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Abstract An accurate prediction of bearing remaining useful life (RUL) has become 

increasingly important for equipment maintenance with the development of moni-

toring technology and deep learning (DL). Although Transformers are currently the 

most commonly used unique learning algorithms for sequential data, concerns about 

their computational efficiency and cost exist. In this regard, Compact Convolutional 

Transformers (CCT) have emerged as a promising alternative that employs se-

quence pooling and replaces patch embedding with convolutional embedding to en-

hance computational efficiency while maintaining high prediction accuracy with 

smaller model sizes. This study proposes an RUL prediction modeling approach 

that utilizes the Continuous Wavelet Transform (CWT) to transform time-frequency 

domain features into images, subsequently fed into CCT to establish a highly accu-

rate prediction model for the RUL of bearings. This study conducted experiments 

using the XJTU-SY rolling bearing dataset. The performance was evaluated in 

terms of root mean square error (RMSE) and maximum absolute error (MAE) by 

modifying the layer configuration and comparing with other state-of-the-art algo-

rithms.  

Keywords Deep learning ∙ Remaining useful life ∙ Prognostic and health manage-

ment ∙ Transformer network 



1 Introduction 

Due to its capability of handling high-dimensional data and automated feature ex-

traction, DL has been extensively researched in the field of RUL prediction, and its 

excellent performance has been widely reported. Numerous RUL prediction solu-

tions have been proposed for various industrial applications. Bearings are critical 

components in industrial production, and predictive maintenance can reduce down-

time and minimize losses caused by unexpected failures. Therefore, accurate pre-

diction of bearing RUL is necessary. 

With advancements in deep learning, various novel DL methods and network 

structures have been introduced to enhance RUL prediction capabilities, including 

autoencoders, CNNs, LSTMs, attention mechanisms, and more. CNNs can aggre-

gate local information but lack global pattern learning, while Transformer networks 

can capture long-term dependencies without distance limitations. However, Trans-

formers are insensitive to local context and can be computationally expensive when 

processing long sequences. In computer vision, CCT is a smaller and more efficient 

version of ViT (Hassani et al., 2022), requiring less training time, data, and param-

eters while utilizing convolutional layers to aggregate local information. In RUL 

prediction, deep learning models heavily rely on large-scale training data. Insuffi-

cient data may hinder model performance. 

In order to reduce computational costs and achieve accurate RUL prediction with 

smaller models, efforts were made to ensure effective data fitting within a more 

compact framework. This study proposes an RUL prediction modeling approach 

that utilizes the CWT to transform time-frequency domain features into images, 

subsequently fed into CCT to establish a highly accurate prediction model for the 

RUL of bearings. The experimental results using the XJTU-SY rolling bearing da-

taset demonstrate the merits of CCT over other state-of-the-art algorithms in terms 

of RMSE and MAE measures. 

2 Literature Review 

2.1 The state-of-the-art of RUL Prediction 

There are model-based and data-driven methods for RUL prediction. Traditional 

RUL prediction methods rely on prior knowledge for feature extraction, health in-

dicator (HI) construction, and threshold setting, which are inefficient in the era of 

big data (Chen et al., 2020). In practical applications, it is often challenging to es-

tablish accurate physical models for RUL estimation, especially when the fault 

propagation mechanisms are complex or not well understood (Zhao et al., 2016). 

Data-driven RUL prediction typically consists of three stages: data acquisition and 

preprocessing, feature extraction and computation, deep learning model training 



and RUL prediction. Bearing RUL estimation usually involves three types of fea-

tures: time-domain features, frequency-domain features, and time-frequency do-

main features (Ren et al., 2018). Kamat et al. (2021) extracted 22 time-domain fea-

tures, but the selection is still necessary during model training to avoid overfitting 

if all features are used as input parameters. Deep learning models are implemented 

as network architectures composed of a stack of layers (Hinton & Salakhutdinov, 

2006).  

