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a b s t r a c t

Neuroimaging studies consistently show advanced brain age in schizophrenia, suggesting

that brain structure is often ‘older’ than expected at a given chronological age. Whether

advanced brain age is linked to genetic liability for schizophrenia remains unclear. In this

pre-registered secondary data analysis, we utilised a recall-by-genotype approach applied

to a population-based subsample from the Avon Longitudinal Study of Parents and Chil-

dren to assess brain age differences between young adults aged 21e24 years with relatively

high (n ¼ 96) and low (n ¼ 93) polygenic risk for schizophrenia (SCZ-PRS). A global index of

brain age (or brain-predicted age) was estimated using a publicly available machine

learning model previously trained on a combination of region-wise gray-matter measures,

including cortical thickness, surface area and subcortical volumes derived from T1-

weighted magnetic resonance imaging (MRI) scans. We found no difference in mean

brain-PAD (the difference between brain-predicted age and chronological age) between the

high- and low-SCZ-PRS groups, controlling for the effects of sex and age at time of scanning

(b ¼ �.21; 95% CI �2.00, 1.58; p ¼ .82; Cohen's d ¼ �.034; partial R2 ¼ .00029). These findings

do not support an association between SCZ-PRS and brain-PAD based on global age-related

structural brain patterns, suggesting that brain age may not be a vulnerability marker of
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common genetic risk for SCZ. Future studies with larger samples and multimodal brain age

measures could further investigate global or localised effects of SCZ-PRS.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
Bøstrand et al., 2022; Kolbeinsson et al., 2020; Kaufmann et al.,

1. Introduction
Schizophrenia (SCZ) is a highly heritable (h2 ~ 80%) psychiatric

disorder associated with substantial functional impairment,

high prevalence of age-related diseases (including car-

diometabolic disease and dementia), and an average decrease

in life expectancy of approximately 15 years (Correll et al.,

2017; Hjorthøj et al., 2017; Mitchell et al., 2013; Stroup et al.,

2021; Sullivan et al., 2003; Weye et al., 2020). The increased

risk of age-related comorbidities and shortened lifespan in

SCZ may partly be explained by “accelerated” ageing of the

body and brain (Dieset et al., 2016; Kirkpatrick et al., 2008;

Kirkpatrick& Kennedy, 2018). In keeping with this hypothesis,

neuroimaging studies provide robust evidence for advanced

biological age of the brain in people with SCZ (Blake et al.,

2023; Constantinides et al., 2022; Kaufmann et al., 2019).

However, whether apparent advanced brain ageing is linked

to genetic liability for schizophrenia in young people remains

unclear. Symptoms of SCZ typically start in late adolescence

or early adulthood and structural brain alterations in patients

persiste or even increaseewith age (van Erp et al., 2016; 2018;

Cropley et al., 2017). Despite this apparent neurodegenerative

profile, several studies have instead suggested a neuro-

developmental origin of SCZ and a role of early-life risk factors

for disease aetiology (Murray et al., 2017; Owen & O'Donovan,

2017). Similarly, ageing is often considered in the context of

old age and degeneration, when it is equally possible that

ageing lies on a continuum with developmental processes

that start at birth (Cohen et al., 2020; Kinzina et al., 2019). In

this case, and considering the large genetic component of SCZ,

it is plausible that a link between genetic liability for schizo-

phrenia and advanced brain ageing could emerge earlier in

development in at-risk populations and before disease onset.”

Using structural magnetic resonance imaging (sMRI), it is

possible to estimate the underlying biological age of the brain

via supervised machine learning (Cole and Franke, 2017;

Franke et al., 2010). Brain age (or brain-predicted age) can

differ from actual chronological age, and the discrepancy be-

tween the two is captured by the brain-predicted age differ-

ence (brain-PAD; also known as brain age gap). While the

interpretation of brain-PAD is complex (Vidal-Pineiro et al.,

2021), a brain-PAD greater than zero indicates a brain that

appears ‘older’ than the person's chronological age, and thus

may be interpreted as ‘advanced’ brain ageing, whereas a

brain-PAD lower than zero reflects a brain ‘younger’ than ex-

pected at a given chronological age (i.e., “delayed” brain

ageing) (Franke & Gaser, 2019). Higher brain-PAD scores have

been associated with a range of health-related factors and

outcomes, including smoking, higher alcohol intake, blood

pressure, obesity (or higher body mass index), diabetes, de-

mentia, major depression, and mortality (Ning et al., 2020;
2019; Han et al., 2022; Cole et al., 2018). Hence, brain-PADmay

be a marker of overall brain health (Baecker et al., 2021).

