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Investigation of the forest-fire model on a small-world network

I. Grahanf and C. C. Matthai
Department of Physics and Astronomy, University of Wales, Cardiff, United Kingdom
(Received 17 September 2002; revised manuscript received 29 April 2003; published 12 September 2003

It is shown that the forest-fire model of Bek al.run on a square lattice network with additional long-range
interactions in the spirit of a small-world network results in a scale-free system reminiscent of self-organized
criticality without recourse to fine tuning. As the number of these long-range interactions is increased, the
cluster size distribution exponent is found to decrease in magnitude as the small-world regime is entered,
indicating a change in its universality class. It is suggested that such a model could have applicability in the
study of disease spreading in human populations.
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[. INTRODUCTION somewhere between a regular lattice with nearest neighbor
connections and a random graph. The number of such con-
Over a decade ago Bait al.[1] proposed a lattice model, nections in a network is characterized by the connection
which through the emergence of complex, scale-free strugProbabilityq. o
tures, exhibited characteristics of self-organized critical There are different ways in which one can effect the long-
(SO0 systems. This model, originally introduced to simu-"ange connectiongshortcuts between local networks in or-
late real forest fires, has served as a paradigm for SOC sy§€r to construct a small-world network. In their original pa-
tems and is referred to as the forest-fif) model. In their ~ PEh Watts and Strpgat@4] dealt V.V'th a one-dimensional
investigations of the FF model, Grassberger and Kéaiz (1D) ring lattice with nearest neighbor and next nearest

found that unless the system was finely tuned, a characteri§€'9hbor connections. This network was theswired by
connecting randomly selected start and end points on the

Sl sl s roerona 0 e e ot b s mtencost oot
i e X - 0O€3 connection from these vertices to their local neighbor. If
not not display true SOC behavior which should, by defini- 5o \yere to extend this approach to the FF model on a two-
tion, be free of any tuning. In an effort to overcome this 4imensional square grid, the removal of the local connec-
failing, Drossel and SchwatDs) [3] introduced dightning  tjons would have a detrimental effect on the fire spreading
strike rule, which allowed the possibility of trees catching potential which of course depends on these connections. It is
fire spontaneously with som@mal) probability f. The en-  therefore desirable to construct a different way of including
Suing result was that in the limit of low tree growth and the |ong_range connections or short cuts.
random fire probabilities, this neWDSFH model displayed We considered two different approaches and for each, we
SOC behavior. The downside of introducing such a modifi-calculated two measures which are used to characterize SW
cation are the conditions that both the tree gropmdf/p networks[4]. The path length. is the shortest path connect-
should tend to zero. ing two vertices, averaged over all pairs. It is important to
In this paper, we show that running a forest-fire modelnote that it is not a measure of the spatial distance between
simulation on a lattice network, which includes some long-vertices(except in the special case of a regular gnaipirt is
range interactions in addition to the local interactions of thenstead the smallest number of connections between the two
lattice, results in scale-free structures. In addition to being/ertices.L is a global property of the graph since it measures
fully deterministic and without recourse to random events a§0me average communication between all pairs of vertices. It
in the DSFF model, such a model has the added benefit ¢ therefore a function of the connection probability and, in
sitting on a network which may be used to simulate othefarticular, asq is increased, the normalized path length

henomena; for example, the spread of disease in humar(d)/L(0) would be expected to show a sudden decrease,
gopulations. xamp P I n reflecting the onset of SW behavior. The other measure is the