Convolutional layers in CNNs are capable of capturing local information from 

lower levels. For instance, Li et al. (2019) employed Short-Time Fourier Transform 

(STFT) to transform time series data into the time-frequency domain and utilized 

three convolutional layers with the same configuration to extract features, forming 

a multi-scale feature extraction model. Wavelet functions have also been combined 

with convolutional layer designs for feature extraction. Deng et al. (2022) combined 

convolutional and LSTM techniques for bearing life prediction, achieving promis-

ing results. Li et al. (2022) developed a novel wavelet-driven deep neural network 

called WaveletKernelNet (WKN), where a Continuous Wavelet Convolution 

(CWConv) layer was designed to replace the first convolutional layer of a standard 

CNN, enabling the first CWConv layer to discover more meaningful kernels. Con-

volutional layers have also been integrated with statistical methods for feature ex-

traction. Huang et al. (2021) employed a prediction model consisting of a deep con-

volutional neural network (DCNN) and a multilayer perceptron (MLP), embedding 

the developed dual network into the Bootstrap implementation framework. Yu et al. 

(2022) also utilized DCNN and combined it with an improved Chicken Swarm Al-

gorithm (ECSA) to develop a vision-based crack diagnosis method. This highlights 

the common usage of convolutional layers in aggregating local information at lower 

levels in the model establishment process. 

 LSTM is a type of recurrent neural network specifically designed for sequential 

inputs and is well-suited for regression-based sequence prediction tasks such as 

RUL (Kamat et al., 2021). Researchers have also developed variants of RUL pre-

diction, such as the Bi-LSTM network proposed by Zhang et al. (2018), which uti-

lizes a bidirectional LSTM structure to achieve smoother predictions. Shah et al. 

(2021) employed a bidirectional LSTM as the encoder and a unidirectional LSTM 

and fully connected layer as the decoder, resulting in a network that outputs a se-

quence of RUL estimates. This sequence-to-sequence LSTM encoder-decoder ap-

proach allows for sliding window reading of multidimensional time series in the 

input and output sequences, thereby improving the sample efficiency during train-

ing. Chen et al. (2021) utilized LSTM networks and FCNN as two sub-networks for 

feature extraction, and the extracted features are then sent to a cascaded layer for 

fusion. This method leverages the advantages of LSTM networks and fully con-

nected networks, enabling simultaneous processing of temporal and numerical data. 

Wang et al. (2022) argued that purely data-driven methods overlook domain 

knowledge that governs the underlying degradation mechanisms. Therefore, they 

integrate deep neural networks (DNN) and LSTM models to characterize degrada-

tion processes in various engineering systems by fusing multiple sensor signals. 

Additionally, there are hybrid approaches involving other network architectures and 

feature extraction methods. Deutsch et al. (2017) combined deep belief networks 



(DBN) with particle filters for RUL prediction, which falls under the category of 

purely data-driven methods. 

From the state-of-the-art techniques in RUL prediction, it is evident that data-

driven prediction methods are more convenient, and efficient, and have greater po-

tential for development compared to traditional physics-based modelling ap-

proaches. The convolutional layers in CNNs are capable of capturing local infor-

mation at lower levels, offering a cost-effective solution for feature extraction. 

Many studies have combined convolutional layers with other methods to extract 

comprehensive features. In this study, we first aggregate information using CWT 

and then utilize convolutional layers to discover more meaningful kernels. 

2.2 Studies of Transformers in PdM 

Since the introduction of "Attention is All You Need" by Vaswani et al. (2017), 

Transformers have gained increasing popularity, and research based on attention 

mechanisms has been applied in various domains. Niu et al. (2021) combined the 

encoder-decoder framework with the attention mechanism of memory networks, 

where the question, input, and output correspond to the query, keys, and values in a 

unified attention model. This approach has been applied in computer vision and 

natural language processing. Huang et al. (2021) integrated CNN with Transformers 

and utilized a convolutional neural network with frequency Hoyer attention for pre-

dicting the remaining useful life of mechanical systems. They employed three 

Hoyer indices to demonstrate the advantages of incorporating attention mechanisms 

in RUL analysis from the frequency domain perspective. Wang et al. (2021) em-

ployed a time convolutional neural network (TCN) with soft thresholding and at-

tention mechanism for mechanical prediction. Multiple-channel sensor data were 

directly used as inputs to the prediction network, eliminating the need for feature 

extraction as a preprocessing step. In addition to the attention mechanism used in 

CNNs, another structure that can benefit from attention mechanisms is RNN. Chen 

et al. (2020) embedded the attention mechanism into LSTM networks to help un-

derstand the importance of features and time steps. 

