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Gender-affirming hormone replacement therapy (gaHRT) is an important step for

many in the gender diverse community, associated with increased quality-of-life

and lower self-reported scores of depression and anxiety. However, considering

the interactions that the involved sex hormones have on vasculature (with

oestrogen and testosterone demonstrating vasodilatory and vasoconstricting

properties, respectively), it is important for transgender healthcare research to

examine how the manipulation of these hormones interact with cerebrovascular

structure and functioning. There is a stark lack of research in this area. This

mini-review outlines the research suggesting a vascular impact of these sex

hormones using evidence from a range of cohorts (e.g., menopause, polycystic

ovary syndrome) and discusses the work that has been done into cerebrovascular

changes following gaHRT. Finally, recommendations for future research into

cerebrovascular health in transgender cohorts following gaHRT are outlined.
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Introduction

Transgender people are individuals whose gender identity does not align with that
assigned to them at birth. While exact prevalence rates of gender diverse individuals are
difficult to determine due to the variety of criteria and methods used (Collin et al., 2016),
the self-reported rate is ∼0.1–2%, depending on geographical location (Goodman et al.,
2019; Spizzirri et al., 2021). Despite this, it represents an under-researched population. For
example, only 0.08% of clinical trials published between January 2018 and July 2022 reported
transgender participation (Round et al., 2023).

Transgender people may take gender-affirming hormone replacement therapy (gaHRT)
to aid in their gender transition. This forms an essential part of people’s transition (Mohamed
and Hunter, 2018), improving anxiety and depression and alleviating symptoms of gender
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dysphoria (see Table 1 for definitions; Colizzi et al., 2013; Baker
et al., 2021; Chaovanalikit et al., 2022). To better understand and
serve transgender health, it is important to consider the impact of
gaHRT treatment.

This review focuses on the influence of gaHRT in transgender
individuals on cerebrovascular function and health. Measures
of cerebrovascular function include cerebral blood flow (CBF),
blood-brain barrier function, cerebral blood volume (CBV),
cerebrovascular reactivity (CVR), and cerebral vessel pulsatility.
The brain has a high metabolic demand, and the supporting
vasculature is essential for maintaining cognitive function and
brain health (Iadecola, 2017; Zimmerman et al., 2021). As
hormones can have large vascular effects, it is vitally important to
investigate how gaHRT influences cerebrovascular health to inform
transgender healthcare.

Gender-affirming hormone
replacement therapy

There are two broad categories of gaHRT. Masculinising
gaHRT introduces exogenous testosterone to maximise virilization
(e.g., deepening of the voice, changes in musculature, hair
growth) and to suppress female secondary sex characteristics.
A range of administration routes are available (oral, subcutaneous,
transdermal) to achieve blood concentrations of 300–1,000 ng/dL
(after which, the goal becomes maintenance; Unger, 2016).
While the early presentation of masculinising effects is dose-
dependent, different dosages appear equally effective after six-
months (Nakamura et al., 2013).

TABLE 1 List of definitions.

Definitions

gaHRT Gender-affirming hormone replacement therapy—a
therapy taken as part of a gender transition that aids in
feminising or masculinising bodies to align with their
gender identity.
It should be noted that this can be taken by
transgender men, transgender women, or non-binary
individuals who may or may not identify with the
descriptor “transgender.”

Transgender person A person whose gender identity does not align with
that assigned to them at birth.

Cisgender person A person whose gender identity does align with that
assigned to them at birth.

Gender dysphoria A feeling of intense distress that can occur when an
individual’s biological sex at birth does not align with
their gender identity. This doesn’t occur in all
transgender individuals but can be associated with
anxiety and depression.

Gender euphoria In contrast to the above, this is the feeling of joy or
“rightness” when one’s presentation aligns with their
gender identity.

