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We extend our previous work on the construction of new approximations of the variational coupled
cluster method. By combining several linked pair functional transformations in such a way as to give
appropriately balanced infinite-order contributions, in order to approximate 〈eT̂ †

Ĥ eT̂ 〉L well at all
orders, we formulate a new quantum chemical method, which we name quasi-variational coupled
cluster. We demonstrate this method to be particularly robust in the regime of strong static electron
correlation, improving significantly on our earlier approximate variational coupled cluster approach.
© 2012 American Institute of Physics. [doi:10.1063/1.3680560]

I. INTRODUCTION

The ab initio calculation of molecular electronic struc-
ture has become, in recent years, an indispensable tool for
the investigation of molecular phenomena. Typical calcula-
tions begin by making the Hartree–Fock1, 2 (HF) approxi-
mation, in which it is assumed that the ground-state elec-
tronic structure is well described by a single-determinantal
wavefunction, which corresponds to a mean-field treatment
of the Coulomb and exchange interactions between electrons.
The effects of the correlated motion of the electrons may be
computed through corrections to this approximation, such as
through Møller–Plesset perturbation theory.3 Unfortunately,
the convergence of the perturbation series is often an issue,4–6

so other approaches, such as configuration interaction7 (CI),
the coupled electron pair approximation8–10 (CEPA), the lin-
ear coupled pair many electron theory11, 12 (LCPMET), the
coupled pair functional,13 and traditional coupled cluster14–19

(TCC) theory, are often used. Of all the approaches, TCC
has become the most widespread due to its numerous bene-
ficial methodological properties, such as rigorous extensivity
(correct scaling of the energy with system size) and exactness
(equivalence to full CI (FCI)) in the limit of a complete cluster
operator.

While the single-determinantal reference wavefunction
approximation is often valid, it can break down if more than
one determinant becomes equally important for the proper de-
scription of a system. This phenomenon is commonly termed
“static correlation”. In situations exhibiting strong static cor-
relation, the above methods can encounter difficulties or even
fail catastrophically. In the case of TCC, which is most of-
ten performed at the singles and doubles level, these fail-
ures sometimes emerge as unphysical maxima in potential
energy surfaces, followed by non-variational collapse to en-
ergies below FCI (Ref. 20). The standard routes to circum-
vent this are either to compute increasingly higher-order
corrections (such as through the explicit inclusion of triple
and higher excitations), or make use of a multi-determinant

a)Electronic mail: knowlespj@cardiff.ac.uk.

reference wavefunction from the outset, although other ap-
proaches to the treatment of non-dynamical correlation have
been proposed, such as the active-space CC methods of Head–
Gordon,21–23 and the spin–flip24, 25 and double-ionization-
potential26, 27 Equation of Motion (EOM) methods.

However, we and others have shown20, 28–33 that the poor
performance of TCC limited to single and double excitations
(CCSD) in the strong static correlation regime is not nec-
essarily the fault of the coupled cluster (CC) wavefunction
ansatz, but can arise from the projective determination of the
cluster amplitudes through the TCC equations. “Alternative”
CC methods have been proposed, including extended coupled
cluster34 (ECC), quadratic coupled cluster35 (QCC), improved
coupled cluster36 (ICC), unitary coupled cluster37–40 (UCC),
and variational coupled cluster41 (VCC), and a number of
studies20, 28–33 have confirmed the superiority of VCC and re-
lated approaches over TCC for the treatment of problems in-
volving strong static correlation. This can be attributed to the
upper bound property of VCC, which ensures that calculated
VCC energies are always higher than FCI energies, which is
not the case for TCC. However, all of these methods scale un-
favourably in computational complexity relative to TCC, and
the recent study of Evangelista42 confirmed that the additional
accuracy of these methods is usually significantly outweighed
by their increased computational cost. However, the search for
superior CC-like methods with more similarity to VCC than
TCC may still prove fruitful as long as these methods are con-
strained by the criterion that their computational complexity
is restricted to be comparable to that of TCC.

We have shown previously43, 44 that it is possible to con-
struct approximate VCC theories that demonstrate more up-
per bound character than TCC within the same computational
complexity, and without sacrificing important methodological
properties, such as extensivity or an exact description of iso-
lated 2-electron subsystems, and which have some superior
properties to TCC, for example that they satisfy the gener-
alized Hellmann–Feynman theorem.45 Here, we review our
approach and extend it by improved amplitude transforma-
tions that preserve, by construction, the correct behaviour in
the strong correlation limit.
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II. THEORY

A. Review of previous work

Throughout this work, we use the Einstein summation
convention46 and a spin-orbital notation. The fundamental
ansatz of coupled cluster theory is the exponential parame-
terization of the ground-state wavefunction in the basis of the
Slater determinants that can be produced by substituting or-
bitals occupied in |�0〉, the reference wavefunction, for which
we use labels belonging to {i, j, k, . . . }, with those unoccu-
pied in the reference wavefunction, for which we use labels
belonging to {a, b, c, . . . },

|�〉 = eT̂ |�0〉. (1)

This exponential parameterization ensures the extensivity of
the CC methods and is distinct from, for example, CI, in
which the exact wavefunction is instead expanded linearly as
(1 + Ĉ)|�0〉. Only in the limit of complete operators, Ĉ and
T̂ , do the CI and CC wavefunctions agree; the methods are
then referred to as full CI (FCI) or, less commonly, full CC
(FCC).

In TCC theory, the CC ansatz is inserted into the
Schrödinger equation, which is then premultiplied by e−T̂ .
This has the effect of decoupling the amplitude equations
from the energy,

e−T̂ Ĥ eT̂ |�0〉 = ETCC|�0〉. (2)

Partitioning the cluster operator by excitation rank,

T̂ = T̂1 + T̂2 + . . . , (3)

T̂1|�0〉 = T i
a |�a

i 〉, (4)

T̂2|�0〉 = 1

4
T

ij

ab|�ab
ij 〉, (5)

the energy is determined by projection of Eq. (2) onto the
reference determinant, and the amplitude equations are de-
termined similarly by projection onto the singly, doubly and
more highly excited manifolds, as applicable. In the case of
truncation to T̂ = T̂1 + T̂2, the CCSD method is defined by
the following relationships:

〈�0|e−T̂ Ĥ eT̂ |�0〉 = ECCSD, (6)

〈�a
i |e−T̂ Ĥ eT̂ |�0〉 = 0, (7)

〈�ab
ij |e−T̂ Ĥ eT̂ |�0〉 = 0. (8)

The Campbell–Baker–Hausdorff formula47 ensures that the
similarity-transformed Hamiltonian operator, H̄ = e−T̂ Ĥ eT̂ ,
terminates at the O(T̂ 4) terms, making CCSD computaton-
ally practical with O(o2v4) complexity, where o and v refer,
respectively, to the number of occupied and virtual orbitals in
the calculation.