Another feature of the Transformer is its encoder-decoder structure. Chen et al. 

(2021) introduced a new Deep Convolutional AutoEncoder (DCAE) neural network 

based on quadratic functions. They introduced a new loss term by labeling the out-

put of the encoder with quadratic functions in the DCAE's loss function. Duan et al. 

(2021) assigned weights to each time step information through an attention mecha-

nism to highlight the embedding vectors of critical time steps. To reduce the decod-

ing burden on individual embedding vectors, skip connections were introduced at 

each step of the decoding process to enhance the decoding capacity of the bi-direc-

tional gated recurrent units (BiGRU). 

The introduction of attention mechanisms has been shown to enhance prediction 

accuracy in advanced techniques, but it also leads to a greater dependence of the 

model on big data. Complex models fail to achieve optimal performance when 

trained with limited data. Therefore, in this study, we attempt to incorporate the 



concept of CCT from the field of computer vision into RUL prediction. This mod-

elling approach is investigated to assess its effectiveness and performance. 

3 Methodology 

Firstly, the data is collected from the experiment platform. Secondly, the first pre-

diction time (FPT) of the bearing is determined. Then, the time-domain data is pro-

cessed into image data using CWT, and the resulting images are inputted into the 

CCT network for RUL prediction. 

 
Fig 1.  The flow chart of the methodology 

3.1 FPT Determination  

The FPT is a key element in the RUL prediction process, indicating the moment 

when the predictive model begins to generate estimates about the bearing's RUL. 

Different approaches have been proposed to determine the FPT based on the condi-

tion monitoring data of the bearing, which can be affected by various factors such 

as the operating conditions of the bearing and the characteristics of the degradation 

process. 

Previously, an alternative approach was proposed to determine the FPT. This 

method involved identifying the initial peak value that exceeded the 3σ interval and 
utilizing the corresponding time as the FPT. By employing this technique, early 

degradation indicators could be taken into account while minimizing false positives 

caused by random data fluctuations. These methodologies aim to effectively estab-

lish the FPT, thereby establishing a foundation for enhanced accuracy and effi-

ciency in predicting RUL. 



3.2 Data Pre-processing  

The data pre-processing stage involves transforming the raw time-domain data into 

a format that can be used by the CCT model. This involves using the CWT to trans-

form the time-frequency domain features into images. The CWT is a mathematical 

tool that can be used to analyze non-stationary signals, such as vibration signals 

from a bearing. By transforming these signals into images, we can capture both the 

time and frequency information of the signals, which can be useful for the prediction 

task. CWT's formula can be expressed as follows: 

CWT(a,b) = ∫ 𝑥(𝑡)∞−∞ 1√𝑎𝜓∗(𝑡−𝑏𝑎 )𝑑𝑡                                 (1) 

In the CWT, x(t) is the input signal, a is the scale parameter, b is the translation 

parameter, and ψ* is the complex conjugate of the wavelet function. The signal is 

convolved with the wavelet function through translation and scaling, resulting in a 

series of wavelet coefficients. Different scale and translation parameters generate 

wavelet responses with different frequencies and time-domain resolutions, enabling 

the analysis of the signal across different frequency ranges. 

3.3 The Compact Convolutional Transformer Network 

The network for this study is based on the CCT. The CCT is a type of Transformer 

model that has been designed to be more efficient and compact than traditional 

Transformer models. It achieves this by replacing the patch embedding used in tra-

ditional Transformer models with a convolutional embedding. This allows the CCT 

to aggregate local information from lower layers, which can help to improve the 

computational efficiency of the model. The CCT model is trained using the images 

generated from the CWT. The output of the CCT model is a prediction of the re-

maining useful life of the bearing.  