We recently showed a greater brain-PAD in SCZ relative to

controls in a multi-cohort study (mean difference of þ3.55

years after adjusting for age, sex, and scanning site; Cohen's
d ¼ 0.48) (Constantinides et al., 2022), in line with previous

work (Demro et al., 2022; Kaufmann et al., 2019; Koutsouleris

et al., 2014; Nenadi�c et al., 2017). A greater brain-PAD was

also observed in adolescents and young adults with SCZ

(Truelove-Hill et al., 2020) or at high risk for psychosis (Chung

et al., 2018; Koutsouleris et al., 2014), and in first-episode pa-

tients (Hajek et al., 2019). Importantly, cross-sectional studies

did not find evidence for an association between illness

duration and brain-PAD among people with SCZ or closely

related disorders (Constantinides et al., 2022; Demro et al.,

2022; Koutsouleris et al., 2014), and longitudinal data indi-

cate that this gap widens predominantly during the first few

years after illness onset before stabilising (Demro et al., 2022;

Schnack et al., 2016). Taken together, research to date sug-

gests that advanced brain age in schizophrenia may partly

reflect deviations from typical neuromaturation trajectories.

Single nucleotide polymorphism-based heritability (hSNP
2 )

estimates for schizophrenia indicate that approximately a

quarter of the liability to the disorder is explained by common

variants, each conferring a small increase in risk. Genome-

wide association studies (GWAS) have identified hundreds of

such variants to date, with the latest study implicating 287

genetic loci in SCZ (PGC wave 3; Trubetskoy et al., 2022). The

cumulative effect of these variants can be summarised into a

polygenic risk score that estimates an individual's genetic li-

ability to schizophrenia (SCZ-PRS) as conferred by common

frequency alleles (Choi et al., 2020). Variation in SCZ-PRS in

the general population has been associated with phenotypes

of brain morphometry previously implicated in schizo-

phrenia, including global or regional reductions in cortical

thickness and subcortical structures, possibly reflecting

vulnerability to the disorder (Jameei et al., 2023; Neilson et al.,

2019; Stauffer et al., 2021).

Studies of the genetic architecture of brain age suggest

that brain-PAD is moderately heritable (h2 � .5; hSNP
2 ¼ .24)

(Cole et al., 2017; Kaufmann et al., 2019), with implicated

genes overlapping with those previously linked to SCZ

(Kaufmann et al., 2019). Moreover, a recent study found an

association between SCZ-PRS and brain-PAD in a clinical

sample of individuals with SCZ and controls aged 16e67 years

(Teeuw et al., 2021). However, this association was no longer

significant after adjusting for disease status, possibly

reflecting downstream effects of the disorder or confounding

factors. In the current study, we aimed to examine whether

brain-PAD is associated with polygenic liability for SCZ, as

assessed in a population-based sample of young adults aged
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21e24 years. The study utilised a recall-by-genotype (RbG)

design, which increases variance in SCZ-PRS by sampling

participants from the tails of the genotypic distribution (i.e.,

with either extremely high- or low-SCZ-PRS), while mini-

mising problems with reverse causation that often exist in

clinical samples (Corbin et al., 2018; Lancaster et al., 2019). In

our prospectively registered Open Science Framework sec-

ondary data analysis (https://osf.io/hrka4), we hypothesised a

greater brain-PAD score in the high SCZ-PRS group relative to

the low SCZ-PRS group. Evidence for an association between

SCZ-PRS and brain-PAD in young individuals recruited from

the general (largely unaffected) population could reflect a

contribution of common genetic risk for SCZ to brain-PAD,

rather than brain-PAD being shaped by the potential effects

of disorder pathophysiology or medication. In addition, we

conducted exploratory analyses of associations between

brain-PAD and other risk factors or co-occurring phenotypes

relevant to schizophrenia (e.g., birth weight, BMI, depressive/

emotional symptoms) and whether SCZ-PRS might moderate

those associations.
2. Methods

We report how we determined our sample size (Section 2.1),

all data exclusions, all inclusion/exclusion criteria (Sections

2.1, 2.2 and 2.5), whether inclusion/exclusion criteria were

established prior to data analysis (Section 2.6), all manipula-

tions, and all measures in the study (Sections 2.1e2.6).

2.1. Study population and SCZ-PRS stratification

Weused data from the Avon longitudinal Study of Parents and

Children (ALSPAC) SCZ-RbG sub-study (high SCZ-PRS vs low

SCZ-PRS), which was previously established to investigate the

effects of genetic variants contributing to SCZ on brain

developmental and behavioural outcomes (Lancaster et al.,

2019; Sharp et al., 2020). This recall-by-genotype (RbG) neu-

roimaging study is nested within ALSPAC, a population-based

cohort established to identify factors influencing child health

and developmental outcomes. Briefly, the broader ALSPAC

study originally invited pregnant women residing in Avon

(South-West England) with expected delivery dates between

1st April 1991 and 31st December 1992. The initial number of

pregnancies enrolled was 14,541, resulting in 13,988 children

who were alive at 1 year of age. The phases of enrolment and

study representativeness are described in more detail in the

cohort profile paper and its updates (Boyd et al., 2013; Fraser

et al., 2013; Northstone et al., 2019).