In VCC, on the other hand, the CC wavefunction is in-
stead inserted into the quantum mechanical energy expecta-
tion value and the ground-state energy calculated as the min-
imum of this functional with respect to the set, {T i

a } ∪ {T ij

ab}
∪ · · · , of cluster amplitudes,

EVCC = 〈�0|eT̂ †
Ĥ eT̂ |�0〉

〈�0|eT̂ †
eT̂ |�0〉

= 〈�0|eT̂ †
Ĥ eT̂ |�0〉L. (9)

Our current interest remains an accurate approximation of
VCC, and numerous attempts have been made towards this
goal by other authors, with varying degrees of success. The
simplest such approximations rely on simply truncating the
exponential operator, eT̂ , to 1 + T̂ in one of the two forms of
the VCC functional given above, resulting in either variational
CI,

ECI = 〈Ĥ 〉 + 2〈Ĥ T̂ 〉 + 〈T̂ † Ĥ T̂ 〉
1 + 〈T̂ † T̂ 〉

= 〈Ĥ 〉 + 2〈Ĥ T̂ 〉 + 〈T̂ †(Ĥ − 〈Ĥ 〉)T̂ 〉
1 + 〈T̂ † T̂ 〉 , (10)

which is known not to be extensive for a truncated cluster
operator, or CEPA(0),

ECEPA(0) = 〈(1 + T̂ )† Ĥ (1 + T̂ )〉L
= 〈Ĥ 〉 + 2〈Ĥ T̂ 〉 + 〈T̂ †Ĥ T̂ 〉L
= 〈Ĥ 〉 + 2〈Ĥ T̂ 〉 + 〈T̂ †(Ĥ − 〈Ĥ 〉)T̂ 〉, (11)

which is not exact even for a complete cluster operator.
These problems can be understood more generally; in

VCC, the unlinked terms in the numerator cancel exactly with
the entire denominator, leaving only the linked terms in the
numerator. This is why the VCC functional may be written in
one of the two forms given in Eq. (9). The truncation of the
exponential in the first form destroys this cancellation, which
results in the inclusion of unlinked terms and thus the loss of
extensivity. After performing the cancellation of the VCC de-
nominator with the unlinked parts of the VCC numerator, un-
cancelled exclusion-principle-violating terms remain, so that
〈eT̂ †

Ĥ eT̂ 〉L does not naturally truncate at the number of elec-
trons; it is always an infinite expression. Any finite approxi-
mation to this infinite expression is then necessarily incorrect
even when the cluster operator is itself complete. Thus, simply
including more of the Maclaurin series of eT̂ does not resolve
these problems.

Asymmetric expectation value expressions derived from
a VCC starting point have also been proposed, such as ex-
tended coupled cluster,34

EECC = 〈�0|e�̂†
e−T̂ Ĥ eT̂ |�0〉. (12)

Here, the functional is minimized with respect to both T̂ and
�̂ independently. Truncation of the operator e�̂ yields a hi-
erarchy of methods stepping from the TCC functional, corre-
sponding to the truncation 1 + �̂, to VCC for no truncation.
The quadratic coupled cluster35 method, which represents the
first step above TCC in this hierarchy, corresponds to trun-
cation of the operator to 1 + �̂ + 1

2 �̂2. Unfortunately, while
it offers increased accuracy over CCD, the QCCD method
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TABLE I. Linked O(T 3) contributions to VCCD, where η = 1
4 T

ij

abT
ab
ij , and where eē and hh̄ label the two spinorbitals occupied and unoccupied in the

reference wavefunction, respectively.

1
2! 〈T̂ †

2 Ĥ T̂ 2
2 〉L diagram 2 1

2! 〈T̂ †
2 Ĥ T̂ 2

2 〉L contribution Two electrons Two holes

A 1
2 T ac

ij T kl
cd T db

kl 〈ij ||ab〉 = −T ac
ij ηb

c 〈ij ||ab〉 −2T ac
eē ηb

c 〈eē||ab〉 −2T hh̄
ij η 〈ij ||hh̄〉

B 1
2 T ab

ik T kl
cd T cd

lj 〈ij ||ab〉 = −T ab
ik ηk

j 〈ij ||ab〉 −2T ab
eē η 〈eē||ab〉 −2T hh̄

ik ηk
j 〈ij ||hh̄〉

C 1
8 T ab

kl T kl
cd T cd

ij 〈ij ||ab〉 = 1
4 T ab

kl ηkl
ij 〈ij ||ab〉 T ab

eē η 〈eē||ab〉 T hh̄
ij η 〈ij ||hh̄〉

D T ac
ik T kl

cd T db
lj 〈ij ||ab〉 = T ac

ik ηkb
cj 〈ij ||ab〉 2T ac

eē ηb
c 〈eē||ab〉 2T hh̄

ik ηk
j 〈ij ||hh̄〉

requires an expensive O(v6) step in the iterative proce-
dure. The improved coupled cluster36 hierarchy has the same
requirement.

The method that underpins our current approximations is
the linked pair functional43 (LPF), or LPFD, making explicit
the doubles-only nature of the theory. Here, the effect of the
exponential operator is replaced by closed-form geometric se-
ries of the cluster amplitudes, and these series are tuned such
that certain VCC doubles (VCCD) terms are reproduced ex-
actly through all orders. The LPFD energy functional,

ELPFD = 〈Ĥ 〉 + 2〈Ĥ 2T̂ 〉 + 〈1T̂
†(Ĥ − 〈Ĥ 〉)1T̂ 〉, (13)

is defined through transformed cluster operators,

qT̂ |�0〉 = 1

4
qT

ij

ab|�ab
ij 〉, (14)

qT
ij

ab = (
qU qPuT

)ij

ab
= 1

2

(
qU qPu

)ij

kl
T kl

ab, (15)

qU
ij

kl = δ
ij

kl + qSu �
ij

kl, (16)

�
ij

kl = λ η
ij

kl + 1

2
(1 − λ)

(
δi
k η

j

l − δi
l η

j

k − δ
j

k ηi
l + δ

j

l ηk
i

)

= λ η
ij

kl + 1

2
(1 − λ)(1 − τij )(1 − τkl)δ

i
k η

j

l , (17)

where τ ij permutes the labels i, j in what follows it, and the
transformation matrix is, in turn, defined in terms of the fol-
lowing density matrices:

η
ij

kl = 〈T̂ †klj †i†T̂ 〉 = 1

2
T

ij

ab T ab
kl ,

ηi
j = 〈T̂ †ji†T̂ 〉 = 1

2
T ik

ab T ab
jk ≡ ηik

jk.

