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Abstract Building energy consumption prediction is an essential foundation for energy supply-demand 11 

regulation. Among them, plug-load energy consumption in buildings accounts for approximately 12-50% of 12 

the total energy consumption, making plug-load energy consumption prediction crucial. However, accurately 13 

predicting plug-load electricity consumption is challenging due to the influence of random human behaviors. 14 

This study presents a comprehensive plug-load electricity consumption prediction system. First, the 15 

conventional input system based on influence factors and the novel input system based on occupant behavior 16 

probability were proposed. Second, long short-term memory (LSTM) and its improvement (Bi-LSTM) are 17 

used as the fundamental algorithm. Finally, the whale algorithm (WO), a swarm intelligent algorithm, is 18 

utilized to improve the prediction accuracy. The results show that the prediction system proposed performs 19 

better with R increased by 0.70%–23.97%, MAPE decreased by 5.33%–40.92%, and CV-RMSE decreased 20 

by 1.10%–21.08%, compared to the traditional prediction system. The combination of two input systems 21 

and four algorithms can accommodate different prediction accuracy requirements, data collection conditions, 22 

building functions, and time requirements. 23 

 24 

Keywords: Building plug load, plug-load electricity consumption prediction, socket-related occupant 25 

behavior, bidirectional long short-term memory, swarm intelligent optimization 26 

  27 

Highlights: 28 

1. A novel building plug-load electricity consumption prediction system was proposed. 29 

2. The definition and classification of building plug loads were proposed. 30 

3. The enhanced input system based on occupant behavior probability was proposed. 31 

4. The optimized algorithms based on the Bi module and WO module were verified. 32 

5. The optimal combination of input system and training algorithms was proposed. 33 

  34 
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1 Introduction  35 

1.1 Background  36 

The escalating global energy crisis coupled with mounting environmental concerns has thrust the need 37 

for sustainable cities and societies into the spotlight. Buildings significantly contribute to this issue, 38 

accounting for more than one-third of total global energy consumption [1]. In the United States and the 39 

European Union, the percentage of building energy consumption in total energy consumption exceeds 40% 40 
[2], and in China, it constitutes 45.5% of the national energy consumption [3]. These figures highlight the 41 

pressing need to control building energy consumption and mitigate carbon emissions. Several strategies have 42 

been proposed to address this issue including the promotion of distributed energy systems [4], carbon trading 43 

mechanisms [5], and smart city construction [6] which needs accurate and online energy consumption 44 

predictions. Central to these strategies is the need for accurate real-time energy consumption predictions. 45 

Therefore, in recent years, forecasting the electricity consumption prediction of total building, air-46 

conditioning, and plug loads has gained increasing importance. And the plug loads in this study encompass 47 

all electronic equipment plugged into wall sockets [8] including electricity consumption from sockets, 48 

lighting, and split air conditionings (ACs). In addition to this, the importance of plug-load energy 49 

consumption forecasting is twofold. 50 

On the one hand, plug-load electricity consumption constitutes a significant and seemingly increasing 51 

percentage of the total energy use. This increment is, in part, due to the advancements in building envelope 52 

technologies leading to decreased energy consumption from the HVAC (heating, ventilation, and air 53 

conditioning) systems, while consequently increasing the reliance on plug load and lighting [7]. Some recent 54 

studies reveal that plug-load electricity consumption accounts for about 32% of total building energy 55 

consumption in residential buildings [7], 30% in office buildings [9], 40% in commercial buildings [8], and 80% 56 

in hospital laboratories [9]. Moreover, Prashant Anand et al. [10] reported that plug and lighting loads 57 

collectively consume 12–50% of building energy, increasing at an average rate of 0.8% per year. These 58 

figures underscore the critical importance of plug-load electricity consumption. 59 

On the other hand, plug load can be used for reducing peak electricity consumption and filling low-use 60 

periods [15], because of its flexibility and randomness. For example, occupants can reschedule some power-61 

heavy appliances (such as washing machines) to operate during off-peak hours, saving considerable costs on 62 

electricity. Especially, this flexibility can also be applied in the ‘PEDF’ building (structures equipped with 63 

four technologies including photovoltaic [13], energy storage [14], direct current [12–13], and flexibility [11]) for 64 

improving energy-use flexibility. Similar conclusions have also been drawn in a project from IEA-EBC 65 

(Annex 67 [11], theme: Energy Flexible Buildings).  66 

1.2 Relevant research concerning building plug loads  67 

In summary, the role of plug-load electricity consumption in total energy consumption is pivotal, and 68 

forecasting plug-load electricity consumption can enhance building flexibility online. Referring to recent 69 

research, most studies concerning building plug loads concentrate primarily on three areas:  70 

First, some relevant studies have delved into the factors influencing building plug-load electricity 71 

consumption and its significance in relation to total building energy consumption. For example, Kim argued 72 

that plug loads significantly affect the actual building electricity consumption, possibly because plug load 73 

data mirrors the building occupancy and energy use [16]. Additional studies have analyzed the profile 74 

characteristics of the building plug-load electricity consumption [17–18].  75 

Second, some relevant studies sought to develop occupant plug-related behavioral models for building 76 

performance simulations or other applications, with most research in this area concentrating on occupant 77 

behaviors [19]. These primarily involve forecasting or determining the operation schedule and rate of building 78 
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plug loads [20–21]. Moreover, a handful of recent studies concerning human dynamics [22–23] have introduced 79 

innovative modeling methodologies. 80 

Finally, some relevant studies focused on energy-saving strategies for building plug loads. As 81 

summarized by Kamilaris [24], the main categories are 'Software and applications', 'hardware and systems', 82 

'suggestions and advice', and 'affecting the occupants'. Under software measures, they mainly use power 83 

management software to adjust and display brightness and standby time, and employ virtual hosting or other 84 

strategies to reduce the quantity of office equipment. Hardware measures primarily encompass the use of 85 

plugs capable of monitoring and controlling energy consumption, as well as the replacement of some devices 86 

with energy-efficient alternatives. Other studies have also explored energy efficiency by manipulating plug-87 

related behaviors [25–26]. 88 

Apart from the above-mentioned focus, a limited number of studies have dealt with forecasting building 89 

plug-load electricity consumption, particularly via data-driven methods [27–28]. These studies acknowledge 90 

the advantages of using time-based neural networks commonly, such as LSTM and its upgraded versions 91 

(such as Bi-LSTM). However, there remains potential for further development and optimization of these 92 

algorithms. Moreover, the standards for input feature selection are not reasonable and clear. Therefore, the 93 

purpose of this study is to further develop the research on building plug load, particularly focusing on the 94 

development of improved electricity consumption prediction methods and the discussion on suitable 95 

selection criteria for different input features and algorithms. 96 

1.3 Relevant research concerning building electricity consumption prediction  97 

This study reviewed various notable research within the energy consumption prediction sphere. 98 

Building energy consumption typically manifests through three primary methods. 99 

One method employs physical modeling, which relies on software such as Energyplus. This method 100 

models building based on setting building envelope, occupancy schedules, energy-consuming device 101 

schedules, and other information in the software for simulation. For example, Giorgio et al. [29] used an 102 

energy system model built with Dymola–Modelica and EnergyPlus models to conduct thorough energy 103 

modeling and optimization. Veronika et al. [30] used EnergyPlus to investigate the energy baselines of 104 

residential buildings. Physical modeling facilitates comprehensive analyses of each energy load, such as 105 

lighting, heating, and cooling systems. However, the physical modeling method, despite being widely 106 

applied in various applications such as building renovation studies, may not be suitable for the plug load 107 

electricity consumption prediction, because it exhibits a specific degree of periodicity [31], while the plug 108 

load electricity consumption usually has strong randomness which is strongly influenced by the free and 109 

random behavior of occupants [32]. Furthermore, the accuracy of physical modeling methods may be 110 

frequently less than ideal [33]. Although optimization methods can improve accuracy (such as using Bayesian 111 

estimates for optimization [34]), they often incur higher costs and have extra limitations. Finally, applying 112 

physical modeling methods in real-time, online settings may prove challenging, therefore restricting their 113 

use in real-time energy consumption predictions during the operational phase of the building. 114 

The other method is the data-driven method, contingent on the selection of appropriate input features 115 

and algorithms. The input features of data-driven prediction methods [35] usually incorporate aspects such as 116 

building physical performance (for example, thermal characteristics of the building envelope), outdoor 117 

meteorological data, indoor environmental data, time, historical energy consumption data, and occupation-118 

related parameters. Besides input features, another crucial aspect of the data-driven method may involve 119 

selecting suitable algorithms that can efficiently train the energy consumption prediction model. Previous 120 

studies suggested that support vector machines (SVM), artificial neural networks (ANN), decision trees (DT), 121 

and other statistical algorithms have extensive applications in data-driven building energy consumption 122 
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prediction [36]. Overall, on the one hand, about 47% of studies used ANN, 25% employed SVM, and only 4% 123 

used DT to train their models. On the other hand, 24% of the studies employed statistical algorithms such as 124 

multiple linear regression (MLR), ordinary least squares regression (OLS), and autoregressive integrated 125 

moving average (ARIMA). Compared with the physical modeling method, although most data-driven 126 

prediction models operate as black boxes, necessitating additional processes to identify appropriate input 127 

features and develop appropriate algorithms, their online application and short-time-scale forecasting 128 

capabilities make them a popular choice for energy consumption prediction in the building operation stage.  129 

The final method is the hybrid method. Some studies combine physical modeling methods and data-130 

driven methods [37] to develop a gray-box hybrid model. These models typically perform better than simple 131 

white-box and black-box models. However, challenges still exist, such as a lack of clear theoretical 132 

hypotheses, standard naming rules, component order determination within the gray-box model, and a unified 133 

software solution [37–38]. Moreover, the utilization of software can adversely impact online application 134 

performance. Considering the target of this study, only data-driven methods are considered due to their 135 

ability for online applications on an hourly scale. 136 

1.4 Challenges in forecasting plug-load electricity consumption 137 

Considering the application scenario, this study predominantly employed a data-driven method. Central 138 

to data-driven methods is the selection of suitable input features and algorithms. Therefore, the challenges 139 

in forecasting plug-load electricity consumption fall into two categories. 140 

First, for input selection, the input features that can be applied in the overall building energy 141 

consumption prediction may not be applicable in the plug load electricity consumption prediction. 142 

On the one hand, there are complexities of input selection introduced by the inconsistency in plug-load 143 

across different architectural contexts. In other words, the optimal inputs, algorithms, boundary conditions, 144 

etc. may not be the same when predicting the electricity consumption of different types of plug loads. The 145 

plug loads may have many different categories. For instance, buildings with centralized HVAC systems 146 

often isolate pumps and water chilling units in individual rooms, keeping them on a separate electrical branch. 147 

