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Abstract

The vast number of cameras utilised in smart city domains is becoming increasingly

prominent and notable for monitoring indoor and outdoor areas such as buildings and

road traffic as well as in rural areas (e.g. farms) in order to deter thefts of farming

machinery and livestock, besides monitoring workers to guarantee their safety. In

addition, to detect anomalies meant as Identifying an unusual occurrence that does not

adhere to the nature and regulations. However, detecting anomalies becomes much

more challenging in environments with low lighting and poor visibility conditions, such

as at night (when a scene is entirely dark) and partially dark during dusk and dawn,

resulting in obtaining inefficient outcomes to recognise events leading to an increase

in false positives detection. Thus, this research aimed to identify objects (referred to

as Anomalies) in low-light settings with the assistance of pre-existing methodologies in

image enhancement and object recognition on resource-constrained devices (referred to

as Nodes). Rather than focusing on enhancement methods for image quality comparison

purposes or developing a novel approach, the main goal is to exploit existing methods

to boost the detection stage’s accuracy. Further, a lightweight classification algorithm is

proposed to differentiate (1) Bright scenes captured in the daytime from low-light ones

and (2) To distinguish between low-light scenes that might differ in their darkness levels

and incorporate additional factors such as noise. Therefore, images with insufficient

light are enhanced by multi-enhancement networks, where the optimal one is chosen

based on the input image features and characteristics. The results demonstrated an

increase of 25% & 3% in the detection accuracy on the ExDark database. Moreover,

the classifier could discern between bright and dark scenarios achieving an accuracy



of 85.24%. Finally, the proposed classification, enhancement, and detection stages

were implemented on the resource-constrained devices, demonstrating efficiency and

resilience, retaining high performance and time-response roughly (1 second) across all

phases.
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Chapter 1

Introduction

This chapter first discusses an overview of the 5G Wales Unlocked project, on which the

current research is based, by describing assets, use cases and other related information. Then,

the motivation for conducting this research due to the limitations explored and encountered

during the project is explained. Finally, the aim, objectives and contributions are presented in

separate sections at the end of this chapter.

5G Wales Unlocked Project (Overview)
The 5G technology is the latest generation for broadband and cellular networks, es-

tablished in 2019 by the 3rd Generation Partnership Project (3GPP). Many worldwide

telecommunication industries have started deploying 5G on most cellular and broadband

devices since it is up to 100 times faster than the current 4G standard technology, allowing

the creation of never-before-seen opportunities for people and businesses [102]. This tech-

nology is promising by providing faster connectivity, low latency and the potential to connect

multiple heterogeneous IoT devices. Moreover, the 5G revolution will impact the physical

security industry, especially in Video Surveillance System (VSS) domains which play a vital

role since they span large sites and city locations in outdoor environments, requiring faster

and more reliable connectivity. This thesis is conducted based on the 5G Wales Unlocked

project funded by the Government of Welsh Department for Digital, Culture, Media & Sport

(DCMS). The 5G technology was invested in and utilized in the project to enhance different
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aspects of Wales’s rural and semi-rural areas. Several cameras and sensors were incorporated

and deployed in different use cases for data collection and scene understanding. For instance,

a multi-camera video surveillance system was deployed in four different areas to monitor

and safeguard lone workers on a farm in Monmouthshire, North Wales. The objective is to

detect two types of objects (People and Vehicles) in order to prevent theft of machinery and

livestock and to monitor farmers to ensure their safety

Moreover, the same camera was used to detect vandalism at Raglan Castle in Mon-

mouthshire, prevent children from climbing walls, detect people in forbidden areas, and

maintain safety, allowing immediate human intervention for making decisions. The above use

cases focused on detecting abnormal events through video surveillance cameras, whether in

behaviours or appearances. However, far from abnormality, the project also studied people’s

behaviours in Transport services by counting the number of people on bus transportation. In

addition, Blaenau Gwent in South-East Wales utilized the same camera system of Farm and

Castle scenarios for parking lot detection to determine free and occupied parking spaces and

people at the bus stop.

The main idea is to measure and evaluate the video analytic approaches for accomplishing

several or similar tasks instead of relying on high-cost installed sensors, which require

installing a single sensor per spot—for instance, bus seats or park space for transportation and

car parking scenarios. Moreover, modern cameras come in various functionalities, features

and prices, a comprehensive range of views and zones "field-of-view". Consequently, one or

more cameras may cover a specific area for controlling and managing similar tasks as pricey

non-vision sensors can do with more efficiency and reliability. Indeed, depending only on

non-vision sensors will require a human examination and confirmation of a suspected fire if a

temperature sensor returns a high or suspicious measurement, for instance. In addition, extra

sensors may be required to replace damaged or failed ones to maintain system redundancy,

hence increasing the cost of maintenance and replacement. Alternatively, systems that depend

on both kinds of sensors (vision and non-vision) have a greater possibility of achieving both

redundancy and precision in identifying abnormalities and dangerous activities.

2



Figure 1.1 The video analytic flow of the standard Meraki MV Camera.

Figure 1.1 shows a basic flow for the video analytic system exploiting only the capability

of the Meraki MV Smart Camera (MV72X). Indeed, many functions are embedded within the

camera for extracting valuable information for a specific scene; where these functions are:

1. A tiny machine learning algorithm to detect only two types of instances (people and

vehicles), producing a message consisting of:

(a) Timestamp.

(b) Object ID.

(c) Bonding Box (rectangle that surrounds an object) coordinates; [x_center, y_center,

width, height], where x & y are the centre of the bounding box, whereas width

and height are image dimensions.

(d) Confidence (%).

(e) Class name.

2. An audio sensor for providing audio levels in the (dB) unit.

3. A light sensor for an overall pixel-value intensity (Brightness).

4. A REST API to request screenshots and meta-data.

3



5. An MQTT-broker for publishing the data produced by the previously mentioned

functions, where the results might be visualized on dashboards or sent to users as alerts

(Email/SMS) or stored in databases for historical data and further analysis.

However, relying solely on a pre-identify signal composed of previously mentioned

functions to detect anomalies in outdoor environments, when cameras are exposed to noise

such as poor illumination with no further investigation, showed an increase in false detections.

The reason behind that regards the tiny algorithm integrated with the edge-camera for the

detection phase. Edge-cameras, in general, are limited in resources and require lightweight

strategies during model creation in order to fit edge devices and make a trade-off between

performance and speed. Thus, relying only on this intuitive algorithm without further

investigation yields to obtain wrong or missed detection and increases the false positive and

negative detections, which is undesired in many real-world applications, especially when

detecting anomalies.

Consequently, a new video analytic pipeline was proposed to overcome the system

limitations and mitigate the high false positives by introducing pre-existing techniques

and algorithms in Computer Vision (CV) and Deep learning (DL). Figure 1.2 depicts the

multi-stages designed for the object-detection task. As mentioned, the project studied four

critical development rural areas in North Wales. Therefore, depending on each use case’s

requirements, some developments and adjustments were applied to stages and functions—for

instance, only person and vehicle instances, certain zones and motion detection. In general,

the intelligent camera publishes MQTT messages to the chosen platform, "Node-Red",

which was tested on both; Single-Board Computer (SBC) Raspberry Pi Model 4B (RPi) and

Laptop with Intel(R) Core(TM) i7-10610U CPU @ 1.80GHz2.30 GHz and "Windows" as

the operating system. The broker systematically streams messages, whether an object exists

in the scene. Therefore, (1) messages are checked through the property "raw_detections" if it

includes "Person" & "Car" classes allowing to reduce the burden on network communication,

avoid duplicate messages and mitigate false alert notifications. (2) In case of accurate

detection, a screenshot is requested using the build-in "API" for further processing. Otherwise,

messages are neglected or dropped, and no image is requested. The availability of many prior

4



studies for state-of-art object detection algorithms facilitates and speeds up the deployment

stage, saving time going through complex tasks like the tedious training process of creating

new approaches from scratch, for instance. Therefore, (3) during the project, different

open-sourced pre-existing models in deep learning for the object detection task were tested

and considered, such as TensorFlow, Detectron2, and PyTorch, to name a few. Afterwards,

results are structured and aggregated, including brightness value and audio level, besides

other information to be stored (4) in databases for message filtering and additional analysis,

while only relevant and suspicious events that might be potentially considered unusual are

sent to the dashboard for illustration, send notifications and alerts.

On the front-end side, scene information is received by a third party under the name

"UtterBerry" for processing data from the camera. In addition, they provide various types of

sensors installed in all use cases, such as GPS, Temperature, Motion, etc. Indeed, to reduce

the inconvenient high volume of notifications delivered to the end-user of a potential anomaly,

their sensor data are compared or integrated with the one generated by the camera. For

example, motion sensors have the ability to acquire information about an object’s movements

and appearance in the scene; hence, comparing the timestamp of the API-requested image

with the time of motion occurred might assist in guaranteeing and confirming anomalies (e.g.

unknown vehicle entering the farm).

Thus, the collaboration of vision and non-vision sensors is beneficial for accurately

identifying objects and reducing the number of unpleasant messages resulting from false

warnings. For example, motion sensors have the ability to acquire information about an

object’s movements and appearance in the scene; hence, comparing the timestamp of the

API-requested image with the time of motion occurred might assist in guaranteeing and

confirming anomalies (e.g. unknown vehicle entering the farm). Thus, the collaboration of

vision and non-vision sensors is beneficial for accurately identifying objects and reducing

the number of unpleasant messages resulting from false warnings.
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Figure 1.2 The developed video analytic pipeline for the 5G Wales Unlocked project.

1.1 Motivation

The previous section introduced a brief overview of the 5G Wales Unlocked project, showing

the developed video analytics pipeline using the existing pre-trained model in Computer

Vision (CV) and Deep Learning (ML) for the state-of-art object detection algorithm. Many

limitations and obstacles were faced while implementing and evaluating the system. Recently,

several studies relied on processing images and videos through different paradigms. For

instance, some take advantage of high-computational resources on Cloud-computing when

massive data is offloaded from the edge. On the other hand, who relied on Edge-computing

for time-sensitivity and accelerated processing stages. Lastly, further studies focused on

combining both paradigms for partial computation and reduction of network occupancy,

known as ’Joint Modeling’. Since smart cameras at the edge generate pre-identify data that

might be normal or abnormal, simultaneously, the cloud environment holds the large models

supported with GPUs or Multi-Core CPUs to assure the probability of an existing object in

the scene. Nevertheless, the joint modelling showed scarce performance in some aspects for

6



many reasons. For example, the MV Camera sends MQTT messages every (msec) regardless

of whether a human object exists in a particular area due to model sensitivity to motion

and the effect of external conditions, such as low or high lighting in specific regions or the

appearance of other objects that might indicate a potential anomaly. Therefore, requesting

images continuously with no actual threats puts a burden on network communication and

energy consumption of computational resources. Moreover, data transmission requires a

high-large bandwidth and less network usage. Due to the above limitations, this research

implements the whole pipeline on resource-constrained devices at the edge for performing

high-level tasks in order to overcome project limitations.