(18)

The values of the parameters qSu and qPu (but not λ) are deter-
mined uniquely by the requirement that the method is exact,

here meaning that it becomes equivalent to Configuration In-
teraction with double excitations (CID), in the limiting case
of two electrons,

qSu = 1,

qPu = −q

2
.

(19)

The two transformed cluster operators, denoted qT̂ for
q ∈ {1, 2}, introduce, through the matrix powers in Eq.
(15), division by the parts of a CID-like denominator that
are coupled to the correlation of a given pair of reference-
state orbitals. In the limit of isolated electron pairs, the
transformation matrix becomes diagonal and this results
in the re-introduction of CID denominators for each pair,
such that the functional becomes exact. However, since the
transformation generates only linked terms, the method is
also rigorously extensive, unlike CID. Through the binomial
series of a power of the matrix,

qU qPu = (
1 + qSu �

)
qPu = 1 + qSu qPu � + . . . . (20)

LPFD generates VCCD-like terms to infinite-order in the
cluster amplitudes, and the particular subset of terms present
in VCCD that is captured, along with the weighting of
each term, is controlled by the value of the parameter λ.
Accordingly, we proposed the notation LPFD(λ), should
specificity be required. The exactness of LPFD in the limit
of two electrons may also be understood from this infinite
series perspective; the VCCD functional possesses an internal
mathematical structure that, in this limiting case, results
in the mutual cancellation of numerous terms through all
orders of the cluster amplitudes. For example, at O(T 3), the
lowest order at which LPFD and VCCD differ, for which
the contributing terms are given in Table I, the following
relationships hold in the 2-electron limit:

A + D = 0,

B + 2 C = 0.
(21)
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So, in this case of two electrons, the VCCD terms,
A + B + C + D, may be reproduced in infinitely many ways
corresponding to the continuously adjustable weightings of
the B and C terms, controlled by the parameter λ,

A + B + C + D = 1 − λ

2
B − λ C. (22)

These are precisely the terms generated at O(T 3) in LPFD(λ),
and this behaviour persists to higher orders also. Clearly,
the choice λ = −1 leads to the most desirable VCCD
approximation, since then the terms are present as B + C,
exactly as they appear in VCCD.

Given the possible values of q, the existence of the
negative and non-integer powers of the transformation ma-
trix needs to be considered carefully. Only if the matrix is
positive-definite (meaning that all eigenvalues of the matrix
are strictly positive), for all possible values of the cluster am-
plitudes, will the LPFD method be robustly applicable to a
wide range of chemical systems. In particular, LPFD(−1) is
ruled out by this positivity constraint, and only the choice
λ = +1 leads to a matrix that is guaranteed to be positive-
definite, since then � is Gramian, making it positive-
semidefinite.

We also recognized44 that a positive-definite matrix in-
dexed by electrons, rather than electron pairs, could be con-
structed and used to perform the transformations with no
impairment of the methodological properties.

qT
ij

ab = (
qU qPu T

)ij

ab
= 1

2
(1 − τij )

(
qU qPu

)i

k
T

kj

ab , (23)

qU
i
j = δi

j + qSu �i
j , (24)

�i
j = ηi

j . (25)

This approximates LPFD(0) correctly to O(T 4), and we con-
tinue to refer to this approximate theory simply as LPFD(0)
unless otherwise specified. Since, for systems with many elec-
trons, the number of electrons is very much less than the num-
ber of electron pairs, this matrix is significantly simpler to
handle computationally, and we saw no reason not to prefer
this theory over LPFD(+1).

Using LPFD(0) to account for the infinite-order be-
haviour, we then devised a scheme to improve the approxima-
tion of VCCD at low orders,44 which we named approximate
variational coupled cluster (AVCCD). We proposed multi-
plicatively compounding the original transformation with fur-
ther matrices; the AVCCD method is defined by the same
functional, but new density matrices are introduced,

ηib
aj = 〈T̂ †jb†ai†T̂ 〉 = T ik

ac T bc
jk ,

ηb
a = 〈T̂ †b†aT̂ 〉 = 1

2
T ij

ac T bc
ij ≡ 1

2
ηib

ai , (26)

so that two new transformations can be defined. The W trans-
formation,

(
qW qPw T

)ij

ab
= 1

2

(
qW qPw

)ij

kl
T kl

ab, (27)

qW
ij

kl = δ
ij

kl + qSw 	
ij

kl, (28)

	
ij

kl = η
ij

kl − 1

2
(1 − τij )(1 − τkl) δi

k η
j

l , (29)

adds the terms 1
2B + C, and the V transformation,

(
qV qPv T

)ij

ab
= 1

4
(1 − τij )(1 − τab)

(
qV qPv

)ic

ak
T

kj

cb , (30)

qV
ib
aj = δib

aj + qSv 
ib
aj , (31)


ib
aj = 2

(
δi
j η

b
a − ηib

aj

)
, (32)

adds the terms A + D, if the constraints

qSw qPw = −qSv qPv = +q

2
, (33)

are satisfied. The transformed amplitudes to be used in the
functional are then defined by the cumulative application of
the transformations,

qT
ij

ab = (
qV qPv

qW qPw
qU qPu T

)ij

ab
. (34)

The new, or “corrective,” transformation matrices each reduce
to the identity in the limit of two electrons, so that the property
of exactness for 2-electron systems possessed by LPFD(0) is
undisturbed. Unlike in LPFD theory, the power and coeffi-
cient parameters are not determined uniquely.

Unfortunately, neither of the new transformation matri-
ces is positive-definite in general, so we are prevented from
using the most obvious power, −q/2, which would match the
original transformation matrix. We therefore opted to use sim-
ple linear transformations, on the grounds that they minimize
the computational cost,

qPw = qPv = 1, (35)

qSw = −qSv = +q

2
. (36)

Of course, this means no new VCCD terms are generated
to infinite-order except through coupling with the LPFD(0)
terms already present.

At O(T 3), AVCCD possesses the terms A + B + C
+ D, so is equivalent to VCCD to this order. In addition,
if the Hamiltonian is partitioned into its 1-electron and 2-
electron components, Ĥ = F̂ + V̂ , the Fock operator and
fluctuation potential, respectively, then the constraints given
so far are also sufficient to ensure that AVCCD contains
(1/2!)2 〈(T̂ †

2 )2F̂ T̂ 2
2 〉L correctly. This is important for con-

sistency, since this term enters together with 〈T̂ †
2 V̂ T̂ 2

2 〉L at
fourth-order in perturbation theory.

