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A B S T R A C T

The domestic sector is a significant energy consumer – accounting for around 40% of global electricity demand
– due to household demand diversity and complexity. An accurate and robust estimation of domestic electrical
loads, environmental impacts, and energy-efficiency potential is crucial for optimal planning and management
of energy systems and applications. However, uncertainties resulting from simplistic socio-technical attributes,
microclimatic variations, and oversimplification of the effects of interdependent variables make domestic
energy modelling challenging. In this research, a hybrid bottom-up community energy forecasting framework
is developed to estimate sub-hourly domestic electricity demand using a combination of statistical and
engineering modelling approaches by considering key factors influencing household consumption, including
demographic characteristics, occupancy patterns, and the features, ownership, and utilisation patterns of
electric appliances. The framework is tested on a community in Wales, UK and validated on an annual,
daily, and sub-hourly basis with monitored electricity usage averages derived from the UK Energy Follow-Up
Survey and the sub-national electricity consumption datasets. Results closely reflect annual and daily household
demand at individual dwellings and aggregated levels, with an estimation accuracy of up to 90%. Moreover, the
framework facilitates more reliable sub-hourly demand profiles compared to conventional simulation practices
that overestimate daily electricity demand and sub-hourly peaks by up to 15% and 50%, respectively.
1. Introduction

Building energy modelling and forecasting, for both demand and
generation, are crucial for decision support and formulation in many
energy applications [1], including; determining energy supply require-
ments at local, regional, and national levels; planning, designing, op-
erating, and managing utility network and smart grids; and predicting,
evaluating and optimising energy-efficiency strategies, trading applica-
tions, and material and technology implementations [2–4].

Socio-economic developments, such as increasing living standards,
lifestyle changes, income growth, and the ownership of household
appliances, contribute to a rise in domestic energy demand along
with rapid population growth, urbanisation, and weather variation [4],
which add further burdens on the supply side that experience vari-
ous cost, environmental, operational, and stability challenges, such as
increasing energy prices, energy resource exhaustion, and negative en-
vironmental implications. These burdens have made energy-efficiency
and saving strategies the primary objective for various research ap-
plications, technologies, and energy legislation policies [5–9]. For in-
stance, the EU Commission has asserted that improving the energy
performance of European buildings is crucial for reducing their global
greenhouse gas (GHG) emissions by 20% in 2020 and the range of
80%–95% by 2050 for a long-term target [10].
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In a similar vein, the increase of smart and decentralised energy
systems with renewable energy sources (RES) provides a promising
approach for energy-efficiency improvement and carbon emissions re-
duction, which require the integration of low-carbon strategies and
advanced energy management technologies, such as demand-side man-
agement, that exploit generation and demand predictions to optimise
system loads and enhance system stability [11–16].

The residential energy sector exhibits stochastic consuming be-
haviours, which fluctuate from dwelling-to-dwelling and day-to-day
due to the diversity and complexity of household energy demand [17].
Dwelling and household types, together with socio-economic attributes
and a wide variety of lifestyles, formulate the overall domestic elec-
tricity profiles in a certain community [18]. Therefore, investigating
domestic energy modelling with high forecasting accuracy is crucial
for (i) understanding primary drivers of electricity demand and energy-
related behaviours; (ii) estimating/predicting future trends of domestic
electricity consumption; and (iii) assessing energy-saving strategies and
potentials for renewable energy sources [4,19,20].

This research developed and evaluated a hybrid model, called ‘‘do-
mestic electricity load forecasting (DELF)’’, for stochastic estimation
of UK daily household electrical loads from an individual device and
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Nomenclature

Acronyms

ASHRAE American Society of Heating, Refrigerating
and Air-Conditioning Engineers

BEIS Department for Business, Energy and Indus-
trial Strategy

BESS Battery energy storage system
BES Building energy simulation
BRE Building Research Establishment
BREDEM Building Research Establishment’s Domestic

Energy Model
CIBSE Chartered Institution of Building Services

Engineers
CO2 Carbon dioxide
DELF Domestic electricity load forecasting
DOE The U.S. Department of Energy
DR Demand response
DSM Demand side management
E+ EnergyPlus
EFUS Energy Follow Up Survey
EPBD Energy Performance Buildings Directive
EPW EnergyPlus Weather
EU European Union
GHG Greenhouse gas
HES Household Electricity Survey
HVAC Heating, ventilation and air-conditioning
IDF Input data file
IEA International Energy Agency
IPMVP International Performance Measurement

and Verification Protocol
KPI Key performance indicator
M&V Measurement and Verification for

Performance-Based Contracts Federal
Energy Projects

MBE Mean bias error
NOAA National Oceanic and Atmospheric Admin-

istration
PV Photovoltaic
R2 Coefficient of determination
RES Renewable energy source
RMSE Root mean square error
RU Relative uncertainty
SEG Smart Export Guarantee
TCR Tariff comparison rate
ToU Time of Use
UBEM Urban building energy modelling

Units

% Percentage
kW Power in kilowatt
kWh Energy in kilowatt hour

welling to a community level. Our contribution lies in adequately
eflecting the variability and fluctuations of individual household elec-
ricity demand by considering key factors influencing household power
oads, including energy end-uses, demographic characteristics, occu-
ancy behaviours, and the characteristics of domestic appliances in
erms of diversity, features, ownership, and utilisation patterns. The
2

Fig. 1. Global and regional residential energy consumption shares, 1990–2020.
Data source: World Energy Balances online data service, IEA [25].

novelty of the proposed framework and significance resides in in-
tegrating statistical models – for robust and detailed forecasting of
sub-hourly household occupancy patterns and electric device schedules
– with building thermal and energy simulations to enhance forecasting
accuracy. Besides, the capability for synthesising simulation scenarios
and conditions allows (i) estimating a ‘‘baseline’’ electricity demand
for the domestic sector; and (ii) scaling forecasting estimations to city,
regional, or national levels.

An initial version of the DELF framework was a part of the ‘‘To-
wArds Building rEady for Demand rEsponse (TABEDE)’’, a research
and development project funded by the European Commission Horizon
2020, that aimed at allowing buildings to provide sufficient flexibility
and participate in various demand response (DR) schemes [14,21,
22]. The version was used as the core of the ‘‘Real-time Energy and
Environmental Forecasting and Simulation (REEFS)’’ component for
forecasting day-ahead electricity demand and production profiles from
an individual device to district levels [23]. In this research, further de-
velopments on the DELF framework were carried out by incorporating
statistical models for estimating stochastic occupancy behaviours and
internal loads to ensure high estimation accuracy of domestic electricity
demand.

The article is organised as follows. The following section examines
domestic electricity consumption trends in the UK. Section 3 analyses
residential energy modelling approaches and related works. Section 4
then elaborates the key components and workflow of the DELF frame-
work. Section 5 discusses the framework implementation in a case
study. Results and validations are analysed in Section 7. Concluding
remarks are summarised in Section 8.

2. UK domestic electricity

Residential energy consumption represents around 22% of world-
wide energy consumption and is responsible for approximately 17%
of GHG emissions in 2020, experiencing fluctuations over the last
three decades, as illustrated in Fig. 1. Although a decrease in global
residential energy consumption share has partaken over 1990–2010,
an increase has been witnessed in European and UK residential con-
sumption shares. In 2020, the share of residential energy faced an
increase due to the COVID-19 restrictions that mandate everyone,
except key workers, to work from home [24]. In Europe, dwellings
account for 26% of total energy consumption [25]. Meanwhile, the UK
residential sector commands a higher energy demand share of 32% and
is responsible for 16% of total GHG emissions [26–29].

The UK domestic electricity demand amounts to 38% of the total
electricity demand, as depicted in Fig. 2, which has experienced an
increase of around 35% from 1990 to 2005 driven by an increase in
electric appliance ownership and utilisation rates [30]. Legislation and
enforcement of energy-efficiency labelling and standards have led to
the development of a wide range of highly efficient appliances and
equipment, especially for major household appliances, such as washing
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Fig. 2. Domestic electricity consumption share of total UK electricity consumption,
1990–2020.
Data source: Digest of United Kingdom Energy Statistics (DUKES) [28].

machines, refrigerators, and TVs [31], contributing to a significant
electricity reduction in 2019 of 17% compared to 2005 [29]. Although
overall UK electricity consumption decreased in 2020 by 4.8%, an
increase in domestic electricity demand by 5.6% took place because of
occupant behaviour changes and increased electrical appliance usage
due to the COVID-19 lockdown [24].

