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Abstract 

Background Genome‑wide association studies demonstrate that Alzheimer’s disease (AD) has a highly polygenic 
architecture, where thousands of independent genetic variants explain risk with high classification accuracy. This AD 
polygenic risk score (AD‑PRS) has been previously linked to preclinical cognitive and neuroimaging features observed 
in asymptomatic individuals. However, shared variance between AD‑PRS and neurocognitive features are small, sug‑
gesting limited preclinical utility.

Methods Here, we recruited sixteen clinically asymptomatic individuals (mean age 67; range 58–76) 
with either extremely low / high AD‑PRS (defined as at least 2 standard deviations from the wider sample mean 
(N = 4504; N EFFECTIVE = 90)) with comparable age sex and education level. We assessed group differences in autobio‑
graphical memory and T1‑weighted structural neuroimaging features.

Results We observed marked reductions in autobiographical recollection (Cohen’s d =  − 1.66; P FDR = 0.014) and mid‑
line structure (cingulate) thickness (Cohen’s d =  − 1.55, P FDR = 0.05), with no difference in hippocampal volume 
(P > 0.3). We further confirm the negative association between AD‑PRS and cingulate thickness in a larger study 
with a comparable age (N = 31,966, β =  − 0.002, P = 0.011), supporting the validity of our approach.

Conclusions These observations conform with multiple streams of prior evidence suggesting alterations in cingulate 
structures may occur in individuals with higher AD genetic risk. We were able to use a genetically informed research 
design strategy that significantly improved the efficiency and power of the study. Thus, we further demonstrate 
that the recall‑by‑genotype of AD‑PRS from wider samples is a promising approach for the detection, assessment, 
and intervention in specific individuals with increased AD genetic risk.
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Introduction
Genome-wide associations studies (GWAS) demon-
strate that genetic risk for Alzheimer’s disease (AD) can 
be partly explained by the cumulative impact of thou-
sands of single-nucleotide polymorphisms (SNPs) [1, 
2]. Downstream analysis of AD genetic architecture has 
now uncovered many novel mechanistic insights into the 
aetiology of AD, suggesting multiple, novel components 
of distinct molecular aetiology [3, 4]. Furthermore, poly-
genic risk scores (PRS) derived from these AD GWAS 
show predictive capacity to identify individuals at high 
risk for AD, which may provide clinical utility for early 
detection, intervention, and diagnosis [5–8]. The AD-
PRS has been further linked to an increase across a range 
of preclinical AD features, including peripheral, neuro-
imaging, and cognitive markers of brain health, suggest-
ing common AD genetic risk may manifest before the 
onset of symptoms, via alterations in neurobiological 
process that increase susceptibility in later life.

A significant proportion of common genetic risk for 
AD can be explained by the APOE locus, which may 
manifest via alterations in brain structure/function. Mul-
tiple GWAS of neuroimaging features have linked APOE 
status to amyloid burden [9], white matter hyperintensi-
ties [10, 11] and functional-temporal coherence of blood 
oxygen level dependency (BOLD) signals [12, 13]. Ongo-
ing population AD-PRS studies that consider  APOE 
have demonstrated associations with feature of brain 
health such as hippocampal volume [14]. As APOE sta-
tus accounts for a considerable proportion of AD genetic 
risk, it remains largely unknown how other AD genetic 
risk factors link to brain structure and function. However, 
recent studies demonstrate an association between AD-
PRS which excludes the APOE region (non-APOE AD-
PRS), where non-APOE AD-PRS is independently linked 
to cognitive trajectories [15] and neuroimaging features 
of brain health such as hippocampal volume [16–18] and 
cerebrovasculature [19, 20].

However, the shared variance between AD-PRS and 
these preclinical features is small, limiting the utility of 
integrating biomarkers into prediction models of pre-
clinical AD. One recent strategy is to assess risk in indi-
viduals with extremely high AD-PRS (defined as over two 
standard deviations from the sample mean). Exploring 
risk for AD in individuals with extreme AD-PRS values 
allows us to explore in vivo correlates of genetic suscep-
tibility while limiting confounding and reverse causation 
that exist in samples of clinically ascertained participants 
[21].