B. A comparison of the positive-definite LPFD
methods

Our goal in this work is to determine if superior defini-
tions of the transformed amplitudes exist. Since LPFD(0) and
LPFD(+1) are both feasible choices to provide the infinite-
order contributions for an approximate VCCD theory, and
since we have so far given no convincing theoretical argu-
ment to prefer either, other than the pragmatic consideration
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of computational cost, we begin with a more rigorous compar-
ison of the two in terms of their mathematical and numerical
properties.

Analogously to the limiting case of two electrons, one
can examine the case of two holes, or two unoccupied spinor-
bitals in the reference wavefunction. This situation would
not arise in any molecular example, but approximates cer-
tain strong-correlation situations such as in the C2 molecule,
where the 1π4

u reference is strongly coupled to the 1π2
u 3σ 2

g

configuration. Examining the case of the O(T 3) VCCD terms,
given in Table I, reveals the following relationships hold in
this limit:

B + D = 0,

A + 2 C = 0.
(37)

Just as in the 2-electron case, the VCCD contribution may
be captured in infinitely many ways, which we choose to
enumerate with the real and continuously adjustable
parameter μ,

A + B + C + D = 1 − μ

2
A − μ C. (38)

It can be seen that by making the choice λ = μ = 1, −C is
obtained in both the 2-electron and 2-hole limiting cases, and
no other choices of λ and μ can give the correct contribution
for both cases. This is not a coincidence that occurs at O(T 3),
but is, in fact, a consequence of hole-particle symmetry that
persists at all orders. In short, LPFD(+1) is exact for both
two electrons and two holes, and a proof of this statement is
given as an appendix. This result initially led us to consider a
modified AVCCD44 theory based on LPFD(+1),

qT
ij

ab = (qU−q/2T)ijab

− q

2
(qU−(q/4)−(1/2) 
 qU−(q/4)−(1/2)T)ijab

+ q(qU−(q/4)−(1/2) 	 qU−(q/4)−(1/2)T)ijab. (39)

Here, we are using the notation in Eq. (34), where it is un-
derstood that, for example, (�T) means to apply the transfor-
mation of Eq. (30) with the matrix defined in Eq. (32). The
additional factor of 2 on the � contribution adds B + 2 C in-
stead of 1

2B + C, correcting the −C acquired by LPFD(+1)
at O(T 3) to B + C. The corrective transformations not only
continue to vanish for two electrons, but also mutually cancel
for two holes, so both the 2-electron and 2-hole limiting cases
remain correct. The dressing of the corrective transformations
with qU matrices ensures that the size of the transformed am-
plitudes remains comparable to that of the untransformed am-
plitudes if the latter grow large.

Unfortunately, our investigations have shown that both
LPFD(0) and LPFD(+1) diverge in numerous examples
where VCCD performs exceptionally well, such as for N2.
The theoretical superiority of LPFD(+1), as outlined above,
is of little help in this regard. This can be understood by recog-
nizing that each of LPFD(0) and LPFD(+1) contain just one
class of VCCD term, albeit to infinite-order; LPFD(0) con-
tains only the B-like terms and LPFD(+1) contains only the
C-like terms. The VCCD terms omitted by these methods are
of no less importance than those included, and a balance of

the terms at all orders can be expected to overcome the prob-
lem. In fact, LPFD(-1) provides direct evidence for this, since
it contains a balance of B-like and C-like terms at all orders
and is often more stable than either LPFD(0) or LPFD(+1).

Furthermore, this presents a problem for both AVCCD
and the hypothetical theory above; these methods employ
only a finite-order correction of the infinite-order LPFD(0)
and LPFD(+1) theories, respectively; if the underlying
infinite-order theory becomes qualitatively incorrect, then it
is impossible to recover completely with only a finite-order
correction.

Thus, we are motivated to find a theory in the spirit
of LPFD, with balanced contributions to infinite-order, as
in LPFD(−1), while also embracing hole-particle symmetry,
and using only positive-definite transformations.

C. Quasi-variational coupled cluster theory

In order to propagate each type of O(T 3) term to infinite-
order so that balance between the terms is maintained in our
approximation to VCCD, we can look back at our definitions
of the density matrices, now labelling each with the letter
corresponding to the term it is responsible for generating at
O(T 3),

aη
a
b = 〈T̂ †a†bT̂ 〉 = 1

2
T

ij

bc T ac
ij , (40)

bη
i
j = 〈T̂ †ji†T̂ 〉 = 1

2
T ik

ab T ab
jk , (41)

cη
ij

kl = 〈T̂ †klj †i†T̂ 〉 = 1

2
T

ij

ab T ab
kl , (42)

dη
ib
aj = 〈T̂ †jb†ai†T̂ 〉 = T ik

ac T bc
jk . (43)

It is apparent that each of these matrices is positive-
semidefinite, since each is Gramian. Therefore, we propose
a new ansatz for the transformed amplitudes that is a linear
combination of the individual transformations,

qT
ij

ab =α

[
1

2
(1 − τab)

(
aUPa

)c

a
T

ij

cb

]

+ β

[
1

2
(1 − τij )

(
bUPb

)i

k
T

kj

ab

]

+ γ

[
1

2

(
cUPc

)ij

kl
T kl

ab

]

+ δ

[
1

4
(1 − τij )(1 − τab)

(
dUPd

)ic

ak
T

kj

cb

]
,

aU
a
b = δa

b + α′
aη

a
b,

bU
i
j = δi

j + β ′
bη

i
j ,

cU
ij

kl = δ
ij

kl + γ ′
cη

ij

kl,

dU
ib
aj = δib

aj + δ′
dη

ib
aj .

(44)

This formulation avoids the difficulty encountered earlier that
linear combinations of aU, bU, cU, and dU are not positive
definite. The parameters must then be carefully chosen to sat-
isfy the constraints that the theory is exact for two electrons
and two holes, as well as correct to O(T 3) in VCCD. First,
since the leading-order contribution to each transformation is
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the identity, for correct behaviour to O(T 2), we have the fol-
lowing constraint:

α + β + γ + δ = 1. (45)

In the 2-electron limit, both bU and cU become diagonal and
can therefore combine to induce division by the CID denom-
inator, whereas aU and dU cannot, but can cancel. In order
for correct behaviour for two electrons, we hence demand the
following:

β(δ + β ′
bη)Pb + γ (δ + γ ′

cη)Pc = (
1 + 〈

T̂
†

2 T̂2
〉)− q

2 , (46)

α(δ + α′
aη)Pa + δ(δ + δ′

dη)Pd = 0. (47)

By expanding the left and right sides of both equations as
binomial series, requiring that the left and right sides of each
equation match at all orders, and ignoring the trivial case α

= δ = 0, which would completely switch off the aU and dU
contributions, we derive the following constraints:

Pb = Pc = −q

2
α′ − δ′ = 0

Pa − Pd = 0 β + γ = 1

β ′ = γ ′ = 1 α + δ = 0.