Annual average electricity demand in UK dwellings widely ranges
between 500 and 20,000 kWh, with around 60% of households con-
suming between 750 and 5,000 kWh and another 5% consuming over
10,000 kWh [24,29]. The annual mean and median demand of 2019
were 3,578 and 2,817 kWh, which decreased by around 5% and 10%
compared to 2017 and 2012 [29], respectively. Recent daily household
electricity demand is estimated between 1 and 68 kWh, with mean
and median of 11.7 and 13.7 kWh, respectively. The daily household
demand depends not only on dwelling and household types but also
on internal electrical load characteristics. For instance, the daily mean
and median electricity demand for households without electric heating
are 8.2 and 9.5 kWh [32]. The daily household demand variances
highlight the saving potential, especially for high consumers of up
to 30%, through energy-efficient appliances, altering device schedule
off-peaks, and occupancy behaviours [31,33,34].

3. Urban domestic electricity modelling

Urban building energy modelling (UBEM) has gained significant
research attention to formulate a unified district model for determining
energy consumption and generation, thermal loads, and CO2 emissions
at a zone/building, neighbourhood/district, or even city/region and
national/country levels [1,35]. Two modelling approaches are broadly
used; ‘‘top-down’’ and ‘‘bottom-up’’, with the terms referring to the
data hierarchy utilised as model inputs [3]. A top-down approach is
performed at an aggregated or national level that utilises historical
energy consumption for long-term demand projection by investigat-
ing the inter-dependencies with demographic, economic, climate, and
technological variables [36–38]. However, associated limitations are
attributed to inadequately defined end-uses and coarse data [1].

On the other hand, bottom-up approaches extrapolate individual
dwelling energy data from household survey samples or dwelling
energy models to explicitly estimate energy consumption on a re-
gional/national level, in addition to their capabilities for testing various
scenarios, conditions, and technologies [3,38,39]. However, the limi-
tations to this approach relate to the uncertainties regarding weather
conditions, occupancy behaviour, techno-economic characteristics, and
high computational demand [1].

Fig. 3 illustrates a general diagram for key factors, utilised data,
and implementations of residential energy modelling broadly exploited
in the existing literature. Residential energy consumption is highly
dependent on five key aspects that can be grouped – from inside to
outside – into: internal loads and energy systems, dwelling physical
3

characteristics, socio-economic characteristics, urban context and loca-
tion, and local weather [3,33,34]. Generally, three modelling types are
implemented for estimating and predicting household energy consump-
tion on a daily (with hourly/sub-hourly resolution) or annual basis, as
follows:

1. Engineering models, known as physical or white-box, apply
building physics principles to calculate thermal and energy
loads [20,35,40,41]. They require detailed data regarding build-
ing physical and thermal characteristics, outdoor conditions, oc-
cupancy, internal loads, and heating, ventilation, air-conditioning
and cooling (HVAC) systems [38]. Generally, engineering mod-
els are implemented on representative buildings/archetypes,
samples, or distributions of detailed energy end-use patterns to
estimate the overall energy consumption [42].

2. Statistical models, known as data-driven or black-box, exploit
long-term historical energy data of individual buildings or ag-
gregated/national levels, then employ statistical methods to pre-
dict consumption [3,4,13,17–19,30,33,34,37,39,43–48]. For in-
stance, regression, time series (e.g. multiplicative auto-regressive
models, auto-regressive moving average, auto-regressive inte-
grated moving average, and auto-regressive moving average
with exogenous input model), and artificial intelligence/ ma-
chine learning (e.g. artificial neural network, support vector
machine, genetic algorithm, fuzzy logic, and particle swarm
optimisation).

3. Hybrid models combine physical and statistical methods, es-
pecially at an aggregated building level, to reduce the mod-
elling complexity and uncertainties to enhance estimation accu-
racy [38,49].

Increasing demand for energy-efficient buildings and improved soft-
ware packages, including decreased computing requirements, the in-
clusion of further features, and enhancements of user interface and
calculation accuracy, have highlighted the key role of building energy
simulation (BES) tools in decision-making stages for building and en-
ergy applications, such as design and planning, operation optimisation,
energy code analysis, and design compliance and performance verifica-
tion for energy-efficiency schemes [50,51]. However, major challenges
that may produce imprecise forecasting outcomes are due to the lack
of a comprehensive tool covering all demand forecasting difficulties,
excessive modelling workloads, and user complexity [12]. Many studies
have reported discrepancies between simulation outcomes and actual
building performance; hence, there is a need to better understand
factors affecting forecasting accuracy and develop methods to ensure
reliable results [52].

3.1. Determinants of domestic electricity usage

Residential buildings are subjected to a variety of complex energy
determinants, both internal and external, which can have a signifi-
cant impact on their energy and thermal performance and influence
the uncertainty and accuracy of energy models [53–55]. Key internal
determinants include:

3.1.1. Occupancy behaviour
Occupancy behaviour is defined as energy-related activities and

actions of occupants in space in response to external or internal trig-
gers, for instance, adjusting heating and cooling temperature set-points
according to ambient temperatures or turning on/off artificial lighting
according to daylight levels [56,57]. Demographic characteristics, such
as the number of occupants, education level, and employment varia-
tions, have a key role in influencing household energy consumption
patterns. Although household type is crucial for forecasting house-
hold demand profiles, occupancy patterns have considerable influences.
Occupancy patterns are based on household personal characteristics
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Fig. 3. Schematic diagram of district building energy modelling, including data sources, factors, methods, objectives, and applications.
and lifestyles that vary widely among households, even within the
same social group. For instance, people tend to use less energy during
bedtime and unoccupied periods when most appliances are switched
off. Full-time working occupants may spend most of the day away and
be back after 18:00. On the other hand, a single parent with dependent
children may have a part-time job and a pensioner may spend more
than 20 hours/day at home [18,38]. Additionally, around 35% of the
UK working-age population works in service industries, namely retail,
manufacturing, transport, food and beverages, and hospitality that have
multiple daily working shifts and may operate for 24 h a day [58].

Three key factors that affect household occupancy patterns include
(i) the number of occupants; (ii) the wake-up time and bedtime; and
(iii) the unoccupied period. The number of occupants directly affects
energy consumption levels, while wake-up and bedtime shape energy
demand patterns during activities, such as cooking and lighting. Unoc-
cupied periods also impact energy consumption as appliances and lights
are mostly turned off [17,43,59].

At the urban level, occupancy patterns can be modelled using
different approaches – static-deterministic, static-stochastic, dynamic-
deterministic, and dynamic-stochastic – which consider the diversity
of occupant presence and behaviours. Static models yield predefined
profiles without considering interactions between occupants and their
built environment, while dynamic models incorporate statistical ap-
proaches to account for the random nature of people’s behaviours and
their interactions with building components and energy systems [60].
On the other hand, diversity in occupancy patterns pertains to the
variation and detail of factors considered in models using deterministic
or stochastic modelling approaches. Deterministic approaches gener-
ate consistent occupancy profiles, while stochastic models vary in
each simulation. Overall, dynamic stochastic-based modelling is more
appropriate for representing occupants’ impact on building energy
performance at broader community levels [61].

3.1.2. Domestic appliances
83% of UK households use natural gas as a primary fuel for space

and water heating, while air-conditioning is limited to 4% of house-
holds due to the UK’s temperate climate. Around 90% of dwellings
have central heating systems with radiators (91% of houses and 61%
of flats). 59% of homes have combination boilers that supply hot water
on demand, while 32% use additional hot water storage. Around 7%
use electric space heating systems, such as electric storage and room
heaters, and 8% depend on electric water heaters [62]. Recent statistics
demonstrate that 75% of households use electricity as a cooking fuel,
where 40% own electric hobs and 70% of households owning ovens
have electric products [63,64]. Therefore, domestic appliances and
lighting are the key electricity end-uses, contributing to around 75%
and 15% of electricity demand, respectively [34,62,65,66].
4

The utilisation of electrical appliances significantly determines the
overall electricity demand of a household based on their operation
modes, power, usage frequency, and duration. Domestic electric ap-
pliances can be classified into: (i) continuous appliances, such as re-
frigerators and internet routers, that run continuously without being
interrupted by residents; (ii) activity-dependent appliances, such as
ovens and hobs for cooking, washing machines for laundry, and tele-
visions for entertainment; and (iii) environment-dependent appliances,
such as heating and lighting that are used in response to temperature
and illuminance conditions [45].