clustering coefficientC, which is a local property of the
graph and is concerned with the direct connections of the
Il. THE SMALL-WORLD FOREST FIRE (SWFF) MODEL vertices.
o ) Most SW networks are concerned with rewiring regular
Mimicking real world n(_atworks was the aim of Watts and graphs or modifying random graphs in some way. The clus-
Strogatz[4,5] when they introduced the small-worl@W)  tering coefficient is usually defined as the ratio of fully con-
network model. They developed real world network graphsyected three node neighborhoods to the ratio of all three
which were neither constrained to have only local connecnode neighborhoods. Since this quantity is trivial for our
tions nor were just a random set of connections. Instead, ietwork (we almost never have connected triangles and al-
had long-range(randomly wired connections between lo- ways have connected squateanother measure of cluster-
cally connected networks. This was, in effect, a networking, a local property of the graph, is required. We found it
convenient to define the clustering coefficient as proportional
to the inverse of the “lattice distancéthat is the number of
*Email address: ig224@cam.ac.uk steps to get from one point to another without using short-
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cut9. In this way,C(q) measures a local property, i.e., how T
far away its neighbors are, and decreases as the number « | *  C@ -
shortcuts in the network increases. ° e

The normalized coefficie€(q)/C(0) is also expected to
decrease once the small-world regime is entered. The small
world regime is characterized by a small path length com-
pared to that in the random graph and correspondingly higr . .
clustering of the lattice, i.e., a graph is SW whebecomes
significantly smaller tharC. Thus, in the SW regime the *
difference measurd)(q) =C(q) —L(q), and the ratio mea-
sure,R(q)=C(q)/L(q), both become large.

The Newman-Watts algorithrm the Newman and Watts - * 1
procedurg 6], a vertex chosen at random has a probabidity *
of being the starting point of a shortcut connection. Thesame (ln v 0 vvver v v v vuvnd 300
is true for the ending point of a shortcut; thus each site has 0.0001 0.001 oot 0. !
zero or one shortcut. Then, for each shortcut starting point(a) q
an end point is chosen at random and a connection is made
However, no vertices are deleted. The distribution of connec-
tions per siteP is § distributed. So fox connections, I . ﬁﬁfﬂ 7

*0

P(X)=(1-20)4x+ 2005 1= o ©® .
O
To determine the range gfvalues for which such graphs
are SW in character, we calculatedq) andC(q). The al-
gorithm for obtainingL(q) is as follows. °
(i) Calculate the lattice distance or number of stdgs, os -
—X4|+]y2—Vyil, between the startx¢,y;) and end X»,Y5) o *
points. I °
(i) Search a X5 neighborhood of vertices around the
start point and list all the shortcuts and find all the relevant * o
ConneCtl.OHS. ) i 0.0001 0.001 I = III0I.01 I - III(IJ.I — II1
(iii) Find the shortcut that brings the start and end pomts(b) .
closer, taking into account the number of steps required to
reach the shortcut from the start point. FIG. 1. (8 The normalized_(q) andC(q) and(b) the normal-
(iv) If this route is closer than|X,—x;|+|y>—Yy1|—2) to  izedD(qg) andR(q) on a regular square graph using the Newman-
the end point, move to the other end of the shortcut notingvatts rewiring procedure.
the number of steps taken.
(v) If there are no useful shortcuts, move closer to the endhown in Fig. 1a). The decrease ih(q)/L(0), reflecting

point by moving one step in theor y direction. the onset of the SW regime is found to occur around
(vi) Repeat until X1,y1)=(X2,Y>). ~0.02. This can be more clearly seen in the variation of the
(vii) Then,L is simply the number of steps taken. difference and ratio measure3(q)/D yax and R(Q)/ Ry ax:

This procedure was repeated for all pairs of vertices satnormalized to their maximum valud$ig. 1(b)]. Both of
isfying the condition that|k,—x,|+|y,—Yy1/=3) and then these quantities become large whegr-0.005. Although
averaged. The minimum path length is then normalized withwVatts and Strogatz found the onset of SW behaviordor
respect to the path length for the regular grap). It may  ~0.002, this is probably just a consequence of the increased
be noted that this algorithm does not necessarily find theonnectivity and reduced dimensionality of their network.
absolute minimum path length each time, but the probability The Kleinberg algorithmin order to counter some of the
of finding a path length close to the absolute minimum isdifficulties encountered in carrying out the calculation of
large. L(g) in the Newman-Watts and the Watts-Strogatz proce-

