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Abstract

The rapid growth of cities, and the high energy consumption and Greenhouse

Gases (GHGs) emissions of the buildings are significant challenges to reducing

the environmental impact of the built environment. Life Cycle Assessment (LCA)

can help to address these challenges by assessing the full life cycle of buildings

and identifying areas for improvement. However, the complexity of the building

sector, including variations in building usage, energy supply, and regulations,

makes it difficult to consistently apply LCA methodologies to buildings. Thus,

a different approach or methodology is required to improve the adoption and

streamline the application of LCA in the building domain.

This thesis presents a comprehensive approach to facilitate the application of

LCA in buildings, with a focus on enhancing their energy and environmental

performance. A framework was developed to overcome the limitations of current

LCA solutions and provide a comprehensive approach to explore various scenar-

ios during the operation of buildings by integrating various domain models and

data sources. This study demonstrated the practical application of the devel-

oped framework in addressing the research questions through a specific use case.

The use case showed how the framework that was developed during this work

could be applied to address the challenges of reducing the environmental impacts

of building energy consumption during the operation phase. The proposed op-

timisation strategy for mechanical ventilation systems using genetic algorithms,

coupled with machine learning models, provided a practical solution that min-
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imises energy consumption while ensuring that indoor CO2 levels remain within

acceptable limits.

Finally, a lightweight ontology was developed for semantically-enabled LCA in

buildings. The ontology was created by identifying the domain concepts and the

relationships between the identified concepts. The ontology schema was devel-

oped using a modular approach, with three interconnected modules: the Observa-

tion module, Service module, and Building module. The ontology was evaluated

through SPARQL queries and was effective in providing answers to questions from

various domains. The developed ontology highlights the importance of leverag-

ing semantics to integrate information and data from different sources, facilitating

the application of LCA, and enhancing interoperability and information exchange

across domains.
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Chapter 1

Introduction

1.1 Background

Globally, the population who live in cities is predicted to grow to 68% by 2050 [1].

However, cities are currently responsible for 75% of global energy consumption

and Greenhouse Gases (GHGs) emissions, with over 40% of total energy consump-

tion attributed to buildings [2]. Moreover, the building sector is a key consumer of

natural resources. In Europe, buildings are responsible for 33% of waste and 22%

of hazardous waste production [3]. The special report on the impact of global

warming of 1.5°C [4] was yet another call to implement measures to mitigate

GHGs emissions and to devise new adaptation scenarios. In this context, Life

Cycle Assessment (LCA) can help to quantify the environmental pressures, the

trade-offs, and the areas to achieve improvements considering the full life cycle

of built assets, from design to recycling. However, current approaches to LCA

do not consistently factor in (both in the foreground and background inventory

systems) life cycle variations in: (a) building usage, (b) energy supply (including

from renewable sources), and (c) building and environmental regulations, as well

as other changes over the building’s or district’s lifetime [5–7]. These include:

(a) a change in the energy mix of a building or district, or upgrading/retrofitting

the energy system(s) in place; and (b) time-increase of energy demand during

the lifetime of a building due to a wide range of reasons, including changes in

occupancy patterns.
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LCA is an important instrument to help reduce the overall environmental burden

of buildings. It can also provide insights into the upstream and downstream trade-

offs that are associated with environmental pressures, health and well-being, and

the consumption of natural resources. Therefore, LCA can inform policy making

by providing valuable information on the environmental performance of built as-

sets. However, the current LCA methods and tools have a number of limitations

and challenges, including: (a) site-specific considerations [6], several local impacts

need to be considered in building assessments (e.g., the microclimate); (b) model

complexity [5], buildings involve a wide range of material and products that inter-

act as part of a complex assembly or system; (c) scenario uncertainty [5, 6], the

long use phase of buildings (including the potential for future renovation) poses

uncertainty problems in LCA that are not currently addressed; (d) health and

well-being [6, 7], traditional LCA methodologies do not address the indoor and

outdoor environmental impacts of a building on health and well-being; (e) recy-

cled material data [5, 8], there is a lack of data on the use of waste and recycled

materials as new building materials; and (f) there is a lack of consideration of the

social and economic aspects [5, 8].

1.2 LCA Across the Life-cycle Stages

This section provides a brief overview of the importance and challenges of applying

LCA across key stages of a built asset’s life cycle: design, retrofit and construction,

operation, and End-of-Life (EoL) treatment.

In the design stage: There is an increasing demand for LCA modelling approaches

that can be initiated during the early-design stage and which can factor in un-

certainty and incomplete information [9]. Material and product selection must

be informed by environmental, social, and economic considerations at an early-

design stage [10]. The EoL of these products should be planned as early as the
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briefing and concept design stage. Further research is also needed to (a) embed

LCA methods into the early-design process and underpinning workflow enabled

by a seamless Building Information Modelling (BIM)-LCA integration; (b) pro-

mote comparative approaches that consider multiple environmental, economic,

and social indicators to identify the design alternative with the lowest environ-

mental impact; (c) integrate LCA with computational and analytical techniques

that can deal with uncertainty, such as machine learning; (d) provide a means

of predicting operational carbon emissions during the early-design stages; and

(e) explore and promote the acceptance of an LCA philosophy by designers and

practitioners, as well as the adoption of the underpinning methods.

During retrofit and construction: Evidence suggests that energy losses and ma-

terial waste account for 30% and 40% during the construction stage, respectively

[11]. Therefore, research into using alternative construction systems (e.g., prefab-

rication, modular construction, and 3D printing) may provide a means to reduce

the environmental impact during the construction phase. It has been noted that

a circular economy approach (i.e., design, use, reuse, and recycle) contrasts with

the linear value chain model that is used in the building construction industry

[12] and is hindered by several structural barriers [13]. This is exemplified by

the management of waste in the industry. Consequently, research is needed into

approaches that promote decarbonisation and waste elimination in construction,

which involves the complex supply chain that gravitates around a construction

site. Furthermore, non-energy-related rehabilitation measures tend to be ignored,

while the focus remains on improvement to the building envelope, energy system,

and energy end-use [14]. Therefore, holistic (i.e., system engineering) retrofitting

approaches that are rooted in an LCA philosophy and are informed by decision

support systems (including machine learning and optimisation algorithms) should

be promoted.

In the operation stage: Current approaches to LCA do not consistently factor
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in (in the foreground and background inventory systems) life cycle variations in

(a) building usage, (b) energy supply (including from renewable sources), and

(c) building and environmental regulations, as well as other changes over the

building’s or district’s lifetime. These include: (a) change in the energy mix of

a building or district, or upgrading or retrofitting the energy system(s) in place;

and (b) time-increase of energy demand during the lifetime of a building due

to a wide range of reasons, including changes in occupancy patterns. In this

context, the key limitations and challenges that are faced by the current LCA

methods and tools include: site-specific considerations [6], several local impacts

need to be considered in building assessments (e.g., the microclimate); (b) model

complexity [5], buildings use a wide range of material and products, which interact

as part of a complex assembly or system; (c) scenario uncertainty [5, 6], the

long use phase of buildings (including the potential for future renovation) poses

uncertainty problems in LCA that are currently not addressed; (d) health and

well-being [6, 7], traditional LCA methodologies do not address the indoor and

outdoor environmental impact on health and well-being; and (e) there is a lack

of consideration for the social and economic aspects [5, 8].

LCA in EoL: The recycling stage of a built asset is increasingly attracting re-

search, fuelled by the need to promote circularity principles. There is even a

growing trend to use the ‘cradle-to-grave-to-reincarnation’ concept in the recent

literature. However, an efficient recycling strategy should be embedded during the

early concept design stage of a built asset. Furthermore, it is interesting to note

that existing databases (e.g., Ecoinvent) are incompatible with the EoL treat-

ment of the widely-used LCA methods, including Product Environmental Foot-

print (PEF) and CEN EN 15804/15978 [15]. Therefore, future research should:

(a) enhance existing Life Cycle Inventory (LCI) databases to embed EoL data and

information; (b) promote comparative approaches that consider multiple environ-

mental, economic, and social indicators to identify the optimal material selection

and design alternative with the highest recycling potential; and (c) promote the
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use of semantics and digital twins of built assets to facilitate the dismantling and

reuse of building parts.

1.3 Research Motivation

The current LCA methods have a number of limitations and gaps, including:

• Lack of reasoning and decision-support capabilities, such as exploring “what

if” scenarios for the evaluation of alternative design options and devising

adapted strategies, thus promoting the active control of buildings and dis-

tricts [7].

• Lack of alignment with domain models, such as BIM, Geographical Infor-

mation Systems (GIS), and LCA data structures [16, 17].

• Lack of full support of temporal information [5, 6, 18, 19]. There is also a

need to factor in temporal information in the background and foreground

LCI and Life Cycle Impact Assessment (LCIA) phases to address mainte-

nance, operation, deconstruction, disposal, and recycling stages.

Recent research has used more advanced approaches to LCA [7, 8], such as in-

corporating economic considerations by including Life Cycle Costing (LCC). In

addition, there is a growing interest in the integration of BIM with environmen-

tal impact calculation methods [17]. However, this work is currently limited by

semantic incompleteness and interoperability issues between current software so-

lutions. In addition, efforts to scale up LCA from building to district levels are

still limited [5, 17].

The application of LCA for buildings requires informed interventions to achieve

carbon neutrality, including the elaboration of carbon-intensive activities. These

decarbonisation strategies use optimisation approaches to reduce material and
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energy demand, while integrating renewables and achieving a higher order of

efficiency of resources. A carbon neutrality assessment can be also applied and

scaled to a district level by adopting reduction and avoidance strategies, and by

adapted analysis of the value chain [20].

1.4 Research Objectives

The central aim of this thesis is to develop a semantic-based approach to de-

liver a near real-time environmental footprint, and inform effective operation and

management strategies for the built environment. The hypothesis to be tested

states:

A semantic-based approach can facilitate the process of LCA and improve the

accuracy of the LCA results by leveraging the value of dynamic data, learning

systems, and digital built-environment resources

To evaluate the hypothesis, this research has formulated the following research

questions:

RQ1. What are the key limitations of current LCA methods that affect the

accuracy and widespread adoption of LCA in the building domain?

RQ2. Can access to dynamic data provide more accurate accounts of the

environmental impact during the operation stage?

RQ3. How can machine learning and optimisation be leveraged to reduce

the environmental impact of buildings?

RQ4. Can a semantic web approach provide a sound basis to facilitate and

streamline the application of LCA in buildings?
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1.5 Research Contribution

During the course of the PhD program, the author participated in a collaborative

research project entitled “SemanticLCA”. It is pertinent to note that the author

held an independent scholarship that supported the PhD studies, and there was

no financial compensation from the research project. Within the context of the

SemanticLCA project, the author pursued a distinct thread of work that ran in

parallel to the engagement in different work packages of the research project.

In essence, the project served as a thematic compass and provided access to

valuable resources, such as data repositories, and feedback from domain experts

and industry partners.

The research trajectory in this thesis was guided by a thorough literature review

carried out by the author, which was later published. A key part of this thesis was

developing a framework to define the problem and the requirements for delivering

a specific use case investigated in Chapters 4, 5, and 6. While the project team

gave valuable inputs in refining the work, the framework development and the

validation of the proposed solution were the author’s individual contributions.

This thesis makes two main contributions. The first contribution is the develop-

ment of an integrated framework for optimising building energy and environmen-

tal performance, including the development and testing of two machine-learning

models and an optimisation strategy for controlling ventilation systems in build-

ings to improve the accuracy of the LCA results.

The second contribution is the development of a lightweight ontology for LCA

that is applied to buildings using a modular approach, which improves interoper-

ability and information exchange across different domains by facilitating semantic

modelling.
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1.6 Thesis Overview

The thesis is organised into seven chapters (including this introduction). The

chapters aim to answer the research questions that were posed earlier. The present

chapter has established the context of the research, provided background infor-

mation, and highlighted its significance.

Chapter 2 will review the literature. It commences by examining the state-of-the-

art LCA research applied to buildings, concentrating on current research direc-

tions. It then investigates building energy performance from various viewpoints,

including the energy performance gap, and the utilisation of machine learning

and optimisation to enhance building energy performance. This is followed by

a review of semantics in the context of LCA. Finally, this chapter identifies the

research gaps and engages in a thorough discussion of these topics, which were

considered to address research Question 1.

The methodology that is used in this thesis is presented in Chapter 3. This

chapter begins by discussing the theoretical research philosophy that underpins

the study. It then gives an overview of the research approaches that have been

undertaken to address the research questions.

The framework that was developed to minimise the environmental impacts of

buildings is presented in Chapter 4. This chapter provides a detailed explanation

of the modelling techniques that are used in the framework, including prediction

optimisation, simulation, and LCA models.

The results and outputs generated by the techniques that were presented in the

previous chapter are discussed in Chapter 5. This chapter also provides an

overview of the assumptions that were made during the development of these

techniques and discusses how they were used to address research Questions 2 and

3.

Chapter 6 investigates the role of semantic modelling and interoperability in au-
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tomating and streamlining the LCA process in the building domain. In particular,

this chapter explores the way in which semantics can be used to address research

Question 4.

Chapter 7 concludes this thesis. It summarises the main findings and contribu-

tions from the perspective of the research questions. In addition, this chapter

discusses the research limitations and makes some recommendations for future

research.
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Chapter 2

Literature Review

This chapter will provide a comprehensive review of the literature on LCA in

the building domain. The main objectives of this review are to identify the best

practices for the implementation of LCA in buildings, and to highlight the gaps

and limitations in the current applications. In particular, this chapter aims to

inform the development of an overarching research approach that can address the

research questions that are posed in this thesis. However, the scope of the use

case that is investigated throughout this thesis extends beyond the application of

LCA alone. To fully understand the context through which LCA can be applied,

it is necessary to first examine other research areas, such as building energy per-

formance, machine learning, and semantic technologies. Therefore, this chapter

will also consider these areas and their potential impact on the development of

the overarching research approach. It is important to note that the inclusion of

these areas in the literature review is not intended to identify gaps in these areas.

Rather, the goal is to gain a comprehensive understanding of the broader research

context and inform the development of an approach that can effectively address

the research questions that are posed in this thesis.



2.1 Life Cycle Assessment 11

2.1 Life Cycle Assessment

This section aims to identify evidence and best practices for the implementation of

LCA in buildings, focusing on the gaps and limitations in the current applications.

A set of relevant LCA concepts will be explored, alongside their relationship

with existing practices, ranging from responsible design and modelling techniques

to embodied impacts and renovation strategies. The integration of LCA with

BIM is also examined to demonstrate the value of dynamic environmental impact

assessment, with insights for the development of semantic LCA strategies.

2.1.1 Literature Review Methodology

A systematic review of recent literature has been conducted to identify the cur-

rent research topics and applications of LCA for buildings (see Figure 2.1). The

methodology that is used to conduct the review has three main stages:

• Stage 1: Identify recent authoritative research publications using estab-

lished search engines

The systematic review process was conducted in January 2021, and relevant

documents were retrieved from SCOPUS using the following keywords to

provide a broad and comprehensive perspective: (LCA OR “Life Cycle As-

sessment”) AND (“Building” OR “Built Environment” OR “Infrastructure”

OR “Urban” OR “District” OR “City” OR “Neighbourhood”). Initially, this

combination of keywords returned 6748 documents, including journal arti-

cles, conference papers, book chapters, and reports.

• Stage 2: Screening and retaining relevant publications

As shown in Figure 2.2, research in LCA of the built environment is steadily

growing, especially in the past 10 years. Given the sheer number of doc-

uments that have been published annually and the incremental nature of
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Figure 2.1: Flow chart of the literature review methodology

the published research, this review will only focus on LCA research applied

to buildings from relevant recent publications that were published in the

last 5 years, while acknowledging seminal work in the past 10 years. The

term ‘seminal’ in this context refers to those articles published in reputable

journals and attracted a high level of citations. Also, LCA experts within

the project team were consulted to obtain their recommendations for sem-

inal and influential work. Initial screening of the retrieved documents was

carried out to identify relevant studies. In this step, the titles and abstracts

of 1655 documents were examined to determine whether the study meets

the objectives of this review. As a result, a list of 923 documents was cre-

ated. This list is then divided into three categories: buildings; other urban

physical systems (e.g., utilities, transportation system, open spaces, and
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waste treatment facilities); and existing reviews, commentaries, and sur-

veys (Figure 2.3). Because this study focuses on buildings, studies related

to infrastructure and physical assets other than buildings are excluded from

further in-depth analysis. Furthermore, studies were included if LCA is

directly applied to buildings or to building materials and products.

The chosen approach for this review prioritises recent research on the imple-

mentation of LCA in buildings. The decision to focus on recent publications

with the last 5 years stems from the understating of the steady growth and

evolving nature of research in this field. The substantial number of annual

publications make a comprehensive review of the entire body of relevant

literature impractical within the scope of this study. Furthermore, it is im-

portant to acknowledge that this approach may lead to some blind spots,

as it excludes older literature, those lacking the specific keywords used, or

publications not indexed by SCOPUS.

Figure 2.2: Number of built environment LCA publications over the past 20

years.
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Figure 2.3: Distribution of scientific publications according to scale of applica-

tion (asset level to urban level) and type of research.

• Stage 3: Extracting relevant LCA use cases applied to buildings and

analysing their underpinning research.

A framework has been developed to systematically explore each study to

its full extent, which aims to identify the different use cases and highlight

the current research trends of LCA for buildings. The following informa-

tion was collected for each study: (1) scale: this reveals information about

building typology and the number of buildings involved in the study; (2)

area of application: studies were categorised based on the main objective

of conducting LCA (e.g., if a study developed scenarios to enhance the en-

ergy performance of existing buildings, then the study is labelled as “energy

retrofit”); (3) scope: this gives a brief description of the overall goal of the

study; (4) use of BIM and domain models: this aims to identify studies that

utilised BIM, or other domain models as part of the framework; (5) utilisa-

tion of dynamic data: this aims to capture the use of real-time data in LCA

using sensors, smart meters, and IoT devices; (6) consideration of end users

or occupants: this identifies the role of human behaviour and feedback on

LCA results; (7) impact on human health and well-being: the aim here is to

identify studies that have considered the impact of the indoor environment

on the occupant’s health and well- being; (8) sustainability dimensions: this

aims to review the integration of different sustainability aspects (i.e., envi-
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ronmental, economic, and social). The outcomes of the proposed framework

will be presented in the following section.

2.1.2 State-of-the-Art Research Landscape in LCA

A thorough review was conducted to elicit the information required by the pro-

posed framework (see Section 2.1.1). Previous reviews on the application of LCA

in buildings over the past two decades have identified that most studies focus on

energy use and GHG emissions [21–23]. Furthermore, researchers have applied

LCA methodology on key areas related to the decarbonisation of buildings. One

of the main objectives of the review is to identify the different use cases of LCA

applications in buildings. The use cases were identified through an iterative pro-

cess that extracted the area of application and scope from each identified paper.

The second stage factored these findings into a set of generic use cases. Conse-

quently, the structure of this section will follow a use case-based approach. This

approach helps to provide an overview of each particular application of LCA,

evaluate the current progress, and identify the key challenges and limitations of

each area. Figure 2.4 reveals the most common use cases of building LCA. This

figure also shows the number of LCA studies per use case. The following sub-

sections will elaborate on each identified use case, starting from the most highly

researched.

2.1.3 Environmentally Responsible Design

LCA is increasingly being applied to evaluate the environmental impacts of build-

ings during the design phase. However, a number of aspects must be considered

when performing LCA at the design stage, such as the need for rapid assessment

of design variants [24]; the lack of available information, especially in the early-

design phase; and the other aspects of sustainability, such economic and social



2.1 Life Cycle Assessment 16

Figure 2.4: The number of recent LCA studies conducted on issues related to

buildings.

dimensions. This review has identified three categories of LCA application during

the design stage, namely: frameworks, comparative LCA studies, and integrating

LCA with other modelling techniques.

The first category includes studies that have developed frameworks to facilitate

the workflow of conducting LCA during the design stage, and have proposed a

simplified screening approach to select material and structural systems during the

early-design stages [24]. The computational workflow assesses the environmental

impacts of various configurations of building design and it helps designers to make

environmentally-informed decisions, especially when the design requirements and

material information are vaguely specified. Zeng et al. [25] integrated design,

cost effectiveness, and embodied impacts to facilitate the selection of structural

and envelope systems during the early-design stages. Asadi et al. [26] introduced

a multi-criteria decision-making model that combines structural resilience with

environmental and economic assessment. Hasik et al. [27] developed a frame-

work to estimate the impacts of material use, and energy and water consumption

by integrating concepts such as LCA, LCC, energy modelling, and seismic loss

analysis.
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The second category includes comparative LCA studies that consider multiple

environmental, economic, and social indicators to identify the design alternative

with the lowest environmental impact, such as the environmental performance

of various slab systems [28]; assessment of GHGs emissions, and the energy de-

mand of five structural systems [29]; assessment of Window-to-Wall ratio (WWR),

which showed that higher WWR results in higher environmental impacts and eco-

nomic costs, and led to dissatisfied occupants [30]; the impact of structural design

methods on GHGs emissions [31]; and the impact of material selection on carbon

emissions during design [32].

The third category includes studies that integrate an LCA methodology with

computational and analytical techniques, such as ML, optimization, and Data

Envelopment Analysis (DEA). For example, Kiss and Szalay [33] developed a

parametric multi-objective optimisation approach to minimise the environmental

impacts of different building systems, including envelope, heating, and energy sys-

tems. In Manni et al. [34], a parametric multi-objective optimisation model was

developed to minimise the embodied carbon and maximise solar irradiation by

varying building geometry and orientation. Wang et al. [35] developed a trade-off

optimisation-based framework for thermal comfort, LCC and the environmental

impacts of the building’s envelope. Płoszaj-Mazurek et al. [36] built a parametric

machine-learning model to predict carbon footprint using basic design parame-

ters such as wall area, roof area, and height. Finally, Tavana et al. [37] used

DEA-based LCA to compare the environmental performance of flooring covering

systems.

As noted earlier, conducting a thorough assessment of a given building design is

challenging during the early-design stages due to the lack of detailed information

and the sheer number of input parameters, which make it difficult to explore trade-

off solutions [24]. Nevertheless, the reviewed studies show that developing decision

support systems using ML and optimisation methods can be useful in certain
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aspects of the LCA. ML thrives in data intensive applications (e.g., LCA) because

it can be used in optioneering and in the decision-making processes to identify

the most informative parameters [38], which reduces the cost and time needed

to gather the required data. In contrast, optimisation methods are particularly

useful in the design process due to their ability to explore potential improvement

options.

2.1.4 Modelling Approaches for LCA

This section will discuss some of the methodological approaches that have at-

tempted to solve issues related to the generic LCA framework, such as the treat-

ment of uncertainty, interpretation of LCA results, and the inclusion of other

sustainability dimensions.

2.1.4.1 Interpretation of LCA Results

Reporting and drawing conclusions that are based on quantified environmental

metrics that do not always correspond to absolute target values, such as plan-

etary boundaries, is a standard practice in LCA studies. To address this issue,

Andersen et al. [39] developed a top-down approach to determine whether or not

an environmentally-optimised building design falls within some absolute values,

such as the Earth’s carrying capacity and the planetary boundaries. Their find-

ings indicate that resource reuse and recycling, as well as reducing operational

energy use, are the most effective strategies to meet sustainability goals. Another

top-down approach was proposed where the building industry is assigned a share

of a country’s overall carbon budget [40]. Meanwhile, Rucinska et al. [41] set the

target values for the building sector by focusing on local regulatory requirements

and the environmental performance of existing buildings to statistically deter-

mine the benchmark values. Similarly, Rasmussen et al. [42] calculated reference
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benchmarks for residential buildings using national samples. The authors em-

phasised the importance of having consistent calculation rules and a transparent

benchmark framework. Another challenge when interpreting LCA results is that

environmental indicators are difficult for stakeholders to understand, especially

non-LCA experts; hence, the concept of monetary valuation of environmental im-

pacts was introduced. Schneider-Marin and Lang [43] investigated several mone-

tary valuation models and applied them to the embodied impacts of six German

office buildings. The authors found that the most important environmental in-

dicators that are recognised by the construction industry are Global Warming

Potential (GWP), resource depletion, and acidification potential.

2.1.4.2 End-of-Life Treatment

Enabling the circular economy in the building sector presents the LCA community

with methodological challenges regarding EoL treatment, and the allocation of

benefits and burdens across multiple-life cycles of products and materials. Eber-

hardt et al. [44] noted that the existing allocation approaches significantly differ

in the distribution of impacts between cycles and their allocation of incentives is

questionable. Consequently, they proposed a theoretical model that is based on

an existing approach (e.g. linear regressive) to support the transition towards a

circular practice. Following a review of two widely-used LCA methods, namely

PEF and CEN EN 15804/15978, it was found that the existing databases (e.g.

Ecoinvent) are incompatible with the EoL treatment of both methods [15]. The

authors also argued that harmonising the two methods is important to obtain

more comparative and reliable LCA results.

2.1.4.3 Uncertainty

The difficulty in conducting an environmental assessment of a product is that

practitioners often work with incomplete and unreliable information, and in some
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cases they have to work with unascertained information [9]. This leads to various

levels of uncertainty in LCA results. Several studies have attempted to categorise

and describe uncertain sources in LCA studies. For example, the International

Reference Life Cycle Data (ILCD) Handbook [45] identified three sources of un-

certainty: stochastic uncertainty, choice uncertainty, and lack of knowledge of

the studied system. Meanwhile Zhang et al. [46] identified three types of uncer-

tainty in the literature: model uncertainty, scenario uncertainty, and parameter

uncertainty.

Researchers have addressed the issue of uncertainty using a wide range of ap-

proaches. Table 2.1 describes the numerous uncertainty sources in LCA for

buildings, the calculation methods applied to quantify uncertainty, the input pa-

rameters used in the calculation models, and the extent to which each source of

uncertainty contributes to the building’s overall impact. For example, Goulouti

et al. [47] applied a probabilistic approach to determine the replacement rate of

building’s elements considering their service life, while Ianchenko et al. [48] used

a probabilistic survival model to address the uncertainty of a building’s service

life. Morales et al. [49] assessed the uncertainties associated with the replacement

stage considering the service life of a building’s elements and LCI data quality.

Meanwhile, Harter et al. [50] studied the impact of a building’s development level

and shape on the level of uncertainty in Life Cycle Energy Assessment (LCEA)

during the early-design stage using a variance-based approach. Resalati et al. [51]

examined the effect of embodied energy data uncertainty on the total carbon emis-

sions for the design of a building’s envelope. Other researchers have modelled the

uncertainty of embodied CO2 emissions of different building materials considering

a building’s lifetime and transport distance [52]. In Ylmén et al. [53], a frame-

work was developed to manage choice uncertainty (e.g., design options) in the

early-design stages.
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Table 2.1: Reviewed uncertainty studies related to building LCA
References Uncertainty source Calculation method Main input parameters Life-cycle stage

contribution

[47] Replacement rate, reference

service life of the building

Probabilistic Service life of building

element

36% of GHGs emissions is

attributed to the replace-

ment stage

[50] Building development level,

building shape

Variance-based method Geometrical technical

window, building operation

system efficiency

-

[49] LCI data, service life of

building elements

Monte Carlo simulation

and scenario-based

Replacement scenarios The developed scenarios,

life-cycle data, and impact

categories influence the re-

sults of the use stage contri-

bution to the overall impact

[53] Choice uncertainty Structured approach and

Monte Carlo simulation

Design options -

[52] Lifetime of building,

transport distance,

inventory CO2 emissions

Probabilistic-Monte

Carlo simulation

Building material -

[48] Service life Probabilistic approach Building lifespan -

2.1.4.4 Dynamic LCA

A Dynamic Life Cycle Assessment (DLCA) framework has four elemental dy-

namic components, namely consumption data, basic inventory data sets, char-

acterisation factors, and weighting factors [54]. Using DLCA, Rosse Caldas et

al. [55] evaluated the impact of climate change on the environmental performance

of a bamboo bio-concrete building considering several factors, including the an-

ticipated increase in temperature, changes in the grid mix, and dynamic charac-

terisation factors. A dynamic weighting system was developed to support time-

dependent environmental and planning policies [56]. Meanwhile, Zieger et al. [57]

conducted a comparative study between static LCA and DLCA by considering

the temporal dynamics of GHGs. It was found that static LCA, combined with
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other factors, leads to misleading conclusions regarding bio-based materials; how-

ever, the DLCA model is more realistic because it considers the timing of GHGs

releases and uptakes. Similarly, Negishi et al. [58] noticed significant differences

in the results when both static and dynamic models were used, particularly for

bio-based materials.

2.1.5 The Embodied Impact of Buildings

Concerns related to the environmental impact of operational energy use in new

buildings are now diminishing as a result of effective energy retrofit strategies [59].

However, a major consequence of the enhanced energy efficiency of buildings is

the increase in embodied impacts thanks to the additional materials that are

required, which transfers the environmental burden from the use phase to the

other phases [60]. Therefore, focusing on material efficiency is critical if we wish to

mitigate the environmental impacts of buildings [61]. Several material efficiency

strategies have been identified, including intense use and lifetime extension of

buildings, the use of lighter and low carbon construction materials, minimising

construction waste, and the reuse and recycling of building components [10]. As

previously mentioned, one of the key aims of current research is to reduce the

embodied emissions of construction materials.

Table 2.2 identifies the most common building materials and summarises the

main objectives of the reviewed studies. For instance, Kylili and Fokaides [62]

investigated the environmental benefits of alternative construction products that

incorporate recycled or natural materials. When compared to other building

materials, timber has a lower environmental impact and the added benefit of car-

bon sequestration [63]. Moreover, there is growing interest in alternative bricks

that are produced with organic and inorganic wastes that originate in other in-

dustries, while research on traditional bricks is decreasing [64]. However, while

alternative building materials have many environmental benefits, understanding
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the extent of their impact is a key barrier to their adoption, together with other

important considerations such as reducing costs and eliminating regulatory barri-

ers [65]. Although substantial reduction in GHGs emissions can be achieved from

a technological perspective, other aspects of material efficiency strategies must

be considered, namely: economic, social, and environmental [10]. Intensive use

of building materials and the lifetime extension of products are the most effective

material efficiency strategies that have been identified in [10].

Table 2.2: Studies on LCA of common construction materials

References Material Objectives

[66–74] Concrete Evaluating the environmental impacts of concrete using recycled

aggregate and other waste materials, fly ash, steel slag, kaolin clay,

and bio-based materials.

Comparative LCA of concrete with other materials, such as steel

[75–79] Wood Focusing on production of wood-based products (e.g. CLT), logis-

tical challenges and the environmental assessment of timber con-

struction.

[80–88] Insulation materials Economic and environmental assessment of insulation materials.

Selection of thermal insulation using optimization approaches.

Evaluation of bio-based insulation materials.

[89–92] Phase change

materials

Environmental assessment of using PCM for thermal application

and energy savings.

[93–98] Cement Mostly related to cement production and cement replacement ma-

terials.

[99–101] Earthen materials Environmental and thermal assessment of alternative building

products such as rammed earth and compressed earth blocks.
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2.1.6 Environmental Assessment of Retrofit and Renova-

tion Strategies

Measures to rehabilitate the existing building stock are generally applied to en-

hance thermal performance and reduce operational energy use. In particular, the

main focus of building rehabilitation studies is the improvement of the building’s

envelope, energy system, and energy end-use, while non-energy-related rehabili-

tation measures are usually ignored [14]. Similarly, Vilches et al. [102] found that

energy retrofit, primarily through increased insulation, is the most commonly ap-

plied measure, while structural repairs are mostly overlooked. Although the aim

of energy retrofitting is to reduce energy consumption during the use phase, the

environmental impacts of the applied retrofit measures differ significantly across

the life cycle stages [103]. Galimshina et al. [104] applied statistical methods to

select the most efficient renovation measure under environmental and economic

considerations. Meanwhile, similar retrofit scenarios have been considered and

DEA has been used in combination with linear regression to select the most ef-

ficient retrofit scenario [105]. Other researchers have utilised Artificial Neural

Networks (ANN) to determine the near-optimal energy retrofit scenario by tak-

ing into account the environmental impacts, costs, and energy consumption [38].

Rather than considering different retrofit measures, Pittau et al. [106] carried out

a comparative LCA of several bio-based insulation materials that have been used

on the exterior walls of European housing stock.