On the contrary, buildings without centralized HVAC systems such as some office buildings, generally 148 

connect split ACs to the standard wall sockets during the construction process (such as Figure 1). instead of 149 

being connected to a separate circuit branch for the HVAC system, which makes the plug load in these 150 

buildings include the split air conditioning. As a result, the scope of plug-loads becomes ambiguous which 151 

complicates the prediction of plug-load energy consumption. This phenomenon (the item of energy 152 

consumption is not clear) has also been found in many studies [39–40]. Therefore, in this study, four categories 153 

of plug loads are identified and delineated as shown in Figure 1. The categorization rests on the connection 154 

of various electrical equipment to branch circuits. The first category comprises only sockets in the buildings 155 

where each type of plug loads including sockets, lights, and all ACs are clearly connected to separate circuit 156 

branches. The second and third categories include lights and split ACs respectively, in addition to sockets. 157 

The fourth category unifies all elements including sockets, lights, and split ACs simultaneously. These 158 

complexities underscore the difficulty of defining the range of plug-load, thereby rendering the selection of 159 

an appropriate input feature a significant challenge, which in turn means that the selection of the underlying 160 

algorithm, the optimization algorithm, is challenging. 161 
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 162 

Figure 1 Four categories of building plug load 163 

On the other hand, another challenge lies in the ambiguity of factors influencing plug-load usage 164 

behavior and the consequent electricity consumption. Lighting-related use behavior is strongly dependent 165 

on indoor illumination, while AC-related use behavior hinges on indoor temperature. However, plug-related 166 

behavior appears random and thus, difficult to predict. Due to the randomness of plug-related behavior, the 167 

prediction of this plug-related behavior may be difficult. Activities unrelated to environmental conditions, 168 

such as watching television, using computers, and cooking show this randomness. Recent research in human 169 

dynamics [22–23] reveals common characteristics in these random behaviors. Most tasks were performed 170 

quickly, and a few of them experienced a very long waiting time. That is, these behaviors usually occur 171 

repeatedly in the short term and then enter a long-term state of no behavior [22–23]. This suggests that the time 172 

interval between subsequent usage of plugs may be a defining factor for the prediction of plug-related 173 

behavior and plug-load electricity consumption. However, given the plethora of plugs in a building and the 174 

variability in their usage (watching TV, using the washing machine, etc.), recording and incorporating this 175 

factor (time interval) into relevant studies might be daunting. To sum up, determining the influencing factors 176 

of plug-load electricity consumption remains an unfathomable challenge. The inability to determine the 177 

influencing factors means that it is difficult to find the optimal inputs, which in turn means that the selection 178 

of the underlying algorithm, the optimization algorithm, is challenging. 179 

Second, for algorithm selection, the algorithms and optimizations need to be further improved. Many 180 

kinds of algorithms have been verified for their feasibility [36]. For example, several types of ANN such as 181 

Back Propagation Neural Networks (BPNN), Recurrent Neural Networks (RNN), Convolutional Neural 182 

Networks (CNN), and their variants including LSTM, Gated Recurrent Unit (GRU) have been explored. 183 

Other methodologies such as SVM, Statistical Regression including MLR, ARIMA, DT, and Genetic 184 

Algorithm (GA) have also been utilized. Moreover, some recent studies combined many kinds of the above 185 

algorithms as a novel algorithm used for forecasting energy consumption. Referring to the related study [36], 186 

it appears that ANN has gained preeminence, accounting for approximately 47% of the studies. 187 

Notwithstanding, noteworthy challenges still loom, and Figure 2 elucidates this algorithm advancement 188 

process including the challenges and solutions. Given the necessity of long-period and short-time-scale 189 

prediction outlined in this study, this investigation employs LSTM as the fundamental algorithm. However, 190 

some important challenges may still exist. Such challenges include the synchronous consideration of the 191 

historical and future state influencing the current state, and the expeditious discovery of the hyperparameters 192 
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(weights, thresholds, etc.) optimum solution of neural networks while concurrently enhancing prediction 193 

accuracy. To address these issues, this study supplants LSTM with Bi-LSTM for simultaneous consideration 194 

of historical and future states. Additionally, a swarm intelligence optimization process is introduced to 195 

rapidly pinpoint optimal solutions, circumvent iteration traps in local minima, and enhance prediction 196 

accuracy. Figures 2 and 3(b) expound on these details.  197 

 198 

Figure 2 The upgrading and optimization process of different neural networks 199 

1.5 Targets and research framework 200 

In summary, this study introduces a building plug-load electricity consumption prediction system, 201 

which employs Bi-LSTM enhanced by swarm intelligent optimization and various input systems for 202 

different databases, accuracy requirements, and building types. 203 

First, this study suggests two distinct input systems tailored for varying application scenes. The 204 

conventional input system encompasses the determinants of plug-load electricity consumption as prediction 205 

input features, whereas the novel inputs system harnesses the probabilities of socket-related behavior and 206 

historical electricity consumption as input features, driven by human dynamics theory. The former finds 207 

broad application, having been extensively validated, while the latter introduces the probability of occupant 208 

behavior to better reflect the real-time human-environment-energy interactions. These two input systems 209 

require different data, have different advantages, and can be deployed across diverse energy prediction 210 

scenarios. 211 

Second, the forecasting potential of Bi-LSTM and LSTM as the foundational training algorithms is 212 

investigated. The advantage of Bi-LSTM over LSTM resides in its broader grasp of time series data context. 213 

Specifically, the Bi-LSTM model assimilates both antecedent and subsequent data flows, thus affording a 214 

richer sequence analysis potential, instrumental in optimizing prediction performance. 215 

Third, the WO algorithm [41], one of the swarm intelligence optimization algorithms, is introduced as a 216 

strategy to improve prediction performance. Further upgradation of WO is achieved by integrating it with 217 

circle mapping, one of the chaotic mappings [42–43], thus maintaining population diversity and yielding 218 

superior optimization. Moreover, an adaptive weight adjustment process is incorporated into WO.  219 

Finally, this study proposes a selection criterion for the most suited combinations considering building 220 

type, data base, and precision requirements, by comparing the applicability and preference of different input 221 

features and algorithms.  222 

The detailed main contents of this study are shown in Figure 3(a), and the comparison of the traditional 223 

prediction system and upgraded prediction system is presented in Figure 3(b). 224 
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 225 

Figure 3(a) The main research contents of this study 226 

 227 

Figure 3(b) The comparison of the traditional prediction system and upgraded prediction system in this study 228 

Figure 3 Targets and works in this study 229 

The subsequent sections of this study are as follows. Section 2 introduces sample building, related data 230 

collection, plug-related behavior modeling method, and the process involving the Pearson correlation 231 

coefficient method, Bi-LSTM, LSTM, and improved WO. Section 3 shows the results derived from different 232 

input systems and algorithms. In Section 4, the comparisons of prediction results from different input features 233 

and algorithms, including an exploration of the suitability and preference of different combinations, are 234 

discussed. Section 5 encapsulates the conclusions. 235 

2 Methodology 236 

2.1 Sample buildings 237 
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The focal point of this study incorporates seven buildings with diverse functionalities and plug loads to 238 

explore the determinant factors of plug- load electricity consumption. Another facet of scrutiny is enhancing 239 

prediction performance utilizing LSTM or Bi-LSTM in tandem with improved whale optimization 240 

algorithms. A compendium of these buildings’ specifics can be found in Table 1 with corresponding façades 241 

exhibited in Figure 4. 242 

Table 1 Specifications of seven typical buildings 243 

No. Types Energy system 
Plug-load 

categorization 

BEUI  

(kWh/a·m2) 
Opened time in a day Opened day in a year 

A Office 
Sockets, lighting, centralized variable 

refrigerant flow ACs 
Second 44.89 Opened: All 24 hours Opened: All 365 days 

B Laboratory Sockets, lighting, split ACs Fourth 75.76 Opened: All 24 hours Opened: All 365 days 

C Library Sockets, lighting, centralized ACs Second 30.54 
Opened: 7:00–23:00 

Closed: 23:00–next 7:00 

Opened: other days 

Closed: winter vacation 

D Library 

Sockets, lighting, centralized ACs 

with water chiller in most areas, and 

split ACs in some other rooms 

Fourth 60.09 
Opened: 7:00–23:00 

Closed: 23:00–next 7:00 

Opened: other days 

Closed: winter vacation 

E 
Education 

building 

Sockets, lighting, variable refrigerant 

flow ACs 
Third 62.74 

Opened: 7:00–23:00 

Closed: 23:00–next 7:00 

Opened: other days (summer, 

spring, and autumn term) 

Closed: winter vacation 

F 
Education 

building 
Sockets, lighting Second 37.76 

Opened: 7:00–23:00 

Closed: 23:00–next 7:00 

Opened: other days (summer, 

spring, and autumn term) 

Closed: winter vacation 

G Office Sockets, lighting, centralized ACs Second 41.55 Opened: All 24 hours Opened: All 365 days 

Note: The Building Energy Use Intensity (BEUI) refers to the annual energy consumption per unit of building area in a building, providing an assessment 

of the overall energy consumption level of the building. 

 244 

Figure 4 Sample buildings in this study 245 
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2.2 Data acquisition 246 

Recent studies [35, 44] suggest the incorporation of varied data types, encompassing outdoor 247 

meteorological factors, indoor environmental parameters, time, historical energy consumption, and 248 

occupant-related parameters. The occupant-related data generally comprise occupancy and the number of 249 

occupants [27, 44]. However, monitoring occupants poses significant challenges. It may infringe privacy 250 

violations if intrusive, or necessitate an extensive sensor network which needs additional costs such as PIR 251 

(Passive Infra-Red) sensors [45], if non-intrusive. Moreover, achieving comprehensive coverage of the sample 252 

buildings for an 8760-hour period enhances the complexity of occupant monitoring. Therefore, in this study, 253 

CO2 concentration data will serve as an approach to illustrate the number of occupants, superseding direct 254 

occupancy tracking. Similar strategies have been utilized in some other studies, translating CO2 255 

concentration data into occupant-related data using methods including decision tree [47], logical inference [47], 256 

random forest [46], support vector machine [46], change point analysis [48], etc. Therefore, this study requires 257 

electricity consumption data (comprising historical electricity consumption and usage for the previous hour, 258 

and the duration of the plug usage including the commencement and cessation times), indoor environmental 259 

data (comprising indoor air temperature, CO2 concentration, air humidity, and PM2.5 concentration), and 260 

outdoor meteorological data (comprising solar radiation intensity, outdoor air temperature, air humidity, and 261 

wind speed). 262 

Concerning data acquisition, first, for electricity-related data, an energy-consumption monitoring 263 

system was installed in the sample buildings and has operated successfully for several years, establishing a 264 

cloud platform for recording, as shown in Figure 5(a). This system can accurately record the real-time 265 

expression values of all electrical branches in every room. Second, indoor environmental data were collected 266 

through ceiling-mounted sensors positioned within the buildings (excluding stairwells) as shown in Figure 267 