(48)

Similarly, in the limiting case of two holes, it is instead aU
and cU that can combine to produce the CID denominator. In
the case of cU, this is a result of the fact that the powered
cU transformation generates an identical infinite series to a
hypothetical cU-like matrix indexed by hole pairs rather than
electron pairs, as shown in the appendix. Hence, we demand
the following:

α(δ + α′
aη)Pa + γ (δ + γ ′

cη)Pc = (
1 + 〈

T̂
†

2 T̂2
〉)− q

2 , (49)

β(δ + β ′
bη)Pb + δ(δ + δ′

dη)Pd = 0, (50)

imposing the constraints below,

Pa = Pc = −q

2
β ′ − δ′ = 0

Pb − Pd = 0 α + γ = 1

α′ = γ ′ = 1 β + δ = 0.

(51)

We now combine all of the discovered constraints, noting that
some are equivalent,

Pa = Pb = Pc = Pd = −q

2
, (52)

α′ = β ′ = γ ′ = δ′ = 1, (53)

α + β + γ + δ = 1, (54)

β + γ = 1, (55)

α + γ = 1. (56)

Three unique constraints are insufficient to uniquely deter-
mine the four variables α, β, γ and δ. A final constraint en-
ters from the requirement that this method matches VCCD to
O(T 3). We first notice that choosing γ = +1 above implies α

= β = δ = 0, consistent with the fact that LPFD(+1) is correct
to O(T 2), and is exact for both two electrons and two holes.
However, since LPFD(+1) yields −C at O(T 3), whereas +C
is the correct VCCD term, we must have

γ = −1, (57)

which acts as the final constraint, and the remaining parame-
ters are then determined uniquely,

α = +2, (58)

β = +2, (59)

δ = −2. (60)

Each of the above values is exactly consistent with the re-
quired factors on each of the transformations in order to get
the the remaining O(T 3) terms correct. Note that, as be-
fore, the constraints imposed so far are also sufficient to get
〈(T̂ †

2 〉)2F̂ T̂ 2
2 〉L correct, important for consistency at fourth-

order in perturbation theory.
Hence, we can unambiguously write

qT
ij

ab = 2

[
1

2
(1 − τab)

(
aU

− q

2

)c

a
T

ij

cb

]

+ 2

[
1

2
(1 − τij )

(
bU

− q

2

)i

k
T

kj

ab

]

− 1

[
1

2

(
cU

− q

2

)ij

kl
T kl

ab

]

− 2

[
1

4
(1 − τij )(1 − τab)

(
dU

− q

2

)ic

ak
T

kj

cb

]
,

aU
a
b = δa

b + aη
a
b,

bU
i
j = δi

j + bη
i
j ,

cU
ij

kl = δ
ij

kl + cη
ij

kl,

dU
ib
aj = δib

aj + dη
ib
aj ,

(61)

and when these amplitudes are inserted into a functional
of the form given in Eq. (13), we name the correspond-
ing method, “quasi-variational coupled cluster” (QVCC) or
QVCCD, since we are currently discussing a theory involving
double excitations only. Neither this definition of the trans-
formed amplitudes, nor the functional contain any arbitrary
parameters, and hence, distinct from both LPFD and AVCCD,
the QVCCD method is unique.

Although the QVCCD method does not yield an upper
bound on the exact ground-state Schrödinger energy eigen-
value, the QVCCD ground-state energy corresponds, analo-
gously to VCCD, to the minimum of the functional given in
Eq. (13). This minimum is defined by the vanishing of the
derivatives of the energy with respect to the set of untrans-
formed cluster amplitudes,

dE = 1

4

∂E

∂T
ij

ab

dT
ij

ab = 0 (62)
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TABLE II. Comparison of the valence-shell correlation energies (in milliHartrees, mEh) of some singlet-state
atoms. All calculations were performed with the aug-cc-pVQZ basis.

Atom CCSD OAVCCD OQVCCD CCSD(T) OAVCCD(T) OQVCCD(T)

C −125.4 −124.1 −124.7 −131.0 −128.4 −129.7
O −213.9 −212.1 −212.7 −225.1 −221.0 −222.5
Ne −297.8 −297.5 −297.5 −303.7 −303.6 −303.6
Si −104.0 −102.6 −103.3 −109.1 −106.6 −107.9
S −181.5 −179.9 −180.3 −191.7 −188.5 −189.4
Ar −249.5 −249.3 −249.3 −258.3 −258.1 −258.1

⇒ ∂E

∂T
ij

ab

= 0 ∀ i, j, a, b. (63)

In performing the differentiation of the matrix powers
that occur in the functional, one must take care that a ma-
trix U need not commute with its differential, dU. It can be
shown that the derivative of an arbitrary rational power of a
matrix U is

d
(
Ux

)
ij

= x

N∑
k=1

Xik Xjk εx−1
k

N∑
m=1,n=1

Xmk dUmn Xnk

+
N∑

k=1,l=1,εk 
=εl

εx
k − εx

l

εk − εl

Xil Xjk

N∑
m=1,n=1

Xml dUmn Xnk, (64)

where the columns of X are the eigenvectors of U, and ε is
the corresponding vector of eigenvalues.