Table 2.3 provides more details of studies of LCA-guided building retrofit solu-

tions. Details are provided for each study regarding the retrofit proposals, scale

of application (e.g., individual buildings vs district or urban level), the models

and analytical methods that have been employed to evaluate the proposed so-

lutions, and the parameters that have been used to estimate and optimise the

environmental performance of each retrofit measure. One of the most noticeable

differences between small-scale applications (i.e., building level) and large-scale
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applications (i.e., district level) is the level of data granularity. While studies of

individual buildings have been able to utilise more detailed parameters (e.g., heat-

ing set point, wall thickness/ characteristics, and operational schedules), studies

at the district level have resorted to more generic attributes (e.g., the floor area

and the number of stories). Consequently, the accuracy and reliability of LCA

outcomes significantly differ. Therefore, new methods are required to provide ac-

curate accounts of the environmental impacts of buildings when considering LCA

at the district and wider levels. For example, this may involve the reliance on

simulation models that can be developed based on a typology of buildings within

a district. This can be facilitated by the use of BIM as well as having access to

historical data.

2.1.7 Construction Waste and the Circular Economy of Build-

ings

The circular economy is a system that seeks to keep materials and products in use

for as long as possible, while minimising waste generation [110]. However, closing

the energy and material loops through a circular model (i.e., design, use, reuse,

and recycle) conflicts with the linear value chain model that is used in the building

construction industry [12]. In addition, implementing a circular economy in the

building sector is hindered by several barriers, including the fact that the building

industry is conservative and fragmented, the lack of a unified and comprehensive

framework, and because buildings are usually developed under time and cost

constraints [13]. Hence, realising the benefits of a circular economy in the built

environment requires changes to be made to the industry practice [111].

Several studies have examined construction waste recycling and component reuse.

Ajayebi et al. [112] developed a spatiotemporal mapping model to analyse the po-
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Table 2.3: LCA use cases of building retrofit measures
References Intervention scenarios Scale Decision criteria and

method

Parameters

[104] Heating system, exterior wall,

windows

Three residential buildings Statistical analysis of en-

vironmental and economic

costs

Component types and

service life, investment

costs, operation costs, user-

related parameters.

[105] Heating system, roof insulation,

exterior wall insulation

Residential building Data envelopment analy-

sis taking into consideration

the economic costs and en-

vironmental impact

Heating and cooling system

set points and efficiency, in-

sulation material conductiv-

ity and thickness, exterior

wall thickness and conduc-

tivity, windows system con-

figuration.

[106] Exterior wall insulation Housing stock Comparative LCA focusing

on climate change impacts

Speed of renovation, service

life, wall area, thermal per-

formance, type of insulation

material, thickness, and so

on.

[38] HVAC system, external wall,

roof, façade type, window frame

type

University building ANN taking into account

energy consumption, LCC

and LCA

Roof surface, exterior wall

characteristics, airtightness,

operation schedule, temper-

ature setting, space alloca-

tion, window design and so

on.

[107] Installation of PV panels, use of

renewable energy, minimizing em-

bodied impacts of materials

17 office buildings Statistical approach, selec-

tion is based on environ-

mental impacts only.

Gross floor area, location,

roof area, stories, façade

materials, window-to-wall

ratio, window type.

[108] Thermal insulation using differ-

ent materials

672 archetypes of EU resi-

dential building stocks

Selection is based on the en-

ergy and environmental per-

formance of the studied ma-

terials

Location, floor area, num-

ber of stories, Story height,

window-to-wall ratio, num-

ber of occupants, U-value.

[109] Eight strategies applied to win-

dow systems; external and in-

ternal thermal improvement; so-

lar thermal system; air chamber

insulation; PV panels on roofs;

heating system improvement

Residential building Based on four environmen-

tal and economic indicators:

non-renewable energy use

reductions, net energy ratio,

IRR, life-cycle payback

Insulation layer composi-

tion and thickness, panel

area.

tential for the reuse of building structural products in three urban areas. Their

model provides critical information (e.g., product geometries, age, carbon emis-

sions, and weight), which are all necessary for the assessment of future reuse

scenarios. Meanwhile, Bertin et al. [113] developed a framework to facilitate fu-



2.1 Life Cycle Assessment 27

ture reuse and established a material bank for structural building elements. Their

methodology supports the design of a reuse concept and uses the BIM framework

to increase the level of details and traceability of the load-bearing elements. Brut-

ting et al. have developed an optimisation method for designing structures from

a stock of reclaimed elements [114]. In a comparative LCA study, Minunno et

al. [115] concluded that the reuse of building components reduces GHGs emis-

sions by 88% when compared to recycling. However, the viability of the recycling

and reuse of construction material (e.g., waste bricks as a replacement to natural

aggregates, cement binder, or alkaline activation) is contingent on using advanced

technology and rigorous environmental characterisation [116].

In addition to the environmental benefits of implementing circular economy strate-

gies, the economic costs must be considered. Üçer Erduran et al. [117] found that

the environmental impacts of new construction using reclaimed wall pieces are

lower when compared to the use of new bricks. Meanwhile, the construction costs

of using reclaimed bricks are roughly twice the costs of new bricks because the re-

claimed wall pieces require the use of expensive equipment. Moreover, the higher

costs that are associated with reused elements is attributed to the additional re-

quirements of sampling, testing, design modifications, and the limited supply of

second-hand building products [118].

2.1.8 Environmental Assessment of a Building’s Energy Sys-

tems

Apart from their energy efficiency, sustainable buildings must also produce energy

on-site from renewable sources [119]. Previous studies of on-site energy produc-

tion technologies have provided insights into the costs and benefits of increasing

energy self-sufficiency. Table 2.4 provides a summary of the recent studies that

have considered the use of renewable energy sources, such as PV systems, energy

storage systems, ground source heat pumps, and fuel cells. Table 2.4 also pro-
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vides information about the use of energy storage technologies, the location of

the installed system relative to the building, and the main findings of the study.

Very few studies have considered the impact of operational energy use. González-

Prieto et al. [120] found that the operational energy to total impact ratio varies

considerably depending on the following three factors: thermal energy source,

local climate, and the building’s shape. Gardezi and Shafiq [121] developed a

linear regression model to predict carbon emissions from operational energy using

four variables, namely: construction area, building volume, building lifespan, and

weight. Although this study did not comment on the significance of each variable,

it does provide an approach for predicting operational carbon emissions during the

early-design stages. Meanwhile, other factors that affect the environmental and

economic impacts of energy consumption have also been studied. For example,

Walzberg et al. [122] considered the possibility of a rebound effect in smart homes

because the occupants’ energy consumption behaviour is primarily influenced

by economic rather than environmental signals. The authors recommended the

inclusion of environmental signals in the smart management system because the

agent-based simulation model shows a five-fold increase in the rebound effect

when load-shifting is driven solely by an economic signal. In addition, O’Rear

et al. [123] compared the effect of heating fuel type, specifically natural gas and

electricity, on the sustainability performance of buildings. The authors found that

electric equipment is more likely to achieve net-zero energy performance, while

having higher environmental impacts.

2.1.9 BIM-LCA Integration

BIM can be seen as a resource for information because it virtually represents

both the physical and functional characteristics of an asset [136]. BIM is an es-

tablished enabling technology for the architecture, engineering, and construction

industry(AEC) that integrates all of the project phases, and facilitates commu-
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nication and information exchange among project teams [137].

BIM is viewed as a technology that facilitates LCA application in the building

sector by providing integrated solutions to a data-intensive and time-consuming

method, such as the LCA [138]. Figure 2.5 shows that there has been a marked

increase in the number of LCA studies that have utilised BIM using different

workflows, especially over the past 5 years. The integration of BIM and LCA can

automate the exchange of information and facilitate data acquisition between BIM

models and LCA databases and tools, which significantly accelerates the environ-

mental assessment of design alternatives during various stages of the building’s

life cycle [17, 139].

Figure 2.5: Number of BIM-based LCA studies from 2011 to 2020

2.1.9.1 BIM-LCA Integration Approaches

Several classification schemes for existing BIM-LCA integration workflows have

been proposed. Each proposed classification scheme uses different features and

characteristics to identify the existing integration approaches. Soust-Verdaguer

et al. [17] identified three levels of integration on the basis of data input, data
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analysis, and communication of results. In the first level, BIM is only used to

quantify and identify the building materials (i.e., quantity takeoff) during the

LCI step. In the second level, environmental data are embedded in the BIM

model. Finally, the highest level integration is achieved by creating an auto-

mated workflow that combines various data sources and software. Wastiels and

Decuypere [140] proposed a more comprehensive classification by considering the

integration workflow and the direction of the data flow. They identified five main

strategies, as follows: i) extracting bill of quantities (BOQ) from the BIM model;

ii) importing the geometric BIM model to a dedicated LCA tool; iii) using a

BIM viewer to attribute LCA profiles to the BIM objects; iv) using a plug-in

to perform LCA within the BIM environment ; and v) embedding LCA data in

the BIM model. Nizam et al. [141] categorised BIM-based LCA studies into four

types based on the clarity and applicability of the proposed framework, the role

of BIM, and the scope of the LCA calculation (e.g., exclusion of some life cycle

stages). The most recent review by Safari and AzariJafari [142] used the number

of required manual inputs and the level of complexity of the integration process

(e.g., data exchange and computation types) to classify existing approaches into

three categories, namely: conventional, static, and dynamic.

In this thesis, the reviewed studies are classified into three major categories,

namely: using BIM to extract the material quantities (BOQ) (type I), integrat-

ing BIM with the LCA methodology via plug-in tools (type II), and embedding

environmental data in the BIM objects (type III). Furthermore, as shown in Fig-

ure 2.6, another layer of assessment was considered to evaluate the integration

approaches. In a true integration, a permanent bidirectional link is established

between the BIM model and the LCA calculation. Consequently, the proposed

framework can incorporate future design iterations with minimal additional effort

by the users. Meanwhile, in a loose integration the entire workflow requires an

intensive manual reworking to incorporate changes to either the building design

or the LCA parameters. As seen in (Figure 2.6), frameworks of type I are con-
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Figure 2.6: Visualisation of the integration approaches of the reviewed studies

sidered as loose integration, while the type II and type III frameworks are seen

as true integrations. A more detailed discussion of each integration approach is

provided below.

BOQ

Several studies have used the BIM model to extract essential building data, such

as the material types and quantities, and building geometry (i.e. BOQ) for con-

ducting LCA. One of the most recognised approaches for integrating BIM with

environmental performance assessment is exporting BOQ from BIM [17, 143]. In

this approach, BIM is mainly employed to establish LCIs by calculating mate-

rial quantities and then exporting them as spreadsheets. Hence, this approach

is considered to be a loose integration due to the excessive manual effort that is

required to manage and map the data, and the iterative process that is required

to account for the changes during various design stages. Su et al. [144] proposed a

method to evaluate the environmental impacts of demolition waste using BIM for

automatic extraction of the building materials. In [145], a BIM-based framework

was developed to identify the trade-off between building operation and embodied

impacts by exporting geometric data to the Athena LCA calculator. Another

study established LCI by integrating quantity take-off from a BIM model with a
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subset of ÖKOBAUDAT, which is a German LCA database for buildings [146].

Other researchers have integrated multiple data sources (e.g., material quanti-

ties from BIM, EPDs, and construction operations) to evaluate the embodied

impacts of various design options from cradle-to-grave, and of potential recycling

and reuse scenarios [147]. Carvalho et al. [148] advanced this approach and de-

veloped a Dynamo routine to calculate LCA by establishing a link between the

bill of quantities and the materials’ life cycle impacts. Both data sources were

stored as Excel spreadsheets and the linking mechanism between the elements in

the two data sets is based on the same material name.

Overall, this approach has been criticised as being static in nature and it typ-

ically creates a one-directional workflow that results in non-interoperable sys-

tems [141, 149]. Furthermore, as noted in [143, 150], this approach is inadequate

for conducting a whole-building LCA, or to compare multiple design options be-

cause the process of transferring and mapping data between different tools is

complicated, time-consuming, and error-prone.

Plug-in Approach

BIM-integrated LCA tools, mainly in the form of plug-ins, have been widely used

to integrate BIM with LCA methodology. These plug-ins can be proprietary,

such as Tally LCA, or they can be experimental developed for research purposes.

Tushar et al. [151] developed an integration between Autodesk Revit, Tally, and

an energy rating tool to reduce the environmental footprint and energy consump-

tion of various design options. Another study used the Tally plug-in to conduct

an environmental impact assessment of prefabricated concrete components [152].

In [153], a framework was developed to enhance the selection of building envelopes

by integrating BIM, LCA plug-in (Tally), and an optimisation model. In [139],

a combination of BIM, an LCA tool (Tally), and machine-learning algorithms

was applied to evaluate several building typologies and to identify the key design

variables that influence the environmental performance of buildings.
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Sameer and Bringezu [150] integrated the data exchange between the BIM en-

vironment (Autodesk Revit) and the footprint data of building materials during

the design stage using several APIs. In the proposed framework, the openLCA

API was used to establish the environmental footprint of construction materi-

als and another API was developed within Revit to facilitate the data exchange,

and quantify and visualise the environmental footprints within BIM. Nizam et

al. [141] developed a Revit plug-in to estimate the embodied energy of materials,

transportation, and construction within the BIM environment. This framework

connects information from the BIM model to a designated database that contains

the embodied energy coefficient. Similarly, a Revit plug-in has been developed

to enable data mapping between the extracted materials from the BIM model to

a customised subset of the Ecoinvent database [154]. After establishing the LCI,

openLCA software was used to undertake the LCA. Rather than using external

LCA software, Kiamili et al. [155] used Dynamo to establish a bidirectional link

between BIM objects and a customised LCA database. Their proposed workflow

links the extracted building materials to their corresponding LCA data using

material-based mapping and incorporates design changes for real-time environ-

mental assessment within the BIM environment. Similarly, Hollberg et al. [156]

used the material IDs that are defined in the KBOB database to link building

materials from the BIM model with the associated LCA data in the KBOB. When

the KBOB IDs are added to the BIM object, a Dynamo plug-in multiplies the

BOQ by the embodied factors from the KBOB database.

Researchers have raised some concerns about the existing BIM-compatible LCA

tools because they exhibit a compromise between simplicity and transparency.

The LCA results that are generated by these tools can be viewed as a black

box [157], in which the end users have minimal knowledge about the internal

workings and assumptions. This can prevent a deeper understanding of the LCA

results and a thorough understanding of environmental hot spots [158]. Another

study has found inconsistency in the results of a dedicated LCA tool (GaBi 6)
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and a BIM-LCA plug-in [157]. The authors hypothesised that the discrepancy

between the two methodologies is due to the simplifications of the plug-in tools

that are used to allow non-LCA experts to conduct an environmental assessment

during the design stage. For the same design problem, various plug-ins can pro-

duce incomparable results because each plug-in tool uses different databases and

workflow. For instance, Tally makes use of the GaBi database and allows for

LCA calculation at a different level of aggregation (i.e., a whole building compo-

nent vs individual layers), while One Click LCA provides much wider choices of

EPDs and evaluates each material separately [138]. In addition, these integrated

tools do not allow users to add specific data records from external sources [159].

Furthermore, although this approach provides simultaneous feedback, the accu-

racy of the results is questionable because plug-in tools frequently rely on generic

environmental data [160]. Nizam et al. [141] identified further limitations specific

to Tally including the omission of the construction processes, and the lack of

automatic data mapping between BIM objects and LCA data.

Embedding Data in the BIM Objects

Instead of exporting BIM data to external LCA tools, this approach suggests em-

bedding all of the LCA-related parameters and environmental factors in the BIM

model. This has the advantage of facilitating information reuse and exchange

among project stakeholders within a single model and allows for direct report-

ing on the environmental implications of various design options [161, 162]. In

general, two types of information are embedded in the BIM model under this ap-

proach: the first type includes the basic parameters that are required to conduct

the LCA, such as nature of the resource, energy source, type of transport, recy-

clability, and so on [163]; the second type focuses on inserting new environmental

parameters (e.g., climate change, resource depletion, acidification, etc.) into the

BIM model [164]. Establishing the links between multiple data sources requires

extensive LCA knowledge; hence, the inclusion of such information within the



2.1 Life Cycle Assessment 36

BIM environment can potentially benefit non-LCA experts [165].

Ansah et al. created a functional database that comprises a list of building

materials and components, as well as the properties required for LCA calcula-

tion [166]. To conduct the environmental assessment within the BIM environ-

ment, this framework employed Dynamo and Structured Query Language ( SQL)

to map and insert LCA parameters into the BIM model. In [167], a different

strategy was proposed to evaluate the environmental impacts within a BIM au-

thoring tool—the authors created a BIM library of major construction materials

that includes environmental impact parameters that are derived from an LCI

database. However, the limitation of this framework is that the list of environ-

mental indicators is predetermined and only applies to building materials that

were previously selected. Santos et al. [161] demonstrated that by augmenting

the BIM model with semantic information acquired from project documents and

LCA generic databases, it is possible to streamline environmental and economic

analysis throughout the design stage. The authors used the Revit API and in-

formation delivery manual (IDM) to manage and handle the information flows

of the proposed framework. Horn et al. [162] noticed a lack of transparency

and standardisation regarding information exchange requirements of the previous

studies using this integration approach. To resolve this issue, the authors created

a detailed data requirement structure based on the IFC standard. The proposed

solution creates a bidirectional information flow between the BIM software and

a dedicated LCA tool. Consequently, the basic LCA input and the LCA results

that are generated by the LCA tool will be inserted into the BIM model based

on the IDM standard.

Although this strategy incorporates environmental information into the BIM ob-

jects to simplify and automate the LCA process, the designers require special

training to properly interpret the provided information [159]. Furthermore, em-

bedding LCA data into the BIM model could create heavy and inoperable mod-
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els [155]. Another issue with the majority of the suggested solutions is that they

lack integration with specialised LCA software, which limits the scope of LCA

study to a predetermined set of life cycle stages and environmental indicators.

Therefore, any modifications to the LCA design parameters (e.g. functional unit,

and system boundary) or the addition of new design features and building materi-

als will not be considered. Finally, Nizam et al. [141] argued that the complexity

and inadequate details of the existing studies that follow this type of integration

make the adoption impractical.

2.1.10 LCA of Alternative Building Construction Systems

The construction industry is known for its energy intensity and high carbon emis-

sions [168]. During the construction stage, energy losses and material wastes are

about 30% and 40%, respectively [11]. Alternative construction systems (e.g.,

prefabrication, modular construction, and 3D printing) can help to reduce the

environmental impact of buildings in the pre-use stage. Table 2.5 describes the

construction system that have been evaluated, the building materials that have

been used, the dimensions of the sustainability being considered, and the main

findings of the study.

The use of prefabricated building components lowers carbon emissions and re-

duces environmental impacts when compared to the cast-in-place method [169–

172]. Yao et al. [172] applied a monetisation approach to facilitate a comparison

between the environmental and social factors. The authors found that the assem-

bly stage has the highest environmental impact, and that the key contributors

are energy and fuel consumption, noise pollution, and the loss of components and

materials. The environmental benefits of using a prefabricated building envelope

have also been considered [173, 174]. The performance of a modular building

envelope depends on the material selection, module design, and the availability

of the products within an acceptable distance to minimise the impact of trans-
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portation [173]. Furthermore, the production of prefabricated concrete elements

(PCE) with recycled construction and demolition wastes lowers GHGs emissions

and costs when compared to PCE produced with virgin material [174].

2.1.11 LCA Data (Static vs Dynamic)

The development of the LCI is a core design parameter of LCA methodology,

which refers to the collection of data related to the inputs and outputs of a par-

ticular product system. There are two main categories of data: primary data,

which LCA practitioners collect themselves; and secondary data, where the data

are drawn from generic databases or literature. Silva et al. [181] found that the

limited adoption of LCA is due to the amount of data that is needed to establish

the LCI. The authors proposed that primary data collection should be priori-

tised to foreground processes because they account for most of the environmental

burdens of construction products, while background processes can depend on the

existing databases. However, the environmental impacts of building materials and

products are quantified using precalculated coefficients from existing databases,

which are frequently criticised for being inconsistent and incomplete [182]. In-

stead, Crawford et al. [182] proposed a hybrid method that combines data from

the process-based approach with economic input-output data, which will generate

a more comprehensive and accurate LCI.

To provide an accurate environmental assessment, it is vital to build regionalised

databases that reflect real-world scenarios. In this regard, Alzard et al. [183]

claimed that creating a representative LCI data set for the production of recy-

cled concrete aggregates in a UAE city enabled stakeholders to make informed

decisions about whether recycled aggregates are a more environmentally-friendly

option. Ayagapin and Praene [184] showed that environmental costs significantly

differ depending on a number of factors, such as sources of construction mate-

rials, transportation method, electricity mix, and geographical location. This
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indicates the importance of regionalised databases. Moreover, Environmental

Product Declarations (EPDs) have emerged as a major tool in environmental

assessment policies in developed countries, driven by the widespread adoption

by several environmental certification systems, regulatory requirements, and as

EPDs are increasingly being considered by environmental assessment tools [185].

Data granularity also affects LCA results because the results of some impact

categories are strongly related to data resolutions [186]. In addition, granular

data can generate more accurate LCA results [187]. The use of real-time data is

crucial to the accuracy and reliability of the LCA results because of the dynamic

nature of buildings. Vuarnoz et al. [188] demonstrated how the real-time data

of occupancy profiles and appliance usage patterns can be used to improve the

accuracy of LCA results. Examples of common real-time data sources include

smart utility meters [188], Internet of Things (IoT) for occupancy detection and

appliance use [189, 190], and sensors to measure indoor temperature and relative

humidity.

2.1.12 Development of LCA Tools

Several proprietary and open source LCA tools have been developed to support

the application of LCA (e.g., OpenLCA, SimaPro, and GaBi). However, the

limited adoption of LCA for buildings can be attributed to the complexity of

buildings and the amount of data that is required to establish LCIs [181]. There-

fore, various specialised LCA tools have been developed to facilitate LCA practice

in the building sector. LCA tools can be built as stand-alone software (e.g., the

Athena Impact Estimator) or as a plug-in (e.g., Tally and One Click LCA). Al-

though existing tools can simplify LCA calculation, they are viewed as a black

box since the end users have little knowledge about the assumptions and internal

workings of the tool [157]. This can preclude a comprehensive understanding of

the results of the LCA [158]. Furthermore, different LCA tools can generate in-
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consistent results for the same design problem because each tool utilises various

workflows and databases [138] and may omit some processes, such as construc-

tion [141]. For a more detailed discussion of the limitations and challenges of

LCA tools for buildings, the interested reader is referred to the following recent

reviews [138, 143].

In addition to the existing commercial LCA tools, researchers have also devel-

oped solutions to address specific aspects related to building LCA. Domjan et

al. [191] developed an Excel-based LCA tool to evaluate operational energy use

and embodied emissions. Miyamoto et al. [192] developed a decision support tool

to integrate LCA and life cycle cost during the early-design stage for dwellings.

To reduce the time required to compare design alternatives, Duprez et al. [193]

created Machine-learning (ML) models that allow designers to rapidly evaluate

new alternatives using the trained models.

2.2 Integrating Machine-Learning with LCA

There is a growing trend in the literature to use artificial intelligence, including

ML, for various LCA applications. ML approaches are capable of enhancing their

prediction accuracy without requiring reprogramming by learning from obtained

data. This involves the development of a model that can discern patterns from

training data and then create an algorithm without the need for human input, as

described by Mitchell [194]. Considering the data-intensive nature of LCA, which

involves vast numbers of input parameters and associated uncertainties, as well as

the costs of data collection and the typically large number of alternatives involved,

ML may be a useful tool for supporting LCA. According to a recent review by

Ali et al. [195], ML has the potential to be a valuable tool in certain aspects

of LCA. Their findings indicate that ML methods can be effectively utilised in

optimising scenarios within LCA. Moreover, the integration of ML methods into
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existing inventory databases was found to streamline the LCA process across

various use cases. A systematic literature review that was conducted by Barros

and Ruschel explored scientific research in the context of LCA and ML within the

architecture, engineering, and construction industries [196]. Their findings reveal

that energy consumption and Global Warming Potential were the most frequently

investigated environmental indicators. Additionally, the authors discovered that

ML was mainly employed for prediction purposes. Consequently, this section

will provide an overview of the ML techniques that have been employed in LCA

studies, with a particular focus on the building domain.

ANN are a popular ML technique that is widely used in many fields, including

LCA. In their study, Shi and Xu [197] proposed a systematic method for perform-

ing LCA to evaluate the environmental impact of construction materials. The

authors also introduced two ML algorithms—the Back Propagation Neural Net-

work (BPNN) and the hybrid Genetic Algorithm-Back Propagation (GA-BP)—to

assess the environmental performance of the studied materials. The results re-

vealed that the GA-BP algorithm outperformed the BPNN in terms of precision

and selecting materials with lower environmental impacts. D’Amico et al. [198]

employed ANN to address both the energy and environmental aspects of a build-

ing’s LCA. The researchers created a decision support tool that enables fast and

accurate evaluation of a building’s performance. The authors showed that the

ANN algorithm is useful in predicting both energy demand and environmental

impacts in LCA of buildings. Sharif and Hammad [199] devised a surrogate ANN

to aid in the selection of optimal building energy renovation methods. The devel-

oped ML models were used to generate renovation scenarios that take into account

the total energy consumption. Azari et al. [200] determined the optimal design for

building envelopes using a multi-objective optimisation algorithm. Their study

focused on the energy consumption and life-cycle environmental impacts of an

office building. The input variables that they used for the design included win-

dow type, window frame material, insulation material, wall thermal resistance,
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among others. The optimal combination of these variables was obtained to design

a building with the least possible environmental impact and operational energy.

The authors used eQuest 3.65 to calculate active energy, while Athena IE methods

were employed to estimate the LCA. Moreover, an ANN model in combination

with genetic algorithms was employed to generate additional design combinations

and to identify the ideal design iteration.

Random Forest (RF), another ML technique, has been extensively employed in

LCA studies due to its good prediction performance, in addition to its built-

in variable importance tool [201, 202]. Frömelt employed three ML algorithms

(i.e., RF, k-nearest neighbors (KNN), and LASSO-regression) to attribute miss-

ing information on water supply, electricity, and heating [203]. Subsequently, the

predicted data were converted into quantities utilising price data. Based on the

household budget survey, similar socioeconomic household archetypes were iden-

tified in consumption. The divergence of these archetypes from general macro-

trends indicates that the proposed approach has the potential to enhance our

understanding of consumption patterns, and thereby aid policymakers in making

informed decisions regarding impactful environmental policies that target certain

groups of consumers. De Rousseau [204] studied concrete mixture design opti-

misation and compared different ML methods such as regression models. They

determined that RF was the most effective technique for predicting the compres-

sive strength of concrete in actual field mixtures. This conclusion was based on an

evaluation of the model’s performance metrics. The results were used to inform

the subsequent LCA calculations. Gu [205] created an LCA model that aimed

to minimise the environmental impacts that are associated with metal-organic

frameworks. To achieve this goal, the author combined a conventional LCA with

RF and obtained preliminary guidelines for sustainable metal-organic framework

design.

Other ML techniques beyond ANN and RF have been sparingly employed in the
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field of LCA [195]. For instance, Support Vector Machines (SVMs) and hybrid

ensemble methods, such as the gradient-boosted classifier tree ensemble model

(GBM), have not been extensively used. Overall, ML is a valuable tool for several

aspects of LCA. However, the accuracy and effectiveness of ML solutions used in

LCA heavily rely on the quality and reliability of the underlying database, which

remains one of the most challenging aspects of LCA. Hence, the integration of

reliable data and ML techniques will significantly enhance the speed and accuracy

of LCA applications [196, 198]. In addition, ML can be effectively combined with

traditional optimisation methods to improve their ability to rapidly explore and

evaluate alternatives.

2.3 Semantic Web Technologies to Facilitate LCA

LCA is an interdisciplinary subject that requires the integration of knowledge

from various fields and the utilisation of heterogeneous data sources, which creates

barriers for information sharing and reuse [206]. Hence, there is a need for a new

approach that will enhance and facilitate data interoperability, which can be

achieved through the use of semantic modelling and ontology. Therefore, this

section will provide a brief overview of the role of semantic web technologies,

including ontology, in LCA, by reviewing relevant studies in this area.

2.3.1 Overview of the Semantic Web

The Internet has had a tremendous impact on modern life since its inception

about three decades ago [207]. The Internet was initially focused on serving

information but the advent of user-generated content, such as Wikipedia, shifted

its focus to becoming instead a platform for connectivity and sharing ideas, which

was referred to as Web 2.0. [208]. However, this concept has been replaced in

research by the introduction of Semantic Web Technologies, which were proposed
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by Sir Tim Berners-Lee and the World Wide Web Consortium(W3C) [209]. The

primary aim of these technologies is to provide a better definition of the meaning

of information on the web.

The fundamental idea behind The Semantic Web and Semantic Web technologies

is the utilisation of semantic metadata to revolutionise information and process

management [210]. The Semantic Web enables machines to comprehend the con-

text and meaning of content by adding abstraction layers. This can be achieved

through the use of a number of semantic web technologies, which mainly include:

• Resource Description Framework (RDF): "RDF is a structure for

describing and interchanging metadata on the Web" [211]. Essentially, Se-

mantic Web information is represented in a graph format that consists of

nodes connected by edges. Nodes store information, while edges represent

the relationships between information stored in the nodes. This form of

representation is often referred to as RDF triple. An RDF triple consists

of subject, predict, and object. To illustrate this concept, suppose that

an article is written by an author. In RDF notation, the article would be

represented as the subject, and "written by" would be the predicate that

expresses the relationship between the subject and the object, which in this

case is the author.

• Web Ontology Language (OWL): "OWL is a language for defining and

instantiating Web ontologies" [212]. OWL was introduced to provide com-

plete support for ontology creation, building on the RDF functionality [212].

The primary objective of OWL is to provide support for applications that

require processing and use the content of information [213].

• SPARQL Protocol and RDF Query Language (SPARQL): SPARQL

allows for RDF data to be queried and manipulated in a manner similar to

how SQL permits querying and manipulating relational database [214]. In
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essence, SPARQL functions as a graph-matching query language by utilis-

ing a pattern to match against a given data source. The resulting values

are then processed to provide an answer [215].

2.3.2 A Note on Ontology

The use of ontology is central to Semantic Web applications, where an ontology is

commonly defined as "an explicit and formal specification of a conceptualisation

of a domain of interest" [210]. Conceptualisation refers to the role of ontology in

structuring concepts to reflect a world view [216]. The term ‘formal’ means that

computer-based reasoning is permitted through the use of some syntax, while

’domain’ refers to a specific set of concepts that are identified using requirement

engineering [210].

Ontologies are designed to model the knowledge and concepts that are related

to a particular domain. They are not intended to structure data for a particular

application but rather to capture the essential concepts and relationships of a

domain of interest. An ontology that has been implemented is usually integrated

into the backend of a system, serving as a repository for data that captures con-

text, standardises terms, enables rule application, and generates novel insights.

In addition to their capacity to capture meaning and to provide standardised

terminology, ontologies also enable the deduction of knowledge through explicit

statements about a domain [217, 218]. The deduction capability is carried out by

a ’reasoner’, which allows the inference of the truth of a statement to be made

based on other explicit statements within the ontology. Although comprehensive

discussion of ontology is not feasible within this section, interested readers are re-

ferred to authoritative sources such as [212, 219, 220] for a detailed understanding

of this subject.



2.3 Semantic Web Technologies to Facilitate LCA 47

2.3.3 The use of Semantics and Ontology in LCA

Several attempts have been made to address various aspects of LCA by leveraging

Semantic Web technologies and ontology. For example, an ontology has been de-

veloped to represent key aspects of LCA, such as flows, and activities, as well as

their properties [221]. The motivation for using ontology is to address the limita-

tions of existing LCA data formats, which only address syntactic interoperability

and ignore semantics, leading to inefficiencies in information management and the

reproduction of published studies. An ontology-based model has been developed

to represent the life cycle of functional products—including processes, flows, and

their semantic relationships— which are encoded as an RDF graph [222]. The

proposed framework was implemented and tested on the life cycle of a ball bear-

ing, demonstrating its validity and practicality for LCA-oriented ontology-based

modelling. The authors acknowledge that their research is preliminary and they

suggest that future work should include more LCI analysis, and allocation and

recycling considerations. Furthermore, LCA faces challenges when accounting for

the spatiotemporal dynamics of LCA activities, which can affect environmental

impact estimation. To address this issue, an ontology for modelling spatiotempo-

ral scopes has been developed to enhance interoperability between diverse data

sets and enable LCA practitioners to address the impact of spatiotemporal scopes

on LCA results [223].

