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Investigation of the forest-fire model on a small-world network
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Department of Physics and Astronomy, University of Wales, Cardiff, United Kingdom

~Received 17 September 2002; revised manuscript received 29 April 2003; published 12 September 2003!

It is shown that the forest-fire model of Baket al. run on a square lattice network with additional long-range
interactions in the spirit of a small-world network results in a scale-free system reminiscent of self-organized
criticality without recourse to fine tuning. As the number of these long-range interactions is increased, the
cluster size distribution exponent is found to decrease in magnitude as the small-world regime is entered,
indicating a change in its universality class. It is suggested that such a model could have applicability in the
study of disease spreading in human populations.
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I. INTRODUCTION

Over a decade ago Baket al. @1# proposed a lattice mode
which through the emergence of complex, scale-free st
tures, exhibited characteristics of self-organized criti
~SOC! systems. This model, originally introduced to sim
late real forest fires, has served as a paradigm for SOC
tems and is referred to as the forest-fire~FF! model. In their
investigations of the FF model, Grassberger and Kantz@2#
found that unless the system was finely tuned, a charact
tic time scale, inversely proportional to the tree growth pro
ability p, emerged. So, in a strict sense, the FF model d
not not display true SOC behavior which should, by defin
tion, be free of any tuning. In an effort to overcome th
failing, Drossel and Schwabl~DS! @3# introduced alightning
strike rule, which allowed the possibility of trees catchin
fire spontaneously with some~small! probability f. The en-
suing result was that in the limit of low tree growth an
random fire probabilities, this new~DSFF! model displayed
SOC behavior. The downside of introducing such a mod
cation are the conditions that both the tree growthp and f /p
should tend to zero.

In this paper, we show that running a forest-fire mod
simulation on a lattice network, which includes some lon
range interactions in addition to the local interactions of
lattice, results in scale-free structures. In addition to be
fully deterministic and without recourse to random events
in the DSFF model, such a model has the added benefi
sitting on a network which may be used to simulate ot
phenomena; for example, the spread of disease in hu
populations.

II. THE SMALL-WORLD FOREST FIRE „SWFF… MODEL

Mimicking real world networks was the aim of Watts an
Strogatz@4,5# when they introduced the small-world~SW!
network model. They developed real world network grap
which were neither constrained to have only local conn
tions nor were just a random set of connections. Instea
had long-range~randomly wired! connections between lo
cally connected networks. This was, in effect, a netwo

*Email address: ig224@cam.ac.uk
1063-651X/2003/68~3!/036109~7!/$20.00 68 0361
c-
l

s-

is-
-
s

-

l
-
e
g
s
of
r
an

s
-
it

k

somewhere between a regular lattice with nearest neigh
connections and a random graph. The number of such c
nections in a network is characterized by the connect
probability q.

There are different ways in which one can effect the lon
range connections~shortcuts! between local networks in or
der to construct a small-world network. In their original p
per, Watts and Strogatz@4# dealt with a one-dimensiona
~1D! ring lattice with nearest neighbor and next near
neighbor connections. This network was thenrewired by
connecting randomly selected start and end points on
network~vertices of the graph! and simultaneously removing
a connection from these vertices to their local neighbor
one were to extend this approach to the FF model on a t
dimensional square grid, the removal of the local conn
tions would have a detrimental effect on the fire spread
potential which of course depends on these connections.
therefore desirable to construct a different way of includi
the long-range connections or short cuts.

We considered two different approaches and for each,
calculated two measures which are used to characterize
networks@4#. The path lengthL is the shortest path connec
ing two vertices, averaged over all pairs. It is important
note that it is not a measure of the spatial distance betw
vertices~except in the special case of a regular graph! but is
instead the smallest number of connections between the
vertices.L is a global property of the graph since it measu
some average communication between all pairs of vertice
is therefore a function of the connection probability and,
particular, asq is increased, the normalized path leng
L(q)/L(0) would be expected to show a sudden decrea
reflecting the onset of SW behavior. The other measure is
clustering coefficientC, which is a local property of the
graph and is concerned with the direct connections of
vertices.

