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Abstract: The proliferation of cloud and public legitimate services (CLS) on a global scale has
resulted in increasingly sophisticated malware attacks that abuse these services as command-and-
control (C&C) communication channels. Conventional security solutions are inadequate for detecting
malicious C&C traffic because it blends with legitimate traffic. This motivates the development of
advanced detection techniques. We make the following contributions: First, we introduce a novel
labeled dataset. This dataset serves as a valuable resource for training and evaluating detection
techniques aimed at identifying malicious bots that abuse CLS as C&C channels. Second, we tailor
our feature engineering to behaviors indicative of CLS abuse, such as connections to known CLS
domains and potential C&C API calls. Third, to identify the most relevant features, we introduced a
custom feature elimination (CFE) method designed to determine the exact number of features needed
for filter selection approaches. Fourth, our approach focuses on both static and derivative features
of Portable Executable (PE) files. After evaluating various machine learning (ML) classifiers, the
random forest emerges as the most effective classifier, achieving a 98.26% detection rate. Fifth, we
introduce the “Replace Misclassified Parameter (RMCP)” adversarial attack. This white-box strategy
is designed to evaluate our system’s detection robustness. The RMCP attack modifies feature values
in malicious samples to make them appear as benign samples, thereby bypassing the ML model’s
classification while maintaining the malware’s malicious capabilities. The results of the robustness
evaluation demonstrate that our proposed method successfully maintains a high accuracy level of
84%. In sum, our comprehensive approach offers a robust solution to the growing threat of malware
abusing CLS as C&C infrastructure.

Keywords: cloud-based and public legitimate services; malware; command and control; Portable
Executable; dataset; malware detection; machine learning; feature selection; adversarial attack

1. Introduction

The increasing demand for cloud solutions in various industries, such as healthcare,
finance, education, and government, has driven the rapid growth of the global public
cloud services market. According to Forrester, this market is projected to surpass USD 1
trillion by 2026, more than doubling its value of USD 446.4 billion in 2022 [1]. However,
the widespread adoption of cloud services has also brought new cybersecurity challenges,
including the abuse of cloud and public legitimate services (CLS) as a C&C communica-
tion channel.

Attackers can exploit the CLS to hide their malicious activities and remotely control
compromised systems. This enables them to operate covertly and efficiently, reducing the
likelihood of detection. They achieve this by leveraging the trust between the CLS provider
and the user, using these services as C&C infrastructure. The capability to mask their
actions and remotely manage compromised systems significantly enhances the success rate
of adversaries in cyber attacks. Malware examples that have utilized CLS as C&C servers
include Hammertoss [2], RegDuke [3], SLUB [4], and DarkHydrus [5].
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Hammertoss is a remote access tool that leverages third-party web servers, including
LinkedIn, Twitter, and GitHub, to evade detection by security solutions and gain full
access to the victim’s system. RegDuke is a malware variant that abuses Dropbox by
hosting steganographic images containing encrypted malicious commands for covert C&C
operations. SLUB is a backdoor identified and analyzed by TrendMicro, which abuses three
legitimate platforms—Slack, GitHub, and File.io—for its C&C infrastructure. DarkHydrus
is a cyber threat group known to abuse legitimate cloud services, such as Google Drive,
for its infrastructure.

Traditional anti-malware solutions that rely on known malware signatures or behav-
iors may not be effective at detecting and preventing such abuses. As a result, ML classifiers
have become an increasingly popular tool for detecting threats in the field of cybersecurity.

Our proposed work uses static and derived features from the PE file header as ML
features to detect the abuse of CLS as C&C channels. The PE file is a standard format
for executables, object files, and DLLs in the Windows operating system [6]. It contains
information about the structure and layout of an executable file, including the entry point,
the code and data sections, and the dependencies of the program.

The focus on the PE file format is driven by two primary factors. First, its widespread
use in the Windows environment is highlighted in Figure 1, showing that Windows has
maintained a dominant market share in desktop operating systems (OS) from 2013 to 2023.
Second, Figure 2 indicates that the PE file format is the most commonly submitted among
all file types on VirusTotal.

Figure 1. Global distribution of market share among different OS used in desktop PCs [7].
The contributions of this paper are as follows:

• Dataset creation: We have created a unique dataset that includes malware samples
initiating network connections to CLS and benign samples making legitimate con-
nections to the Internet. To our knowledge, no previous datasets have specifically
addressed this emerging threat; they primarily covered generic malware samples. This
dataset, the first of its kind, serves as a valuable resource for training and evaluating
ML classifiers to detect the abuse of CLS.

• Feature engineering: We tailored informative feature engineering to behaviors that
indicate CLS abuse, such as connecting to known CLS domains and making potential
C&C API calls.

• Feature selection: To identify the most relevant features, we introduced a custom
feature elimination (CFE) method designed to determine the exact number of features
needed for filter selection approaches. For wrapper-based feature selection, we utilize
various techniques, including sequential feature selector forward (SFSF), sequential
feature selector backward (SFSB), and recursive feature elimination (RFE).
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• Novel adversarial attack: We propose the Replace Misclassified Parameter (RMCP) as
a novel white-box adversarial attack to evaluate the robustness of our proposed abuse
detection system. Despite the adversarial attack, the approach retains a relatively high
accuracy level. The detection accuracy rate drops from 98% to 83%, indicating that the
proposed method maintains considerable effectiveness against adversarial attacks.

Figure 2. VirusTotal submission by file format [8].

The remainder of this paper is structured as follows. Section 2 is an overview of
the PE files and gives brief descriptions of C&C channels communication channels and
the threat model of abusing CLS as C&C channels. Section 3 reviews related work in the
literature. The main steps of our methodology and experimental setup and results are
presented in Sections 4 and 5. Comparison to related works and robustness evaluation and
comparison are presented in Section 6. Finally, limitations, future work, and the conclusion
are presented in Sections 7 and 8.

2. Background

In Section 2.1, we summarize the PE file format [6], including details on the structure
and content of PE files, which are commonly used for running programs on Windows
systems. In Section 3, we review previous research on identifying the use of legitimate
cloud and service providers as C&C communication channels by malicious actors.

2.1. PE File Format

The PE file format is one of the most prevalent types of executable files used in malware.
PE files have a certain structure and contain various fields that provide information about
the file [9]. In the context of malware CLS abuse detection, specific fields within the PE file
format can be crucial for distinguishing between malicious and benign files.