In [206], a novel approach for data providers in LCA was introduced, where a

catalogue interface is presented to users instead of a standalone database. A

catalogue is used to represent the meaning or semantics of a data resource. Then,

a semantic software system is used to interpret user queries and route them to

data providers that can provide answers. By using catalogue interfaces, private

data can be made more easily discoverable and interpretable for users.

A few studies have focused on developing and utilising ontology-based mod-

els to facilitate and improve LCI modelling. Bertin et al. [224, 225] proposed
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an ontology-driven approach to model LCI and regroup processes into semantic

groups using an ontology to store keywords that describe each process. The au-

thors also developed a web application that utilises their approach, which consists

of a data management back-end and a front-end for visualising process dependen-

cies in a graph and searching for processes. Their approach aims to offer a more

comprehensible LCI database model and a new way to express process dependen-

cies. This approach was demonstrated using LCI data for electricity production

in the United States, and was implemented using relational algebra and SQL.

However, the authors plan to use OWL and semantic reasoner in the future, and

will study the impact on big energy data sets to improve the performance of the

proposed approach. Similarly, a methodology has been proposed for automated

LCI modelling of chemical manufacturing using ontologies [226]. In particular, the

authors presented two ontologies, Lineage and Process, to manage data describing

the synthesis pathway and unit processes associated with chemical manufactur-

ing. The ontologies are coupled to facilitate automated inventory modelling for

a chemical of interest. The authors then illustrated the proposed methodology

with a case study of the production of nylon-6.

It should be noted, however, that these studies are still in the early stages and

are limited to specific applications within LCA. While they have demonstrated

promising results, there is a need for further research in other areas, particularly

in the building domain, where the use of ontologies for LCA has not yet been

extensively explored. Another limitation of these studies is the lack of standard-

isation in the resulting ontologies. The defined concepts and relationships are

often suggested on an ad hoc basis and may not be widely accepted or recognised

within the field. Additionally, many of the ontologies that were developed in

these studies are not published or made available in a format that can be easily

accessed or integrated with other ontologies, which limits their reusability and in-

teroperability. In light of these limitations, future research in LCA and ontology

should prioritise the development of standardised ontologies that can be widely
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adopted and applied across different domains.

2.4 Digital Twin and Data Intertwining

In recent years, the digitalisation of the built environment has made significant

strides, leveraging technologies such as semantics, dynamic data, and ML. A no-

table advancement in this domain is the emergence of Digital Twin for buildings.

Researchers have suggested several definitions, frameworks, and methodologies

for the development and evaluation of Digital Twin applications. In a system-

atic review on Digital Twin applications in various domains such as manufac-

turing, healthcare, aviation, and medicine, Barricelli et al. identified around 30

definitions of Digital Twin [227]. The authors recognised the following seman-

tic categories describing Digital Twin: integrated system; clone; links; descrip-

tion/information; simulation/prediction; and replica/virtual. However, according

to Tao et al. [228], the most recognised definition of Digital Twin is “Digital Twin

is an integrated multi-physics, multi-scale, probabilistic simulation of a complex

product and uses the best available physical models, sensor updates, etc., to

mirror the life of its corresponding twin.”

Beyond the mere definition of the Digital Twin concept, delving into the underly-

ing technologies, elemental components, and examining their interactions is more

important than striving for a singular unified definition. Kritzinger et al. [229]

proposed a classification of digital twins based on the level of integration and data

exchange, illustrated in Figure 2.7. The first category is the digital model, repre-

senting a digital replica of a physical asset that operates independently without

any exchange of data between the physical and digital models. The second cate-

gory, digital shadow, involves a unidirectional flow of data from the physical asset

to the digital model through sensors and connected devices. Finally, the third

category, digital twin, entails a bidirectional flow of data, establishing a seam-



2.4 Digital Twin and Data Intertwining 50

less connection between the physical and digital twins through the utilisation of

sensors and actuators.

Figure 2.7: Digital Twin categories based on [229]

While the previous categorisation primarily focuses on the level of integration

between physical and digital twins, an alternative framework proposed by Qi et

al. [230] introduces key dimensions to assess Digital Twin applications. These

dimensions encompass the physical entity, a virtual model accurately replicating

the actual physical product, real-time data, and services that facilitate simulation,

optimisation, and predictive analytics. Enders and Hoßbach [231] introduced a

schema for comprehending and constructing Digital Twin applications, which en-

compasses several essential dimensions: i) creation time of Digital Twin, which

provides background information into when the model was initially generated;

ii) connection between physical and virtual twins, which evaluates the nature of

linkage between the physical and its virtual counterpart, ranging from none to

unidirectional or bidirectional connections; iii) physical reference object, this di-

mension encompasses a diverse range of objects such as assets, products, humans,

and infrastructure; iv) purpose, which outlines the primary objectives of the Dig-

ital Twin such as simulation, monitoring, or control; and v) completeness, which

evaluates the level of details incorporated within the digital model pertaining to

its representation of the physical object.

According to Calin et al. [232], the Architecture, Engineering, and Construc-

tion (AEC) sector is currently undergoing a digital transformation. The authors
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argued that this shift, driven by advanced technologies, is fundamentally reshap-

ing the processes involved in designing, constructing, and operating built assets.

These technologies encompass value-added monitoring of data from sensor net-

works, the implementation of robust semantic models for data management, and

the integration of simulation and optimisation in engineering systems within the

built environment. In the pursuit of decarbonising the built environment, Digital

Twin offers a powerful approach, particularly in the operational stage. Through

the utilisation of Digital Twin, comprehensive insights into the performance of

buildings can be gathered, facilitating the identification of opportunities for sub-

stantial enhancements in both operation and comfort. For instance, the utilisa-

tion of sensors provides a mechanism to gather dynamic data, offering a wealth

of information to make informed decisions. This information can be leveraged to

capture, predict, simulate, and actuate, enabling a shift from reactive to proactive

building management. This technological approach enables buildings to function

with utmost efficiency from an environmental standpoint, thereby aligning with

the objectives of decarbonising the built environment.

To enable the utilisation of Digital Twin, a series of processes related to data must

be undertaken. These include the integration of diverse datasets originating from

a variety of different sources, including sensors, controllers, internal databases,

and external repositories. Furthermore, the development of homogeneous data

models derived from raw data, along with a rigorous data cleaning process, is im-

portant to ensure the completeness and quality of the collected data. Collectively,

these processes are referred to as data intertwining.

Various technologies are available for implementing data intertwining, each tai-

lored to specific requirements. For example, Data Lakes serve as centralised

repositories designed to integrate data from a diverse range of sources, and store

data in its native format (i.e., structured or unstructured) [233]. In contrast, Data

Warehouses, while also centralised, differ from Data Lakes in their approach to
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storing data, as they store data in a structured format [234, 235]. Additionally,

Semantic data stores employ ontologies to establish relationships between distinct

concepts within the stored data [236]. The selection of a particular technology

for data intertwining hinges on a multitude of factors. These include the origi-

nal format of the data, its quality and completeness, the degree of heterogeneity

among various data sources, as well as the extent of required data pre-processing.

For instance, in scenarios necessitating real-time predictive analytics, immediate

access to processed data is imperative. Conversely, there exist instances where

real-time access may not be as critical.

It is important to note that an exhaustive discussion of data intertwining tech-

nologies is beyond the scope of this research. Interested readers are encouraged

to refer to the referenced works for a more comprehensive understating of these

technologies and their applications.

2.5 Building Energy Performance

2.5.1 Overview

The building sector is a significant contributor to GHGs emissions, and roughly

40% of the EU’s total energy consumption is attributed to buildings [237]. The

International Energy Agency recognises energy efficiency as “the first fuel”, in

recognition of the multiple benefits of energy efficiency, including environmental

and economic potentials [238]. This report also stated that the building sector

has the highest unrealised energy efficiency potential, or more than 80%. While

many governments have set policies to promote energy efficiency and reduce GHG

emissions, building energy consumption is continuing to increase due to rising de-

mand for building services, HVAC systems in particular, ensuring user comfort,

along with the increase in time spent indoors [239]. In addition, there are other
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factors that influence energy performance, such as a building’s design and charac-

teristics, weather conditions, and occupant behaviour [240]. Despite many efforts

to improve the energy performance, such as the European directive regarding the

energy performance of buildings (EPBD) and the associated energy performance

certifications (EPCs), buildings do not perform as anticipated. These instruments

were established to improve building energy performance regulations among the

EU member states and set binding goals that have to be translated into national

regulations and energy policies [241].

Recent evidence has shown the limitations and shortcomings of energy certifi-

cation schemes in many countries. For example, it was found that the input

parameters (e.g., energy label, U-values) that are used in the Cantonal Energy

Certificate for Buildings in Switzerland (CECB) are poor predictors of the actual

energy use [242]. Moreover, a study conducted on the Irish EPCs concluded that

reliance on the default values for thermal coefficients can lead to an overestima-

tion of energy retrofit benefits [243]. Li et al. [244] conducted a comprehensive

review of the EPC directives in EU member states and identified several issues

in the current EPC, including the questionable reliability and credibility of EPC,

the lack of representation of the entire building stock in EPC database, lack of

performance monitoring , and input data quality. As a result, a discrepancy is

found between the predicted energy performance as described by these certifi-

cation schemes and the actual energy consumption, which is known as energy

performance gap (EPG).

A growing body of literature has investigates the EPG and its underlying causes

and solutions. EPG is defined as “the difference between expected energy con-

sumption calculated by a building performance assessment and the actual con-

sumption.” [245]. Burman [246] identified three classifications of the performance

gap as follows: 1) regulatory performance gap, which compares compliance mod-

elling prediction (e.g., EPC modelling) with measured energy consumption; 2)
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static performance gap, which compares building energy simulation with actual

operation conditions (i.e. performance modelling) with measured energy con-

sumption; and 3) dynamic performance gap, which compares a calibrated per-

formance model with measured energy consumption. Two classes of EPG have

been suggested, namely perceived gap and actual gap [247]. The perceived gap

occurs when the compliance modelling is conceived as the predicted performance

and compared with the measured energy use, while the actual gap is a time-

dependent gap that compares the measured energy use with the performance

modelling predictions.

The underlying causes of EPG can be different for each building’s life-cycle phase.

A detailed examination of EPG in the pre-occupancy stage has identified the

causes for the gap between building energy targets and the actual energy con-

sumption during building commissioning phase [248], which include inadequate

knowledge and collaboration between different stakeholders, as well as the lack

of performance accountability during a building’s use phase. In addition, [249]

identified further causes, including design complexity and inaccuracy of design pa-

rameters, lack of post-testing and feedback, and lack of consideration regarding

uncertainty. Building energy modelling uncertainty and inter-model variability

that result from using different modelling tools have also been identified as con-

tributing factors to the EPG [246]. In one of the most recent studies in this

field, Cozza et al. [245] proposed two major categories for the causes of EPG,

namely theoretical deviation causes and actual deviation causes. Under the first

category, the authors identified several causes, such as the inaccuracy related

to building modelling, occupant behaviour, and climate data. The second cat-

egory includes causes related to sub-optimal building operation, malfunctioning

equipment, measurement limitations, and execution of the work.
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2.5.2 Energy Prediction Approaches

To reduce the negative environmental impacts of buildings during the operation

phase, it is important to accurately measure the actual energy performance using

a variety of techniques. Several studies have attempted to identify the different

approaches of assessing building energy use (e.g., [240, 250, 251]). Seyedzadeh

et al. [250] classified energy assessment techniques into four major classes: en-

gineering method, simulation-based models, statistical methods, and ML-based

modelling. Similarly, [240] suggested three main methods that are used for the

assessment of energy use, namely: engineering method, statistical method, and

ML method [240]. The engineering method is based on physics and typically

conducted using simulation software, whereas the statistical and ML methods are

data-driven approaches that seek to identify correlations between the outputs and

input variables. Other researchers have classified these approaches into: numer-

ical (i.e. simulation-based), analytical (i.e engineering method), and predictive

approaches (ML models) [251]. Overall, these studies clearly agree on the main

categories of building energy assessment approaches, despite their use of different

terminologies.

A brief overview of each method follows. Engineering methods are based on

using a building’s physics and physical laws to calculate energy requirements

at the building or system level. Solving the underlying equations requires exten-

sive knowledge and understanding of a building’s dynamics. Although developing

these models requires significant effort, these models tend to be generalisable [251].

The simulation method is a computer-based model that can be developed using

a variety of software tools (e.g., EnergyPlus, DOE-2, IES-VE, and TRNSYS).

These tools are used for several energy-related applications, such as heating or

cooling demands, lighting, and integrated energy system design. However, a com-

prehensive understanding and detailed information about the simulated system

are required, including location and climate data, building operation schedules,
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construction components, and zones and surfaces. Although these simulation

engines are effective and produce interpretable results, they tend to have low

accuracy due to the lack of sufficient knowledge about the system’s dynamics,

especially during operation when occupant behaviours come into play [251]. In

addition, developing these models requires considerable effort and is computa-

tionally expensive [240, 251]. In contrast, statistical and ML methods do not

require a physical description of the building because the resulting models are

purely data-driven. Essentially, these models utilise historical building data (e.g.,

energy consumption, weather data, indoor parameters, and operation schedules)

to capture the underlying correlation between the desired outputs and the rele-

vant variables [240, 250, 252]. This type of model is capable of predicting system

behaviours under various conditions by training the models on a subset of the

historical data. Once trained and calibrated, these models have the advantage

of performing instantaneous prediction of building performance, which makes it

desirable for real-time building control and optimisation [251, 252]. However, a

key disadvantage of these models is the amount of historical data that are re-

quired to train the models, which also makes these approaches mostly applicable

to existing buildings.

2.5.3 ML-based Energy Prediction and Optimisation

Several surveys of the literature have investigated the application of ML tech-

niques for predicting the energy use of a building [250, 253–255]. ML-based solu-

tions have been widely adopted due to the rapid development of ICT technologies

(e.g., sensors, wireless transmission, and cloud computing), which facilitate cap-

turing, storing, and processing of domain data [250], and due to their ability to

solve complex and non-linear relationships that exist in multi-dimensional sys-

tems [254]. Mohandes et al. [253] found that ML models, ANNs in particular,

have been applied to five main energy-related areas, namely: energy consumption,
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heating and cooling loads, indoor air temperature, HVAC systems, and heating

and cooling of water systems.

Several studies have utilised a variety of ML algorithms—including ANN, support

vector machines (SVMs), decision trees (DTs), and clustering—with diverse sets

of input parameters in different energy-related applications. Petri et al. [256]

utilised ANN and a multi-objective optimisation algorithm to optimise the set

point for the inlet air temperature, thermal comfort, and energy consumption in

a sports facility. Deb et al. [257] employed ANN to forecast diurnal cooling energy

load for three institutional buildings and good prediction accuracy was achieved

using energy consumption data for the previous five days. An ML-based solution

has been proposed to predict heating energy demand for an institutional building

using a variety of attributes, such as outdoor temperature, solar radiation, day

type, occupancy profile, and characteristics of heating power level [255]. Li et

al. [258] used SVM to predict the cooling energy load of HVAC systems in an

office building in China. Their results show that SVM outperform ANN in terms

of prediction accuracy. Although there is no systematic approach to select the

most appropriate algorithm or input parameters, researchers often apply several

algorithms and compare them based on prediction accuracy, computation time,

number of required inputs and outputs, and the amount of data required to train

the models.

While the applicability and significance of ML-based approaches for building en-

ergy prediction has been demonstrated, there is a relative lack of studies investi-

gating the use of ML for the prediction and optimisation of energy in buildings

with mixed-mode ventilation (i.e., a combination of natural ventilation and me-

chanical systems). Natural ventilation is an effective and sustainable building

design option that has the environmental benefit of reducing energy consumption

for indoor conditioning, while improving indoor environmental quality, including

indoor air quality and thermal comfort [259, 260].
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Several studies have shown a significant energy-saving potential as a result of us-

ing natural ventilation. For example, Tong et al. [261] estimated that up to 78%

reduction of the cooling energy demand in office buildings can be achieved by

harnessing natural ventilation strategies. Similarly, Barbadilla-Martín et al. [262]

applied an adaptive control algorithm in mixed-mode office buildings equipped

with HVAC systems and found potential energy savings in summer and win-

ter seasons of 27% and 11.4%, respectively. Another study was conducted on

mixed-mode school buildings in Spain to compare natural ventilation systems

with mechanical systems in terms of energy savings, and the results showed that

natural ventilation can reduce energy consumption by 18 to 33% [263]. Chen et

al. [264] proposed an optimal control strategy using reinforcement learning to op-

timise HVAC and window operation. The reinforcement learning control reduced

the HVAC energy use by 13% and 23% when compared to the heuristic control.

Most studies have been based on either simulation models, static data collected

from the case study, or simulated datasets. Park and Park [265] argued that these

approaches are insufficient to capture the dynamic aspects of natural ventilation

systems and that the number of variables involved in modelling and evaluating

the impact on energy consumption requires a more robust approach. These re-

searchers experimented with a number of ML algorithms to predict the natural

ventilation rate in an office space, including deep neural network (DNN), support

vector regression (SVR), multivariate linear regression (MLR), and RF. The data

acquired for these models are for indoor and outdoor variables, such as tempera-

ture, humidity, solar radiation, and pressure. The results show that DNN has the

highest prediction accuracy, which can be applied to optimise windows control

and operation. Another study developed a ML-based operation strategy, using

the average daily outdoor temperature as a predictor, which predicted the best

operating scheme of an engineered natural ventilation system [266]. Vrachimi et

al. [267] proposed an ANN model to reduce the uncertainty of the airflow rate

calculation by predicting local wind pressure coefficients for buildings of different
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shapes. The resulting coefficients significantly improved the simulated airflow

rate when compared to an existing experimental database. Mousa el al. [268]

developed a Classification and Regression Tree model (CART) to model the air

change rate (ACH) in a naturally ventilated building. The authors obtained ACH

values from a CFD simulation, while the input parameters were based on field

measurements, including wind speed, direction, hour, and temperature. The lat-

ter input parameter was rendered non-predictive and removed from the input list.

To avoid the high computational cost of conducting large scale CFD simulations

(e.g. urban level), a study developed two data-driven models to predict a novel

ventilation index, which links outdoor wind velocity to indoor airflow to assess the

natural ventilation effectiveness of different design configurations [259]. The input

data were based on CFD simulation and six design variables were employed in the

prediction model (i.e., wind direction, relative sinuosity, building density, target

building heights, height variation, and opening to wall ratio). Chen et al. [269]

developed a prediction model for the thermal response of a room using the idea

of pre-trained deep neural network (i.e., transfer learning) for the model’s pre-

dictive control of HVAC and natural ventilation. The proposed model achieved

high prediction accuracy for indoor temperature and relative humidity for several

time intervals between 10 minutes and 2 hours. Gan et al. [270] proposed a deep

learning model to predict natural ventilation potential (ACH in this study) by

exploring the relationship between design features and indoor ventilation, as well

as the outdoor airflow. The ACH prediction accuracy of the deep learning model

was comparable to that of the CFD simulation.

Several indicators have been developed and introduced to measure the effective-

ness of natural ventilation, including air change rate, airflow rate, and discharge

coefficient [271–274]. The main difficulty with these indicators is that they re-

quire a thorough understanding of the physical model, which is mostly based on

a simulation model and simulated data. Alternatively, several studies have used

CO2 concentration as a proxy to assess the adequacy of ventilation, and inform
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the operation and control of ventilation systems [275–278]. These studies have

adopted a data-driven approach to predict the levels of CO2 based on streaming

data from sensors.

2.6 Discussion and Gap Identification

This review of the current LCA research landscape has identified several gaps and

limitations, which will be described in this section.

2.6.1 Lack of Alignment with Domain Models and Manu-

facturing Systems

There is a growing interest in BIM-LCA integration. Nearly 20% of the analysed

studies have used BIM, including using BIM as a source of data, a parametric

model for energy consumption simulation, and as a simplified calculation tool for

LCA by embedding environmental data into BIM objects. The most prevalent

use of BIM in LCA applications is for geometric and material data acquisition.

A similar finding was demonstrated by Potrč Obrecht et al. [143], who found

that exchange of information is the most common link between BIM and LCA

tools. However, this is currently limited by semantic incompleteness and inter-

operability issues between current software solutions. Soust-Verdaguer et al. [17]

demonstrated that the BIM environment is missing a number of critical aspects

that are important for environmental impact assessment, such as temporal pro-

cesses, refurbishment and maintenance information, EoL treatment scenarios, and

recycling data. Apart from the limitations in semantic information, automatic

mapping of BIM data and LCA resources to facilitate the process of LCI building

and resolve the interoperability issue is still lacking. In addition, a building’s

components and systems are produced through a manufacturing process. While
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the embodied carbon of the materials forming the final product is often fully

considered, these manufacturing systems tend to not factor in the design config-

uration that is best conveyed via a BIM. In fact, automation of the building’s

production necessitates exploitation of information models (i.e., BIM) in each

phase of the design, construction, and operation management life cycle. Current

applications of BIM in projects mainly involve design information but often lack

as-built and operation management information. Product manufacturers have

recently engaged with BIM by making their manufactured products BIM compli-

ant to enable designers to import virtual product specifications into their design

environment, which provides a means to assess the environmental impact of their

interventions.

2.6.2 Lack of Reasoning and Decision Support Capability

Buildings require a wide range of materials, products, and actors interacting in a

dynamic and non-linear workflow as part of a complex ecosystem over the build-

ing’s lifetime. Furthermore, there are many life-cycle variations that LCA tools

and methods must take into consideration, including building usage, energy sup-

ply, changes in the energy mix, and occupancy patterns. Hence, minimising the

environmental burden of buildings requires a comprehensive approach that fac-

tors in the complexity and the dynamic nature of building LCA. This requires the

exploration of various scenarios to evaluate alternative design options, renovation

strategies, and the generation of actionable improvement for building operations.

In this context, the existing literature on decision support tools shows limitations

in the proposed solutions, both in terms of scope and capabilities.
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2.6.3 Limited Efforts to Scale Up LCA from Buildings to

District Level

The literature related to the LCA of buildings at an aggregated level is scarce

and has a multitude of heterogeneous methodological approaches [279]. There are

two main approaches for building stock modelling, namely: a top-down approach

that relies on some macroeconomic indicators, and a bottom-up approach that

clusters buildings based on common characteristics [280]. In this review, it was

found that the majority of studies focus on applying LCA on individual buildings

or a group of buildings with complete background information about each build-

ing. Several studies have considered large-scale LCA applications for a variety

of purposes, such as renovation of existing housing stocks [281], energy saving

scenarios for EU-wide housing stock [282], and understanding the level of details

required to conduct LCA at a large scale. The main challenge of scaling up LCA

applications is that a trade-off must be made between the cost of collecting data

and the reliability of LCA results. To deliver reliable and sound LCA results at

district and city-wide level, it is essential to understand the level of detail re-

quired at the building level and the informative attributes at the district level. It

is worth noting that a number of projects funded under the Horizon 2020 Smart

Cities and Communities program are progressing the concept of Positive Energy

Districts. These projects consider four dimensions in their district interventions,

namely: energy efficiency, mobility, information and communication technologies,

and citizen engagement. However, these projects fall short of embracing the LCA

philosophy.

2.6.4 Lack of Support of Temporal Information

There is a need to factor in temporal information in the background and fore-

ground LCI and LCIA methods to address maintenance, operation, deconstruc-
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tion, and EoL treatment [5, 18, 19]. Construction processes involve longer time

scales than are required in other industries [6, 17]. Therefore, considering the

time dimensions in product system modelling is essential to understand the re-

sulting pollutant emissions and resource consumption [5–7]. However, few studies

have tested the use of dynamic data during construction and operation stages (11

studies only). Although electricity consumption is the main type of real-time

data, some studies have used IoT devices for occupancy detection appliance use

or have developed sensors to measure indoor temperature and relative humidity.

Nonetheless, further research is required to determine the impact of accessing

dynamic data and the frequency of data collection on assessment accuracy.

2.6.5 LCA: Directions for future research

The systematic literature review of LCA applied to buildings that was conducted

in this chapter has highlighted key limitations and gaps of current LCA applica-

tions. There are three recurring themes in the gaps identified, namely semantics,

temporality (i.e., dynamic data), and intelligence (to support decision making) as

illustrated in Figure 2.8. These themes are applicable across the life cycle of a built

asset, from concept design to EoL. The following subsections elaborate on each

of these themes. LCA underpinned by semantics and informed by dynamic data

can pave the way to a more accurate LCIA, while supporting decision-making,

and the active control of buildings and districts. As such, there is a need to pave

the way to a (near) real-time LCA capability that exploits a wide range of digital

resources and which leverages intelligence (in the form of ML and optimisation

algorithms) to assess the whole life cycle environmental impacts of built assets.
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Figure 2.8: Key recurring themes in future LCA research applied to buildings

2.6.5.1 Semantic Interoperability of LCA

The concept of semantics refers to the reliance on computer-based models that

provide a formal description of the context that underpins the domain under in-

vestigation [283]. In practice, the domain conceptualisations that are held by

stakeholders and software across disciplines tend to be incompatible and ne-

cessitate ad hoc solutions [284]. Furthermore, the use of semantics, including

BIM and GIS, provides a means to integrate and contextualise existing inventory

databases, and provides a sound basis to streamline the LCA process of buildings

and districts. However, this will require an inventory of existing LCA databases,

methods, standards, and tools to be established. In addition, their underpinning

semantics should be elicited. Furthermore, the existing relevant semantic models,

such as BIM and GIS, and current LCA databases should be expanded to address

the completeness requirements that are necessary to provide holistic accounts of
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the environmental impacts of buildings and wider districts. The key methodolog-

ical challenges in delivering semantic LCA require a comprehensive (life cycle and

supply chain) understanding of the semantic resources that are required to deliver

life-cycle assessment at building and district level. A reference architecture for

semantic LCA that factors in existing databases, models, methods, and tools is

also required. Finally, a consensus and requirements of semantic and dynamic

LCA should be developed.

2.6.5.2 LCA Based on Dynamic Data

Research is needed to assess the impact of utilising dynamic data on the accuracy

of LCA results throughout different project stages, such as construction and op-

eration. Delivering real-time accounts of the life-cycle performance of buildings

and districts requires multi-aspect sensory data, including: (a) indoor and out-

door environmental data, and (b) building and district performance data (e.g.,

energy consumption, pollution, and carbon emissions). The collection of dy-

namic data will require the identification of necessary instrumentation and data

capture technologies, while leveraging existing building management systems and

Information and Communication Technology (ICT) infrastructure. This requires

a context to the sensed data to be provided via semantics. In addition, a sys-

tems approach should be adopted, whereby the performance and environmental

impact of a physical artefact (e.g., a built asset) involves the assessment of each

constituent subsystem.

2.6.5.3 Machine-Learning-based Decision Making

Research is required to evaluate the impact of semantic and dynamic LCA in the

decision-making process by non-experts, which should explore a wide range of op-

tions and scenarios with the least environmental impacts, while also advising on
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corrective measures through actionable ML. In addition, ML techniques, includ-

ing model predictive control and optimisation algorithms, can be used to deliver

actionable knowledge to inform various control strategies and corrective actions

with a view to reducing the gap between the predicted and actual environmental

impacts. They may also be used to overcome data gaps for ML. In addition,

ML technologies may be used in real-time applications to monitor and control

the systems in a way that reduces negative environmental impacts. ML models

may be more easily integrated than other black box methods because they are

more easily interpreted by the users. However, the monetary and time costs of

establishing ML models should be considered for real-time use.

2.7 Conclusion

The primary focus of this chapter was to address research question 1, which asks:

What are the key limitations of current LCA methods that affect the accuracy and

widespread adoption of LCA in the building domain?

This chapter has mainly presented a review of the research progress in the field

of building LCA, focusing on the current applications of LCA in buildings. In

addition, this chapter has highlighted gaps and limitations of the current LCA

applications in the building domain.

There is an increasing adoption of building LCA across the life-cycle stages of

a building, including manufacturing the building materials, design, construction,

use phase, and EoL. However, successful LCA implementation must factor in the

dynamic nature of buildings, variable operational and environmental conditions,

the long time scale of buildings, and the specific challenges that are associated

with each life-cycle stage. In particular, the challenges associated with LCA in the

operational stage stem from several factors, including a variation in operational
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energy demand, energy system evolution, building use and occupancy patterns,

and building and environmental regulations.

This review of LCA applied to buildings has revealed several research gaps and

limitations, including the lack of alignment with domain models and manufac-

turing systems, lack of reasoning and decision support capability, limited efforts

to scale up LCA from buildings to district level, and lack of support of temporal

information.

While previous efforts have led to incremental progress, this study will explore the

concept of semantics to integrate and contextualise the existing domain models

(e.g., BIM), LCA tools, and inventory databases to streamline the LCA process

and provide holistic accounts of the environmental impacts of buildings. This

thesis also intends to develop a decision-support system that leverages dynamic

data, ML, and optimisation methods for real-time assessment, monitoring, opti-

misation, and control of buildings during the operation stage. These topics will

be examined in greater depth in the following chapters of this thesis.
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Chapter 3

Research Design and Methodology

3.1 Research Methodology

This chapter explains and justifies the research methodology that was adopted

to deliver this research. It starts by discussing the philosophical stances of scien-

tific research and aligning the current study with the relevant school of thought.

Following this, the research approach is presented, which will be used to elabo-

rate on the research questions that were posed in Chapter 1, and the approaches

undertaken to address them will be described. The main goal of this chapter is

to provide a holistic view of this thesis by linking the various chapters, research

questions, and employed techniques.

3.1.1 Theoretical Background

Research methodology can be broken down into two components: the first is

research, which is defined as “a quest for knowledge through diligent search or in-

vestigation or experimentation aimed at the discovery and interpretation of new

knowledge” [286], and the second is defined as “a systematic body of procedures

and techniques applied in carrying out investigations or experimentation targeted

at obtaining new knowledge” [286]. Research philosophy serves as the foundation

for research by defining the nature of reality (i.e., ontology), sources of knowl-

edge (i.e., epistemology), and the role of beliefs and values (i.e., axiology) [287].
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Figure 3.1: The research ’onion’ [285]

Guban and Lincoln argue that “Questions of method are secondary to questions

of paradigm” [288], and emphasise the importance of research paradigms in the

discovery and creation of knowledge. Although many categorisations and classifi-

cations of existing research philosophies (e.g., Guba and Lincoln [288], Saunders

et al. [285], Ritchie et al. [289]) are found in the literature, there is no consensus on

the implications of each philosophical stance on the selection of available research

methods [290]. Furthermore, as noted in [290], scholars of research philosophies

have used contradicting terminologies, even when referring to the same concept;

for instance, using the term ‘approach’ instead of ‘method’ to describe a specific

methodological choice (as presented in Figure 3.1).

The main objective of this chapter is to elaborate on the research methodology

that was developed during the course of the current research rather than debating

the scholarly work related to research philosophy. Therefore, this section will only

outline the basic tenets of research methods because a comprehensive review is

beyond the scope of this study. Therefore, the model and the terminologies
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proposed by Saunders et al. [285] will be followed for the sake of consistency. The

following sections start by discussing the outermost layer, the research philosophy

(see Figure 3.1), which will be followed by a description of the overall research

stages and the associated strategies and processes.

According to Saunders et al. [285], the choice of research philosophy (i.e., philo-

sophical stance) has a profound effect on all of the subsequent steps throughout

the research development, including the underpinning research strategy, methods,

and decisions related to data and analysis techniques. There are four distinct

philosophical stances, namely positivism, interpretivism, realism, and pragma-

tism [285]. Positivism is the philosophical stance of the natural scientist, which

involves data collection of an observable phenomenon to understand causality and

provide generalisations in an objective manner [285], such that the researcher re-

mains objective and independent of the data and that the research findings are

inferred empirically. Hence, this stance often employs quantitative methods.