Most SW networks are concerned with rewiring regu
graphs or modifying random graphs in some way. The cl
tering coefficient is usually defined as the ratio of fully co
nected three node neighborhoods to the ratio of all th
node neighborhoods. Since this quantity is trivial for o
network ~we almost never have connected triangles and
ways have connected squares!, another measure of cluste
ing, a local property of the graph, is required. We found
convenient to define the clustering coefficient as proportio
to the inverse of the ‘‘lattice distance’’~that is the number of
steps to get from one point to another without using sho
©2003 The American Physical Society09-1
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I. GRAHAM AND C. C. MATTHAI PHYSICAL REVIEW E 68, 036109 ~2003!
cuts!. In this way,C(q) measures a local property, i.e., ho
far away its neighbors are, and decreases as the numb
shortcuts in the network increases.

The normalized coefficientC(q)/C(0) is also expected to
decrease once the small-world regime is entered. The sm
world regime is characterized by a small path length co
pared to that in the random graph and correspondingly h
clustering of the lattice, i.e., a graph is SW whenL becomes
significantly smaller thanC. Thus, in the SW regime the
difference measure,D(q)5C(q)2L(q), and the ratio mea-
sure,R(q)5C(q)/L(q), both become large.

The Newman-Watts algorithm. In the Newman and Watts
procedure@6#, a vertex chosen at random has a probabilitq
of being the starting point of a shortcut connection. The sa
is true for the ending point of a shortcut; thus each site
zero or one shortcut. Then, for each shortcut starting po
an end point is chosen at random and a connection is m
However, no vertices are deleted. The distribution of conn
tions per siteP is d distributed. So forx connections,

P~x!5~122q!d4,x12qd5,x .

To determine the range ofq values for which such graph
are SW in character, we calculatedL(q) andC(q). The al-
gorithm for obtainingL(q) is as follows.

~i! Calculate the lattice distance or number of steps,ux2
2x1u1uy22y1u, between the start (x1 ,y1) and end (x2 ,y2)
points.

~ii ! Search a 535 neighborhood of vertices around th
start point and list all the shortcuts and find all the relev
connections.

~iii ! Find the shortcut that brings the start and end po
closer, taking into account the number of steps required
reach the shortcut from the start point.

~iv! If this route is closer than (ux22x1u1uy22y1u22) to
the end point, move to the other end of the shortcut not
the number of steps taken.

~v! If there are no useful shortcuts, move closer to the e
point by moving one step in thex or y direction.

~vi! Repeat until (x1 ,y1)5(x2 ,y2).
~vii ! Then,L is simply the number of steps taken.
This procedure was repeated for all pairs of vertices

isfying the condition that (ux22x1u1uy22y1u>3) and then
averaged. The minimum path length is then normalized w
respect to the path length for the regular graph,L(0). It may
be noted that this algorithm does not necessarily find
absolute minimum path length each time, but the probab
of finding a path length close to the absolute minimum
large.

The clustering coefficientC(q) was obtained using an
algorithm based on the one prescribed by Hayes@7#. The
procedure is given as follows:~i! List the connections of a
vertex ~including the four nearest neighbors!; ~ii ! sum the
lattice distancesuxi2x1u1uyi2y1u of all the connections;
~iii ! divide the number of connections by the sum of t
lattice distances;~iv! repeat over all vertices and take th
average.

L(q)/L(0) and C(q)/C(0) were thus determined for
2D square lattice of 1282 sites and the results forq<0.2 are
03610
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shown in Fig. 1~a!. The decrease inL(q)/L(0), reflecting
the onset of the SW regime is found to occur aroundq
;0.02. This can be more clearly seen in the variation of
difference and ratio measures,D(q)/Dmax and R(q)/Rmax,
normalized to their maximum values@Fig. 1~b!#. Both of
these quantities become large whenq;0.005. Although
Watts and Strogatz found the onset of SW behavior foq
;0.002, this is probably just a consequence of the increa
connectivity and reduced dimensionality of their network.