3.2. Previous studies: information and applications

Many studies have investigated the development of urban resi-
dential energy modelling. Researchers have used information from
such smart meters, energy sensors, questionnaires, Time of Use (ToU)
surveys, national statistics, energy reports, or census for model devel-
opments aiming at: (i) accurately estimating domestic energy consump-
tion [3,13,18,38,43,49]; (ii) analysing key factors influencing house-
hold energy consumption, including building characteristics [19,20,34,
37], occupancy behaviours [4,17,19,20,33,37,44], lighting [47], and
household electric appliances [30,44–46]; and (iii) planning power
systems and investigating the capabilities of energy-efficiency strate-
gies for achieving zero/low carbon emissions or energy communi-
ties, such as integrating DR schemes [48], implementation of pre-paid
meters [39], renewable energy penetration [35,40,41], electric ve-
hicles charging behaviours [67], and assessing building retrofitting
techniques (U-values) [37,41].

For instance, Yamaguchi et al. [45] used household ToU and mon-
itored data to develop a statistical model for estimating the Japanese
daily profiles of the washing machine with a 15-minute temporal reso-
lution. On the other hand, Jones and Lomas [33] analysed one year of
survey data to investigate factors affecting domestic electricity demand
in the USA, including socio-economic characteristics, dwelling char-
acteristics, and internal loads, where results have shown that higher
incomes, big households and larger floor area homes are more likely
to consume more electricity. Gao et al. [4] proposed a bottom-up data-
driven framework to predict daily domestic load profiles in 10-minute
intervals based on extracting data for similar days from historical data,
such as outdoor conditions and internal influence factors, to train the
forecasting model. Although the authors used one month of monitored
energy data across 64 households, the method enhanced the prediction
accuracy by up to 90%. On the other hand, Kavousian et al. [19] used
eight months of smart meter data, with a 10-min resolution, and an
online household characteristics survey for 1628 households in the USA
to explore factors influencing residential electricity demand, such as
weather and location, building physical characteristics, household ap-

pliance, and occupants. The results showed that 42% of the variability
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in electricity demand may be determined by building characteristics,
while occupant behaviours are responsible for 4.2%.

In the UK, Yao and Steemers [18] calculated daily domestic energy
consumption profiles for electric appliances, hot water, lighting, and
heating loads, with one-minute up to half-hour intervals, by clustering
occupancy numbers and patterns extracted from pre-conducted elec-
tricity consumption surveys. Dunbabin et al. [46] analysed a household
electricity survey for 250 households across the UK to provide a typical
daily electricity demand profile by end-uses, in 10-min resolution, and
the potential for peak load reduction and energy savings. Cheng and
Steemers [37] developed bottom-up data-driven models for energy
use and CO2 emissions at both national and sub-national levels. The
researchers used survey data to provide a perception of the impacts of
various building physical, and non-physical (e.g. occupant behaviours)
factors and the outdoor temperatures on energy consumption. Jones
and Lomas [30] used one year of survey data for domestic appli-
ances, to analyse the impacts of ownership rates and utilisation on
the annual electricity consumption in UK homes. Ihbal et al. [17]
utilised public reports and statistics to develop a statistical model
for calculating daily electrical load profiles with 30-minute resolution
based on eight occupancy scenarios and ownership rates of electrical
appliances. Although the model was able to detect the utilisation
patterns, it failed to adequately predict the total electricity demand and
peaks. Similarly, Anderson [44] utilised the UK ToU data to analyse
the difference in daily laundry profiles for 20 years in terms of day and
time due to increasing female participation in the labour market and
adaptation of energy tariffs. Tsagarakis et al. [43] converted occupancy
activity patterns obtained from the UK ToU into individual daily elec-
trical load profiles based on appliance ownership statistics. The results
showed that there is a large variability within individual households
with respect to aggregate electrical characteristics. Yohanis et al. [34]
analysed almost two years of measured data from 27 dwellings with
a 30-min resolution to estimate the monthly household electricity
demand and investigate correlations with building (e.g. floor area,
house type, location, and number of bedrooms) and socioeconomic
characteristics (e.g. income levels, number of occupants, ages, and
house ownership/rent).

Richardson et al. [13] exploited energy-related statistics and ToU
survey to estimate daily electricity demand with one-minute intervals
based on: (i) household appliance power load and ownership rates;
and (ii) occupancy behaviours and appliance time of use. Although the
model’s capabilities in providing the temporal demand diversity, the re-
sults underestimated energy use during the night due to not considering
the occupant’s behaviour of leaving lights on at bedtime, as well as the
power demand of small appliances, such as mobile chargers. Besides,
the model was under-representing the seasonal variation as the used
occupancy model did not consider that people are likely to stay home
more on winter evenings and use more appliances, such as TV. Richard-
son et al. [47] estimated daily domestic lighting consumption profiles in
1-min resolution based on irradiance data and occupancy behaviours.
However, the validation was through comparison at monthly and half-
hourly levels with calibrated model results based on measured electrical
energy consumption. Besides, the distribution of varied lighting power
units within buildings needed to be considered.

3.3. Gaps and limitations

Data availability, modelling purpose, and assumption are key fac-
tors that influence the level of model input details, resulting in un-
reliable and imprecise outcomes. Although detailed information pro-
vides more comprehensive analysis and accurate estimations, the ca-
pability of existing UBEMs to accommodate the dynamic, stochas-
tic, and non-linear inter-dependencies influencing the model accuracy
is still limited [1,49,68], such as microclimate and socio-technical
characteristics [1,12,49,68]. Most demand forecasting approaches lack
5

transparency and the quantification of inherent uncertainty because of:
• Failure to adequately accommodate the stochastic demand fluctu-
ations caused by socio-technical and economic aspects because of
employing standard/categorised occupancy patterns [36]. As peo-
ple behave in diverse and stochastic ways, occupancy behaviours
are extremely complicated to predict. For instance, Ouyang and
Hokao [69] investigated electricity demand differences between
households with and without an energy-saving training scheme,
where around 15% saving potential was highlighted when chang-
ing occupant behaviours. Although occupants within a social
group may have similar characteristics, a certain behavioural
pattern cannot fully represent a specific household type. How-
ever, integrating more social information could enhance predic-
tion accuracy, but may result in redundant data and increased
costs [38].

• Lack of high-resolution energy calibration standards and use of
oversimplified methods result in imprecise demand profiles, par-
ticularly at peak loads [38]. As lower resolutions and simplified
profiles fail to represent load details of high-demand appliances
that are used for a short time (e.g. microwave, kettle and toaster)
or major appliances whose power demand varies across their cy-
cles (e.g. washing machine, dishwasher, and dryer) [45]. Besides,
relying on representative days might not fully consider overall
weekly/seasonal/annual demand variations [42].

Domestic electricity end-uses include heating and cooling systems,
hot water, lighting, and household appliances that formulate the overall
electricity demand profile based on their operation modes and power
loads [1,45]. According to the literature, four essential factors influ-
encing the performance of domestic energy modelling need to be con-
sidered [12,45]: (i) socio-economic aspects; (ii) intra/inter-household
variance; (iii) temporal resolution differences between available in-
formation and quantifying calibration scale; and (iv) applicability to
various circumstances, such as socio-technical attributes and climate
change.

Without reliable energy demand data, it would be hard to ensure
effective energy planning and strategies. Domestic energy forecasting
approaches face excessive modelling workloads and high forecasting
uncertainties. Although detailed engineering models have more ad-
equate outcomes, they are compute-intensive, while oversimplified
statistical models are less precise. Hybrid methods provide a promising
approach for integrating various data patterns, enhancing forecast-
ing accuracy, and developing more detailed investigations for specific
cases.