Realism is similar to positivism in the sense that both follow a scientific approach

during data collection and interpretation of the data [285]. However, realism holds

that reality exists independently of human perceptions. Two schools of thought

can be found within this philosophical position: direct realism, which argues

that humans experience the real world through sensation; and critical realism,

which suggests that interpretable sensations may not be the real objects of the

world [285].

Unlike positivism, interpretivism asserts that insightful concepts are lost when the

world’s complexity is limited to law-like generalisations similar to those found in

physics [285]. In this philosophical stance, reality is seen as a social construct that

is interpreted by social actors or individuals. Hence, interpretivism is subjective in

nature, in which the researcher’s perspective is an integral part of the qualitative

research methods that are used with this paradigm.

While these philosophical positions have clear views of the reality and specific
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methods to answer research questions, pragmatism uses multiple reality and

mixed research methods in the development of knowledge. Pragmatism is partic-

ularly appropriate for this current research for several reasons. First, Saunders et

al. [285] assert that the research question is a crucial factor in choosing the philo-

sophical stance. In this regard, answering the research questions posed in Chapter

1 requires subjective and objective methods. Therefore, with this paradigm, it is

possible to apply multiple philosophical stances in the same research. Moreover,

an important feature of pragmatism is that it is ‘a social model of knowledge’,

which recognises the fact that knowledge is a social and not an individual achieve-

ment because the idea is only valid when people in a specific domain share the

same perception [291]. This last point is particularly relevant to the current re-

search given the involvement in a research project, during which explanation,

interaction, and dialogue with experts have a significant role in the selection of

research methods and analysis techniques. In addition, the current study was

carried out through multiple stages, where each stage requires different research

methods, be it qualitative or quantitative. Action research is associated with the

qualitative aspect of this research, which informed the selection of the research

methods throughout the research development. The quantitative aspect of this

research was carried out during the development of the data-driven use case and

the validation of the proposed solution on a real case study.

3.2 Research Design

This section will describe the research design, which was broken down into three

stages (as illustrated in Figure 3.2). The first stage was an exploratory exercise

by way of a literature review to identify the existing applications, and identify

limitations and gaps in the existing body of research to inform and refine the

research questions. In the second stage, a participatory action research strategy

was carried out through engagement with stakeholders and industry experts, and
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by contributing to a research project. In the final stage, the lessons learned and

the insights from the previous stages informed the development of the analysis

and validated the main research objectives.

Figure 3.2: Summary of the research design

3.2.1 Stage 1: Exploratory

The primary activity of Stage 1 is to carry out a literature review to theoretically

analyse the existing body of knowledge pertaining to the environmental perfor-

mance of buildings. This exploratory step serves many purposes, including recog-

nising the state-of-the-art research of LCA applied to buildings, identifying the

shortcomings of proposed solutions, identifying the requirements and functional-

ity needed to streamline LCA throughout the various life cycles of the asset, and

most importantly support the refinement of the research questions. The literature

review also formed the foundation for the identification of LCA use cases across

the physical, temporal, and technological dimensions. In particular, this stage

highlighted the areas that can considerably improve LCA practice and reliability

in the construction industry by adopting the concept of semantic interoperability

to integrate various artefacts and utilising dynamic data and decision support
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systems that use ML and optimisation algorithms to improve the environmental

performance of built assets.

3.2.2 Stage 2: Participatory Action Research in the LCA

of Buildings

Stage 2 uses a participatory research approach via engagement in the research

project, namely SemanticLCA. Essentially, participating in a research project

can be considered as an experiential learning experience, as Kolb defines it “the

process whereby knowledge is created through the transformation of experience.

Knowledge results from the combination of grasping and transforming experi-

ence” [292]. Initially, the involvement in the research project was observational to

understand more about the domain and the underpinning concepts. The project

then gradually contributed to the deliverables and engaged with industry ex-

perts and facility managers. Presenting conceptual models and solutions to the

project’s participants provides important feedback to improve the initial solu-

tions and identify the challenges during the implementation and testing. Several

workshops took place with domain experts from the UK and across Europe to

discuss the current LCA practice, and to identify use cases to be developed and

investigated.

3.2.2.1 SemanticLCA Research Project

SemanticLCA is a collaborative research project between Cardiff University and

the Luxembourg Institute of Science and Technology (LIST), which is funded by

the Engineering and Physical Sciences Research Council (UK) and Fonds National

de la Recherche (Luxembourg). This research project aims to promote scalable,

cradle-to-grave environmental sustainability capabilities by leveraging building

and district semantics to streamline LCA and to devise corrective actions. Sev-
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eral objectives were established to achieve this overarching goal, including: i)

establish an inventory of the existing life-cycle assessment databases, methods,

standards, and tools and then elicit their underpinning semantics (i.e., data struc-

tures); ii) develop a reference architecture for Semantic LCA, which will leverage

existing information sources, including BIM (IFC), GIS (CityGML), and current

LCA databases to address completeness requirements necessary to provide holis-

tic accounts of environmental impacts of buildings and wider districts; iii) expand

or align existing relevant semantic models, including BIM and GIS, to factor in

dynamic data and deliver a dynamic life-cycle assessment capability of buildings

and districts; and iv) develop ML techniques, including model predictive control

and optimisation algorithms, to deliver actionable knowledge, and to inform var-

ious control strategies and corrective measures with a view to reducing the gap

between predicted and actual environmental impact. Engagement in this project

has been a valuable source of experience at the individual level and has guided the

formulation of use cases that will be used to validate the proposed methodology.

During the course of the research project, different engagement modalities were

employed, including workshops and periodic meetings. Two workshops were held,

bringing together academics, industry partners, and the research team. These

sessions started with an introduction to the research project, followed by the

presentation of preliminary research findings. Then, a series of use cases were

deliberated upon, inviting discussions regarding their validity, and practical im-

plications. These workshops provided invaluable high-level feedback and recom-

mendations for refinement. In addition, regular periodic meetings were conducted

on a weekly and monthly basis. These meeting served as platforms for in-depth

discussions on research progress, assessment of existing LCA tools and frame-

works, and evaluation of LCA use cases development and proposed solutions.
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3.2.2.2 Requirements Elicitation

The procedure that is adopted in this stage of scoping and developing the Se-

manticLCA system aims to formalise LCA use cases identification, specify the

requirements for the identified use cases, and design and develop an overall se-

mantic platform. The procedural approach undertaken in this stage of scoping

and formalising LCA use cases was not predetermined, but rather evolved organ-

ically in response to the iterative nature of the participatory action research. The

steps involved can be viewed as a post-rationalisation of the procedure pursued.

Use Cases Identification

The research initially aimed to explore the landscape of LCA applications within

the building domain. From the literature review, it became evident that there is

a wide range of applications for LCA throughout the different stages of a build-

ing’s life cycle. In this regard, developing a taxonomy can be a highly effective

approach for understanding a complex domain like LCA in buildings. Essen-

tially, a taxonomy allows for a systematic and comprehensive understanding of

the various facets and applications within the domain. It provides a structured

framework for categorising and organising key concepts and use cases, which is

particularly valuable in a multifaceted field such as LCA. While it is true that

other approaches such as surveys, expert interviews, and data mining could have

been considered to achieve a more comprehensive understanding of the domain,

it is crucial to acknowledge that the selection of approach was constrained by the

specific context and available resources within the research project.

Semantisation of Use Cases

The second step of the elicitation process identified the key concepts that are

required to implement the use cases. To achieve this, a semantisation of use cases

technique was developed through weekly engagement with the research team,
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by which a use case can be analysed from different perspectives. The develop-

ment of this technique did not follow a specific methodological approach; rather,

it emerged from a synthesis of collective knowledge, a literature review, and a

process of brainstorming. These combined efforts facilitated the identification of

pertinent concepts and dimensions essential for the semantisation of the identi-

fied LCA use cases. The developed technique serves two main purposes: first,

identifying the characteristics, objectives, data sources, and modelling technique

for each use case; and second, establishing a generic architecture, including its

components and processes, to realise the identified use cases. This technique will

be utilised in Chapter 6.

Analysis of the Use Case’s Processes and Mechanisms

The research project involves the development of a software process, wherein di-

verse software components are integrated. These include BIM, energy simulation

software, and Brightway2 for LCA modeling. Additionally, the devised solution

leverages data sourced from sensors, machine learning and genetic algorithms for

prediction and optimization. In the realm of software development, a critical as-

pect entails the consideration of integration and the flow of information between

these entities (i.e., objects). In this context, Unified Modeling Language (UML)

stands out as the widely acknowledged standard in software development [293].

UML is a standard language that was started in 1994 and is used to document,

visualise, and specify the development of a software-intensive environment [294],

such as conducting LCA of buildings.

UML has a plethora of modelling concepts and diagrams that are used throughout

the life cycle of a software system. The ‘Sequence diagram’ is relevant to the

current research approach because it has been used in semantic modelling [295].

Sequence diagrams are a subcategory of interaction diagrams that are concerned

with the interaction and the time ordering of communications between a set of

objects or artefacts. In the context of LCA, the objects are (for example) a BIM
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model, LCA software, and sensors (Figure 3.3). The interactions between these

objects, or messages that an object sends or receives represent the exchange of

information between the objects, which can identify the relationship between two

objects. These messages between objects are represented by horizontal solid or

dashed lines. Another important feature of the sequence diagram is the vertical

line that is associated with each object. This line indicates the time horizon of

the object interactions.

Figure 3.3: Simplified example of a sequence diagram for an LCA use case
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3.2.3 Stage 3: Framework Development

Stage 3 represents the core contribution of this study, which will focus on a spe-

cific use case based on a framework developed during this stage and informed by

the literature review. As presented in Chapter 2, the energy performance gap

that is found between the predicted energy consumption in the design stage of

buildings and the actual energy use during operation underestimates the environ-

mental impacts of buildings during the use phase. In addition, the majority of

LCA studies have considered static assumptions. In other words, static LCA does

not consistently factor in the temporal variations of a building, such as building

usage and indoor conditions. The other problems pertaining to the last point

are as follows. First, building operation must be considered as a multi-faceted

problem, in which facility managers attempt to maximise indoor comfort and

indoor environmental conditions, and simultaneously minimise energy consump-

tion. Second, establishing the life-cycle inventory in a dynamic manner can be

challenging from a technical point of view because the data sources that need to

be consolidated come in different data structures and with different levels of gran-

ularity. Therefore, aggregating these data is time consuming and computationally

expensive. While previous efforts have led to incremental progress on multiple

fronts, they lack a holistic approach that takes into account the integration of

different domain models and data sources, the consideration of multiple objec-

tives (often conflicting) during the operation of a building, and the development

of a decision support system to help contextualise and translate information into

actionable measures. The outcomes of this stage will be the subject of Chapters

4, 5, and 6.
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3.3 Overall Methodology

This section will provide an overview of the methodology used to achieve the

thesis objectives. The content will include a general description of the overall

approach for addressing the hypothesis and research questions. The methodology

encompasses three interrelated aspects: a framework, a use case, and a case study

(Figure 3.4). Additionally, the justifications for the decisions and choices made

will be discussed.

Figure 3.4: Simplified representation of the overall methodology

3.3.1 The proposed Framework

In the pursuit of advancing sustainable practices in the building domain, this

study employs a semantically-enabled framework integrating LCA, dynamic data,

ML and optimisation techniques, and digital resources (e.g., BIM). This frame-

work is in direct alignment with the research questions and the central hypothesis

that posits “a semantic-based approach can facilitate the process of LCA and im-

prove the accuracy of the LCA results by leveraging the value of dynamic data,

learning systems, and digital built-environment resources”.

The incorporation of ML in the framework is substantiated by the growing ten-

dency to utilise ML for various LCA applications [196]. A recent review indicates
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the potential of ML as a valuable tool in optimising and streamlining the process

LCA scenarios [195]. Furthermore, the integration of ML with traditional opti-

misation methods presents a promising avenue for expediting the exploration and

evaluation of different scenarios [198]. By integrating both ML and Optimisation

techniques within the framework, this study leverages the strengths of each com-

ponent to address the complexities and challenges inherent in optimising building

energy and environmental performance during the operational phase.

The inclusion of dynamic data is imperative for achieving accurate and reliable

LCA results, particularly due to the inherently dynamic nature of buildings. Real-

time data, sourced from various sources such as smart utility meters, Internet of

Things (IoT), as well as sensors for monitoring indoor conditions, plays a pivotal

role in improving LCA accuracy [188–190].

The use of semantics in the framework is crucial due to the interdisciplinary na-

ture of LCA, which requires integration across diverse fields and data sources.

Semantics, facilitated through ontology and semantic modelling, addresses chal-

lenges in data interoperability, and information sharing [206]. While prior studies

demonstrate the potential of ontology-driven approaches to overcome limitations

in existing data format [221], LCI modelling [224], and address the impact of

spatiotemporal scopes on LCA results [223], further research is warranted, par-

ticularly in areas like the building domain, where ontology-based approaches have

yet to be extensively explored.

3.3.2 Identified use case

Use cases provide a context within which the theoretical framework is applied,

address specific challenges or problems, and serve as a practical demonstration of

how the framework is deployed in a real-world scenario. Insights gained from the

practical application of the use case serve to validate the theoretical underpinnings
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of the framework, ensuring its applicability in real-world scenarios. This can

potentially lead to an extension of the framework beyond the specifics of the use

case.

In this study, the identified use case seeks to reduce the environmental impacts

of a building’s energy consumption during the operation phase, with a focus on

the mechanical ventilation system. This is achieved by comparing two scenarios:

a baseline scenario that represents a schedule-based, static operation strategy for

the mechanical ventilation system; and an optimised scenario, which is developed

using ML and optimisation techniques that take the dynamic indoor conditions

captured by indoor sensors into account, such as CO2. This use case was selected

after thorough discussions with the project team in Stage 2. It emerged from

the application of the developed LCA use cases taxonomy (Appendix A). More-

over, this choice directly addresses a significant challenge in the building domain

highlighted in Chapter 2 — the energy performance gap [245, 248]. This gap

underscores the underestimation of a building’s environmental impacts during its

operational phase.

3.3.3 Research Case Study

The case study strategy evaluates a research problem or phenomenon under cer-

tain circumstances or real-life scenarios [285]. Myers and Avison [296] state that

in a case study, there is no experimental control of contextual variables, and the

examination of a phenomenon is carried out in a natural setting. Hence, this

would lead to a deep understanding of the research problem and may potentially

increase the validity of the results [285]. Furthermore, the insights derived from

observations and empirical findings in the case study play an important role in

refining the use case strategies, selection of parameters, and fine-tuning of ap-

plied models. This iterative process ensures the use case can effectively achieve

its objectives. Also, the feedback from the case study enables the extraction of



3.3 Overall Methodology 82

generalised conclusions that are instrumental in addressing scalability concerns,

particularly in the application of the framework across larger-scale environments

such as an entire building or multiple buildings.

The case study was based at the Queen’s Buildings, which is a complex of con-

nected buildings at Cardiff University (UK). Figure 3.5 shows a 3D model of the

buildings that was developed using Autodesk Revit. In general, the buildings

are naturally ventilated except for a few spaces where mechanical ventilation is

installed to supply fresh air (the buildings have no cooling functionally). The

current study is based on one of those spaces that has a mixed mode ventilation

(i.e., natural and mechanical ventilation), which is referred to as ‘The Forum’

and is located on the first floor of one of the buildings (the west building). The

Forum has a total area of 323 m
2 with a design capacity of 200 people. The

Forum is an informal meeting area, and is typically occupied by students and

staff of the School of Engineering. The mechanical ventilation system has several

supply diffusers and extraction grills distributed throughout the space. The nat-

ural ventilation has 13 east-facing windows and two south-facing windows. This

space was selected based on the following criteria:

• The Forum has mixed-mode ventilation, which allows for a comparison and

optimisation of multiple scenarios.

• Due to the functional characteristics of the space, it is anticipated that

considerable degrees of variability in indoor conditions and noticeable fluc-

tuations in the occupancy profile will be observed.

• The researchers have unrestricted access to the space to maintain the sensing

infrastructure or to carry out any necessary repairs.
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Figure 3.5: BIM model of the demonstration building and the floor plan of

studied area.

3.4 Environmental Monitoring System

This section describes the data collection infrastructure, which uses an IoT-based

indoor environment monitoring system and an on-site weather station to col-

lect outdoor environmental conditions. The indoor monitoring infrastructure is

a customised low-power IoT system that has three main hardware components,

namely an end device (i.e., remote unit), a gateway, and a server. Data are com-

municated between the network components via alow power wide area networking

(LoRaWAN) protocol (Figure 3.6). The remote unit have several integrated sen-

sors. Each sensor collects data for a certain indoor parameter. The sensed data

are transmitted to a gateway within the same vicinity. The gateway then for-

wards the data to a network server that processes and stores the data for later

analysis.

A description of each sensing device or equipment acquired in this research follows.

These sensors can be divided into three categories: indoor environment sensors,

window sensors, and weather variables sensors. Table 3.1 also provides a brief

summary of all of the sensors regarding their category, model, and the associated
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Figure 3.6: Schematic diagram of the indoor environment monitoring system

parameter.

Table 3.1: Summary of the technical specifications of the employed sensing

devices.

Variable(s) Sensor Measurement range Accuracy

CO2 Sensirion (SCD41) 400 to 5000 ppm ± 40 ppm

Temperature Bosch (BME680) � 40 to 85 �
C ± 0.5 �

C

Humidity Bosch (BME680) 0 to 100 %r.H ±3 %r.H

Pressure Bosch (BME680) 300 to 1100 hPa ± 0.6 hPa

Particulate matter Plantower (PMS5003) 0 500 µg/m3 ± 10 µg/m3

Window status Dragino (LSS02) 0/1 -

Weather data Davis (Vantage Pro2) Follow the link 1 -

Indoor environment sensor: The current research used a combination of dif-

ferent sensors to measure several indoor parameters, including temperature,

humidity, CO2 level, and particulate matter. These sensors were integrated
1https://www.davisinstruments.com/pages/vantage-pro2
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in a single box, which was referred to as the ‘end device’, as shown in

Figure 3.6.

In this study, a single remote unit was used and placed at a height of

2.5 meters above the floor in the centre of the Forum. This height was

selected to mitigate the risk of tampering, given that the space is used by

engineering staff and students. While the remote unit position deviates from

some established standards and guidelines, such as ASHRAE Standards

62.1 [297], which recommends placing CO2 sensors in the breathing zone

at a height of up to 1.8 meters above the floor, the decision regarding the

position was primarily made to prevent any damage to the remote unit.

• CO2 sensor (Sensirion SCD41): This sensor measures the CO2

concentration in the air using photoacoustic non-dispersive infra-red

technology. Essentially, CO2 molecules absorb the energy emitted by

the infrared, which causes the molecules to vibrate inside the mea-

surement chamber. This vibration creates acoustic waves, which are

captured by a microphone, by which the CO2 level can be calculated.

• Temperature sensor (Bosch BME680): The indoor temperature

is measured based on the voltage change of a silica diode-based tem-

perature measurement. The working principle of this type of sensing

device is that the voltage across a diode changes in response to the

increase or decrease in the temperature of the surrounding air.

• Humidity sensor (Bosch BME680): This sensor uses a capaci-

tive humidity sensor to measure the presence of water vapour in the

air. The humidity level is measured by the relative electrical capacity

changes of a polymer-based capacitor.

• Pressure sensor (Bosch BME680): The indoor pressure is mea-

sured based on the deformation of a highly sensitive thin membrane in

response to changes in atmospheric pressure.
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• Particulate matter sensor (Plantower PMS5003): This sensor

measures the level of two types of particulate matter in the air (i.e.,

pollutants), namely PM10 and PM2.5. The presence of a certain par-

ticle in the air is detected by injecting a light source, typically a laser

beam, through the air sample to measure the scattering of the light,

which can then be translated into a mass concentration of particulate

matter (µg/m3).

Window sensor (Dragino LSS02): This sensor detects window open/close sta-

tus using a magnet and a reed switch, whereby the electric current in the

sensor is disrupted when the magnet is far apart from the sensor, indicating

an open status, and vice versa. Data are transmitted to the gateway for

each open/close event. The duration of each status is calculated by taking

the difference between the timestamps of two distinct actions.

Weather data (Davis Vantage Pro2): An industrial-grade weather station

was installed on the roof of the west building. The weather station in-

tegrates a plethora of sensors to collect real-time data for more than 20

variables, including temperature, humidity, pressure, precipitation, wind

direction and speed, solar radiation, and so on.

3.5 Summary

This chapter has presented the research design and methodology of the current

study. This chapter began by describing the philosophical aspects of the research

paradigm adopted for this research, which was followed by a high-level descrip-

tion of a multi-stage research design. These stages include an exploratory stage

that was based on the literature review to identify gaps and limitations in the

existing body of knowledge; a participatory research stage, in which engagement
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and collaboration with other researchers and industry experts identified the short-

comings of current practices and provided feedback on a candidate framework;

and the final stage applied the learning outcomes from the previous stages. The

overall methodology was then discussed, including a description of the framework

components, identified use case, demonstration site, and data collection methods.

The third stage will be the subject of the remaining chapters of this thesis.
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Chapter 4

LCA-based Dynamic Environmental

Performance Framework for

Buildings

As described in the previous chapters, the present study aims to develop a

semantic-based framework that enables the delivery of near real-time environmen-

tal footprint assessments to support effective operation and management strate-

gies for the built environment. The proposed methodology incorporates dynamic

data, learning systems, and other digital resources to facilitate the application of

LCA. To validate this approach, a use case was derived with the aim of optimising

the environmental performance of buildings during the operation stage.

In this study, the notion of “dynamic” can be seen from three distinct perspectives.

First, the employment of dynamic data, particularly sensor-generated data and

energy consumption data, allows for a comprehensive understanding of a build-

ing’s operational needs and its inherent dynamics. The dynamic data will be con-

textualised and subsequently employed to dynamically enhance operation strate-

gies. Second, the proposed framework enables a dynamic and demand-controlled

operation strategy. This departure from conventional fixed-schedule strategies is

pivotal. The framework provides the capability to promptly respond and adapt to

changing environmental conditions. This not only enhances energy efficiency but

also contributes to a more sustainable and environmentally conscious operational
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model. Third, fundamentally, the distinctive feature of the proposed framework,

as compared to traditional LCA (i.e., static LCA), lies in its consideration of

dynamic variations. Unlike traditional LCA which relies on generic data derived

from typical building usage and operation, the proposed framework accounts for

these dynamic variations. This results in a more accurate and granular assessment

of a building’s environmental impact. The framework enables continuous calcula-

tion of environmental footprint using learning systems grounded in factual data.

These perspectives collectively push the proposed framework towards a more ad-

vanced and dynamic approach to optimising building energy and environmental

performance.

The findings are presented in three interlinked chapters, which provide a compre-

hensive overview of the methodology and its implementation. Chapter 4 outlines

the conceptual framework that was developed to deliver a near-real-time envi-

ronmental assessment. This includes the use of dynamic building data, such as

energy consumption and indoor conditions data, as well as a number of mod-

elling techniques, such as simulation, prediction, and optimisation. These topics

are discussed in detail in this chapter. Chapter 5 presents the output and results

of implementing the framework, which includes an LCA-based assessment of the

environmental impact of different operation scenarios. Finally, Chapter 6 will

discuss the semantic modelling that is used for the proposed framework. The de-

ferral of semantic modelling to Chapter 6 is grounded on the fact that a thorough

understanding of the framework is a prerequisite for informed semantic modelling.

Before embarking on the semantic modelling of the framework, a comprehensive

understating of the framework, its information exchange dynamics, and the in-

terplay of its components is essential.
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4.1 Framework Components

The proposed framework for delivering the use case has several interconnected

components, as presented in Figure 4.1. The main components of the framework

include data sources, building energy simulation, an ML-based prediction model,

an optimisation model, and an LCA model. The data sources include sensor

data, weather data from the on-site weather station, and the BIM model. The

building’s energy simulation will be used to generate data for the studied scenar-

ios. The simulation data, along with data from other sources, will feed into the

ML-based prediction model, which will have several outputs, including energy

consumption and CO2 concentrations. The outputs of the ML model will be used

as inputs to the optimisation model, which aims to minimise the energy consump-

tion of the building system. Finally, an LCA model will be used to compare the

environmental performance of the developed scenarios.

The following sections aim to provide a technical background for the employed

components of the framework, which are critical for the delivery of the use case.

First, a detailed description of the ML-based prediction model will be given, which

utilises the collected data to predict various outputs, such as energy consumption

and CO2 concentrations. Subsequently, the optimisation algorithm that is used

in the framework will be introduced, which aims to minimise energy consumption

while maintaining a satisfactory indoor environment. This will be followed by an

overview of the energy simulation, which generates data for the scenarios that

will be studied. Following this, the LCA method, which is used to evaluate the

environmental performance of the developed scenarios, will be discussed. Finally,

an explanation of the nature of the data collected for the study will be presented,

including the considered parameters, data preparation, and preprocessing. It is

worth noting that the exact configuration of each model to generate the required

outputs for the use case will be discussed in the subsequent chapter (Chapter 5).

These sections solely intend to provide a technical understanding of the utilised
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models.

Figure 4.1: Visual representation of the framework used to deliver the use case

showing key components and workflow.

4.2 Machine Learning

While the use of ML extends across a broad range of applications, it’s imperative

to note that in the context of this thesis, ML techniques are being employed for

a specific purpose. As mentioned in the previous chapter, the framework’s focus

lies in its application to a specific use case. Within this use case, the primary aim

is to predict two distinct parameters: the concentration of CO2 in indoor environ-

ments and the energy consumption of mechanical ventilation systems. Predicting

CO2 levels serves two purposes: first, to ensure that the space maintains recom-

mended CO2 levels, which is essential for providing a healthy indoor environment;

and second, it enables the determination of the ventilation requirements of the

indoor space, which facilitates proactive control of the air supply (either through

mechanical or natural ventilation) to increase energy efficiency and reduce the

environmental impact of building operations. In addition, the prediction of CO2
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and energy consumption will be used to develop the optimal operation strategy

for the ventilation system.

4.2.1 Feature Selection

The primary purpose of feature selection (i.e., variable selection) is to eliminate

redundant or ‘non-informative’ attributes from the model, especially in appli-

cations with large numbers of attributes because non-informative attributes can

decrease the model’s effectiveness and introduce uncertainty to the model [298].

Furthermore, the amount of data that are required to obtain reliable results is

exponentially proportional to the number of features, in what is as known as ‘the

curse of dimensionality ’ [299]. Generally, models are more easily interpreted

when any unnecessary variables are eliminated, particularly when the variables

are not associated with the target parameter [300]. Feature selection is also impor-

tant in situations where collinearity exists between predictors to avoid increasing

the complexity of the model [298]. Another reason to remove redundant vari-

ables is the cost of data collection, including the monetary cost, time required to

gather, preprocessing the data, and training the model, as well as the potential

environmental impacts of some of the data collection techniques.

Kuhn and Johnson [298] note that feature selection methods can be categorised

as either supervised or unsupervised. Supervised techniques consider the target

to evaluate the importance of the predictors, while unsupervised methods ignore

the target during the selection process of informative attributes. Moreover, there

are many subcategories under each method and choosing the suitable technique

is determined based on two factors: first, the variable data types (e.g., numer-

ical, and categorical) of both the targets and predictors; and second, the ML

algorithm used to make prediction using the proposed subset of features. In the

current study, the prediction problem is supervised learning based on numerical

inputs and outputs. In addition, different ML models will be employed, and their
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performance will be evaluated and compared. Hence, several supervised feature

selection methods will be utilised.

4.2.2 Selected Models

This section aims to describe the ML models that are used in forecasting CO2

concentration and energy consumption to establish a general understanding of

each model. The justification for selecting each model will also be discussed and

the underlying algorithm will be described. All of the models were implemented

using several Python libraries, mainly scikit-learn, keras, and NumPy. Further

details related to the configuration and selection of internal model parameters

will be provided in the next chapter.

4.2.2.1 Random Forest

RF is a type of ensemble learning, which was developed by L. Breiman in 2001 [301].

Biau and Scornet [302] state that RF has been tremendously successful as a

general-purpose algorithm. RF have been applied extensively for prediction pur-

poses in various fields, such solar power forecasting [303], wind power forecast-

ing [304], building energy optimisation [305], and particulate matter concentration

in the atmosphere [306]. Essentially, ensemble learners combine individual ML

models, which are denoted as weak learners, to form a model with higher pre-

dictive performance. These weak learners, mostly decision trees (DTs), can be

regression or classification models depending on the prediction task. DTs in gen-

eral have high variance, which means that they are highly sensitive to fluctuation

in the data set. Models with high variance tend to accommodate individual data

points rather than understanding the general trend of the entire data set, which

leads to the phenomenon of overfitting. In overfitting, high predictive perfor-

mance during model training drastically diminishes when the unseen data points
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are introduced to the model [307]. The randomness in RF originated from two

aspects: random splitting of features into smaller subsets of features, and then

developing individual models using different subsets. This process of allocating

different features to different DTs has the benefit of preventing certain features

from dominating the prediction process. The second source of randomness in-

troduced to RF is data sampling using, for instance, the bootstrap resampling

method.

RF comprises several prediction models, which are also known as base estimators.

DT was the base model that was used throughout this thesis. As shown in

Figure 4.2, the learning process starts by resampling the original data by randomly

selecting data points from the original data set with replacement using bootstrap

resampling method, such that each bootstrap sample has the same number of data

points as the original data set. This step is optional but highly recommended to

avoid over-fitting. Then, each DT will be assigned a data set comprised of a

subset of features. Recursively, each DT split the data at each node using the

attribute that decreases impurity the most at the child node. In DT for regression,

this condition is referred to as variance reduction, which is the criterion used to

measure the quality of the split. This process terminates when arriving at leave

nodes (i.e., nodes at the end of the tree structure containing the target values)

with certain degrees of impurity. Finally, the meta model, RF in this case, takes

the average of all of the predictions made by the individual trees. The predictive

performance of the meta model can be measured using mean absolute error, mean

squared error, R2, and many others.

4.2.2.2 Artificial Neural Networks

ANNs are computational intelligence models that are inspired by the mechanism

of the human brain. ANNs demonstrate the ability to model non-linear problems

and identify the complex relationship between the inputs of a model [308]. The
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Figure 4.2: Schematic diagram of a generic RF model

first ANN model was developed by Frank Rosenblatt based on his work on the

perceptron algorithm [309], which forms the basis of ANN models. The develop-

ment of ANNs has experienced cycles of failure and success, with several attempts

to the revive the field circa 1980s, such as the discovery of backpropagation algo-

rithm that ANNs use for error minimisation [310]. In general, the different ANN

models vary based on the connection patterns between the model components,

the error minimisation process, and the type of activation function used [310].

Based on the reviewed papers in chapter 2, the multilayer perceptron is the most

adopted model, a feed-forward backpropagation ANN-based architecture, hence,

this model has been used throughout this thesis.

Figure 4.3: Schematic diagram of a generic ANN model
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The basic structure of a generic feed-forward ANN model has three layers: an

input layer, hidden layers, and an output layer. The input layer consists of nodes,

each of which represents a variable to be used to train the model. The hidden lay-

ers can be a single layer or multiple layers, depending on the model architecture.

The nodes within this layer are known as neurons, which carry out the calculation

of a function relevant to the problem and then return some values. These values

present the prediction results, which are held in the output layer. The fundamen-

tals of ANN can be understood by looking at the perceptron algorithm, which is

the building block of ANN. As shown in Figure 4.3, a perceptron is a combination

of input nodes that are connected via edges to a central node (i.e., neuron), which

solves a mathematical function (e.g., a linear regression equation). Then, the per-

ceptron calls a special function, known as an activation function that returns the

result of the prediction.

An example of a numerical prediction problem using ANN will be discussed for

clarification purposes. The algorithm starts with initial weights, randomly gen-

erated weights, for each of the input attributes. At the neuron, a summation

function computes the sum of all inputs multiplied by their weights. Then, to

generate the prediction, the result is transferred through an activation function,

of which there are several types (e.g., sigmoid, ReLU, and Tanh). Finally, because

the initial weights are randomly generated, the prediction error is most likely to

be high; hence, the algorithm iteratively updates the weights to minimise the

different between the true and predicted values.