Furthermore, image quality is essential for providing trustworthy inputs for object de-

tection tasks to produce better results. The communication channel, the medium used to

transport information from one network device to another, is one example affecting the data

source, causing a deterioration in image quality since it loses more-or-less features during the

transmission phase, so images are contaminated with noise. However, the most considerable

factors confronted during the system evaluation were external low-light conditions resulting

from different weather conditions and images captured at night, sunset or sunrise. Figures

1.3 show a few samples of low-quality images captured during the 5G Wales Unlocked

project. For example, 1.3a represents an image in midday affected by sunlighting obscuring

or covering the vehicle (Mule) with bright pixels. Similarly, Figure 1.3b when rain leads

to a loss of information and disability in reflecting authentic images of the situation. In

addition, figures 1.3c and 1.3d for images obtained in poor illumination during the night with

additional noise (e.g. salt-and-pepper) added due to transmission channel or weak connection.

Thus, captured images with various circumstances (e.g. poor illuminations and weather

conditions) suffer from low visibility and smoother, losing local characteristics such as edges,

sharpness, texture, etc., resulting in a significant decrease in detecting instances as well as

difficulty in identifying anomalies. Indeed, several factors can affect and distort obtained

inputs, such as weather conditions (e.g. rain, snow, haze, etc.), blur, and low resolution.

Nevertheless, various removal methods were studied and adopted to overcome these types of

noises.
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However, due to the vast number of studies that contributed to solving each issue by

providing various strategies and concepts, it is challenging to consider and investigate all

problems in the current research. As a result, the images considered for this research will

only be those taken in low-light situations, such as at night and twilight, and images with

insufficient illumination captured during the daytime.

(a) High-Light, "Farm". (b) Rainy Weather, "Car Parking".

(c) Low-Light and Noise, "Farm". (d) Low-Light and Noise, "Castle".

Figure 1.3 Examples of the effects of diverse natural conditions on the 5G Wales Unlocked use cases.

1.2 Background

Several fields in Artificial Intelligence (AI) have been involved as a key-points in many

applications to replace human efforts in many video surveillance systems. For example,

computer Vision (CV) is one of the dominion fields to extract local and global features

through processing digital images and live-streaming videos [10]. Traditionally, authorities

relied on implementing Closed-Circuit Television (CCTV) to record human-objects videos in
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private and public areas. However, implementing these systems is highly complex due to the

installation procedure, the number of cameras needed (Depends on a particular use-case),

and cloud-based services for recording and storing captured data for more investigations.

Currently, Cameras are defined as low-cost devices and so-called vision sensors. There-

fore, many sectors are inclined to replace traditional non-vision sensors with vision ones to

build intelligent surveillance systems for security and other purposes. The reasons behind

that camera-sensors are becoming affordable (low-cost), reliable and high-resolution, low

power consumption, etc. Moreover, they can detect, track, and identify object behaviours and

send alerts in an automated manner without human interaction. However, one of the ongoing

and disputable challenges studied in Video Surveillance System (VSS) domains in the last

decades regards the location of processing and analysing the obtained data. Indeed, many

prior studies relied on processing the data on Cloud-only or Edge-only or Joint Modeling;

Partially, between Cloud and Edge paradigms [49]. Strategies that rely on the computational

resources provided by cloud computing, whether on their own or in conjunction with edge-

based implementations, continue to be a cause for worry for several applications, particularly

those involving the detection of abnormalities. However, streaming or transmitting acquired

data to the cloud showed a heavy workload on the communication network in 2017, which

accounts for 74% of the total network [7] [8]. In addition, factors like delay-sensitivity, band-

width limitations, privacy and storage have crucial effects on increasing the computational

cost of affording hardware infrastructure to maintain the number of assets recorded images

and videos [89].

The Internet of Things (IoT) technology relies on performing all or most stages, including

data acquisition, pre and post-processing, results and visualisation on resource-constrained

devices on edge environments without relying on systems with powerful computational like

Cloud or Fog. The implementation of data collection and processing stages at the edge

illustrates effective solutions to overcome cloud-paradigm challenges (e.g. latency, privacy,

etc.) by allowing multi-devices connected on the same network to perform multiple tasks in

a small amount of time [85]. Thus, adapting anomaly detection systems at the edge without

relying on external computational assistance (e.g. cloud, fog, etc.) plays a critical role in
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mitigating network burden, delay sensitivity, and faster response in actions by authorities and

stakeholders in terms of making decisions. An anomaly is an object or data (e.g. images,

videos, text or voice) that stands out and is distinct from the group.

Indeed, anomaly detection became a significant problem to consider for maintaining secu-

rity and guaranteeing safety (e.g. ensuring that only people with permission enter a specific

place), encouraging societies and researchers to investigate for a faster and more reliable

solution. Moreover, since the data is heterogeneous and come from different sources (e.g.

cameras and traditional sensors) in different formats (e.g. digital, numeric, etc.), scientists

are motivated to explore and propose advanced methodologies to extract useful information

and insights and detect anomalies. For instance, traditional sensors (e.g. temperature, carbon

monoxide, etc.) and digital images working together may aid and verify the detection of

smoke caused by a fire. Moreover, anomalies are rare and unpredictable events which require

immediate intervention to prevent or control them.

In video surveillance systems, anomaly detection is the problem of detecting any ab-

normality in images/videos in space, time or both which deviates from normal behaviours,

such as appearing in a forbidden area, children climbing walls and others. In smart cities, it

plays a vital role in detecting anomalies through single or multiple cameras in real-time or by

inspecting massive recorded videos maintained at high computational resource storages like

databases. Since screenshots are collected or videos are recorded, a whole video inspection

is possible or required occasionally for any video anomaly detection pipeline, in contrast to

other systems that depend only on sensors by gathering signal values without being aware of

the actual and precise condition in the field. [69].

Nowadays, cameras are dramatically increasing in dense and crowded areas to monitor

human and object behaviours. In addition, security in urban and rural environments is

becoming a crucial requirement, such as in the transportation, tourism and farming sectors, to

name a few. Prior methods relied on human resources to continuously monitor live-streaming

videos or stored videos to detect instances and make decisions about their behaviours in

terms of normal and abnormal. However, it requires a massive human effort when it comes

to managing and monitoring numerous screens at the same time. Therefore, developing an
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intelligent and automated system that can understand and identify anomalies in videos nearly

to human brains is necessary for saving time and human resource efforts.

1.3 Aim.

This research aims to create a technique that can be employed in low-light conditions for

object detection tasks on various resource-constrained devices. The proposed technique

is designed to select the most effective enhancement method among multi-enhancement

networks by considering the characteristics and features of the input images.

In the following section, an outline of the steps needed to achieve the research aim is

delineated and explained.

1.4 Objectives.

1. Test existing low-light image enhancement techniques on the ExDark datasets contain-

ing images captured in indoor and outdoor environments with various light intensities.

2. Evaluate the performance and trade-offs among existing low-light image enhancement

approaches with the object detection task by comparing the detection accuracy before

and after enhancement.

3. Build a lightweight dynamic classifier algorithm to categorise images based on low-

light image enhancement techniques capabilities for distinguishing different light

intensity levels (e.g. totally dark, partially dark, foggy dark, etc.). In addition, to

differentiate from the previously implemented pipeline in the 5G Wales Unlocked

project, which only worked on images captured in clear or bright conditions (e.g.

sunny, daytime, etc.).
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4. Implement and compare the entire pipeline on the Cloud and Edge paradigms, where

the edge environment consists of multiple resource-constrained "Nodes", each respon-

sible for a specific task.

5. Measure metrics related to edge devices to ensure sustainability and scalability while

implementing the proposed methodologies. In addition, calculate the time needed to

process a single image from source to destination and other metrics.

1.5 Contributions.

In summary, the main contributions of this research are as follows:

• Propose a dynamic lightweight classifier that can determine the optimal enhancement

technique from a range of techniques based on the input’s features and illumination

level. Since low-light environments may accumulate additional noise and enhancement

techniques, performance and capabilities vary depending on many factors (e.g. data

used, method structure, etc.). Therefore, the classifier determines the most effective

approach after the feature extraction and selection phases instead of forwarding inputs

to static or specific techniques based on assumptions or criteria.

• Evaluate the efficacy of image enhancement techniques in object detection tasks

involving the identification of instances such as people, cars, buses, motorcycles, etc.

Specifically, consider the most effective pre-processing stage for the proposed design

by analyzing the performance of various image enhancement techniques.

• To demonstrate the feasibility of our proposed system, we created a proof-of-concept

by implementing it on a range of resource-constrained devices, including the Raspberry

Pi and Jetson Nano Developer Kit. We then measured edge devices’ processing speed

and other relevant computational resource metrics.
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1.6 Publication List

Note that the paper associated with this thesis is under revision. As the author, I am diligently

working to refine and improve the content based on valuable feedback and insights. After

completing the required viva examination, I will submit the revised paper for publication

"IEEE Internet of Things Journal". In the meantime, I encourage you to read the paper, which

comprehensively summarises my research work, findings, and contributions. In addition, the

paper offers a condensed and up-to-date representation of the project, capturing the essence

of my work more effectively than the thesis. Please find the link to download the paper in the

following reference.

• [111] Yaser, A., Omer, R., and Charith, P. (2023). Anomaly detection on the edge

using smart cameras under low-light conditions. Sensors. https://drive.google.com/file/

d/1VuwB-A6gmwN9AGHTZme2b1Ls4Yf1gekp/view?usp=drive_link
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1.7 Chapter Summary.

This chapter commenced with an introduction to the 5G Wales Unlocked project, during

which the purpose, objectives, results, and assessment were discussed. The primary objective

was identifying anomalies and detecting instances (people and vehicles) across various use

cases in urban and rural areas, such as farms, tourism (e.g. Castle), parking lots, and bus

service. Nevertheless, a single scenario might call for various requirements and goals. For

example, identify unknown vehicles as well as strangers in time out of work for the farm

use case, whereas for tourism, individuals walk or enter unwanted areas. On the other hand,

tasks focused on customer behaviours by detecting people and cars getting in/out for the

bus and parking lost scenarios, respectively. Furthermore, pre-existing object detection and

classification methods assisted in accomplishing the aims outlined above and have been

shown encouraging results. Moreover, certain difficulties and challenges encountered during

the project inspired the conduct of this research to address the deficiencies in prior studies,

which are discussed in the following chapter. Also, a background on anomaly detection in

video surveillance domains and the processing location is provided. In addition, the current

thesis’s primary aim, objectives, and contributions are described and summarized at the end

of the chapter.

14



Chapter 2

Literature Review

2.1 Introduction

This chapter describes previous studies of anomaly detection using the edge computing

paradigm, including techniques, datasets, and evaluations. Afterwards, studies related to

modern deep learning and traditional machine learning approaches for scene classification to

categorise scenes according to noise environment. Finally, a broad review of enhancement and

removal methods for input images obtained under various degradation conditions (e.g. blur,

noise, low-resolution, poor illumination, etc.) will be presented, focusing on enhancement

techniques for low-light environments.