The clustering coefficienC(q) was obtained using an dure, Kleinberg[8] suggested a different method of recon-
algorithm based on the one prescribed by Hay&s The necting the network. In this approach, for each randomly
procedure is given as followsi) List the connections of a chosen start point, the end points are randomly chosen from
vertex (including the four nearest neighbargii) sum the  a power law probability distribution based on the lattice dis-
lattice distancegx;—x4|+|y;—Yy.| of all the connections; tance. By letting the probability of making a shortcut of dis-
(ii) divide the number of connections by the sum of thetances decrease as a polynomial of ordewith increasing
lattice distances(iv) repeat over all vertices and take the distance, this method of rewiring imprints a geographical
average. structure onto the lattice thereby invoking the Milgrg#i

L(g)/L(0) and C(q)/C(0) were thus determined for a navigational scheme. Then, far=2, the minimum path
2D square lattice of 128sites and the results fgq<0.2 are  length can be found using a decentralized algorithm in which
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only local information is available, given as follows. pi(N+1)=dps(n)pi(n)+mps(n)pi(n). 3
(i) Choose start and end vertices of a path.

(i) At each step, move from the present veri@ia &  pare 1 represents the tree growth probabiligythe connec-
nelghpor or a shortcuto the vertex that is the smallest lat- tion probability, andm is the coordination number of the
tice distance away from the end vertex. _ lattice (i.e., the number of nearest neighbors de 0) which
_ Because of the local nature of the search, it tumns out thgf,. 5 gqare lattice is 4. Because each fire site becomes an
it is very much easier to compute the path length in this mpty site at the next iteration whereas an empty site has a
approach compared to that in the Newman-Watts methodyohapility p of becoming a tree site, these contribute to the
However, with this schgme, the norm'allzed path lengths an hange in the empty site density in Ed). The latter con-
cluster sizes as a function gfdo not display SW character- iy, yion also results in a corresponding increase in the tree
Istics until g~0.2. As th|§ is much too large a degree. O,f density. The decrease 3 comes about as trees catch fire if
rewiring and therefore unlikely to correspond to any reallstlcthey are connected to a fire site, either through a short range
system, the Newman-Watts scheme was the one adopted {Rearest neighbprconnection or through a shortcut at the
constructing our small-wor_ld network. preceding iteration. Since these contributions require a tree

Our small-world forest-fire model was constructed by ap-gjte 19 he connected to the appropriate fire site, they include
plymg the DSFF model3] to the small-world network- e the product ternps(n) py(n). Finally, the fire site density is
wired according to the Newman-Watts procedure. With this,piaineq from the constraint that all the changes must add to
rewiring the DSFF model is modified to include the new ,q o | addition to these equations we have the further con-

rules. X ) .
i . . . _ straint that all sites must be empty, occupied by a tree or by
(i) A shortcut array, in addition to the grid on which the a fire site. This leads to the sum rule

forest-fire rules are run, is defined.
(ii) If a site is on fire, trees connected to it, either locally
or through a shortcut connectiorare set to catch fire at the

next iteration. _
(iii) The lightning strike probabilitf is set to zero. In order to solve these equations, we follow the approach

In order to determine whether the system has evolved to &f Christenseret al. [11] and write the difference equations
SOC state, we determined the two measuceitical expo-  (1)—(3) above as differential equations
nentg identified by Clar, Drossel, and Schwdll0] as im-
portant in describing the structural features of the forest in its Pe=—Ppetps, (5)
SOC state. The values of these measures may be used to
define the universality class of the system. In their study, the

pe(N)+pi(n)+ps(n)=1. (4)

exponentr which governs the distributioB (s) of tree clus- Pt=Ppe=dpipt—Mpipy, 6
ters of sizes, D(s)~s™ ", was found to vary from-2.1 (for
spatial dimension=2) to ~2.5(for d=6). It may be noted p1=—pi+0pipi+ Mpipy. )

that for d=6, all the critical exponents in this model are
independent ofl. The second important critical exponegat

Then, substituting fop, f Eq.(4) in Egs.(6) and(7),
measures how the linear size of a clusi{s) depends on en, substituting fop from Eq. (4) in Egs. (6) and(7), we