CBF Cerebral blood flow

CBV Cerebral blood volume

CVR Cerebrovascular reactivity

Feminising gaHRT involves the delivery of exogenous
oestrogen which changes fat distribution and reduces male pattern
hair growth (Giltay and Gooren, 2000). This suppresses androgen
production (Dittrich et al., 2005) and is generally prescribed
with additional anti-androgenic therapy. Different administration
routes are available (Oral, subcutaneous, transdermal) to achieve
the blood oestradiol target level of 100–200 pg/mL (Unger, 2016).
The addition of progesterone to gaHRT treatment regimens, to
better represent female hormonal profiles, may be beneficial for
feminising outcomes, but it’s efficiency remains under-researched
(Deutsch, 2016; Prior, 2019; Milionis et al., 2022). In both
masculinising and feminising cases, the exact form and dosage
of gaHRT can and should be tailored to an individual and their
transition goals.

Gender-affirming hormone replacement therapy (gaHRT)
benefits wellbeing and health outcomes (e.g., depression, anxiety,
quality-of-life, self-reported and physiological stress) equally across
gender identity, age and psychological attachment style (e.g.,
Colizzi et al., 2013; Baker et al., 2021; Chaovanalikit et al., 2022).

It is important to consider how an altered hormonal profile will
influence cerebral vasculature structure and function. Generalising
from other populations is inadequate; transgender individuals may
present with different healthy reference levels than their cisgender
counterparts (e.g., Roberts et al., 2014, found that “normal”
levels of certain clinical measurands, important for diagnosis and
monitoring, was different following gaHRT compared to cisgender
individuals of either sex) and interaction with other factors (e.g., age
of onset, length of use, previous hormonal history, environmental
stress) may lead to altered patterns of risk.

The influence of sex hormones on
cerebrovascular health—evidence
from other cohorts

The importance of investigating cerebrovascular health after
hormonal changes can be highlighted by examining other cohorts.
Although these results may not generalise, they demonstrate that
sex hormones influence cerebrovascular health, suggesting that
effects may be expected following gaHRT.

Oestrogen and progesterone

Oestrogen receptors are found throughout the brain (Shughrue
and Merchenthaler, 2001; Milner et al., 2010; Mitterling et al.,
2010) and the hormone is considered to be vascular- and neuro-
protective. Cisgender women have a lower risk of cardiovascular
and cerebrovascular disease compared to cisgender men up
until menopause, at which point their risk significantly increases
(Hayward et al., 2000; Aggarwal et al., 2018). Earlier menarche
and longer reproductive lifespan are also associated with lower
risk of stroke, suggesting a beneficial influence of lifetime exposure
to oestrogen on the cerebrovascular system [Chen et al., 2023;
relatedly, lifetime oestrogen exposure also shows associations
with better memory score and larger medial temporal cortical
volumes (Steventon et al., 2023)]. Animal models demonstrate that
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oestrogen increases vasodilation (Tostes et al., 2003), decreases
pathological vasoreactivity (Wassmann et al., 2001), and increases
CBF and angiogenesis (Robison et al., 2019). Additionally, it
suppresses inflammatory responses and increases perfusion after
ischemic injury (Hurn et al., 1995; Santizo et al., 2002). This
vascular-protective effect is present in both male and female animal
models (Roof and Hall, 2000), though may be age-dependant (Deer
and Stallone, 2016).

The influence of progesterone on the cerebrovascular system is
less clear, with conflicting results on inflammation. For example,
Gibson et al. (2005) reports that administration of progesterone
suppressed aspects of the post-injury inflammatory response, while
Sunday et al. (2006) found that the administration of progesterone
exacerbated the inflammatory response in ovariectomized rats.
However, there have been multiple reports of progesterone having
a beneficial impact on recovery from brain injury (Chen et al., 2011,
2021; Gibson et al., 2011) and facilitating vascular reactivity (Cunha
et al., 2020; da Costa et al., 2021).