4. Methodology

Aligned with essential challenges and features previously men-
tioned, a domestic electricity load forecasting (DELF) framework is
developed for bottom-up estimation of daily household electrical loads
at 15-minute intervals, for both demand and production, from an indi-
vidual device and dwelling to community level, as shown in Fig. 4. The
framework is built on top of a combination of different model types:
(i) two statistical models that behave as key components for initially
stochastically forecasting sub-hourly occupancy profiles and electric
appliance schedules; and (ii) a physics-based model that handles energy
simulations by integrating outcomes of statistical models and local
weather data to estimate the thermal behaviours of electric appliances
and their impacts on the overall thermal performance of dwellings and
systems, then generates final electricity profiles.

Besides, the development of four comprehensive databases included
(i) a dwelling information database dedicated to neighbourhood and
dwelling characteristics; (ii) a household database that includes socio-
demographic and employment characteristics; (iii) an electric load
database that contains the features and ownership of common domes-
tic electrical appliances in the UK; and (iv) historical meteorological
information for key weather variables used in energy simulations for

the community location.
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Fig. 4. A schematic of the domestic electricity load forecasting (DELF) framework. A physics-based model is the core engine that estimates the final electricity demand and
production profiles from an individual device and dwelling to a community level.
-
4.1. Statistical modelling

4.1.1. Occupancy behaviour profiles (OBP)
A statistical occupancy behaviour profile (OBP) model is separately

developed based on a combination of dynamic-stochastic and static-
deterministic modelling approaches by generating stochastic daily sub-
hourly occupancy profiles according to predefined UK occupancy sce-
narios and social features. After a thorough review of the literature,
as an initial step, fifteen representative household working scenarios
are conducted from literature [13,17–20,30,37,38,43,44,59,70,71] to
properly reflect daily occupancy activity patterns in UK dwellings, as
follows:

• Morning-full-time: Unoccupied period usually ranges between
09:00 and 18:00, as family members work full-time or away from
home.

• Morning-part-time: Unoccupied period ranges between 09:00
and 13:00, as family members work part-time or away from home
in the morning.

• Afternoon-full-time: Unoccupied period varies between 15:00
to midnight when occupants are away or work full-time in the
afternoon, such as in service industries.

• Afternoon-part-time: Unoccupied period ranges between 13:00
and 18:00, where occupants work part-time or away from home
in the afternoon.

• Non-working: Dwelling is occupied all day as family members
are retired or not working. However, occupants may be away for
a certain period. In this case, using the same part-time household
scenarios is suggested.

• Morning-full/morning-part: Some occupants are away or work-
ing all day and others are away in the morning. The unoccupied
period ranges between 09:00 and around 13:00, but higher loads
would be after 18:00.

• Morning-full/afternoon-full: Some occupants are away or work-
ing all day and others are away at night. The unoccupied period
ranges between 15:00 and around 18:00.

• Morning-full/afternoon-part: Similar to morning-full/morning-
part households but unoccupied periods are between 13:00 and
18:00.

• Morning-full/non-working: Some occupants are away or work-
ing all day and others are not working. The dwelling is occupied
all day, but higher loads would be after 18:00.
6

• Morning-part/afternoon-part: Some occupants are away or work
ing in the morning and others are away in the afternoon. Unoc-
cupied patterns are similar to morning-full/non-working house-
holds.

• Morning-part/afternoon-full: Some occupants are away or work-
ing in the morning and others are away at night. Unoccupied
patterns are similar to morning-full/afternoon-full households.

• Morning-part/non-working: Dwelling is occupied all day, but
some occupants are away or working in the morning. Higher loads
would be after 13:00.

• Afternoon-part/afternoon-full: Similar to morning-part/
afternoon-full households but lower loads would be after 13:00.

• Afternoon-part/non-working: Similar to morning-full/
non-working households but lower loads would be between 13:00
and 18:00.

• Afternoon-full/non-working: Similar to afternoon-part/
afternoon-full households but lower loads would be after 15:00.

A household database containing social characteristics of the re-
quired community is prepared that includes occupancy distributions,
household types, and employment rates, as well as the predefined rep-
resentative UK household working scenarios. The OBP model follows
four steps to simulate sub-hourly occupancy activity patterns for a
given household, as illustrated in Fig. 5:

1. Assign family type (e.g. a single adult or couple with/without
kids) based on dwelling size (no. of rooms) and household
type from the social information database. Then identify work-
ing patterns (e.g. full-time, part-time, non-working, and mixed)
based on employment rate and profession (general or service
industries).

2. Determine the occupancy behaviours for home and away activi-
ties based on the working pattern from the previous step. The
model uses the predefined representative household working
scenarios to simulate home and away activities. Two full-time
working shifts (morning; 09:00–17:00 and afternoon; 15:00–
23:00) are randomly distributed for households working in ser-
vice industries, while the morning pattern is assigned for other
full-time households.

3. Identify the sleep duration and time of the household according

to get-up and sleep times for the key family member. The
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Fig. 5. The occupancy behaviour profile (OBP) model workflow for generating daily household behaviour scenarios and profiles.
model uses information for the day type (weekday or week-
end/holiday), school (for families with kids) or work starting
times (for families without kids), random time window (1.5–
2.5 h) for personal care (showering/preparing food/dressing,
..etc.), and travelling duration to identify the wake-up time,
then, uses a sleeping duration for the key occupant between
6–9 h [72].

4. Determine home-and-active and partially-/fully-unoccupied pe-
riods based on household working type (full-time, part-time,
non-working, mixed), and the travelling duration.

The performance of the OBP model was validated by comparing
its outcomes to the English household patterns derived from the UK
ToU Survey 2014–15 [59,73]. The model was used to generate daily
occupancy behaviour profiles for dwellings in the survey sample (1407
households) over a continuous year with considerations to the sample’s
household type distributions and employment rates, as illustrated in
Figs. 6 and 7. Then, sub-hourly averages of which are used to create
daily probability profiles. Notice that sleeping patterns are located
between midnight to 6:00 on weekdays (Monday to Friday) with an
hour shift at weekends (Saturday and Sunday) and holidays. Most of
the occupants are away between 8:00–18:00 except for non-workers,
part-time workers, and families with kids.

To evaluate the model’s performance in terms of its ability to
accurately predict the overall UK household occupancy patterns and
peaks, the average profiles of weekday and weekend occupancy were
then compared with the occupancy state probability of the UK ToU
survey. The study focused on three types of patterns: sleeping, home-
and-active, and away, as depicted in Fig. 8. The model was able to
7

capture the daily household behaviour patterns accurately. Sleeping
pattern predictions are highly accurate – thanks to working and school
time patterns – with accuracy estimations of 96% and 95% on both
weekdays and weekends, respectively. Although the model can detect
occupant activity patterns, home-and-active patterns are overestimated
in morning and evening times, as well as unoccupied prediction limi-
tations are due, especially during weekdays, to various unpredictable
occupant behaviours and modelling factors (such as profession, away
frequency and duration, traffic, sickness, absences). The model assumed
that full-time employees follow a 9:00–17:00 schedule on weekdays.
However, employees in the service industry often have diverse working
patterns across weekdays and weekends, including day, afternoon,
evening, or overnight shifts. Due to the limited availability of data and
the complexity of the model, only two working shifts were assumed: a
morning shift from 9:00 to 17:00 and an afternoon shift from 13:00 to
23:00.

4.1.2. Electrical load schedules (ELS)
A statistical electrical load schedule (ELS) model is also separately

designed to accurately estimate daily sub-hourly electrical appliance
power loads and schedules within households. The ELS model takes into
account several features of each household, such as the diversity, own-
ership, and utilisation of electrical appliances, as well as considerations
for occupancy behaviour patterns, as illustrated in Fig. 9.

Firstly, a comprehensive database was established for domestic
electrical load end-uses conducted from the UK household electric-
ity survey [65], BRE Energy follow-up survey report [74], and the
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Fig. 6. Daily average occupancy probability profiles in UK dwellings based on household types.
Fig. 7. Daily average occupancy probability profiles in UK dwellings based on working scenarios.
UK ToU Survey 2014–15 [73,75]. The database includes recent own-
ership rates, utilisation frequencies, and duration for common cold,
wet, hot/cooking, brown/entertainment, and miscellaneous appliances.
Moreover, the electricity consumption and rated power of leading
household electronic products in the UK market are included for each
appliance type [64], as summarised in Table 1.