As depicted in Figure 3, the PE file format comprises several fields: COFF Header,
Optional Header, Import Table, Export Table, Resource Directory, Relocation Table, Debug
Information, and Section Table. Instead of offering an exhaustive description of every field,
we focus on the ones most pertinent to abuse detection, as outlined in Table 1.

For instance, the number of sections and the characteristics of the DLL have been
shown to be useful in differentiating between malware and benign files. The optional
header provides information such as the linker version and the sizes of code and data,
which can also be valuable for classification purposes. Moreover, the section table contains
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crucial data regarding the file’s sections, including code, initialized data, imports, exports,
and resources.

Figure 3. Detailed diagram of the structure of a Portable Executable (PE) file [10].
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Table 1. PE file fields and derived features for malware classification.

Field Description

COFF Header
• Machine: Type of machine that the object file is intended to run on.
• NumberOfSections: Number of sections in the object file.
• TimeDateStamp: Time and date that the object file was created.

Optional
header

• Linker version: Version of the linker that created the object file.
• Code and data sizes: Sizes of the code and initialized and uninitialized data in the object file.
• Entry point address: Address of the entry point for the object file.
• ImageBase: Address of the executable in memory.
• CheckSum: Value used to validate the integrity of the image.
• DllCharacteristics: DLL characteristics of the executable.
• Import Table: List of DLLs and functions imported by the executable that can provide information about the

functionality of the executable and indicate potential malicious behavior.
• Export Table: List of functions exported by the executable that can provide information about the functionality

of the executable and indicate potential malicious behavior.
• Resource Directory: Resources used by the executable, such as icons, cursors, and bitmaps, that can provide

information about the appearance and behavior of the executable and indicate potential malicious behavior.
• Relocation Table: Information used by the linker to adjust addresses in the code when the executable is loaded

into memory that can provide information about how the executable is organized and indicate potential
malicious behavior.

• Debug Information: Information used by debuggers to help debug the executable that can provide information
about the internal structure of the executable and indicate potential malicious behavior.

Section Table

• Name: Name of the section.
• VirtualSize: Size of the section in memory.
• VirtualAddress: Address of the section in memory.
• SizeOfRawData: Size of the section in the object file.
• PointerToRawData: Location of the section in the object file.

Derived
Features

• presence_of_CLS_domains: If any of the CLS domains appear in sections of the PE file, the value is 1;
otherwise, it is 0.

• potential_C&C_api_calls: If any of the potential C&C API calls appear as an import function in the PE file,
the value is 1; otherwise, it is 0.

2.2. Command and Control Communication Channels

A malicious bot is a type of malware that infect computers via various means, such
as phishing attacks, drive-by download attacks, and dropper attacks. Once the bot is
executed on a victim’s computer, it can be controlled remotely by the botmaster and added
to the botnet.

The C&C communication channels, which are used by the botmaster to communicate
with bots on the botnet, are typically concealed and often encrypted to evade detection.
Common C&C channels include Internet Relay Chat (IRC), Domain Name System (DNS)
Tunneling, Hypertext Transfer Protocol (HTTP) and HTTPS, and peer-to-peer (P2P) net-
works. Nevertheless, recent advancements in C&C communication channels have wit-
nessed the abuse of CLS, wherein legitimate services such as cloud services are utilized as
a means for C&C communication without detection.

Despite the advancement in the detection of IRC, DNS, HTTP, HTTPS, and P2P as
C&C channels, there is a limited amount of studies, as stated in the following section,
that focus on the detection of the abuse of legitimate services as C&C channels and none
of them applied ML detection techniques. This is an active area of research and there
are ongoing efforts to develop more effective techniques for detecting botnets that use
legitimate services as C&C channels. Despite these efforts, malicious actors continue to
exploit these legitimate services for their C&C purposes.
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2.3. Threat Model
2.3.1. Post Exploitation

The threat model for the abuse of CLS as C&C communication channels starts with the
initial compromise of a target device. This can occur through a variety of means, such as
phishing attacks, malware infections, or the exploitation of software vulnerabilities. Once
the device has been compromised, the attacker will typically install a bot or malware onto
the device, which allows them to remotely control the device as part of a botnet.

2.3.2. Abuse of Cloud and Legitimate Services as C&C Channels

The next step in the threat model is the use of CLS as C&C communication channels
as presented in Figure 4. This is achieved by the attacker using cloud services or other
legitimate services to communicate with infected devices and issue commands. The C&C
communication channels are typically hidden and encrypted, making them difficult to
detect. The following steps outline the abuse of CLS as C&C channels

(a) The botmaster issues command to the bots in the botnet through the cloud or legiti-
mate service;

(b) The bots continuously monitor the designated cloud or legitimate service for new
commands from the botmaster;

(c) The bots then execute the command, which conducts a range of malicious activities,
which can range from data leaks to denial of service attacks to the distribution of
additional malware through the utilization of the cloud or legitimate services as a
communication channel.

Figure 4. Abuse of CLS as C&C infrastructure.

2.3.3. Threat Scenario

Once the C&C communication channels have been established, the attacker can use
the botnet to carry out a range of malicious activities, such as data theft, denial of service
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attacks, or distribution of additional malware. The attacker may also use the botnet to
expand their network of compromised devices, increasing the size and scope of their botnet.

To detect and prevent the abuse of CLS as C&C communication channels, it is impor-
tant to have a robust threat model that can accurately identify and block malicious activities.

3. Related Works

Several techniques have been proposed for detecting abuse of cloud-native platforms
as C&C communication channels. Six of these detection strategies have been implemented
for use in a computer environment, while only one has been specifically implemented for
use on the Android OS. These techniques primarily focus on three approaches: rule-based,
behavior tree-based, and ML-based detection methods.