The small effects of single excitations may be treated by
minimization of the energy with respect to the orbitals, in ad-
dition to the minimization with respect to the doubles ampli-
tudes, as discussed above. The use of orbital optimization for
coupled-pair functionals has been discussed extensively by
Kollmar and Heßelmann.48 The LPFD, AVCCD and QVCCD
orbital gradients, fia, may be specified, in the spin-adapted
notation49, 50 of Ref. 48, as follows:

f i
a = F i

a − T i
j F j

a − T b
a F i

b

− T k
l [2〈il|ak〉 − 〈li|ak〉]

+ T c
d [2〈id|ac〉 − 〈di|ac〉]

+ 1T
ik
cd 1T̃

cd
j l 〈j l|ak〉 − 1T̃

kl
ac 1T

bd
kl 〈ic|bd〉

− 1

2

(
1T̃

ik
bd 1T̃

cd
jk + 31T̃

ki
bd 1T̃

cd
kj

)〈jb|ac〉

+ 1

2

(
1T̃

j l
ac 1T̃

bc
kl + 31T̃

lj
ac 1T̃

bc
lk

)〈ik|bj 〉

+ 1T̃
ik
bd 1T̃

cd
jk 〈bj |ac〉 − 1T̃

j l
ac 1T̃

bc
kl 〈ik|jb〉

+ 2T̃
ij

bc 〈bc|aj 〉 − 2T̃
jk

ab 〈ib|jk〉, (65)

with the following definitions of the involved quantities:

qT̃
ij

ab = 2qT
ij

ab − qT
ij

ba, (66)

T i
j = 1T̃

ik
ab 1T

ab
jk , (67)

T b
a = 1T̃

ij
ac 1T

bc
ij , (68)

Fp
q = h

p
q + [

2〈pi|qi〉 − 〈pi|iq〉] , (69)

hp
q =

∫
ψ∗

p(r)

(
−1

2
∇2 + V (r)

)
ψq(r) d3r, (70)

〈pq|rs〉 =
∫

ψ∗
p(r1) ψ∗

q (r2)
1

|r1 − r2|ψr (r1) ψs(r2)d3r1 d3r2.

(71)

The condition for stationarity of the energy with respect to the
orbitals is, of course, fia = 0. When orbital optimization is em-
ployed, we refer to the methods LPFD, AVCCD and QVCCD,
respectively, as OLPFD, OAVCCD and OQVCCD.

Alternatively, single excitations may be taken into ac-
count by minimization of the functional with respect to the
doubles amplitudes only, if an additional Brueckner51–53 con-
straint is satisfied,

〈�a
i |Ĥ (1 + 1T̂2)|�0〉 = 0, (72)

which defines the BLPFD, BAVCCD and BQVCCD meth-
ods, respectively. These methods are computationally less ex-
pensive than energy optimization,50 but expected to be less
reliable.54 The above equations defining both the orbital op-
timization procedure and the Brueckner condition require no
modification for different definitions of the transformed am-
plitudes, and are thus equally applicable to any of the LPFD,
AVCCD or QVCCD methods.

TABLE III. Calculated barrier heights (in milliHartrees, mEh) with the cc-pVTZ basis.

Reaction OAVCCD OQVCCD CISD+Q LCPMET CCSD CCSD(T)

F− + CH3Cl → FCH3 + Cl− 2.037 2.035 1.832 − 2.180 1.682 − 0.369
Cl− + CH3Cl → ClCH3 + Cl− 22.898 22.897 23.054 18.193 22.517 19.807
OH− + CH3F → HOCH3 + F− − 14.683 − 14.627 − 3.881 − 21.508 − 15.363 − 20.276
HCN → HNC 77.046 76.983 76.239 71.506 76.752 76.076
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TABLE IV. Comparison of equilibrium bond lengths and spectroscopic
constants for some diatomic molecules. Basis set: cc-pVQZ, with correlation
energy x−3-extrapolated using cc-pVTZ and cc-pVQZ.

System Method Re/Å ωe/cm−1 ωexe/cm−1

HF CCSD 0.913 4203.5 89.1
OAVCCD 0.913 4209.2 86.8
OQVCCD 0.913 4210.7 87.2

Empirical63 0.917 4138.3 89.9

F2 CCSD 1.389 1020.5 8.5
OAVCCD 1.386 1034.9 8.2
OQVCCD 1.386 1030.3 8.6
Empirical 1.412 916.6 11.2

N2 CCSD 1.092 2445.3 12.8
OAVCCD 1.091 2456.4 12.6
OQVCCD 1.090 2461.0 12.5
Empirical 1.098 2358.6 14.3

III. NUMERICAL RESULTS

The QVCCD, OQVCCD and BQVCCD methods have
been implemented in the closed-shell CCSD program50 of
the MOLPRO55 quantum chemistry software package. When
it is desirable to benchmark CCD, AVCCD and QVCCD,
against VCCD and FCI results directly, we choose the
minimal STO-3G basis set. When larger basis sets, such
as the correlation-consistent basis sets,56 cc-pVxZ with
x ∈ {D, T, Q, . . .}, possibly augmented by additional dif-
fuse functions,57 aug-cc-pVxZ, are used, we instead compare
CCSD, OAVCCD and OQVCCD against CCSD(T)58 or inter-
nally contracted multi-reference configuration interaction59

with the Davidson correction60 to account for the lack of ex-
tensivity (MRCI+Q).

We begin by confirming that, like OAVCCD, OQVCCD
results are of at least CCSD quality for general calculations.
An examination of the valence-shell correlation energies for
the singlet ground states of some first- and second-row atoms,
for which data are given in Table II, reveals that the dif-
ferences between OQVCCD and CCSD are small. In every
case, we see that OQVCCD performs similarly to the earlier
OAVCCD method.

Next, we computed the forward barrier heights for the
following closed-shell reactions:

F− + CH3Cl → FCH3 + Cl−

Cl− + CH3Cl → ClCH3 + Cl−

OH− + CH3F → HOCH3 + F−

HCN → HNC.

Truhlar and co-workers61, 62 have used this class of calculation
as a systematic test of ground-state electronic structure meth-
ods. Our results are given in Table III. We also give calculated
spectroscopic constants for a selection of diatomic molecules
in Table IV. These two sets of data yield the same conclusion;
the OAVCCD and OQVCCD methods perform similarly, with
only small differences from the CCSD values.

Next we test a simple bond-breaking example, the ab-
straction of a single hydrogen from CH4 in the cc-pVDZ ba-
sis, for which a plot of calculated potential energy curves is

FIG. 1. Calculated potential energy curves for the abstraction of a single
hydrogen atom from CH4 with the cc-pVDZ basis set.

given in Fig. 1. In this system, where only one chemical bond
is being broken, the CCSD and OQVCCD methods are in-
distinguishable, although it is also clear that OQVCCD is an
improvement on the earlier OAVCCD method.

A system that exemplifies potentially strong variations
in the performance of single-reference correlation methods
is CuF, for which it was demonstrated64 that the QCISD65

method predicts very poor dipole moments, in comparison to
CCSD. We include a plot of the dipole moment curves pre-
dicted by the various methods, calculated by finite difference
differentiation, in Fig. 2. The large error of QCISD relative to
CCSD is obvious, but the CCSD, OAVCCD and OQVCCD
methods all perform similarly.