To ensure the sufficiency of the appliance database, the penetration
of electric appliances is identified across dwellings according to (i) fam-
ily size to indicate the device presence (single-person families are found
to have low ownership rates for dishwashers, clothes dryers, freezers,
or even game consoles) and number (e.g. TVs, computers, laptops
and ICT devices); (ii) the number of rooms to assign device numbers,
such as TVs; and (iii) device ownership to identify the presence of
other devices, such as washing machines for clothes dryers, fridges for
separate freezers, and TVs for game consoles [33,63–65,73,74]. Finally,
an electric appliances ownership scenario is generated by randomly
8

assigning product information from the appliance database for each
device presented in dwellings, as shown in Fig. 10.

The ELS model follows four key steps to generate daily sub-hourly
electrical appliance power loads and schedules for each dwelling, as
illustrated in Fig. 9:

1. Identify the owned electric appliances in each dwelling by us-
ing the dwelling number and the electric appliance ownership
scenario.

2. Determine the operation state (on/off) and duration of each de-
vice based on day type (weekday, weekend/holiday). This infor-
mation is obtained from the developed electrical loads database,
which includes the relevant device usage frequency and duration
rates.

3. Integrate the daily occupancy behaviour profile from the OBP
model. The model allocates the appliance operations based on
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Fig. 8. Daily average occupancy probability profiles in UK dwellings generated by the OBP model compared to the UK ToU survey 2014–15.
Fig. 9. The electrical load schedule (ELS) model workflow for forecasting daily power load profiles of domestic appliances.
the presence and activity of the occupants and the appliance
Time-of-Use probabilities [73].

4. Finally, translate the switch-on periods of the electric appliances
into electrical loads based on the rated power and profile of the
assigned product in the dwelling from the relevant appliance
database.

The reliability and accuracy of the ELS model are validated by
comparing its outcomes with the appliance time-of-use probabilities of
English households derived from the UK ToU Survey 2014–15 [73].
The comparison was performed by aggregating and grouping the ToU
probability profiles generated by the ELS model and the probabilities
obtained from the UK ToU survey according to the common domestic
electricity end-uses, as illustrated in Fig. 11. Although the results
highlight the model’s capabilities in predicting usage periods when
compared to ToU profiles, high usage probabilities of the appliances
9

are indicated during the morning (5:00–8:00) and evening (16:00–
21:00), particularly during weekdays due to the overestimated home-
and-active occupancy patterns generated by the OBP model which limit
the usage of appliances in these periods and have a significant impact
on the ELS model’s performance. The ELS model’s accuracy ranges from
0.5 to 0.9 for individual electricity end-user categories, with an overall
accuracy of approximately 0.6.

4.2. Simulation-based modelling

Heat gains from electric appliances, such as cooking appliances, may
reduce required heating loads in winter and increase summer cooling
loads. Therefore, physics-based modelling is used to estimate the effects
of electric appliance thermal behaviours on overall dwelling thermal
performance and total electricity demand. Recently, several BES tools
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Table 1
Common domestic electrical appliances in the UK dwellings: Ownership rates, utilisation and frequency, annual electricity consumption, and power load averages.

Type Appliance Ownershipa Electric features Utilisation

[%] Annual use Power Frequency Duration [minute]

[kWh] load [W] [week] Lower quartile Upper quartile

Hot/ Electric hob 40 226 6600 5–10 30 180
Cooking Electric oven 70 290 2600 3–8 30 120

Grill 70 13 1550 1–4 10 30
Microwave 93 56 850 3–8 2 10
Kettle 95 167 2750 24 2 5
Toaster 88 22 1600 g∗ 2 8
Coffee maker 48 32 1260 g∗ 5 8

Cold Fridge 90 162 110 d d d

Freezer 53 330 131 d d d

Wet Washing machine 98 166 2000 4.7b 170c 270c

Dishwasher 46 294 1950 3.3b 180c 230c

Cloth dryer 58 394 2400 5 winterb 90c 180c

1 summerb

Brown/ TV_1 97 120 115 4-6he 180 420
Entertainment TV_2 63 115 2he 60 180

TV_3 31 115 1-2he 30 150
TV_4 13 115 1-2he 30 150
Game console 59 48 132 1–5he 30 330
Desktop PC 24 166 192 2–4he 60 300
Laptop 57 29 50 2–4he 60 300
Internet router 87 58 8 d d d

Audiovisualh 57 70 200 4–6he 180 420
ICTi 73 60 60 2–3he 60 240

Miscellaneous Electric shower 35 350 7000 4.4bf 2 15
Care and beautyj 63 30 1600 3–4 10 20
Vacuum cleaner 89 18 260 1–2∗∗ 10 30
Iron 20 31 2600 1–2∗∗ 15 60
Small kitchen appliancek 75 10 800 g∗∗∗ 4 10

a Ownership rates derived from [34,62–66,73–75].
b Data obtained from ‘‘At home with water’’ energy saving trust [76].
c Data derived from common appliance cycles in the UK market [64].
d Appliances that run all time.
e Daily utilisation time period.
f Weekly usage pattern per person.
g No available usage patterns and assigned similar to ∗ electric hobs, ∗∗ care and beauty appliance; and ∗∗∗ grills.
h Devices used with TV sets (e.g. DVD, recorders, home cinema, amplifier, sound system, etc.)
i Information and communication technology (ICT) (e.g. printer, tablet, mobile, etc.)
j E.g. hairdryer, razor, etc.
k E.g. blender, food processor, juicer, etc.
Fig. 10. The distribution of household electric appliance ownership across modelled dwellings.
have been widely used in energy analysis at different scopes and reso-
lutions, such as DOE-2, EnergyPlus, eQUEST, and TRNSYS. EnergyPlus
(E+) is selected to perform as a core engine of the DELF framework for
handling energy simulations due to its popularity, comprehensiveness,
10
and high capabilities for calculating energy and thermal building per-
formance [77–79] such as sub-hourly time steps, user-definable, and
modular systems with heat balance model for zone simulation and
renewable energy systems [80]. E+ requires two inputs to run the
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Fig. 11. Utilisation probability profiles of electrical appliances sorted in UK dwellings as per the UK ToU survey 2014–15 and by the ELS model.
simulation: (i) Input data file (IDF) that contains building information
related to physical characteristics, materials, internal loads, sched-
ules and occupancy; (ii) EnergyPlus weather (EPW) file representing
typical/continuous weather information for the building location.

A database containing dwelling information for the required com-
munity is prepared regarding archetype, orientation, number of rooms,
adjacent buildings, and solar PV and battery penetrations, as would
be discussed in Section 5. Individual IDFs are constructed for each
dwelling archetype and stored in the database to be used in the energy
simulation process. On the other hand, occupancy behaviours, electric
appliance penetration, and operation schedules within each dwelling
are derived from the OBP and ELS models.

4.3. Data- and work-flow

The DELF framework follows nine steps to forecast sub-hourly elec-
trical load profiles, as illustrated in Fig. 12. The framework performs on
a daily basis to estimate day-by-day electricity demand and production
using parallelisation algorithms for dwellings (n) in the community
throughout loops (d) over the course of the simulation period. For each
day d, statistical models and E+ simulations are parallel performed for
n dwellings.

The framework initiates preliminary data preparation:

1. Simulation period included the start day and day numbers are
identified.

2. Local weather data is accommodated from the meteorological
database in an EPW format for the simulation period.

3. Dwelling information is recognised, including archetypes, ori-
entation, adjacent buildings, and solar PVs and batteries (if
available) from the dwelling database according to the dwelling
number.

For each day d in the simulation period loop, steps 4 to 8 are
parallel performed for n dwellings:

4. Occupancy profiles are generated for households in n dwellings
based on the household and day types via the OBP model, as
discussed in Section 4.1.1.

5. Electrical load schedules are identified for all devices in n
dwellings by the ELS model according to occupancy profiles
from the previous step, as discussed in Section 4.1.2.