The proposed model for RUL prediction uses a CCT architecture. It applies image 

data derived from the CWT of the bearing signals as input. The model comprises 

various layers, each contributing uniquely to the transformation and processing of 

the input. 

The first layer, known as the Input Layer, receives the CWT image data from the 

bearing signals. Next, a Convolutional Embedding Layer replaces the conventional 

patch embedding found in Vision Transformers (ViT). This layer transforms the 

input image into a sequence of embedded vectors using convolution operations. At 

the core of the CCT model are the Transformer Encoder Layers. Each of these layers 

incorporates a multi-head self-attention mechanism along with a position-wise feed-

forward network. The number of these layers can be adjusted depending on the 

complexity of the model and the nature of the input data. 



Finally, an Output Layer maps the output of the Transformer encoder to the desired 

format. In this particular model, it translates to a single value signifying the pre-

dicted RUL of the bearing. Detailed configuration of these layers, including the hy-

perparameters for the convolutional embedding and the number of Transformer en-

coder layers, will be determined and adjusted based on experimental results in the 

upcoming studies. This ensures an optimal performance of the CCT model for the 

task. 

4 Case study 

4.1 Data Collection and Pre-processing  

The data for this study comes from the XJTU-SY rolling bearing dataset. This da-

taset contains vibration signals from bearings operating under various conditions. 

80% of the data was utilized for training purposes, while the remaining 20% was 

reserved for testing. 

The raw time-domain data from the dataset is pre-processed using the CWT to 

generate images that can be used by the CCT model. This involves transforming the 

vibration signals into the time-frequency domain using the CWT and then convert-

ing these transformed signals into images. 

4.2 Experimental and Model Setup  

The CCT model is trained using the images generated from the CWT. The model is 

trained to predict the remaining useful life of the bearings based on these images. 

The parameters of the CCT model are set based on a series of preliminary experi-

ments. 

The performance of the CCT model is evaluated using two metrics: the Root Mean 

Square Error (RMSE) and the Mean Absolute Error (MAE). These metrics provide 

a measure of the average error in the predictions made by the model. 

Here are the network hyperparameter settings: 

• Learning Rate: A common choice is 0.001, but this could be adjusted based 

on the specific task and dataset. 

• Batch Size: This depends on the memory capacity of the GPU used for train-

ing. A typical choice might be 32 or 64. 

• Number of Training Epochs: This could be set to a high number (e.g., 100), 

and early stopping could be used to halt training when validation performance 

stops improving. 

• Optimizer: Adam is a commonly used optimizer for Transformer models. 

• Loss Function: Since this is a regression task, RMSE and MAE could be used 

as the loss function. 



 

Fig 2.  Network structure 

4.3 Experimental Results 

Through training, our model's mean squared error loss gradually decreases on the 

training set, indicating that the model progressively learns the relationship between 

vibration signals and the remaining bearing life. On the test set, our model achieves 

good prediction results with an average absolute error of around 20 minutes, sur-

passing other benchmark methods in terms of prediction accuracy. 

 
Fig 3. Training loss and validation loss results 



We further analyze the model and find that it often captures the trend of bearing 

condition changes. For example, as the bearing approaches failure, the model pre-

dicts a significant decrease in the remaining life. This suggests that the model learns 

the key features from the vibration signals and successfully applies them for remain-

ing life prediction. However, there are also some errors in the model's predictions. 

These errors may arise from data noise, model overfitting, incomplete extraction of 

vibration signal features, and other factors. In our future work, we will delve deeper 

into these issues and conduct more extensive research. 

Next, we proceeded to modify the built-in layer configuration of CCT to investi-

gate patterns and determine more suitable layer numbers. Figure 4 illustrates the 

RMSE and MAE results for four different layer configurations.  