Following genotyping of most participants within ALSPAC

and subsequent quality control of raw genome-wide data, a

sub-sample of 8,365 children underwent SCZ-PRS estimation

following a normal distribution (Lancaster et al., 2019). Con-

struction of the SCZ-PRS followed the methods described by

the International Schizophrenia Consortium (2009), using

summary data from the largest discovery SCZ-GWAS of the

Psychiatric Genomics Consortium (PGC-SCZ wave-2; Schizo-

phrenia Working Group of the Psychiatric Genomics

Consortium, 2014) available at the time of participant

recruitment. A polygenic score was individually calculated
using the “score” command in PLINK (version 1.07; Purcell

et al., 2007). SCZ-PRS was created by summing the number

of risk alleles present for each single nucleotide poly-

morphism (SNP; i.e., 0, 1, or 2) weighted by the logarithm of

each SNP's odds ratio for SCZ from the PGC GWAS summary

statistics. This was based upon a PRS generated from SNPs

with a GWAS training set p � .05 threshold, as it captured the

maximumSCZ liability in the primary PRS analysis of the PGC-

SCZ GWAS (Schizophrenia Working Group of the Psychiatric

Genomics Consortium, 2014). To recruit a target of 100 sex-

matched participants from each tail of the SCZ-PRS distribu-

tion of the genotyped population (N ¼ 8365) for a multi-modal

imaging sub-study, the ALSPAC team sent out 1,241 in-

vitations in total (470 to the ‘low’ and 771 to the ‘high’ SCZ-PRS

group). Individuals were excluded if they were receiving any

psychotropicmedication. A total of 197 individuals fromeither

tail of the SCZ-PRS distribution (99 with low SCZ-PRS and 98

with high SCZ-PRS) were originally enrolled in the imaging

sub-study (see Fig. 1 in Lancaster et al., 2019). Due to a lower

response rate among high SCZ-PRS individuals, the recruited

low- and high-SCZ-PRS groups were mostly within the lowest

5th and highest 10th percentiles of the genotyped ALSPAC

sample, respectively. On average, there was approximately a 3

standard deviations difference in SCZ-PRS between the two

groups (mean Z-score ¼ �1.71 [range: �.51 to (�3.27)] for low

SCZ-PRS; mean Z-score¼ þ1.42 [range: .52e3.40] for high SCZ-

PRS), making them highly distinct from each other. Further

details about the SCZ-RbG sample (including genotyping and

quality control) can be found in the sample description

(Lancaster et al., 2019; Sharp et al., 2020) and in subsequent

publications (Dimitriadis et al., 2021, 2023; Lancaster et al.,

2021). For the current analysis we excluded a small number

of participants from the original RbG sample, mostly due to

failed quality control of image processing (see next subsection

for details), leaving a total of 93 participants with low SCZ-PRS

and 96with high-SCZ-PRS (N¼ 189). All participants were aged

between 21 and 24 years at the time of scanning.

The ALSPAC website contains details of all the data that is

available through a fully searchable data dictionary and vari-

able search tool (https://www.bristol.ac.uk/alspac/research

ers/our-data/). Study data gathered from participants at age

22 and onwards was collected and managed using REDCap

electronic data capture tools hosted at the University of Bristol

(Harris et al., 2009). REDCap (Research Electronic Data Cap-

ture) is a secure, web-based software platform designed to

support data capture for research studies. Ethical approval for

the study was obtained from the ALSPAC Law and Ethics

Committee and the Local Research Ethics Committees (listed

at http://www.bristol.ac.uk/alspac/researchers/research-

ethics/). Informed consent for the use of data collected via

questionnaires and clinics was obtained from participants

following the recommendation of the ALSPAC Ethics and Law

Committee at the time. Consent for biological samples has

been collected in accordance with the Human Tissue Act

(2004).

2.2. Structural image acquisition and processing

Structural MRI scans were acquired for each participant using

a 3T GT HDx system at Cardiff University Brain Research

https://osf.io/hrka4
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Imaging Centre (CUBRIC), Cardiff, UK. High-resolution 3-

dimensional T1-weighted images were acquired using a 3-

dimensional fast spoiled gradient echo sequence (FSPGR)

with contiguous sagittal slices of 1mm thickness (TR¼ 7.9 sec,

TE ¼ 3.0 msec, TI ¼ 450 msec, flip angle 20�, FOV ¼
256 mm � 256 mm � 176 mm to yield 1 mm isotropic voxel

resolution images) (Lancaster et al., 2019). In the current

study, we relied on the image-derived phenotypes extracted

centrally by the researchers involved in the ALSPAC neuro-

imaging resource initiative, which are available via the vari-

able search tool (http://variables.alspac.bris.ac.uk/; Sharp

et al., 2020). Briefly, T1-weighted images were processed

using FreeSurfer (version 6.0.0) to extract cortical and

subcortical measures from multiple regions of interest (ROIs)