6. Dwelling energy models are generated through the coupling with
E+ to create unique IDFs for n dwellings from the archetypes
using information from steps 3–5, as discussed in Section 4.2.

7. Energy simulations are dispatched in parallel for n dwelling IDFs
using the updated EPW file.
11
8. Battery charging and discharging loads are mathematically esti-
mated using predicted electricity demand and solar PV profiles
if available in a dwelling.

For the whole simulation period:

9. Final results are generated by combining daily sub-hourly simu-
lation outcomes for each dwelling (from steps 4–8) for (i) house-
hold activity patterns; (ii) electric appliance electricity demand;
(iii) solar PV generation; (iv) battery charging/discharging loads;
(vi) total household electricity demand; (vii) surplus/export elec-
tricity; and (viii) electricity import. Then, results are aggre-
gated at the community level, including: (i) the aggregated
electricity demand, (ii) community PV generation, (iii) RES self-
consumption (PV-BESS), (iv) feed-in electricity, and (v) net elec-
tricity import.

High computational costs and modelling uncertainties are vital
challenges confronting the DELF framework, where several mitigating
strategies are followed;

• To reduce the computational cost, clustering techniques are fol-
lowed to optimise the number of energy models by identifying
dwelling archetypes based on building characteristics. Besides,
parallelisation algorithms are applied to handle initial data pre-
processing, call both statistical OBP and ELS models, run E+
energy simulations, and export final results for different dwellings
in the community.

• Dealing with uncertainties depends on the nature of the underly-
ing variables, such as occupancy patterns, internal load variation,
and outdoor conditions, which may result from discrepancies in
the parameter values used. Therefore, separate statistical OBP and
ELS models are developed to generate reliable daily occupancy
profiles and electrical load schedules and to integrate recent local
weather information.

5. Case study

The DELF framework is tested on a part of a neighbourhood in the
Vale of Glamorgan, around three miles south of Cardiff city centre,
UK in order to evaluate the reliability and effectiveness of the DELF
outcomes. The key information required for modelling is as follows.

5.1. Dwelling characteristics

A transformer substation with three feeding connections is responsi-
ble for distributing the electricity within the study neighbourhood. An
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Fig. 12. A schematic of the data- and work-flow in the DELF framework to forecast sub-hourly domestic electrical load profiles.
Fig. 13. The power network layout for the case study area in the Vale of Glamorgan,
UK.

area of 121 dwellings connected to a single feeder is selected for the
DELF implementation, as marked in Fig. 13. Dwellings are distributed
across terraced houses and blocks of flats. Eleven modelling archetypes
are identified based on the dwelling type, position, room numbers,
and floor area, enabling reliable insights into community-level elec-
tricity demand averages, as listed in Table 2. Dwelling geometries
and material properties are obtained from construction documents and
government building regulations [81].

5.2. Occupancy and schedules

Household types and occupant numbers recognised in the study area
are summarised in Table 3 according to the authority census for the
Vale of Glamorgan [82]. Meanwhile, the employment rate of people
over 16 years is estimated at 75.6%, with around 73% of full-time and
27% of part-time employees [83]. The distribution of households is
modelled as follows:

Firstly, household sizes are estimated based on dwelling floor area
and room numbers following Eq. (1), developed by the Building Re-
search Establishment’s domestic energy model (BREDEM) [70], with
consideration to census data, as detailed in Appendix A.1. Then, house-
hold and working types are stochastically distributed according to
occupant numbers and dwelling features, which are added to the
12
Table 2
Dwelling archetypes in the study area.

Dwelling Archetype Bedroom Area [𝑚2] No. Share [%]

Flat Single aspect 1 45 10 8.3
35% Triple aspect 2 64 10 8.3

Dual aspect 1 47 6 4.9
2 53 18 14.9

House Detached 2 62 1 0.8
65% Terraced 2 62 23 19.0

3 76 19 15.7
4 126 7 5.8
3 62 6 4.9
3 88 7 5.8
4 126 14 11.6

Total 121 100

household database to be used later by the OBP model for generating
occupancy behaviour profiles.

𝑖𝑓 𝑇𝐹𝐴 <= 450, 𝑛 = 0.0365𝑇𝐹𝐴 − 0.00004145𝑇𝐹𝐴2 (1)

where TFA is the total floor area of the dwelling and 𝑛 is the number
of occupants.

5.3. Internal electric loads

The penetration of domestic electric appliances is defined according
to Table 1, while operation schedules are generated by the ELS model,
as discussed in Section 4.1.2. Artificial lighting loads are obtained
from ‘‘CIBSE: Lighting Guide LG09’’ [37,84], while lighting schedules
are identified through energy simulations based on occupancy pat-
terns and outdoor illuminance. Since gas-based boilers are used in
the study neighbourhood for space and water heating, electric power
loads ranging between 15–165 W are only considered for gas-boiler
operation [85] according to occupancy-presence schedules from the
OBP outcomes and the temperature set-points defined by ‘‘CIBSE Guide
A: Environmental Design’’ [86].

5.4. Outdoor condition

Local historical weather data for key variables, namely dry-bulb and
dew-point temperatures, humidity, pressure, wind speed and direction,
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𝐶

Table 3
The household size distribution within the study neighbourhood in terms of sizes and
types according to the 2019 Census.

Occupant Adult Child Typea Share by [%]

Household Occupant

1 1 SA 32.0 32.0

2 2 CA 31.2 34.9
2 1 1 SP 3.7

3 3 MA 6.4 15.4
3 2 1 CP 7.1
3 1 2 SP 1.9

4 4 MA 2.3 12.5
4 2 2 CP 9.5
4 1 3 SP 0.7

5+ 5+ MA 0.5 5.2
5+ 2 2+ CP 4.5
5+ 1 3+ SP 0.2

Total 100 100

a Household types: Single adult (SA), Couple adults (CA), Multiple adults (MA), Single
parent with children (SP), and Couple parent with children (CP).

and precipitation are obtained for one complete year (April 2019–
March 2020) from an automatic weather station installed in the study
area. Meanwhile, cloud cover and global solar radiation for the same
year are retrieved from the Met Office Integrated Data Archive System
(MIDAS) for the nearest meteorological station (Cardiff Airport) [87].

6. Validation and benchmark

Convergence analysis of DELF forecasts is accomplished on an an-
nual, daily, and sub-hourly basis with electricity consumption estimates
derived from (i) the Energy Follow-Up Survey (EFUS) report that con-
tains monitored energy consumption for more than 400 English house-
holds in 2017 [32,63]; and (ii) the sub-national electricity consumption
dataset by the Department for Business, Energy, and Industrial Strategy
(BEIS) — providing electricity information for more than 16 million
domestic metres broken down by postcodes across the UK [29]. At
daily and sub-hourly levels, the median profiles of mean sub-hourly
electrical load profiles for DELF and EFUS estimations are compared,
while annual median forecasts are validated against EFUS and BEIS
median estimations.

6.1. Quality and error metrics

Relative uncertainty (RU) is used for assessing the accuracy and ca-
pabilities of DELF in estimating the annual domestic electricity demand
according to Eq. (2).

𝑅𝑈 =
|

|

𝑦𝑖 − 𝑦𝑖||
𝑦𝑖

(2)

𝑦𝑖 is the national average of annual electricity demand and 𝑦𝑖 is the
estimated annual electricity demand of the 𝑖th dwelling.

Meanwhile, three quality metrics are utilised for evaluating daily
and sub-hourly electricity demand in terms of variability and fluctu-
ations [88,89], as recommended by ASHRAE-Guideline 14 [90], the
Measurement and Verification for Performance-Based Contracts Fed-
eral Energy Projects (M&V) [91], and the International Performance
Measurement and Verification Protocol (IPMVP) [92], including the
normalised mean bias error (NMBE), the coefficient of variation of
the root mean square error (CV-RMSE), and the coefficient of deter-
mination (R2). The acceptable tolerances for each matrix are listed in
Table 4, which are estimated on a monthly, daily, or hourly basis ac-
cording to Eqs. (3), (4), and (5), respectively [93,94]. The discrepancies
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Table 4
Proposed thresholds of quality metrics for calibrating sub-hourly building energy
models. Widely accepted thresholds and their sources for calibrating hourly, daily, and
monthly models are also presented for context.