Due to relatively predictable lifetime changes in oestrogen
and progesterone, there are several informative cohorts
for investigating their combined influence on the human
cerebrovascular system. By assessing cisgender women multiple
times across a menstrual cycle, oestrogen and progesterone
were found to have independent, region-specific influences
on CBF (Cote et al., 2021). Fluctuations in progesterone and
oestrogen/progesterone ratio impact CVR (Debert et al., 2012;
Skinner et al., 2023). While some studies report reduced CBF
and CVR following menopause, high-quality evidence and
consistent menopausal criteria are lacking (Ruediger et al., 2021).
A confounding factor is the impact of age and physical fitness
at menopause age on cerebrovascular health (Chen et al., 2023;
Moir et al., 2023; Ruediger et al., 2023). A recent systematic
review of the influence of sex hormones on cerebrovascular
function in human subjects suggested that, though there were
often differences between high and low hormonal states, the
directions were not consistent (Skinner et al., 2021). A meta-
analysis indicated that HRT improves pulsatility but not CBF,
though notable heterogeneity exists (Skinner et al., 2021). More
research is needed to illustrate the influence of oestrogen and
progesterone on cerebrovascular function. While a vascular impact
is strongly suggested, mainly by animal research, the interactions
are complex and may be influenced by factors unique to each
cohort (e.g., current age, age of menarche, chronic vs. acute
exposure/deprivation and history of HRT use).

Testosterone

Testosterone is a prominent circulating androgen affecting
receptors throughout the neural system (Sheridan, 1983; Sarkey
et al., 2008), with its potency linked to genetic factors (Chamberlain
et al., 1994; Tirabassi et al., 2013). Animal model and isolated cell
culture studies suggest that androgen levels improve angiogenesis
(Louissaint et al., 2002; Yoshida et al., 2013), though this
effect is diminished with age (Lecce et al., 2014). Testosterone
appears to influence pathways that mediate CBF, with chronic
testosterone deprivation/exposure in male animal models eliciting
vasodilation/vasoconstriction of cerebral vessels, respectively

(Geary et al., 2000; Gonzales et al., 2004, 2005; Abi-Ghanem et al.,
2020). This vasoconstrictive influence may explain cisgender
sex differences in CBF, which is higher in women than men
(e.g., Rodriguez et al., 1988; Aanerud et al., 2017). However,
acute testosterone administration in other vascular beds elicits
vasodilation (Yue et al., 1995; Deenadayalu et al., 2001; Tep-
areenan et al., 2002). At a cellular level, testosterone facilitates
vasodilatory and protective mechanisms (Deenadayalu et al., 2001;
Perusquía, 2003; Perusquía et al., 2015). Testosterone’s influence
may also be mediated by sex, possibly due to hormonal history or
other sex-associated differences in vascular physiology. Sieveking
et al. (2010) found that androgen administration increased
angiogenesis only in male mice models. Additionally, testosterone
levels appear to have opposite actions on ET-1 (a vasoconstrictor)
in cisgender vs. transgender men (Polderman et al., 1993; Kumanov
et al., 2007; Abi-Ghanem et al., 2020). While testosterone appears
to have a vasoconstricting influence on the vascular system, the
effect is mediated by multiple other factors (such as sex and age),
and it may facilitate vasodilation in certain vessels.

Testosterone’s influence on cerebrovasculature in cisgender
women or following gaHRT is less well known. An important
cohort for investigating this is patients with polycystic ovary
syndrome (PCOS), a condition commonly characterised by
hyperandrogenism, irregular/missing menstruation, and ovarian
cysts. Excess testosterone increases systemic arterial stiffness in
PCOS patients compared to controls (Kilic et al., 2021) but the
influence on cerebrovascular function is vastly under-researched.
Acar et al. (2005) reported no statistically significant difference in
CBV using colour duplex sonography, though blood velocity in the
vertebral artery was significantly reduced in PCOS patients. Direct
comparisons to testosterone level were not made. The PCOS cohort
represents an excellent opportunity to investigate testosterone’s
influence on the cerebrovascular system.