. . et
the cluster size through the scaling relatig(s) ~s**. For g
d=2, it was found thaj.=1.96, indicating that though the .
cluster shape is statistically scale invariant, the clusters are pt=P(1=ps—p)—(q+m)psp=F(ps,py), (8)
fractal structures with capacity dimension equaltoSo any
modification of the DSFF model must also result in power pi=—pi+(q+m)pipe=G(ps,py). (9)

laws whose existence is required in order that it may be said

to be a SOC system. To find the stationary solutions to these coupled equations,

we putF=G=0. This gives the fixed points of the SWFF

IIl. MEAN FIELD THEORY FOR THE SWFF MODEL model in the phase space of the fire and tree densities, viz.,
Following the approach of Christensest al. [11] and 1
Jenseri12], if we replace the individual site variables on the pr=——, (10
lattice network by the average densitiggn), p¢(n), and m+q
pi(n) representing the empty, fire, and tree occupied states at
iterationn, the evolution of these density distributions is de- 1
scribed by the following mappings: . 1- m_+q - 1-pt "

pe(N+1)=pe(n)—ppe(n)+p(Nn), (1)

The behavior of the system in the vicinity of the fixed points
pr(n+1)=pi(n)+ppe(n)—gps(n)p(n) —mp¢(n)pi(n), is determined by the eigenvalues of the determinantal
(2 equation
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The eigenvalues are simply the roots of the equatidn

+BA+C=0, where O 7
B=pl1+ 13 = $url o g
P T (13 S ey _palP]
S I -
and i i
L L ool L L |
C=p{1+(M+Q)(pi—po}+(m+a)pr. (14 o
(a) P
Since we are mainly interested in the behavior around the
fixed points, we substitute the general fire and tree densitie: N LR T v v I '
for their values at the fixed points. Then, in the limit of slow
driving, p—0, - .
m+q) 6i I .
B=p|l-— 15 ‘ 4
p( T+p (15 7
and - /]
C=p(m+q—1). (16) 0:05T it opl 7]
Thus both coefficients tend to zero ps>0. However, both = i
solutions are complex sind@® goes to zero ap? while C
goes to zero ap. Also, sinceB is always positive, the real

parts of the solution are negative. Thus the trajectory in %%

phase space around the critical point is an attractive spiral(®) 4
Note that this is so fop— 0 irrespective of the reconnection
probability g. In the DSFF model, the fixed point is an at-
tractive spiral forf/p—0 andp—0. So the SWFF model, in )
the mean field approximation, possesses an attractive critical
point similar to that found in the DSFF model, but with only
one requirement thgi—0. This is akin to requiring only a SOC(or othey behavior at various points on the phase plane.
slow driving of the system. Simulations were carried out on a Z5éttice, and the steady

In fact it can easily be shown that the system alwaysstate fire and tree d_ensities were recorded. For largad
possesses a nontrivial stable spiral@ (p¥). Slow driving ~ Smallp the system still evolves to a nonzero steady state, but
is not required to show SOC in the mean field interpretationth€ attracting spiral becomes very weak. Since the system is
In this sense the mean field thedFT) does not make any finite, the amplitude of the spiral from an arbitrary initial
predictions about which parameter regime we can expect t6ondition is large and the system tends to become trapped in
observe SOC in. We will find a steady state at nonzerd® State in which there are no fires.
(p? .p¥), but we need to resort to simulation to say anything Interesting behavior occurs aboge=0.02. We look for a

about the SOGor otherwisg properties of this steady state. change in the “order parameterpf or p;") of the system as
g increaseg$14]. There is no abrupt change in order param-

eter, but the relation betweerf , pf, andp changes a
~0.02. Figure 2a) shows this effect: Belowg=0.02 tree
Simulations of the SWFF model on a 12828 square density increases with, while aboveq=0.02 it decreases.
lattice were carried out for the rewire parametevarying  This is due to a jump in fire density in this regififig. 2(b)],
between 0 and 0.3y was restricted to be less than 0.3 be-but only for p>0.02.
cause too high a reconnection probability would result in far The system therefore changes qualitatively in the phase
too many long-range interactions to be interesting. It wasspace regiorg=0.02, p=0.02. We can investigate this re-
however necessary to studyat around 0.2 as it is for 0.02 gime by finding the relevant power law exponents. Note that
<(g<0.2 that the graph is well within the small-world re- MFT predicts no change in the tree density for a gigeand
gime. that the fire density increases monotonically wiibth p
We explored the whole ofp(,q) space and looked for andgq.

