated by multiplying the weight of each 
food ingredient used in the recipe by the waste rate of each ingredient in the “Japan-Standard Tables of Food 
Composition”52. In the “2014 Food Loss Statistics Survey Report”, the amount of food used (edible part), and 
the amount of leftovers, direct waste, and excessive removal were surveyed for 26 food categories66. In this study, 
the waste rate of food loss was calculated using the results of the “2014 Food Loss Statistics Survey Report”, as 
showcased in Supplementary Table S1. For instance, this table indicates a food loss rate of 8.8% for ‘Vegetables’ 
and 2.2% for ‘Meat’ by physical unit. To reconcile the depth of the data with the need for clarity, we grouped 
349 individual ingredients into 26 categories. The categorization rationale is based on similarities in food types, 
their consumption patterns, and related waste behaviors. Then, the waste rate of food loss for each food item was 
calculated using Eq. 17.

=
+ +

×Food loss waste rate (W)
W W W

U
100%

(17)
left direct excessive

food

Here, Wleft is the amount of leftover waste [g], Wdirect is the amount of direct waste[g], Wexcessive represents the 
excessive removal waste amount [g], Ufood is the food usage amount [g].

The total weight of food waste generated in each dish is the sum of the weights of food waste generated from 
inedible parts and food loss (leftovers, direct waste, excessive removal). In terms of food waste treatment, the 
CO2 emissions per unit of waste were calculated using the survey results of the “Study on Food Cycle” con-
ducted by the Ministry of Agriculture, Forestry, and Fisheries. Food waste has various treatment methods such 
as energy use through fertilizer or methanation, solid waste fuel, and incineration (including heat recovery). In 
Japan, considering that most of the food waste generated at home is incinerated and landfilled, this study cal-
culated the CO2 emissions when treating food waste (raw garbage) by incineration (without power generation). 
Burning food waste produces carbon dioxide, but it is also possible to consider it as carbon neutral because the 
overall balance of emission and absorption is maintained by absorbing carbon dioxide from the atmosphere 
during the growth process of plants, without affecting the increase or decrease of carbon dioxide. However, 
this study focuses on the CO2 emissions generated during the treatment process. In the case of incineration, 
emissions during each stage from when food waste is generated, collected, transported, incinerated, and the 
incineration residue is landfilled, are targeted. The CO2 emissions per 1000 kg of raw garbage at each stage when 
incinerating food waste are shown in Table 4.

The carbon footprint Ed of the waste process [g] generated by each dish can be calculated as follows using 
Eq. 18:

Constant Name Details Value

ηm Conversion efficiency of microwave 0.71

ηh Heat efficiency during heating 0.37

ηb Heat efficiency after boiling 0.42

cw Specific heat capacity of water [J/(g·K)] 4.20

Hw Latent heat of vaporization of water [J/g] 2250

co Specific heat capacity of oil [J/(g·K)] 1.96

ΔKb
Temperature difference from room (20 °C) to boiling temperature 
(100 °C) [K] 80

ΔKf Temperature difference of food before and after baking [K] 100

ΔKo
Temperature difference from room (20 °C) to frying temperature 
(180 °C) [K] 160

ΔKd Temperature difference of food before and after frying [K] 130

v Evaporation of water per unit area of pot [g/(min·cm²)] 0.06

Sp Bottom area of the pot [cm²] 314

α Correction factor of the frying pan 0.75

Table 3. Constants used in the calculation of the necessary energy consumption for each cooking method.
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∑= × + × − × × .E (Q D Q (1 D ) W) 0 1064 (18)d i i i i i i

Where Qi is the weight of ingredient i [g], Di is the waste rate of the inedible part of ingredient i, and Wi is the 
waste rate of food loss in the food item classification corresponding to the ingredient i.

Food waste due to food loss is different from the waste of inedible parts, and can be reduced by efforts and 
ingenuity. Therefore, we can consider that the amount of food ingredients is unnecessarily produced only by the 
amount discarded by food loss, and the carbon footprint of the production and sales process of the food ingre-
dients of the food loss part would not occur if there were no food loss. In this study, we estimated the carbon 
footprint of the production and sales process of the food loss part of each dish in order to distinguish it from the 
carbon footprint of the production and sales process of the actual consumed ingredients.