It is noteworthy that testosterone can be locally metabolised
into oestrogens, making each hormone’s influence difficult to
separate. For example, estrone level, a form of oestrogen, is elevated
in PCOS patients (DeVane et al., 1975).

Vascular research in transgender
populations undergoing gaHRT

Research specifically investigating cerebrovascular health in
transgender populations undergoing gaHRT has focused on disease
outcomes rather than function (e.g., CBF, CVR). There exists
an increased risk of ischemic stroke following feminising gaHRT
(Connelly et al., 2019; Pribish and Iwamoto, 2023), though the
low event rate present in younger cohorts limits interpretation
(e.g., of 966 transgender women, five died from stroke; Asscheman
et al., 2011). The use of an outdated oral form of gaHRT
(ethinyl oestradiol) in these studies also limits the present-day
generalisability of the results (Asscheman et al., 2011; Irwig,
2018; Pribish and Iwamoto, 2023). Current, but not past, ethinyl
oestradiol use is linked to cardiovascular events (Asscheman
et al., 2011). However, ischemic stroke risk is increased in
transgender women, even when excluding ethinyl oestradiol use
(Getahun et al., 2018). Notably, the cerebrovascular event risk was
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unchanged initially and only increased after the 6 year follow-
up (Getahun et al., 2018), which highlights the importance of
longitudinal comparisons. While Getahun et al. (2018) found
elevated cerebrovascular disease risk in transgender women
compared to cisgender women (but not cisgender men), others
report the opposite pattern (Wierckx et al., 2013) or no difference at
all (Meyer et al., 2017), suggesting unappreciated mediating factors.
Cerebrovascular disease risk is not elevated with masculinising
gaHRT (Wierckx et al., 2013; Getahun et al., 2018; Connelly et al.,
2019) and in fact migraine risk (related to vasculature) appears
lower (Todd et al., 2023). In terms of broader cardiovascular disease
outcomes and risk factors, a similar pattern is seen, with elevated
risk in transgender women but not transgender men (Connelly
et al., 2019; Kulprachakarn et al., 2020; Pribish and Iwamoto,
2023). However, this is not always observed (Martinez et al., 2023)
and an improvement in vascular function following feminising
gaHRT has been reported (New et al., 1997, 2000). Importantly,
Karalexi et al. (2022) reported that cardiovascular disease incidence
in gender diverse populations was similar regardless of gaHRT use.
Increased disease incidence may therefore be due to healthcare
barriers (Safer et al., 2016) and other environmental factors
(e.g., minority stress) rather than gaHRT. Clearly, more work is
needed to understand risk following gaHRT, especially following
feminising gaHRT, which mirrors the mixed evidence of vascular
benefits following post-menopausal HRT despite protective effects
of oestrogen (Boardman et al., 2015). More research into specific
cerebrovascular functions may help in understanding this complex
relationship.

Evidence for changes in cerebral vessels can also be inferred
from related work. A recent review describes twenty transgender
male patients who had been undergoing gaHRT and presented
with intracranial hypertension, a condition characterised by
increased intracranial pressure (ICP). They suggest an association
with cerebral spinal fluid (CSF) hypoandrogenism (Kamboj
et al., 2023). Chronic testosterone treatment in lean rat models
led to an increase in ICP, potentially due to increased CSF
secretion rate (Wardman et al., 2023). ICP itself is associated
with vascular pulsatility, an index of vascular health (Hamzah
et al., 2020). Increased vascular pulsatility is associated with
damage to cerebrovascular microstructure and cognition due
to pulsatile stress reaching the brain (Singer et al., 2014;
Palta et al., 2019). If cerebrovascular pulsatility is altered by
testosterone-based gaHRT, this may be an important area for
monitoring/consideration. Cunha et al. (2023) found that arterial
stiffness (measured using carotid–femoral pulse wave velocity) was
significantly higher in transgender men compared to cisgender
men and women, suggesting increased aortic stiffness and thus
increased levels of vascular pulsatility. Within the transgender
men group, there was a significant positive correlation between
gaHRT duration (which ranged from 4 to 32 years) and pulsatility.
Such studies provide important insights into how masculinising
gaHRT impact vascular haemodynamics. Future studies will shed
light on how this translates to cerebral vasculature and brain
health.