3.1. Rule-Based Detection

Kartaltepe et al. [11] introduced a dual-level abuse detection system, comprising
client-side and server-side mechanisms. On the client side, they defined three features to
detect botnets: self-concealment, unusual network traffic, and questionable provenance.
They posited that connections to social media platforms might be considered suspicious
unless driven by human actions. To differentiate between legitimate users and bots, they
employed behavioral biometrics, user input reactions, and graphical user interface (GUI)
interactions as detection metrics. On the server side, they operated under the assumption
that any communication with social media platforms that involves textually encoded
messages or posts is suspicious. They utilized the J48 decision tree algorithm to categorize
input messages, differentiating between Base64 or Hexadecimal-encoded text and regular
language content. However, these detection methods come with certain constraints: (i)
they do not offer real-time detection since the tests were conducted in a post-analysis
lab environment, and (ii) crafty adversaries could potentially bypass detection by using
image-steganography techniques to embed malicious commands within posts.

Vo et al. [12] developed the API Verifier, a tool that uses CAPTCHA verification to
authenticate social media account access based on MAC addresses. This tool determines
whether an API call is made by a human or a bot, adding a protective layer against
automated bot activities. However, the API Verifier proposed by Vo et al. has several
drawbacks. First, the CAPTCHA verification system can be vulnerable to relay attacks,
potentially enabling botnets to circumvent the verification. Second, depending solely on
MAC addresses for user identification might fall short in situations where users switch
between multiple devices or when MAC addresses are easily spoofed.

Ghanadi et al. [13] delve into the study of stego-botnets that utilize steganographic
images on online social networks for C&C operations. They proposed a system named
SocialClymene, designed to detect covert botnets in social networks using stego-images.
The system has a negative reputation subsystem that analyzes images shared by social
network users and calculates a reputation score for each user based on their history of
participating in suspicious activities. The goal is to recognize botnets by analyzing the
behavior of the users and their history of involvement in suspicious activities. Nevertheless,
these detection approaches have certain limitations: (i) the system might not detect new
botnets lacking a history of suspicious behavior, and (ii) it can be challenging to accurately
identify a user’s reputation, especially in dynamic online settings where reputations can
shift swiftly.

3.2. Behavior Tree-Based Detection

Yuede et al. [14] introduced a behavior tree-based detection framework designed to
identify social bots through host activity monitoring. This framework is composed of three
main components: a host behavior monitor, a host behavior analyzer, and a detection
methodology. To construct and analyze a suspicious host behavior tree, they crafted a social
botnet called wbbot. Their design incorporated sample collections from two distinct sources:
real-world social bots [15–18] and social bot malware samples curated by researchers [19].
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After running and evaluating this collection of social bots over a specified duration, they
created a template library. This library was subsequently used to determine the highest
similarity value when compared to the suspicious behavior tree. Upon the behavior tree’s
completion, the tree edit distance method was utilized to to calculate its similarity to the
template, resulting in the final detection result. Nevertheless, this detection methodology
presents a notable limitation: a substantial false positive rate of 29.6%. Additionally, this
system could potentially be bypassed if attackers deploy a multi-process strategy or spread
malicious behaviors over varied time intervals.

Burghouwt et al. [20] proposed a causality detection mechanism designed to pinpoint
Twitter-based C&C channel communication. This is achieved by measuring the correlation
between user activity and network traffic. The authors operate under the assumption that
any network traffic directed to the OSN that is not a result of human actions like specific
keystrokes or mouse movements, should be considered suspicious. The causality detection
approach utilizes a time frame that begins immediately after a user event. This helps
differentiate network activities triggered by genuine user actions from those initiated by
bots. However, this detection approach has certain limitations. First, legitimate API calls,
which are used for routine automated polling, might be mistakenly identified as suspicious.
Second, the primary metrics used to determine the time gap between user activity and
network requests might not be universally accurate. This is because different machines
and operating systems can have varied delay times and performance attributes. Lastly,
sophisticated bots could potentially circumvent this detection by observing user activities
and executing commands in response to user-initiated events.

3.3. ML-Based Detection

Ji et al. [21] undertook a detailed assessment of several previously studied abusive
social bots. The authors incorporate spatial and temporal correlations to identify patterns
of the social bots. They gathered source code, builders, and execution patterns from es-
tablished social botnets, including Twitterbot (Singh [22]), Twebot (Burghouwt et al. [23]),
Yazanbot (Boshmaf et al. [24]), Nazbot (Kartaltepe et al. [11]), wbbot (Ji et al. [25]), and fb-
bot. Their objective was to scrutinize the techniques these bots employ to bypass current
detection systems. Drawing from their analysis, they proposed a detection strategy using
18 features. This strategy uses spatial correlations to recognize patterns across child pro-
cesses, like multiple bots on one IP, and temporal correlations to study event sequences for
behavior patterns. However, their focus on just six bots could limit the study’s applicability
to other bots.

Ahmadi et al. [26] introduced a method designed to detect Android applications that
abuse Google Cloud Messaging (GCM) for C&C communication. By adopting the Flow-
droid tool [27] to extract GCM flows and identify GCM callbacks, they trained an ML model
using features like GCM registration ID, sender ID, and a GCM type of message. Their
findings indicate that GCM flow features can effectively distinguish malicious applications.
Nonetheless, the method might be vulnerable to evasion tactics like obfuscation, which
adversaries might use to mask GCM flows. Additionally, its applicability is constrained,
as it only works for Android OS and is not applicable in Windows OS environments.

The existing literature predominantly focuses on the use of rule-based and behavior
tree-based detection techniques within the realm of social networking platforms, while ML
techniques for detecting abuse in CLS environments are often neglected. This creates a gap
in the detection of C&C abuse within CLS environments. To address this limitation, we
introduce a detection technique that employs ML and is specifically designed to identify
C&C abuse across diverse CLS environments. Given the lack of prior research applying
ML to detect abuse of cloud services as a C&C channel, we have undertaken a comparative
analysis of our approach alongside existing studies that leverage ML techniques for general
malware detection.
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4. Methodology
4.1. Data Collection

In this study, we utilized a dataset obtained from VirusTotal [28] between 2017 and
2021, which encompassed various malware formats. Our research specifically focused on
PE files that abuse CLS as a C&C infrastructure.

To collect malware samples, we leveraged the VirusTotal Intelligence Agent coupled
with a custom Python script to extract samples exhibiting communication with known
CLS-hosted domains listed in Table 2. The remaining corpus was executed in a controlled
Cuckoo sandbox environment [29], retaining only samples demonstrating CLS domain
connections for our final experimental dataset, as depicted in Figures 5 and 6. We excluded
any samples not connecting to the CLS domain.