The carbon footprint of the production and sales process of the food loss part among the carbon footprints 
of the production and sales process of each recipe, Ep,foodloss, was estimated by Eq. 19.

∑= × − × × ×E Q (1 D ) W P I (19)p,foodloss i i i i i i

Stages CO2 Emissions (kg)

Collection 24

Incineration 73

Waste Transportation 3.7

Landfill 5.7

Total 106.4

Table 4. CO2 Emissions per 1000 kg of Raw Garbage at Each Stage in the Incineration of Food Waste.

Category Field Name Meaning Category Field Name Meaning

General Information

recipe_id Unique identifier 
for each recipe. Nutrition and 

Keywords

cliped_count
The number of times 
the recipe has been 
clipped or saved.

recipe_name The name of the 
recipe. search_word Relevant search terms 

linked to the recipe.

img_url URL of the recipe 
image.

Detailed 
Ingredient and 
Nutritional 
Information

ingredients Detailed list of 
ingredients used.

author_type
The type of author 
who provides the 
recipe.

modified_ingredients
Variations or 
modifications to the 
standard ingredients.

author_name Name of the author 
of the recipe. nutrients Detailed nutritional 

breakdown.

published_datetime
Date and time 
the recipe was 
published.

Environmental 
Impact Analysis

GHG_production GHG emissions 
during production.

modified_datetime
Date and time 
the recipe was 
modified.

price
Cost associated 
with the recipe or its 
components.

recipe_description Brief description of 
the recipe. disposal_amount Amount of waste 

produced.

servings Number of servings 
the recipe yields. GHG_disposal GHG emissions 

during waste disposal.

cooking_time Duration required 
to cook the recipe. GHG_cooking

GHG emissions 
during the cooking 
process.

ingredients_inline Ingredients listed in 
a single line. GHG_total

Total GHG emissions 
associated with the 
recipe.

instructions
Step-by-step 
cooking 
instructions.

dish The type or category 
of the dish.

recipe_cuisine Type of cuisine the 
recipe belongs to. ingredients_category Category classification 

of ingredients.

Nutrition and 
Keywords

nutrition
General nutritional 
description of the 
recipe.

category General category of 
the recipe.

keywords
Keywords 
associated with the 
recipe.

cooking_method Method used for 
cooking.

Table 5. Database Structure and Description.
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Here, Pi is the average purchase price per weight of ingredient i [JPY/g], and Ii is the emission unit of ingre-
dient i [g/JPY]. The carbon footprint of the production and sales process of the actually consumed ingredients 
is obtained by subtracting the carbon footprint of the production and sales process of the food loss part from 
the carbon footprint of the production and sales process of all the ingredients, and can be calculated as Ep −  
Ep,foodloss.

Data records
The comprehensive recipe nutrition and environmental impact database is stored as a detailed spreadsheet, 
accessible on FigShare67. The dataset is methodically arranged, encapsulating an integrated evaluation based 
on EEIO analysis combined with a hybrid LCA approach. This was designed to quantify both the carbon foot-
print throughout the food supply chain to cooking and waste and the distinct nutritional values for specific 
recipes. The dataset comprises 47 fields, which can be categorically distilled into four distinct domains: General 
Information, Nutritions and Keywords, Detailed Ingredient and Nutritional Information, and Environmental 
Impact Analysis. To enhance the user experience and facilitate pinpoint precision during data retrieval, Table 5 
elucidates specific field names accompanied by their associated data descriptors. Furthermore, the ‘nutrients’ 
section offers a succinct breakdown, encapsulating metrics such as Energy, Fat, Carbohydrates, Zinc, Folic acid, 
Protein, Total fiber, Vitamins (A, C, E), Calcium, Iron, Potassium, Magnesium, Saturated fat, Cholesterol, and 
Salt equivalent, all of which are provided within the database.