based on the Desikan-Killiany atlas and Aseg atlas (Fischl,

2012). Reconstructed images and their cortical and subcor-

tical parcellations/segmentations underwent quality control

following standardised protocols developed by the ENIGMA

consortium (http://enigma.ini.usc.edu/protocols/imaging-

protocols/). Each T1-weighted MRI scan was segmented and

parcellated bilaterally into volumes for 7 subcortical gray-

matter regions (left and right nucleus accumbens, amygdala,

caudate, hippocampus, pallidum, putamen, and thalamus)

and 2 lateral ventricles, 34 regional cortical thickness (2 � 34)

and cortical surface area (2 � 34) measures, and total intra-

cranial volume (ICV; Nmeasures ¼ 153). Out of 197 RbG partici-

pants, two had missing values in SCZ-PRS status (n ¼ 1) or all

Freesurfer measures (n ¼ 1; possibly due to failed image

reconstruction) and thus were excluded from the current an-

alyses. Six participants were further excluded due to failed

quality control for cortical parcellation and/or subcortical

segmentation. Further details on image processing and qual-

ity control can be found in the relevant data note by Sharp

et al. (2020).

2.3. Brain age prediction

To predict brain age in the current sample we primarily used

the publicly available ENIGMA brain age model (Han et al.,

2020; https://www.photon-ai.com/enigma_brainage), which

has been independently validated in previous brain age

studies covering almost the entire adult lifespan (Abram et al.,

2023; Clausen et al., 2022; Constantinides et al., 2022; Han

et al., 2022). The model was trained separately in 952 male

and 1,236 female healthy controls aged 18e75 years from the

ENIGMA-MDD consortium, using ridge regression. FreeSurfer

measures from the left and right hemispheres were combined

by calculating the mean [(left þ right)/2] of volumes for

subcortical regions (n ¼ 7), lateral ventricles (n ¼ 1), and

thickness (n¼ 34) and surface area (n¼ 34) for cortical regions,

and ICV, resulting in a total of 77 input features for brain age

prediction (Han et al., 2020). In addition to our pre-registered

plan to use the ENIGMA model, and to assess the robustness

of our primary results, we also applied an age group-specific

brain age model developed by the CentileBrain team (Yu et

al., 2023; https://centilebrain.org), which was trained for the

age range 20 to �30 years (see Supplementary material A2 for

more details). The parameters of the pre-trained sex-specific

brain age model(s) were applied individually to each partici-

pant in the current sample. Importantly, the current sample
was not included in the training sets for any of the two

models. To assess model generalisation performance in the

current sample, we calculated the (1) mean absolute error

(MAE) between predicted brain age and chronological age, the

(2) Pearson correlation coefficients between predicted brain

age and chronological age (r), and (3) the proportion of chro-

nological age variance explained by themodel predictions (R2).

These metrics were calculated and reported with respect to

sex and SCZ-PRS group. Global (i.e., whole-brain) brain-PAD

was then calculated for each participant by subtracting

chronological age from brain age (i.e., brain-based predicted

age minus chronological age).

2.4. Brain age bias adjustment

There is a well-described age-related bias inherent to the

‘brain age’ prediction framework, where brain age is over-

estimated in younger individuals and underestimated in older

individuals, relative to the age distribution of the training

data, and most accurately estimated for individuals with an

age closer to the average age of the training data (de Lange

et al., 2022; Le et al., 2018; Liang et al., 2019; Smith et al.,

2019). Several bias-adjustment procedures have been devel-

oped to account for this chronological age dependency (for an

overview, see de Lange & Cole, 2020). Unless otherwise spec-

ified, here we added chronological age as a covariate in sub-

sequent statistical analyses to account for linear relationships

between brain-PAD and chronological age (Le et al., 2018). In

addition, individual brain-PAD estimates were residualised

for age, where appropriate, for data visualisation only.