Table 2. CLS domains abused as C&C infrastructure.

Names of the CLS Domains

api-content.dropbox.com api.twitter.com docs.google.com
mail.google.com chat.google.com classroom.googleapis.com

sheets.googleapis.com slides.googleapis.com storage.googleapis.com
mail.google.com smtp.gmail.com onedrive.com

dropbox.com twitter.com github.com
pastebin.com raw.githubusercontent.com api.twitter.com

dev.twitter.com publish.twitter.com apps.twitter.com
status.twitter.com youtube.com twitter.com
docs.google.com script.google.com translate.google.com

storage.googleapis.com spreadsheets.google.com api.slack.com
app.slack.com slack.com gmail.com
hotmail.com outlook.com amazonaws.com
azure.com portal.office.com discord.com

telegram.com instagram.com OneNote.com
Teams.com Evernote.com publish.twitter.com

apis.google.com imap.gmail.com m.youtube.com
aws.amazon.com

Figure 5. Detailed workflow for extracting a sub-dataset from the VirusTotal datasets.

Additionally, the benign samples included in the dataset were obtained from the
sources of cnet [30] and sourceforge [31]. These benign programs were also verified by
submitting them to VirusTotal to obtain anti-virus detection scores. If the detection score
was found to be zero, we further executed it in a controlled sandbox environment to verify
its internet connectivity. Only samples that were determined to have zero detection scores
and internet connections were ultimately included in the dataset.
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Figure 6. Illustrative overview of the proposed detection system.

The initial dataset was imbalanced, with 3067 malicious and 3652 benign samples.
To ensure a balanced dataset and prevent classifier bias, the extra benign samples were
removed, resulting in a balanced dataset that retained the same characteristics as the
remaining benign samples. To ensure that the removal of extra benign samples did not
compromise the dataset’s quality, we retained the original characteristics of the remaining
benign samples. Since the collection of benign samples was based solely on connections to
the internet and VirusTotal’s detection score of zero, removing the extra benign samples did
not alter the dataset’s properties. Therefore, we were able to balance the dataset without
compromising its quality, ensuring that the evaluation of classifier accuracy was based on a
reliable and representative dataset.
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The experiment, involving the extraction of a sub-dataset from the VirusTotal dataset,
the parsing of PEs, and the execution of malware and benign samples in a Cuckoo sand-
box [29], was carried out on a machine powered by an Intel Xeon (Skylake IBRS) CPU
running at 2.2 GHz, equipped with 64GB RAM, and using Ubuntu 20.04.1 LTS amd64 as its
operating system.

Our dataset is unique and valuable to the field of cybersecurity as it includes ex-
amples of malware abusing CLS as a C&C channel, a type of threat that has not been
well-represented in previous datasets.

4.2. Feature Extraction

Feature engineering involves extracting particular attributes from PE files to objec-
tively determine whether they are benign or malicious. Our study focused on feature
engineering using PE header features. We analyzed the header and sections of each file in
our sample and identified a total of 38 relevant features, comprising 36 raw features and
2 derivative features (Table 1). Raw features can be directly extracted from the PE file with
no further processing. Such features are Characteristics, DllCharacteristics, SizeOfImage,
AddressOfEntryPoint, and ResourceSize.

To generate derivative features, we need to process the PE file. The first feature, called
presence_of_CLS_domains, is generated by examining each section in the PE file to check if
it contains any CLS domains (Table 2). The feature value is set to one if a CLS domain is
found; otherwise, it is set to zero. The second feature, called potential_C&C_api_calls, is
generated by examining the Import Address Table (IAT) in the PE file for any API function
calls that could be used for C&C activities. The names of the potential C&C API calls [32]
are listed in Table 3. The feature value is set to one if a potential C&C API call is identified;
otherwise, it is set to zero.

Table 3. Potential API calls for abusing CLS.

API Call Description Potential Abuse Case

InternetOpenA Open an Internet session Establish a connection to CLS

InternetConnectA Connect to a remote server Connect to the servers of CLS

HttpOpenRequestA Open an HTTP request handle Open HTTP requests to CLS

InternetReadFile Read data from an open Internet file Read data from a file on CLS

InternetWriteFile Write data to an open Internet file Write data to a file on CLS

WinHttpOpen Open an HTTP session Open HTTP sessions with CLS

WinHttpConnect Connect to a remote server Connect to the servers of CLS

WinHttpOpenRequest Open an HTTP request handle Open HTTP requests to CLS

WinHttpSendRequest Send an HTTP request Send HTTP requests to CLS

WinHttpReceiveResponse Receive an HTTP response Receive HTTP responses from CLS

WinHttpReadData Read data from an HTTP request Read data from an HTTP request to CLS

WinHttpWriteData Write data to an HTTP request Write data to an HTTP request to CLS

URLDownloadToFileA Download a file from the Internet Download files from CLS

HttpSendRequestA Send an HTTP request Send HTTP requests to CLS

InternetOpenUrlA Open an HTTP or FTP session Open HTTP or FTP sessions with CLS

InternetReadFileExA Read data from an open Internet file Read data from a file on CLS

InternetWriteFileExA Write data to an open Internet file Write data to a file on CLS

Importance of Derived Features

In our study, we evaluate a total of 38 pertinent features, of which 36 were raw PE
features and 2 were derived features. Utilizing various feature selectors, as discussed in
Section 4.3, our results identified a combination of 21 raw features and the derived feature
“potential_C&C_api_calls” to yield the highest classification accuracy. Detailed results and
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comparisons before and after inclusion of the derived features can be perused in Tables 4
and 5. Our final model that delivered the highest accuracy employed the RF classifier in
conjunction with the aforementioned feature selector. We also charted the importance of
each feature. This plot offers a visual representation of the relative significance of each
feature as depicted in Figure 7.

Figure 7. Feature importance highlighting the prominence of “potential_C&C_api_calls” among the
top influential features in the model.

Although the “presence_of_CLS_domains” may not have prominently boosted the
classification accuracy, as indicated in Table 4, its relevance stems from our data collection
approach, detailed in Section 4.1. In particular, the dynamic analysis phase of our data
collection was designed to extract a subset from the VirusTotal dataset that predominantly
connects CLS domains.

Table 4. Comparison of detection accuracy: evaluating the impact of including derived features.