2.2 Anomaly Detection at the Edge Paradigm

Recently, a few studies focused on detecting anomalies at the edge paradigm [74]. In [121],

the authors proposed a real-time video streaming for human detection and tracking. They

focused on extracting low-level features on edge and fog environments since high-level

features like human and action recognition are more suitable for performing on supported

layers like Cloud-computing. A Histogram of Orientation (HOG) [9] with a Support Vector

Machine (SVM) classifier [35] used to extract object representations and classify them

as human and non-human on a single-board computer (Raspberry Pi 3). Then, features
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extracted by the detector are passed on to a Kernelized Correlation Filter (KCF) [30] tracker,

placed at the fog stratum (Laptop) to estimate pedestrian’s future positions and construct

their trajectories. The system was evaluated with video streams from real-world surveillance,

achieving a throughput of 12.2 frames per second. However, the algorithm is costly since

a single input requires multi-stages through the pipeline for completion. In addition, the

tracker is unable to re-identify the objects. In other words, if an object disappears from the

scene and shows again, the system provides a new label for the same object.

In [1], a real-time face emotion detection was implemented on a Field-Programmable

Gate Array (FPGA) device (PYNQ-Z1 board). A Harr-Cascade algorithm and a Local Binary

Pattern (LBP) were introduced to extract face features from human images and construct

a feature map. Then, features were fed to a Binary Neural Network (BNN) to train a face

emotions classifier. The authors believe that face emotions classification help to detect

anomalies in public transportation, such as shared cabs and taxis, to maintain passengers’

safety. The classifier outputs six categories: Angry, Disgust, Fear, Sad, Happy and Surprise,

where destructive emotions are labelled as abnormal and good ones as normal. The system

was evaluated on the benchmark dataset JAFFE (A dataset consists of 213 images of different

facial expressions from 10 different Japanese female subjects) [64], and on images captured

by a webcam attached to the FPGA embedded-device. The overall model achieved an 81%

and 75% accuracy on the public dataset and the images collected from real-world scenarios.

In [122], an Intelligent Surveillance System at the edge called (iSENSE) was proposed

to illustrate the possibility of implementing machine learning algorithms at the edge. The

authors designed a Lightweight Convolution Neural Network (L-CNN) based on Depth-Wise

Separable Convolution [31] technique to extract human features. An SSD head was added to

provide bonding boxes, probabilities and classes. Then, a multi-algorithm; Karman Filter

(KF) [100], KCF (Kernelized Correlation Filter) [30] and Background Subtraction [77]

were tested for tracking performance along with the proposed L-CNN. The system was

tested on different Single-Board Computers (SBC), including (A Raspberry Pi 3 Model B

and Tinker board) to improve the feature extraction stage at the edge. The evaluation was

done on real-world campus video surveillance and the open image dataset; Pascal Visual
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Object Classes (VOC) [20] both VOC07 and VOC12. A comparison with recent methods

for the object-detection stage showed that algorithms based on Haar features are faster than

the proposed L-CNN. However, L-CNN showed a low false-positive rate (FPR) and false-

negative rate (FNR) with a percentage of 6.6% and 26.3%, whereas an 18.1% and 34.9% for

the Haar-Cascade, respectively. Moreover, regarding accuracy and speed, L-CNN performed

better than SSD-GoogleNet and MobileNet. In addition, the designed model occupied less

memory on constrained devices, making it more suitable for edge environments than the

standard and complex CNN approaches.

In [123], a combination of edge-cloud computing was proposed using a lightweight deep

learning model at the edge. Once again, Depth-Wise Separable Convolution technique [31]

was applied on the CNNs part of the Tiny-Yolo and MobileNetV2-SSD to reduce the model

complexity at the constrained device (NVIDIA Jetson TX). At the same time, the centralized

cloud is supported with a NVIDIA Jetson TX graphics card hosting a large model (YoloV3)

to validate the detection phase. The research focused on utilizing fewer network resources

and providing a faster response to the edge by proposing the joint model. The evaluation was

tested on a self-deployed dataset, collected and labelled for detecting people wearing/non-

wearing helmets at a construction site. The video data collected by a camera attached to the

edge device are sent to the edge note for the pre-detection stage using a lightweight model.

Only clips with people not wearing helmets are extracted, encoded, and transmitted through

the User Datagram Protocol (UDP) to the cloud to validate edge detection performance. The

results are then sent back to the edge for other purposes. The system showed a speed of

16 FPS using the MobieNetV2-SSD with an accuracy of 0.68 mAP. In contrast, Tiny-Yolo

achieved a better accuracy of 0.73 mAP with a speed of 12 FPS.

The released YOLOv5 model was exploited in recent studies since it is suitable for

real-time video feeds, providing high accuracy and speed, outperforming recent one-stages

and two-stages models [125]. The authors in [66] proposed real-time video analytics on the

edge device supported with a GPU (NVIDIA Jeston TX2) for detecting people in forbidden

areas by combining YOLOv5s (s: for small version; suitable for constrain-devices) [37]

with the DeepSORT tracker [103]. The detection phase is done by YOLO producing critical
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information (Bounding Box, Class Name and Probability). The tracker uses these detections

to track and assign a unique ID to each object. The system was tested and evaluated on the

edge device using a GPS receiver, different camera sensors (RGB and Thermal), different

positions (Outdoor Building fixed-position and Mounted on Vehicles) and different light

conditions (Daytime and Night). Moreover, they experimented with the system several times

with different factors to measure the accuracy performance. For instance, only with the

detector (YOLOv5) or aggregated with the tracker (DeepSORT) day, night mounted on cars

or fixed-camera outside a building. In their research, an open-source edge platform called

DECIoT was introduced to collect data; (Objects information and Metadata, like Timestamp,

GPS longitude and latitude and File Path of relevant images stored at the FTP server) through

an MQTT-Broker (Mosquito). In addition, the platform can send alerts and notifications to

the middle-ware (Apache-Kafka) for sharing information with other platforms and services.

The system achieved an overall accuracy with (F1_Score = 86.4) for the object detection

phase. However, the tracking phase performs poorly when an object is occluded, yielding to

assigning a new ID to the same object, which is not desirable in real-world scenarios.

Table 2.1 Summary of related works in anomaly detection on the resource-constrained devices at the
edge.

Paper
Research

Task Method Location Class Device Evaluation
Environment

/Weather Condition

[121]
Detection

&Tracking

Edge: HOG+SVM

Fog: KCF
Edge-Fog Pedestrian

Raspberry

Pi3

and Laptop

Video-streaming from

real-world surveillance

Outdoor

/Clear

[1] Face detection
Haar-Cascade

&LBP+BNN
Edge Pedestrian

PYNQ-Z1

board

JAFFE Dataset and

images from

real-world

Still images

/Clear

[122]
Detection

& Tracking

L-CNN based on

Depth-Wise Separable

Convolution + SSD

with tracking algorithm

(KF, KCF and BS)

Edge Pedestrian
Raspberry

Pi3

Video-streaming

form real world

and VOC datasets

Outdoor and Indoor

/Clear

[123] Detection

Edge: L-CNN based on

Depth-Wise

Separable Convolution +

Tiny-Yolo and

MobileNetV2-SDD

Cloud: Yolov3

Edge-Cloud
Pedestrian

and Helmet

NVIDIA Jetson

TX

Self-Images and

frames extracted

from video

Outdoor and Indoor

/Clear

[66]
Detection

& Tracking
YoloV5+DeepSORT Edge Pedestrian

NVIDIA Jeston

TX2

Video-streaming

form real-world

Outdoor

/Clear
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2.3 Weather Classification

Globally, accidents occur daily owing to inattentive drivers, inadequate infrastructure and

weather conditions in many terrains and sectors, such as train collisions, ships crash and

even aviation occurrences. Therefore, weather conditions are one of the crucial aspects

examined recently in the computer vision era to solve problems which vary in context. For

instance, whether recognition might help prevent and mitigate vehicle mishaps on the road,

sends alerts to drivers for slowing down speed, and is essential for approaches in driver

assistance [43], self-driving vehicles [32] and detecting vehicles and pedestrians in-the-wild

environments [94]. In place of the vast demand for human resources and costly sensors

to acquire meteorological information, researchers applied visual computing approaches

to predict and classify categories from images Figure 2.1 using a single camera. Weather

recognition has been investigated massively, utilising multiple computer vision and deep

learning techniques in previous years. Therefore, the following sections briefly review related

studies conducted in classifying weather conditions.

(a) Foggy/Hazy. (b) Rainy. (c) Snowy.

Figure 2.1 Samples of weather conditions categories.
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2.3.1 Traditional Machine Learning.

When mentioning traditional machine learning, "feature engineering" or "hand-crafted fea-

tures" often comes up. These terms refer to the process in which the features that will

ultimately be used in the algorithm are studied and picked by user choice. In contrast,

modern techniques, such as convolutional neural networks, carry out the feature selection

step in an automated fashion [33].

In [50], a combination of Support Vector Machine (SVM) and Decision Tree (DT)

was proposed by [91] by extracting certain features to recognise weather phenomena. The

system relied on traditional feature engineering to extract image representations that might

belong to particular weather. These features are; power spectrum slop, contrast, noise and

saturation. The trained models were tested on Wild Image Dataset [71], and self-images were

captured. Because multiple forms of weather might occur concurrently, the system exhibited

a significant false-positive rate when detecting the rain class. As a result, images need to be

correctly labelled with their actual label. Similarly, [90] relied on the same factors besides

the inflection point fed to a K-NN classifier to recognise weather categories such as sunny,

fog, snowy and rain. However, the classifier works only for fixed scenes; traffic scenarios

and was tested on only two images captured from a real-world scenario.

The authors of [61] exploited weather signals (e.g. sky, shadow, reflection, contrast

and haze) as a feature vector to categorise only two categories (Sunny and Cloudy). By

assuming that each cluster has distinct characteristics and corresponds to one of the classes,

a learning-based approach was developed to cluster the extracted image features into distinct

groups, then be classified into a specific weather class. A dataset of 10,000 was collected and

divided for training and evaluation purposes. Unfortunately, some images lacked one of the

identified cues (e.g. sky), which hindered the system’s ability to classify the correct label.

Moreover, [119] relies on combining numerous local and global, such as Sky, Shadow,

Reflection, Contrast and Haze and Contrast and Saturation, respectively. Finally, the authors

employed Multiple Kernel Learning [4] to train a robust classifier for predicting the weather.

The multi-class Weather Image (MWI) dataset contains sunny, hazy, snowy and rainy images
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used for training and testing. As a result of the sparse features extracted, the model attained

an overall accuracy of 0.59%.

2.3.2 Deep Learning

Recent studies used GoogleNet through pre-training and fine-tuning, RestNet-15 based on

RestNet-50, MeteCNN, RestNet-18, for weather classification [129][105][106][2] respec-

tively. In [51], images were categorised as sunny or cloudy using a CNN-based Multi-task

classification. The CNN extracted features to predict the type of weather and shared low-layer

features for semantic segmentation to understand weather cues such as sky (Blue or Dark

grey) and objects shadows, which were drawn manually with a bounding box. The method

was evaluated with 10K images (5K per class) with an overall classification accuracy of

60.8%.