2.5. Non-imaging variables

As part of the ALSPAC study, a wide range of questionnaire

and clinical assessment data have been collected periodically

from parents and their offspring since September 1990. Phe-

notypes of interest were selected for descriptive purposes

and/or exploratory analyses based on relevance to SCZ or

psychotic disordersmore broadly, including birthweight (Abel

et al., 2010), childhood IQ (Schulz et al., 2014), bodymass index

(Annamalai et al., 2017), alcohol or cannabis abuse (Archibald

et al., 2019; Gage et al., 2016), depressive or anxiety/emotional

symptoms (Braga et al., 2013; Upthegrove et al., 2017), and

psychotic-like experiences (Healy et al., 2019). Selection of

these risk-factors or co-occurring phenotypes was also based

on data availability with respect to the majority of the SCZ-

RbG sample and proximity to the time of the imaging sub-

study (where applicable). Birth weight was identified

through a variety of sources including obstetric data and birth

notifications. Childhood IQ was assessed at ~8 years of age

using a short form of the Wechsler Intelligence Scale for

Children (WISC-III; Wechsler et al., 1992). Emotional problems

were assessed at age ~17 using the emotional symptoms scale

of the child-reported Strength and Difficulties Questionnaire

(SDQ; Goodman, 1997). Risk for problematic alcohol use was

assessed at age ~18 using the Alcohol Use Disorder Identifi-

cation Test (AUDIT total score; Saunders et al., 1993). Prob-

lematic cannabis use was assessed at age ~20 was assessed

using the Cannabis Abuse Screening Test (CAST; Legleye et al.,

2009). A CAST score of 1 or more was used as a measure of

http://variables.alspac.bris.ac.uk/
http://enigma.ini.usc.edu/protocols/imaging-protocols/
http://enigma.ini.usc.edu/protocols/imaging-protocols/
https://www.photon-ai.com/enigma_brainage
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some level of risk for problematic or abusive use. Depressive

symptomswere assessed at age ~22 using the short Mood and

Feeling Questionnaire (sMFQ; Angold et al., 1995). Ascertain-

ment of generalised anxiety disorder at age ~24 was based on

the Clinical Interview Schedule-Revised (CIS-R) (Lewis et al,

1992). The semi-structured Psychosis-Like Symptoms Inter-

view (PLIKS) was used to assess psychotic experiences (hal-

lucinations, delusions, or experiences of thought interference)

at age ~24 (Sullivan et al., 2020). Individuals were deemed to

have a psychotic experience if rated as having ever had one or

more suspected or definite psychotic experiences between the

ages of 12 and 24 years. Individuals were further classified as

ever having had a psychotic disorder if they met the following

criteria: (1) definite psychotic experiences not attributable to

sleep or fever; (2) they had recurred regularly (at least once per

month) over a 6-month period and 3) were either very dis-

tressing or having a very negative impact on their social/

occupational life or led them to seek help from a professional

source. Given the possibility of measurement error or attrition

bias (Sullivan et al., 2020), data from assessment at age ~ 24

was supplemented with available information from a previ-

ous PLIKS assessment at age ~18 (Zammit et al., 2013). Body

mass index (BMI) was assessed during a clinic visit at the age

of ~24 years by dividing a person's weight in kilograms (kg) by

height in metres squared (m2). Of note, no part of the above-

described ALSPAC/RbG study design, data collection, or im-

aging processing procedures was pre-registered prior to the

current analyses being conducted.

2.6. Statistical analyses

As described in our pre-registered analysis plan (https://osf.io/

hrka4), we used multivariable linear regression with brain-

PAD as the continuous outcome variable and SCZ-PRS (i.e.,

high vs low) as the binary predictor of interest (reference

group: low SCZ-PRS). In addition to chronological age, sex was

added as a covariate in the model to account for independent

effects of sex on brain-PAD (Brouwer et al., 2021; Sanford et al.,

2022;Wagen et al., 2022).We used a two-tailed null hypothesis

test to evaluate the association between SCZ-PRS and brain-

PAD. A prior simulation-based power analysis accounting for

the enriched variance in SCZ-PRS within the original RbG

sample indicates that the current analysis has approximately

80% power to detect a relatively small effect size of SCZ-PRS

(R2 > .015 at alpha ¼ .05; see supplementary material in

Lancaster et al., 2019 for more details). Of note, age and sex

were not included in this priori power analysis as the two SCZ-

PRS groups were matched sex and had a similar mean age in

the original RbG sample.

As polygenic risk score analyses are generally susceptible

to confounding by population genetic structure (Choi et al.,

2020), a model additionally adjusting for genetic principal

components (PCs) in a subset of the sample was run as a

sensitivity analysis (see Supplementary material A1 for de-

tails). In addition, we inspected the data for the presence of

any brain-PAD outliers (here defined as ± 3SD away from the

mean of each SCZ-PRS group), and subsequently excluded one

identified outlier in a sensitivity analysis. Exploratory ana-

lyses were performed using multivariable linear regressions

with brain-PAD as the outcome variable and each non-
imaging phenotype (e.g., depressive symptoms) and its

interaction with SCZ-PRS as the main predictors of interest,

adjusting for the main effects of SCZ-PRS, age and sex. All

analyses were performed in R (v. 4.3.0) and the code used can

be accessed on OSF (https://osf.io/hrka4).
3. Results

3.1. Sample characteristics

The current sample consisted of 93 individuals with low SCZ-

PRS and 96 individuals with high SCZ PRS (N ¼ 189). Table 1

provides a summary of demographic and other characteris-

tics for each SCZ-PRS group. While the high-SCZ PRS group

was slightly older than the low-SCZ PRS group (22.88 [SD¼ .82]

vs 22.53 [SD¼ .71] years at time of scanning; p¼ .001), levels (or

frequency) of depressive symptom severity, generalised anx-

iety disorder, and psychotic experiences around the age of

22e24 years were similar across groups (see Table 1).