Understanding non-APOE AD-PRS contributions to 
brain health remain a critical avenue of exploration when 
linking the common genetic architecture of AD to brain 
health, as to build a multiplex model of AD susceptibility 

and quantify downstream effects. Here, we first describe 
the recall-by-genotype (RbG) approach for neuroimaging 
non-APOE AD-PRS, based on the genotyping and AD-
PRS estimation across a larger, population sample. We 
have previously demonstrated that RbG studies based on 
PRS with smaller number of participants can successfully 
reproduce observations made in larger studies. By target-
ing groups at the extremes of PRS, the number of partici-
pants required to provide sufficient statistical power to 
observed differences is drastically reduced. For example, 
in a recall-by-genotype study for schizophrenia PRS, we 
were able to observe increased prevalence of psychotic 
symptoms and striatal reward–linked brain activity in 
a sample of approximately two hundred asymptomatic 
participants [22], previously observed in samples of thou-
sands [23, 24].

By assaying a non-APOE AD-PRS in a large, genotyped 
population, we can recruit a subset of individuals from 
the general population who have either extremely low or 
high AD-PRS, enriching the sample for a large amount 
of variation in AD-PRS. There is considerably increased 
AD-PRS risk (as indexed by odds ratio [OR]) in AD-RPS 
between the 1st and 10th decile (more than 30-fold dif-
ference in AD risk the current study, offering consider-
ably more power (approximately fourfold increase) than 
an opportunistic sample (see ‘Materials and Methods’ for 
further details)). This study aims to understand mecha-
nisms by which the cumulative effect of risk SNPs for AD 
affect the brain. We hypothesise that burden of AD risk 
SNPs will be related to cognitive performance and in vivo 
measures of brain health such as macrostructure—based 
on prior observations in AD, mild cognitive impairment, 
and at-risk populations. We expect this research will help 
to elucidate biological processes by which AD genetic 
variants may lead to reduced brain health. By identify-
ing the preclinical features that are linked to non-APOE 
genetic risk, we hope to identify neurocognitive features 
that reflect AD susceptibility before the onset of symp-
toms. We anticipate this work may guide future detec-
tion, intervention and prevention strategies that mitigate 
or offset these components of adverse brain health.

Methods and materials
PROTECT cohort participant characteristics
Participants were recruited from the PROTECT study 
(www. prote ctstu dy. org. uk; Research Ethics Commit-
tee reference number 13/LO/1578). PROTECT is a 
UK-based online study aimed at identifying mental 
health, lifestyle and genetic predictors of cognitive age-
ing and dementia. Participants enrol and provide writ-
ten informed consent online, which includes consent for 
contact to participate in other research studies. Inclu-
sion criteria for enrolling in PROTECT at the time of this 

http://www.protectstudy.org.uk
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study were (1) aged 50 or over; (2) access to a computer 
and internet; (3) no diagnosis of dementia.

PROTECT participant genotyping procedure and quality 
control
Saliva samples were collected by mail and DNA was 
extracted by the National Institute for Health Research 
South London and the Maudsley National Health Service 
Biomedical Research Centre. Genotyping was performed 
via an Illumina Global Screening Array with custom 
content (including directly genotyped SNPs, rs429358 
& rs7412, to determine APOE status). The initial geno-
typed data sample size was 4918. Genotypes underwent 
standard the removal with participants with low call rate 
(< 95%). Individuals whose sex pedigree was not con-
gruent with genotypes were excluded. Relatedness was 
estimated using KING 2.2.3, followed by inclusion of 
individuals that contained no pairs of individuals with a 
first‐, second-, or third‐degree relationship (pi_hat > 0.2) 
[25]. SNPs with low call rate (< 95%), significant deviation 
from Hardy–Weinberg (p‐value < 1 ×  10−6) and those with 
a minor allele frequency < 1% were all excluded. Princi-
pal components (PCs) were calculated for the unrelated 
subset of the data using EIGENSOFT 6.1.4 after pruning 
using a window size of 1500 bases per 150 kb / r2 = 0.2. 
[26, 27]. K‐means clustering was used on the first two 
derived PCs to define a cluster of European ancestry 
individuals. PCs were then recalculated for the cluster of 
individuals of European ancestry, with outlier individuals 
removed by EIGENSOFT if exceeding a sigma threshold 
of 30. Finally, individuals with excess heterozygosity (± 3 
standard deviations) calculated using the ‘ibc’ function 
in plink v1.90 were excluded [28]. After individuals were 
excluded removing for being related, of non‐European 
ancestry, of mismatched sex, outliers in the PC calcula-
tion, or detected to have excess heterozygosity left a final 
sample size of 4504 participants.