FIG. 2. The variation of the steady sta@® tree and(b) fire
densities with the driving parametepsfor different values of the
wire parameteq.

IV. RESULTS OF SIMULATIONS
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FIG. 3. Size distributionD(s) of cluster sizess for the SW FIG. 4. The variation of the linear siZ(s) with clusters of size
model forg=0.3 andp=1. sfor g=0.3 andp=1.

Although the mean field theory analysis was carried out ifAS e€xpected, in the limip,q—0, = was found to be~2.1,
the smallp limit, there is no need to impose this constraint in @d x~1.8 in good agreement with the results obtained for
simulations. Since the tree growth probabilitys associated the DSFF model.
with the strength of the driving of the system, a high value of P=0.03simulations The averaged cluster distribution ex-
p corresponds to a stronglfoven driven system. Such a Ponent for 0.00&g=<0.2 andp=0.03, is shown in Fig. 5.
system can be viewed as one in which the probability of treedhere is no discernable variation efwith g and it remains
growing on empty sites is very high. Alternatively, high relatively constant around-2.1. This is in keeping with
corresponds to a model of a very dense system. mean field theory analysis which indicates that the SWFF
Taking these factors into account, two sets of simulationgnodel should achieve criticality in the limg—0 indepen-
were carried out. In the firsh was kept fixed at a relatively dent of the reconnection probability. A plausible explanation
small value andj allowed to vary between 0 and 0.3. In the for this is that, in the limit of slow driving, there is a buildup
other set of simulationsy/p was set to a constant low value of correlations between shortcuts as well as on the regular

andq allowed to vary in the range. Asis always less than grid network. A shortcut whose vertices are both in the center
1, the simulations were carried out fgfp=0.02, withq  Of clusters will not cause a fire to start. Thus, in a qualitative

<0.2 and forg/p=0.1, with g<0.1. In all of the simula- S€nse, increasing the shortcut density does not affect the
tions both the cluster size and the linear size distributiongrowth of the few large scale structures that are required in
displayed very good scaling behavior. order for the distribution to follow a power layas long as

The scatter is a consequence of the onset of spiral shapdde “random” regime is not entergdand 7 is not greatly
structures, which are reminiscent of the “self-organized gedifferent from the DSFF value.
netic drift” (see, for example, Schroedgr3]) when the in- The critical exponenf also shows no general trend with
teraction between neighboring sites results in pattern formadhcreasingqg but there is a little more scatter apdis in the
tion. The presence of patterns are, of course, indicative of
some type of periodic or quasiperiodic behavior. These re-
sults may be explained by noting that with this fast driving,
the evolution of the system follows a deterministic, periodic
pattern with trees growing on empty sites, then catching fire " .
and leaving empty sites only to start again. This is manifest [ * * * -
in the spatial distribution of sites, which although displaying - » *

a range of cluster sizes, appear spiral shaped and are dom, | *

nated by fire resulting from a three-step cycle. The spiral
shapes ensuing from this fast driven system are quite com
plex as they tend to start at randomly distributed shortcut
points.

Even in the limit of high driving,p=1 and high recon-
nection probabilityg= 0.3, the results scaled well enough to
make it possible to extract values of the critical exponents, 15 Y TR Y TR o 1
and u (Figs. 3 and # However, it is unclear as to why the
spiral structures should display scaling since they are not
fractal. FIG. 5. The cluster size distribution exponents the reconnec-

The results for smallep values show much less scatter. tion probabilityq for p=0.03.