Furthermore, in [120], a CNN and LSTM-based Recurrent Neural Network to recognise

weather was proposed. The reason behind combining two neural networks in case more than

one weather condition, such as rain and fog, might coincide. The authors of [34] suggested

the Weather-Net architecture for weather recognition. Instead of depending on a single

class to represent the type of weather, they trained a 4-Convolution Neural Network with

RestNet-50, where each node has a distinct function. A CNN for category classification into

Dawn/Dusk or Day/Night referred to as NightNet. Then, under GlareNet, a binary classifier

for Glare (Natural-Light, such as sunlight) or Non-Glare (Artificial, such as vehicle lights). In

addition, FogNet is a binary classifier for fog or no fog, and PreciptationNet is a multi-class

CNN for clear, rainy, and snowy conditions. They believe that weather conditions alone

cannot provide a clearer scenario picture. Therefore, adding more labels relating to visual

information could result in a more robust and accurate system in real-world circumstances.

The testing was conducted using a self-collected dataset to utilise different metrics throughout

the evaluation phase. The accuracy of the framework ranged from 91.6% to 95.6% among

the four models.

A fusion approach was presented in [52] for integrating specific features extracted

manually, such as Brightness, Contrast and etcetera, with features extracted by CNN to
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recognise whether classes (e.g. sunny, cloudy, foggy, rainy and snowy). The model was

assessed on dataset inspired by [26] using different CNNs {VGGNet-16, VGGNet-19, RestNet-

50 and RestNet-101}. Many strategies were tested with (1) CNN as a standalone, (2) CNN

and one specific feature, and (3) CNN and all specific features. The experiments showed that

CNN features paired with feature engineering offered better results than depending solely

on CNN, which is insufficient for categorising weather images adequately. Moreover, they

increased the recognition accuracy by applying methods for weighting features, which allow

retrieving relevant features from a trained neural network based on the strength of the weights

[113].

Table 2.2 Summary of related works for weather classification using deep learning and traditional
machine learning approaches.

Paper
Research

Feature
Extraction

Classifier
Weather
Classes

Evaluation

[50]

Global: Power Spectrum Slop,

Contrast, Noise and

Saturation

SVM + Decision Tree
Clear, Rain,

Fog& Overcast
Wild Image Dataset

[90]

Global: Inflection Point, Edge,

Contrast, Saturation

and Noise

K-NN Classifier
Sunny, Fog,

Snowy& Rain

Images from

real-world scenes

[61]

Weather Cues: Sky, Shadow,

Reflection, Contrast

and Haze

Learning-based approach Sunny & Cloudy
Weather Image Dataset:

10K images self-collected

[119]

Local: Sky, Shadow,

Reflection, Contrast

and Haze

Global: Contrast and Saturation

Multiple Kernel Learning
Sunny, Rainy,

Snowy& Hazy

Multi-class Weather

Image (MWI)

dataset

[129][105]

[106] [2]

CNNs: GoogleNet, RestNet-15,

MeteCNN & RestNet-18

Fully-Connected Convolution

Network
Sunny & Cloudy N/A

[51]

Multi-CNN: for weather cues

segmentation and

weather recognition.

Fully-Connected Convolution

Network
Sunny & Cloudy 10k-Images dataset

[120]
4-CNNs: RestNet-50 & LSTM-based

(Recurrent Neural Network)

Fully-Connected Convolution

Network

Day, Night, Dusk/Dawn,

Glare, No-Glare,Fog,

No-Fog, Clear,

Rainy & Snowy

Self-images

[52]

Global: Brightness & Contrast

CNNs: VGGNet-16, VGGNet-19,

RestNet-50 & RestNet-101

.
Fully-Connected Convolution

Network

Sunny,Cloudy,Foggy,

Rainy & Snowy
Dataset from [26]
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2.4 Image Restoration

In applications for smart cities and wild environments, the efficiency of recognising people

and vehicles is becoming indispensable. The evolution of sensors and high-computing

resources such as GPU enables researchers to devote considerable time and energy to

understanding and to investigate new techniques such as video surveillance systems, traffic

monitoring, and autonomous driving, which has become a trend. In video surveillance

systems, for instance, precise detection of objects (e.g., people, vehicles, animals, etc.) is

required in real-time for decision-making and environmental safety. However, the efficiency

of sensor heterogeneity (e.g., cameras, light and audio sensors) is crucial for achieving

the desired results when detecting various objects. For instance, a camera sensor’s light

absorption, reflection, calibration, and field of vision can vary. In addition to its inherent

qualities, the taken image is also affected by external circumstances, such as weather, motion

blur, background change, camera shake, and low-light situations, which result in a low-quality

image during the acquisition stage [109].

In contrast, indoor environments are less affected by noise because the parameters

mentioned above may be adjusted and configured by users [28]. Poor visibility resulting

in incorrect detection causes accidents and traffic, for instance, in the autonomous vehicles

domains. To gain clear visibility and extract valuable feature representations, developing or

utilising existing image enhancement, image restoration, and noise reduction approaches

is necessary. Therefore, delivering a clean image is necessary for precise detection in

many systems. Since this research focuses on detecting instances in noisy environments,

pre-processing steps are required before passing the input source to the detection system.

Therefore, this section gives basic information about image restoration methods, including

denoising, dehazing, super-resolution and low-light enhancement methods for a single image.

Images captured by sensors devices such as IoT cameras and smart mobiles typically are

sensitive to different internal and external factors resulting in many kinds of degradation.

For example, motion blurring occurs due to camera shaking, moving objects, haze, rain and

depth variations in video surveillance. Generally, image restoration is restoring the image’s

features, clear and sharp, from the degraded inputs.
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The captured image during the accusation stage might expose to different types of noise,

such as weather conditions, blur and low resolution, to name a few. Image restoration is

divided into many restoration methods for solving several degraded challenges. Indeed,

this section focuses on restoring images captured with insufficient illumination due to

many conditions, such as nighttime, rainy or cloudy weather, to improve the detection

stage. Moreover, additional techniques belonging to restoration approaches for better visual

representation and feature restoration are presented.

2.4.1 Image Denoising

In recent decades, removing image noise has become necessary for obtaining a high-quality

output to optimise other processes such as object segmentation, detection and tracking in

many image processing pipelines [107]. As the name suggests, image denoising is the

process in which the degraded image is translated into a clean one to be close to the ground

truth or original image. The idea is to obtain the clear image "I" from the noisy image "O" by

suppressing the noise "n", called Additive White Gaussian Noise (AWGN) with variance σ̂2

[92], as is described in the Equation 2.1. Compared to Multiplicative Noise, additive occurs

during transmission, compression and acquisition stages by adding undesired pixels to the

original ones.

In contrast, Multiplicative manipulates the original pixels in such a way making it more

challenging to be removed. Traditional approaches [101][82][40] focus on feature extraction

and selection methods to overcome noise in image processing. However, these methods have

fixed parameters which require a tweak in their hyper-parameters to work for a specific task.

Moreover, they are unsuitable for blind image denoising, requiring a prior/reference image to

capture low-level image statistics. In addition, optimisation is needed for high performance

and satisfactory results leading to a dramatic increase in computational cost [114].

O = I +n (2.1)

Indeed, to overcome the traditional challenges, many deep learning networks were

studied based on CNNs and generative adversarial networks GANs [93]. One of the recent
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achievements was DnCNN by [114] using a Residual Network known as the solver of

gradient vanishing problem for deeper neural networks [29]. The authors mentioned in their

paper that DnCNN could handle different tasks for image processing besides denoising, like

super-resolution and JPEG image blocking. In Figure 2.2, experimentation done by [24]

on MATLAB using Deep Learning Toolbox version R2919a shows the results of different

denoising techniques. The authors compared some traditional techniques of denoising based

on spatial or transform methods versus the pre-trained model DnCNN. As is depicted, the

CNN output in 2.2g is superior to conventional methods in preserving features such as texture

and edges besides noise suppression, obtaining an output closer to the original image in

Figure 2.2h.

(a) Noise. (b) Wiener Filter. (c) Bilateral Filter. (d) PCA.

(e) Wavelet. (f) Total Variation. (g) CNN. (h) Original.

Figure 2.2 Denoised Image methods.

2.4.2 Image Dehazing

The goal of image dehazing is to sharpen and restore a haze image. Haze or fog mitigates

the quality of the image in outdoor scenes by manipulating image colour and reducing the
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contrast between the foreground and background, smoothing the region of interests and

objects in the captured image. In image processing, obtaining a free-haze image becomes

a vital and inevitable area [84]. Because the light reflected from the surface comes from

different sources, genuine or artificial, with hazy weather, the light is scattered and distributed

in the atmosphere before reaching the camera. Therefore, foggy conditions affect the image

in which the contrast is reduced, and surface colours become dim, making instances hard to

be detected.

PSNR: 13.72 PSNR: 12.62

PSNR: 29.76 PSNR: 26.32

Figure 2.3 First raw haze inputs, second raw de-hazed outputs [6].

Figure 2.3 illustrates an experiment implementing the haze-free approach by [6], where a

smoothed dilation technique was used besides a multi-sub network to fuse different features

from different levels. Peak-to-Signal-Noise Ratio (PSNR) is calculated for haze and de-haze
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images, which shows an improvement in visual, machine perceptual and image quality. Dark

Channel Prior (DCP) was implemented by [67] for dehazing under the assumption that

the most local patches in haze-free images consist of pixels with low intensity in at least

one colour channel, which is a critical benchmark among dehazing approaches. A physics

model was presented in [72] to describe the appearances of scenes in uniform haze images.

Polarization was used in multiple haze images in different angles [87]. With the prosperity of

data-driven approaches, many deep learning dehazing techniques were studied and proposed.

In [45], the authors proposed a reformulated atmospheric scattering model, so-called all-in-

one, using a lightweight CNN. In [78], an Enhanced Pix2pix Dehazing Network (EPDN) was

proposed using a generative adversarial network (GAN) for dehazing using a discriminator to

guide the generator to create a pseudo-realistic image on a coarse scale, whereas the enhancer

following the generator was required to generate a realistic haze-free image on the fine scale.

2.4.3 Image Super-Resolution

Super-Resolution (SR) is another type of image restoration and inverse problem for recovering

high-resolution (HR) inputs from low-resolution (LR) ones. LR occurs due to down-sampling

(e.g. bicubic, average down-sampling...etc.) or applying down-sampling kernels on images

besides to other reasons such as camera modality, calibration and lenses leading to capture a

degraded image. Figure 2.4 illustrates a super-resolution approach based on a single image’s

simple convolution neural network (CNN) architecture.