5(b), with at least one sensor per room. Finally, outdoor meteorological data were extracted from the public 268 

dataset maintained by the China Meteorological Science Data Center (http://data.cma.cn) [49]. All compiled 269 

datasets collected data at hourly intervals throughout the year 2021.  270 

 271 
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Figure 5(a) Energy-consumption monitoring platform (original figure and translation) 272 

 273 

Figure 5(b) Indoor environment sensor measuring points 274 

Figure 5 Related data acquisition by different sensors or platforms 275 
2.3 Input system modeling and selection 276 

Figure 3 and the Introduction allude to the formulation of two distinct input systems catering to different 277 

application scenarios as a point of focus for this study.  278 

The conventional input system will be leveraged. This system operates based on the identification of 279 

varying parameters that influence plug load electricity consumption, which subsequently functions as input 280 

features. The unclear categorization and ambiguous determinants of plug loads necessitate the analyses of 281 

an assortment of parameters via the Pearson correlation coefficient method elucidated in Section 2.3.1. 282 

Contrary to the conventional system, the novel input system builds upon some recent studies [22–23] into 283 

human dynamics within buildings. Eschewing the broad spectrum of plug loads and forsaking the use of 284 

pertinent factors, this system utilized historical plug-load electricity consumption, combined with the 285 

probabilities of plug-load behaviors to create a unique input system. A comprehensive description of 286 

methodologies employed to model plug-related behaviors will be presented in Section 2.3.2. 287 

2.3.1 Pearson correlation coefficient method 288 

In the quest for rational input features, the core factors influencing energy consumption and utilization 289 

are typically assimilated as input parameters. The correlation coefficient ‘r’ is a prevalent metric for 290 

ascertaining these influences. That is, the stronger the correlation ('r' is larger) indicates that the parameter 291 

is more strongly correlated with energy consumption and is more suitable as an input for energy consumption 292 

prediction. Referring to recent studies and analyses in this study, parameters to be considered encompass 293 

electricity-related data (historical electricity consumption an hour ago), indoor environmental data (indoor 294 

air temperature, CO2 concentration, air humidity, PM2.5 concentration), outdoor meteorological data (solar 295 

radiation intensity, outdoor air temperature, air humidity, wind speed), and occupant-related data (using CO2 296 

concentration replacing the number of occupants). Equation (1) delineates the Pearson correlation coefficient 297 

method where the correlation coefficient ‘r’ arbitrates the degree of linear correlation between variables. 298 
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𝑟 =
∑ (𝑥𝑖−𝑥̅)×(𝑦𝑖−𝑦̅)
𝑛
𝑖=1

√∑ (𝑥𝑖−𝑥̅)
2×(𝑦𝑖−𝑦̅)

2𝑛
𝑖=1

                            (1) 299 

Where, r is the correlation coefficient of variables x and y, with its values oscillating between -1 and 1 300 

inclusively. This study assigns y as the plug-load electricity consumption, and x echoes the parameter 301 

outlined previously. Conventionally, correlation potency is designated as follows, ‘r=0’ signifies no 302 

correlation, ‘0 <|r|≤0.3’ indicates a weak correlation, ‘0.3 <|r|≤0.5’ indicates a low correlation, ‘0.5 <|r|≤303 

0.8’ indicates a significant correlation, ‘0.8 <|r| < 1’ indicates a high correlation, and ‘r=1’ indicates a perfect 304 

linear correlation, as cited by references [50–51]. However, these thresholds remain arbitrary, and situational 305 

adjustments may apply. In the realm of building energy research, many studies have scrutinized how 306 

environmental parameters and temporal characteristics influence building energy consumption and usage, 307 

encompassing indoor and outdoor air temperature, humidity, sunshine duration, and ventilation rate [50–51]. 308 

Based on the above research, valid correlations (that is, the parameter can be used for energy consumption 309 

prediction input features) are usually expressed as the correlation coefficient typically ranges from 0.3 to 0.5. 310 

Therefore, if the correlation coefficient exceeds 0.3, the corresponding parameters will be deemed as 311 

potential input features in this study. 312 

2.3.2 Defining and modeling plug-related behavior probability 313 

Building energy consumption is significantly influenced by occupant behavior, as corroborated by 314 

numerous pertinent studies. Generally, mathematical modeling of occupant behavior aims to probability of 315 

action using a specific model, represented by equation (2). However, this study innovatively supplements 316 

this approach, selecting equation (3) as the calculation model. 317 

𝑃(𝑇𝑖–𝑇𝑖+1) =
∑ 𝑀𝑗
𝑛
𝑗=1

𝑛×𝑀0
                                   (2) 318 

𝑃(𝑇𝑖–𝑇𝑖+1) =
∑ ∆𝑇𝑗
𝑛
𝑗=1

𝑛×∆𝑇0
                                   (3) 319 

Where, i is a time index (e.g., if i is 8, then 𝑇𝑖−1, 𝑇𝑖 , and 𝑇𝑖+1 correspond to 𝑇7:00, 𝑇8:00, and 𝑇9:00, 320 

respectively); j represents each socket and n is the total number of sockets (e.g. if a building has 100 sockets, 321 

then n = 100, with j numbered from 1 to 100); 𝑀0 and 𝑀𝑗 represent the times of the plug-related actions 322 

and total actions respectively. ∆𝑇0 represents the time difference between 𝑡𝑛 and 𝑡𝑛+1 (where, in this 323 

study, ∆𝑇0 is 1 hour); while ∆𝑇𝑗 represents the usage time of the jth socket during the period from 𝑡𝑛 to 324 

𝑡𝑛+1. Moreover, 𝑡𝑛 and 𝑡𝑛+1 represent the start and end times respectively (in this study, the starting and 325 

ending moments are all integral hour points, such as 0:00, 1:00, etc.). 326 

Historically, the traditional occupant behavior probabilities were calculated by employing the ratio of 327 

the total number of a specific action to the total number of all actions. Improving this conventional method, 328 

the proposed probabilistic model determines probability based on the duration ratio of certain actions to the 329 

total duration. Building upon foundational literature pertaining to occupant behavior modeling (refer to 330 

Equation 3), this innovative concept is introduced (refer to Equation 2). To elucidate the differences between 331 

Equations (2) and (3), considering the following example when it needs to predict plug-load energy 332 

consumption from 13:00 to 14:00, Scenario A envisions occupants sparking plug-load use at 13:01 persisting 333 

until 14:00, while Scenario B envisions it commencing at 13:59 and enduring until 14:00. Specifying the 334 

13:00 to 14:00 time frame, traditional method (equation 2) would imply a constant occupant behavior 335 

probability of 1 (1/1) that fails to discern between Scenarios A and B. Conversely, the proposed equation 336 

(equation 1) implies disparate occupant behavior probabilities of 1/60 and 59/60 for Scenario A and B, 337 

respectively that is successful to discern between Scenarios A and B. 338 

With its unique advantages, this change contributes to a richer understanding of energy-consuming 339 
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equipment use. First, it better accentuates the intensity of energy use. Secondly, it provides flexibly in 340 

modeling probabilities at different time-scale levels, such as hourly, daily, or monthly behavior probabilities. 341 

The traditional method tends to fail when modeling probabilities at an hourly time-scale or below, as the low 342 

likelihood of repeated identical energy-use behaviors within a single hour (e.g., turning on a light 5 times 343 

and then turning it off 4 times within an hour would constitute a low probability event). Therefore, the 344 

proposed method (equation 3) resonates with energy consumption studies more by emphasizing the intensity 345 

and duration of energy-consuming equipment usage duration and magnitude rather than the identity of the 346 

operators (e.g., using equipment during 13:00-13:30 by occupant A, and using it during 13:30-14:00 by 347 

occupant B would yield similar energy consumption during 13:00-14:00). However, it is crucial to mention 348 

that the proposed model (equation 3) may be less suitable for applications such as thermal comfort modeling, 349 

precise behavior modeling, etc., where cases needs the distinctions of occupants, time, and additional 350 

variables. 351 

To calculate equation (3), there are primarily two methods. The first employs random models to 352 

encapsulate the diversity evident in space, time, and occupant behaviors, while the second utilizes statistical 353 

models. The Markov model and its variants may be the most popular among random models. Despite their 354 

prevalence, the complexity of their solving and modeling tools translates into weak online application 355 

capabilities. Furthermore, as indicated in IEA EBC-Annex 66 (Definition and Simulation of Occupant 356 

Behavior in Buildings [60]), studies suggest that stochastic models to capture spatial, temporal, and individual 357 

diversity do not necessarily perform better than simplified deterministic models. Therefore, the focus of this 358 

study is the application of statistical models for deciphering equation (3). Reviews of recent studies reveal a 359 

challenge in identifying suitable physical parameters for use as independent variables in plug-load-related 360 

behavior probability, different from indoor air temperature to AC-related behavior and indoor illuminance 361 

to lighting-related behavior. Nevertheless, with advances in human dynamics theory [22–23], it has been 362 

illustrated that most random tasks are performed quickly, and a few of them have experienced very long 363 

waiting time. That is, random behaviors usually occur repeatedly in the short term and then enter a long-364 

term state of no behavior. Thus, it can be inferred that the historical energy-use behavior situations can serve 365 

as a predicting or exerting influencing factor on the real-time random behavior within a few proximate hours. 366 

As a result, the probability of plug-load behaviors can be expressed as in equation (4). 367 

𝑃(𝑇𝑖–𝑇𝑖+1) = 𝑓(𝑠𝑜𝑚𝑒 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛 𝑓𝑎𝑐𝑡𝑜𝑟𝑠) = 𝑓(𝑢𝑖−1)                 (4) 368 

Where, 𝑢 is the influencing factor, and i is a time index similar to Equations (2–3). Although there lacks 369 

consensus regarding the exact influencing factors, some researches proposed some parameters such as the 370 

waiting time from the last action to the current action referring to human dynamics theory [22–23], indoor CO2 371 

concentration [44], and psychosocial elements such as attitudes and personal norms [52]. Moreover, the 372 

mapping function (f) akin to equation (6), commonly incorporates statistical models [22, 54–55] (such as 373 

logistics, quadratic, sigmoid, and probity functions), fuzzy functions [52], and even some machine learning 374 

algorithms [53]. In this paper, the influencing factor (u) selected is the indoor CO2 concentration, and the 375 

mapping function will be fitted to actual measuring data. 376 

2.4 Process and principles of algorithms 377 

2.4.1 LSTM and Bi-LSTM  378 

The Introduction phase refers to multiple algorithms utilized for neural networks such as Back-379 

propagation neural networks. However, the particular necessities encompassing long period and short time-380 

scale prediction proposed in this study, necessitate the deployment of a time sequence neural network. 381 