This study first developed and compared the performance of RF and ANN models

in predicting CO2 levels using various input parameters. Next, an ANN model

was created to simultaneously predict both energy consumption and indoor CO2

levels based on specific input variables. The decision to exclusively use ANN in

this second prediction task is based on two observations. Firstly, in the prediction

of CO2 levels in this study, ANN marginally outperformed RF. Secondly, previous
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studies have shown that ANN is more popular and slightly performed better than

RF in predicting energy consumption [251, 311]. Hence, it was reasonable to test

ANN for the second task. However, it’s important to note that future studies

should not rule out testing both ANN and RF in multi-output prediction tasks,

and further investigation into the capabilities of RF is warranted.

4.3 Genetic Algorithms-based Optimisation

Genetic Algorithms (GA) are a type of optimisation algorithm, and are based

on the principles of natural selection and genetics. They were first introduced

by John Holland as a computational model for simulating evolution [312]. GAs

are used to find the best solution from a large set of potential solutions to a

complex problem. This is achieved through a process of generating, evaluating,

and selecting candidate solutions, which are then recombined and mutated to

generate a new generation of solutions. This process continues until a satisfactory

solution is found or a termination criterion is met.

In the context of a building’s energy consumption, GA have been applied to

optimise various aspects of a building’s performance, including HVAC systems,

lighting systems, building envelope characteristics, and retrofitting strategies [313,

314]. GA have been chosen as the optimisation strategy in the current research

for several reasons. First, GA have proven to be effective in optimising build-

ing energy consumption by improving various building performance aspects, as

is evident from the literature review in Chapter 2. These methods have been

successfully applied in both commercial and residential buildings, resulting in

significant energy savings. Second, GA are well-suited for complex optimisation

problems, where the relationship between the inputs and outputs is not straight-

forward. The ventilation system, in general, has multiple design parameters that

interact in non-linear ways. This makes it difficult to find an optimal solution
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using traditional optimisation methods. Genetic algorithms can effectively han-

dle these types of problems by using a population-based approach that allows for

exploration of the design space.

GA are a robust optimisation method that can find a satisfactory solution even

when the problem is subject to uncertainty or when the solution space is large.

In the context of the ventilation system, there may be uncertainty in the inputs,

such as air temperature, occupancy level, humidity, and pressure, which can im-

pact the energy use of the system. By incorporating these uncertainties into the

genetic algorithm optimisation process, it is possible to obtain a solution that

is robust to variations in the inputs. Finally, GA are flexible and can easily be

adapted to different optimisation objectives. In the current case study, the objec-

tive is to minimise energy use. However, other objectives (e.g., minimising cost

and enhancing indoor comfort) could also be incorporated into the optimisation

process. This flexibility makes genetic algorithms a versatile optimisation method

that can be applied to a wide range of problems.

A flowchart illustration of the steps involved in the optimisation process is given in

Figure 4.4. The process of GA typically starts with a random initial population of

solutions. These solutions are then evaluated and assigned a fitness score, which

is a measure of how well the solution fits the problem requirements. If the current

generation is less than the total number of generations, then the selection process

begins. The purpose of the selection process is to identify the best solutions

in the population. This is usually done through the use of selection operators,

such as tournament selection, roulette wheel selection, or stochastic universal

sampling. After selection, the next step is variation, where new solutions are

generated (i.e. offspring) by combining the information of the best solutions.

This can be done through various methods, such as crossover and mutation. The

outcome of the variation process is then evaluated and assigned a fitness score.

A survivor step is then performed to determine which solutions will continue to
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the next generation, based on their fitness scores. This process is repeated until

the current generation is equal to the maximum number of generations. The final

result is the best solution that has been identified by the algorithm.

Figure 4.4: Flowchart of the GA process showing the steps involved in generating

and selecting optimal solutions.

Problem formulation is an important step in using GA to find the optimal solu-

tion. To formulate a problem for the GA process, the following steps are involved:

• Identify problem parameters: this step identifies the variables that define

the problem.

• Choose design parameters: from the identified problem parameters, select

the variables that will be optimised using GA.

• Identify constraints: determine any constraints on the design parameters,

such as physical or mathematical limitations.
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• formulate objective function(s): define one or more objective functions that

will be used to evaluate the fitness of the solutions.

• Choose GA parameters: set the parameters for the GA (e.g., population

size, mutation rate, and crossover rate).

• Obtain solution: run the GA and obtain the best solution.

• Reformulate and rerun: if necessary, reformulate the problem and rerun the

GA to obtain a better solution.

Overall, GA are a suitable optimisation method for minimising energy use of

ventilation systems thanks to their ability to handle complex problems, handle

uncertainty, and be adapted to different objectives. In this study, an optimisa-

tion strategy for mechanical ventilation systems using GA was developed. The

objective here was to minimise energy consumption while ensuring that indoor

CO2 levels remain within acceptable limits. This strategy employed a ML model

that was trained on energy simulations to predict energy consumption and CO2

levels, which was then used as the fitness evaluation function for the genetic al-

gorithm. It is important to carefully formulate the problem to ensure that the

GA can effectively find the optimal solution. Proper problem formulation re-

quires a clear understanding of the problem and its requirements. The parameter

settings of the GA—including important aspects such as design variables and

objective functions, population size, and mutation rate—will be presented in the

next chapter.

4.4 Energy Simulation Model

The integration of energy simulation in the framework is underpinned by several

considerations, particularly in the context of optimising the mechanical ventila-

tion system. Indeed, historical energy data sourced from utility meters are in-
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strumental in understanding the real energy consumption of the studied system.

However, the current study required a deeper understanding of the various control

strategies, which goes beyond simple energy consumption data. The optimisation

process involves testing and evaluating the impact on both energy consumption

and indoor conditions of an expansive design space (i.e., the set of all possible

configurations of variables and operating conditions). Therefore, collecting data

through practical experimentation covering all the possible configurations would

be infeasible. Moreover, energy simulation aligns closely with established indus-

try and research best practices [240, 250, 251], where simulation models serve as

an important tool for system optimisation in real-world engineering context.

A thorough understanding of the case study and a requirements elicitation pro-

cess are required prior to the development of a simulation model for the case

study. The elicitation process has several phases. First, interviews with the facil-

ity management team are used to explore and understand the building operation

strategies and the technical systems installed in the building. Then, a walk-

around audit was conducted to gather information about the existing equipment,

space occupancy, and to have a general understanding of the current energy con-

sumption requirements. The next step was to review the technical specification

documents and engineering drawings to develop a detailed building model. The

final step was to develop a simulation model based on the gathered information

using an energy simulation tool.

EnergyPlus is an open source, whole building energy simulation software that can

be used to simulate energy consumption, heating/cooling load, ventilation, plug-

in loads, and lighting1. The generated outputs are based on physics principles

and complex mathematical models that are handled by the simulation engine. In

its original form, EnergyPlus was programming-oriented software that received

inputs and generated results as text files. However, it can be integrated with
1https://energyplus.net/
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several user-friendly graphical interfaces, such as OpenStudio and DesignBuilder.

EnergyPlus is platform-agnostic and runs on many different operating systems.

It can also be integrated with other programming languages, such as Python,

through a readily available application programming interface (API). Further-

more, EnergyPlus has many other features and capabilities, including allowing

the users to set up simulation time steps, supporting interoperability with other

simulation engines, providing advanced thermal balance models, providing pre-

configured control strategies for HVAC and lighting systems, and allowing users

to customise output reports. Hence, EnergyPlus was utilised in this research be-

cause of its multi-functionality and cross-platform support. Figure 4.5 illustrates

a simplified workflow of EnergyPlus.

Figure 4.5: A simplified process workflow of EnergyPlus showing main inputs

and outputs.

Building Model Description This represents the main input data and con-

tains information about the buildings geometry, spaces and thermal zones,

construction schedule, occupancy data, and building systems.

Weather data Weather information is an essential input to the simulation en-

gine and has a specific file format, EnergyPlus Weather (EPW). The weather

file for the case study location was obtained from Cardiff Airport weather

station.

Once all of the relevant data are collected and the simulation parameters are set,
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the tool will carry out the simulation process and output the results with different

level of details based on the number of modules involved and user preferences.

4.5 LCA Methodology

LCA is a methodology that provides accounts of environmental impacts through-

out the whole life cycle of products, services, or built assets. ISO 14040 “Environ-

mental management — Life cycle assessment — Principles and framework” [315]

and ISO 14044 “Environmental management — Life cycle assessment — Require-

ments and guidelines” [316] have been established to standardise the processes and

requirements for conducting LCA. This method has four iterative steps: i) goal

and scope, ii) LCI, iii) LCIA, and iv) interpretation. In the European context,

a series of relevant standards have been developed for the construction indus-

try that are in conformity with the ISO standards for LCA, as follows: i) EN

15978 [317] for the assessment of environmental performance of buildings, and ii)

EN 15804 [318] for the environmental assessment of construction products.

This section describes the design of the LCA study following the guidelines and

requirements of these standards, which is broken down into four main phases,

as illustrated in Figure 4.6. These are often referred to as the study design

parameters, which provide quantitative and qualitative descriptions for the LCA

study. It starts by describing the goal and scope of the LCA study, including

the development of different scenarios and the the underlying assumptions that

are applied to the study. Following this is a process to establish the inventory

data and the main data sources. The impact assessment method that is adopted

to evaluate the inventory data is then specified and the process ends with the

interpretation phase.
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Figure 4.6: Life Cycle Assessment framework according to ISO 14040

4.5.1 Goal and Scope

ISO 14040 requires the goal of an LCA to clearly state the intended application,

the reason for conducting the study, the target audience, and whether the find-

ings will be made available to the public. In the context of building design and

construction, an LCA can pursue various goals; for example, one goal is to com-

pare different design alternatives to identify the one with the least environmental

footprint, which can involve quantifying and assessing the environmental impacts

of each alternative, including energy and resource use. Another goal is to elimi-

nate building materials with the highest environmental impacts by comparing and

analysing their upstream and downstream impacts (e.g., extraction, production,

transportation, use, and disposal). Additionally, comparing different construction

methods based on their environmental impacts is another goal of LCA studies.

The literature review in Chapter 2 has provided insight into relevant themes and

issues that can guide the selection of appropriate LCA goals; hence, these themes

serve as good examples of LCA goals.
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Following the LCA requirements and guidelines, the goal of this study is to com-

pare different building operation strategies—namely a baseline operation strategy

using static control and an optimised demand-controlled operation strategy—on

the basis of environmental impact. The decision to choose one strategy over an-

other is often difficult and complex, and several aspects should be considered.

Therefore, this study intends to improve the facility manager’s awareness of the

environmental footprint of the building’s operation strategies, and inform the

effective operation and management strategies of buildings.

Functional Unit

Another important aspect at this stage is to define the functional unit of the

product or system being investigated. This serves to define the function(s) of

the system, and allow other practitioners to make sound and fair comparisons.

However, this can only happen if everyone refers to the same function. An example

of a functional unit is a whole building, which is a typical functional unit in the

building domain. However, when assessing specific systems within a building,

functional units other than the whole building must be defined. For instance,

if the goal of the LCA study is to focus on a particular system, such as the

mechanical ventilation system, then a functional unit that corresponds to the

performance of that system must be used.

This study considers the mechanical ventilation system and its function, which is

to supply fresh air to the occupants and remove pollutants from the indoor spaces.

The performance characteristics of the identified function can be defined by the

functional unit, whereby all of the system’s inputs and outputs are related to a

reference flow, which is required to fulfil the intended function. The functional

unit that is employed in this study provides fresh air to an indoor space in an

educational building with an area of 323 m
2 and a design capacity of 200 people

at a recommended ventilation rate of 3 L.s
�1 per person.
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System Boundary

Defining the system boundary is a crucial step in conducting an LCA study be-

cause it establishes the scope and extent of the assessment. The system boundary

outlines the processes and activities that are included or excluded from the prod-

uct system being analysed at each stage of its life cycle. For example, in the

case of a whole building, the system boundary would encompass all of the life-

cycle stages of the building, from design, through construction, use phase, and

to decommissioning. Within each stage, the unit processes involved must also be

specified to ensure consistency and comparability. For instance, during the design

stage, the extraction of raw materials, manufacturing of construction products,

and transportation to the building site are included within the system boundary.

However, the inclusion or exclusion of these activities is subject to the goal and

scope of the study, and should be clearly defined to avoid any ambiguity.

The product system under investigation is a mechanical ventilation system, with

a focus on evaluating the energy consumption during the operation phase. The

scope of this study is limited to a one-month time frame, during which no antici-

pated maintenance or replacement of components is expected. The production of

raw materials, manufacturing the system’s components, and replacing individual

components over the lifetime of the building were not considered because this

study is centred on an existing system, without modification or addition to the

technical systems. The system boundary is thus defined to include the energy use

associated with the mechanical ventilation system during the use phase only.

Although sensors were employed in the second scenario to monitor indoor condi-

tions and optimise the operation of the mechanical ventilation system, they were

not included in the system boundary because of the unavailability of the LCI

data for the sensors. Moreover, the sensors were manufactured by different man-

ufacturers and the materials used in their production were not obtainable, which

made it impractical to establish the LCI of the sensors. However, the exclusion
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of the sensors from the system boundary may have implications for the accuracy

and completeness of the LCA results, and may overestimate the potential envi-

ronmental benefits of the optimised scenario. Additionally, the production and

disposal of the sensors may have environmental impacts that were not accounted

for in the study. Therefore, the results of the comparative assessment should be

interpreted with caution, and future studies should consider including the life-

cycle impacts of the sensors and other components that were excluded from the

present study to provide a more comprehensive assessment of the environmental

performance of the mechanical ventilation system.

Given that the energy consumption of the ventilation system is the primary focus

of the LCA study, it is crucial to understand the electricity mix of the region or

country in which the case study is located. Therefore, the electricity generation

mix in Wales was analysed to establish a data inventory for the LCA calculation.

This analysis is based on information presented in a report produced by Regen, a

not-for-profit centre of energy transformation2. The report provides key statistics

and analyses electricity generation from fossil fuels and renewables in Wales, as

presented in Table 4.1. The analysis reveals that fossil fuels generate approxi-

mately 67% of the total electricity generated in Wales. Gas is the main source

of electricity in Wales and contributes to a large portion of the total electricity

generated. Diesel and waste also contribute to the total electricity generation,

although their contribution is relatively small. Notably, all coal-fired plants have

been decommissioned since 2020. The analysis also highlights that renewables

contribute to approximately 33% of the total electricity generated in Wales. The

renewable sources include onshore wind, offshore wind, solar, hydropower, and

other renewables (e.g., anaerobic digestion, biomass, and landfill gas).
2https://www.regen.co.uk/publications/energy-generation-and-use-in-wales/
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Table 4.1: Key statistics of electricity generation in Wales
Technologies Estimated electricity generation (GWh) Electricity generation(%)

Total 23,102 100
Fossil fuels 15429 66.79

Gas 14,425 93.49
Diesel 868 5.63
From Waste 136 0.88
Coal 0 0

Renewables 7,673 33.21
Onshore wind 3,070 40.01
Offshore wind 2,226 29.01
Solar PV 962 12.54
Hydropower 365 4.76
Other renewables 1,050 13.68

Based on this analysis, the unit processes selected for the LCA study include

electricity production from gas-fired power plants, onshore wind, offshore wind,

solar, and hydropower. These sources were chosen because they contribute the

highest shares of electricity production in Wales, as reported in the Regen re-

port. For example, gas-fired power plants are the primary source of electricity

in Wales, generating approximately 63% of the total electricity in 2020. Onshore

wind is also a significant contributor, accounting for approximately 13.29% of

the total electricity generation in 2020. In contrast, sources such as diesel and

other renewables (e.g., anaerobic digestion, biomass, landfill gas) had relatively

small contributions to the total electricity generation in Wales. Therefore, these

sources were combined into a single unit process called the "production mix".

This decision was also made due to the lack of available environmental data for

each of these technologies. The resulting unit processes that were included in the

product system are depicted in Figure 4.7
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Figure 4.7: Flow-chart showing unit processes considered in the electricity mix.

4.5.2 Life Cycle Inventory

Upon defining the system boundary, the next stage is to establish the LCI of

all of the unit processes that have been identified within the system boundary.

The primary objective of this stage is to collect the inputs and outputs of the

unit processes involved in the studied system. The data collection process can

be accomplished via primary or secondary sources. The primary sources refer to

data that are generated directly by the LCA practitioners, whereas the secondary

sources include data from the literature, manufacturers, and LCA databases (e.g.,

the ecoinvent database). The output of this stage is a comprehensive data inven-

tory that includes all of the relevant data that have been obtained from the

identified unit processes. This inventory serves as the input to the subsequent

LCIA stage.

The LCI of the study was established using a combination of primary and sec-

ondary data. The primary data were obtained from energy simulations and opti-

misation conducted in the previous sections for both the baseline and optimised

scenarios. These data relate to the energy consumption of the ventilation system

in the building. Meanwhile, the secondary data were collected from the Ecoinvent

3.8 database for all of the unit processes involved in the electricity production.

The LCI that was employed to produce the functional unit is given in Table 4.2,

which presents a comprehensive list of all the unit processes considered. This

table further details the associated Ecoinvent process of each unit process and
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their respective units of measurement. The data that are presented in this table

form the basis for the impact assessment and the ultimate evaluation of the

environmental performance of the mechanical ventilation system under study.

Table 4.2: Data sets used for unit processes
Unit process Unit Ecoinvent process

Electricity production (natural gas) kWh electricity production, natural gas, con-

ventional power plant (GB)
Electricity production (onshore wind) kWh electricity production, wind, >3MW

turbine, onshore (GB)
Electricity production (offshore wind) kWh electricity production, wind, 1-3MW

turbine, offshore (RoW)
Electricity production (Hydropower) kWh electricity production, hydro, run-of-

river (GB)
Electricity production (Solar) kWh electricity production, photovoltaic,

570kWp open ground installation,

multi-Si (GB)
Electricity production (mix) kWh electricity, high voltage, production

mix (GB)

4.5.3 Life Cycle Impact Assessment

During this stage of the LCA, the focus shifts from the inventory results to the

assessment of the potential environmental impacts that are associated with the

product system under consideration. A variety of impact assessment methods

are available in the literature, which incorporate different impact categories (e.g.,

climate change, ecotoxicity, human toxicity, and ozone depletion, etc.). Well-

known impact assessment methods include TRACI, ReCiPe, IPCC, and IMPACT

2002+. Essentially, impact assessment methods consider each environmental

stressor (e.g., carbon emissions) and apply a series of steps (e.g., selection, classifi-

cation, and characterisation) to create various impact categories that are relevant
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to resources, human health, and other areas of concern. The outputs of this stage

are a list of impact categories, which can be analysed and prioritised based on

the intended goal of the study.

It is important to note that the selection of impact assessment method and the

impact categories depends on the goals and scope of the study, which may vary

depending on the specific product system being evaluated. In this study, the goal

is to compare the environmental performance of the baseline scenario and the

optimised scenario for the mechanical ventilation system. Note that the scope

is limited to the energy consumption during the operation phase of the system.

The impact categories that were considered include:

• Climate change: This impact category is relevant because the study is fo-

cused on energy consumption, which is directly related to GHGs, which

contribute to climate change.

• Human toxicity: The inclusion of the impact category in the impact assess-

ment phase is important because of the use of hazardous chemicals in the

production of certain components used in renewable technologies, including

PV panels. These chemicals have the potential to cause harm to human

health, which makes it necessary to consider this impact category in this

study.

• Fossil fuel depletion: This impact category was considered in this case be-

cause gas is the main source of electricity generation in Wales. This is an

indicator of the finite availability of natural resources.

• Metal depletion: This can be an important impact category to consider

in the environmental assessment of renewable energy technologies, such as

wind turbines, because they require a significant amount of metals for their

production and installation.
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The ReCiPe Midpoint method was chosen as the impact assessment method in

this study because it covers all of these impact categories.

4.5.4 Interpretation

The final stage of the LCA is interpretation, which analyses the results in the con-

text of the study’s objectives. During this stage, valuable insights can be drawn

to inform the decision-making process. In addition, recommendations can be pro-

vided to select the most suitable alternative or identify areas for improvement to

minimise environmental impacts.

4.5.5 LCA Modelling Tool

Numerous tools are available for modelling LCA studies, with both open source

and proprietary software options. In the present study, Brightway2, an open

source software written in Python, was employed to develop the LCA model.

Brightway2 can be utilised in two ways: through a Jupyter notebook or via the

Activity Browser (which is a graphical user interface that employs Brightway2

in the background). Brightway2 provides users with a range of features, such as

the capability to manage large-scale data, develop complex models, and interface

with various databases. Brightway2 can also be integrated with other tools via

an API.

4.6 Dynamic Data Collection and Preparation

To develop the prediction models, the data were collected over two months (i.e.,

August and October). The plan was to include September data, but technical

difficulties with the monitoring system caused most sensors to go offline due

to power supply issues with the gateway. This problem was not resolved until
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the end of the month, resulting in the unavailability of the data for September.

Nonetheless, as September falls within the university’s summer holiday period,

the August data can be deemed to be representative of the summer period and the

indoor space dynamics were still captured, albeit with some loss of training data.

The data collection and pre-processing process involved multiple stages. For the

sake of brevity, discussion and figures presented here only reflect the August data.

Nevertheless, a similar workflow was followed for the October data.

The data were collected from three sources, namely indoor remote units, on-site

weather stations, and window sensors. The sensed data were transmitted to the

database at varying sample rates. These differences in sampling intervals were

primarily caused by the pre-configured measurement frequency of each device

during the assembly and manufacturing process. Another contributing factor for

the variation in sampling intervals was related to the intended application of the

sensing device. For instance, window sensors reported data based on state changes

(i.e., the opening and closing of windows), which typically occurred at irregular

intervals. The inclusion of window sensors resulted in the data being reported

on an event-driven basis, with state changes occurring sporadically, while indoor

remote units and on-site weather stations captured data at a fixed frequency.

Therefore, the data that were collected from these sources presented varying

sampling rates, which necessitated some preprocessing (mainly resampling) to

synchronise and align the data for analysis and modelling purposes.

Resampling refers to the process of modifying the frequency of time series data,

and it involves two main methods: down-sampling and up-sampling. Down-

sampling reduces the granularity of data, such as converting hourly counts to

daily counts. This is done through statistical aggregation methods, such as mean

or median, which aggregate multiple observations into a single data point. Con-

versely, up-sampling increases the level of granularity by generating new data

points within the existing observation range using interpolation. Up-sampling is
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employed when a specific application requires higher-frequency data than what

is available in the database. In this study, both down-sampling and up-sampling

methods were utilised prior to the data consolidation step to address the varying

sampling intervals of the three data sources. These techniques allowed for the

synchronisation and alignment of data, and enabled the development of accurate

prediction models.

Figure 4.8-(a) illustrates the distributions of indoor parameters, including pres-

sure, CO2 level, humidity, temperature, PM10, and PM2.5. For pressure, CO2

level, humidity, and temperature, the average value was used for aggregation due

to the near balance of both sides of the distribution. However, for PM10 and

PM2.5, the median was employed instead of the mean because of the positive

skewness that was caused by extreme values that shifted the mean away from the

centre of the distribution.

Similar considerations were applied to the outdoor parameters, including pres-

sure, temperature, humidity, and wind speed (Figure 4.8-(b)). In this case, the

mean was used for pressure and temperature, while the median was employed for

humidity and wind speed due to the apparent left and right skewness, respectively.

Figure 4.8-(c) depicts the binary data from the window sensor, where a value of

zero represents a closed state, and a value of one denotes an open state. These

open/close events are stochastic and can occur at any time. Once a state is

triggered, it persists until the opposite state is activated. The time span between

two distinct states may vary from minutes to days. Therefore, these data cannot

be combined with other regularly sampled time-series data. To address this issue,

a preprocessing step and resampling were carried out on the window sensor data.

The raw data were transformed into a time series with a frequency of 1 minute,

as demonstrated in Figure 4.9, by means of resampling to eliminate irregularities

in the raw data.
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(a) Boxplots for sensor readings for several indoor environmental parameters

(b) Boxplots for outdoor environmental conditions from the

weather station

(c) Window sensors profile over the monitored period

Figure 4.8: Visualisation of the raw data prior to resampling
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Figure 4.9: Illustration of an example of the resampling process for the window

sensor data .

After resampling was conducted and all of the data sources had regular sampling

intervals, the next step was to consolidate the data into a single data frame. The

desired data interval was set to hourly frequency because the prediction models

were designed to predict outputs on an hourly basis.

4.7 Summary

The two research questions associated with this chapter were:

Can access to dynamic data provide more accurate accounts of the environmental

impacts during the operation stage?

How can machine learning and optimisation be leveraged to reduce the environ-

mental impact of buildings?

This chapter laid the foundation for answering these two research questions, al-

though it did not provide direct answers. Instead, it discussed the necessary steps
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that must be taken to leverage dynamic data for ML and optimisation models.

Additionally, the theoretical background for the modelling choices was discussed,

which provided insight into their underlying principles.

The chapter discussed two data-driven prediction models used in predicting CO2

concentration and energy consumption, namely RF and ANN. The choice of RF

and ANN models for CO2 concentration and energy consumption prediction was

justified by their success in various fields, and their ability to handle non-linear

relationships and high-dimensional data. Additionally the use of genetic algo-

rithms was reviewed and considered in this study due to its ability to optimise

complex problems. Furthermore, the LCA model, which is a core component of

the framework, was explored. This chapter also explained how the model should

be developed to provide a comprehensive understanding of the studied system.

This was followed by a discussion of the necessary steps for leveraging dynamic

data in the context of ML and optimisation for environmental impact assessment

during the operation stage. Specifically, a thorough preprocessing methodology

was implemented to transform the raw dynamic data from multiple sources into

a single, consolidated data frame with a regular hourly time series format. The

preprocessing steps included data resampling and aggregation, which were cus-

tomised to each parameter based on its specific frequency. The resulting data

frame will be used as input for various ML models and optimisation algorithms

in the next chapter to predict and optimise the environmental impacts during the

operation stage.

In conclusion, this chapter has highlighted the key aspects of developing a robust

LCA framework, including dynamic data, ML, optimisation, and the LCA model.

These aspects are essential to ensure that the LCA results are accurate, credible,

and useful for making an informed decision. The next chapter will present the

implementation of the framework that was developed in the current chapter and

its potential implications.
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Chapter 5

Outputs and Results

This chapter details the implementation of the proposed framework that was out-

lined in Chapter 4. The primary focus of this chapter is to address the following

research questions:

Can access to dynamic data provide more accurate accounts of the environmental

impacts during the operation stage?, and

How can machine learning and optimisation be leveraged to reduce the environ-

mental impact of buildings?.

The chapter begins by exploring and contextualising the dynamic data that are

incorporated into the framework. Next, a detailed discussion of the developed

ML-based prediction models is presented. The optimisation strategy and asso-

ciated algorithms are also described in depth. The implementation of the LCA

model is then presented, with a focus on how it is integrated into the overall

framework. Finally, this chapter concludes by revisiting the research questions

and providing answers based on the findings presented throughout this chapter.

5.1 CO2 Prediction Models

This section presents the results of the work that was conducted on the prediction

of CO2 levels in the Forum. Several ML models were developed to forecast CO2
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levels at two different time horizons: 1-step (1-hour ahead) and 24-step (24-hour

ahead) prediction. For the 1-step prediction, two approaches were employed: the

first approach utilised univariate models that solely relied on CO2 lags to predict

the CO2 level in the next hour, and the second approach utilised multivariate

prediction models that included not only CO2 lags but also other parameters

that were introduced in the previous chapter. The 24-step ahead prediction was

based on the best-performing model from the first approach, which was further

extended to forecast CO2 levels for the next 24 hours. The following subsections

will provide a detailed description of each approach and the results that were

obtained.

5.1.1 Description of the CO2 Observations

Figure 5.1 gives the average CO2 levels per hour for each day of the week over a

24-hour period in the Forum during August and October. It provides the average

CO2 levels starting from hour 0, which corresponds to the beginning of the day

(i.e., midnight), and ending with hour 23 (i.e., 11 p.m.). It is important to

note that there is a one-hour gap between data points for consecutive days. For

example, the last recorded CO2 level on Wednesday is at hour 23 (i.e., 23:00),

and the subsequent data point is at midnight on Thursday (i.e., hour 0 or 00:00).

Given this one-hour gap, it is improbable that the CO2 level remained constant

during this period.

In August, the CO2 levels fluctuate between 450 and 510 ppm. This can be at-

tributed to the lower occupancy levels in the space during the summer holiday,

with fewer students and individuals using the space to work or socialise. In addi-

tion, the relatively stable CO2 levels in August may suggest adequate ventilation

in the space. However, when taking a closer look at Figure 5.1-(a), an unexpected

trend becomes apparent. Specifically, throughout the month of August, the figure

shows a notable CO2 peak occurring consistently between 6 to 7 a.m. each day,
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surpassing levels observed during the same hours in October. This observation is

noteworthy, as it cannot be attributed to occupancy patterns. During the early

hours of each day in August, the space is mostly unoccupied. There are two

plausible explanations. First, there might be an issue with sensors giving incor-

rect readings (i.e., a sensor malfunction). However, this issue was only observed

in August, with CO2 levels appearing normal in October. Second, there is the

possibility of a timestamp discrepancy in the data fed into the server from the

sensors. Shifting the data by a few hours forward might yield a peak occurring

in the afternoon, which is in line with our expectations.

In contrast, the October chart shows that there is a clear trend in CO2 levels,

with levels increasing from their minimum at 8 am and peaking at around 2 pm

on weekdays. This trend is consistent across all weekdays, with a bell-shaped

profile that reaches a peak between 550 and 800 ppm, with Tuesday exhibiting

the highest levels. This trend can be attributed to the higher occupancy levels

in the space during the university’s autumn semester, when students and other

individuals use the space more frequently for group work and socialisation. The

Forum is busiest in the afternoon period, which also coincides with higher CO2

levels. This indicates that increased occupancy causes the CO2 levels to rise.

Saturdays exhibit a trend that is similar to weekdays, with higher CO2 levels

during the afternoon when the School of Engineering uses the Forum to hold

events. In contrast, Sundays have relatively stable CO2 levels throughout the

day, fluctuating between 460 and 510 ppm.

The data suggest that CO2 levels in indoor environments are highly dependent

on a number of factors, including occupancy, ventilation rates, and time of day.

As evidenced by the August and October charts, CO2 levels in the same indoor

space can vary significantly between months, and even within the same month,

while different days can have unique CO2 profiles.
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(a) August

(b) October

Figure 5.1: Average CO2 levels for each day of the week in the Forum during

August and October over a 24-hour time period.

This variability underscores the need for a dynamic and flexible ventilation strat-

egy that can be adjusted in response to the changing conditions. Furthermore,

a fixed schedule for ventilation may not be optimal from an energy use stand-
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point because it may result in over-ventilation during times of low occupancy or

under-ventilation during peak occupancy times.

Predicting CO2 levels can enable the building’s managers to anticipate when

ventilation rates need to be adjusted to maintain healthy indoor air quality while

minimising energy use. This type of approach is crucial for reducing the envi-

ronmental impact of buildings and promoting sustainable practices in the built

environment.

5.1.2 Univariate One-step Prediction Models

An autocorrelation plot for one month’s worth of hourly CO2 data can provide

useful information about the presence and strength of autocorrelation in the data

at different lags. The autocorrelation plot can also provide important insights

into the characteristics and patterns of time series data, and can be a useful tool

for selecting the number of lags in a ML-based prediction model. Lag variables

with correlation values close to either +1 or -1 indicate high correlation, whilst

values close to 0 indicate low correlation.

The autocorrelation plot for October in Figure 5.2 shows a pattern of autocorrela-

tion with positive correlation values for small lags, which correspond to adjacent

hourly CO2 measurements. The autocorrelation values decrease as the lags in-

crease, which indicate a declining influence of previous observations on the current

observations. There is also a repeating pattern in the autocorrelation plot at ap-

proximately 24-hour intervals, which is likely to be due to the diurnal variation

in CO2 levels in the indoor space. This suggests that the CO2 data may exhibit

daily seasonality, which could be useful for modelling and prediction.

The autocorrelation plot for August does not exhibit any clear trend or season-

ality and the autocorrelation values fluctuate around zero with no discernible

pattern (Figure 5.3). This suggests that the CO2 data in August may be more
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random or noisy when compared to October and that there may not be any strong

autocorrelation between adjacent hourly measurements.