Alzheimer’s disease polygenic risk calculation
Polygenic score calculations were derived using train-
ing data from the International Genomics of Alzhei-
mer’s Project (IGAP) consortium that comprises 17,008 
AD cases and 37,154 control subjects [1] with PRSice 
v1.25 [29]. Briefly, for each participant in PROTECT, 
AD-PRS were calculated by summing the number of AD 
risk alleles present for each SNP (0, 1, or 2), weighted by 
the SNP’s beta coefficient for AD from the IGAP sum-
mary statistics. Our AD-PRS-based recall-by-genotype 
was solely based upon a standardised PRS generated 
from SNPs with an AD association p-value threshold 
P ≤ 0.5, specifically chosen as it captured the most vari-
ance in AD case / control differences in the primary AD-
PRS analysis [8], using the same clumping procedure 

(kb = 1000, r2 = 0.2) within an APOE locus excluded (chr 
19: kb = 44,400–46,500) SNP set, as previously employed 
[8].

Recall‑by‑genotype and power analysis
We recruited sixteen individuals from the PROTECT 
cohort (N = 4504), who had an AD-PRS lower (N = 10, 
decile 1, blue) or higher (N = 6, decile 10, red) than 2 
standard deviations from the population mean (Fig. 1A). 
Power was estimated by simulating two independent ran-
dom standard normal variates x and y, and constructing 
a variable ‘z = bY + x’. Here, ‘y’ represents the AD-PRS, 
‘z’ a quantitative phenotype to reflect a variable assessed 
via psychometric assessment or MRI, and ‘x’ represents 
the error term. The proportion of phenotype variance 
accounted for by the polygenic score was denoted as ‘b’ 
and was fixed at the square root of variance explained 
in diagnosis by AD-PRS (AUC: 0.677 / R2 = 0.095), esti-
mated by a recent AD-PRS study for individuals under 
80  years old [7]. The correlation between ‘y’ and ‘z’ is 
then tested in these selected samples, and power defined 
as the proportion of simulated samples achieving the 
required alpha level (α = 0.05). We also compare the 
power of the recall-by-genotype approach to an oppor-
tunistic sample of comparable sample sizes. Based on 
the 10 low and 6 high AD-PRS individuals we recruited 
from the larger PROTECT sample, we had 85% power 
to detect an association for the variance explained by 
the AD-PRS. An opportunistic sample of 90 individuals 
randomly sampled from this population had comparable 
power (Fig. 1B). By contrast, an opportunistic sample of 
the same size would have had 21% power. We note that 
this is a conservative approach to power estimation, as 
we could alternatively assume that considering a 30.58-
fold difference in AD risk between decile 1 and 10 of AD-
PRS in a comparably sized sample (N GERAD (3049 cases / 1554 

controls) = 4603 [Decile 1 vs 10]: OR = 30.58, P = 4.5 ×  10−87) 
would yield a Cohen’s d = 1.875, providing for our current 
sample (N = 16) over 92% power.

Recall‑by‑genotype sample characteristics
The AD-PRS groups were comparable in age (t =  − 1.47, 
P = 0.17), sex (χ2 = 0, P = 1), and APOE isoform status 
(χ2 = 2.87, P = 0.24) and educational attainment by highest 
UK qualification level [30] (t =  − 0.09, P = 0.92; χ2 = 0.178, 
P = 0.98), where the low and high AD-PRS group had 
a mean qualification levels of 5.1 ± 1.96 and 5 ± 2.00, 
respectively. Here, any potential associations between 
AD-PRS and behaviour / MRI features are unlikely to be 
explained by APOE ε3ε4 status as these were only present 
in the low AD-PRS group (Table 1).