Therefore, in this study, LSTM and Bi-LSTM, two extensively employed time sequence neural networks, 382 
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will be selected to function as the principal algorithms. The commonly-used time sequence model structures 383 

include the Prophet, ARIMA, LSTM, Transformer, and Informer. However, the Prophet toolkit is suitable 384 

for predicting trends whereas it is unsuitable for predicting values, especially when facing long sequence 385 

problems. ARIMA even battles with inaccuracy in trend prediction. Moreover, Transformer and Informer 386 

are very recently proposed and are yet to be completely evaluated. Therefore, in this study, the LSTM and 387 

its variant Bi-LSTM, the most classical time sequence neural network, will be selected. The construction of 388 

LSTM and Bi-LSTM is shown in Figure 6.  389 

In this study, the distribution of training to test sets assumes a ratio of 7:3. Presented inputs and outputs 390 

undergo a normalization process. When the number of inputs is assigned the variable m, the number of 391 

hidden layers will be calculated as (2m+1). Moreover, both Bi-LSTM and LSTM are designed with a 392 

maximum number of iterations (MaxEpochs) of 1000, and an initial learning rate (InitialLearnRate) of 0.01. 393 

The LearnRateDropPeriod is 800, and the LearnRateDropFactor is 0.8 implying that the learning rate is 394 

multiplied by this factor every 800 periods. To counteract potential overfitting in Bi-LSTM and LSTM, L2 395 

Regularization is implemented [56]. Moreover, traditional batch gradient descent can be computationally 396 

intensive, while stochastic gradient descent may not converge easily. Thus, this study also resorts to Mini-397 

batch gradient descent. For LSTM, the MiniBatchSize is set to 240 for LSTM (that is the size of the mini-398 

batch, and the MiniBatchSize typically represents a multiple of 2 between 0 and the maximum number of 399 

iterations). 400 

 401 

Figure 6 The construction of LSTM and Bi-LSTM 402 

2.4.2 WO algorithm with circle mapping and self-adaptive weight adjustment 403 

According to Section 1 (Introduction), to improve the prediction performance, including finding the 404 

optimal solution identification for hyperparameters of neural networks such as weights and thresholds, 405 

prevention of convergence into local minima, and boosting prediction precision. Some recent studies have 406 

attempted to use swarm intelligent algorithms for optimization [57–58], such as Grey Wolf Optimization 407 

(GWO), Harris-Hawks Optimization (HHO), WO, Bald Eagle Search (BES), Manta Ray Foraging 408 

Optimization (MRFO), Sparrow Search Algorithm (SSA), Grasshopper Optimization Algorithm (GOA), and 409 

Bat Algorithm (BA). However, the unique characteristics of each algorithm lead to variable results. For 410 

instance, Li et al. [57] used 22 standard test functions to compare various swarm intelligent algorithms and 411 

revealed differing outcomes in terms of convergence speed, accuracy, and stability. SSA (proposed in 2020) 412 
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emerged as the overall superior performer, followed by WO (proposed in 2016) and GWO (proposed in 413 

2014), while BA (proposed in 2010) and GOA (proposed in 2017) manifested relatively weaker performance. 414 

Similarly, in a comprehensive comparison of 43 population intelligence algorithms, Zhang et al. [58] reported 415 

that BES (proposed in 2020) showcased stellar performance, while WO, HHO (proposed in 2019), MRFO 416 

(proposed in 2019), and other algorithms and their quadratic optimization also have good performance. 417 

However, these results are highly context-dependent, and swarm intelligence algorithms can also be further 418 

optimized. Therefore, it seems a significant challenge to directly determine the superiority of one swarm 419 

intelligent algorithm across energy consumption prediction scenarios. Given these constraints, the algorithm 420 

selection for this study accounted for optimization performance (refer to the research of Li, and Zhang), age 421 

of invention (older designs might show reduced performance while recent designs may not yet have 422 

extensive research support), and the complexity of the algorithm. Consequently, WO was selected as the 423 

optimization algorithm for its advantageous balance of these factors. However, it is worth noting that WO is 424 

not without limitations. Therefore, to augment WO optimization capabilities, it is proposed that WO 425 

incorporates adaptive weight adjustment and population initialization modules. These advancements can 426 

accelerate convergence speed, diversity population, calculate suitable weights, and ultimately enhance 427 

prediction accuracy. 428 

Introduced by Mirjalili et al. [59], WO derives inspiration from the social hierarchy and hunting behavior 429 

of the whales. The whales swarm around their prey, exuding bubbles as they spiral, creating a spiral "bubble 430 

web" that pushes the prey closer together. This process can be divided into three parts [59], as visually depicted 431 

in Figure 7.  432 

(1) Encircling the prey: Assuming that N whales scouring a d-dimension search area, the position of the 433 

ith whale can be expressed as 𝑋𝑖 = ( 𝑋𝑖1, 𝑋𝑖2, 𝑋𝑖3, … , 𝑋𝑖𝑑). In the process of searching for prey, the models 434 

of approaching and outflanking prey are shown by equations (5–8). 435 

(1) 𝐷 = |𝐶 × 𝑋𝑝(t) − 𝑋(𝑡)|                            (5) 436 

(2) 𝑋(𝑡 + 1) =  𝑋𝑝(t) − 𝐴 × 𝐷                           (6) 437 

(3) 𝐶 = 2𝑅1                                   (7) 438 

(4) 𝐴 = 2𝑎𝑅2 − 𝑎, 𝑎 = 2 × (1 −
𝑡

𝑇𝑚𝑎𝑥
)                       (8) 439 

Where, t indicates the current iteration, while C and A are coefficient vectors. 𝑋(𝑡) and 𝑋𝑝(𝑡) refer 440 

to the position vector of a whale and the prey, respectively. 𝑇𝑚𝑎𝑥 is the maximum number of iterations, 𝑎 441 

is a control parameter (whose value, ranging from 0 to 2, decreases linearly with an increase in the number 442 

of iterations), and 𝑅1 and 𝑅2 are random numbers ranging from 0 to 1.  443 

(2) Bubble net attack (exploitation phase): In this part, the predatory strategy bifurcates into two forms.  444 

(2-1) Shrinking encircling mechanism: This process involves a straight-line swim without bubbling.  445 

(2-2) Spiral updating of position: This implies spiraling and bubbling. Assume that there is a 50% 446 

probability of choosing between either the shrinking encircling mechanism or the updating of the position 447 

of whales during optimization, shown in equations (9–11). 448 

𝑋(𝑡 + 1) = 𝐷∗ × 𝑒𝑏𝑙 × cos(2𝜋𝑙) + 𝑋∗(𝑡)                    (9) 449 

𝐷∗ = |𝑋∗(𝑡) − 𝑋(𝑡)|                              (10) 450 

𝑋(𝑡 + 1) = {
𝑋∗(𝑡) − 𝐴 × 𝐷,   if 𝑝 < 0.5,

𝐷∗ × 𝑒𝑏𝑙 × cos(2𝜋𝑙) + 𝑋∗(𝑡), if 𝑝 ≥ 0.5.
                 (11) 451 

(3) Search for prey (exploration phase): In addition to group hunting, humpback whales also resort to 452 

random foraging based on their individual positions. This behavior further deters the algorithm from 453 

succumbing to local optimal values. The mathematical model for this behavior mimics that of direct 454 
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swimming, articulated through equations (12–13). 455 

𝐷∗ = |𝐶 × 𝑋𝑟𝑎𝑛𝑑 − 𝑋|                           (12) 456 

𝑋(𝑡 + 1) = 𝑋𝑟𝑎𝑛𝑑 − 𝐴 × 𝐷                         (13) 457 

Where 𝐷∗ indicates the distance between the ith whale and the prey (the best solution ascertained till 458 

that moment). p is a random number in [0,1], l is a random number in [−1,1], and b is a constant for defining 459 

the shape of the logarithmic spiral. 𝑋𝑟𝑎𝑛𝑑 is a randomly selected position vector (a random whale) from the 460 

current population. In this paper, the population quantity is 5 and the maximum number of iterations is 30. 461 

However, for the confines of the initial WO, it utilizes randomly generated data as the foundation of its 462 

population information. This method presents challenges in preserving population diversity, subsequently 463 

leading to suboptimal optimization results. Therefore, this study seeks to address this issue by introducing 464 

chaotic mapping for allowing WO to circumvent local optimal solutions with relative ease, enhancing 465 

population diversity, and improving global search capabilities. Moreover, optimization of the neural network 466 

weight was accomplished through a self-adaptive weight process specifically tailored for WO, represented 467 

in equation (14).  468 

𝑤 = 𝑤𝑚𝑖𝑛 + (𝑤𝑚𝑎𝑥 −𝑤𝑚𝑖𝑛) × 𝑚𝑚 × exp (
−𝑡

𝐺𝑚𝑎𝑥
)                (14) 469 

Where w is the weight with 𝑤𝑚𝑎𝑥 being 1 and 𝑤𝑚𝑖𝑛  being 0 respectively. mm is the adjustment 470 

coefficient and is set to 1 in this study. t is the number of iterations and 𝐺𝑚𝑎𝑥 is the population maximum 471 

evolutionary algebra. 472 

In summary, the process (main steps) for optimizing Bi-LSTM with WO is shown in Figure 7. The 473 

figure presents a flowchart of the process. The input features, outputs, and incorporated improved algorithms 474 

are further specified as follows. The output is the energy consumption of plug loads in buildings. For the 475 

input system, the data will be used as hourly-time-scale for a whole year. Conventional inputs encompass 476 

parameters that possess a correlation coefficient greater than 0.3 with energy consumption. These parameters 477 

may include historical energy consumption (the past hour), time, indoor environmental parameters, outdoor 478 

meteorological parameters, and the number of occupants depicted by indoor CO2 concentration. Novel inputs 479 

proposed comprise data related to occupant behavior probability and historical energy consumption (the past 480 

hour). Algorithms include LSTM, Bi-LSTM, LSTM-WO, and Bi-LSTM-WO. 481 Jo
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 482 
Figure 7 The flowchart (main steps) for optimizing Bi-LSTM with WO 483 
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2.5 Evaluation of prediction models 484 

This study employed five evaluation indices for evaluation: the coefficient of determination (R), the 485 

mean absolute error (MAE), the mean absolute percentage error (MAPE), the root mean square error 486 

(RMSE), and the coefficient-of-variation of root mean square error (CV-RMSE). These indices are 487 

formulated as equations (15–19). Each of these evaluation indices offers a distinct perspective on the 488 

effectiveness of prediction models. R exemplifies the fitting performance, and MAPE (MAE) outlines the 489 

average precision performance. CV-RMSE (RMSE) proves highly responsive to significant deviations in the 490 

prediction dataset, effectively capturing dispersion, which will be called the dispersion performance in this 491 

study. The better performance includes enhanced accuracy (including better fitting, average precision, and 492 

dispersion performance) with less reduced operation time consumption.  493 

𝑅 (𝐸𝑎, 𝐸𝑏) = 1 −
∑ (𝐸𝑎,𝑐−𝐸𝑏,𝑐)