Figure 5.2: Autocorrelation plots between hourly CO2 observations and different

lag variables in October.

Figure 5.3: Autocorrelation plots between hourly CO2 observations and different

lag variables in August.
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In terms of selecting the number of lags for a ML-based CO2 prediction model,

the autocorrelation plot for October may be more informative because it shows a

clear pattern of autocorrelation that can be exploited to model the relationship

between past and future CO2 levels. In contrast, the autocorrelation plot for

August does not provide any clear information about the relationship between

past and future CO2 levels. This may make it more challenging to develop an

accurate prediction model. Hence, univariate ML models will be developed to

predict future CO2 levels for the month of October only. The specific number of

lags to be included will be determined based on the performance the ML model.

Figure 5.4 shows a positive correlation for the first four lags, after which the

correlation approaches zero. Based on this observation, it has been decided to

consider only the first four lags for the ML models that were developed to predict

CO2 levels because the plot indicates that the first four lags are the most relevant

for capturing the relationship between past and future CO2 levels.

Figure 5.4: Autocorrelation plots between hourly CO2 observations and the first

10 lags in October.

To determine the optimal number of lags to include in the univariate ML model
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to predict CO2 levels in October, a range of lag values will be experimented with

and the model’s performance will be evaluated using appropriate metrics. The

number of lags will be selected based on the best-performing model, which will

provide the most accurate and reliable predictions of CO2 levels in the Forum.

Table 5.1 presents the results of the RF models that were developed to predict

CO2 levels using October data. The table includes an ID column to identify each

model configuration, a column specifying the number of estimators used in the RF

model, a column indicating the number of lags considered, and a column showing

the model’s performance based on the Root Mean Squared Error (RMSE) metric,

which measures the difference between predicted and actual CO2 levels.

Table 5.1: Performance of univariate RF models for CO2 prediction
Model # Estimators # Lags Error(RMSE)

RF-01 200 1 39.920
RF-02 200 2 30.195
RF-03 200 3 22.830
RF-04 200 4 21.317
RF-05 400 1 39.920
RF-06 400 2 30.195
RF-07 400 3 22.830
RF-08 400 4 22.475
RF-09 600 1 39.710
RF-010 600 2 30.371
RF-011 600 3 23.777
RF-012 600 4 21.235
RF-13 800 1 39.448
RF-14 800 2 29.505
RF-15 800 3 24.241
RF-16 800 4 21.738
RF-17 1000 1 39.737
RF-18 1000 2 29.336
RF-19 1000 3 23.679
RF-20 1000 4 21.609
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To determine the best-performing RF model, a number of configurations were

tested with different numbers of estimators and lags. The performance of each

individual model was evaluated using the RMSE metric. The results show that

the best-performing RF model was RF-012, which utilised 600 estimators and

considered four lags. This model achieved an RMSE of 21.235, which indicates

that there is a high level of accuracy and reliability in predicting CO2 levels in

the space.

Table 5.2 presents the performance of different configurations of ANN models

when used to predict the CO2 level based on the historical data of lag variables.

Each configuration is represented by a unique ID and the table includes infor-

mation on the optimiser used (Adam and SGD), the number of neurons in the

hidden layer, the number of lags used, and the performance of each individual

model based on the RMSE metric. The results of Table 5.2 suggest that the

choice of optimiser and the number of neurons in the hidden layer can have a

significant impact on the performance of the ANN models. The best-performing

model was ANN-05, which used the Adam optimiser, 10 neurons in the hidden

layer, and one lag, and achieved an RMSE of 18.340.

It is worth noting here that the performance of the ANN models in Table 5.2 is

generally better than that of the RF models in Table 5.1. The best ANN model

achieved an RMSE that is approximately 13% lower than that of the best RF

model. This suggests that, in this specific case, ANN models may be a more

effective choice for predicting CO2 levels based on the current data.
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Table 5.2: Performance of univariate ANN models for CO2 prediction
Model Optimiser # Neurons # Lags Error(RMSE)

ANN-01 Adam 5 1 168.514
ANN-02 Adam 5 2 155.611
ANN-03 Adam 5 3 145.42
ANN-04 Adam 5 4 148.936
ANN-05 Adam 10 1 18.340
ANN-06 Adam 10 2 20.507
ANN-07 Adam 10 3 19.869
ANN-08 Adam 10 4 21.653
ANN-09 Adam 15 1 18.401
ANN-10 Adam 15 2 18.434
ANN-11 Adam 15 3 19.395
ANN-12 Adam 15 4 20.976
ANN-13 Adam 20 1 18.611
ANN-14 Adam 20 2 19.096
ANN-15 Adam 20 3 18.759
ANN-16 Adam 20 4 20.343
ANN-17 SGD 5 1 35.376
ANN-18 SGD 5 2 34.589
ANN-19 SGD 5 3 34.073
ANN-20 SGD 5 4 34.536
ANN-21 SGD 10 1 31.320
ANN-22 SGD 10 2 31.827
ANN-23 SGD 10 3 30.193
ANN-24 SGD 10 4 30.356
ANN-25 SGD 15 1 30.125
ANN-26 SGD 15 2 29.434
ANN-27 SGD 15 3 30.925
ANN-28 SGD 15 4 30.279
ANN-29 SGD 20 1 31.073
ANN-30 SGD 20 2 31.459
ANN-31 SGD 20 3 30.543
ANN-32 SGD 20 4 31.259
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5.1.3 Multivariate One-step Prediction models

Univariate models use only historical CO2 levels as inputs to predict the future

CO2 level. In contrast, multivariate prediction models incorporate additional

variables (e.g., outdoor conditions, indoor conditions, and time of day) to make

more accurate predictions. These models take into account the complex interac-

tions between the factors that can influence CO2 levels, which can improve the

accuracy of the predictions. Therefore, a better understanding of the impact of

different variables on CO2 levels can be achieved by using multivariate models.

RF Models

This section will describe the multivariate models that were developed to predict

the CO2 levels in the next hour. Accounting for airflow dynamics is important

in understanding and predicting indoor air quality. However, integrating airflow

as a parameter in the ML model is challenging in terms of data acquisition and

modelling. Unlike measurable attributes, such as window status, outdoor tem-

perature and wind speed, airflow is a multidimensional phenomenon that involves

fluid dynamics, and can be influenced by several factors, including room layout,

window size and type, and building location and orientation. Hence, opting for

window status and measurable outdoor parameters rather than attempting to di-

rectly incorporate complex airflow dynamics is a practical decision. Furthermore,

these parameters serve as a proxy for assessing the impact of natural ventilation

on indoor conditions. Furthermore, it is imperative to acknowledge that the bi-

nary reading for window status, presents a limitation in capturing the extent of

window openness. The inability to differentiate between full and partial window

openings is a notable issue in this parameter.

For the month of August, the models include four CO2 lags and several pa-

rameters, such as outdoor conditions (temperature, wind speed, humidity, and

pressure), window status (open/closed), indoor conditions (temperature, humid-
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ity, pressure, PM-10, and PM-2.5), time of day (24 hours), and day of the week.

The inclusion of window status when predicting indoor CO2 concentrations is

of particular interest since it allows for an assessment of the usefulness of this

attribute in predicting CO2 levels in the Forum. In addition, the consideration

of outdoor parameters in the models is crucial because it can impact indoor con-

ditions, including CO2 concentrations. The inclusion of these parameters in the

models provides insights into the key factors affecting indoor CO2 levels, which

can inform the design and implementation of effective ventilation strategies.

Identifying the informative parameters is crucial because it directly affects the

accuracy of any prediction model. RF incorporates a built-in feature importance

tool, which can effectively identify the most influential parameters for a given

model. The feature importance analysis of the RF model indicated that the CO2

level at the previous hour and humidity in the Forum were the two most impor-

tant predictors, with importance values of 0.33 and 0.29, respectively (Figure 5.5).

In general, higher humidity levels tend to be correlated with higher CO2 levels

because both humidity and CO2 levels are affected by occupancy. In this par-

ticular context, it is worth highlighting that the average indoor humidity closely

mirrored the outdoor humidity levels, both averaging approximately 70%. Hence,

the high indoor humidity levels cannot be solely attributed to space occupancy.

Furthermore, in RF models, feature importance is a measure of how important

each feature is in predicting the target variable. It means that the variable is

very informative and can be used to build an accurate model. However, feature

importance does not explain why a feature is important or provide an explanation

of the underlying causal relationships.

The remaining predictors had negligible importance values of less than 0.09. In-

terestingly, while external wind speed and window status are recognised factors in

influencing indoor air conditions, their limited impact in this particular analysis

can be attributed to the specific conditions observed in August. First, the low
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CO2 levels recorded during that period, which aligned closely with outdoor lev-

els, suggest that it would be improbable for external factors to have a substantial

impact on indoor CO2 levels. Additionally, the average wind speed in August

remained consistently below 4 km/h. This relatively low wind speed may have

reduced airflow through open windows. Therefore, in this context, the interplay

between the observed CO2 levels and the low wind spend may have influenced the

informativeness of external wind speed and window status in predicting indoor

CO2 concentrations. These findings were used to refine the model and improve

its accuracy by focusing on the most important parameters and potentially elim-

inating the less important parameters.

Figure 5.5: Feature importance analysis for the RF model in August

In the multivariate RF model for October, the inclusion of parameters was limited

to four CO2 lags, indoor conditions (temperature, humidity, pressure, PM-10,

PM-2.5), time of day (24 hours), and day of the week. Notably, window status

was excluded from the model because it was found to be irrelevant due to a

lack of opening and closing events during this month. As a result, the indoor

air was mainly conditioned by mechanical ventilation and outside conditions had

little influence. The feature importance analysis shows that the most influential

parameters are the CO2 level of the previous hour and pressure, with importance
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values of 0.8 and 0.1, respectively (Figure 5.6). However, the other parameters

had negligible importance values (i.e., close to 0). Interestingly, the time of day

and day of the week were found to be uninformative, which is unexpected given

the CO2 peaks that were observed during the afternoon on weekdays. Further

investigation may be necessary to understand the discrepancy between the results

obtained in October and the findings from the August models. The limited data

set that was used for this study, which only includes data from October, might

have contributed to this discrepancy.

Figure 5.6: Feature importance analysis for the RF model in October

Figure 5.7 gives the actual and predicted CO2 levels for the month of August.

The x-axis of the graph represents the sample hours, while the y-axis represents

the CO2 values. The original dataset was partitioned into two distinct subsets:

a training set and a testing set. This division facilitated the evaluation of how

effectively the model generalises to unseen data. Initially, the model was trained

on the training set. After training, the model was used to make predictions on the

testing set to evaluate the performance of the model. Moreover, the sample hours

used for evaluation were taken directly from the testing set. They were chosen

to be consecutive hours rather than selected randomly. This sampling approach

was employed to align with the nature of time series data, sequence is important.

This graph indicates that the predicted CO2 levels generally follow the pattern of
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the actual CO2 levels, with some minor variations. The RMSE for this model is

18.341, which indicates that there is a relatively low prediction error. Similarly,

Figure 5.8 shows the actual and predicted CO2 levels for the month of October.

The graph indicates minor variations between the actual and predicted values.

The RMSE for this model is 19.523, which indicates that there is a slightly higher

prediction error when compared to the August model.

Figure 5.7: Sample hours prediction using the RF model during August

Figure 5.8: Sample hours prediction using the RF model during October
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The dissimilarities in the underlying patterns of the data for the two months

or the use of distinct sets of variables in the modelling process may explain the

discrepancy in the performance between these two models. However, despite the

slightly higher prediction error in October, both models show promising results

in predicting CO2 levels using multivariate RF models.

In general, ML models, particularly within this context, function by discerning

patterns from historical data. The historical data encompasses a series of in-

stances with different attributes, including hour of the day, day of the week, CO2

lags, among others. In this study, the approach began with a simplified model

that only relies on the previous hour’s (t-1) CO2 level to predict the CO2 in the

next hour (t). The main objective of this model is to learn from (t-1) CO2 levels

to make accurate predictions regarding CO2 levels at (t). Therefore, this process

should not be considered as a mere time shifted version of the actual data. Fur-

thermore, initiating the modelling process with a simple model and a minimal set

of attributes is a well-founded practice in ML. This is often followed by adding

complexity (i.e., considering more attributes) until a satisfactory level of per-

formance is achieved. Following the initial examination of CO2 lags (e.g., CO2

at t-1), additional parameters can be examined. For example, it is reasonable

to anticipate that the CO2 levels at specific times on specific days may exhibit

variation (e.g., hour of the day, and day of the week). However, it is important

to acknowledge that with a limited number of data points, particularly when

factoring in a considerable number of input attributes, data sparsity becomes a

critical issue. This phenomenon is often referred to as the “curse of dimension-

ality”, which was mentioned in the feature selection section in Chapter 4. For

example, in the dataset used, there were only 4 CO2 readings corresponding to

2 p.m. on Mondays for each month. While this data constraint is significant,

it should not discourage the exploration of these additional attributes. In the

end, it is worth noting that while these attributes may not have demonstrated

significant influence due to the limitations of the available data, their importance
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and potential relevance in other contexts should not be prematurely dismissed.

ANN Models

In the development of multivariate ANN models for predicting indoor CO2 levels

in August and October, a correlation-based approach was used to select the mod-

els’ parameters. In addition, a correlation matrix was used to identify parameters

that exhibit high correlation with the target variable, CO2. The August correla-

tion matrix showed that indoor humidity and temperature have strong positive

and negative correlations with CO2, with correlation coefficients of 0.77 and -0.65,

respectively (as shown in Figure 5.9). In addition, outdoor humidity and tem-

perature were found to have high positive and negative correlations with CO2,

with correlation coefficients of 0.797 and -0.725, respectively (see Figure 5.10).

Furthermore, the correlation coefficient between window status and CO2 levels

was found to be 0.184, indicating a relatively low correlation.

Figure 5.9: Correlation matrix of the indoor parameters in August

Figure 5.10: Correlation matrix of the outdoor parameters in August
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In October, indoor temperature was found to have the highest correlation coef-

ficient of 0.25. This correlation value is relatively lower compared to the value

observed in August (Figure 5.11). Only those parameters that exhibit significant

correlations were included in the development of the ANN models for each month.

While computationally inexpensive, the decision to include only parameters with

significant correlations was based on the idea that non-informative attributes, as

assessed through correlation, have the potential to decrease the model’s effec-

tiveness and introduce uncertainty. This is especially crucial to consider when

dealing with a limited number of data points, particularly when dealing with nu-

merous attributes. It is a factor that can significantly impact model performance.

Moreover, it is worth noting here that the correlation-based approach was used

for parameter selection in the ANN models because feature importance analysis

is only applicable to the RF models.

Figure 5.11: Correlation matrix of the indoor parameters in October

For the multivariate ANN models, two line graphs were generated to compare

the predicted CO2 levels against the actual CO2 levels for the months of August

and October. The x-axis of each graph represents the sample hours and the y-

axis represents the CO2 values. The RMSE for the August model was 16.574,

which indicates that there is a relatively good fit between the predicted and

actual values. Figure 5.12 shows a general trend where the predicted CO2 levels

followed the actual levels, with some fluctuations that could be attributed to

random variations in the data.
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Figure 5.12: Sample hour prediction using the ANN model during August

For the October model, the RMSE was 15.642, which indicates a better fit when

compared to the August model. The graph shows a clear trend where the pre-

dicted CO2 levels followed the actual levels closely (Figure 5.13). There were

some fluctuations, but they were less significant when compared to those in the

August model.

Figure 5.13: Sample hour prediction using the ANN model during October

The multivariate ANN models showed good performance in predicting the CO2
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levels, with the October model performing better than the August model. The

correlation analysis that was used to select the model parameters seemed to have

been effective in producing accurate predictions. However, it is important to note

that these models were trained and tested using a relatively limited data set, and

further testing and validation are necessary to assess their performance under

different conditions.

In summary, this study has developed one-step univariate and multivariate RF

and ANN models to predict indoor CO2 levels in the Forum. The models were

developed using data from two different months, August and October, and a

number of parameters were used to determine their impact on CO2 levels. The

results showed that the most influential parameter for the univariate RF mod-

els was the CO2 level from the previous hour, while the multivariate RF models

highlighted the importance of indoor conditions (e.g., temperature and humid-

ity). Meanwhile, the ANN models were based on highly correlated parameters:

the August model incorporated indoor and outdoor temperature and humidity,

while the October model used the CO2 level from the previous hour and indoor

temperature. The developed models serve as a baseline for the 24-hour ahead

prediction of CO2 levels, and can assist in identifying the parameters and sensing

devices needed to understand the dynamics of indoor environmental conditions.

By developing and comparing various models, this study provides insight into the

predictive capabilities of different ML techniques and highlights the importance

of selecting appropriate parameters for accurate predictions.

5.1.4 Multistep Prediction Models (24 Hour-ahead)

This section will describe the development of multi-step ML-based prediction

models for CO2 levels. There are two main approaches to developing a multi-

step time series prediction model: recursive and direct forecasting. Recursive

prediction uses a single model to predict one future value at a time. It then uses
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the predicted value to make the prediction for the subsequent time step. This

process is repeated for each future time step that needs to be predicted. Although

this approach is easy to implement and is capable of handling highly variable data,

it can accumulate errors over time. This leads to a less accurate model, especially

when the number of steps increases. Meanwhile, the direct approach, in which a

separate model is used to predict the value for every hour in the day (24 models in

total). However, this approach can be more complex to implement, and it limits

the amount of data that are available to train and validate each model. Generally,

the choice between recursive and direct prediction depends of the characteristics

of the data and the requirement of the problem being considered.

The analysis of hourly CO2 levels for the month of October is visualised through

two sets of figures. The first set consists of 24 figures, one for each hour of the

day, and displays the CO2 profile over the entire month (Figure 5.14). The x-axis

denotes calendar days starting from the 1 October and continuing to the end of

the month, while the y-axis represents the CO2 levels. Each figure allows for an

examination of CO2 levels in a specific hour of the day over the entire month.

Upon careful examination, no clear pattern or trend was observed in the data

for any hour of the day. This absence of a discernible pattern could potentially

pose a challenge when developing a multi-step time series prediction model. It

also underscores the need for techniques that can handle high variability and

changing patterns, such as recursive predictions. To gain further insights into the

distribution of the CO2 levels in each hour, the second set of figures consisted

of 24 histogram charts, one for each hour (Figure 5.15). Each figure shows the

distribution of CO2 levels in each hour over the month of October. Analysis of

these charts reveals that there was no clear distribution for CO2 levels in any

hour of the day. This observation underscores the need for an approach that

does not make a specific distribution assumption. Drawing on the findings of

the previous analysis, it is apparent that the recursive approach represents the

optimal strategy for predicting future CO2 levels.
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Figure 5.14: CO2 profile for each hour of the day during October
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Figure 5.15: Distribution of CO2 observations during October for each hour of

the day.
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Figure 5.16 displays the RMSE for the best performing recursive ML model (RF

model) used for 24-hour ahead prediction of CO2 levels. The x-axis represents the

hours of the day (24 hours), while the y-axis represents the corresponding RMSE

values. A clear pattern is evident in this figure. The RMSE values are generally

low for the early hours of the day (1 am to 9 am), with values well below 30. As

the day progresses, the RMSE values increase. The highest values are observed

in the afternoon hours, where values exceed 250. However, the model’s prediction

error sharply decreases by the end of the day, after 7 pm. The observed RMSE

pattern and the low RMSE values for the early and late hours of the day may be

attributed to a more stable and predictable CO2 pattern during these hours. In

contrast, the observed increase in RMSE values during the afternoon may be a

result of the higher variability and unpredictability of the CO2 levels during this

time, which lead to predictions that are less accurate. In addition, this pattern

suggests that the model’s performance may be influenced by the time of day and

the associated characteristics of the CO2 levels during that time.

Figure 5.16: 24 hour-ahead CO2 prediction performance of the RF model
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Furthermore, given that the model predicts the next 24 hours, and that only one

month of CO2 level data is available for training and validation, the amount of

data that is available for the model is relatively limited. This could potentially

impact the model’s accuracy, especially during hours of high variability.

5.1.5 Energy Model: Baseline

Energy modelling is an essential tool for designing and evaluating building perfor-

mance, and Autodesk Revit is one of the leading BIM software tools that is used

for this purpose. While Revit’s add-ins provide basic energy analysis capabilities,

third-party software tools such as EnergyPlus are often preferred for their com-

prehensive energy models, admissibility, and building code compliance checking.

A number of options are available to prepare a BIM model for EnergyPlus simu-

lation, including exporting Revit models as Industry Foundation Classes (IFC) or

Green Building Extensible Markup Language (gbXML) files through add-ins or

python conversion libraries. However, these options often suffer from compatibil-

ity issues, duplication of building elements and services, and missing information

during the exchange process. For this reason, the Forum building’s original model

was exported from Revit as a gbXML file with only basic geometry information

and was then further developed using the DesignBuilder tool. Additional in-

formation (e.g., construction material, occupancy schedule, HVAC system, and

operational schedules) was incorporated to create a reliable energy model. It is

important to note that for this study, only the Forum was considered, which was

modelled as a single uniform zone, based on several interviews with the facility

manager, a walk-around audit, and available mechanical system documentation.

The Forum uses a combination of a mechanical ventilation system consisting of an

air handling unit (AHU) without a cooling function and natural ventilation using

operable windows. It was assumed that the occupancy schedule during weekdays

remains constant and reaches maximum space capacity in the afternoon, without
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giving consideration to the changing occupancy patterns. The occupancy schedule

was assumed to be from 8 am to 5 pm on weekdays. Consequently, the mechanical

ventilation system was modelled to operate from 8 am to 5 pm, aligned with the

occupancy schedule. Moreover, the AHU contains a heater battery to regulate

the temperature of the outside air before it is mixed with the indoor air.

The resulting baseline energy model must be calibrated to meet ASHRAE’s re-

quirement for calibrated energy models. However, measured energy consumption

data were not available during this study. Therefore, the CO2 profile from the

simulation model was compared to the CO2 from sensors to validate the baseline

model. The simulated CO2 and measured CO2 profiles were compared using a

line graph (see Figure 5.17). The x-axis represents calendar days during October

and the y-axis denotes the CO2 levels. The two profiles exhibited similar patterns,

with both increasing, peaking, and decreasing at the same time.

Figure 5.17: CO2-based model calibration

Nonetheless, it was evident that the simulated CO2 profile deviated from the

measured CO2 during the first two weeks of October, while the measured CO2
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went higher than the simulated values in the second half of the month. The

observed discrepancies could be attributed to the modelling assumption that all

weekdays have the same occupancy level and the fact that the first two weeks

were at the start of the autumn semester, when the students had just returned

to the university.

5.2 Energy Optimisation

The mechanical ventilation systems that are used to maintain indoor air quality

consume significant amounts of energy, which has both environmental and eco-

nomic implications. Therefore, efficient operation of the mechanical ventilation

system can be an effective way to minimise energy use, while ensuring a healthy

indoor environment. Therefore, this study proposed an optimisation strategy for

the mechanical ventilation system, using GA, energy simulation, and ML tech-

niques.

5.2.1 Optimisation Strategy

The first step in developing the optimisation strategy was to identify the problem

parameters and formulate the objective functions. The ventilation system, which

has an AHU, was analysed to determine the design parameters and identify the

constraints. The AHU is formed of two axial fans with a single speed and a heater

battery to regulate the temperature of the outside air. The energy consumption is

mainly attributed to these two components. Although energy can be saved using

an on/off strategy, this was not considered to be a good option because it can

cause wear and tear, and reduce the lifespan of the fans. Additionally, frequent

on/off switching could result in an increased energy consumption due to the power

surge to start the system. Therefore, in the scenario presented in this study, once

the fans are turned on, they stay on until they are scheduled to be turned off.
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Controlling the supplied outside fresh air was considered to save energy, which can

be adjusted through the recirculation rate, because the returned air can be put

back into the system, thus reducing the required outside air volume and using less

heating energy. Therefore, the percentage of the outside air to the total supplied

air was considered as the design variable in the optimisation process. Therefore,

this study aimed to minimise energy consumption while ensuring that indoor CO2

levels remain within acceptable limits by adjusting the recirculation rate.

Two potential options were available to evaluate the objective functions. One was

to start the optimisation process and then run the fitness evaluation by running

EnergyPlus. However, this option was not practical considering the number of so-

lutions in each population of the GA and the number of iterations that EnergyPlus

would need to go through before generating results. In the second option, which

was employed in this study, multiple scenarios were generated within EnergyPlus,

each representing a different recirculation rate, with associated energy consump-

tion and CO2 concentration (Figure 5.18). A ML-based model was trained on the

data resulting from the simulation scenarios and was used to predict two outputs

(i.e., energy consumption and CO2 level). The resulting ML model was used by

the GA as a fitness evaluation to obtain the optimal solution. In this regard, the

GA generates a population of potential solutions, each represented by a set of

design variables. In this study, there is only one GA design variable, which is the

fresh air percentage. The ML model is used to evaluate the fitness of each solu-

tion. The outputs of the ML model are returned to the GA, where a sequence of

steps are carried out (e.g., selection, crossover, and mutation operators) to obtain

an optimal solution over many generations. Using an ML model as a fitness eval-

uation function provided a more efficient and practical approach to optimisation

when compared to directly using EnergyPlus for fitness evaluation. This happens

because once the ML model is trained and validated, it can be used to predict

the performance of the ventilation system accurately and in real-time without the

need for time-consuming EnergyPlus simulations.
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Figure 5.18: Workflow of the optimisation procedure integrating GA, Energy-

Plus, and ML model.

5.2.2 ML Model

This section aims to develop an ANN model to predict energy consumption and

indoor CO2 levels based on energy simulation outputs. ANN was chosen over RF

because of its ability to predict two different outputs with a single model, while

RF requires two separate models. Additionally, the ANN model that is used in

this section includes a different set of variables than the previous models because

the problem can be seen as an approximation problem rather than a forecasting

problem, which was the aim of the previous models. The input variables for

this step were the state of the mechanical system (a binary variable where 1

represents ON and 0 represents OFF), outdoor temperature, fresh air percentage,

and hour of the day. The reason for incorporating the ‘state’ variable is to allow

for adaptability to changes in the operational schedule. While it is true that ‘on’

corresponds to energy use and ‘off’ signifies no energy use, the introduction of the

‘state’ variable permits the optimisation model to account for potential variations

or shifts in the operational schedule.

In this study, the primary aim was to optimise the mechanical ventilation sys-

tem by controlling the recirculation rate. This variable influences the CO2 levels

within the indoor space. Unfortunately, implementing direct control over recir-
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culation rates was not feasible within the scope of the case study. Given this

limitation, simulation emerged as the most viable approach to capture the dy-

namic impact of recirculation rate adjustments on CO2 levels. By leveraging

simulation, it was possible to model the interplay between ventilation strategies

and CO2 levels. Furthermore, the actual sensor data were obtained under typical

operating conditions, which did not include the specific adjustments to recircula-

tion rates that were central to the current study. Hence, relying solely on actual

sensor data for model training would not have captured the full spectrum of

scenarios relevant to the objective of the optimisation model.

The best ANN architecture was obtained by controlling several model parameters,

such as the number of neurons, the optimiser selection, the transfer function, and

the number of hidden layers. The latter parameter was considered in this model

due to its complexity because it was configured to predict two target variables

simultaneously. The final ANN architecture had two hidden layers with nine and

two neurons for the first and second layer, respectively (Figure 5.19). All of the

input variables were included in the final model.

Figure 5.19: ANN model architecture for the prediction of energy consumption

and CO2.

The performance of the final ANN model was evaluated using the coefficient of
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determination (R2) for both energy consumption and CO2 levels. The R
2 for

energy consumption was 0.9894, while the R
2 for CO2 levels was 0.6509. Fig-

ure 5.20 shows that there is a very strong correlation between the predicted and

simulated values for energy consumption, while a weaker correlation was observed

for CO2 levels. The discrepancy between these two predictions can be attributed

to three key factors. First, the chosen input variables might have influenced the

model’s performance. This was evident when looking at the correlation coef-

ficients between inputs and outputs (Table 5.3). The state input variable had

the highest correlation value with energy consumption of 1, while the correlation

value was 0.565 with CO2 levels. The other input variables had roughly similar

low correlation values with both outputs.

Second, potential bias in the training data towards higher CO2 levels may lead

the model to predict higher values even in scenarios where simulated levels are

lower. In the provided goodness-of-fit chart (Figure 5.20-b), a comparison is made

between simulated CO2 levels and those predicted by the ANN, yielding an R
2

value of 0.6509. A notable phenomenon emerges at the initial segments of the

chart, where the ANN tends to overestimate the CO2 levels, especially at lower

values. Given that the ANN was trained on simulated data, it would be expected

that the predicted CO2 levels closely align with the simulated ones. In essence,

if the training data does not fully represent the variability in the simulated data,

particularly at the lower CO2 levels, the model might struggle to make accurate

prediction in those regions. Third, the complexity of the model introduces a

trade-off. The fact that the same model predicts both CO2 levels and energy

consumption might contribute to the observed discrepancy. There is a possibility

that the model prioritises predicting energy consumption over CO2 levels. This

hypothesis is supported by the notable high R
2 value of energy consumption pre-

diction, standing at 0.9894. Addressing this issue could involve re-evaluating the

model architecture, fine-tunning feature selection, and augmenting the training

data to include more examples of lower CO2 levels.
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Table 5.3: Energy consumption and CO2 correlations with input variables
Input Energy consumption CO2

State 1 0.565
Hour 0.101 0.308
Outdoor Temperature -0.0768 0.171
Fresh air % 0.239 -0.389

(a) Energy consumption

(b) CO2

Figure 5.20: Goodness-of-fit plot for the ANN model predictions of energy

consumption and CO2.



5.2 Energy Optimisation 150

To compensate for the weak performance of the current model in predicting CO2

levels, the limit of CO2 levels was set to a lower value than the allowable limits by

many standards, including ASHRAE and CIBSE. This will be further discussed

when discussing the GA implementation.

It should be noted that the predicted CO2 value in this model is different from

the prediction in the previous section. In this model, the goal is to obtain the

associated CO2 level when changing the recirculation rate. Given that both

energy and CO2 data are simulation-based, the only way to evaluate the impact

on CO2 is by predicting it in the same way that the energy was obtained (i.e.,

through a model that was developed using simulation data). Currently, based on

the proposed approach, the real impact of changing the operation settings cannot

be captured with real data. Further clarification on this point will be provided

when discussing the GA implementation.

5.2.3 GA Implementation

The GA was used to obtain the optimal operation strategy for the next 24 hours.

The GA parameters were optimised to obtain the best results, including popu-

lation size, selection, mutation, and crossover functions. These parameters are

shown in Table 5.4. The decision variable, which is the recirculation rate, is al-

lowed to vary from 0 to 100. The recirculation rate, denoting the proportion of

indoor air that is recirculated through the system, is allowed to vary between

the maximum value of 100, where no outdoor air is introduced into the system,

and the minimum value of 0, where the indoor return air is completely exhausted

from the system.
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Table 5.4: Genetic Algorithm settings
Parameter Value

Population size 100
Sampling method Integer random sampling
Selection method Tournament
Crossover method Simulated binary crossover
Mutation method Polynomial
Number of generation 1000

While the primary aim is to minimise energy consumption, the optimal approach

may lead to high CO2 levels, and therefore a constraint for CO2 levels was incor-

porated into the optimisation algorithm. Although there is no clear and definitive

limit for indoor CO2 concentrations in university spaces, there are guidelines from

organisations such as ASHRAE and CIBSE that can be used to determine the

CO2 limit. For example, ASHRAE Standards 62.1 assumes a maximum CO2

concentration of 700 ppm above outdoor levels [297], which translates to a total

concentration of 1100 ppm, assuming a typical outdoor CO2 concentration of 400

ppm. A concentration of 1200 ppm or lower is generally considered to indicate

acceptable indoor air quality according to CIBSE Guide A [319].