The Kleinberg algorithm. In order to counter some of th
difficulties encountered in carrying out the calculation
L(q) in the Newman-Watts and the Watts-Strogatz pro
dure, Kleinberg@8# suggested a different method of reco
necting the network. In this approach, for each random
chosen start point, the end points are randomly chosen f
a power law probability distribution based on the lattice d
tance. By letting the probability of making a shortcut of di
tances decrease as a polynomial of orderr with increasing
distance, this method of rewiring imprints a geographi
structure onto the lattice thereby invoking the Milgram@9#
navigational scheme. Then, forr 52, the minimum path
length can be found using a decentralized algorithm in wh

FIG. 1. ~a! The normalizedL(q) andC(q) and~b! the normal-
ized D(q) andR(q) on a regular square graph using the Newma
Watts rewiring procedure.
9-2
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INVESTIGATION OF THE FOREST-FIRE MODEL ON A . . . PHYSICAL REVIEW E68, 036109 ~2003!
only local information is available, given as follows.
~i! Choose start and end vertices of a path.
~ii ! At each step, move from the present vertex~via a

neighbor or a shortcut! to the vertex that is the smallest la
tice distance away from the end vertex.

Because of the local nature of the search, it turns out
it is very much easier to compute the path length in t
approach compared to that in the Newman-Watts meth
However, with this scheme, the normalized path lengths
cluster sizes as a function ofq do not display SW character
istics until q;0.2. As this is much too large a degree
rewiring and therefore unlikely to correspond to any realis
system, the Newman-Watts scheme was the one adopte
constructing our small-world network.

Our small-world forest-fire model was constructed by a
plying the DSFF model@3# to the small-world network re-
wired according to the Newman-Watts procedure. With t
rewiring the DSFF model is modified to include the ne
rules.

~i! A shortcut array, in addition to the grid on which th
forest-fire rules are run, is defined.

~ii ! If a site is on fire, trees connected to it, either loca
or through a shortcut connection, are set to catch fire at th
next iteration.

~iii ! The lightning strike probabilityf is set to zero.
In order to determine whether the system has evolved

SOC state, we determined the two measures~critical expo-
nents! identified by Clar, Drossel, and Schwabl@10# as im-
portant in describing the structural features of the forest in
SOC state. The values of these measures may be use
define the universality class of the system. In their study,
exponentt which governs the distributionD(s) of tree clus-
ters of sizes, D(s);s2t, was found to vary from;2.1 ~for
spatial dimensiond52) to ;2.5 ~for d>6). It may be noted
that for d>6, all the critical exponents in this model a
independent ofd. The second important critical exponentm
measures how the linear size of a clusterR(s) depends on
the cluster size through the scaling relationR(s);s1/m. For
d52, it was found thatm51.96, indicating that though th
cluster shape is statistically scale invariant, the clusters
fractal structures with capacity dimension equal tom. So any
modification of the DSFF model must also result in pow
laws whose existence is required in order that it may be s
to be a SOC system.

III. MEAN FIELD THEORY FOR THE SWFF MODEL

Following the approach of Christensenet al. @11# and
Jensen@12#, if we replace the individual site variables on th
lattice network by the average densitiesre(n), r f(n), and
r t(n) representing the empty, fire, and tree occupied state
iterationn, the evolution of these density distributions is d
scribed by the following mappings:

re~n11!5re~n!2pre~n!1r f~n!, ~1!

r t~n11!5r t~n!1pre~n!2qr f~n!r t~n!2mr f~n!r t~n!,
~2!
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r f~n11!5qr f~n!r t~n!1mr f~n!r t~n!. ~3!

Here,p represents the tree growth probability,q the connec-
tion probability, andm is the coordination number of th
lattice~i.e., the number of nearest neighbors forq50) which
for a square lattice is 4. Because each fire site become
empty site at the next iteration whereas an empty site h
probability p of becoming a tree site, these contribute to t
change in the empty site density in Eq.~1!. The latter con-
tribution also results in a corresponding increase in the
density. The decrease inr t comes about as trees catch fire
they are connected to a fire site, either through a short ra
~nearest neighbor! connection or through a shortcut at th
preceding iteration. Since these contributions require a
site to be connected to the appropriate fire site, they incl
the product termr f(n)r t(n). Finally, the fire site density is
obtained from the constraint that all the changes must ad
zero. In addition to these equations we have the further c
straint that all sites must be empty, occupied by a tree or
a fire site. This leads to the sum rule

re~n!1r t~n!1r f~n!51. ~4!