Technical Validation
Data validation. In order to validate our dataset, meticulous attention is paid to the nutritional content of 
various recipes, by drawing comparisons with authoritative sources. We incorporated data from the United States 
Department of Agriculture (USDA)68, FAO/INFOODS Food Composition Databases69, and FAO ASEAN Food 
Composition Database70 into the validation process. Since we have calculated the nutritional content of each dish 
in this database, the validation process contains a meticulous alignment of our dataset with the corresponding 
ingredients present in the FAO and USDA databases. This alignment encompassed a mapping of ingredients, 
quantities, and seasonings, enabling a comparison of nutritional values across the three datasets. Specifically, we 
extracted all 97 kinds of components in all 388 kinds of dishes, then we calculated the total content of 12 kinds of 
nutrition in all 97 kinds of components.

Figure 4 presents the results of a rigorous validation procedure, illustrating the distribution of 12 nutritional 
constituents across a sample of 388 recipes through the medium of violin plots. The illustration takes the form 
of violin plots, where the horizontal axis designates the data sources: USDA (in deep blue), FAO ASEAN Food 
Composition Database (in pale blue), FAO/INFOODS Food Composition Databases (in pale pink), and the 

Fig. 4 Comparative Nutritional Distribution Analysis of 388 Recipes from Different Data Sources.
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current dataset (in pale red). Since the FAO ASEAN Food Composition Database does not provide detailed 
information on the nutritional content of Magnesium and Cholesterol, the corresponding violin figures are left 
blank. Notably, the nutritional evaluations from our dataset align well with the other databases, as evidenced by 
the congruence across all 12 nutritional categories. This empirical evidence affirms the credibility of the nutri-
tional data housed within our database.

In the quantification process of each recipe’s carbon footprint, we utilized average unit price for each food 
item, expressed per g/JPY. This representation, while providing a baseline perspective, failed to capture the 
inherent price variability influenced by factors such as differing consumer demographics, particularly across 
various income groups. Recognizing this limitation, we conducted an analysis to include price fluctuations. For 
347 food items listed in the Family Income and Expenditure Survey, we discerned the minimum and maximum 
unit prices contingent on purchases from diverse income households within Japan. This variability in prices 
led to a recalibration of the food ingredient expenses for each recipe, which consequently refined our carbon 
footprint estimations related to the production phase. Our calculations unveiled an average uncertainty range of 
41.47 g CO2 across the recipes, with an average relative uncertainty of 9.24% for GHG emissions during the pro-
duction process, and 8.41% for total GHG emissions. Detailed information regarding the uncertainty analysis 
is provided in an excel file sheet in our dataset, titled ‘Uncertainty analysis’. This enhanced analysis underscores 
the tangible impact of ingredient price fluctuations on carbon footprint assessments. Notwithstanding these 
advancements in our uncertainty estimations driven by price variances, we acknowledge that challenges persist 
in estimating uncertainties related to other aspects in the absence of granular personal survey data.

Usage Note
The calculation of this dataset involves data from multiple data sources, including the 3EID dataset and some 
public data from the Japanese Government Statistics. Researchers and experts can extract information from any 
database by themselves, and follow our processing steps to achieve data cleaning and enhancement. Non-data 
processing experts can directly use the summary excel file “recipe_data.xlsx”. Possible research applications of 
this dataset include identifying a) differences between cuisine styles, b) differences in diet patterns, c) diet costs 
and environmental impact, etc. In terms of policy and practice, integrating this dataset with health and environ-
mental policies can provide support to governments and organizations to develop healthier and sustainable die-
tary guidelines and policies. Despite the meticulous research process, we acknowledge the absence of a detailed 
uncertainty analysis, particularly regarding the carbon footprint embodied in the production process. Therefore, 
when factoring in the entire food supply chain of ingredients, carbon footprints from the production stage might 
potentially overshadow that from cooking and disposal processes. We admit that our difficulty in acquiring per-
sonal survey data presents challenges in a detailed statistical analysis and urges users to exercise caution when 
interpreting the results considering potential uncertainties associated with the data. Users interested in using the 
methodological framework or data presented here are requested to cite this manuscript.

Code availability
The code for data validation is open-source and available at the GitHub repository https://github.com/
LiqiaoHuang/Recipe_dataset.git.
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