Considering the limitations of predicting indoor CO2 levels accurately, the con-

straint on the CO2 level was considered to ensure the optimisation strategy does

not result in excessively high indoor CO2 levels. Specifically, an upper bound of

900 ppm was set, which is below the acceptable limits. The decision to use such

a low threshold was twofold. First, the accuracy of the ANN model in predicting

CO2 levels was found to be limited. Thus, by setting an upper limit of 900 on

the indoor CO2 concentration, any solution that results in a CO2 level above this

threshold will be rejected by the algorithm. Second, the GA relies on the 24-hour

ahead CO2 predictions that were generated by the models in Section 5.1.4 to

determine the optimal operation strategy. However, the best-performing model
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resulted in significant prediction errors. In light of these considerations, a CO2

limit of 900 ppm was selected to ensure that indoor air quality is maintained

while minimising energy consumption.

Fitness Evaluation

The fitness evaluation process follows the workflow outlined in Figure 4.4. To

optimise the operation of the system for a 24-hour period, the GA algorithm gen-

erates an initial population with varying recirculation rates. The optimisation

loop is then initiated, with outdoor temperature, CO2 level (as predicted in sec-

tion 5.1.4), and state provided as inputs for each hour. This results in an input

matrix with 24 rows and 3 columns. The ANN model uses this input to predict

energy consumption and the associated CO2 level. Solutions that result in high

CO2 predictions are rejected, and the best solutions in the current generation

continue through the GA cycle. This process is iterated until the termination

criteria are met, which was set at 1000 generations, at which point the optimal

operation strategy is generated.

Results

The optimisation strategy that is implemented in this study resulted in a sig-

nificant energy saving of approximately 35% compared to the baseline scenario

generated by EnergyPlus. A set of three subfigures was created to present the en-

ergy consumption, outdoor temperature, and optimal recirculation rate over the

course of the month of October (Figure 5.21). The x-axis of all of the subfigures

represents the 24-hour interval.

The first subfigure gives the energy consumption profiles for both the optimised

and baseline scenarios. The baseline scenario implements a typical ventilation

strategy, which is maintaining a ventilation rate of 3 L.s
�1 per person during the

occupied period (8 a.m. to 5 p.m.).
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Figure 5.21: Optimisation strategy results showing energy consumption, out-

door temperature, and optimal recirculation rate.

It can be seen that there is a spike in the baseline energy consumption demon-

strates the early hours of each day, which can be attributed to the low outdoor

temperature during the morning hours. Without the ability to control the per-

centage of fresh air supplied to the space, additional heating energy is required.

In contrast, the optimised scenario shows a slight increase in energy consumption

during the early hours, which is significantly lower than the baseline scenario.

This happens because the optimised scenario controls the supply air based on the

indoor CO2 concentration during the early hours. As Section 5.1.1 has shown, the

indoor CO2 concentration is low during this time and is near the outdoor CO2

levels, and hence no additional heating energy is consumed. This is the reason

why the optimised scenario outperforms the baseline scenario during this period.

However, both scenarios demonstrate similar energy consumption as the outdoor

temperature increases throughout the rest of the day. The second subfigure shows

that the outdoor temperature is consistent with the energy consumption profiles,

with the temperature being lower during the early hours of the day and increasing

as the day progresses. Finally, the third subfigure shows the optimal recirculation

rate throughout the month of October. The fresh air supplied to the indoor space

demonstrates a similar pattern to the indoor CO2 levels (i.e., increasing through-
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out the day as the CO2 concentration levels increase due to space occupancy).

The resulting optimal recirculation rate validates the optimisation results and

shows that the optimised scenario is valid.

5.3 LCA Results

This section discusses the LCA results of the two scenarios (a baseline scenario

and an optimised scenario) based on four impact categories: climate change,

human toxicity, fossil fuel depletion, and metal depletion. The LCA results are

presented in Figure 5.22, which illustrates the contribution of the unit processes

to each impact category for each scenario.

This figure shows that the baseline scenario has a higher impact than the opti-

mised scenario across all of the impact categories. In particular, for the climate

change impact category, the baseline scenario has a significantly higher impact

than the optimised scenario. The primary contributor to this impact category is

electricity production from natural gas, which is the primary source of electricity

in Wales and accounted for approximately 63% of the total. However, the impact

of climate change from other unit processes is relatively small, due to their smaller

share of overall electricity production.

These findings highlight the importance of optimising energy performance in

buildings in the short term because it can significantly reduce the impact of

climate change. For the fossil fuel depletion impact category, the results also

show that the optimised scenario outperforms the baseline scenario. However,

when considering the metal depletion impact category, the unit process that con-

tributes the most is onshore electricity production, mainly due to the large amount

of raw materials that are required to build wind turbines. For the human toxicity

impact category, the highest contributors are electricity production from onshore

wind and solar. Optimising energy consumption directly reduces the demand for
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(a) Climate change

(b) Human toxicity

Figure 5.22: Comparison of baseline and optimised scenarios under sample

impact categories (climate change, human toxicity, fossil fuel depletion, and metal

depletion.
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(c) Fossil fuel depletion

(d) Metal depletion

Figure 5.22: Comparison of baseline and optimised scenarios under sample

impact categories (climate change, human toxicity, fossil fuel depletion, and metal

depletion.
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energy from the grid. This, in turns, lowers overall resource extraction, including

metals used in energy production, and reduces the production of hazardous and

toxic materials associated with some energy technologies, such as PV panels.

These results highlight the importance of enhancing the energy performance of

buildings. Even when the transition towards cleaner and renewable energy tech-

nologies is made, their environmental impacts will remain a challenge. Therefore,

reducing the energy consumption of buildings should be considered as a viable

strategy to mitigate their environmental impact.

5.4 Discussion

This section delves into further environmental considerations regarding the pro-

posed framework. While the framework exhibits considerable potential in enhanc-

ing energy efficiency and minimising the environmental impact of buildings, it is

essential to recognise the environmental footprint associated with its resources.

This discussion encompasses the concept of GREEN IT/S, the computational

costs of ML training, and the environmental implications linked to connected

objects. Additionally, the discussion extends to address the vital aspects of scal-

ing up the framework, outlining the steps necessary for its adaptation across a

broader context. Furthermore, the discussion includes the integration of natural

ventilation as a sustainable design option.

5.4.1 Further Environmental Considerations for the Pro-

posed Framework

The developed framework represents an important step towards promoting sus-

tainability within the built environment. By leveraging the progress in com-

putation and data-capturing technologies (e.g., sensors), the framework has the
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potential to enhance energy efficiency, thereby reducing the environmental im-

pact of buildings during the operational phase. However, it is crucial to recognise

that these resources bear their own environmental footprint, stemming from en-

ergy consumption for operation and maintenance, utilisation of natural resources

for electronic hardware manufacturing, and the eventual disposal of electronic

waste at the end of their useful life. Therefore, the fundamental concern lies in

optimising these advancements in a sustainable and responsible manner.

Various sectors of society, ranging from government bodies and corporations to

individuals and scientific community, have become increasingly conscious of the

environmental dimensions of information technologies and systems [320], encap-

sulated by the term GREEN IT/S. GREEN IT predominantly pertains to the

environmentally conscious design and management of hardware and IT infras-

tructure, while GREEN S embodies the enhancement of information flow and

management [321]. Numerous initiatives have been established to advance the

practice of GREEN IT/S, with a primary focus on enhancing the energy effi-

ciency of IT infrastructure, reducing electronic waste, and advocating for equip-

ment recycling and reuse. One noteworthy example is The European Green Dig-

ital Coalition (EGDC)1, which stands as a consortium of companies dedicated to

advancing both the green and digital transformation of the EU. The mission of

the ECDG is to maximise the sustainability benefits derived from digitalisation,

thereby supporting the EU in achieving its climate and digital objectives. The

coalition places emphasis on investing in green digital solutions that conserve

energy and materials, collaborating with non-governmental organizations and ex-

perts to develop metrics for assessing the environmental and climate impact of

green digital technologies, and working across sectors to formulate recommenda-

tions and guidelines for achieving green digital transformation, hence, benefiting

the environment, society, and the economy. Another prominent initiative is the

Climate Savers Computing Initiative, which champions practices that minimise
1https://digital-strategy.ec.europa.eu/en/policies/european-green-digital-coalition
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the environmental footprint of computers and electronic devices2. This includes

efforts to reduce energy consumption, promote the use of recycled materials, and

advocate for responsible disposal of electronics. These initiatives foster a collec-

tive commitment towards integrating sustainable practices into IT operations.

Topics within GREEN IT/S domain include energy efficiency in cloud comput-

ing [322]. The adoption of cloud computing holds the potential to significantly re-

duce global data centre energy consumption, enhance power usage efficiency, pro-

mote recycling efforts, and minimise water consumption for cooling purposes [323].

Sustainable procurement is another critical aspect, emphasising the acquisition

of IT products and services that align with environmental and social responsi-

bility [324]. This entails a holistic evaluation of the environmental impact of a

product or service throughout its entire life cycle. Additionally, electronic waste

reduction is of paramount importance, entailing strategies such as prolonging the

lifespan of IT equipment and implementing recycling and refurbishing protocols

when equipment reaches the end of its operational utility [325]. In light of the

proposed framework and the scope of this study, the discussion will now focus

on two crucial aspects that are integral to the implementation of the framework:

the computational cost associated with ML training, primarily in terms of energy

consumption, and the environmental considerations regarding connected objects

(i.e., sensors).

Computational Cost

The computational cost associated with generating real-time strategies is an im-

portant aspect, which has not been factored into the current study. In particular,

the retraining frequency of ML models and the associated energy consumption.

The frequency of retraining hinges mainly on two factors. First, the availability

and characteristics of new data and whether the inclusion of new data can im-

prove the model performance. Specifically, in the context of this study, retraining
2https://www.climatesaverscomputing.org/
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is needed when new data is believed to have seasonal variations that were not

adequately captured by the previous dataset. This phenomenon is commonly

referred to as data drift [326]. In essence, it means that new data have charac-

teristics that deviate from established patterns. Second, an important factor for

determining when retraining is needed is if there is a noticeable drop in the model

performance [327]. It is considered a good practice to monitor the performance

of ML models and carry out retraining when deemed necessary, which can be

achieved by tracking the performance over time. However, it must be noted that

retraining can be both time-consuming and computationally expensive, hence,

careful evaluation of the benefits against the associated costs is required before

conducting model retraining.

ML researchers are increasingly considering energy consumption in ML compu-

tations, but most research still prioritises the performance of ML models without

regard to computational cost [328]. The energy usage of ML models is influenced

by several factors, including the choice of hardware used for ML training [329]. A

study demonstrated that specialised processing units, such as GPUs require less

energy compared to more general-purpose CPUs [330]. Furthermore, the selec-

tion of algorithms for training the model influences the energy requirements for

ML computations [328]. A third factor pertains to the size of the dataset and

the complexity of the model deployed [331]. A further consideration is needed

with regard to data acquisition, specifically when determining whether to store

data in centralised data centres or on local servers. This strategic decision has

significant implications for the energy demand associated with maintaining IT

infrastructure.

Environmental aspects of monitoring systems

While the environmental monitoring system integrated into the framework holds

the potential to reduce the environmental impact of buildings, it is imperative to

broaden the scope of consideration beyond the direct impact encompassing the
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hardware’s life cycle (i.e., extraction of raw materials to end-of-life treatment).

This expansion should not only consider the energy consumption of the sensors

but also the energy demand of other essential components in the network, such

as gateways and servers [332]. This holistic perspective ensures a thorough un-

derstanding of the environmental footprint associated with employed monitoring

systems, ultimately providing a foundation for devising strategies to further mit-

igate the overall environmental impact of the IT infrastructure.

5.4.2 Scaling Up the Proposed Framework

This section delves into the critical considerations for expanding the scope of the

proposed framework. Scaling up encompasses various dimensions, each playing

an important role in ensuring the seamless application of the framework across

a broader context. From data collection to optimisiation and ML models, and

addressing building infrastructure, the key steps required to adapt the framework

for a larger scale and longer time frame are explored. These considerations are

imperative for maximising the applicability of the proposed framework in diverse

building environments. The focus here is on navigating through the essential

aspects of scaling up the framework to enhance its real-world effectiveness.

Data collection: Consideration of data collection and integration is impera-

tive to effectively scale up the implementation of the proposed framework. In

extending the scope, it is crucial to identify additional parameters that may not

have been included in the current study. In this regard, two aspects must be

considered. First, a thorough understating of the specific application or use case

is paramount. For instance, parameters vital for optimising thermal comfort and

HVAC systems may differ substantially from those pertinent to optimising light-

ing systems. To illustrate, temperature differentials, humidity levels, and airflow

rates become critical for HVAC optimisation, whereas lux levels, and daylight

levels are important parameters to consider for lighting optimisation. Second,
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consideration must be given to parameters that exhibit variability across differ-

ent spaces and zones within the building such as room size, height, function, and

layout. These considerations ensure that the solution can be applied seamlessly

across diverse spaces to accommodate the unique requirements of each space.

Additionally, it’s essential to carefully evaluate the granularity and frequency of

data collection. The determination of the appropriate granularity hinges on the

specific requirements of the use case. This entails thinking about questions of

whether data should be gathered at minute intervals, 15-minute intervals, on an

hourly basis, or at a different regular interval. This choice is contingent on the

frequency at which building systems need to be actuated and the speed at which

responses to changing conditions must be executed. Striking a balance between

data granularity and how fast the system needs to respond ensures an optimal

and resource-efficient approach to data collection and integration on a large scale.

Sensor placement and numbers: It is important to first identify the mini-

mum number of sensors at the building level. This consideration is contingent

on a comprehensive understanding of the operational context of the building and

the specific parameters that must be captured. Moreover, the strategic place-

ment and positioning of these sensors merit careful consideration. A thorough

evaluation of the building’s layout, and potential sources of variability is essen-

tial in order to position sensors in locations that provide the most representative

data. Also, it is imperative to factor in the financial aspects associated with sen-

sor acquisition and maintenance (i.e., the cost of acquiring sensors, along with

the expenses linked to their maintenance). Furthermore, the energy consumption

of the sensors must be weighed against the desired frequency of data collection.

Striking a balance between the desired data collection frequency and the associ-

ated energy consumption is vital in order to maintain an efficient and sustainable

smart infrastructure.

Scalability of ML models: Scaling ML models to the building level involves a
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careful examination of their adaptability and performance when faced with a more

extensive dataset encompassing the entire building and a year’s worth of data. In

the context of the current study, this process entails assessing how well the models,

which were initially designed for a single space and focused on two months, can

be extended to cover a broader spatial and temporal scope. To achieve this,

several key considerations come into play. First, the ML models developed in

this study need to demonstrate a capacity for generalisation. They should be

able to learn patterns and relationships from the localised data in a way that

allows them to make accurate predictions when applied to a larger dataset across

the entire building. Second, re-evaluating the features used in the models. It is

crucial to verify that the selected features remain relevant and informative when

applied to the broader context of the entire building. This involves considering

whether additional features or parameters need to be incorporated to account

for the diverse conditions and usage patterns across different spaces. Third, it

is important to consider the computational resources required to train and re-

train the models at a larger scale. This entails ensuring that the hardware and

IT infrastructure can handle the increased data volume and the computational

requirements of the ML models.

Optimisation algorithms: Utilising optimisation algorithms for a broader con-

text involves assessing their effectiveness when applied to a larger-scale dataset

and operational framework. In the context of the proposed framework, there

are some key considerations for extending the scope of the optimisation model.

First, it is important to evaluate whether the optimisation used in the localised

implementation can be effectively extended to handle the entire building. This

involves ensuring that the optimisation model is not overly specialised to the

conditions of the Forum or the limited time frame. Additionally, it is crucial

to revisit the parameters and settings used in the GA model to ensure that the

chosen configurations can be applied to a broader spatial and temporal scope. In-

deed, adjustments and fine-tuning of constraints may be necessary to adapt to the
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varying conditions throughout the building. Finally, similar to the scalability of

ML models, considerations regarding computational efficiency and computational

resources are warranted.

Building infrastructure: In the context of the proposed framework, it is cru-

cial to address the building infrastructure to enable an effective implementation

of the decision support system. For instance, actuators play a pivotal role in

the physical implementation of optimisation strategies, converting control signals

into physical actions. In this regard, upgrading the building’s control system

with actuators allows for a responsive adjustment to building systems such as

HVAC components, and controlling window operations. Moreover, integrating

the proposed framework with the existing Building Management System (BMS)

is imperative to seamlessly implement the recommendations generated by the ML

and optimisation models. Additionally, a robust communication network is es-

sential for efficient information exchange and control signal transmission between

various components of the building, including sensors, actuators, controllers, and

the BMS.

5.4.3 Natural Ventilation

Although natural ventilation was not considered in the proposed framework, it

is indeed an effective and sustainable building design option that has the envi-

ronmental benefit of reducing energy consumption for indoor ventilation. The

following considerations outline how natural ventilation could be integrated into

the system and the potential challenges it may pose:

Climatic considerations: It is important to assess the prevailing climatic con-

ditions. Natural ventilation is particularly advantageous in regions with moderate

to warm climates, where the demand for space heating and cooling is limited. A

thorough evaluation of the trade-offs between energy savings from natural venti-
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lation and the energy demand for space conditioning is essential.

Building type and characteristics: The type and design of the building ex-

ert a substantial influence on the viability of natural ventilation. For instance,

residential and office buildings, characterised by limited occupancy and access to

windows, are prime candidates for natural ventilation strategy. Conversely, build-

ings with large open spaces, and diverse occupants, such as schools or facilities

with strict indoor air quality requirements, such as hospitals, present challenges

for effective implementation of natural ventilation. Additionally, unique building

features, such as shape, orientation, opening configuration, and internal layout

significantly affect natural ventilation effectiveness.

Control and operation of natural ventilation systems: The way in which

natural ventilation systems are controlled and operated is a crucial factor to con-

sider. While manually operated systems may present challenges for optimisation

due to occupant behaviours and preferences, automated systems offer significant

potential for maximising the benefits of natural ventilation.

In light of the above considerations, it is evident that a thorough evaluation is

warranted before integrating natural ventilation into the proposed framework.

Once these fundamental aspects are addressed, the framework can be extended

to incorporate natural ventilation. To accurately simulate the impact of natural

ventilation on indoor conditions, Computational Fluid Dynamics (CFD) simula-

tion can be leveraged to model air change rates resulting from natural ventilation.

This requires detailed information on space layout, occupancy profile, and win-

dow design features, including the size, type, and orientation. Multiple scenarios

of window control can be simulated to identify influential factors that can be

optimised, such as window state. Simulation for mixed mode ventilation is also

required. Subsequently, the optimisation model utilised in this study can incorpo-

rate the outcomes from the CFD simulation to optimise the energy consumption

of the mechanical ventilation system. It is imperative that the decision variables



5.5 Summary 166

within the optimisation model include controllable parameters from both venti-

lation strategies (i.e., natural and mechanical) to ensure an effective and optimal

strategy.

5.5 Summary

The primary focus of this chapter was to address the second and third research

questions, which state:

Can access to dynamic data provide more accurate accounts of the environmental

impacts during the operation stage?

How can machine learning and optimisation be leveraged to reduce the environ-

mental impact of buildings?

To address the second research question, this chapter explored the potential of

using dynamic data, namely sensor data, to enhance the understanding of a build-

ing’s operation, and improve its energy and environmental performance. The

main idea behind leveraging dynamic data was to contextualise it and then use

it to improve the building’s operation. This chapter has shown that leveraging

sensor data enables the capture of the dynamic nature of buildings, leading to

a more comprehensive understanding of their operational requirements, which in

turn improves the accuracy of the LCA results.

The results show that CO2 levels in indoor environments are highly dependent

on factors such as occupancy, ventilation rates, and time of day. The data also

highlight the need for a dynamic and flexible ventilation strategy that can be

adjusted in response to changing conditions, rather than a fixed schedule that

may result in over-ventilation or under-ventilation. By leveraging dynamic data,

the building’s managers can make informed decisions to adjust ventilation rates
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in response to changing conditions, which will lead to improved energy and envi-

ronmental performance.

Several models were developed to predict the observed CO2 levels in the case

study site. Univariate models using only historical CO2 levels and multivariate

models incorporating additional variables (e.g., outdoor and indoor conditions,

time of day, and day of the week) were developed using RF and ANN techniques.

Feature importance and correlation analysis were used to identify the most in-

fluential parameters for each model. Furthermore, this study also explored the

development of multi-step ML-based prediction models for CO2 levels. The re-

sults of these models were discussed in detail throughout this chapter. Finally, the

outputs of these models were incorporated in the subsequent step, which focused

on the optimisation of the mechanical ventilation system.

To address the third research question, an optimisation strategy for a mechanical

ventilation system was developed to reduce energy consumption, while ensuring

healthy indoor air quality. This approach utilised a combination of GA, energy

simulation, and ML techniques. Therefore, this study identified the design pa-

rameters and constraints of the ventilation system, with a focus on the AHU

and heating system. The optimisation process aimed to adjust the percentage

of outside air supplied to the system, which is a design variable that affects the

recirculation rate, thereby reducing the required outside air volume and heating

energy.

The optimisation process uses an ML model, namely ANN, which leveraged the

energy simulation results to predict energy consumption and indoor CO2 levels.

The ANN model was trained on the simulation data and was then used by the

GA as a fitness evaluation function to obtain the optimal solution. This approach

provides a more efficient and practical method when compared to directly using

energy simulation for fitness evaluation. The optimisation strategy resulted in a

significant energy saving of about 35%, when compared to the baseline scenario.
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The output of these models was used to inform the LCA model to evaluate the

environmental impact of a building’s energy consumption. By using accurate and

reliable models, the LCA model can more effectively evaluate the environmental

impacts of buildings, using factual data instead of relying on generic data that are

based on typical building usage and operation. This contributes to the accuracy

of the LCA model and provides valuable insights for decision-makers who wish to

create more environmentally-friendly practices. This study also highlighted the

potential of ML and optimisation techniques to reduce the environmental impacts

of buildings by improving their energy efficiency.
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Chapter 6

Semantically-enabled Life Cycle

Assessment

This chapter aims to answer the research question "Can a semantic web approach

provide a sound basis to facilitate and streamline the applications of LCA in build-

ings?" by showcasing how semantic modelling and interoperability can be utilised

to automate and streamline the process of LCA in the building domain. The role

of semantics in enabling data exchange between different components (e.g., BIM,

sensors and LCA databases) will be explored to highlight its potential to over-

come the challenges of conducting LCA studies in a complex and heterogeneous

environment. It is pertinent to note that the semantic modelling presented here

will be confined to the context of the proposed framework described in Chapter

4. This chapter is not intended to develop a semantic model for the entirety of

LCA.

6.1 Background

LCA of the built environment is a complex and multifaceted task that requires

the integration of multiple components and data sources. As demonstrated in

the framework introduced in Chapter 4, LCA studies require the integration of

various data models and entities (e.g., BIM, sensors and LCA databases), as



6.1 Background 170

well as modelling techniques such as simulation, prediction, and optimisation.

The work conducted to gather relevant inventory data was manually carried out,

which required a deep understanding of the activities involved in the LCA study.

Furthermore, mapping the unit processes to the corresponding activities in the

Ecoinvent database was a labour-intensive and time-consuming process. This

challenge is further exacerbated by the fact that the resources that are used in

LCA studies are structured in a certain way, with their own data structure. More-

over, the links and relationships between data points across different data sources

are missing, and the relationships are implicit rather than explicit, which requires

some level of expertise to make the connections. These issues were explored in-

depth in the literature review, especially when the integration between building

BIM, and LCA tools and databases was investigated. Moreover, LCA handles

vast amounts of data, with multiple data providers and software vendors offering

data in various formats; while some databases may be compatible with multiple

LCA tools, others are designed for use with specific tools only.

To address these challenges, this chapter will showcase the importance of semantic

modelling and interoperability in LCA, as well as their potential to streamline the

application of building LCA. It will be argued that adapting LCA for a sustainable

built environment will be limited and challenging without a semantically-enabled

system. The use of semantics to orchestrate the interaction between different

components of the LCA model can facilitate the exchange of information, re-

duce human intervention, and streamline the LCA process. Therefore, this study

adopted an ontological approach to overcome the challenges of conducting LCA

in the building domain by creating a shared conceptualisation and understanding

of the involved fields, thereby enabling semantic modelling and interoperability.

The ontology community makes a clear distinction between two types of on-

tologies. One category primarily functions as taxonomies, while the other delves

deeper into domain modelling, and imposes restrictions on domain semantics [333,
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334]. These are referred to as lightweight and heavyweight ontologies, respectively.

Lightweight ontologies include fundamental elements such as concepts, concept

hierarchies, inter-concept relationships, and descriptive properties. Conversely,

heavyweight ontologies extend lightweight ones by introducing formal axioms and

constraints. In this study, the ontology developed for the framework pertains di-

rectly to its components and scope, with limited concepts and relationships, which

aligns with the characteristics of a lightweight ontology. Furthermore, developing

an ontology with complex axioms and constraints (i.e., heavyweight ontology)

might be over-engineering for the purpose of the current study. Therefore, this

study adopts a lightweight ontology to ensure that the ontology remains manage-

able, easier to understand, and adequate for depicting the essential concepts and

relationships.

6.2 Ontology Development Methodologies

Developing an ontology for LCA-based building environmental performance re-

quires a methodical approach that considers the unique requirements of the do-

main. A successful ontology must capture the diverse range of requirements that

are involved in the LCA of an asset, such as enabling technologies, modelling

tools, and LCA concepts. Uschold reported the most important design criteria

for ontology development that were originally proposed by Gruber [283, 335], in-

cluding clarity, extensibility, and reusability. The defined concepts must be clear

and objective, and the definitions can be expressed informally using natural lan-

guage or by means of formalism (i.e., logical axioms). In addition, to maximise

subsequent reuse and extensibility, ontologies should be designed to strike a bal-

ance between specificity and generality. This requires the creation of an ontology

that is specific enough to perform the intended task, while avoiding excessive

specificity that would limit its usefulness to others.
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Several methodologies have been proposed in the literature to aid ontology devel-

opment, such as Grüninger and Fox’s methodology [336], who were the pioneers

of using questions as a means of evaluating ontologies, as proposed in their sem-

inal work on the Ontological Framework for Enterprise Modelling in the TOVE

project. Ontology-Driven Knowledge Management (ODKM) is another approach

for developing and implementing ontologies for enterprises [337]. The purpose of

ODKM is to aid organisations in creating knowledge-based management systems.

This methodology distinguishes between knowledge meta-processes and knowl-

edge processes, where the former facilitate ontology development and the latter

facilitates ontology usage. Another approach is the UPON methodology, which

applies software engineering principles to ontology development by incorporating

widely-used standards, such as the Unified Modelling Language (UML) and the

Unified Software Development Process (UP) [338]. This methodology is itera-

tive and incremental, involving knowledge engineers and domain experts at each

stage to achieve scalability and flexibility in the ontology’s design. METHOD-

OLOGY [219] has been recognised for some time in the realm of ontology devel-

opment [339], and takes into account the entire ontology life cycle, from planning

and conceptualisation to implementation and maintenance. METHODOLOGY

emphasises that activities such as knowledge acquisition, documentation, and

evaluation must be carried out in parallel throughout the entire ontology devel-

opment process. Finally, the NeON methodology [220] is an extended version

of METHODOLOGY that offers several advantages over its predecessor, which

include simplicity, the provision of comprehensive documentation, and the use

of a scenario-based approach to guide ontology development. Consequently, the

ontology in this research has been developed using the NeOn methodology due

to these advantages.
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6.3 LCA-based Building Environmental Performance

Ontology

This section presents a comprehensive account of the developed ontology, starting

from its intended application to its final schema as per the NeON methodology.

Therefore, the section provides a brief overview of the NeON methodology before

delving into the ontology’s requirements, specifications, and proposed competency

questions. Furthermore, this section highlights the resources that are used in the

development process. Finally, the overall ontology schema will be presented in

detail.

6.3.1 The NeON Methodology: An Overview

In the first stage of the NeOn methodology, the Ontology Requirement Specifi-

cation (ORS) must be established [220]. This involves the formulation of compe-

tency questions that help to determine the scope of the ontology, as highlighted

by Grüninger and Fox in their early work on ontology design and evaluation [336].

ORS uses competency questions to identify several aspects of the ontology, includ-

ing the purpose of the ontology, its intended users and uses, and the requirements

that the ontology should meet [340].

After defining the competency questions and the ORS, the ontology expert can

then proceed to explore the relevant knowledge resources that are available to

develop the ontology. These resources can be categorised into two types: non-

ontological (including glossaries, taxonomies, thesauri, and dictionaries) and on-

tological resources. The incorporation of ontological resources will lead to a more

efficient and cost-effective development process, as well as the creation of a more

generalisable semantic framework. Therefore, it is advisable to utilise existing

ontologies to represent certain concepts to minimise development time and ex-
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penses.

Finally, the chosen resources may require modification to suit the intended use of

the new ontology. This involves aligning terminologies and concepts, which may

necessitate removing or adding axioms and restructuring the architecture. How-

ever, it is essential to ensure overall consistency, which may require an iterative

process of revising the model until satisfactory performance has been achieved.

6.3.2 LCA-based Dynamic Environmental Performance of

the Building Framework

The intended use of the ontology for an LCA-based dynamic environmental per-

formance assessment is to contextualise and streamline its application in the

building domain by incorporating various data sources and modelling techniques

to make it more responsive to changing operating conditions, and meet the need

to reduce energy consumption and carbon emissions. This ontology aims to give

meaning to the different artefacts (e.g., sensory) and processes that are involved

in the environmental assessment of buildings, and also describe their possible

connections and relationships. In addition, the ontology facilitates the handling

of data heterogeneity by introducing a central model to ensure a seamless flow

of information. Therefore, based on the intended use of the ontology, there are

several requirements that must be considered. First, the ontology should have

the ability to describe various concepts, including data types (e.g., sensory data)

and different modelling techniques. Second, it must establish links between the

LCA domain and related concepts with building objects.

6.3.3 Ontology Requirements Specification

As per the the NeOn methodology, the process of specifying the ontology require-

ments is an iterative and incremental workflow that begins by identifying the
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ontology’s goals and scope, and concludes by identifying its terminology. This

process leads to the creation of an Ontology Requirements Specification Docu-

ment (ORSD), as shown in Table 6.1.

Table 6.1: Ontology requirements specification document

Purpose of the ontology The ontology serves as a tool to aid non-LCA experts in

implementing control strategies and corrective actions

aimed at reducing the environmental impact of build-

ings. This involves integrating semantic models, dy-

namic data, ML, and optimisation algorithms to facili-

tate the decision-making process.

Domain and scope Environmental assessment, built environment, LCA,

building energy management.

Intended users Facility managers, LCA practitioners

Intended uses
• Exploring options and scenarios with their associ-

ated impacts

• Monitoring temporal changes

• Run energy simulation

Knowledge resources Existing domain models and methodologies, scientific

literature, and domain experts.

Requirements and ter-

minology

See competency questions tables
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6.3.4 Competency Questions

Competency questions are of significant importance in the process of developing

an ontology because they assist in the identification of key concepts and their

interrelationships. Therefore, it is essential for the ontology to provide satisfac-

tory answers to the competency questions. According to [210, 217], competency

questions provide an objective measure to evaluate the appropriateness of an on-

tology’s basic structure and the adequacy of its level of detail. In this context,

it is important to ensure that an ontology only includes the necessary level of

detail to meet the specified requirements, which also highlights the significance

of effective requirements elicitation in the ontology’s development.

To develop competency questions that accurately reflect the domain of interest, a

thorough understanding of the studied domain is essential. This was achieved by

identifying the key concepts that constitute the use cases of LCA in the building

domain and using UML sequence diagrams to establish the relationship between

the identified concepts. It is important to note here that this step serves as a

guide to formulate the competency questions and it does not attempt to capture

the entirety of the domain knowledge or its complexity.

Figure 6.1 is a crucial tool to identify the key concepts that are required to

implement the use case that is investigated throughout this thesis. This figure

provides a comprehensive view of the requirements that are necessary to conduct

LCA in the built environment domain in general. The development of this figure

was informed by the semantisation of use cases technique, which was developed

during Stage 2 of the research project and is detailed in Appendix B.

The main concepts include spatial scope, domain, life-cycle stage, scope of the

LCA, intended use, enablers, actors, and LCA dynamic elements. Each concept

represents a set of entities that can be considered to define and deliver LCA use

cases. This figure encompasses numerous entities that are pertinent to the studied
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domain. However, for the purpose of developing and specifying the scope of the

current ontology, entities that are irrelevant or out of scope have been greyed out

and are excluded. These entities are recommended for future ontologies that may

require a broader scope.