2.25 T

175 .

q
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FIG. 6. The linear size distribution exponeumtvs the reconnec-

tion probabilityq for p=0.03.

range 1.77-1.87Fig. 6). Thus, thep=0.03 simulations

o q/p=1/10 §
* q/p=1/50

q

0.01

0.1

FIG. 8. The linear size distribution exponeumtvs the reconnec-

tion probability q for g/p=1/50 andg/p= 1/10.

The linear size exponent also experiences a sharp fall

seem to be SOC, independentlyepfTo investigate the phase asq— 0.02 (Fig. 8). For values ofj greater than 0.02, there
space where new behavior might take place, a different set ¢§ considerable fluctuation in values which is just a reflec-
tion of the high degree of scatter in tf¥s) distributions.
Constant dp simulations With the algorithm described This is in keeping with the presence of the aforementioned

simulations was carried out.

above, aqualitatively different regimas entered ag ap-
proaches 0.02. Since the speed of drivitige rate of energy
input or in this case tree growth probabi)itg an important

spiral shapes.

For g/p=1/10 the SW regime is entered into whpns
still relatively small,p~0.2, and is therefore not overdriven.

factor in characterizing the system, it is pertinent to consideHowever, even in this instance, the distribution measure,
separately the evolution of the system in the case of fast anglecreases from its original value of 2.1 to about (Eig. 7).
Thus the decrease in as the model becomes SW persists
Thus, settingg/p=1/50, the SW regime is encountered even wherp is quite small. By contrast, the size measpre
only for p becoming quite large~< 1), corresponding to fast displays no clear relationship with the reconnection probabil-

moderate driving of the system.

driving. In these simulations, the cluster size exporewas

found to change appreciably with the reconnection probabil-
ity (Fig. 7). Specifically, agy approaches the SW regime,

decreases quite sharply, falling from its initial value of

around 2.1 (0.0 g>0.0005 and 0.2 p>0.025) down to

about 1.3. This is exactly the region in which there is a

change in the behavior of the order parameters.

2.5

V. DISCUSSION

ity and remains relatively constaffig. 8).

I
o q/p=1/10
o * q/p=1/50
*
(o]
*
2 —
[e] o
*
(o)
*
m
* o [e]
15
(e}
*
1 | L | |
0.001 0.01 0.1

q

FIG. 7. The cluster size distribution exponents the reconnec-

tion probabilityq for g/p=1/50 andg/p=1/10.

We have demonstrated that running the FF model on a
network which has in-built long-range connections in addi-
tion to the normal nearest neighbor interactions results in a
SOC system for slow driving and a “scale-free” system that
has complex structures but cannot be considered SOC for
strong driving.

We looked for a qualitative change in the behavior of the
system in p,q) space. The tree density was foundde-
creasewith increasing driving abovg=0.02. There was a
jump in fire density forg>=0.02, p>=0.02. This regime
corresponds to larger driving—fires spread easily through
new tree growth and an appreciable number of shortcuts.
MFT doesnot predict these qualitative changes.

In the region where qualitatively different behavior takes
place, different power law exponents for cluster size distri-
bution and fractal dimension were found. This corresponds
to a “phase transition” from the SOC state to a different
self-organized state. This can be seen from the transition of
cluster shape from fractals to spirals.

The strongly driven regime cannot be considered as SOC,
rather it is a different type of self-organization caused by
strong drivingand a large number of shortcuts.
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Unlike the Drossel-Schwabl model this modified model isthe interaction of human populations, where the driving of
deterministic and shows complex behavior without any finethe system is not necessarily slow.
tuning. Both, the DSFF and SWFF models have different N particular, it may be adapted to study the spread of

ranges of applications. Thus while the SWFF model wouldliS€aseé in  immunized communities. In studying such
systems, it is the change in the universality class or the

not be appropriate in modeling the evolution of real forest, eakdown of SOC which are of importance as they would
fires or of phenomena where there are random occurrencesuggest a possible breakdown of the dynamic equilibrium of
the long-range connections makes it suitable for modelinghe system.
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