A small number of studies have investigated the retina, the
layer of neural tissue in the anterior eye that supports vision.
The retina is of interest because it can be more directly imaged
non-invasively than the cerebrovasculature. Changes in retinal
vasculature and structure are associated with many vascular

disorders (e.g., Sairenchi et al., 2011; Hanff et al., 2014; Moss, 2015;
Wiseman et al., 2023). Measuring blood flow in the ophthalmic
artery using Colour Doppler Ultrasonograph, Alpogan et al. (2021)
observed no difference between transgender men, cisgender men,
and cisgender women. However, the systole/diastole flow ratio
significantly correlated with circulating testosterone level. Using
Optical Coherence Tomography Angiography (OCT-A), Tüten
et al. (2022) found that retinal vessel density (VD) was lower
across multiple regions in transgender men compared to cisgender
women controls, reaching statistical significance in the inferior
region and for radial peripapillary capillary VD. These studies
provide important information on the influence of exogenous
testosterone on ocular health and may suggest wider vascular
changes. However, without transgender women participants as
a comparison, conclusions about whether it is the testosterone
per se or just hormonal profile changes are difficult to draw.
For example, while oestrogen is reported to be protective of
vascular health (e.g., Parker et al., 2009; Burns and Korach,
2012; Iorga et al., 2017; Novella et al., 2019; Shin et al., 2022),
oestrogen (or combined oestrogen and progesterone) HRT does not
conclusively prevent cardiovascular disease in post-menopausal
women (Boardman et al., 2015). Overall, the retina provides a
unique window into general cerebrovascular health and specifically
neural microvasculature.

In conclusion, cerebrovascular function changes in transgender
populations taking gaHRT. However, the research into disease
outcomes and risk paints a complex picture that is not fully
understood. Cerebrovascular function needs to be fully investigated
against detailed hormonal profiles.

Recommendations

More research is needed in this area. Cohort-relevant
factors such as age of onset, previous hormonal profile, length
of use, and environmental stresses must be considered. In
particular, longitudinal studies with long-term follow ups would
be beneficial as gaHRT may be taken for multiple decades
(Mohamed and Hunter, 2018). Though such studies represent
a significant investment, they are essential in determining how
cerebrovascular health is affected by long-term hormonal use.
Additionally, cross-sectional studies should take into account
many confounding factors that will vary between transgender and
cisgender participants, such as chronic stress, lifestyle, level of
dysphoria, external support systems, and traumatic experiences.
Transgender cohorts represent a marginalised group and face
significant social stressors in their day-to-day life (Harrison et al.,
2012; Valentine and Shipherd, 2018; Chodzen et al., 2019; Lin
et al., 2021; Wilson et al., 2023), which themselves are associated
with cerebrovascular function changes (Endo et al., 1999; Lee
et al., 2015; Burrage et al., 2018). Consideration of such factors
is also important during longitudinal studies, as reported levels
of psychological wellbeing improve over the course of gaHRT
(e.g., Chaovanalikit et al., 2022). Well-controlled and considered
longitudinal studies are essential in determining the influence of
gaHRT on cerebrovascular health.

Older adults undergoing gaHRT are a particularly under-
researched subgroup. The cerebrovascular benefits/risks in older
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people who commenced gaHRT at a young age may present
very differently to those who start gaHRT in later life, especially
considering age-related comorbidities. Qualitative research into
transgender women aged 20–79 years old (96% of which were
taking gaHRT) suggest that, although it is an “essential” part of
their transition, they have concerns about the long-term effects of
gaHRT (Mohamed and Hunter, 2018). Research should consider
how to best serve the community and address such concerns
(Minalga et al., 2022).