Features Used
Validation Approach

70:30 Split 10-Fold CV

Optimal feature using RF feature selector (excluded potential C&C calls) 0.977186 0.981416
+ presence_of_CLS_domains 0.977729 0.980600
+ potential_C&C_api_calls 0.981532 0.982557
Included derived features 0.978273 0.986601

4.3. Feature Selection

After extracting or creating features from the malware samples, we move to feature
selection. This step is crucial to pinpoint the most relevant and informative features,
enabling the model to deliver accurate predictions. In this section, we outline the feature
selection methodology we adopted, encompassing three filter-based and six wrapper-based
methods. Each of these nine techniques identifies a feature subset. From these subsets, we
select the one that delivers the highest detection accuracy rate.
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4.3.1. Filter-Based Feature Selector

We employ three well-established filter-based feature selection methods commonly
employed and proven effective in the literature: information gain (InfoGain) [33–35], chi-
squared, and ReliefF [36].

Filter-based methods rank features based on their relevance to the label class, but they
do not specify an exact number of features to use. To address this, we develop and imple-
ment our a custom feature elimination technique (CFE) on each of the filter-based methods
to determine the number of features to use. The CFE technique leverages the feature
importance rankings provided by the aforementioned filter-based methods: InfoGain,
chi-squared, and ReliefF. It operates by progressively examining the features, starting from
those with the highest importance rankings. For each iteration, it appends the current
feature to the selected features to form a temporary feature set. This temporary set is
then used to compute the accuracy of a random forest classifier using 10-fold stratified
cross-validation. If the accuracy improves, the current feature is added to the selected
features, and the accuracy progress is recorded. If there is no improvement in accuracy,
the process is terminated, and the selected feature set is returned. The accuracy progression
of the CFE technique for each filter-based method, InfoGain, chi-squared, and ReliefF, is
depicted in Figure 8, Figure 9, and Figure 10, respectively.

Figure 8. Accuracy and subset of features using InfoGain.

Figure 9. Accuracy and subset of features using chi-squared.
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Figure 10. Accuracy and subset of features using ReliefF.

4.3.2. Wrapper-Based Feature Selector

In addition to the filter-based methods, we employed wrapper-based techniques using
random forest (RF) and decision tree (DT) as the foundational models for feature selection.
We paired each of these algorithms with the following three distinct strategies: sequential
feature selector forward (SFSF), sequential feature selector backward (SFSB), and recursive
feature elimination (RFE).

This led to a total of six combinations: RF-SFSF, RF-SFSB, RF-RFE, DT-SFSF, DT-SFSB,
and DT-RFE. Each method evaluates feature subsets by training and testing models on
varying feature subsets, ultimately choosing the subset with the best performance. For the
wrapper-based feature selection methods, we utilized the Mlxtend Python library [37].

Figures 11 and 12 display the highest accuracy rates achieved by each combination,
using a different number of selected features ranging from 1 to the maximum number of
38 features available in the dataset.

Figure 11. Comparative analysis of wrapper feature selection: RF-SFSF vs. RF-SFSB vs. RF-RFE,
highlighting the optimal feature count for maximum accuracy as indicated by dotted lines.
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Figure 12. Comparative analysis of wrapper feature selection: DT-SFSF vs. DT-SFSB vs. DT-RFE,
highlighting the optimal feature count for maximum accuracy as indicated by dotted lines.

4.4. Classification

Our evaluation applies five ML-based classifiers, which are implemented in Scikit-
learn [38]: namely decision tree (J48), random forest (RF), naïve Bayes (NB), k-nearest
neighbors (K-NN), and support vector machine (SVM). These classifiers were selected
for their diverse underlying algorithms and their widespread usage in malware detection
literature [33,36,39]. By employing a range of classifiers, we aim to comprehensively assess
the performance of various ML classifiers on our dataset, which is detailed in Section 4.1.

To measure the accuracy of these classifiers, we utilized two distinct evaluation tech-
niques: 10-fold cross-validation and a training-to-testing split ratio of 70:30. We leveraged the
Scikit-learn library [38] for implementing these ML algorithms.

The equipment utilized for this experiment was sourced from Cardiff University, United
Kingdom. Specifically, the evaluations were conducted on an ASUS computer, equipped with
an Intel i7-9700K processor with a clock speed of 3.60 GHz, supported by 32 GB of RAM,
and running the Windows 10 operating system.

5. Discussion
5.1. Experimental Results of All Features

The evaluations were analyzed and compared with regard to detection accuracy. We
present the detection accuracy of five classifiers, all of which utilize the extracted features
for classification, as demonstrated in Table 5. The results show that the random forest
classifier outperforms the other classifiers, achieving a high detection accuracy of 97.77% in
the 70:30 split scenario and 97.80% in the 10-fold cross-validation scenario. The J48 and
K-NN classifiers also demonstrate high accuracy, with detection rates of 96.41% and 93.12%,
respectively, in the 70:30 split scenario, and 96.84% and 93.80%, respectively, in the 10-fold
cross-validation scenario.

However, the NB and SVM classifiers show significantly lower accuracy compared
to the other classifiers, indicating that they may not be suitable for this dataset. The NB
classifier has detection accuracies of 65.13% and 63.76% in the 70:30 split and 10-fold cross-
validation techniques, respectively. The SVM classifier has even lower detection accuracies
of 52.47% and 52.54% in the 70:30 split and 10-fold cross-validation techniques, respectively.

Ultimately, when considering all extracted features, the results demonstrate that the
RF, J48, and K-NN classifiers prove suitable for this dataset. Conversely, the NB and SVM
classifiers are not recommended.
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Table 5. Comparative analysis of abuse detection accuracy: all features vs. selected features. Here,
“70:30” denotes a split of 70% training data and 30% testing data, while “10-fold” stands for 10-fold
cross-validation.