3.2. Brain age prediction performance

Regardless of SCZ-PRS status, the ENIGMA model moderately

predicted chronological age with MAE of 5.25 (SD ¼ 4.05) in

males and 6.33 (SD ¼ 4.62) in females in the current sample.

Correlation between chronological age and brain-predicted age

was r ¼ .12 and r ¼ .06 in males and females, respectively (see

Supplementary Table B1 for more details on model perfor-

mance). Of note, the age range of the current sample was very

restricted (21.08e24.50 years), which generally leads to less

covariance between predicted age and true age regardless of

prediction accuracy (de Lange et al., 2022). Despite the narrow

range of chronological age in the current sample, there was

substantial variation in brain-predicted age (mean ¼ 26.76,

SD¼ 6.09, range¼ 7.46e43.00 years; see Supplementary Fig. B1).

Brain-predicted age was systematically overestimated by the

ENIGMA model across the current sample, with no observed

linear dependence of brain-PAD on age (SFig. B2). Nonetheless,

age was added as a covariate in subsequent statistical analyses

to account for shared variance between predictors. The

generalisation performance of the CentileBrain model in the

current sample is summarised in Supplementary material A2,

and we return to the issue of moderate performance of the

ENIGMA model in the discussion section of this article.

3.3. Brain age in high-versus low-SCZ-PRS

The mean ENIGMA-derived brain-PAD was þ4.21 (SD ¼ 5.68)

years in the low SCZ-PRS group and þ3.90 (SD ¼ 6.46) years in

the high SCZ-PRS group. There was no difference in mean

brain-PAD between the two SCZ-PRS groups after adjusting for

age and sex (see Fig. 1, and STable B2 for full model parame-

ters). Further adjustment for genetic PCs and/or exclusion of

outliers did not meaningfully alter this result (see Supple-

mentary material A1 and A3). Repeating these analyses with

brain-PAD estimates derived from the CentileBrain brain-age

model led to highly comparable results (b ¼ .02; 95% CI -.18,

.22; p ¼ .854; Cohen's d ¼ .029; partial R2 ¼ .00021; see Supple-

mentary material A2 for more details).
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Table 1 e Sample characteristics.

Characteristic Na Low SCZ-PRS, N ¼ 93b High SCZ-PRS, N ¼ 96b p-valuec

Age at time of scanning (years) 189 (93/96) 22.53 ± .71 (21.25e24.25) 22.88 ± .82 (21.08e24.50) .001

Sex: female 189 (93/96) 50 (53.76%) 51 (53.13%) .93

Handedness: right-handed 185 (93/92) 81 (87.10) 80 (86.96) .98

Ethnicity: white 189 (93/96) 93 (100.00) 96 (100.00) e

Education: studied at university leveld 145 (73/72) 55 (75.34%) 60 (83.33%) .24

Birth weight (grams) 180 (88/92) 3411 ± 509 (1407e4710) 3409 ± 518 (1960e4820) .72

BMI (kg/m2) at age ~ 24y 161 (80/81) 24.21 ± 4.34 (18.66e43.87) 24.35 ± 4.14 (15.69e38.01) .56

Childhood IQ at age ~ 8y 175 (91/84) 111.2 ± 14.78 (77.00e140.00) 112.2 ± 14.87 (70.0e138.00) .45

SDQ-emotional symptoms score at age ~ 17y 158 (82/76) .00 [.00e2.00; .00e10.00] 1.00 [.00e2.25; .00e6.00] .10

Depressive symptoms (sMFQ) score at age ~ 22y 146 (72/74) 5.00 [2.00e9.00; .00e21:00] 4.00 [2.00e7.00; .00e22:00] .79

Generalised anxiety disorder at age ~ 24y: yes 158 (78/80) 7 (8.97) <5 .54

Psychotic experiences by age ~ 24y: yes 160 (79/81) e e e

Suspected/definite (ever) e 11 (13.92) 15 (18.52) e

Disorder (ever) e <5 <5 .64

AUDIT total score at age ~ 18y 146 (72/74) 7.11 ± 5.12 (.00e21.00) 6.55 ± 4.14 (.00e18.00) .70

CAST score � 1 at age ~ 20y: yes 148 (75/73) <5 <5 .44

BMI: body mass index: SDQ: strength and difficulties questionnaire; sMFQ: short mood and feeling questionnaire; AUDIT: alcohol use disorder

identification test; CAST: cannabis abuse screening test.
a N indicates non-missing observations in the total sample (and in low/high SCZ-PRS group).
b Statistics presented: mean ± standard deviation (minimumemaximum); n (%). Median [interquartile range; minimumemaximum] is pro-

vided if the distribution of a continuous variable was highly skewed.
c Statistical tests performed: wilcoxon rank-sum test; chi-square test/Fisher's exact test. Bold p-values indicate significance at a ¼ .05.
d Past or current university attendance for degree or other higher education qualification was assessed at age 26 years.