The recall-by-genotype study was provided ethical 
approval by the Department of Psychology at Cardiff 
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University (EC.18.12.11.5510GR2). Exclusion criteria 
included being older than 80  years of age, a history of 
psychiatric diagnosis, substance abuse, neurological 
disorder, or head injury; use of chemotherapy or immu-
nomodulatory agents; genetic disorders; type I/II diabe-
tes, cardiac, vascular, or pulmonary conditions, including 
a history of high blood pressure or asthma.

Survey of autobiographical memory (SAM)
We chose to assess autobiographical memory (AM) con-
sidering the extensive and profound deficits observed 
in AD [31]. We assessed AM via the Survey of Auto-
biographical Memory (SAM) self-report instrument, 
assessing self-perceived AM abilities [32]. Participants 
completed the full-length 26-item version, rating their 
general memory abilities on a five-point Likert scale 
between strongly disagree and strongly agree. Total SAM 
scores as well as the four sub-domains (episodic / events, 
semantic, spatial, future) were calculated using the origi-
nal protocol (courtesy of Brian Levine) to capture the 

multidimensional facets of subjective autobiographical 
re-experiencing.

Structural MRI acquisition and processing
The MRI volumes were acquired on Siemens Prisma 
3  T MRI scanner (Siemens Healthineers, Erlangen, Ger-
many), using a 32-channel receive-only head coil. A 
magnetisation-prepared rapid acquisition with gradi-
ent echo (MPRAGE) T1-weighted scan was acquired 
(matrix 165 × 203 × 197,  1mm3 isotropic resolution, TR/
TE = 2100/3.24  ms). Cortical and subcortical segmenta-
tions for each participant were estimated with well-val-
idated segmentation software FreeSurfer version 7.1.1 
[33], previously shown to reliably segment and parcel-
late grey matter tissue in AD [34]. We considered hip-
pocampal volume  (mm3) and cortical thickness (mm), in 
line with prior preclinical / AD-PRS research [14, 16–18, 
35–37]. Segmentations of 66 (33 left/right) cortical grey 
matter regions were created based on the Desikan–Kil-
liany atlas, and pooled to reflect bilateral macrostructural 

Fig. 1 A Histogram represents the frequency of Alzheimer’s disease polygenic risk score (AD‑PRS) estimated in 4504 participants as part 
of the PROTECT cohort. X‑axis is standardised with a mean of zero and a standard deviation of 1. Grey bars reflect participants in the wider 
cohort, while blue and red horizontal lines represent the AD‑PRS of individual participants in the present study. All participants had an AD‑PRS 
at least 2 standard deviations over or under the cohort mean and were in the lowest (1) or highest (10) AD‑PRS decile respectively. B Power 
(y‑axis) is the proportion of significant associations from a simulated data set (from 1000 replicates), for an opportunistic sample (red line) 
and the recall‑by‑genotype sample (blue line). Crosses and black line intersections show power for our current sample (for recall‑by‑genotype; 85% 
power and opportunistic; 21% power) and the comparable sample size for the same power (N EFFECTIVE = 90). X‑axis reflects sample size on a log10 
scale
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lobes (frontal, parietal, temporal, occipital and cingulate) 
and bilateral hippocampus volume (as well as the hemi-
spheric total intracranial volume and average cortical 
thickness).

Alzheimer’s disease polygenic risk score analysis in UK 
Biobank
To replicate any association between AD-PRS and MRI 
features, GWAS summary statistics were also acquired 
based on a recent MRI-GWAS in UK Biobank comprising 
of 33,224 individuals, which was previously corrected for 

demographic, neuroimaging, and genetic confounds [38]. 
We investigated effects of AD-PRS in the UKBB sample 
using the ‘gtx’ method, equivalent to the ‘inverse variance 
weighted’ approach in Mendelian randomisation studies 
[39, 40]. However, in a polygenic score analysis, there are 
no stringent inclusion criteria for genetic variants: we do 
not require the variants to be strongly associated with 
the outcome and pleiotropic effects are allowed. Briefly, 
the method uses established GWAS summary statistic 
data for both the exposure (AD) and outcome (GWAS 
summary data from MRI-image derived phenotype), 
which approximates the regression for an exposure (i.e. 
risk for AD, based on AD GWAS summary statistics) 
into an AD-PRS. These coefficients are weighted by SNP 
regression coefficients for an outcome (cortical thickness 
of right caudal anterior cingulate, N = 31,966). We used 
the updated AD GWAS summary statistics [41] here, 
which became available at time of analysis, but not before 
recruitment. We included SNPs at a threshold of PT ≤ 0.5, 
as per our original calculation for the recall-by-genotype 
AD-PRS calculation [8] and removed SNPs with a minor 
allele frequency < 1% and imputation quality < 0.9. SNPs 
within both the major histocompatibility complex (chr 6: 
26,000–34,000 kb) and APOE (chr 19: 44,400–46,500 kb) 
regions were also removed from the pruned dataset 
(r2 = 0.01, mb = 10).