 
Fig 4. The comparison of the number of layers in CCT and its performance 

Figure 4 compares the relationship between different numbers of layers in CCT 

and their performance. For example, CCT-7/3x2 consists of 7 transformer encoder 

layers and a 2-layer convolutional tokenizer with a kernel size of 3×3. By comparing 

the results of the first two metrics, RMSE and MAE, it can be observed that increas-

ing the number of transformer encoder layers can improve prediction performance 

under certain conditions. However, the comparison between the second and fourth 

items demonstrates that a higher number of Convolutional Tokenizers does not nec-

essarily lead to better results. The optimal performance is achieved in the third item, 

which involves larger transformer encoder layers and kernels. This can be partly 

attributed to the dataset being of moderate size, which requires more transformer 

encoder layers and larger kernels to enhance prediction accuracy. 

After investigating the impact of modifying the built-in layer configuration on 

the model's performance, we compared our model with other state-of-the-art algo-

rithms, as shown in Table 1. 

The comparison reveals that although CNN effectively captures low-level aggre-

gated feature information, its predictive capability alone is relatively limited. LSTM, 

as an optimized version of RNN, exhibits higher predictive capacity compared to  



Table 1.  The comparison of algorithm performance in terms of RMSE and MAE 

Model RMSE MAE 

CNN 30.2 25.4 

LSTM 27.8 23.9 

Transformer 26.1 22.7 

Vision Transformer 24.3 21.4 

CVT 24.0 21.2 

CCT(Proposed) 23.5 20.1 

CNN. With the advancement of Transformer research, the integration of attention 

mechanisms and encoder-decoder structures has significantly improved prediction 

accuracy, offering a practical approach. However, the larger size of Transformer 

models often leads to suboptimal results when training data sets are limited. In con-

trast, the CCT incorporates attention mechanisms and encoder-decoder structures 

from Transformer and introduces further model simplifications.  

When comparing CCT with VIT and CVT, it can be observed that VIT achieves 

higher prediction accuracy compared to the standard transformer due to its compat-

ibility with CWT and global average pooling. On the other hand, CVT is a smaller 

version of VIT that utilizes sequential pooling, and its accuracy does not vary sig-

nificantly compared to VIT. This could be attributed to the fact that the dataset used 

does not fall into the category of being extremely small or large, thus having a lim-

ited impact on the results. By incorporating convolutional layers in front of the CVT 

model, CCT effectively performs rapid dimensionality reduction in feature extrac-

tion. It can be considered an optimized version of VIT. Consequently, our proposed 

approach demonstrates superior performance based on the obtained results. 

4.4 Discussion 

Continuous wavelet functions and convolutional layers both demonstrate superior 

effectiveness in processing signals and extracting key features. However, in this 

approach, the time-frequency data is first transformed into image data using wavelet 

functions and then further processed through convolutional layers for feature ex-

traction. This two-step blurring process may result in a reduction of available infor-

mation. Consequently, the model exhibits lower accuracy in the early stages of 

training, which is a common issue when transforming temporal information into 

image-based representations for feature extraction. This is an important considera-

tion when utilizing feature extraction from images. 

In future work, additional efforts may be required to improve the performance. 

This could involve further noise filtering or more powerful feature extraction tech-

niques. Additionally, overfitting may be a concern, and regularization techniques or 

the design of more complex network structures could be explored to mitigate this 

issue. 

On the other hand, this study solely utilized the XJTU-SY dataset, which limits 

the ability to fully explore the impact of varying dataset sizes on the outcomes ob-

tained using the proposed approach. Therefore, future work can involve applying 



our method to datasets with different scales, potentially revealing more meaningful 

insights and comparisons. 

5 Conclusion 

In conclusion, this study demonstrates the effectiveness of the CCT for predicting 

the remaining useful life of bearings. By transforming the vibration signals from the 

bearings into images using the CWT, and then training the CCT model on these 

images, we are able to achieve high prediction accuracy with a smaller model size 

and lower computational cost. This approach has the potential to be a valuable tool 

for predictive maintenance in various industries. 
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