2𝑐=𝑛
𝑐=1

∑ (𝐸̅−𝐸𝑎,𝑐)
2𝑐=𝑛

𝑐=1
                         (15) 494 

𝑀𝐴𝐸 (𝐸𝑎, 𝐸𝑏) =
∑ |𝐸𝑎,𝑐−𝐸𝑏,𝑐|
𝑐=𝑛
𝑐=1

𝑛
                          (16) 495 

𝑅𝑀𝑆𝐸 (𝐸𝑎, 𝐸𝑏) = √
∑ (𝐸𝑎,𝑐−𝐸𝑏,𝑐)

2𝑐=𝑛
𝑐=1

𝑛
                        (17) 496 

𝑀𝐴𝑃𝐸 (𝐸𝑎, 𝐸𝑏) =
∑ |

𝐸𝑎,𝑐−𝐸𝑏,𝑐
𝐸𝑏,𝑐

×100%|𝑐=𝑛
𝑐=1

𝑛
                       (18) 497 

𝐶𝑉 − 𝑅𝑀𝑆𝐸 (𝐸𝑎, 𝐸𝑏) =
√
∑ (𝐸𝑎,𝑐−𝐸𝑏,𝑐)

2𝑐=𝑛
𝑐=1

𝑛

𝐸𝑏̅̅ ̅̅
                     (19) 498 

Where, 𝐸𝑎, 𝑎𝑛𝑑 𝐸𝑏  represent the prediction and actual energy consumption respectively, kWh. In 499 

addition, this study introduces a new parameter PI (performance improvement) to measure the improvement 500 

resulting from enhancing algorithms or using different input features. Expressions for 𝑃𝐼𝑅𝑀𝑆𝐸  , 𝑃𝐼𝑀𝐴𝐸 , 501 

𝑃𝐼𝐶𝑉−𝑅𝑀𝑆𝐸, and 𝑃𝐼𝑀𝐴𝑃𝐸 are shown in equation (20), with the equation for 𝑃𝐼𝑅 shown in equation (21). 502 

According to these two equations, positive and negative values correspondingly indicate performance 503 

improvement or degradation.  504 

𝑃𝐼𝑅𝑀𝑆𝐸,   𝑜𝑟 𝑀𝐴𝑃𝐸,   𝑜𝑟 𝑀𝐴𝐸,   𝑜𝑟 𝐶𝑉−𝑅𝑀𝑆𝐸 =
𝑀0−𝑀1

𝑀0
× 100%             (20) 505 

𝑃𝐼𝑅 =
𝑀1−𝑀0

𝑀0
× 100%                            (21) 506 

Where, 𝑀0 and 𝑀1 denote the values of the evaluation indices before and after development. For 507 

example, if comparing LSTM and Bi-LSTM, the 𝑀0 is the performance of LSTM while the 𝑀1 is the 508 

performance of Bi-LSTM. Similarly, if comparing LSTM and LSTM-WO, the 𝑀0 is the performance of 509 

LSTM while the 𝑀1 is the performance of LSTM-WO. 510 

3 Results 511 

Derived from the methodology outlined in Section 2.3, the section presents the energy consumption 512 

prediction results using different input features and algorithms.  513 

3.1 Results on using the conventional input system  514 

3.1.1 Results on influencing factors of plug-load energy consumption and usage  515 

The preliminary step in utilizing the conventional input system is identifying the influencing factors 516 

that contribute to different electricity consumption across different plug loads. Detailed results are shown in 517 

Table 2 and Figure 8. In Figure 8, ‘|r|=0.3’ is denoted by the blue line, and the parameters surpassing this 518 

line are taken into account as significant influencing factors. The conclusions are shown as follows. 519 

Table 2 Correlation coefficient (r) results between plug load electricity consumption and parameters 520 
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 521 

Figure 8 Correlation coefficient (r) results between plug load electricity consumption and parameters 522 
For the second category, comprising Buildings A, C, F, and G, the plug loads encompass the sockets 523 

and lighting. It is inferred that the influencing factors include historical electricity consumption, indoor CO2 524 

concentration, and solar radiation intensity.  525 

For the third category, comprising Building E, the plug loads encompass the sockets and split ACs. The 526 

influencing factors include historical electricity consumption, indoor CO2 concentration, indoor air 527 

temperature, indoor air humidity, and outdoor air temperature.  528 

For the fourth category, comprising Buildings B, and D, the plug loads encompass sockets, lighting, 529 

and split ACs. The contributing factors include historical electricity consumption, indoor CO2 concentration, 530 

solar radiation intensity, indoor air temperature, indoor air humidity, and outdoor air temperature.  531 

Overall, in alignment with recent studies and Figure 8, certain influencing factors emerge as significant. 532 

First, historical electricity consumption and indoor CO2 concentration, indicative of historical plug-load 533 

Potential input features Building A Building B Building C Building D Building E Building F Building G 

Indoor air temperature 0.171 0.462 0.092 0.698 0.351 -0.006 -0.189 

Indoor CO2 concentration 0.383 0.310 0.535 0.688 0.508 0.441 0.311 

Indoor air relative humidity 0.162 0.489 -0.119 -0.580 0.416 0.043 0.052 

Indoor PM2.5 concentration 0.013 0.088 -0.011 -0.234 -0.161 -0.010 -0.144 

Solar radiation intensity 0.513 0.551 0.380 0.170 0.178 0.401 0.455 

Outdoor air temperature 0.237 0.523 -0.080 -0.421 0.448 0.109 0.064 

Outdoor air humidity -0.103 0.161 -0.228 -0.199 0.241 -0.143 -0.117 

Wind speed (Longitude) 0.007 0.220 -0.059 -0.202 0.161 -0.010 0.041 

Wind speed (Latitude) -0.061 -0.208 -0.024 0.152 -0.228 0.000 -0.048 

Historical electricity consumption 0.809 0.931 0.913 0.929 0.973 0.921 0.905 
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energy-use behavior and the number of occupants from the previous hour, significantly impact plug-load 534 

electricity consumption. Second, split AC electricity consumption is influenced by indoor and outdoor air 535 

temperature, as well as indoor air relative humidity. Finally, lighting electricity consumption is influenced 536 

by solar radiation intensity.  537 

3.1.2 Results on plug-load electricity consumption prediction  538 

When using the conventional input system, the electricity prediction results with different algorithms 539 

are shown in Table 3 as follows. 540 

Table 3 Contrast experiment results in different buildings using conventional inputs 541 

Code Inputs Algorithms R MAPE RMSE CV-RMSE MAE Times 

A-a’ Conventional inputs LSTM 0.64623 16.3942% 14.4269 0.2018  10.4338 275.019 

A-b’ Conventional inputs LSTM-WO 0.7452 11.8700% 12.7318 0.1781  8.5694 893.28 

A-c’ Conventional inputs Bi-LSTM 0.70184 13.1965% 13.2445 0.1853  8.849 358.945 

A-d’ Conventional inputs Bi-LSTM-WO 0.7452 11.8700% 12.7318 0.1781  8.5694 1069.27 

B-a’ Conventional inputs LSTM 0.9093 5.9300% 10.4841 0.0890  6.515 211.059 

B-b’ Conventional inputs LSTM-WO 0.9117 5.8800% 10.3485 0.0879  6.4801 560.463 

B-c’ Conventional inputs Bi-LSTM 0.93795 5.6001% 8.4974 0.0722  6.1422 243.958 

B-d’ Conventional inputs Bi-LSTM-WO 0.94117 5.0305% 8.2738 0.0703  5.8614 785.446 

C-a’ Conventional inputs LSTM 0.90644 18.3801% 14.8389 0.1462  11.4252 189.356 

C-b’ Conventional inputs LSTM-WO 0.9029 16.3900% 15.0017 0.1478  10.3571 559.2 

C-c’ Conventional inputs Bi-LSTM 0.9113 16.2800% 14.3651 0.1415  10.3037 229.675 

C-d’ Conventional inputs Bi-LSTM-WO 0.91359 14.4122% 14.2604 0.1405  10.202 722.31 

D-a’ Conventional inputs LSTM 0.8802 14.4800% 35.2097 0.1362  24.805 51.627 

D-b’ Conventional inputs LSTM-WO 0.8858 14.2238% 33.8772 0.1311  22.6663 137.774 

D-c’ Conventional inputs Bi-LSTM 0.8819 14.7600% 34.9173 0.1351  24.8507 60.687 

D-d’ Conventional inputs Bi-LSTM-WO 0.89203 13.2309% 32.9397 0.1275  22.6514 163.064 

E-a’ Conventional inputs LSTM 0.9479 10.1200% 11.5481 0.1306  7.2061 279.372 

E-b’ Conventional inputs LSTM-WO 0.95033 9.5296% 11.3523 0.1284  7.097 814.444 

E-c’ Conventional inputs Bi-LSTM 0.9494 10.0900% 11.5056 0.1301  7.1053 325.939 

E-d’ Conventional inputs Bi-LSTM-WO 0.9545 8.8212% 10.8659 0.1229  6.8746 982.946 

F-a’ Conventional inputs LSTM 0.93406 14.4788% 5.7847 0.1524  4.283 279.923 

F-b’ Conventional inputs LSTM-WO 0.9386 12.5300% 5.5311 0.1457  3.9455 853.107 

F-c’ Conventional inputs Bi-LSTM 0.9388 12.0700% 5.5167 0.1454  3.8891 329.026 

F-d’ Conventional inputs Bi-LSTM-WO 0.95844 8.5547% 4.6065 0.1214  3.2068 995.913 

G-a’ Conventional inputs LSTM 0.8599 6.9200% 8.4882 0.0898  6.4805 204.289 

G-b’ Conventional inputs LSTM-WO 0.8562 6.4686% 8.47608 0.0897  6.4686 632.87 

G-c’ Conventional inputs Bi-LSTM 0.86831 6.6379% 7.9408 0.0840  6.1565 242.301 

G-d’ Conventional inputs Bi-LSTM-WO 0.87131 6.4461% 7.8498 0.0830  6.0166 707.999 

3.2 Results on using the novel input system  542 

3.2.1 Results on modeling plug-related behavior probabilities 543 

The plug-related behavior probabilities, computed as equation (4), are shown in the following section. 544 

The comprehensive results and other information are shown in Tables 4–5 and Figure 9.  545 

Table 4 Specifications of seven typical buildings 546 

No. Types Opened time in a day  Opened day in a year 

A Office Opened: All 24 hours Opened: All 365 days 
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B Laboratory Opened: All 24 hours Opened: All 365 days 

C Library 
Opened: 7:00–23:00 

Closed: 23:00–next 7:00 

Opened: other days 

Closed: winter vacation 

D Library 
Opened: 7:00–23:00 

Closed: 23:00–next 7:00 

Opened: other days 

Closed: winter vacation 

E Teaching building 
Opened: 7:00–23:00 

Closed: 23:00–next 7:00 

Opened: other days (summer, spring, and autumn term) 

Closed: winter vacation 

F Teaching building 
Opened: 7:00–23:00 

Closed: 23:00–next 7:00 

Opened: other days (summer, spring, and autumn term) 