Classifier

All Features Included Feature Selector

Wrapper Methods Filter Methods

Random Forest as Feature Selector J48 as Feature Selector InfoGain ChiSquared ReliefF

70:30 10-fold 70:30 10-fold 70:30 10-fold 70:30 10-fold 70:30 10-fold 70:30 10-fold

J48 96.41% 96.84% 96.80% 96.77% 96.20% 96.90% 95.87% 95.83% 94.19% 95.04% 94.51% 94.93%

Random Forest 97.77% 97.80% 98.15% 98.26% 97.45% 97.90% 97.12% 97.47% 96.47% 96.59% 95.93% 95.32%

Naïve Bayes 65.13% 63.76% 63.50% 63.06% 54.16% 52.87% 52.74% 52.38% 65.02% 65.57% 59.32% 64.18%

KNN 93.21% 93.80% 92.67% 93.63% 92.07% 92.70% 91.85% 92.96% 93.16% 93.77% 93.75% 93.81%

SVM 52.47% 52.54% 51.11% 52.48% 51.11% 52.53% 53.72% 53.52% 52.47% 52.54% 61.11% 60.68%

Selected Features

AddressOfEntryPoint

SizeOfCode

SizeOfInitializedData

SizeOfUninitializedData

BaseOfCode

MajorLinkerVersion

MajorImageVersion

MajorOperatingSystemVersion

DllCharacteristics

SizeOfStackReserve

NumberOfSections

ImageBase

SectionAlignment

FileAlignment

MinorOperatingSystemVersion

MinorImageVersion

MajorSubsystemVersion

MinorSubsystemVersion

SizeOfImage

SizeOfHeaders

CheckSum

Subsystem

SizeOfStackCommit

SizeOfHeapReserve

SizeOfHeapCommit

LoaderFlags

NumberOfRvaAndSizes

SizeOfOptionalHeader

Characteristics

Machine

e_lfanew

DebugSize

ExportSize

VirtualSize2

ResourceSize

IatRVA

presence_of_CLS_domains

potential_C&C_api_calls

AddressOfEntryPoint

MajorLinkerVersion

MajorImageVersion

MajorOperatingSystemVersion

DllCharacteristics

SizeOfStackReserve

NumberOfSections

ImageBase

SectionAlignment

FileAlignment

MinorOperatingSystemVersion

MajorSubsystemVersion

SizeOfImage

CheckSum

Subsystem

SizeOfHeapCommit

NumberOfRvaAndSizes

Machine

DebugSize

VirtualSize2

IatRVA

potential_C&C_api_calls

AddressOfEntryPoint

SizeOfUninitializedData

MajorLinkerVersion

MajorOperatingSystemVersion

DllCharacteristics

SizeOfStackReserve

NumberOfSections

ImageBase

SectionAlignment

FileAlignment

MinorOperatingSystemVersion

MinorImageVersion

MajorSubsystemVersion

MinorSubsystemVersion

SizeOfImage

CheckSum

SizeOfStackCommit

SizeOfHeapCommit

NumberOfRvaAndSizes

SizeOfOptionalHeader

DebugSize

VirtualSize2

IatRVA

presence_of_CLS_domains

VirtualSize2

AddressOfEntryPoint

SizeOfInitializedData

IatRVA

ResourceSize

SizeOfCode

SizeOfImage

MajorLinkerVersion

Characteristics

DllCharacteristics

BaseOfCode

SectionAlignment

DebugSize

SizeOfUninitializedData

potential_C&C_api_calls

ImageBase

CheckSum

SizeOfStackReserve

SizeOfUninitializedData

SizeOfInitializedData

SizeOfCode

LoaderFlags

BaseOfCode

VirtualSize2

SizeOfImage

AddressOfEntryPoint

DebugSize

e_lfanew

NumberOfSections

Subsystem

potential_C&C_api_calls

IatRVA

SectionAlignment

SizeOfStackReserve

5.2. Experimental Results on Selected Features

It is important to note that the use of all extracted features may not always be optimal,
and feature selection techniques may be necessary to improve classification accuracy.
Therefore, this section discusses the result of an accuracy detection rate achieved with
selected features.

Table 5 compares the detection accuracy of various classifiers after feature selection,
employing both wrapper and filter techniques.

5.3. Detection Evaluation

In terms of detection accuracy, the RF wrapper technique consistently outperforms
other feature selection methods, whether the data is split into a 70:30 training-to-testing
ratio or subjected to 10-fold cross-validation. For instance, the detection accuracy with RF
as a feature selector is 98.15% for the 70:30 split and 98.04% for 10-fold cross-validation,
whereas the detection accuracy with J48 as a feature selector is 96.80% for the 70:30 split
and 96.77% for 10-fold cross-validation.

Among the filter methods, InfoGain and ReliefF perform better than chi-squared.
For example, the detection accuracy with InfoGain as a feature selector is 97.12% for the
70:30 split and 97.47% for 10-fold cross-validation, while the accuracy using chi-squared as
a feature selector is 96.47% for the 70:30 split and 96.59% for 10-fold cross-validation.
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Figures 11 and 12 show the mean accuracy rate obtained by each combination using a
different number of selected features ranging from 1 to the maximum number of features
38 in the dataset. The RF-SFSF approach outperformed the other five wrapper-based
approaches, achieving the highest accuracy rate of 98.26% with 22 out of 38 features.

Upon comparing the results of the filter-based and wrapper-based methods, we
concluded that the RF-SFSF approach is the most effective feature selection method for this
dataset. The final subset of features employed in our study is detailed in Table 5.

6. Comparison to Related Works
6.1. Detection Accuracy Comparison

Given the limited research on using ML techniques to detect abuse of the CLS as a C&C
infrastructure, we conduct a comparative analysis with existing studies that identify general
malware using PE file properties as ML features, similar to the studies by Kumar et al. [40]
and Raman et al. [41]. It is essential to highlight that the evaluations for both our work and
the other two studies were based on our unique dataset.

Table 6 presents the results of the comparative analysis. With a detection accuracy of
98%, our proposed work outperforms the other two studies, which posted rates of 94%
and 95%, respectively. This improved performance is attributed to our unique approach
of leveraging both raw and derived features from PE files. Particularly, the derived fea-
tures, presence_of_CLS_domains and potential_C&C_api_calls, played a significant role in
enhancing the detection efficacy.

Table 6. Comparison of abuse detection accuracy between proposed and existing works.

Reference
J48 Random Forest

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

Kumar et al. [40] 94.46 94.90 93.63 94.26 94.68 94.93 94.08 94.50

Raman et al. [41] 94.75 93.83 95.08 94.45 95.65 96.36 94.64 95.49

Proposed work 96.80 96.04 97.43 96.73 98.15 98.75 97.43 98.09

6.2. Adversarial Attack

To compare the robustness of our ML models with related works, we propose the
Replace Misclassified Parameter (RMCP) as a novel white-box adversarial attack to evaluate
the robustness of our proposed abuse detection system by manipulating feature values
to make malicious samples appear benign. In a white-box attack, the attacker has full
knowledge of the ML model being used, including its features.