Fig. 1 e Difference in brain-PAD between low- and high-

SCZ-PRS. ENIGMA-derived brain-PAD among participants

with low SCZ-PRS (left) and high SCZ-PRS (right). Brain-PAD

estimates are residualized for age and sex. Group-level

analyses did not show a difference in mean brain-PAD

between high- and low-SCZ-PRS (b ¼ ¡.21; 95% CI ¡2.00,

1.58; p ¼ .82; Cohen's d ¼ ¡.034; partial R2 ¼ .00029).
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3.4. Brain age and phenotypes of interest with respect to
SCZ-PRS

We explored associations between different phenotypes of

interest and brain-PAD, and particularly whether those asso-

ciations were moderated by SCZ-PRS status. Emotional

symptoms at age ~17 was associated with ENIGMA-derived

brain-PAD (b ¼ .80; 95% CI .14, 1.47; p ¼ .018), however no ev-

idence for moderation by SCZ-PRS was found (b ¼ .25; 95% CI

-.80, 1.31; p ¼ .64). No significant associations were found be-

tween brain-PAD and depressive symptoms, psychotic-like
experiences, childhood IQ, birth weight, BMI, or level of risk

for problematic alcohol use, and/or any interactions thereof

with SCZ-PRS (STable B3). Results were largely consistent

when analyses were repeated with CentileBrain-derived

brain-PAD (Supplementary material A2).
4. Discussion

We investigated the association between a putative biomarker

of brain ageing and polygenic liability for schizophrenia using

an RbG approach, comparing individuals at the tails of the

SCZ-PRS distribution within a population-based cohort. Con-

trary to our hypothesis, we did not find evidence for a differ-

ence in structural MRI-based brain-PAD between the low- and

high-SCZ-PRS groups. To our knowledge, this is the first study

to investigate the relationship between SCZ-PRS and brain age

in a young population-based sample.

The null results of the current study are congruent with

previous studies using a range of techniques. Teeuw et al.

(2021) found a weak nominal correlation (r ¼ .10; p ¼ .048)

between SCZ-PRS and brain-PAD in a clinical sample of people

with SCZ and controls (age range: 17e67 years; N ¼ 394).

However, the observed association was no longer significant

after accounting for diagnostic status, possibly reflecting

downstream illness effects of SCZ on brain age. Demro et al.

(2022) performed an analysis of brain age and genetic liabil-

ity for psychosis as proxied by first-degree biological relatives

of individuals with SCZ and associated psychotic disorders

(aged 18e69; N ¼ 103 relatives). The authors did not find a

greater brain-PAD in relatives (affected or unaffected)

compared to unrelated controls, suggesting that brain age

may not be an index of familial risk for psychotic psychopa-

thology. Similarly, we found no evidence for a link between

https://doi.org/10.1016/j.cortex.2023.11.015
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SCZ-PRS and brain age in a young population-based sample,

suggesting that this link e if present e might develop later in

life after disease onset. While our findings could cast doubt on

the neurodevelopmental origins of SCZ, it is equally possible

that the brain-PAD paradigm and this current sample (given

the narrow age range) are less well suited to address this

question.

Our results also converge with the lack of genetic correla-

tions between brain-PAD and SCZ that has been reported as

part of the largest genome-wide association study of brain age

to date (N > 28,000) (Leonardsen et al., 2023). Moreover, follow-

up Mendelian randomization analyses did not find evidence

for a causal relationship between brain-PAD and SCZ, in either

direction (Leonardsen et al., 2023). Taken together, while our

results and those of previous studies do not rule out a causal

relationship between brain-PAD and SCZ, they may suggest

that previously reported case-control differences in brain age

are more likely to partly reflect the effect of environmental

risk or confounding factors. For example, smoking, obesity

and cannabis use have previously been associated with both

SCZ (Marconi et al., 2016; Myles et al., 2012; Vancampfort et al.,

2015) and brain age (Kolbeinsson et al., 2020; Meier et al., 2022;

Ning et al., 2020). Alternatively, previously observed case-

control differences in brain-PAD may partly reflect down-

stream illness effects such as cognitive deficits (Haas et al.,

2022) or somatic comorbidities (Ryan et al., 2022), and future

studies utilising clinically-ascertained samples could also

examine whether such effects might be moderated by SCZ-

PRS.

A key strength of the current study is the use of an RbG

approach. SCZ-PRS typically accounts for only up to ~7% of the

variance in SCZ liability (Trubetskoy et al., 2022), but because

there is considerably increased SCZ risk between the high-

and low-SCZ-PRS groups, the current study offered consider-

ably more power than a randomly sampled population-based

study of similar size (Lancaster et al., 2019). However, while

our null finding may rule out a shared variance between SCZ-

PRS and brain-PAD at the level R2 > .015 (i.e., our estimated

minimum detectable effect size), the current study was not

powered to detect smaller effect sizes, such as those previ-

ously detected in a large-scale studies of SCZ-PRS and other

MRI-derived cortical phenotypes (R2: .001e.008) (Neilson et al.,

2019; Stauffer et al., 2021). Further work in larger samples

utilising summary data from the most powerful SCZ-GWAS

available is therefore warranted (Choi et al., 2020). In addi-

tion, it is possible that the relatively lower response rate

among high SCZ-PRS individuals at participant recruitment

might have influenced our results through participation bias

(Martin et al., 2016).