In order to solve these equations, we follow the approa
of Christensenet al. @11# and write the difference equation
~1!–~3! above as differential equations

ṙe52pre1r f , ~5!

ṙ t5pre2qr fr t2mr fr t , ~6!

ṙ f52r f1qr fr t1mr fr t . ~7!

Then, substituting forre from Eq.~4! in Eqs.~6! and~7!, we
get

ṙ t5p~12r f2r t!2~q1m!r fr t5F~r f ,r t!, ~8!

ṙ f52r f1~q1m!r fr t5G~r f ,r t!. ~9!

To find the stationary solutions to these coupled equatio
we put F5G50. This gives the fixed points of the SWF
model in the phase space of the fire and tree densities,

r t* 5
1

m1q
, ~10!

r f* 5p
S 12

1

m1qD
11p

5pS 12r t*

11p D . ~11!

The behavior of the system in the vicinity of the fixed poin
is determined by the eigenvaluesl of the determinantal
equation
9-3
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I. GRAHAM AND C. C. MATTHAI PHYSICAL REVIEW E 68, 036109 ~2003!
U ]F

]r t
2l

]F

]r f

]G

]r t

]G

]r f
2l
U50. ~12!

The eigenvalues are simply the roots of the equationl2

1Bl1C50, where

B5pS 11
m1q

11p D ~13!

and

C5p$11~m1q!~r f2r t!%1~m1q!r f . ~14!

Since we are mainly interested in the behavior around
fixed points, we substitute the general fire and tree dens
for their values at the fixed points. Then, in the limit of slo
driving, p→0,

B5pS m1q

11p D ~15!

and

C5p~m1q21!. ~16!

Thus both coefficients tend to zero asp→0. However, both
solutions are complex sinceB2 goes to zero asp2 while C
goes to zero asp. Also, sinceB is always positive, the rea
parts of the solution are negative. Thus the trajectory
phase space around the critical point is an attractive sp
Note that this is so forp→0 irrespective of the reconnectio
probability q. In the DSFF model, the fixed point is an a
tractive spiral forf /p→0 andp→0. So the SWFF model, in
the mean field approximation, possesses an attractive cri
point similar to that found in the DSFF model, but with on
one requirement thatp→0. This is akin to requiring only a
slow driving of the system.

In fact it can easily be shown that the system alwa
possesses a nontrivial stable spiral at (r f* ,r t* ). Slow driving
is not required to show SOC in the mean field interpretati
In this sense the mean field theory~MFT! does not make any
predictions about which parameter regime we can expec
observe SOC in. We will find a steady state at nonz
(r f* ,r t* ), but we need to resort to simulation to say anythi
about the SOC~or otherwise! properties of this steady state

IV. RESULTS OF SIMULATIONS

Simulations of the SWFF model on a 1283128 square
lattice were carried out for the rewire parameterq varying
between 0 and 0.3.q was restricted to be less than 0.3 b
cause too high a reconnection probability would result in
too many long-range interactions to be interesting. It w
however necessary to studyq at around 0.2 as it is for 0.02
,q,0.2 that the graph is well within the small-world re
gime.

We explored the whole of (p,q) space and looked fo
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SOC~or other! behavior at various points on the phase pla
Simulations were carried out on a 2562 lattice, and the steady
state fire and tree densities were recorded. For largeq and
smallp the system still evolves to a nonzero steady state,
the attracting spiral becomes very weak. Since the syste
finite, the amplitude of the spiral from an arbitrary initia
condition is large and the system tends to become trappe
a state in which there are no fires.

Interesting behavior occurs aboveq50.02. We look for a
change in the ‘‘order parameter’’ (r f* or r t* ) of the system as
q increases@14#. There is no abrupt change in order para
eter, but the relation betweenr f* , r t* , andp changes atq
;0.02. Figure 2~a! shows this effect: Belowq50.02 tree
density increases withp, while aboveq50.02 it decreases
This is due to a jump in fire density in this region@Fig. 2~b!#,
but only for p.0.02.