Interval Guidea KPI

NMBE CV(RMSE) R-squared

Monthly ASHRAE 5 15 >0.75
IPMVP 20 >0.75
M&V 5 15 >0.75

Daily ASHRAE 7 22
Hourly ASHRAE 10 30 >0.75

IPMVP 10–20 >0.75
M&V 10 30 >0.75

Sub-hourly 15 25 >0.75

a (ASHRAE) ASHRAE-Guideline 14 [90]; (IPMVP) International Performance Mea-
surement and Verification Protocol [92]; (M&V) Measurement and Verification for
Performance-Based Contracts Federal Energy Projects [91].

between these thresholds are used to propose further thresholds for the
sub-hourly calibration of building energy models.

𝑁𝑀𝐵𝐸 = 1
�̄�

∑𝑛
𝑖=1(𝑦𝑖 − 𝑦𝑖)
𝑛 − 𝑝

× 100% (3)

𝑉 (𝑅𝑀𝑆𝐸) = 1
�̄�

√

∑𝑛
𝑖=1(𝑦𝑖 − 𝑦𝑖)2

𝑛 − 𝑝
× 100% (4)

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)2
∑𝑛

𝑖=1(𝑦𝑖 − �̄�)2
(5)

𝑦𝑖 is the national average of daily/sub-hourly electricity demand and 𝑦𝑖
is the estimated daily/sub-hourly electricity demand at time 𝑖, 𝑛 is the
total number of data points, �̄� represents the mean of national average
data, and 𝑝 is the number of adjustable model parameters, where 𝑝 = 0
for Eq. (3) and 𝑝 = 1 for Eq. (4).

7. Results and discussions

Multiple daily simulations are executed for 121 individual dwellings
in the study area over one complete year to estimate a baseline of
domestic electricity demand profiles.

7.1. Daily and sub-hourly estimates

Fig. 14 illustrates the daily average profiles of individual dwellings
for electricity demand generated by the DELF framework, as well as
the overall daily average profile for the study area over one year.
Daily domestic electricity demand estimates range between 3.6 and
13.78 kWh, with an average and median of 7.28 and 7.36 kWh, where
the electricity demand varies by household and dwelling characteristics
throughout the 24 h. The results demonstrate that household demand
notably decreases after midnight to early morning (1:00–4:00) when
most residents are sleeping. Most electricity demand is high in the
morning (5:00–9:00) and high-intensive in the evening (17:00–21:00)
when occupants are at home and active, while it settles from late morn-
ing to the afternoon (10:00–15:00) when part or all of the residents
are away. The daily household electricity demand averages range from
17 to 150 Wh, with an average of 76 Wh and a daily minimum and
maximum of 6 Wh and 380 Wh, respectively.

To validate the reliability and accuracy of the DELF approach in
estimating domestic electricity demand, a comparison is conducted
between the DELF results and EFUS sub-hourly electricity consump-
tion profiles [32]. The comparison involved statistical analysis of the
median profile of mean sub-hourly electricity demand profiles for
DELF and EFUS estimations according to dwelling, household, day, and
season types, as illustrated in Fig. 15.

Dwelling characteristics are a key driver of electricity demand
variability among households. Small dwellings, such as flats, have
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Fig. 14. Daily average electricity demand profiles resulted from the DELF framework for 121 dwellings over the course of a year. The dashed line represents the overall daily
average profile in the study area in the UK.
lower daily consumption levels compared to houses. This is likely
due to the limited liveable spaces and number of occupants in these
dwellings, which reduces the demand for electrical appliances and
lighting. Simultaneously, daily electricity demand increases with the
number and type of occupants. The results indicate that single-person
households have lower consumption levels than households with five
or more occupants, highlighting the critical role of occupant behaviour
in influencing household electricity demand.

Daily demand profiles slightly vary between weekdays and week-
ends. During weekends, the morning peak remains homogeneous dur-
ing the day till the evening due to differences in occupancy patterns and
activities between weekdays and weekends. On weekdays, households
tend to have a more regular schedule, with occupants leaving for work
or school during the day. In contrast, on weekends, households tend to
have a more relaxed schedule, in which occupants may stay at home for
a longer time during the day and are away on weekend nights, leading
to increased electricity demand during the day. Meanwhile, outdoor
temperatures and daylight hours are the main catalysts for gas boilers
and artificial lighting usage, which is reflected in the seasonal elec-
tricity demand profiles. Winter months have the highest consumption
levels due to increased heating and artificial lighting operations, while
summer months have the lowest levels due to longer daylight hours and
decreased heating demands.

Overall, DELF demand profiles, as expected, are slightly lower than
EFUS profiles as UK household consumption decreased in 2019. The
DELF framework overestimates evening demand peaks due to over-
estimated home-and-active patterns generated from the OBP model,
especially for single-person families and flats, which limits most elec-
tric appliance usage in the evening, as mentioned previously in Sec-
tion 4.1.1. However, underestimated demand profiles for multiple-
occupant (four and more) families are predicted due to unidentified
small and miscellaneous appliances associated with occupants. Besides,
most of these families in the pilot community are couple parents with
children, which have lower consumption shares per occupant compared
to multiple adult families.

Table 5 summarises statistical indicators for daily DELF and EFUS
electricity demand, as well as the quality metrics. Although daily DELF
demand outcomes are lower than EFUS estimates, sufficient electric-
ity demand estimations are calculated at both daily and sub-hourly
levels, particularly on an overall basis during weekdays, weekends,
and seasons. NMBE and CV-RMSE quality measurements highlight
daily electricity demand estimation capabilities, which range between
68–94% at individual indicator levels and an overall between 84%–
86%. Otherwise, at the sub-hourly level, quality measurements are
satisfactory for both NMBE and CV-RMSE, while R2 varies between 10–
74% with an overall accuracy of 70%, which is due to underestimated
demand profiles. These differences originate from:
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• Demographic characteristic differences between the EFUS survey
sample and the study area in terms of household type distribution,
occupancy behaviours, and employment rates that formulate the
usage of electricity.

• Time gap between the EFUS information and statistics imple-
mented in the framework, namely electrical appliance ownership
rates and power loads.

The findings are consistent with previous research, which demon-
strates that occupancy behaviours and technical and dwelling charac-
teristics all have a significant impact on household electricity consump-
tion. Overall, results show the DELF’s capability for representing the
overall daily and sub-hourly variability and fluctuation of electricity
demand in UK dwellings.

7.2. Annual estimates

At a higher level, the DELF framework facilitates adequate predic-
tions for the annual household electricity demand, as listed in Table 6.
Demand results have a normal distribution ranging between 1312–
5029 kWh, where the average and median are sufficiently similar at
2684 kWh and 2657 kWh, respectively. Although annual demand pre-
dictions are lower than EFUS estimates, the prediction accuracy ranges
between 67.6%–90% at individual dwelling and household levels. At
an aggregated level, the accuracy is 88.6–90.5% and 94.3% compared
with the recent BEIS statistics. However, discrepancies emerged when
compared with the study area estimates (64.2%), which are due to:

• The implementation of national socio-techno information (occu-
pancy behaviours, appliance ownership, and utilisation time-of-
use) with local authority (household distributions) statistics.

• The study area was developed in 2013 with energy-efficient
dwellings, where electric appliances and systems are more effi-
cient than found in typical UK households.

7.3. DELF effectiveness and challenges

Further investigations are conducted to evaluate the effectiveness
of the proposed DELF framework for domestic electricity forecasting
compared to conventional practices in building energy simulations.
A comparison is accomplished between the DELF outcomes and the
results of using the typical meteorological year (TMY) for the nearest
location at Cardiff Airport [95] and the standard domestic UK occu-
pancy patterns from the BRE Domestic Energy Model (BREDEM) [70]
that provides fixed sleeping patterns between midnight and 6:00 on
weekdays and weekends, and occupants are only away between 9:00
and 16:00 on weekdays [70], as shown in Fig. 16.