To elucidate the impact of adversarial attacks on model accuracy, we have detailed the
components of the confusion matrix as follows, which are also presented in Table 7.

Table 7. Confusion matrix: delineating Predicted vs. Actual outcomes for Benign and Malware
classifications

Predicted

Benign Malware

Actual
Benign True positive (TP) False positive (FP)

Malware False negative (FN) True negative (TN)

• True positive (TP): The number of instances where the model correctly predicted
benign software (0). This means the model identified a sample as benign and it was
indeed benign.

• False positive (FP): The number of instances in which the model incorrectly pre-
dicted malware (1) when the sample was actually benign (0), which means the model
misclassified benign software as malware.
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• False negative (FN): The number of instances where the model incorrectly predicted
benign software (0) when the software was actually malware (1), which means the
model was misclassifying the malware as benign software.

• True negative (TN): The number of instances where the model correctly predicted
malware (1). This means that the model identified the software as malware and it was
indeed malware.

The adversarial attack experimental procedure consists of two stages, each with unique
objectives and methodologies:

1. Identifying Modifiable Features:The first step aims to identify which features within an
executable file can be altered without affecting the functionality of the executable file,
specifically evaluating whether it retained its ability to execute or became corrupted.
This was a crucial step, reflecting the real-world tactics of threat actors who strive to
maintain an executable’s malicious capabilities while modifying its attributes.
As Table 8 shows, for 9 out of 38 features, modifying their value in a malicious file re-
sults in file corruption, rendering the malware non-executable. For instance, replacing
the ’NumberOfSections’ value of a malicious sample with other corresponding values
from a benign one resulted in a corrupted executable file.

Table 8. Features whose value modification corrupts PE and causes of corruption.

Features Reasons for Potential Corruption

AddressOfEntryPoint Starts execution from an incorrect location.
NumberOfSections OS misinterpreting the structure of the PE file.
ImageBase New base address conflicts with other programs or system components.
SectionAlignment OS may not properly load the sections into memory.
Subsystem Program being run in an inappropriate environment.
Machine OS attempting to run the code on an incompatible architecture.
VirtualSize2 Leads to incorrect memory allocation.
SizeOfImage Leads to incorrect memory allocation.
IatRVA Breaks the linking of imported functions.

2. Identifying Feature Values Leading to Maximum Misclassification: In the second step
of our approach, we perturb the significant features of malicious samples with values
from benign samples, aiming to make our proposed model misclassify the malicious
samples as benign. We exploit the modifiable features identified earlier to deceive the
model. For each of these features, we identify the value that maximizes the number
of false negatives when applied to malicious samples. To guide the model towards
such misclassification, we adopted a targeted white-box adversarial attack using the
‘Replace Misclassified Parameter’ (RMCP) technique, detailed in Algorithm 1.
This method works by iteratively substituting each feature value of the malicious
samples within the fixed test set with each benign feature value for that particular
feature. Out of the 38 total features, we specifically targeted the 22 selected by the
RF-SFSF feature selector, which achieved an accuracy rate of 98% when there were no
modifications, as shown in Table 5.
After each substitution, we evaluated the original model on a fixed test set without
retraining. We note the replacement value that yields the most false negatives, where
malicious samples are misclassified as benign. We intentionally avoided features
listed in Table 8, as tampering with them can corrupt the file.
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Algorithm 1: RMCP Adversarial Attack

1 Ensure: Worst benign value per feature, accuracy, confusion matrix
2 Initialize:
3 Xselected ← Features selected from X
4 Split data into Xtrain, Xtest, ytrain, ytest
5 Train model on Xtrain, ytrain
6 Evaluate model on Xtest, ytest
7 Record accuracy and confusion matrix as baseline
8 for each feature f in Xselected do
9 Get unique benign values for f as B

10 for each b in B do
11 Substitute malicious Xtest[ f ] with b
12 Predict on modified Xtest
13 Compare to baseline accuracy and confusion matrix
14 end
15 end
16 return Worst benign value per feature, accuracy, confusion matrix

Our evaluation was systematic. We began by establishing the baseline accuracy and
confusion matrix. After each feature replacement, we recalculated the model’s perfor-
mance metrics.

The results of our robustness evaluation against adversarial attacks are summarized
in Table 9, presenting the model’s accuracy and confusion matrices, both pre and post-
substitution.

During this experiment, our primary metric was the change in false negative (FN)
values; an increase would signify a successful adversarial attack.

Analyzing results from Table 9, it is clear that most features maintain high true positive
(TP) and true negative (TN) rates, indicating resilient defense against the RMCP attack.
However, the ‘DebugSize’ feature displays a lower accuracy rate of 83.54% and an increased
number of false negatives (FNs) from 23 to 292. This suggests that the ‘DebugSize’ feature
may struggle to be effective in detecting the abuse of CLS as C&C.
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Table 9. Comparison of detection accuracy before and after the RMCP adversarial attack, highlighting
changes in FN values in the confusion matrix (CM): proposed work.

Features Benign
Parameter

Original Detection
Accuracy

Post-RMCP
Detection Accuracy Original CM Post-RMCP CM

MajorLinkerVersion 8

0.981532

0.977729

TP:935 FP:11

FN:23 TN:872

TP:935 FP:11

FN:30 TN:865

MajorImageVersion 10 0.975557 TP:935 FP:11

FN:34 TN:861

MajorOperatingSystemVersion 1 0.976099 TP:935 FP:11

FN:33 TN:862

DllCharacteristics 1024 0.971211 TP:935 FP:11

FN:42 TN:853

SizeOfStackReserve 65,536 0.978815 TP:935 FP:11

FN:28 TN:867

FileAlignment 4096 0.976099 TP:935 FP:11

FN:33 TN:862

MinorOperatingSystemVersion 0 0.980445 TP:935 FP:11

FN:25 TN:870

MajorSubsystemVersion 4 0.979902 TP:935 FP:11

FN:26 TN:869

CheckSum 32,467,821 0.953829 TP:935 FP:11

FN:74 TN:821

SizeOfHeapCommit 4096 0.981532 TP:935 FP:11

FN:23 TN:872

NumberOfRvaAndSizes 16 0.980989 TP:935 FP:11

FN:24 TN:871

DebugSize 28 0.835416 TP:935 FP:11

FN:292 TN:603

potential_C&C_api_calls 0 0.965779 TP:935 FP:11

FN:52 TN:843

6.3. Robustness Comparison

In comparison, Table 10 presents the robustness results for Kumar et al. [40], demon-
strating that the replacement of certain feature values has a significant impact on the
accuracy and confusion matrix of the model. For instance, when substituting the ‘Charac-
teristics’ feature value, the model’s accuracy drops from 94.67% to 69%, and the number of
misclassified malicious samples as benign increases significantly from 53 to 525. Overall,
the table reveals the vulnerability of their approach to the RMCP technique.