The current study utilised a subsample of young adults

from longitudinal birth cohort, and thus all participants were

aged between 21 and 24 years. This narrow age range might

have helped eliminate the effects of potential confounders

that could have been present in a younger or older samples,

such as puberty during childhood/adolescence or chronic age-

related diseases (or associated risk factors) that arise around

middle adulthood or later (Holm et al., 2023; Kolbeinsson et al.,

2020). Nonetheless, an effect of SCZ-PRS on brain age could

vary across the life course and thus the generalizability of our

null results may be limited to early adulthood. Future studies
may either use a wider age range or focus on different stages

of the life course.

The observed positive association between emotional

symptoms (SDQ) at age ~17 years and brain-PAD (at age ~22)

is intriguing but preliminary at this stage, as it comes from an

exploratory analysis. Given that adolescence represents a

sensitive and dynamic period of development, a preliminary

interpretation is that emotional difficulties during this

period may be linked to advanced brain maturation in early

adulthood (and regardless of SCZ-PRS). This is in contrast

with a recent study in youth (age range: 5e17 years) reporting

an association between worsening anxiety/depression

symptoms (as measured by CBCL) and lower brain-PAD (i.e.,

delayed brain maturation) (Cohen et al., 2022). In addition,

we found no association between depressive symptoms

(sMFQ) and brain-PAD. While this discrepancy in findings

might be explained by differences in sample or methodo-

logical characteristics (e.g., lack of, or partial equivalence

between depression/anxiety measures), it highlights the

need for further work in larger and carefully selected longi-

tudinal samples. Another limitation of our exploratory ana-

lyses is the discrepancy in timing of brain scanning and that

of ascertaining modifiable variables (e.g., BMI, alcohol use),

that might have precluded detecting associations with brain-

PAD.

Further limitations of the current study relate to the esti-

mation of brain age. First, although model performance is not

directly comparable between different studies (Cole et al.,

2019; de Lange et al., 2022), the mean absolute error ach-

ieved by the ENIGMA model in the current study (MAE > 5

years) is considerably higher than that reported by previous

studies in youth using other brain age models (overall age

range: 5e22 years; MAE range from testing samples: .70e2

years) (Drobinin et al., 2022; Modabbernia et al., 2022; Holm

et al., 2023; Truelove-Hill et al., 2020). While this discrepancy

can partly be attributed to the relatively wider age range of its

training set (18e75 years), the moderate fit of the ENIGMA

model could reflect more noise and may be less sensitive to

subtle individual brain age differences expected within the

narrow age range of the current population-based sample of

emerging adults (21e24 years). To address this, we have per-

formed a sensitivity analysis using a second model (i.e., Cen-

tileBrain) trained with a restricted age range of 20e30 years

thatmore closely resembles that of the current sample (whilst

preserving a similar set of features and use of sex-specific

model variants). Although the mean absolute error of the

CentileBrain model in the current sample was considerably

lower (MAE ~ .80 years; see Supplementary material A2 for a

more detailed discussion on this) and more consistent to that

of previous studies in youth, results of subsequent analyses

aligned closely across the two brain age models. Nonetheless,

while a lower mean absolute error is intuitively appealing in

the context of predictive modelling, it remains unclear

whether higher age-prediction accuracy translates to

improved capacity for detecting individual differences in

downstream analyses of brain age (Bashyam et al., 2020, 2021;

Hahn et al., 2021; Jirsaraie et al., 2023). This is a topic of

ongoing discussion in the field and warrants further system-

atic examination. Second, while T1-weighted MRI data is

considered highly reliable for brain age estimation and allows

https://doi.org/10.1016/j.cortex.2023.11.015
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us to place our results in context with previous work, brain

ageing (or maturation) is a heterogeneous process and

different factors would likely affect different aspects of brain

structure and function (Smith et al., 2020). Future studies

could employ brain age measures based on other or multiple

MRImodalities thatmay capture different aspects of naturally

occurring variation and may be more sensitive to factors

impacting brain health (Cole, 2020; Rokicki et al., 2021). Lastly,

as most brain age studies to date, the current study was

focused on a single “global”measure of brain age, which could

overlook any localised (or region-specific) effects on brain age

(Popescu et al., 2021; Sanford et al., 2022).

In summary, the current study did not find evidence for an

association between SCZ-PRS and advanced global structural

brain age in young adults, suggesting that greater brain-PAD is

not a vulnerability marker of common genetic risk for

schizophrenia. Future studies with larger samples and/or

more comprehensive brain age measures could help identify

any global or localised effects of polygenic risk for SCZ on

brain age.
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