Figure 2.4 Super-resolution for single image [19].
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In [19], a simple CNN was proposed to solve image super-resolution. Whereas [53]

improved the performance of previous models by removing unnecessary modules or layers in

conventional residual networks with EDSR. Moreover, [117] proceed with residual networks

by adopting residual in residual (RIR) and residual channel attention networks (RCAN),

solving the problem that deeper networks for image SR are difficult to train.

2.4.4 Low-Light Image Enhancement

The objective of low-light image enhancement is to augment the recognition and visibility

of an image that is captured in low-light surroundings. This particular task falls within the

restoration category, wherein a deteriorated input is handled to obtain an improved output

similar to the original, accurate image [60].

Nowadays, the prevalence of sensors and mobile devices has led to a significant rise

in the number of images acquired in various settings. Furthermore, the dimensions of the

camera aperture, resolution and other features have a crucial impact on the resulting image.

Previous research has employed Learning-based techniques in this field, particularly Deep

Learning (DL), which has surpassed traditional methods in several respects. These include

superior precision, resilience and a reduced number of optimization procedures, leading

to considerable speed and model convergence acceleration. In 2017, the initial implemen-

tation of Auto-Encoders (AE) was introduced by [60] for managing images in low-light

surroundings. This technique addressed several difficulties and surpassed traditional methods.

Subsequently, various learning-based approaches, network architectures, loss functions and

training datasets were proposed, resulting in models with diverse performances concerning

factors like image quality, speed, model size, and others. On the other hand, conventional

methods are mainly founded on Histogram Equalization-based (HE) and Retinex-based

methods. Retinex techniques aim to split an input image into illumination and reflection

components, with the reflection component assumed to be the enhanced outcome or used for

further examination based on priors and hand-crafted regularizations, which are difficult to

adjust.
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Figure 2.5 Low-light image and video enhancement methods [47].

The diagram 2.5 illustrates the most popular approaches and their methods studied re-

cently in the area of low-light enhancement for a single image and video [47]. Histogram

Equalizer (HE) is a technique to adjust image intensity, improving image contrast to distin-

guish foregrounds from the background by stretching the image’s dynamic range. Retinex

methods are based on illumination and reflection components; each is manoeuvred separately
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to obtain the enhanced image. Deep learning methods are known for learning from a large

volume of data through tedious training on high computational devices like GPUs. Generally,

restoration methods rely on paired data (Degrade vs Ground Truth) for training a particular

model. Deep learning models vary in architectures and concepts (e.g. Auto-Encoder (AE),

Recurrent Neural Network (RNN), etc.). However, they all aim to map features from inputs

to obtain results close to the ground truth image, known as "Supervised-Learning" task. On

the other hand, the availability of paired data is cumbersome in some circumstances since

obtaining images with poor and normal illumination of the same visual scene is daunting.

Moreover, training a deep learning model on paired data might yield over-fitting and

produce a non-generic model, which cannot deal with various illumination levels as well

as inputs that might be accumulated with additional types of noise. Therefore, few studies

introduced "Unsupervised-Learning" to enhance low-light images without the need for

ground truth data for both mapping features and evaluation [36]. In addition, "Zero-Reference

Learning" is one of the most needed and efficient approaches nowadays because it directly

examines and comprehends degraded image features to improve dark pixels into bright ones

without needing ground truth (as paired data) for mapping and comparison. It is worth

mentioning that this thesis exploited pre-existing deep learning and computer vision models

to restore degraded images in low-light environments without considering the learning type,

focusing more on efficiency and produced results.

Indeed, different factors can cause poor illumination, including low brightness, contrast,

dynamic range, colour distortion, and significant noise. Such factors can have a negative

impact on both human vision and various machine vision systems. In the deep learning

era (2017-2021), various learning-based models were developed and analysed, and Table

2.3 presents some of these models. Learning-based techniques have significantly improved

compared to traditional methods like Retinex versions, Histogram Equalizer, frequency-

domain methods, and defogging models. In particular, they have overcome traditional

methods of processing speed, model generalisation, accuracy, and memory usage, all of

which are essential in domains like video surveillance and self-driving systems [97].

30



Table 2.3 (SL) Supervised Learning, (USL) Un-Supervised Learning, (SSL) Semi-Supervised
Learning, (ZSL) Zero-Shot Learning.

Method / Learning SL USL SSL ZSL

LLNet [60] ✓

LightenNet [48] ✓

RetinexNet [99] ✓

MBLLEN [63] ✓

Chen et al [5] ✓

DeepUPE [96] ✓

KinD [118] ✓

KinD++ [116] ✓

EnlightenGAN* [36] ✓

ExCNet [115] ✓

Zero-DCE [27] ✓

DRBN [110] ✓

Xu et al. [108] ✓

TBEFN [62] ✓

RRDNet [127] ✓

DSLR [54] ✓

Zero-DCE++* [46] ✓

RUAS* [58] ✓

Retinex-DIP [124] ✓

UTVNet [126] ✓

CSDNet [65] ✓

CSDGAN [65] ✓

LiteCSDNet-LOL* [65] ✓

LiteCSDNet-UPE* [65] ✓

SLiteCSDNet-LOL* [65] ✓

SLiteCSDNet-UPE* [65] ✓

RED-RT* [44] ✓

The pre-existing models analyzed for low-light image enhancement through learning-

based tasks are presented in Table 2.3. However, it is noteworthy that the prevalent techniques

depend on supervised learning, which involves feature mapping and metrics evaluation using

paired images of degraded and ground truth. In addition, the availability of various theories,
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such as the retinex theory, enables users to produce synthetic images that resemble those

captured in low-light settings. This data can be used to devise new methodologies for

addressing the challenges posed by different low-light levels. Nonetheless, approaches based

on synthetic data exhibit poor performance in real-world situations, leading to an increase in

false positives during detecting anomalies (e.g. people, vehicles, etc.), particularly at night.

Consequently, researchers are exploring a new direction for addressing the low-light

issue that does not rely on prior knowledge derived from reference images with normal

illumination, such as zero-reference and unsupervised learning. In the study by [63], a sub-

networks enhancement was suggested by extracting feature representation from low-light and

enhanced images for subsequent feature fusion. Conversely, [36] proposed an unsupervised

learning model that employed generative adversarial learning (GAN) techniques. The UNet

[79] architecture has been chosen as the generator part of the network. In general, generator

and discriminator in GAN networks fight each other until the discriminator gives up on

recognizing images created by the generator as fool images, producing a realistic output

similar to the original ones. In contrast to most known learning approaches, [46] proposed a

model without using paired images based on curve methods to create a lightweight network.

In addition, [110] proposed a model for recovering linear band representation of an enhanced

image under supervised learning, then obtaining an improved one by recomposing the given

bands via a learnable linear transformation based on unsupervised adversarial learning. The

attached star (*) to some model names in 2.3 stands for "Lightweight" models. Alternatively,

models highlighted with (Blue) colour refer to additional pre-existing and recent models that

have not been explored in [47] and recent studies.

Consequently, in this thesis, these models are studied in terms of their performance as a

pre-processing stage for improving poor illumination before applying high-level tasks and

further analysis, such as object recognition and segmentation. In most cases, lightweight

models outperform their normal/non-lightweight counterparts in some aspects, including

processing speed, model size, and others. Furthermore, lightweight models will receive

the most attention because this thesis aims to implement the whole pipeline on constrained

devices. In the next and last section, a brief discussion is conducted to wrap up all critical
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points of this research concerning the aim, objectives and focus. In addition, a graphical

representation of the proposed system architecture is presented and detailed at the begging of

the following Chapter (3).

2.5 Discussion

This thesis aims to identify the instances (e.g. people & vehicles, referred to as "Anomalies")

in rural environments on resource-constrained devices when these images are captured under

low light and poor visibility. As mentioned in the previous sections, noise is challenging

and inevitable due to darkness, weather conditions, camera calibration, motion and other

factors in many image processing domains. Therefore, noise accumulates and distributes

arbitrarily across the captured data source by adding low/high frequencies, which come in

different shapes and intensities, making it a challenging problem to solve. As previously

stated at the beginning of Chapter (1), this study is based on the 5G Wales Unlocked aiming

to exploit computer vision and machine learning existing approaches to overcome several

gaps or limitations in diverse smart cities sectors (e.g. farms, tourism, transportation services,

etc.) from images captured by video surveillance systems. It’s worth noting that the scenarios

of the 5G project primarily contributed to identifying the problem state in this research, rather

than serving as a source of data. This was due to privacy concerns, inactivity in most of the

field, and other factors.

The following key points provide a reminder and a brief description of each use case

studied during the project for a better understanding of each scenario’s requirements:

• Farm.

– Location: Monmouthshire, North of Wales.

– Num. of Camera(s): 4.

– Camera(s) Brand: Meraki Camera MV72X (by Cisco)

– Environment Type: Outdoor/Private.
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– Task: Maintaining safety and preventing theft of animals and equipment are the

goals of this use case. The primary objective is identifying suspicious individuals

and vehicles except for farm vehicles (e.g., a tractor, mule, etc.), owners and

co-workers.

• Raglan Castle.

– Location: Monmouthshire, North of Wales.

– Num. of Camera(s): 3.

– Camera(s) Brand: Meraki Camera MV72X (by Cisco).

– Environment Type: Outdoor/Public.

– Task: To detect individuals in forbidden areas and prevent children from climbing

walls.

• Transportation Services.

– Location: Bus (Camera mounted inside a public bus).

– Num. of Camera(s): 3.

– Camera(s) Brand: EdgeVis Cam (by Digital Barriers).

– Environment Type: Indoor/Public (But exposed to external conditions).

– Task: To count the number of individuals getting in and out from a public bus

and determining available space and occupied seats.

• Parking Lot.

– Location: Blaenau Gwent in South-East of Wales.

– Num. of Camera(s): 3.

– Camera(s) Brand: Meraki Camera MV72X (by Cisco).

– Environment Type: Outdoor/Public.
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– Task: To determine free and occupied parking spaces by vehicles. In addition, to

detect individuals at the Bus stop.

Several problems were encountered throughout the 5G Wales Unlocked, from the source

(camera), through the medium (network transmission channel), ending with processing and

complex analysis at the destination (cloud or edge). When receiving inputs from the Meraki

camera, some obstacles that might arise include motion blur caused by moving objects,

rainfall on the camera lens due to rain, and insufficient light, especially at night. In addition,

cloudy and rainy weather can also provide problems in obtaining a blurry and degraded

image. As a result, this thesis focuses solely on the most affected and avoidable type of noise;

poor illumination or low-light conditions, which were encountered and suffered during the

project as well as other smart city scenarios. The following key points justify studying the

low-light issue.

• Generally, researchers and prior studies have investigated these challenges intensively

and separately by proposing and designing diverse methodologies to tackle each

problem. Therefore, it is impossible and challenging to study and cover all in one

study.