Results
Survey of autobiographical memory (SAM)
The high AD-PRS group reported significantly reduced 
autobiographical memory across the total assessment 
(Figs. 2A and 3A: Cohen’s d =  − 1.66 [95%: − 2.82, − 0.46], 
PFDR = 0.014). This association was further present 
in the sub-sample of APOE ε3ε3 carriers (t =  − 3.81, 

Table 1 Recall‑by‑genotype sample descriptive statistics. 
Educational attainment assessed via UK guidelines based on 
highest level of qualification [30]

High (N = 6) Low (N = 10) Overall (N = 16)

Age at scan
 Mean (SD) 64.3 (6.62) 69.2 (6.01) 67.4 (6.50)

 Median [Min, 
Max]

65.0 [56.0, 72.0] 71.0 [58.0, 76.0] 68.5 [56.0, 76.0]

Sex
 F 4 (66.7%) 7 (70.0%) 11 (68.8%)

 M 2 (33.3%) 3 (30.0%) 5 (31.3%)

APOE status
 ε2ε3 1 (16.7%) 0 (0%) 1 (6.3%)

 ε3ε3 5 (83.3%) 8 (80.0%) 13 (81.3%)

 ε3ε4 0 (0%) 2 (20.0%) 2 (12.5%)

Qualification level
 Level 2 1 (16.7%) 2 (20.0%) 3 (18.8%)

 Level 3 1 (16.7%) 1 (10.0%) 2 (12.5%)

 Level 6 3 (50.0%) 5 (50.0%) 8 (50.0%)

 Level 7 1 (16.7%) 2 (20.0%) 3 (18.8%)

Fig. 2 Cohen’s d ± 95% confidence intervals for the association between AD‑PRS group and A SAM self‑report assessment (adjusted for age 
and sex) and B average cortical thickness difference (averaged across hemisphere, adjusted for age, sex, and global cortical thickness). Significant, 
standardised mean differences highlighted in red; semantic, total SAM, and cingulate cortex survived correction for false discovery rate 
across comparisons (PFDR < 0.05)
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PFDR = 0.021). A post hoc analysis demonstrated that the 
semantic / fact component of the assessment was most 
reduced in the high AD-PRS group (Cohen’s d =  − 1.99 
[95% − 3.21, − 0.71], PFDR = 0.006). While APOE ɛ2/3/4 
status differed between the low and high AD-PRS groups 
(Table  1), these did not confound the AD-PRS genetic 
risk effects we observed, as the association was further 
present in the sub-sample of APOE ε3ε3 carriers (N = 13, 
t =  − 3.25, PFDR = 0.024). No other individual components 
were related to AD-PRS (see Fig. 2A).

Structural MRI
While we observed typical negative associations between 
hippocampal volume (mm3) and age at scan (t =  − 2.40, 
P = 0.039), we observed no evidence for difference in hip-
pocampal volume between the AD-PRS groups (P > 0.3). 
The high AD-PRS group reported significantly reduced 
cingulate thickness (mm), corrected for age, sex, and total 
cortical thickness (Figs.  2B and 3B; Cohen’s d =  − 1.55 
[95% − 2.75, − 0.30], PFDR = 0.050). This association was 
further present in the sub-sample of APOE ε3ε3 carriers 
(t =  − 3.19, P = 0.019).

Brain‑behaviour associations
We further observed a positive association between total 
SAM and cingulate thickness, adjusted for sex, age, and 
total thickness (Fig. 3C; t = 2.36, P = 0.036).