Closed: winter vacation 

G Office Opened: All 24 hours Opened: All 365 days 

Table 5 Plug-related energy-use behavior modeling results in seven typical buildings 547 

No. Types Equation results (x is indoor CO2 concentration) 

A Office 𝑃(𝑇1–𝑇2) = 0.4658 +
–0.3048

1 + (
𝑥

420.16)
11.23 

B Laboratory 𝑃(𝑇1–𝑇2) = 0.6237 +
−0.2291

1 + (
𝑥

417.46156
)
43.96 

C Library 𝑃(𝑇1–𝑇2) =

{
 
 

 
 
0,   All hours in winter vacation
0.2, 23: 00– next 7: 00 in other days

0.9211 +
–0.4522

1 + (
𝑥

464.83)
19.49 , 7: 00– 23: 00 in other days

 

D Library 𝑃(𝑇1–𝑇2) =

{
 
 

 
 
0,   All hours in winter vacation
0.2, 23: 00– next 7: 00 in other days

0.7638 +
–0.6122

1 + (
𝑥

521.18
)
7.92 , 7: 00– 23: 00 in other days

 

E Teaching building 𝑃(𝑇1–𝑇2) =

{
 
 
 
 
 

 
 
 
 
 
0,   All hours in winter vacation
0.05, 23: 00– next 7: 00 in the whole year except winter vacation

0.4617 +
–0.0965

1 + (
𝑥

462.97)
7.00 , 7: 00– 23: 00 in summer vacation

247.2973 +
–246.8076

1 + (
𝑥

261036.17)
1.39 , 7: 00– 23: 00 in spring term

0.4407 +
–0.0406

1 + (
𝑥

1111.29)
12.30 , 7: 00– 23: 00 in autumn term

 

F Teaching building 𝑃(𝑇1–𝑇2) =

{
 
 
 
 
 

 
 
 
 
 
0,   All hours in winter vacation
0.12, 23: 00– next 7: 00 in the whole year except winter vacation

0.4889 +
–0.1790

1 + (
𝑥

450.10
)
28.50 , 7: 00– 23: 00 in summer vacation

0.7792 +
–0.3425

1 + (
𝑥

42.25
)
1.98 , 7: 00– 23: 00 in spring term

0.7958 +
–0.4014

1 + (
𝑥

498.05
)
4.50 , 7: 00– 23: 00 in autumn term

 

G Office 𝑃(𝑇1–𝑇2) = 0.6809 +
–0.2090

1 + (
𝑥

415.63
)
10.34 
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 548 

Figure 9 The result on plug-related behavior probability in different buildings (Note: Due to more cases and insufficient 549 

common colors, some colors are reused. Please refer to the legend of each figure for details) 550 

3.2.2 Results on plug load electricity consumption prediction  551 

When using the novel input system, the electricity prediction results with different algorithms are shown 552 

in Table 6 as follows. 553 

Table 6 Contrast experiment results in different buildings using novel inputs 554 

Code Inputs Algorithms R MAPE RMSE CV-RMSE Times MAE 

A-a Novel inputs LSTM 0.62654 18.0251% 14.9875 0.2097  11.3011 259.419 

A-b Novel inputs LSTM-WO 0.7961 12.2500% 14.8627 0.2079  10.6002 354.547 

A-c Novel inputs Bi-LSTM 0.70551 13.7911% 14.5961 0.2042  10.617 329.028 

A-d Novel inputs Bi-LSTM-WO 0.8011 12.0800% 12.9612 0.1813  9.4309 1000.311 

B-a Novel inputs LSTM 0.92492 5.5364% 9.3796 0.0796  6.3311 193.199 

B-b Novel inputs LSTM-WO 0.9307 5.8700% 9.0459 0.0768  6.3116 444.814 

B-c Novel inputs Bi-LSTM 0.92949 5.4147% 9.0581 0.0769  6.1067 243.214 

B-d Novel inputs Bi-LSTM-WO 0.9302 5.6000% 9.0054 0.0765  6.1642 783.661 

C-a Novel inputs LSTM 0.83779 16.6535% 29.2298 0.2880  17.4981 143.39 

C-b Novel inputs LSTM-WO 0.953 11.5600% 17.4494 0.1719  13.9794 510.87 

C-c Novel inputs Bi-LSTM 0.91942 14.3155% 22.7862 0.2245  15.0235 221.773 

C-d Novel inputs Bi-LSTM-WO 0.989 11.2200% 16.9025 0.1665  13.4734 589.506 

D-a Novel inputs LSTM 0.88638 13.3474% 54.9682 0.2127  36.2309 40.789 
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D-b Novel inputs LSTM-WO 0.9183 15.9000% 49.85178 0.1929  34.8323 129.471 

D-c Novel inputs Bi-LSTM 0.90962 13.6208% 52.4021 0.2028  33.4396 54.378 

D-d Novel inputs Bi-LSTM-WO 0.9214 14.7400% 48.6128 0.1881  33.363 151.746 

E-a Novel inputs LSTM 0.9474 10.8800% 10.4068 0.1177  6.8604 262.682 

E-b Novel inputs LSTM-WO 0.9582 9.9900% 10.3087 0.1166  6.8461 744.67 

E-c Novel inputs Bi-LSTM 0.94885 9.9350% 11.2671 0.1274  7.1085 323.29 

E-d Novel inputs Bi-LSTM-WO 0.96733 8.7367% 10.5939 0.1198  6.8338 917.748 

F-a Novel inputs LSTM 0.9034 19.8000% 8.7094 0.2295  5.4931 146.669 

F-b Novel inputs LSTM-WO 0.93338 14.8898% 6.6825 0.1761  4.0531 342.684 

F-c Novel inputs Bi-LSTM 0.95118 13.7072% 5.7209 0.1507  3.6806 174.727 

F-d Novel inputs Bi-LSTM-WO 0.95118 13.7072% 5.7209 0.1507  3.6806 344.336 

G-a Novel inputs LSTM 0.82429 7.2377% 8.9969 0.0952  6.7578 195.311 

G-b Novel inputs LSTM-WO 0.8694 6.6200% 7.9757 0.0844  6.106 571.928 

G-c Novel inputs Bi-LSTM 0.85789 6.6997% 8.0967 0.0857  6.2744 222.627 

G-d Novel inputs Bi-LSTM-WO 0.8738 6.4800% 7.8731 0.0833  6.0672 595.09 

4 Discussion  555 

4.1 Comparative analyses of the different prediction systems 556 

The focus of this section is on two kinds of energy consumption prediction systems: 557 

(1) Traditional prediction system: It employs conventional inputs and LSTM.  558 

(2) The upgraded prediction system: It uses Bi-LSTM, LSTM-WO, and Bi-LSTM-WO as algorithms 559 

in different scenes. For discussing the performance changes, this study defines the prediction system using 560 

Bi-LSTM-WO with the conventional input system as the upgraded system (a), and the system using Bi-561 

LSTM-WO with the novel input system as the upgraded system (b). 562 

This investigation exemplifies the above comparison of different prediction systems with illustrated 563 

details from Building E as shown in Figure 10. Because the related datasets in Building E are the most 564 

complete, while other building energy monitors have missing data. This phenomenon has been also observed 565 

in previous studies [39–40]. Although the absence of some data points may not significantly affect the 566 

prediction methods, Building E provides a clearer comparison of different prediction systems. Moreover, 567 

Building E exhibited complex changes in energy consumption and occupant energy-use behaviors, which 568 

allows for a stronger representation of Building E. The comparison of the traditional system and upgraded 569 

system (a) is shown in Figure 10. More specifically, the upgraded prediction system displayed elevated 570 

prediction performance, vividly captured in Figures 10 and 11. 571 

 572 
Figure 10 The comparison of the traditional system and upgraded system (a) 573 
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 574 

Figure 11 The comprehensive comparison of the traditional and upgraded prediction system 575 

In a broad comparison, the upgraded system (including a and b) surpasses the traditional prediction 576 

system across all building scenarios in terms of fitting, precision, and dispersion performance, while it is 577 

accompanied by increased computation time. Without considering outliers (two exceptions): data suggests 578 

an increase in fitting performance (R) of 0.0066–0.1549 (range: 0.70%–23.97%), a decrease in precision 579 

performance (MAPE) of 0.33%–7.16% (range: 5.33%–40.92%), a decrease in dispersion performance 580 

(RMSE) of 0.0638–2.2700 (range: 1.10%–21.08%), a decrease in dispersion performance (CV-RMSE) of 581 

0.0017–0.0310 (range: 1.10%–21.08%), and an increase in time consumption of 64.4130–794.2510 seconds 582 

(range 23.01%–288.80%). 583 

4.2 Comparative analyses of using different inputs and algorithms   584 

The section delves into the disparity in prediction performance resulting from using different input 585 

features and algorithms. Figure 12 reflects the performance improvement or degradation. The red segments 586 

coded 1 in Figure 12 are indicative of the scenario where using the novel input system, WO as optimization, 587 

and Bi as optimization corresponds to performance improvement demonstrated by decreased elapsed time, 588 

MAPE, and CV-RMSE along with increased R. Conversely, prediction performance declines are symbolized 589 

by the white segments coded 0. A comparative analysis has been framed to assess the impact of changing 590 

the input systems, using Bi, and using WO respectively with other variables remaining constant. It is essential 591 

to note that this comparison is quantitative detailing improvements or declines in prediction performance, 592 

not offering a qualitative contrast regarding specific values. 593 
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 594 
Figure 12 Prediction performance improvement and degradation from using different input systems and using optimization 595 

algorithms 596 

Overall, the following can be inferred:  597 

First, swapping the conventional input system with the novel system could potentially worsen precision 598 

and dispersion performance, as evidenced by a 3.63% average increase in MAPE and a 17.65% average 599 

increase in CV-RMSE. However, there was a corresponding decline in calculation time by approximately 600 

17.48%. Despite a diminishment in the overall prediction performance, there were sporadic instances of 601 

performance improvement, primarily in buildings B, C, D, and E. These buildings, with complex energy-use 602 

behaviors and multiple factors influencing plug-load energy consumption and usage, may explain the lower 603 

performance of the traditional prediction system. 604 

Second, the application of WO as optimization predominantly improves the precision and dispersion 605 

performance, documented by a 10.96% average decrease in MAPE and a 7.19% average decrease in CV-606 

RMSE. However, the calculation time increases substantially by an average of 183.14%. The elongated 607 

duration could be attributed to the requirement of additional iterations by the WO to pinpoint an optimal 608 

hyperparameter solution. 609 

Finally, the application of Bi as optimization was similar to those using WO as optimization. Despite 610 

accruing a similar accuracy improvement with an average decrease of 9.66% in MAPE and 7.12% in CV-611 

RMSE, the increase in operation time consumption was relatively marginal, recorded at an average increase 612 

of 28.93%. This may mean a greater balance of using Bi as optimization in comparison with WO. 613 

4.3 Applicability and propensity 614 

The performance and suitability of using different input features and algorithms vary across scenarios. 615 