• Poor illumination was the most notable and affected factor when implementing high-

level tasks. Indeed, the detection task struggles to find and localize objects in images

with insufficient light or dark ones due to the night or lack of artificial lights (e.g.

street lights, lighthouse, etc.) across most use cases. For example, while testing

the implemented method described in Figure 1.2 specifically for the Farm use case,

many false alerts indicating the detection of a person or car were received during the

night, dawn, and dusk of the day. However, the dominant dark pixels in the requested

screenshot make it impossible for machines and humans to examine and verify the

camera detection output.
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• The sensitive and tiny algorithm integrated with the Meraki camera provides a pre-

single continuously due to low-driven tasks (e.g. motion, low/high light and audio, etc.),

leading to a significant rise in false alarms result in an unscalable system, as well as

annoying notifications and false messages delivered to the end-user (e.g. stakeholders,

authorities, etc.).

The studies mentioned in section 2.2 vary in the system performance in terms of accuracy,

latency, computational resources and location of processing at edge or cloud environments.

Indeed, some approaches focused on improving the overall accuracy by manipulating the

model architecture [123] and others by leveraging the traditional feature engineering tech-

niques for the object detection phase [121]. However, traditional machine learning algorithms

perform weakly compared to deep learning models that extract rich information without

human effort. Moreover, generating a new model requires collecting massive data for the

tedious training phase. In addition, some techniques are needed to tweak the model hyper-

parameters to obtain an optimised model. Studies like [1][125] relied on exploiting optimised

edge devices for faster processing in a low-time response by neglecting the high cost of

these devices. The proposed approaches studied different aspects to improve the system’s

functionality at the edge with a trade-off between accuracy, speed of analysis and obtaining

higher time response. However, the focus was on proposing a lightweight approach to fit the

edge device with a faster inference.

Nevertheless, the approaches in the literature were tested and evaluated on data captured

from indoor environments or taken under clear weather and normal light-setting for the

outdoor scenarios, without considering noise and poor illumination resulting from weather,

depth variation and darkness or inadequate lighting. Noise affects by adding corrupted pixels

to the collected videos and images, yielding low-quality input data. Therefore, high-level

tasks like object detection, segmentation and classification struggle to extract high-level

features, which might increase the system’s False Positive (FP) or True Negative (TN) of

recognising or classifying objects. The reason behind this, may these models were trained on

a large volume of images [56] captured under clear weather with high-resolution cameras,
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leading to mitigation in the model performance on noisy and low-quality inputs. Thus,

to fill the above gap, this research focuses on identifying anomalies on edge devices in

degraded images and scenes (shot in low-light environments) for the object detection task

rather than solely considering bright scenarios (e.g. daytime, sunny, etc.) investigated by

mentioned studies in the literature. Moreover, to accomplish this goal, a number of the

existing approaches (see Table 2.3) are used and considered as a pre-processing step. This

stage aims to enhance the visibility of low-light images to produce brighter ones for better

performance and output during the detection stage. As noted in Section 2.2, numerous

research depends on evaluating input characteristics to decide whether to analyse data locally,

partially or transmit it to centralised paradigms for exploiting powerful computing capabilities.

It is worth mentioning that partial and centralised systems require establishing a connection

between both ends, exchanging or returning data for visualisation or publishing alerts for

subsequent actions. These stages, however, result in excessive latency, which is undesirable

for anomaly detection domains.

Moreover, more specifically, strategies that rely on dividing tasks between the edge

environment and the cloud environment require offloading a portion of the data through the

transmission channel. This results in a variety of unintended consequences, including, but

not limited to, delays (e.g. caused by limited bandwidth provided or channel congestion),

cyber-attacks (e.g. man-in-the-middle), and privacy violations (e.g. images with people’s

faces and car licence plates).

Therefore, since most studies rely on partial processing by introducing both edge and

cloud for task accomplishment, this research proposes the full implementation of multiple

tasks on limited-resource devices, also known as "Edge-devices" or "Nodes", without rely-

ing on high-computational resources such as Cloud or Fog to achieve lower latency with

satisfactory results and prevent invasion of privacy, DDoS attacks and more critical aspects.
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2.6 Chapter Summary

This chapter included a thoroughly comprehensive review and discussion. To begin with, the

main contribution of this thesis is detecting objects on resource constrained-devices in noisy

environments, as opposed to previous studies, which focused on only data-source captured

in clear conditions and during the daytime where light is sufficient to recognise and detect

instances. In addition, an overview of classification methods for weather conditions, where

numerous studies have focused on using a variety of approaches to categorising meteorolog-

ical situations into different groups. On the other hand, other forms of deterioration, such

as low light, blur and noise (e.g. salt-and-pepper), are roughly neglected or studied and

measured with less care. Finally, an overview of the most essential and contributing part, the

low-light image enhancement, with a brief review of other image restoration techniques, is

provided to enhance captured image feature representation for better visualisation and to aid

high-level tasks to perform well.
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Chapter 3

Methodologies

Intelligent video surveillance is one of the most non-trivial topics researched over the last

few years [112]. Anomaly Detection (AD) plays a vital role in video surveillance to maintain

safety in residence places, whether in indoor or outdoor environments. Indoor areas are

easy to control and able to adjust. For instance, install fixed lighting and camera position

and cover a small room or a specific region. Moreover, areas are not exposed to external

factors such as raindrops, sunlight, etc. On the other hand, In-The-Wild (ITW) environments,

it is unfeasible to avoid unexpected, sudden weather changes and insufficient illumination

during dawn, dusk and darkness in the nighttime, causing systems and applications to fail

when carrying on monitoring and controlling tasks as well as to underperform in detecting

anomalies in outdoor scenes.

Thus, to have a system that performs well in such environments, this research stud-

ies anomaly detection (e.g. person & vehicles) under low-light conditions on resource-

constrained devices at the edge by exploiting the existing techniques in Machine Learning

(ML) and Computer Vision (CV) studied before. The proposed architecture introduces

low-cost edge devices as the main components for the full implementation. Tasks are dis-

tributed to multi-nodes for performing specific tasks such as classification, making decisions,

enhancement, detection and sending alerts. Figure 3.1, shows the proposed design from

source to destination.
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Each node is thoroughly described individually to enhance understanding. The numbers in

the diagram represent the sequential flow steps of the input image from source to destination,

and they are detailed in the following subsections.

Figure 3.1 Design proposed for detecting anomalies on the constrained devices for low-light
environments for the edge paradigm.

3.1 Meraki Camera

The Meraki camera depicted in Figure 3.2a is one of the most recent intelligent cameras

introduced by Cisco for Video Surveillance Systems. The camera is more suited to indoor

areas to ensure safety, space occupancy, and other functions. Indoor environments provide

static lighting and restricted and limited regions, which enables the capture of clear and

high-quality images for investigation and further analysis. In addition, the camera offers

several capabilities to assist users and authorities in analysing surrounding activities and

behaviours, such as "How many people are entering/exiting a specific room?" and "Which
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zone is more crowded?", to name a few. As indicated, the camera was utilised in most outdoor

5G Wales Unlocked project use cases. This camera sensor is one of the system’s primary

components for gathering data, storing video streams, and providing information regarding

scene states such as audio level, light intensity, and information about people and cars. To

bind the camera functionality in the 5G Wales Unlocked with the proposed method, it is

assumed that the camera will provide a potential anomaly if the audio level and lux value

are above a certain threshold, besides a possible detection of a person, car or both. Under

these conditions, an API request for screenshot capture is triggered, and the captured image

is passed to the subsequent node for a separate task. However, since anomalies are rare and

activities in the use cases occasionally happen, the user triggers and sends images directly to

the adjacent node for test and evaluation purposes.

For example, 3.2b depicts camera outputs. The output includes each of (1) audio level in

dB, (2) pixel intensity; high value for a brighter scene and low value for a darker one, (3)

timestamp and (4) object recognition results, which provides the following metadata; (a)

probability (%) that a given instance is a vehicle or a person (b) frame number within the

video stream (c) object Id; a unique number assigned for every new object (d) classes of the

detected object (e.g. person or vehicle) and finally, (e) bounding box (rectangle) coordinates

surrounding the object detected, respectively.

(a) MV72 Meraki Camera. (b) Example of a "pre-identify signal" by
the camera.

Figure 3.2 (a) Camera used in the project and it is (b) sample of Meraki Camera output.

41



3.2 Low-Light Enhancement Models

Low-light image enhancement methods can enhance the visual perception of images that have

deteriorated due to being acquired in low-light conditions. Deep Learning, or DL for short,

has lately emerged as the conventional method that is most effective in solving problems

and making contributions in this area. However, poor illumination may manifest in various

forms and characteristics. Non-uniform, dim, back-lit, and extremely low light are just a

few examples of sub-optimal lighting circumstances that might impact the underlying data

source. In addition, most of the degradation occurs to images during acquisition, compression

processes and transmission channels before the data is provided for further study.

Additionally, these characteristics undoubtedly affect high-driven tasks such as tracking,

classification, and detection in autonomous driving and surveillance systems, to name a

few. As Chapter (2) mentioned, methods may be further broken down into data-driven

and traditional approaches. For instance, the Retinex approaches concentrate on separating

images into their illumination and reflection components, with the reflection component only

serving as the stage for the enhancing process. Therefore, methods based on Retinex leave

out several degradation types, which results in an accumulation of colour artefacts and noise

leading to a quality diminishing on the final output. This section presents an overview of

low-light enhancement models, which are compared based on the network structure, data

training, and other criteria. In addition, specific criteria were considered to pick and avoid

particular approaches depending on the essential needs detailed later.

Moreover, model results and performance are presented and described in Chapter (4),

which deals with assessing model compression and how it relates to the detection phase

and other critical metrics. The overall aim of applying existing approaches for low-light

image enhancement is to precisely recognize objects in dark scenes rather than enhance or

evaluate the image enhancement in terms of image quality. Consequently, the emphasis will

be placed on the findings produced after the detection stage. To do so, the state-of-the-art

object detection algorithm chosen for this research will be evaluated using a wide range of

metrics.

42



Table 3.1 Summary of models proprieties based on deep learning methods. N/A: For Unpaired data
or Data is not required for training, TF: For TensorFlow.