Alzheimer’s disease polygenic risk score analysis in UK 
Biobank
We observed that for the RbG sample and within the 
cingulate cortex, the thickness of the region cyto-
architecturally defined as the right anterior caudal 

cingulate cortex was most nominally associated with 
AD-PRS (β =  − 0.21 ± 0.084, PUNCORRECTED = 0.032). 
We therefore acquired the summary statistics for a 
comparable GWAS from UK Biobank (Image Derived 
Phenotype ID: 1056 (aparc-Desikan_rh_thickness_cau-
dalanteriorcingulate). We replicated this observation 
in this UKBB sample (N = 31,966; β =  − 0.002 ± 0.001, 
PREPLICATION = 0.011) (Fig. 4).

Fig. 3 Individual data points representing AD‑PRS group differences for A total SAM adjusted for age, sex and B cingulate thickness (adjusted 
for age, sex, and global cortical thickness). C Positive association between adjusted SAM total and cingulate thickness. Grey shading reflecting 95% 
confidence interval for line of best fit

Fig. 4 Within the cingulate cortex, the sub‑region most associated 
was the right caudal anterior cingulate. The negative association 
between AD‑PRS and right caudal anterior cingulate thickness 
in the recall‑by‑genotype (RbG) was replicated in the UK BioBank 
(UKBB) sample (N = 31,966). Y‑axis represents beta estimates. Error 
bars represent 95% confidence intervals of the beta estimate
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Discussion
We recruited sixteen individuals with either very low 
or high (> ± 2 SDs from population mean) to per-
form an assessment of autobiographical memory and 
T1-weighted structural MRI. Based on our estimation, 
an opportunistic sample (assuming a random selection of 
AD-PRS from the broader population) would have been 
significantly underpowered to detect associations with 
AD-PRS. However, as we were able to capitalise on vari-
ance in AD-PRS across the wider, larger sample, we were 
able to quadruple the power to detect AD-PRS effects, 
reducing the sample required from N = 90 to N = 16 [21]. 
We were further able to limit confounding with stringent 
exclusion criteria parameters.

The participants with a high AD-PRS showed marked 
reductions in (i) autobiographical memory and (ii) cingu-
late thickness compared to the low AD-PRS group. How-
ever, we did not observe an association between AD-PRS 
and hippocampal volume, suggesting the shared vari-
ance may be smaller than our study power afforded or 
that associations may be explained by confounding from 
genetically correlated traits such as intelligence/years of 
education. Several studies have demonstrated a nega-
tive association between AD-PRS hippocampal volume 
across the lifespan [14, 17, 35, 36]; however, a significant 
proportion of the shared variance has been attributed to 
an association with the APOE locus [14, 42]. Our study 
broadly conforms to two prior observations. First, a sub-
stantial body of evidence has previously demonstrated 
that increased AD genetic risk is linked to reduced cog-
nition, with studies showing negative genetic correlations 
between cognition and AD common variants and AD-
PRS studies supporting this observation. Second, this 
study supports prior observations that cortical thickness 
of midline / cingulate structures are reduced in individu-
als with high AD-PRS [37]. More specifically, reduced 
anterior cingulate thickness has previously been linked 
to AD genetic risk within a endocytosis pathway-specific 
AD-PRS analysis [43], across MCI groups and via asso-
ciations with meta-memory in AD [44]. More recently, a 
negative association between AD-PRS and caudal ante-
rior cingulate thickness has further been demonstrated in 
a large, pre-pubescent sample (NABCD > 4000), suggesting 
that this alteration may be a risk factor that is expressed 
across the lifespan [45]. While the sample age range (58–
76) and autobiographical memory assessment deficit do 
not allow us to delineate between prodromal and early 
disease effects [46], we suggest that the assays we report 
are an initial showcase of the ability to detect AD-PRS-
related differences in significantly smaller samples that 
could be employed at point in the lifespan, using biologi-
cal readouts that are more complex and not scalable in 
large samples / cohorts. While we observed converging 