A set of guiding principles to assist in these variations is presented herein and elaborated in Figure 13.  616 

(1) Considering input selection, three main principles have been established as follows: 617 

First, the capacity for data collection varies. In the absence of access to outdoor meteorological 618 

parameters or determining the category of plug-loads, the novel input system becomes the only feasible 619 

option. By contrast, the conventional input system remains a viable selection when there is a lack of duration 620 

time data for plug-load usages. And if all kinds of data can be collected, the propensity may be influenced 621 

by other principles and using which algorithms.  622 

Second, in buildings exhibiting a multitude of factors influencing plug-load electricity consumption or 623 

relatively complex energy-use behavior such as Buildings B–E, the novel and conventional input systems 624 

exhibit comparable performance. Both these systems present distinct advantages and disadvantages. 625 

However, in predicting energy consumption in buildings with simpler changes in energy consumption and 626 

occupant behaviors, the conventional input system shows better performance. 627 

Finally, the novel input system proves more effective under time constraints. 628 

(2) Considering algorithm selection, two main principles have been established as follows: 629 
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First, in situations where accuracy is paramount, the use of WO or Bi for optimization is recommended.  630 

Finally, WO for optimization may be not suitable for scenarios with strict time constraints. 631 

 632 

Figure 13 The applicability and priority of different input systems and algorithms 633 

Following the principles and Figure 13, a comprehensive plug-load electricity consumption prediction 634 

method has been proposed. This comprehensive method comprises two input systems and four algorithms, 635 

intended not to eradicate traditional inputs or algorithms, instead, it complements them to overcome 636 

challenges associated with the traditional prediction system such as data collection difficulty and poor 637 

prediction accuracy.  638 

4.4 Limits 639 

(1) There may be a need for more kinds of buildings to be included in the study in the future.  640 

(2) For the conventional input system, identifying various categories of plug loads poses a significant 641 

challenge. This complexity arises when different rooms in a building incorporate different categories of plug 642 

loads. For example, the plug loads in Room 1 may include sockets, lighting, and split ACs, whereas the plug 643 

load in Room 2 may only include sockets and lighting. As such, pinpointing the categories of plug loads 644 

across an entire building may be a challenge, making it a noteworthy area for further exploration. 645 

(3) For the novel input system, the modeling of socket-related behavior especially random socket-646 

related behaviors still requires further development. Notably, indoor air temperature and illumination can 647 

mainly determine AC and lighting-related behaviors respectively. In contrast, the CO2 concentration only 648 

indirectly reflects the probability of socket-related behaviors through the number of occupants. This indirect 649 

relationship could potentially be compromised, especially if there is frequent variability in occupant behavior 650 

patterns or the number of occupants. Furthermore, certain sockets are interconnected with lighting and split 651 

ACs, most prominently in spaces such as single-person offices or residences. Moreover, conventional 652 

modeling methods centered around waiting times and questionnaires fail to provide accurate, real-time, and 653 

online data. Thus, it is crucial to address the pressing need for the continued development of socket-related 654 

behavior modeling methods. Referring to recent studies, a hybrid model of stochastic Markov models with 655 

CO2-based statistical models may serve to further enhance the probabilistic model of socket-related 656 

behaviors. 657 

5 Conclusion  658 

This study presents a comprehensive upgraded plug-load electricity consumption prediction system, 659 

employing Bi-LSTM as a base algorithm in place of LSTM and employing improved WO for optimization. 660 

Moreover, it proposes two input systems for facing different limits and conditions on data collection, time 661 

requirements, and accuracy requirements. One is the conventional input system depending on factors 662 
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affecting electricity consumption, and the other is the novel input system introducing probabilities of socket-663 

related behaviors based on the conventional input system. Key findings include: 664 

(1) Comparison of the different building energy consumption prediction systems: the upgraded system 665 

deploying Bi-LSTM-WO demonstrated a better fitting (R increased by 0.70%–23.97%), precision (MAPE 666 

decreased by 5.33%–40.92%), and dispersion performance (CV-RMSE decreased by 1.10%–21.08%), while 667 

it needs longer computation time (Time increased by 23.01%–288.80%), except in isolated cases. Comparing 668 

the averages of indices, the upgraded system using Bi-LSTM-WO has 5.08% of R increase, 16.97% of 669 

MAPE decrease, and 4.71% of CV-RMSE decrease with 228.25% of time increase; using Bi-LSTM has 670 

2.29% of R increase, 8.47% of MAPE decrease, -2.80% of CV-RMSE decrease with 13.01% of time increase; 671 

and using LSTM-WO has 3.80% of R increase, 9.37% of MAPE decrease, -1.81% of CV-RMSE decrease 672 

with 156.27% of time increase. Therefore, the most suitable selection of prediction schemes should weigh 673 

time and accuracy constraints. 674 

(2) Comparison of different input systems: the conventional input system necessitates building plug 675 

load classification, and factors affecting the electricity consumption for each category, whereas the novel 676 

input system requires probabilities of socket-related behaviors. The latter, despite showing a slightly inferior 677 

precision and dispersion performance (MAPE increased by 3.63% and CV-RMSE increased by 17.65%), 678 

outperforms in terms of reducing calculation time consumption (Times decreased by 17.48%). Moreover, it 679 

is worth noting that the data reveals the better performance of the novel input system in some special 680 

buildings with more factors influencing plug-load energy consumption and relatively complex energy-use 681 

behaviors.  682 

(3) Applicability and propensity of different input systems: the selection between the two input systems 683 

depends primarily on data collection conditions, building type, and time limitations. First, concerning data 684 

collection conditions, the conventional input system requires more sensors to obtain parameters and more 685 

consultation to determine the categories of building plug loads. Moreover, it needs to further analyze the 686 

suitable category for the whole building when the categories of plug loads are different in each room. Novel 687 

input needs the time duration of occupant behaviors for calculating the probability. Second, concerning 688 

building type, the novel input system may be more suitable in buildings with complex energy-use behaviors 689 

and factors influencing plug-load energy consumption, while the conventional input system is relatively 690 

universally applicable. Finally, concerning time consumption, if it has limits on calculation time, the novel 691 

input system may be better.  692 

(4) Comparison of different algorithms: WO with adaptive weight adjustment and chaotic mapping 693 

presents a viable path toward the optimal solution of hyperparameters. Concurrently Bi exhibits the capacity 694 

to assimilate both historical and future states which affect the current state. Therefore, using WO and Bi as 695 

optimization will improve the performance, theoretically. Experimental data substantiate these presumptions. 696 

Using WO improves the precision and dispersion performance (MAPE decreased by 10.96% and CV-RMSE 697 

decreased by 7.19%) with increasing the calculation time (Times increased by 183.14%). However, using Bi 698 

will result in a similar accuracy improvement (MAPE decreased by 9.66% and CV-RMSE decreased by 699 

7.12%) with relatively less increase in calculation time consumption (Times increased by 28.93%).  700 

(5) Applicability and propensity of different algorithms: Considering constraints in precision, using WO 701 

or Bi or Both these two optimizations may be necessary. Overall, WO will improve the fitting, precision, 702 

and dispersion performance more than Bi, but the difference is insignificant. By contrast, WO will need more 703 

time than Bi and the difference is significant. Therefore, if it has strict limits on calculation time, using WO 704 

may be not suitable. Therefore, in the broader perspective that factors in calculation time consumption, 705 

algorithm complexity, and performance improvement, Bi often demonstrates more applications to WO as 706 
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optimization in most cases. 707 
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Appendix: Demonstration of the program for each part of the proposed prediction algorithm (MATLAB) 868 

%% Data pre-processing 869 

%%  Empty the matlab environment 870 

warning off             % Close alarm messages 871 

close all               % Close the open chart window 872 

clear                   % Clear variables 873 

clc                     % Clear command line 874 

  875 

%%  Importing Data 876 

res = xlsread('data.xlsx'); 877 

  878 

%%  Data Analysis 879 

num_size = 0.7;                              % Ratio of training set to data set  880 

outdim = 1;                                  % The last column is the output 881 

num_samples = size(res, 1);                  % Number of samples 882 

res = res(randperm(num_samples), :);         % Disrupting the data set 883 

num_train_s = round(num_size * num_samples); % Number of training set samples 884 

f_ = size(res, 2) - outdim;                  % Input Feature Dimension 885 

  886 

%%  Dividing the training set and test set 887 

P_train = res(1: num_train_s, 1: f_)'; 888 

T_train = res(1: num_train_s, f_ + 1: end)'; 889 

M = size(P_train, 2); 890 

  891 

P_test = res(num_train_s + 1: end, 1: f_)'; 892 

T_test = res(num_train_s + 1: end, f_ + 1: end)'; 893 

N = size(P_test, 2); 894 

  895 

%%  Data normalization 896 

[p_train, ps_input] = mapminmax(P_train, 0, 1); 897 

p_test = mapminmax('apply', P_test, ps_input); 898 

  899 

[t_train, ps_output] = mapminmax(T_train, 0, 1); 900 

t_test = mapminmax('apply', T_test, ps_output); 901 

 902 

%% Bi-LSTM-WO 903 

% Set parameters for Whale Optimization Algorithm (WOA) 904 

popsize = 5; % Number of individuals in the population 905 

maxgen = 10; % Maximum number of iterations for WOA 906 

dim = 4; % Number of variables to be optimized, namely the number of nodes in the first and second hidden layers of 907 

BiLSTM, maximum training epochs, and initial learning rate 908 

% Normalization and cell array handling 909 

lb = [1, 1, 0.001]; % Lower bounds for the variables 910 
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ub = [10, 20, 0.01]; % Upper bounds for the variables 911 

  912 

% Initialize position vector and score for the leader 913 

Leader_pos = zeros(1, dim); 914 

Leader_score = inf; % Change this to -inf for maximization problems 915 

  916 

% Initialize the positions of search agents 917 

Positions = initialization(popsize, dim, ub, lb); % Positions of multiple individuals in the population 918 

  919 

Convergence_curve = zeros(1, maxgen); % Convergence curve 920 

  921 

t = 1; % Loop counter 922 

  923 

% Main loop 924 

while t < maxgen + 1 925 

    disp(['current iteration is: ', num2str(t)]) % Display current iteration 926 

  927 

    for i = 1:size(Positions, 1) 928 

        % Return back search agents that go beyond the search space boundaries 929 

        Flag4ub = Positions(i, :) > ub; 930 

        Flag4lb = Positions(i, :) < lb; 931 

        Positions(i, :) = (Positions(i, :) .* (~(Flag4ub + Flag4lb))) + ub .* Flag4ub + lb .* Flag4lb; 932 

  933 

        % Evaluate fitness of the individual, which calls the 'func.m' sub-function and assigns the position coordinates to 934 

the parameters of BiLSTM for training 935 

        [fitness, net] = func(Positions(i, :), p_train, P_train, P_test, tn_train, ts, t_train, t_test); % Calculate fitness 936 