The system therefore changes qualitatively in the ph
space regionq>0.02, p>0.02. We can investigate this re
gime by finding the relevant power law exponents. Note t
MFT predicts no change in the tree density for a givenq, and
that the fire density increases monotonically withboth p
andq.

FIG. 2. The variation of the steady state~a! tree and~b! fire
densities with the driving parametersp for different values of the
rewire parameterq.
9-4
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INVESTIGATION OF THE FOREST-FIRE MODEL ON A . . . PHYSICAL REVIEW E68, 036109 ~2003!
Although the mean field theory analysis was carried ou
the smallp limit, there is no need to impose this constraint
simulations. Since the tree growth probabilityp is associated
with the strength of the driving of the system, a high value
p corresponds to a strongly~over! driven system. Such a
system can be viewed as one in which the probability of tr
growing on empty sites is very high. Alternatively, highp
corresponds to a model of a very dense system.

Taking these factors into account, two sets of simulatio
were carried out. In the first,p was kept fixed at a relatively
small value andq allowed to vary between 0 and 0.3. In th
other set of simulations,q/p was set to a constant low valu
andq allowed to vary in the range. Asp is always less than
1, the simulations were carried out forq/p50.02, with q
<0.2 and forq/p50.1, with q<0.1. In all of the simula-
tions both the cluster size and the linear size distributi
displayed very good scaling behavior.

The scatter is a consequence of the onset of spiral sh
structures, which are reminiscent of the ‘‘self-organized
netic drift’’ ~see, for example, Schroeder@13#! when the in-
teraction between neighboring sites results in pattern for
tion. The presence of patterns are, of course, indicative
some type of periodic or quasiperiodic behavior. These
sults may be explained by noting that with this fast drivin
the evolution of the system follows a deterministic, period
pattern with trees growing on empty sites, then catching
and leaving empty sites only to start again. This is manif
in the spatial distribution of sites, which although displayi
a range of cluster sizes, appear spiral shaped and are d
nated by fire resulting from a three-step cycle. The sp
shapes ensuing from this fast driven system are quite c
plex as they tend to start at randomly distributed short
points.

Even in the limit of high driving,p51 and high recon-
nection probability,q50.3, the results scaled well enough
make it possible to extract values of the critical exponentt
andm ~Figs. 3 and 4!. However, it is unclear as to why th
spiral structures should display scaling since they are
fractal.

The results for smallerp values show much less scatte

FIG. 3. Size distributionD(s) of cluster sizess for the SW
model forq50.3 andp51.
03610
n

f

s

s

s

ed
-

a-
of
-

,

e
st

mi-
l
-

t

ot

As expected, in the limitp,q→0, t was found to be;2.1,
andm;1.8 in good agreement with the results obtained
the DSFF model.

p50.03simulations. The averaged cluster distribution ex
ponent for 0.002<q<0.2 andp50.03, is shown in Fig. 5.
There is no discernable variation oft with q and it remains
relatively constant around;2.1. This is in keeping with
mean field theory analysis which indicates that the SW
model should achieve criticality in the limitp→0 indepen-
dent of the reconnection probability. A plausible explanati
for this is that, in the limit of slow driving, there is a buildu
of correlations between shortcuts as well as on the reg
grid network. A shortcut whose vertices are both in the cen
of clusters will not cause a fire to start. Thus, in a qualitat
sense, increasing the shortcut density does not affect
growth of the few large scale structures that are required
order for the distribution to follow a power law~as long as
the ‘‘random’’ regime is not entered! and t is not greatly
different from the DSFF value.

The critical exponentm also shows no general trend wit
increasingq but there is a little more scatter andm is in the

FIG. 4. The variation of the linear sizeR(s) with clusters of size
s for q50.3 andp51.