Model Network Structure Trained On Tested On Color Space Framework

RetinexNet
Multi-scale

network
LOL Self-collected RGB TF

MBLLEN
Multi-branch

fusion
Synthetic Data Self-collected RGB TF

LTSITD U-Net SID SID RAW TF

KinD U-Net LOL
LOL and Other

public datasets
RGB TF

KinD++ U-Net LOL
LOL and Other

public datasets
RGB TF

TBEFN U-Net
SCIE

LOL

SCIE, LOL and other

public datasets
RGB TF

EnlightenGAN U-Net N/A
ExDark and

Other datasets
RGB PyTorch

RRDNet Three-branch CNN N/A
LIME and

Other datasets
RGB PyTorch

DRBN
Recursive

Neural Network
LOL LOL RGB PyTorch

UTVNet
Unfolding Total

Variation Network

sRGBSID

generated from SID

sRGBSID

generated from SID
sRGB PyTorch

RUAS
Prior Architecture

Search Network

LOL

MIT-5K

LOL

MIT-5K
RGB PyTorch

DSLR U-Net MIT-5K
MIT-5K and

Self-collected
RGB PyTorch

CSDNet
Context-sensitive

decomposition network

MIT-Adobe

5K and LOL

ExDark and

Other public dataset
RGB PyTorch

CSDGAN

Context-sensitive

decomposition Generative

Adversarial Network

Unpaired data

of

EnlightenGAN

NPE, NASA,

MEF, and LIME
RGB PyTorch

Zero-DCE U-Net SICE SICE RGB PyTorch

Zero-DCE++ U-Net SICE SICE RGB PyTorch

Retinex-DIP
Encoder-Decoder

Network
N/A

ExDark and

Public data
RGB PyTorch

ExCNet
Fully connected

layer
Self-collected

Exposure Database

(IEpsD)
RGB PyTorch

REDIIRT
Amplification

Network
SID SID RAW PyTorch
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Overview
As a reminder, this research’s foundation uses previously developed models in DL and CV

to enhance low-light images in real-world scenarios. As a result, a comprehensive overview

of models is offered, including a concise discussion of the structure, framework, training,

testing, and framework employed. A comparison of the tested models in the current study can

be seen in Table 3.1. It is essential to consider that several other models for low-light images

have been researched over the last few years. Most of them emphasise gleaning characteristics

from paired data, which occurs when an image is taken with inadequate lighting (low light),

and its equivalent image of the same scene is taken under normal conditions (referred to as

bright). Obtaining the same scenes, bright and low light scenarios, is laborious and calls

for specific camera settings and calibrations. In some circumstances, models that depend

on paired data perform poorly in real-world settings because the same type of "kernel" is

applied to all data, which enables models to learn certain traits but limits the models’ ability

to figure out different lighting conditions.

Regarding the "Network Structure" column in Table 3.1, it is interesting to note that the

U-Net design is the most often utilised across all models. The reason is that U-Net was

developed to address one of the most critical high-driven tasks, Semantic Segmentation,

as stated in the study published in [79], instead of encoding the whole image with a label

like standard methods of machine learning (e.g. Random Forest (RF) and Support Vector

Machine (SVM)). Semantic Segmentation can categorise individual pixels, or "pixel-wise,"

into the appropriate category. In addition, the bio-medical image classification problem was

the motivation for the proposal of U-Net. This task often classifies different cells or tissue

textures, including a few examples. The straightforward construction of this sort of network,

which consists of an encoder followed by a decoder, is one of the most critical factors that

encourage researchers to adopt this type of network in the low-light field. The role of the

encoder, also known as the "Contraction" component, is for Down-sampling features in

multi-scales.

In contrast, the purpose of the decoder, known as the "Expansion" part, is to Up-sampling

those features in a high-resolution representation. Regarding the dataset used for training
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or testing, only a few strategies were examined using the Exclusively-Dark dataset as a test

bed. The ExDark dataset will be discussed in further depth in the following subsection,

explaining why this dataset was selected among the others. On the other hand, the remaining

studies concentrated on dividing the same dataset into training and testing batches, which, in

most instances, produce over-fitting and allow learning-restricted features. It is noticed from

Table 3.1 that non of the models utilised the ExDark dataset for training and model creation;

only the EnlightenGAN, Retinex-DIP and CSDNet employed the dataset for testing, which

encourages evaluating these models on unseen data for the detection phase.

Model Selection

In recent years, several pre-existing methods for image enhancement have been investi-

gated to find solutions to problems in computer vision, particularly concerning the issue of

low-light conditions. However, as indicated in [47], between 2017 and 2021, more than a

hundred strategies have been suggested for enlightening images by preserving image features

and quality. Indeed, it is not easy and requires exertion to compile all current models in

this area for training or testing purposes. In addition, each model needs its independent

environment settings (for example, the type of framework used, refer to Table 3.1). Also,

the data source determines whether or not architecture modifications are required. therefore,

there are no criteria for collecting models for this research. However, the most recent tech-

niques in this subject have been explored and open-sourced, with public implementation

accessible. Table 3.2 briefly explains rejecting a few models during the testing phase. When

these parameters are employed for the enhancement step, models like the Retinex, ExCNet,

and RRDNet execute a search procedure to discover an effective regularisation or optimum

parameters during inference. However, approaches based on this concept may include artefact

colours and be time-consuming for real-world applications. The UTVNet and DRBN, on the

other hand, need ground-truth images, which implies that every low-light image must have

an analogous normal or bright image for inference. Otherwise, specific network topology

changes are necessary to operate directly on the test dataset.
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Furthermore, models trained on a particular colour model must be tested on the same

type, such as RAW format. Otherwise, the training step for the subsequent methods, Chen

et al. (Learning to see in the dark) and REDIRT, is necessary. Finally, models like the

KinD-family and EnlightenGAN are included in the testing and evaluation process, but only

after being resized to a smaller size for speedier processing and, importantly, to avoid failure

during inference (e.g. Process Killed). Furthermore, this research presented new models

known as the CSD-Family, a combination of numerous models trained and evaluated on

varied data and with diff trainable parameters producing heavy and lightweight networks,

to mention a few. Other research, however, has yet to previously study CSD-Family for the

object recognition task and image quality assessment. Ultimately, given that the primary

goal is to assess the high-driven activity, Object Detection (OD), any enhancement model

that outperforms the existing ones may be substituted. In other words, a demonstration

that these models might be suitable and effective as a pre-processing step for enhancing

subsequent tasks (e.g. Classification and Detection) while preserving output, quality and

latency and fitting into resource-constrained devices. Thus, providing efficient results and

better representation for instances in-the-wild environments with poor illumination aid in

detecting anomalies for maintaining safety in the surrounding ambient. In addition, issue

notices or alerts to notify the relevant authorities and users so they may take necessary action.

Table 3.2 Models were discarded from experimentation and evaluation.

Models Why? Tested?

Retinex, ExCNet

& RRDNet
Training to find optimal value during inference. ✗

KinD, KinD++

& EnlightenGAN
Image size must be small. ✓

UTVNet & DRBN Paired data needed. ✗

Chen et al. & REDIIRT Only RAW format. ✗
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3.3 Object Detection

Video Surveillance Systems (VVS) respond to real-world events by understanding scenes

provided by cameras when captured data are passed for further tasks (e.g. detection and

tracking). Therefore, VSS must be able to detect distinct objects in its surrounding (e.g.

people, cars...etc.) The 2D Object Detection (OD) task is an evolving and emerging field

using deep learning neural networks. The generated output is a bounding box wrapped

around the detected object and includes numerical coordinates with confidence (%) and a

class name. The specifics of this output are determined by the dataset used to train these

detectors to identify desired objects. For example, most of the techniques developed in this

area have been trained on image datasets such as ImageNet [42] and MS COCO [56], which

include hundreds of object names.

Furthermore, specific class recognition requires fine-tuning or transfer learning methods

(e.g., one class only). Numerous recent studies contributed novel architectural designs and

foundational concepts. However, reviewing the previously developed models in this domain

is not the objective of this research.

Further, comparing and analysing various models becomes irrational due to the possi-

bility that specific techniques need to be updated and outmoded. One-stage and two-stage

detectors are the two primary categories that make up the many types of detectors. One-stage

procedures are much quicker in the training and inference stages. In contrast, two-stage

procedures require more time and effort to train but provide more accurate results than those

produced by one-stage methods. Thus, when deciding between the two kinds, one common

trade-off that focuses on speed against accuracy may be made based on the use case and

application. One of the prevalent models for a single stage is known as YOLO, which stands

for "You Only Look Once," and its several modifications (from Yolo to Yolov7) until this

thesis was written. At the same time, the Region-Based Convolution Neural Networks (RC-

NNs) are gaining interest for two-stage models, which produced various versions including

RCNN, Fast-RCNN, and Faster-RCNN [88]. In the following subsection, an overview of the

detectors used in the current research will be presented along with brief details and additional
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information regarding the environment setting that was utilised for the successful execution

of the proposed detection model.

3.3.1 Detectron2 (Overview)

In the era of deep learning, cloud-based is a well-recognized advantage among alternative

paradigms when picking a dependable and robust environment to train and test powerful

models. Due to the capacity to process and retrieve results in a short amount of time (referred

to as low latency). In addition to the vast availability of storage and high-powered computer

resources (e.g. GPU, VPU, etc.). In this study, benchmarking and evaluation of the low-light

enhancement models are carried out with the assistance of the Faster-RCNN base model with

default configuration under the name "Detectron2".

It is essential to point out that Detectron2 was used for all use cases during the 5G

Wales Unlocked project for the detection phase. Detectron2; is a Faster-RCNN version

established by Facebook AI Group Research’s next-generation approach that implements the

state-of-art object detection [104]. The model was trained on the large volume and popular

dataset ImageNet [42]. Various base models are provided for substitution depending on user

requirements which vary in speed for training and predicting, as well as model accuracy

(mAP%). The trade-off between deep learning approaches is constantly considered and

addressed when choosing a particular model since an optimal and generalized model is

hard to obtain. For the 5G Wales Unlocked project and current research, Faster-RCNN

with X101-FPN base model is selected, which provides an accuracy of 43.0%. However,

it takes a long time to train and predict. Therefore, despite the significant training time

and memory for training, which is 0.638 seconds per iteration and 6.7 GB, respectively,

the default configuration of the highly accurate base model "X101-FPN" is utilized for

inference only by exploiting massive computational resources provided by the cloud-based.

The environment used for running both enhancement and detection approaches is described

later.
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Figure 3.3 Faster-RCNN architecture with the main components [75].

Figure 3.3 provides a visual representation of the network architecture of the Faster-RCNN

base model, which is comprised of the following three primary components:

❉ Backbone Network: Within the scope of this component, the Feature Pyramid Network (FPN)

[55] composed of RestNet models (Rest1-Rest5), is used to extract features from input images at

various scales. Using characteristics with several scales improves the prediction of anchor boxes of

varying sizes.

❉ Region Proposal Network (RPN): After producing a variety of characteristics based on the prior

network, RPN finds object regions in which an object likely exists in that region (1000 box proposals,

by default) in addition to the confidence score (%).

❉ Box Head: A Fully-Connected Layer predicts bounding boxes and image labels. Non-Maximum

Suppression (NMS) is introduced to filter out the bounding box with a maximum confidence score for

the final output.
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3.3.2 Environment Setting

This sub-section provides a short description of the environment exploited for running

different deep-learning models; to enhance low-light images and identify objects through

the detection phase. As previously discussed, a cloud-based service offers magnificent

assistance in rapidly completing and easing the processing of many tasks, such as training

and inference, to name a few. Therefore, in order to accomplish the goals outlined above, the

present study made use of Super Computing Wales (SCW) under the name Hawk System [17].

Hawk is located at Cardiff University, home to several high-powered computer resources

supporting various research and development endeavours. It comprises several "nodes" (280

nodes), whereby the combination of two or more nodes produces a strong cluster capable of

processing intensive and multiple tasks simultaneously.