The use of fixed occupancy patterns notably influences the over-
all daily electricity demand profiles, resulting in unreliable profiles



Applied Energy 355 (2024) 122342A. Amin and M. Mourshed
Fig. 15. A comparison between daily electricity demand profiles in UK dwellings as per the EFUS and by the DELF based on dwelling, household, day, and season types. The
median of mean sub-hourly profiles is used to create daily demand profiles.
compared to the monitored EFUS consumption profiles, as shown in
Fig. 17. Conventional simulation practices overestimate daily electricity
demand compared to DELF forecasts by around 15%, with higher peaks
during the morning (6:00–8:00) and evening (17:00–19:00) by around
15
49% and 28%, respectively. However, during the day, electricity de-
mand is lower by 45%. On the other hand, conventional practices
provide slightly higher annual electricity demand by around 10%, as
illustrated in Fig. 18.
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Table 5
Daily electricity demand in UK dwellings generated by DELF framework and from the EFUS report in terms of dwelling, household, day, and
season types. Daily and sub-hourly error measurements for quality metrics are also listed.

Indicator Demanda[kWh] Quality metrics

EFUS DELF Daily Sub-hourly

NMBE CV-RMSE NMBE CV-RMSE R2

Dwelling
Flat 4.73 6.17 −16.2 19.17 −30.53 44.82 −1.09
House 8.59 7.5 10.94 12.9 12.68 20.06 0.67

Household size
1 5.15 4.39 14.33 17.53 14.84 36.5 −0.46
2 8.04 6.99 19.78 21.28 13.02 19.73 0.69
3 9.46 7.58 15.7 17.64 19.85 24.68 0.53
4 10.89 7.61 30.3 30.84 30.43 32.49 0.36
5+ 13.7 9.17 30.83 31.89 33.06 36.32 0.1

Day
Weekday 7.72 7.03 11.27 12.1 8.96 20.92 0.62
Weekend 7.74 7.1 12.22 16.22 8.28 22.24 0.60

Season
Spring 7.73 6.9 11.84 12.76 10.76 18.86 0.68
Summer 7.05 6.73 5.98 7.53 4.47 23.75 0.31
Autumn 7.85 7.0 12.0 12.84 10.83 18.5 0.74
Winter 8.64 7.1 18.31 18.78 17.78 22.66 0.67

Overall 7.94 7.3 13.98 15.47 11.45 18.97 0.70

a Daily electricity demand for the median of mean sub-hourly electricity demand profiles.
Fig. 16. A comparison between daily average occupancy probability profiles in UK dwellings by the DELF framework, the BRE Domestic Energy Model (BREDEM), and the UK
ToU survey 2014–15.
Fig. 17. Daily average electricity demand profiles in UK dwellings by the DELF
framework compared to the use of conventional practices.

The comparison highlights the importance of accurate modelling
of occupancy patterns and the limitations of using fixed occupancy
patterns. Overall, the outcomes underline the significant influences of
demographic, economic, and technological attributes for each com-
munity on electricity demand at different aggregation levels. Besides,
the DELF capability for synthesising simulation scenarios allows the
16
Fig. 18. Annual UK household electricity demand estimations by the DELF framework
compared to the use of conventional practices.

framework scalability in future implementations to a city, region, or
national level through applying clustering techniques according to the
five factors affecting urban energy modelling – from a broad to a
detailed scale – in order to identify: (i) climate diversities and zones;
(ii) urban characteristics for each climate zone; (iii) socio-economic
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Table 6
Statistical analysis of annual electricity demand in UK dwellings generated by DELF framework compared to monitored usage estimates derived
from the EFUS reports and BEIS datasets.

Indicator Annual electricity demand [kWh] RUa

Estimates DELF result [%]

Mean Median Minimum Maximum Mean Median

Individual level (EFUS)
Dwelling type
Flat 2829 1726 1312 3664 2267 2105 22.0
House 4153 3135 1517 5029 2923 2820 10.0
Household size
1 1880 1312 2657 1757 1628 13.4
2 2935 1553 4191 2644 2639 10.1
3 3453 1517 4646 2935 2939 14.9
4 3975 1816 5024 2948 2760 30.6
5+ 5000 1990 5029 3492 3379 32.4

Overall UK
EFUS 2017 3500 3000 1312 5029 2684 2657 11.4
BEIS 2017 3729 2937 1312 5029 2684 2657 9.5
BEIS 2019 3578 2817 1312 5029 2684 2657 5.7

Study areab

BEIS 2019 2182 1957 1312 5029 2684 2657 35.8

a According to annual median consumption values.
b For postcodes located in the study area.
-

V
t

nd technological features of urban areas; and finally (iv) dwelling
rchetypes among each community.

. Conclusion

This research presented the development of a hybrid bottom-up
tochastic domestic electrical loads framework for estimating UK sub-
ourly household electricity demand and production — from an in-
ividual dwelling to a community level. The framework combined
etailed building simulation and statistical models for stochastically
orecasting household electricity demand. The developed model ap-
ropriately reflected the daily demand variability and fluctuation in
K dwellings by considering key factors influencing household elec-

ricity consumption, including demographic characteristics, occupancy
ehaviours, and the diversity, features, ownership, and utilisation pat-
erns of domestic electric appliances.

The study addressed existing challenges facing domestic energy
odelling that result from unreliable and imprecise inputs related

o socio-technical attributes and local outdoor conditions, or using
ver-simplified methods. To overcome modelling uncertainties from
hese challenges, integrated statistical models were developed to (i)
tochastically generate daily occupancy behaviour patterns for common
ousehold types, and (ii) forecast various daily household electrical
oad schedules based on the national reports and statistics of the UK.
n addition, the most recent annual local weather information was
ntegrated. To address the lack of reliable energy calibration stan-
ards, the research examined and proposed additional permissible error
hresholds for the calibration of the sub-hourly model.

The effectiveness of the framework was assessed using a community
n Wales, UK, and validated on annual, daily, and sub-hourly time-
rames with monitored electricity usage averages derived from the UK
nergy Follow-Up Survey and the sub-national electricity consumption
atasets. The framework exhibited a strong predictive capacity, achiev-
ng estimations as high as 94% for total annual electricity demand.
urthermore, the outcomes accurately captured the day-to-day vari-
tions and sub-hourly fluctuations in electricity consumption at both
ndividual household and aggregated levels, achieving a level of accu-
acy ranging from 60% to more than 90%. In contrast to conventional
imulation methods that rely on standard weather data and typical
ccupancy patterns, the newly developed framework facilitated the
reation of reliable daily demand profiles. Conventional practices often
verestimated annual and daily electricity demand by approximately
17

0% and 15%, and sub-hourly peaks by up to 50%.
Overall, the developed framework demonstrates an accurate, stochas
tic, comprehensive, and robust method for estimating and evaluating
domestic electricity demand in the UK to support designers, engineers,
and decision-makers at multiple levels of determining energy supply
requirements, planning and managing utility grids, energy dispatching,
trading applications, and demand response schemes.
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Appendix

A.1. Demographic and occupancy information

Table A.1 details occupancy number estimation within the study
area based on dwelling characteristics according to the BREDEM model.
It also shows household type distribution with regard to occupants, and
dwelling characteristics.
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Table A.1
Occupancy number estimations and family type distribution within the study area.

Dwelling features Occupancy DELF estimates

Type Room Area No. BREa Occupancy Share [%] Familyb

[m2] Sub Total

Flat 1 45 10 1.6 1 8 31.4 SA
53 6 1.8 1 5 SA

2 47 6 1.6 1 5 SA
53 16 1.8 1 13 SA

53 2 1.8 2 2 36.4 SP
64 4 2.2 2 3 SP

House 2 62 24 2.1 2 20 CA
3 62 6 2.1 2 5 CA

76 8 2.5 2 7 CA

76 8 2.5 3 7 14.6 MA
76 2 2.5 3 2 SP
88 8 2.9 3 7 CP

4 126 3 3.9 4 2 12.4 MA
126 12 3.9 4 10 CP

126 6 3.9 5+ 5 5 CP

Total 121 100 100

a Calculations are based on the occupancy estimation equation from Building Research Establishment’s domestic energy model (BREDEM) [70].
b Family types: Single adult (SA), Couple adults (CA), Multiple adults (MA), Single parent with children (SP), and Couple parent with children
(CP).
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