FIG. 5. The cluster size distribution exponentt vs the reconnec-
tion probabilityq for p50.03.
9-5
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I. GRAHAM AND C. C. MATTHAI PHYSICAL REVIEW E 68, 036109 ~2003!
range 1.77–1.87~Fig. 6!. Thus, thep50.03 simulations
seem to be SOC, independently ofq. To investigate the phas
space where new behavior might take place, a different se
simulations was carried out.

Constant q/p simulations. With the algorithm described
above, aqualitatively different regimeis entered asq ap-
proaches 0.02. Since the speed of driving~the rate of energy
input or in this case tree growth probability! is an important
factor in characterizing the system, it is pertinent to consi
separately the evolution of the system in the case of fast
moderate driving of the system.

Thus, settingq/p51/50, the SW regime is encountere
only for p becoming quite large (;1), corresponding to fas
driving. In these simulations, the cluster size exponentt was
found to change appreciably with the reconnection proba
ity ~Fig. 7!. Specifically, asq approaches the SW regime,t
decreases quite sharply, falling from its initial value
around 2.1 (0.01.q.0.0005 and 0.2.p.0.025) down to
about 1.3. This is exactly the region in which there is
change in the behavior of the order parameters.

FIG. 6. The linear size distribution exponentm vs the reconnec-
tion probabilityq for p50.03.

FIG. 7. The cluster size distribution exponentt vs the reconnec-
tion probabilityq for q/p51/50 andq/p51/10.
03610
of

r
nd

il-

The linear size exponentm also experiences a sharp fa
asq→0.02 ~Fig. 8!. For values ofq greater than 0.02, ther
is considerable fluctuation inm values which is just a reflec
tion of the high degree of scatter in theR(s) distributions.
This is in keeping with the presence of the aforemention
spiral shapes.

For q/p51/10 the SW regime is entered into whenp is
still relatively small,p;0.2, and is therefore not overdriven
However, even in this instance, the distribution measuret
decreases from its original value of 2.1 to about 1.7~Fig. 7!.
Thus the decrease int as the model becomes SW persis
even whenp is quite small. By contrast, the size measurem
displays no clear relationship with the reconnection proba
ity and remains relatively constant~Fig. 8!.

V. DISCUSSION

We have demonstrated that running the FF model o
network which has in-built long-range connections in ad
tion to the normal nearest neighbor interactions results i
SOC system for slow driving and a ‘‘scale-free’’ system th
has complex structures but cannot be considered SOC
strong driving.

We looked for a qualitative change in the behavior of t
system in (p,q) space. The tree density was found tode-
creasewith increasing driving aboveq50.02. There was a
jump in fire density forq.50.02, p.50.02. This regime
corresponds to larger driving—fires spread easily throu
new tree growth and an appreciable number of shortc
MFT doesnot predict these qualitative changes.

In the region where qualitatively different behavior tak
place, different power law exponents for cluster size dis
bution and fractal dimension were found. This correspon
to a ‘‘phase transition’’ from the SOC state to a differe
self-organized state. This can be seen from the transitio
cluster shape from fractals to spirals.

The strongly driven regime cannot be considered as S
rather it is a different type of self-organization caused
strong drivingand a large number of shortcuts.

FIG. 8. The linear size distribution exponentm vs the reconnec-
tion probabilityq for q/p51/50 andq/p51/10.
9-6



l is
n

en
ul
es
c

lin

of

of
ch
the
uld

of

INVESTIGATION OF THE FOREST-FIRE MODEL ON A . . . PHYSICAL REVIEW E68, 036109 ~2003!
Unlike the Drossel-Schwabl model this modified mode
deterministic and shows complex behavior without any fi
tuning. Both, the DSFF and SWFF models have differ
ranges of applications. Thus while the SWFF model wo
not be appropriate in modeling the evolution of real for
fires or of phenomena where there are random occurren
the long-range connections makes it suitable for mode
,

o
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the interaction of human populations, where the driving
the system is not necessarily slow.

In particular, it may be adapted to study the spread
disease in immunized communities. In studying su
systems, it is the change in the universality class or
breakdown of SOC which are of importance as they wo
suggest a possible breakdown of the dynamic equilibrium
the system.
tt.
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