It should also be noted that many studies involving transgender
individuals use relatively small sample sizes and convenience
sampling. They therefore may mostly consist of a narrow range
of demographics (e.g., university educated, secure socioeconomic
status). To recruit a broader and more representative sample,
the transgender community must be actively engaged with.
Some of the keys barriers for research participation reported
by transgender persons were “lack of trust in research” and
“lack of knowledge of opportunities” (Owen-Smith et al., 2016).
There are also more cohort-specific worries that should be
considered for the safety and comfort of participants, such as
the risk of being “outed” (i.e., having their identity shared or
obvious to external individuals; Owen-Smith et al., 2016). This
particular point could be addressed by, for example, highlighting
any relevant signage, being clear about the study location, and
outlining anonymisation practises in participant information
sheets. Active engagement and public awareness campaigns will
be essential for increasing diverse participation and rebuilding
trust, as well as gaining input from transgender individuals at
the study design stage. Larger and more representative samples
will allow for more confident and relevant conclusions to be
drawn.

The language of research into the general population can
be easily adjusted to be more inclusive to the gender-diverse
community and therefore produce more representative results. For
example, allowing participants to define their own gender rather
than select from a binary response, provides a much richer and
more representative dataset (Ghorbanian et al., 2022). Additionally,
adjusting the language of calls for participation, surveys and study
documents may help in making research more approachable to
a wider variety of participants, reducing bias and improving the
accessibility/inclusivity of participation pools.

Finally, adequately controlled studies are important. For
example, some studies found significant differences when
comparing transgender women to cisgender women but not
cisgender men (Getahun et al., 2018), while others report the
opposite pattern (Wierckx et al., 2013). Studies that only include
one cisgender control group may be missing a larger pattern.
Additionally, by including both feminising and masculinising
gaHRT groups, researchers can make better inferences about
whether fluctuations in an outcome metric is due to a particular
hormone per se, or just the act of altering hormonal profiles in
general.

Conclusion

Significant progress is needed to determine the impact of
gaHRT on transgender participants’ cerebrovascular health to

uncover mechanisms behind cerebrovascular or neurodegenerative
disease risk (Brady et al., 2023). Such studies may highlight
subtle risk patterns and will uncover how sex hormones
interact with the cerebrovascular system in general populations.
It is important to investigate cerebral vessels specifically, as
the vasodilatory properties of oestrogen can vary by vascular
bed location (Opgaard et al., 2002). In the future, long-term
longitudinal research with considered controls and inclusive
language will allow for more comprehensive, informative, and
representative conclusions to be drawn. As mentioned by
Pribish and Iwamoto (2023), work suggesting a vascular risk
should not dissuade people from gaHRT use, but instead
direct patient education and management to vascular health,
highlighting modifiable risk factors before and during gaHRT
use.

Author contributions

MW: Conceptualization, Writing – original draft. KM:
Conceptualization, Writing – review and editing.

Funding

The authors declare financial support was received for the
research, authorship, and/or publication of this article. This
research was funded in whole, or in part, by the Wellcome Trust
(WT224267). For the purpose of open access, the author has
applied a CC BY public copyright license to any Author Accepted
Manuscript version arising from this submission.

Acknowledgements

We would like to thank Wellcome Trust for their help in
publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Frontiers in Human Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1303871
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1303871 November 16, 2023 Time: 18:24 # 6

Wright and Murphy 10.3389/fnhum.2023.1303871

References

Aanerud, J., Borghammer, P., Rodell, A., Jónsdottir, K. Y., and Gjedde, A. (2017).
Sex differences of human cortical blood flow and energy metabolism. J. Cereb. Blood
Flow Metab. 37, 2433–2440. doi: 10.1177/0271678X16668536

Abi-Ghanem, C., Robison, L. S., and Zuloaga, K. L. (2020). Androgens’ effects on
cerebrovascular function in health and disease. Biol. Sex Differ. 11:35. doi: 10.1186/
s13293-020-00309-4
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