  937 

        if fitness < Leader_score % Update the leader if better fitness is found 938 

            Leader_score = fitness; 939 

            Leader_pos = Positions(i, :); 940 

            net1 = net; 941 

        end 942 

    end 943 

  944 

    a = 2 - t * ((2) / maxgen); % a decreases linearly from 2 to 0  945 

    a2 = -1 + t * ((-1) / maxgen); % a2 linearly decreases from -1 to -2  946 

  947 

    % Update the position of search agents 948 

    for i = 1:size(Positions, 1) 949 

        r1 = rand(); % r1 is a random number in [0,1] 950 

        r2 = rand(); % r2 is a random number in [0,1] 951 

  952 

        A = 2 * a * r1 - a; % Eq. (8) in the paper 953 

        C = 2 * r2; % Eq. (7) in the paper 954 
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  955 

        b = 1;  956 

        l = (a2 - 1) * rand + 1;  957 

  958 

        p = rand();  959 

         960 

        % Update position for each dimension of the individual 961 

        for j = 1:size(Positions, 2) 962 

            if p < 0.5 % Shrinking encircling mechanism 963 

                if abs(A) >= 1 964 

                    rand_leader_index = floor(popsize * rand() + 1); % Find a random leader index 965 

                    X_rand = Positions(rand_leader_index, :); 966 

                    D_X_rand = abs(C * X_rand(j) - Positions(i, j));  967 

                    Positions(i, j) = X_rand(j) - A * D_X_rand;  968 

                elseif abs(A) < 1 969 

                    D_Leader = abs(C * Leader_pos(j) - Positions(i, j));  970 

                    Positions(i, j) = Leader_pos(j) - A * D_Leader;  971 

                end 972 

            elseif p >= 0.5 % Spiral updating position mechanism 973 

                distance2Leader = abs(Leader_pos(j) - Positions(i, j)); 974 

                Positions(i, j) = distance2Leader * exp(b * l) * cos(l * 2 * pi) + Leader_pos(j);  975 

            end 976 

        end 977 

    end 978 

  979 

    Convergence_curve(t) = Leader_score; 980 

    t = t + 1; 981 

  982 

    disp(t) 983 

end 984 

  985 

figure; 986 

plot(Convergence_curve, 'b-', 'LineWidth', 1.0) 987 

grid on 988 

xlabel('Generation') 989 

ylabel('Best Fitness') 990 

title('Convergence Curve for WOA Optimization') 991 

  992 

disp('Optimized BiLSTM Parameters using WOA:') 993 

disp(strcat('Optimal Parameters: ', num2str([round(Leader_pos(1:2)), Leader_pos(3)]))) 994 

disp(strcat('Best Fitness: ', num2str(Leader_score))) 995 

  996 

%% Assign optimized parameters to BiLSTM neural network after WOA optimization (After the while loop, assign the 997 

optimized parameters to BiLSTM and train it again) 998 
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% Set parameters 999 

numFeatures = size(p_train, 1); % Number of input layer nodes 1000 

numHiddenUnits1 = round(Leader_pos(1)); % Number of nodes in the first hidden layer 1001 

numResponses = 1; % Number of nodes in the fully connected layer (equal to the number of labels) 1002 

  1003 

% Create the network 1004 

layers = [ ... 1005 

    sequenceInputLayer(numFeatures) 1006 

    bilstmLayer(numHiddenUnits1, 'OutputMode', 'last', 'name', 'hidden1') 1007 

    dropoutLayer(0.2, 'name', 'dropout_1') % Dropout layer to prevent overfitting in the first hidden layer 1008 

    fullyConnectedLayer(numResponses, 'name', 'fullconnect') 1009 

    regressionLayer('name', 'out')]; % Regression layer 1010 

  1011 

% Set options 1012 

options = trainingOptions('adam', ... % Optimization algorithm 1013 

    'MaxEpochs', round(Leader_pos(2)), ... % Maximum number of epochs to iterate through the samples 1014 

    'GradientThreshold', 1, ... % Gradient threshold 1015 

    'InitialLearnRate', Leader_pos(3), ... % Initial learning rate 1016 

    'LearnRateSchedule', 'piecewise', ... % Learning rate schedule 1017 

    'LearnRateDropPeriod', 800, ... % Learning rate update after 100 epochs 1018 

    'LearnRateDropFactor', 0.8, ... % Reduce learning rate by multiplying with this factor 0.1 1019 

    'MiniBatchSize', 240, ... % Batch size for processing samples 1020 

    'Verbose', 1, ... % Whether to display training progress in the command console 1021 

    'Plots', 'training-progress'); 1022 

  1023 

% Train BiLSTM 1024 

% net = trainNetwork(P_train,tn_train',layers,options); 1025 

net = net1; 1026 

  1027 

% Test set prediction 1028 

testn_simu = predict(net, P_test); 1029 

test_simu = mapminmax('reverse', testn_simu', ts); 1030 

  1031 

disp('WOA-BiLSTM Neural Network Performance Analysis:') 1032 

[e, ape] = caculate_perf(t_test, test_simu); 1033 

  1034 

rmse = sqrt(mean((test_simu - t_test).^2)); 1035 

 1036 

%% ‘Initialization’ in previous program (‘Bi-LSTM-WO’) 1037 

%% func. 1038 

function [fitness, net] = func(x, p_train, P_train, P_test, tn_train, ts, t_train, t_test) 1039 

% Fitness subfunction 1040 

% Optimizes the number of nodes in the first and second hidden layer of a BiLSTM network, 1041 
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% as well as the maximum training iterations and initial learning rate. 1042 

% Parameter settings 1043 

numFeatures = size(p_train, 1); % Number of input layer nodes 1044 

numHiddenUnits1 = round(x(1)); % Number of nodes in the first hidden layer 1045 

numResponses = 1; % Number of nodes in the fully connected layer (equals the number of labels) 1046 

  1047 

%% Create the network 1048 

layers = [ ... 1049 

    sequenceInputLayer(numFeatures) 1050 

    bilstmLayer(numHiddenUnits1, 'OutputMode', 'last', 'name', 'hidden1') 1051 

    dropoutLayer(0.3, 'name', 'dropout_1') % Dropout layer to prevent overfitting in hidden layer 1 1052 

    fullyConnectedLayer(numResponses, 'name', 'fullconnect') 1053 

    regressionLayer('name', 'out')]; % Regression layer 1054 

  1055 

%% Set parameters 1056 

% Specify training options, set the solver to 'adam' 1057 

options = trainingOptions('adam', ... 1058 

    'MaxEpochs', round(x(2)), ... 1059 

    'GradientThreshold', 1, ... 1060 

    'InitialLearnRate', x(3), ... 1061 

    'LearnRateSchedule', 'piecewise', ... 1062 

    'LearnRateDropPeriod', 800, ... 1063 

    'LearnRateDropFactor', 0.8, ... 1064 

    'MiniBatchSize', 240, ... 1065 

    'Verbose', 1, ... 1066 

    'Plots', 'none'); % Turn off training plots 1067 

  1068 

%% Train BiLSTM 1069 

net = trainNetwork(P_train, tn_train', layers, options); 1070 

  1071 

%% Training set predictions 1072 

train_simu = predict(net, P_train); 1073 

train_simu = mapminmax('reverse', train_simu', ts); 1074 

  1075 

%% Test set predictions 1076 

test_simu = predict(net, P_test); 1077 

test_simu = mapminmax('reverse', test_simu', ts); 1078 

  1079 

% Calculate fitness using root mean square error 1080 

fitness = sqrt(mean((test_simu - t_test).^2)); 1081 

% fitness = sqrt(mean((test_simu - output_test).^2)); 1082 

  1083 

end 1084 

 1085 
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%% ‘func’ in previous program (‘Bi-LSTM-WO’) 1086 

%% Initialization 1087 

% This function initializes the first population of search agents 1088 

function Positions = initialization(SearchAgents_no, dim, ub, lb) 1089 

  1090 

Boundary_no = size(ub, 2); % Number of boundaries (size of the second dimension) 1091 

  1092 

% If the boundaries of all variables are equal and the user enters a single 1093 

% number for both ub and lb 1094 

if Boundary_no == 1 1095 

    Positions = rand(SearchAgents_no, dim).*(ub - lb) + lb; 1096 

end 1097 

  1098 

% If each variable has a different lb and ub 1099 

if Boundary_no > 1 1100 

    for i = 1:dim 1101 

        ub_i = ub(i); 1102 

        lb_i = lb(i); 1103 

        Positions(:, i) = rand(SearchAgents_no, 1).*(ub_i - lb_i) + lb_i; 1104 

    end 1105 

end 1106 

 1107 

%% Evaluation index calculation 1108 

function [mae,mse,rmse,mape,error,errorPercent]=compute_error(x1,x2) 1109 

%This function is used to calculate the predicted and actual value of each error indicator 1110 

%   mae£ºMean absolute error 1111 

%   mse£ºMean Square Error 1112 

%   rmse£ºRoot mean square error 1113 

%   mape£ºMean absolute percentage error 1114 

%   error£ºAbsolute error 1115 

%   errorPercent£ºRelative Error 1116 

if nargin==2 1117 

    if size(x1,2)==1 1118 

        x1=x1';  %Converting column vectors to row vectors 1119 

    end 1120 

     1121 

    if size(x2,2)==1 1122 

        x2=x2';  %Converting column vectors to row vectors 1123 

    end 1124 

     1125 

    num=size(x1,2);%Total number of statistical samples 1126 

    error=x2-x1;  %Calculate the absolute error 1127 

    errorPercent=abs(error)./x1; %Calculate the absolute percentage error for each sample 1128 

Jo
urn

al 
Pre-

pro
of



     1129 

    mae=sum(abs(error))/num; %Calculate the mean absolute error 1130 

    mse=sum(error.*error)/num;  %Calculate the mean square error 1131 

    rmse=sqrt(mse);     %Calculate the root mean square error 1132 

    cvrmse=rmse/mean(x2) %Calculate CV-RMSE 1133 

    mape=mean(errorPercent);  %Calculate the mean absolute percentage error 1134 

     1135 

    %Results 1136 

    disp(['mae is£º  ',num2str(mae)]) 1137 

    disp(['mse is£º  ',num2str(mse)]) 1138 

    disp(['rmse is£º ',num2str(rmse)]) 1139 

    disp(['cvrmse is£º ',num2str(cvrmse)]) 1140 

    disp(['mape is£º ',num2str(mape*100),' %']) 1141 

     1142 

else 1143 

    disp('There is an error in the function call method, please check the number of input parameters') 1144 

end 1145 

end 1146 
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Highlights 

1. A novel building plug-load electricity consumption prediction system was proposed. 

2. The definition and classification of building plug loads were proposed. 

3. The enhanced input system based on occupant behavior probability was proposed. 

4. The optimized algorithms based on the Bi module and WO module were verified. 

5. The optimal combination of input system and training algorithms was proposed. 
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