Given the above results, we can be reasonably confi-
dent that OQVCCD treats dynamic correlation effects with
a similar quality as the CCSD method. Now we turn to some
examples that involve strong static correlation, where qual-
itative differences between CCD and VCCD emerge. In the
literature,66 a standard example of this is the H8 model sys-
tem; here, hydrogen atoms are arranged at the vertices of a
regular octagon of side length 1.06 Å. Two opposite sides of
the octagon are symmetrically moved away from each other
by a total distance of 2R. We give calculated potential en-
ergy curves with the STO-3G basis in Fig. 3, where we began

FIG. 2. Calculated dipole moment curves against bond length for CuF with
a good approximation to basis set I of Ref. 64.
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FIG. 3. Calculated potential energy curves for the H8 model system with the
STO-3G basis set.

the calculation with R = −0.12 Å, and tested values up to R
= +0.12 Å. In this test, AVCCD performs poorly; it quickly
becomes too high in energy from about 0.2 Å. Additionally,
CCD exhibits its lack of upper bound character, going be-
low the FCI curve beyond about 0.1 Å. VCCD is somewhat
higher than FCI, and is faithfully reproduced by the approxi-
mate QVCCD. We also give H8 results with the cc-pVTZ ba-
sis in Fig. 4. Since the relative positionings of the curves have
changed very little, it seems we can trust the minimal basis
results and expect that OQVCCD represents a better approx-
imation to VCCSD than CCSD. The OAVCCD curve is still
clearly wrong, and we infer that OQVCCD is significantly
more robust.

Similar behaviour is observed for the dissociation of N2.
When restricted to the manifold of double excitations, this is
a difficult system for most methods to treat. VCCD is known
to perform extremely well here, whereas, in the case of tra-
ditional coupled cluster, it has been demonstrated elsewhere
that quadruple excitations are required for a proper descrip-
tion of the dissociation. This can be understood in light of
the analyses of Kutzelnigg68 and others; TCC does not be-
gin to converge towards VCC until the inclusion of quadru-
ples. A significantly less expensive option may be to use a

FIG. 4. Calculated potential energy curves for the H8 model system with the
cc-pVTZ basis set.

FIG. 5. Calculated potential energy curves for N2 with the STO-3G basis set.

method with more upper bound character from the outset.
Figure 5 shows that in the STO-3G basis, QVCCD is very
close to VCCD, which in turn is close to FCI; AVCCD has
significant errors, and, as previously observed, CCD predicts
very low non-variational energies at long bond lengths. With
the cc-pVQZ basis, illustrated in Fig. 6, the minimal ba-
sis behaviours persist, and we find that the CCSD method
continues to predict an unphysical maximum around 2.1 Å,
whereas, OQVCCD remains qualitatively correct throughout.
Again, OQVCCD does better than OAVCCD also, which per-
forms no better than CCSD in this case. We have also com-
pared CCSD and OQVCCD with QCCSD, for which results
were obtained from Kállay’s MRCC program,67 in Table V.
These results are as expected; QCCSD is more accurate than
OQVCCD overall and does not collapse in a non-variational
fashion as the bond is stretched. However, this is achieved by
the addition of terms that improve TCCSD towards VCCSD,
which, as was noted earlier, comes at the cost of a very expen-
sive O(v6) step in the QCCSD iterative procedure.

Next, we consider C2, for which STO-3G results
are given in Fig. 7. The CCD curve, again, predicts an
unphysical maximum at approximately 2.0 Å, although this
is significantly more shallow than in N2. It then crosses the
FCI curve at approximately 2.2 Å. VCCD encounters conver-

FIG. 6. Calculated potential energy curves for N2 with the cc-pVQZ basis
set.
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TABLE V. Errors relative to FCI (in milliHartrees, mEh) for a selection of
bond lengths (in angstroms) for N2 with the cc-pVDZ basis set (d functions
omitted). The FCI energies are quoted (in Hartrees) for completeness.

R CCSD QCCSD OQVCCD FCI

1.0 5.96 5.01 6.59 − 109.0210
1.1 8.29 6.90 9.44 − 109.0729
1.2 11.39 9.32 13.34 − 109.0648
1.3 15.39 12.28 18.44 − 109.0304
1.4 20.29 15.68 24.65 − 108.9883
1.5 25.83 19.31 31.38 − 108.9475
1.6 31.32 22.81 37.35 − 108.9120
1.7 35.12 25.65 41.00 − 108.8833
1.8 33.51 27.43 42.30 − 108.8617
1.9 19.50 28.77 42.98 − 108.8467
2.0 − 11.80 − 108.8369

gence difficulties around 2.0 Å, and this problem seems also
to be inherited by QVCCD, but we are still able to stretch the
bond sufficiently far to see that QVCCD follows the VCCD
curve beyond the point at which CCD begins to plateau. On
the other hand, AVCCD encounters these difficulties well be-
fore the equilibrium bond length, and hence it is not illustrated
on the plot.

The aug-cc-pVQZ basis results for C2 are given in Fig. 8.
The CCSD curve predicts a bond that is, apparently, fully bro-
ken from about 2.6 Å, at odds with the MRCI+Q curve. The
curve is also very slightly negative in slope from 3.1 Å, indi-
cating that the unphysical maximum still exists. However, the
behaviour of OQVCCD mimics that of VCCD evident in the
minimal basis results.

Finally, we examine one of the example calculations per-
formed in Ref. 32; the distortion of H4. In this system, four hy-
drogen atoms are arranged in a rectangle that can be specified
by 2 parameters. The parameter R, measured in angstroms,
controls the distance of each H atom from the centre of the
rectangular arrangement. The parameter θ , measured in de-
grees, is the angle subtended at the centre of mass by radii to
two neighbouring H nuclei, and controls the distortion from
square, corresponding to θ = 90◦, to rectangular geometry.
We have varied θ with R fixed at 1.738 Å; cc-pVDZ results,

FIG. 7. Calculated potential energy curves for C2 with the STO-3G basis set.

FIG. 8. Calculated potential energy curves for C2 with the aug-cc-pVQZ
basis set.

for which, in this small system, comparisons with VCCSD
and FCI can be made, are given in Fig. 9. Instead of bench-
marking the doubles-only methods, as we have done previ-
ously, we have chosen to compare the methods including the
effects of singles here, which are quite important in this case.
Results with cc-pVQZ are given in Fig. 10.