Similarly, Table 11 illustrates the impact of the RMCP technique on Raman et al. [41],
resulting in a significant reduction in model accuracy. For instance, when substituting
the ‘DebugSize’ feature value, the model accuracy dropped from 95.84% to 54.37% and
the number of false negatives significantly increased from 48 to 808. Similarly, for the
‘MajorImageVersion’ feature, the model accuracy decreased from 95.84% to 69.74%, while
the false negatives increased from 48 to 525.
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Table 10. Comparison of detection accuracy before and after the RMCP adversarial attack, highlight-
ing changes in FN values in the confusion matrix (CM): Kumar et al. [40].

Features Benign
Parameter

Original Detection
Accuracy

Post-RMCP
Detection Accuracy Original CM Post-RMCP CM

MajorOperatingSystemVersion 1

0.946768

0.923411

TP: 901 FP:45

FN: 53 TN:842

TP: 901 FP:45

FN: 96 TN:799

DllCharacteristics 34,112 0.813688 TP: 901 FP:45

FN: 298 TN:597

SizeOfStackReserve 16,777,216 0.811515 TP: 901 FP:45

FN: 302 TN:593

MajorSubsystemVersion 6 0.937534 TP: 901 FP:45

FN: 70 TN:825

MinorSubsystemVersion 0 0.941879 TP: 901 FP:45

FN: 62 TN:833

Characteristics 263 0.690386 TP: 901 FP:45

FN: 525 TN:370

e_lfanew 304 0.697990 TP: 901 FP:45

FN: 511 TN:384

Table 11. Comparison of detection accuracy before and after the RMCP adversarial attack, highlight-
ing changes in FN values in the confusion matrix (CM): Raman et al. [41].

Features Benign Parameter Original Detection Accuracy Post-RMCP Detection Accuracy Original CM Post-RMCP CM

MajorImageVersion 10

0.956545

0.697447

TP: 914 FP:32

FN: 48 TN:847

TP: 914 FP:32

FN: 525 TN:370

DebugSize 84 0.543726
TP: 914 FP:32

FN: 808 TN:87

ExportSize 393,079 0.951113
TP: 914 FP:32

FN: 58 TN:837

ResourceSize 5296 0.762629
TP: 914 FP:32

FN: 405 TN:490

6.4. Robustness Evaluation

Ultimately, in both Kumar et al. and Raman et al., we observe that substituting certain
feature values can significantly impact a model’s accuracy and confusion matrix. In Table 9,
our proposed model demonstrates a robustness rate of 83.54% against adversarial attacks
using the RMCP technique, outperforming the 69.03% and 54.37% achieved in the related
works by Kumar et al. [40] and Raman et al. [41], respectively.

These findings show the crucial role of white-box adversarial attacks. As depicted in
Table 6, the initial abuse detection accuracy rates of our model and related works were quite
comparable. However, after conducting the robustness evaluation, a significant drop in the
detection rates of the related works was observed, whereas our proposed work experienced
only a slight decrease. This demonstrates that our work is more resilient to adversarial
attacks, thus offering a more robust and reliable solution for abuse detection.

7. Conclusions

In this paper, we presented a novel approach that utilized ML-based techniques to
detect the abuse of the CLS as a C&C infrastructure. Our approach focused on analyzing
static and derivative features extracted from PE files, which are widely used in the Win-
dows operating system. By leveraging these features, we were able to train and evaluate
various ML classifiers to effectively identify the malicious samples that abuse the CLS for
C&C activities.

Through our experiments, as illustrated in Table 5, the RF classifier combined with
wrapper-based selected features, emerged as the most effective algorithm, achieving a
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high detection rate of 98.15%. This demonstrated the potential of our proposed approach
to detect the abuse of CLS as a C&C channel. Furthermore, we conducted a robustness
evaluation to examine our approach’s resilience against white-box adversarial attacks. Our
findings indicated that the proposed method maintained high levels of accuracy of 83%
even in the presence of such an attack.

To facilitate further research and development in this area, we introduced a new
labeled dataset containing malicious associated with CLS usage and benign PE files. We
believe that this dataset, being the first of its kind, will serve as a valuable resource for
researchers and practitioners working on the development and evaluation of detection
techniques aimed at identifying and countering malware that abuse CLS as a C&C channel.

In essence, our proposed approach highlights the potential of ML-based techniques in
effectively detecting the abuse of CLS as a C&C infrastructure. By delivering a solution
that is both robust and highly accurate, we contribute to the ongoing efforts in combating
such sophisticated cyber threats.

8. Limitations and Future Work

In our proposed work, we utilize static analysis features of PE files to enable ML
classifiers to identify the abuse of CLS as a C&C infrastructure. However, the encryption
of a PE can pose significant challenges for our technique, especially when attempting to
extract pivotal features like presence_of_CLS_domains and potential_C&C_api_calls. As a
direction for future research, dynamic analysis could be integrated to provide additional
features suitable as input for both ML and deep learning (DL) models. Dynamic analysis
focuses on observing a program’s real-time execution behavior. This can yield in-depth
insights into its functionality and interactions with other systems. Integrating dynamic
analysis into our detection methodology would reveal features that static analysis alone
might miss.

Overall, future endeavors could focus on the incorporation of dynamic analysis, DL
models, and network-based detection techniques to further enhance the accuracy and
efficiency of our proposed approach for detecting the abuse of CLS as C&C channels.
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