Figure 6.1: Main concepts in the developed ontology

The spatial scope concept specifies the physical boundaries of the asset, while the

life-cycle stage identifies the relevant stage in the life cycle of the building. In
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the current research, a building was identified in the spatial scope and domain

because the focus of the use case was a space within one building, and the life-

cycle stage was the use phase because the use case focused on energy consumption

during this phase. Similarly, the enablers specify the digital resources that are

required for the implementation of the use case, such as data collection sources,

digital models, and modelling techniques. Entities in the remaining concepts were

determined following the same principle.

This step provides a clear picture of the relevant concepts and entities for the

current use case. It also highlights the use of several models from different do-

mains, which necessitate the use of semantics to streamline and automate the

LCA. However, it is crucial to note that the actors who are involved in the use

case do not necessarily have expertise in all of these domains and tools. Hence,

there is a need for a system that is capable of integrating these heterogeneous

resources and tools. Furthermore, by identifying the relevant concepts and enti-

ties that are involved in the use case, this figure serves as a basis for developing a

formal representation of the use case using ontology. Finally, Tables 6.2 and 6.3

present two sets of competency questions that were identified as a result of the

process.

Table 6.2: Generic competency questions

Number Question

QC1A What sensors are observing a specific location?
QC2A What observable properties are being observed by a specific sensor?
QC3A What controllable parameters are associated with a specific scenario?
QC4A What power consuming equipment and devices are present in a given

space?
QC5A What simulations are associated with a specific energy profile?
QC6A Which energy profile is associated with a specific HVAC element?
QC7A Is there a deviation from the baseline values of energy consumption?
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Table 6.3: Competency questions for LCA modelling and scenario description

Number Question

QC1B What is the goal/intention/application of the LCA study?
QC2B What is the functional unit(FU) for a given LCA assessment?
QC3B What activities are associated with a specific LCI?
QC4B What is the impact assessment for a specific optimization scenario?
QC5B Which Life Cycle Impact Assessment (LCIA) method was used?
QC6B Which impact categories are considered in the LCA model?

6.3.5 Resource Reuse: Ontological Resources

The proposed framework for conducting LCA in the building domain is a multi-

disciplinary effort that involves a number of fields of study. In these fields, sig-

nificant efforts have been made to establish well-defined ontologies that formalise

the concepts used within them. Incorporating relevant ontological resources from

these fields can be critical to ensuring that the developed ontology is grounded on

authoritative sources and is compliant with existing domain-specific knowledge.

The NeON methodology advocates the approach of leveraging the rich semantics

of established ontologies for efficient ontology development.

6.3.5.1 Sensor Ontology

The LCA-based framework is dependent on gathering data from a number of dif-

ferent sources, including the use of sensor devices. To properly represent the data

collection process in the proposed framework, it is essential for the ontology to

include an accurate representation of sensors and their readings. In this regard,

many efforts have been made in the past decade to design ontologies that capture

the abstract concepts of sensors and observations. One noteworthy framework in

the literature is the Semantic Sensor Network (SSN) ontology. The SSN-XG, a

group within World Wide Web Consortium (W3C), has defined an ontology that
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specifies the capabilities and properties of sensors, the sensing process, and the

resulting observations [341]. The SSN ontology has been selected for this study

because it extends the Observation and Measurement framework [342]—which is

another ontology that lacks the ability to represent sensor devices and sensing

processes—by covering the sensors and their relationships. This is demonstrated

in the entity-relationship diagram that is shown in Figure 6.2. The SSN ontology

represents sensors as devices that perform a sensing process via an observation

capability. The sensing process receives inputs for a stimulus and then produces

outputs describing a certain property of a phenomenon (i.e., a feature of interest).

Furthermore, to represent the measurements made by sensors in a standardised

way, it is essential to use units of measurement that are semantically modelled.

This is achieved through the use of the Ontology for Quantities, Units, Dimen-

sions, and Data Types (QUDT), which was developed by NASA [343]. QUDT

provides a comprehensive vocabulary of quantities, units, dimensions, and data

types that can be used to semantically model the units used in sensor observa-

tions.

Figure 6.2: Key concepts and relations in the SSN ontology; adapted from [341].
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6.3.5.2 Building Ontology

To effectively apply the developed ontology in the building domain, it is crucial

for the ontology to capture the relevant semantics of buildings. This requires a

comprehensive knowledge domain model that can effectively represent the phys-

ical objects within a building that are observed and analysed. Examples of such

objects include indoor spaces and technical systems. An ontology for buildings

has previously been developed in the form of ifcOWL [344], which provides a

semantic model for buildings and their components. Furthermore, ifcOWL is an

RDF-based representation of the IFC standard, which serves as a data schema

and a file format for exchanging BIM data. In addition, ifcOWL is an extensive

ontology that comprises 1,294 classes, 1,573 object properties, and five data prop-

erties. An example of the classes that are included in the ifcOWL ontology are

IfcBeam, IfcWall, IfcRoof, IfcMaterials, IfcBuilding, and IfcSpace, among others.

In the context of the current ontology, ifcOWLSpace can be associated with the

SSN feature of interest, which allows for the localisation of sensors.

6.3.6 Resource Reuse: Non-ontological Resources

To enable the reuse of non-ontological resources, classes were derived from the

established standards and commonly used terms in the relevant fields. Specifically,

for the LCA model, classes were drawn from ISO 14040 and 14044, which are

recognised standards in the LCA domain. For other models (e.g., simulation,

prediction, and optimisation), classes were identified based on the terms that are

frequently employed in the scientific literature and software tools. This approach

resulted in the creation of a graph-like structure that consists of interconnected

entities.
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6.4 Ontology Schema

This section describes the development of an ontology schema to facilitate the on-

tology’s construction process. To achieve this goal, an abstraction of the ontology

schema was created, as shown in Figure 6.3, which considers both ontological and

non-ontological resources—specifically, the SSN and IfcOWL ontologies, along

with relevant standards to identify new entities. The ontology schema is com-

posed of three modules, namely the Service module, the Observation module,

and the Building module. This modular design aims to align the entities that

exist in the utilised ontological resources with the terms that are identified in the

competency questions. A UML sequence diagram to identify further interrela-

tionships between entities in the ontology was developed, which will be discussed

next. Furthermore, a detailed representation of each module is given in the fol-

lowing sections to ensure a clear understanding of the ontology’s structure and

its underlying components.

Figure 6.3: Modular schema of the developed ontology

A UML sequence diagram was created to visualise and illustrate the interactions

and information exchange between the various tools and techniques that are in-

volved in the implementation of the use case that is investigated in the current
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research (Figure 6.4). This diagram provides a concise representation of the use

case and can be used to illustrate the steps in the process of leveraging sensory

data, ML, and optimisation to compare the environmental performance of the

operation strategies. This diagram is also relevant to the developed ontology and

semantic modelling because it can be used to depict the sequence of events and

interactions between the ontology classes, and facilitate interoperability and reuse

of data and knowledge.

The sequence diagram illustrates the interaction between the graphical user in-

terface (GUI), semantic middle-ware, and modelling services, which are essential

components of the proposed solution. The GUI provides the interface for the

LCA practitioner to interact with the system by generating queries, receiving re-

sults, and providing feedback. The semantic middle-ware acts as an orchestrator

between the user and modelling services, processes the queries, retrieves relevant

data, stores the results, and coordinates the execution of tasks and workflows

within the system. The modelling services—comprising energy simulation, LCA

calculation, optimisation, and prediction—provide the core functionalities of the

system. The sequence diagram showcases the step-by-step information exchange

and interactions between the system objects, which demonstrates how the use

case can be implemented. The LCA practitioner can generate queries to cre-

ate an LCA for a particular space, optimise and predict specific parameters, or

compare scenarios based on their environmental performance.

While the sequence diagram is based on a thorough understanding of the use case

and the actual sequence that was followed to generate the results in the previous

chapters, it is important to note that the diagram has not been tested in a real

system to verify its validity. In other words, the diagram represents an abstract

model of the system’s behaviour. While it accurately represents the intended

interactions between the different components, it has not been implemented and

tested in a real-world setting. Therefore, this diagram should be viewed as a
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visual representation that can be used to understand the workflow of the system,

rather than as a guarantee of its actual behaviour.

6.4.1 Observation Module

The observation module is a crucial component of the developed ontology, as

shown in Figure 6.5. This module describes the process of observing a property

of an entity through sensors. Through this module, the observable properties of

a particular entity can be identified, along with the sensors that observe those

properties. Additionally, this module aligns with other modules by identifying

relationships with concepts from other modules. For example, the SSN alignment

with the building module is established through the ‘hasLocation’ relationship.

Furthermore, the ‘Parameter’ entity from the Service module is associated with

the ‘ObservableProperty’ class through an ‘equivalent’ relationship. The ‘Param-

eter’ class is an input to the ‘Prediction’ entity, which refers to potential input

parameters to the prediction model. The ‘Parameter’ entity represents the prop-

erties that are observed by the sensors, such as indoor CO2 and temperature.

Figure 6.5: Observation module entity relationship diagram
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6.4.2 Building Module

Figure 6.6 gives a partial representation of the building’s ontology, and primarily

aims to depict the relevant ifcOWL classes for the current ontology. The root of

this module is an ‘ifcObject’, which is a superclass that has several subclasses,

including ‘ifcElements’ and ‘ifcSpatialStructureElement’. These subclasses are

important because they have explicit relationships with the other two modules.

As illustrated in the previous module, the location of the sensor is defined through

a ‘hasLocation’ relationship, and the location is an ‘ifcSpace’. Additionally, the

services module aims to develop multiple models that are applicable to a specific

‘ifcElement’, based on the work carried out in the previous two chapters (i.e., the

ventilation system). The ventilation system is an ‘HVACElement’ that is based

on ifcOWL notation. The linkage between the ‘HVACElement’ and the service

module is established through the ‘hasEnergyProfile’ relationship, which links the

‘HVACElement’ to the simulation entity in the service module.

Figure 6.6: Building module entity relationship diagram



6.4 Ontology Schema 187

6.4.3 Service Module

Figure 6.7 depicts the Service module of the developed ontology, which serves as

the backbone of the ontology, hosting the primary framework components that

were presented in Chapter 4 (i.e., simulation, prediction, optimisation, and LCA

models). The alignment of the service module with the observation and building

modules has been discussed in the previous sections. Consequently, the cur-

rent section focuses on the interplay between entities within the service module.

The Simulation class generates energy simulation models for the ‘HVACElement’.

Similarly, the Prediction class takes some parameters as input and outputs pre-

dicted values. The results of both the Prediction and Simulation classes are then

used to inform a specific optimisation scenario. This optimisation scenario is

implemented via the Optimisation class, which is linked to the Simulation and

Prediction classes via ‘hasEnergyProfile’ and ‘usedBy’ relationships ,respectively.

The results of the Optimisation class (i.e., the optimal values) inform the LCA

model via the Demand class. The Demand class has a relationship with the

LCI class via the ‘hasDemand’ relationship. The LCA model includes several

classes that cover the most important aspects of the LCA methodology, includ-

ing the ‘LCADatabase’, ‘ImpactAssessment’, ‘AssessmentMethod’, Activity, and

‘ImpactCategory’ classes. Other classes were also identified along with their re-

lationships but were not included in the figure because it is only intended for

illustrative purposes. A complete representation of the actual ontology will be

presented in the next section, where the ontology implementation in Protégé is

discussed.
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Figure 6.7: Service module entity relationship diagram

6.5 Ontology: Implementation and Evaluation

The ontology has been developed using Protégé, which is a widely used open-

source ontology editor and knowledge management tool. Running a reasoner is

an essential step in the ontology development because it ensures the logical consis-

tency and coherence of the ontology. The HermiT reasoner was used to verify the

consistency and classify the concepts within the ontology. The proposed ontology

consists of 135 logical axioms, 35 classes, and 25 object properties. These metrics

provide insight into the structure of the ontology and can aid in assessing the

usability of the developed ontology. Figure 6.8 presents the ontology. Figure 6.9

presents the main classes, object properties, and instances.
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Figure 6.8: Ontology representation in Protégé

Figure 6.9: Main classes, relationships, and instances of the ontology

To evaluate the developed ontology, it is necessary to refer to the identified com-

petency questions and then determine whether the ontology is able to provide
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satisfactory answers to these questions. To achieve this aim, SPARQL queries

(a commonly used query language for querying RDF data) were used on the

developed ontology. The queries were run using the Fuseki server, which is an

open-source SPARQL server that allows RDF data to be stored and queried.

Furthermore, to ensure that the ontology is not only logically consistent but also

practically useful in real-world scenarios, it was instantiated with example data

from the developed use case in Chapter 4. Evaluation queries were then developed

for some of the identified competency questions. These queries are presented in

Figure 6.10 to 6.15, which illustrate the validity of the developed ontology.

In Figure 6.10, the user seeks information about the available sensors within

a specific space, in this case the Forum. The query returns the names of the

sensors and their location. In the next query, the user can retrieve the available

sensors and their observable properties (Figure 6.11). In Figure 6.12, the user

is interested in the controllable parameters of the HVAC system. The query

returns two values: system state and recirculation rate. To answer the second

set of competency questions related to the LCA model, Figures 6.13 and 6.14

demonstrate how the user can query information about the goal and functional

unit of the LCA model. The final query in Figure 6.15 identifies the activity that

is involved in the LCA study and its associated unit processes from the LCA

database.

The test queries were based on a subset of identified competency questions and

demonstrate the effectiveness of the developed ontology in providing answers to

questions from various domains. The ontology’s ability to offer satisfactory re-

sponses to queries related to different domains underscores the significant ad-

vantages of leveraging semantics to integrate information and data from hetero-

geneous sources, which is a critical step towards enhancing interoperability and

information exchange across several domains.
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Figure 6.10: SPARQL query for QC1A

Figure 6.11: SPARQL query for QC2A

Figure 6.12: SPARQL query for QC3A
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Figure 6.13: SPARQL query for QC1B

Figure 6.14: SPARQL query for QC2B

Figure 6.15: SPARQL query for QC3B
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6.6 Summary

This chapter aimed to investigate how the application of a semantically-enabled

LCA can streamline and automate the process of assessing the environmental

impact of buildings. The research question asks,

Can a semantic web approach provide a sound basis to facilitate and streamline

the applications of LCA in buildings?

To answer this question, the proposed solution was developed based on the un-

derstanding of the use case carried out in this thesis and the challenges that were

identified from the literature review. This chapter demonstrated the importance

of semantic technologies in improving the effectiveness and efficiency of a LCA

application in the building domain. This chapter discussed the steps that were

taken to develop the proposed solution, including the conceptualisation of the use

case and the development of a lightweight ontology.

To develop the ontology, a methodical approach was followed which identified

the domain concepts, defined their properties, created relationships between the

concepts, and reused existing ontological and non-ontological resources. Com-

petency questions were also identified to ensure that the ontology can provide

a satisfactory performance. In the ontology’s development stage, an ontology

schema was developed by creating three interconnected modules, namely: the

Observation module, Service module, and Building module. These modules were

created based on the requirements that were identified in the ontology require-

ments specification stage. The Observation module defines classes and properties

related to sensor observations. The Service module includes classes and proper-

ties related to several models, which are required to improve the environmental

performance of buildings . Finally, the Building module contains the classes and

properties that are related to the building itself.

The ontology was then evaluated by running SPARQL queries on the developed



6.6 Summary 194

ontology using the Fuseki server. The ontology was instantiated with example

data from the developed use case in Chapter 4, which aimed to ensure that it was

not only logically consistent but also practically useful in real-world scenarios.

Evaluation queries were then developed for some of the identified competency

questions. The results demonstrate the effectiveness of the developed ontology in

providing answers to questions from various domains. The ontology’s ability to

offer satisfactory responses to queries related to different domains underscores the

significant advantages of leveraging semantics to integrate information and data

from heterogeneous sources. The integration of this information and data is a

critical step towards enhancing interoperability and information exchange across

several domains.

In summary, this chapter has emphasised the importance of considering exist-

ing relevant ontologies to develop a robust system that is capable of extracting

meaning and integrating several models. Furthermore, this chapter provides in-

sights into how semantic technologies can facilitate and streamline the application

of LCA. Finally, the work in this chapter can also serve as a starting point for

further research and development in the field of semantically-enabled LCA for

buildings.
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Chapter 7

Conclusion

This chapter will provide a comprehensive reflection on the findings of the present

research. To achieve this, the central hypothesis and research questions that were

posed in Chapter 1 will be revisited, and each research question will be addressed

based on the observations and findings that were presented in the related chapters.

Additionally, the key contributions of the present study to the body of knowledge

will be identified. Finally, the limitations of the study will be discussed and a

number of recommendations will be made for future research, aimed at building

on these limitations and improving this research.

7.1 Research Findings

This section will present the research findings, with a particular emphasis on

addressing the central hypothesis of the study, which was formulated as follows:

"A semantic-based approach can facilitate the process of LCA and improve the

accuracy of the LCA results by leveraging the value of dynamic data, learning

systems, and digital built environment resources."

As previously stated in Chapter 1, the hypothesis was formulated into four re-

search questions, each of which will be thoroughly examined in this section based

on the findings presented in the related chapters. Finally, a summary discussion

of the research hypothesis will be provided.
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7.1.1 LCA Application in the Building Domain

The first research question asked:

What are the key limitations of current LCA methods that affect the accuracy and

widespread adoption of LCA in the building domain?

The first research question was the primary focus of the exploratory stage of the

research, which aimed to investigate the current applications of LCA in buildings.

Therefore, a comprehensive literature review was conducted, which facilitated a

thorough analysis of the state-of-the-art research in the field of LCA applied to

buildings. The findings of the literature review not only identified the shortcom-

ings of the proposed solutions but also recognised the requirements and func-

tionality that are required to streamline LCA throughout the life cycles of the

asset. Moreover, this stage provided a foundation for the modelling choices and

the development of the proposed framework.

The literature review in Chapter 2 highlighted several limitations and gaps in the

current LCA solutions. These include limitations in the semantic information and

interoperability of current software solutions in BIM-LCA integration. Although

the complexity and dynamic nature of building LCA requires a comprehensive

approach to explore various scenarios, the scope and capabilities of the existing

decision support tools suffer from a number of limitations. In particular, limited

research exists on the application of LCA at the district and city-wide level. There

is also a need to understand the level of detail required at the building level and

informative attributes at the district level to deliver reliable and sound LCA

results. Furthermore, there is a lack of consideration for temporal information in

LCA studies for buildings. Few studies have explored the use of dynamic data,

such as IoT devices, for indoor environmental measurements, which highlights the

need for further research in this area. Finally, the outcomes of this stage informed

the development of an overarching framework that leverages dynamic data and
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learning systems, and also explores the role of semantics in the LCA applications

for buildings.

7.1.2 Optimising the Environmental Performance of Build-

ings

The second and third research questions asked:

Can access to dynamic data provide more accurate accounts of the environmental

impacts during the operation stage?

How can machine learning and optimisation be leveraged to reduce the environ-

mental impact of buildings?

These research questions were addressed separately in Chapters 4 and 5. However,

the integrated nature of the proposed framework requires a simultaneous discus-

sion to achieve a comprehensive understanding of how dynamic data, ML, and

optimisation can enhance the energy and environmental performance of buildings.

Therefore, at this point, a different approach was taken to address both questions

together. Therefore, the third stage of the research methodology represents the

culmination of the previous two stages and serves as the core contribution of

this study. In this stage, a specific use case was selected to demonstrate how

the generic framework that was developed during the participation with the Se-

manticLCA project could be applied to address the second and third research

questions. Based on the literature review and engagement in the SemanticLCA

research project, it was found that the energy performance gap and the lack of

consideration for dynamic factors were major challenges in reducing the environ-

mental impact of a building’s energy consumption during the operation phase.

To address these challenges, the proposed framework leverages the concepts of

semantic interoperability and dynamic data, and utilises ML and optimisation

algorithms to develop a decision support system that helps to contextualise and



7.1 Research Findings 198

translate information into actionable measures. By integrating various domain

models and data sources, the methodology aims to provide a holistic approach

that takes multiple (often conflicting) objectives into account during the operation

of a building. Thus, the work that was conducted in the third stage demonstrates

the practical application of the developed framework in addressing the research

questions.

A use case was developed with the intention of minimising the environmental

impacts of a building’s energy consumption through an optimised mechanical

ventilation system strategy that considers dynamic indoor conditions (e.g., CO2)

that are captured by indoor sensors using ML and an optimisation technique (i.e.,

the genetic algorithm). This was compared to a baseline scenario that represents

a schedule-based, static operation strategy, which was modelled using energyPlus.

This study employed ML in two ways. First, ML models were developed to pre-

dict CO2 levels in the case study site, based on different sets of input variables.

These models were developed to predict CO2 levels at two different time horizons,

1 hour and 24-hour ahead. Two approaches were employed for the 1-step predic-

tion: univariate models relying only on CO2 lags, and multivariate models that

employed other parameters (e.g., temperature and humidity etc.). These models

represent a crucial input to the optimisation strategy because they provide infor-

mation about the indoor conditions for the next 24 hours, which is a key factor in

identifying the optimal operation strategy for the mechanical ventilation. Second,

an ANN model was developed to predict both energy consumption and indoor

CO2 levels based on the output of energy simulations and a different set of input

variables. This model was then used by the GA as a fitness evaluation to obtain

the optimal operation strategy.

An optimisation strategy for mechanical ventilation systems using GA was de-

veloped. The objective here was to minimise energy consumption while ensuring

that indoor CO2 levels remain within acceptable limits. This strategy employed
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a ML model that was trained on EnergyPlus simulations to predict energy con-

sumption and CO2 levels, which was then used as the fitness evaluation function

for the genetic algorithm (as previously mentioned). The optimisation process

adjusts the recirculation rate, which reduces the required heating energy and the

required outside air volume, thereby minimising energy consumption. The op-

timisation strategy that was proposed in this study was able to reduce energy

consumption by 35% when compared to the baseline scenario, while also ensuring

that indoor CO2 levels remain below 900 ppm.

Finally, the LCA results of the two scenarios, baseline and optimised, reveal that

the latter has lower environmental impacts across all impact categories, especially

in terms of climate change. Furthermore, the results highlight the importance of

optimising a building’s energy performance to reduce its impact on the environ-

ment, even when transitioning towards cleaner and renewable energy technologies.

7.1.3 The Role of Semantics in LCA

The final research question asked:

Can a semantic web approach provide a sound basis to facilitate and streamline

the applications of LCA in buildings?

Chapter 6 used a solution-based approach to address the final research ques-

tion, which developed a lightweight ontology using a methodical approach. The

methodology identified domain concepts, created relationships between them, and

reused existing resources. The ontology was instantiated with example data from

the use case to ensure logical consistency and practicality. In addition, evaluation

queries were tested and the results demonstrate the effectiveness of this approach

to provide answers to a number of domain questions.

The modular approach that was used in developing the ontology schema can en-

able both scalability and extensibility. The current ontology schema consists of
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three interconnected modules (i.e., the Observation, Service, and Building mod-

ules) but other modules can be incorporated for scalability purposes. For instance,

a District module can be added to represent urban objects such as building blocks.

The ontology can also be extended with more concepts based on a set of require-

ments that are identified in the ontology requirements specification step. The

inclusion of relevant concepts in the current ontology was guided by the need

to identify the scope and requirements of specific use cases. Although new con-

cepts can be added to the current modules, they must align with the scope and

requirements of any extension to the current ontology.

Finally, this work emphasised the importance of utilising semantics to improve

interoperability and information exchange across various domains. Therefore,

it is hoped that this study may serve as an example for further research and

development in the field of LCA for buildings using semantics.

7.1.4 Revisiting the Hypothesis

The central research hypothesis of this study can be evaluated based on the

previous discussion of the four research questions. The use of dynamic data,

particularly data from sensors, allows for a better understanding of the operating

conditions, as opposed to relying on assumptions regarding the dynamic building

conditions, which could lead to the overestimation or underestimation of the

true environmental performance of buildings. The incorporation of dynamic data

captured by sensors has resulted in more reliable data that inform operational

decisions. Moreover, the use of ML and optimisation, while leveraging real-time

data, has improved the reliability of the models, and their prediction and proposed

operation strategies. This resulted in more accurate LCA calculations in the

building domain. Finally, this study developed an ontology and incorporated

several semantic models, including SSN and ifcOWL, and other data sources. The

developed ontology facilitated the alignment of these resources and streamlined
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the application of LCA in the building domain. This successful implementation

and utilisation of dynamic data, ML, and optimisation models, along with the

developed ontology, provide evidence in support of the research hypothesis.

7.2 Contributions

The contributions resulting from this thesis will be described in this section.

These contributions can be attributed to the development of an integrated frame-

work to optimise building energy and environmental performance, which was dis-

cussed in Chapters 4 and 5, as well as the semantic modelling of LCA in the

building domain, which was covered in Chapter 6.

• The first main contribution to the body of knowledge results from the inte-

grated framework, which can be divided into two minor contributions.

– The first minor contribution relates to the development and testing of

two ML models, namely RF and ANN, to predict indoor CO2 levels for

different time steps, specifically one hour ahead and 24 hours ahead.

These models consider indoor and outdoor conditions, as well as time-

related parameters, to improve the accuracy of their predictions.

– The second minor contribution relates to the development of an opti-

misation strategy to control the ventilation systems in buildings, with

the goal of minimising energy consumption while maintaining indoor

conditions within acceptable limits, particularly the CO2 levels. These

two contributions inform the LCA model, which is carried out based

on representative and accurate data that reflect the real operating con-

ditions of the building, rather than relying on average data or broad

assumptions regarding the building’s dynamics.
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• The second main contribution of this thesis was the development of a

lightweight ontology for LCA applied to buildings. The modular approach

that was taken in developing the ontology schema allows for scalability

and extensibility, which enables the incorporation of additional modules

as needed. The developed ontology exemplified the potential to improve

interoperability and information exchange across different domains by facil-

itating semantic modelling.

7.3 Limitations and Future Work

The first clear limitation of the present study is that the validation of the proposed

framework and the corrective measures, informed by the optimisation results, were

mainly based on simulation data. The practical implications of the optimisation

strategy were not tested on the actual case study site because the necessary util-

ity meter data and access to the building management system were unavailable.

Therefore, the true impact of the optimisation strategy can only be accurately

captured through the real-time implementation of the proposed measures in the

system. Furthermore, reliance on simulation data may introduce uncertainties

and potential discrepancies between the simulated and actual performance of the

system, thereby limiting the validity of the proposed framework. To overcome

this limitation of the present study, future research should focus on implementing

the proposed optimisation strategy in real-time on the case study site, using ac-

tual data from the utility meters and the building’s management systems. This

would enable accurate measurement of the impact of the proposed measures on

energy use and indoor conditions, and provide a more realistic understanding of

the practical implications of the strategy.

The second limitation of the current study is the narrow scope of the LCA model,

which only considered energy consumption of one month during the use phase,
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which precluded a holistic understanding of the building’s energy performance

because seasonal and usage variations occur throughout the year. Furthermore,

while this study demonstrated the potential benefits of smart systems in reducing

the energy use and environmental impacts of buildings, certain critical aspects

were excluded, including the environmental impacts of monitoring system hard-

ware (e.g., sensors, gateways, and servers). Excluding these limitations from the

studied system may lead to a different conclusion regarding the actual environ-

mental benefits of smart systems. Therefore, in future research, it is crucial to

address the limitations of the current study and consider the minimum level of

instrumentation that is required to monitor and control the building’s systems.

This will ensure that the goals of reducing the environmental impacts of buildings

are achieved instead of adding to their environmental burdens.

The final limitation of this work is that the developed ontology was designed

with a limited scope and scale, and was only intended for the specific use case

that was investigated in this thesis. While the ontology proved valuable for the

present work, certain aspects should be considered for future research. First, the

developed ontology was not integrated into a functional system that is capable of

integrating different models and databases through the use of semantics and the

developed ontology to store these artefacts in a semantic data store, which would

allow the users to write queries to evaluate different scenarios. Moreover, neither

scalability nor consideration of a wider range of applications were included in the

current version of the ontology. However, the modular approach that is employed

in the ontology’s design allows for further extensions and the inclusion of other

modules in future research. To address this limitation, future work should focus

on expanding the scope of the ontology and should consider scalability to support

a wider range of applications.
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7.4 Closing Remarks

This thesis has encompassed three distinct aspects. The first aspect is the use

of semantics to contextualise, integrate, and streamline the information exchange

between various components, thereby enhancing the interoperability of LCA. The

second aspect is the consideration of dynamic data (e.g., energy use, indoor and

outdoor conditions), which enables a more accurate assessment of the environ-

mental impacts. The third aspect is the integration of learning systems, including

ML and optimisation, which aid in the decision-making process by exploring dif-

ferent scenarios and identifying the corrective actions that result in the least

environmental impacts. It is important to note that despite the progress that has

been made in this thesis, there is still a great deal of work to be done to achieve

a true semantic model of LCA. Therefore, the work that was conducted in this

thesis can be seen as a proof of concept and as part of ongoing research towards

a sustainable future.
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Appendix

Appendix A

Use Cases Taxonomy

Through the literature review conducted in Chapter 2, and several workshops
with industry experts, the use cases were found to have three major dimensions—
that is, physical, temporal, and enabler—(as shown in Figure 1), which will be
described in more detail below.

• The physical dimension: identifies the type of the asset to be evaluated and
the scale of LCA application. There are four major categories: Building,
Utility, Transport, and Open spaces, each of which is the root category for a
set of sub-types of assets. A use case can either be applied to an individual
asset or to multiple assets.

• The temporal dimension: includes all of the major life-cycle stages in which
a specific use case can be applied. Three major sub-categories were iden-
tified, as follows: i) new build (e.g., assessment of design proposals of a
new asset, an extension to an existing asset, or a comparison of major con-
struction processes and construction systems), ii) building operation (e.g.,
energy consumption, and trade-offs between ventilation requirements and
energy use), and iii) retrofit and renovation (e.g., structural repairs, and
energy retrofit measures).

• The enabler: represents the required hardware and software to deliver the
intended use case. This dimension is intended to identify the numerous
tools and models that serve a specific goal (e.g., environmental assessment
tools for conducting LCA calculations). It also uses IoT devices to collect
data and controllers to actuate the system.
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Figure 1: Use cases taxonomy
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Appendix

Appendix B

Semantisation of LCA Use Cases

A semantisation of use cases technique was developed, through which a use case
can be analysed from eight different layers (as illustrated in Figure 2).

- Spatial scope, which aims to specify the physical boundaries of the asset(s)
associated with the use case. The decision at this level will have several
implications on the subsequent layers because the requirements and imple-
mentation approaches significantly vary.

- Domain, which identifies the type of the built asset (i.e., buildings, utility,
transport, and open spaces).

- Life-cycle stage, which identifies the life-cycle stage that is associated with
the use case. This aims to recognise the development stage of the asset (i.e.,
design, construction, in-use, and demolition).

- Scope of LCA, which relates to the scope and system boundary of the LCA
study. It is possible for an LCA use case to include the entire product life-
cycle stages, or it may be limited to particular stages. This layer should
not be conflated with the previous layer. To clarify, a use case can only be
associated with one project’s life-cycle stage; for example, assessing design
alternatives during the design stage, hence, specifying when the use case
was initiated and executed. Meanwhile, a study must declare the product
stages that should be considered as part of the LCA methodology. In the
given example, during the evaluation of a design proposal, it is possible to
include the manufacturing, construction, maintenance, and EoL treatment
of the building materials associated with the proposed design.
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Figure 2: Semantisation of LCA use cases

- Intended use, which relates to the objective and intended applications of the
use case. These objectives can run for longer periods of time ( e.g., active
control of building environmental performance) or for a certain period (e.g.,
the assessment of a design proposal).

- Enabler, which refers to the various digital resources that are used for the
implementation of the use case. These include data collection sources, dig-
ital models (e.g., BIM), and modelling techniques (e.g., ML, optimisation,
and simulation).
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- Actor, which refers to the key players that are involved in either the de-
velopment or execution of the use case. Players are assigned to different
activities depending on their knowledge domain and responsibility.

- Dynamic element, which references the time-dependant factors when ap-
plying LCA. A use case can have a single or multiple dynamic elements,
depending on the chosen scope and system boundary.

It is important to note here that the list of entities in each layer is not exhaustive,
and therefore there is room for defining further entities.