evidence linking AD-PRS with cingulate thickness, the 
study must be considered with the following limita-
tions. While the sample size provided > 80% power to 
detect an association with AD-PRS, a larger or replica-
tion sample would have allowed us to further assess the 
validity of our findings. While this was not possible for 
the Survey of Autobiographical Memory (SAM), we did 
replicate the negative association between AD-PRS and 
cingulate thickness in a larger sample (N = 31,966). Here, 
we used a larger AD GWAS dataset to estimate AD-
PRS [41], which became available after recruitment, an 
advantage of working with secondary data and updated 
GWAS derivates, compared to our recall-by-genotype 
study, which was constrained by AD-PRS estimations 
made before recruitment (see last section of the limita-
tions section within this discussion). The effect size of 
this association was considerably smaller, this is how-
ever to be expected in a sample with additional potential 
sources of confounding and heterogeneity [47]. Second, 
we did not have a comparable group with an average AD-
PRS (for example, participants with an AD-PRS in a mid-
dle decile). Therefore, any group differences we observe 
here may reflect higher SAM and thickness in the very 
low AD-PRS group, rather than preclinical alterations 
in the high AD-PRS group. Third, we also acknowledge 
that the cross-sectional design does not reveal important 
information such as MCI / AD conversion or trajectories 
which would have helped to establish the utility of the 
observed features in the prediction of future neurode-
generation. Fourth, while individual AD-PRS can be con-
sidered in relation to the larger sample from which they 
were derived, it is currently a challenge to provide an 
individual context about their AD-PRS as a standardised 
assessment. Future studies of AD-PRS working towards 
increased portability and generalisability, so individu-
als’ genetic risk can be considered independent from 
the sample from which their AD-PRS were estimated, 
may prove useful for generating AD-PRS based on exist-
ing normative samples [5, 6]. Fifth, we acknowledge that 
AD-PRS only represents a summated total of all known, 
common AD risk variants. While there are initiatives to 
assess AD genetic risk via the partitioning of PRS into 
specific biological pathways, AD-PRS may still reflect a 
heterogeneous, biologically unspecific estimate, making 
it difficult to mechanistically implicate specific causal 
processes. Last, we acknowledge that recall-by-geno-
type studies using PRS require investigators to recruit 
on the basis of a specific GWAS data set and with a spe-
cific PRS approach (for example, a specific P-threshold, 
PRS method, and GWAS training data), where variabil-
ity in the process has the potential to change the posi-
tion of individuals within the wider recall sample and 
their respective position in the AD-PRS groups, limiting 
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their flexibility compared to compared to re-analyses of 
secondary data based on newer AD GWAS derivatives. 
While ongoing studies are working towards a standard-
ised metric for PRS assessment [48], recall-by-genotype 
approaches are likely to continue being affected by ongo-
ing GWAS and downstream methods development.

While our observations suggest that prodromal or early 
markers of AD pathophysiology can be observed in the 
high AD-PRS group, we suggest moreover that the recall-
by-genotype design demonstrates that selecting specific 
individuals based on their PRS reflects appropriate bio-
logical features, which has several translation applica-
tions. For instance, (1) while we collected self-report 
memory / structural MRI features, more complex biolog-
ical readouts could be assayed that are not scalable in big 
data such as expensive biological experiments (e.g. iPSc 
collection and generation) [3]; (2) genetics-first char-
acterisation can occur across the entire lifespan, estab-
lishing precise timelines for trajectories of genetic risk, 
enhancing prediction, intervention opportunities, add-
ing a layer of precision to the commonly used character-
istics [49], and (3) empower clinical trials for individuals 
at increased genetic risk, with implications for timeliness, 
power, and cost [50]. Recall-by-genotype of less common, 
missense single-nucleotide variants (for example, func-
tional, amino-acid change conferring SNPs within genes 
such as ABI3, PLCG2, TREM2) could also further provide 
mechanistic insight into the aetiology of preclinical AD, 
with known functional roles in modifying immune sys-
tem physiology [51, 52], which have further been linked 
to features of brain health [53–55]. In conclusion, we 
document the first recall-by-genotype study for AD-PRS 
and observe neurocognitive features with distinct profiles 
between participants with very low and high AD-PRS. 
This recall-by-genotype approach further permits the 
exploration of experimental preclinical methods cur-
rently not available in large neuroimaging-genetic data-
bases such as MRI-derived measures of cerebrovascular 
and neurometabolic structure and function, respectively, 
as well as molecular characterisation via stem cell-pheno-
typing [3].
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