It is clear in both plots that all the single-reference meth-
ods predict an unphysical cusp in the potential energy sur-
face; only FCI and MRCI+Q are smooth at θ = 90◦. How-
ever, the difference between the cusps predicted by the CCSD
and VCCSD methods is easily seen, and it is clear that, of
the single-reference methods, VCCSD performs best. The
OQVCCD points are almost coincident with the VCCSD
points in the cc-pVDZ plot, whereas the OAVCCD points are
shifted to higher energies, giving a sharper cusp, which is yet
another indication of the superior approximation of VCCSD
inherent to OQVCCD relative to both OAVCCD and CCSD.
All trends persist into the larger basis, where if constrained to
a single-reference method of O(o2v4) complexity, OQVCCD
is the method of choice here. Unfortunately, however, higher
excitations are required to remove the cusps from the single-
reference curves completely.

FIG. 9. Energies of the H4 system as a function of θ , with R fixed at
1.738 Å, with the cc-pVDZ basis set.
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FIG. 10. Energies of the H4 system as a function of θ , with R fixed at
1.738 Å, with the cc-pVQZ basis set.

IV. CONCLUDING REMARKS

We have constructed a new quantum chemical method,
QVCCD, with a strong theoretical relationship to VCCD,
which appears to be more robust than CCD when a single-
reference wavefunction becomes a poor approximation to the
ground-state electronic structure of a system. Furthermore,
we have shown that the viability of the LPFD-type approx-
imations of VCCD is strongly dependent on the choice of
transformed amplitudes, since it is important to balance suffi-
ciently many classes of VCCD terms to infinite-order to main-
tain VCCD-like upper bound character across a wide range
of systems. The QVCCD results demonstrate that this is in-
deed possible to achieve. We have included the effects of
single excitations through either orbital optimization or the
use of a Brueckner condition, and the resulting method is ex-
tremely theoretically attractive, given its numerous advanta-
geous methodological properties, listed below.

� It is exactly equivalent to FCI for the limiting cases of
two electrons and two holes.

� The functional contains fully linked terms only, so is
rigorously extensive.

� The energy is a scalar that is invariant to rotations in
the underlying orbital spaces {ψ i} and {ψa}.

� The doubles-only theory is equivalent to VCCD to
O(T 3), and the one-electron O(T 4) terms are also con-
structed correctly.

� The energy is not an upper bound to the exact ground-
state Schrödinger eigenvalue, but variational mini-
mization of the functional gives a theory that satisfies
the generalized Hellmann–Feynman theorem.45

� Its computational complexity is O(o2v4), the same as
CCSD.

From our numerical experience, we note that allowing
the different transformations to mix typically has an energy-
lowering effect. This is, of course, because some sets of
higher-order VCCD terms can only be captured by a com-
bination of more than one of the aU, bU, cU or dU matri-
ces. It may be that there are further transformations that can
be found beyond those presented here, which sum additional
VCCD diagrams to infinite order, and which may go some

way to improving the treatment of correlation from CCD-like
to VCCD-like quality.

It is worthwhile to note that if we were to relax the
constraint on the computational complexity of QVCCD from
O(o2v4) to O(v6), our approximation of VCCD could be fur-
ther improved from correct to O(T 3) to correct to O(T 4).
We observe that OQVCCD already predicts potential energy
curves for strongly-correlated systems such as N2 that are
qualitatively similar to those of QCCSD without the inclusion
of this expensive step.

Finally, we note that although QVCCD is computable
within O(o2v4) time, the requirement of solving the eigen-
problems for each of the matrices, particularly the large dU
matrix, makes QVCCD slightly more difficult than an equiv-
alent CCD calculation, although with complexity O(o3v3), it
is not the limiting step. Instead of calculating dU(−q/2), it may
be viable to consider a low-order approximation through the
associated binomial series. As long as aU(−q/2) is truncated to
the same order, then the necessary cancellations will ensure
that the method remains exact for two electrons. Although
such truncations will mean that the method is then no longer
exact for two holes, the error in the 2-hole limit should be
small, given the untruncated behaviour, and can be systemat-
ically reduced by adding higher terms in the series. Only the
B-like and C-like terms are then present at all orders through
bU(−q/2) and cU(−q/2), and, although this remains superior to
AVCCD or any approach that includes only one class of term,
and is very much like LPFD(-1), it is unclear whether this al-
lows for the inheritance of sufficient upper bound character
from the parent VCCD theory to treat difficult problems such
as N2; this remains to be investigated.

APPENDIX: PROOF THAT LPFD(+1) IS EXACT
FOR 2 HOLES

Analogously to LPFD(+1), for which the transformation
matrix is a scalar in the limit of two electrons, we could write
down a definition for the transformed amplitudes that would
lead to a theory equivalent to CID for a 2-hole system,

qT
ij

ab = 1

2
(U− q

2 )cdab T
ij

cd ,

Ucd
ab = δcd

ab + ηcd
ab, (A1)

ηcd
ab = 1

2
T cd

kl T kl
ab.

Now, consider the binomial expansions of the powered matri-
ces in LPFD(+1); in this hypothetical theory,

1

2
(U− q

2 )ijkl T
kl
ab = 1

2

∞∑
n=0

(− q

2

n

) (
ηn

)ij

kl
T kl

ab, (A2)

1

2
(U− q

2 )cdab T
ij

cd = 1

2

∞∑
n=0

(− q

2

n

) (
ηn

)cd

ab
T

ij

cd . (A3)

The following property,

(ηn)ijklT
kl
ab = (ηn)cdab T

ij

cd ∀ n ∈ N0, (A4)

is obviously true for n = 0,

δ
ij

kl T
kl
ab = δcd

ab T
ij

cd = T
ij

ab, (A5)
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and n = 1,

η
ij

kl T
kl
ab = ηcd

ab T
ij

cd = 1

2
T

ij

cd T cd
kl T kl

ab, (A6)

and the general result follows by mathematical induction; if
we assume the case of (n − 1) holds, then n follows:

(ηn)ijkl T
kl
ab = 1

2
η

ij

kl(η
n−1)kl

mnT
mn
ab

= 1

4
T

ij

cd T cd
kl (ηn−1)kl

mn T mn
ab

= 1

4
T

ij

cd T cd
kl (ηn−1)efab T kl

ef

= 1

2
T

ij

cd (ηn−1)efab ηcd
ef

= (
ηn

)cd

ab
T

ij

cd . (A7)

This result, coupled with the series expansions given in
Eqs. (A2) and (A3), is sufficient to demonstrate that the series
are identical and that we have the following:

1

2
(U− q

2 )ijkl T
kl
ab = 1

2
(U− q

2 )cdab T
ij

cd . (A8)

Hence, the hypothetical theory is identical to LPFD(+1) and
we conclude that LPFD(+1) is exact for both two electrons
and two holes.
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