For this project, only two isolated nodes based on availability under the name "gpu or

gpu_v100" were used for testing and evaluating enhancement and detection methods adopted

for this research. Two distinct nodes were employed during the project, depending on their

respective availability. The capabilities and characteristics of each node are broken down

into the following points:

CPU: Intel(R) Xeon Gold 6148 CPU @ 2.10GHz (x86_64-bit).

GPU:

➣ gpu:

➤ NVIDIA Tesla P100, CUDA Version: 11.5.

➤ 16 GB of Memory for GPU.

➤ 29 GB of Memory (for the whole allocated node).

➤ 1792-Cores.

➣ gpu_V100:

➤ NVIDIA Tesla V100, CUDA Version: 11.5.

➤ 16 GB of Memory for GPU.

➤ 29 GB of Memory (for the whole allocated node).

➤ 2560-Cores.
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OS: Red Hat Enterprise Linux Server release 7.9, Core-4.1-amd64.

3.4 Lightweight Dynamic Image Classification

Most state-of-the-art (SOTA) image classifiers are built on top of pre-trained Convolutions

Neural Networks (CNNs). A classifier will take an image as input and then output a

probability, expressed as a percentage, for a label representing the scene’s content. Methods

of classification can be broken down into feature engineering and data-driven approaches. As

mentioned in the literature section, traditional methods extract and select definite features to

contribute to the training and learning processes; nonetheless, it is necessary to have a good

understanding of those features. Whereas modern methods automatically obtain and learn

infinite features from the given image.

Generally, the output produced by both methods comes up in different representations,

such as binary, numerical, or categorical labels. In the past, numerous models have been

investigated in the classification field. These models were trained on substantial data to

categorise images into various categories. AlexNet, for example, is regarded as a lightweight

classifier that places a low demand on the available resources. Following the feature extraction

phase, it can categorise images into up to one thousand distinct classes [42]. In addition,

it can operate on the Central Processing Unit (CPU) of low-cost devices (e.g. mobiles and

single-board computers) at an approximate speed of fewer than three seconds. Therefore,

image classification based on traditional machine learning is the primary goal for a dynamic

classifier to distinguish different types of image brightness.

The 5G Wales Unlocked project primarily concentrated on dealing with images of

high quality that were taken during the daytime hours. As a result, this algorithm aims to

differentiate and discriminate between the standard pipeline and the newly proposed one.

Images are separated into three distinct categories—bright or normal and different types

of dark images to carry out decisions and subsequent processing. As mentioned in the

preceding section 3.1, the camera can measure and report illumination readings regularly,

which is the quantity of incoming source light on the scene. However, it only represents

51



total pixels arithmetic mean, which is computing the average of the RGB pixel values in a

given image, rather than pixel-wise calculation. Memon et al. [70] proposed a simple method

based on pixels manipulation for calculating single-pixel luminosity after separating an

input image into three channels R, G & B. The mentioned study investigated one additional

class compared to the usual and widely researched light visibility circumstances. Semi-dark

images depict partly dark situations, which implies that some areas are dark while others

are light in the same input image. However, it is still challenging to differentiate and label

images as dark or semi-dark due to different human perspectives. As a result, it is assumed

that current low-light image-enhancing algorithms differ in functionality and performance,

with some relevant for completely dark instances and others for partly dark ones.

Furthermore, models that perform well for particular images may only enhance dark

areas while preserving bright ones by maintaining image quality without adding noise or

colour artefacts. Therefore, this research proposes a dynamic low-cost classifier composed

of a feature extractor and a Random Forest (RF) algorithm to accomplish the classification

task. The following subsection presents an overview of the method components, the feature

extraction process and the classical machine learning algorithm used for training and testing.

3.4.1 Feature Engineering

The terms "features" is often brought up when discussing conventional approaches to machine

learning. Most of the time, it is pertinent to the learning style known as "Supervised Learning",

where labelled data is available to train the model producing a set of features that can assist in

making accurate predictions. The feature extraction process involves applying a selected filter

or filters, also referred to as "kernel", directly on the input image to produce a new image

with the exact size of the original one. This equation is written as f́ = I
⊙

K, where "i" stands

for the input image, "K" stands for the kernel, and " f́ " are the features that define the input

pictures and discriminate between them in a variety of ways, including texture, edges, and

luminance, to mention a few. As the name indicates, features are characteristics; therefore,

depending on the nature of the situation, it may not always be challenging to recognise the

appropriate characteristics to extract. If this is not the case, it will be required to investigate a
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vast number of descriptors in order to locate the ideal filters with their hyper-parameters. In

addition, to obtain adequate results when choosing an efficient machine learning algorithm

to work with these features. In summary, feature engineering allows the user to choose

appropriate filters to be applied to the data for feature extraction, in contrast to contemporary

Convolution Neural Networks (CNNs), which accomplish the job intuitively without the need

for human interaction in terms of choosing specific kernels and their values. Therefore, the

approaches offered by traditional techniques serve to build models suited for implementing

constrained devices since they have modest sizes and can be produced and inferred quickly.

Pixel Value

The pixel values are essential features that must be included in the bag-of-features. Since

these pixels provide original characteristics before any application of convolution kernels

when extracting features task, these values are represented as actual colour intensity (RGB-

color space or grey scale inputs), texture, brightness and more. For example, Figure 3.4

shows the original image of 8-digit in the MNIST dataset (Left). However, by presenting the

input as a grey-scale level (Center), pixels can be differentiated by only looking at pixels

within the approximate range 180-255 (Right), for representing the actual colour "White"

and "Black" for the remaining pixels. In this case, only pixel values might accomplish the

job, express the whole image and distinguish it from other digits.

Figure 3.4 Image sample form MNIST dataset [11].
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Gabor Filters

Gabor is a classic tool used in image processing for texture analysis, edge detection and

feature extraction for image classification and segmentation purposes. It is a Band-pass filter,

which allows only specific frequencies to pass while rejecting all other frequencies, unlike

High-pass and Low-pass filters that pass only high and low frequencies, respectively. In

general, it is a product of a "sinusoidal" single of a particular frequency and orientation

modulated by "Gaussian" wave [3]. The representation formula of the filter is shown below:

g(x,y,σ ,α,θ ,λ ,γ,φ) = exp(− x́2+ý2γ2

2σ2 )∗ exp[i(2π
x́
λ
+φ)] (3.1)

Where x́ and ý are expressed as:

x́ = xcosθ + ysinθ

ý =−xsinθ + ycosθ

The convolution kernel expressed in [3.1] depends on various parameters, mostly focused

on orientation and wavelength, to control the kernel direction and frequency. These parame-

ters are (x, y): refers to the Kernel Size, σ : for Standard Deviation, θ : for Kernel Angle, λ :

for Wavelength, γ for Aspect Ratio and φ : for Kernel Offset from the original center (0,0).

The filter has several parameters that allow the production of a disparity of kernel in terms of

size, orientation, position and others, resulting in many filters with different values under the

name "Gabor filter bank". To be used on the images for local or global features extraction

and further tasks [22]. Those parameters were subjected to various value comparisons during

the feature extraction phase by generating a filter bank. Therefore, filter banks that were

developed are put to use while training a model for the classification task. Indeed, having
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many features only sometimes leads to better outcomes. On the other hand, features that are

more precise and have fewer options tend to perform better. As a result, the next chapter will

provide various experiments using various parameter values to demonstrate the best value

based on the classifier’s overall accuracy on the validation data.

Sobel (Edge Detection)

The Sobel operator is a spatial domain filter designed to find the approximate gradient in

"Gx" and "Gy" directions of an image for each pixel by computing a matrix multiplication

between the convolution kernel and the original image [25]. It differs from filters that work

with frequencies when an image is converted to frequency domain for applying specific

masks such as Low-pass, High-pass and Band-pass filters (e.g. Gabor Filters), which allow

particular signals to pass. Theoretically, the Sobel convolution kernel is composed of two

operations where each one is a R3x3, see below:

Gx =


−1 0 1

−2 0 2

−1 0 1

 & Gy =


1 2 1

0 0 0

−1 −2 −1



Where magnitude and angle are calculated as:

GMag =

√
Gx2 +Gy2 , θ = tan−1(Gy

Gx) (3.2)

The kernels are identical in terms of their values, but one is the other with a 90-degree

rotation applied to it. The Sobel is an extension of the "Roberts" operator. However, the

sole difference is the matrix’s form, denoted by the notation R2x2. Further, various edge

descriptors such as the "Canny," "Prewitt’s," "Scharr," and "Laplacian" operators, along

with a variety of additional operators, have the same capability to identify edges in digital
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images. However, in contrast to the previous edge approaches, Sobel has lately shown

superior performance in smoothing, conserving features and producing sharp edges [38].

3.4.2 Random Forest (Overview)

Random Forest (RF) is a technique for Supervised Learning (SL) when labelled data is

required. RF is classified as Traditional Machine Learning (TML) since it does not utilise

any of the more recent Deep Learning (DL) or Artificial Neural Networks (ANN) approaches.

Further, it is used for both classification and regression problems, which is able to predict

categorical or numerical dependent variables, respectively. As the name suggests, a collection

of decision trees (Forest) are picked in a random fashion (Random) by constructing multiple

classifiers to achieve a high level of accuracy in its predictions [23]. The purpose of having

more than one decision tree is to overcome the Decision Tree (DT) method limitations since

it relies on a single tree for all training data, which might lead to model over-fitting. On the

other hand, RF builds several decision trees by producing various "N" datasets, so-called

"Bootstrapped Dataset" [41].

The generated bootstrapped dataset represents two-thirds of data or observations from

the original dataset with different features but with the exact size of training data (One

observation might be repetitive). The purpose of having many datasets with various features

is to create a unique classifier for each bootstrap and multiple for the entire data. Therefore,

to obtain different predictions and then combine them based on the majority vote for getting

one final output, so-called "Aggregating", see Figure 3.5. In other words, random refers

to Bootstrapping and Feature Selection. The first one ensures not the same data is used in

each decision tree created, which helps to be less sensitive to the original training data. On

the other hand, feature selection focuses on selecting unique N-features for each dataset,

so every decision tree generated has different features. The number of features for each

bootstrap dataset is calculated by taking the approximate square root of the total number of

features. (features_per_bootstrap = 2
√

x ; where x is the total features in the training dataset

and ∈ {1,2,...n}) [98]. Compared to DL approaches, which require a large volume of data,

TML, such as Random Forest and Support Vector Machine (SVM), may perform better when
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working with sparse data or a limited dataset of hundreds of observations. Moreover, RF

is simple, easy to train, and quick to predict on the test data. In addition, it is an efficient

candidate for implementation on devices with limited resources.

Figure 3.5 Random Forest representation [83].

In a nutshell, the features that are generated by the recommended feature engineering

approach where these features are represented as a bag of features to represent the following

labels: E0, E1, E2,...EN , where the first label relates to bright scenes, which do not need

to undergo the enhancement step, and the remaining labels represent various enhancement

techniques, respectively. The experiments and setup of the proposed method are presented in

the next chapter, along with the RF algorithm.

57



3.5 Edge Paradigm

Edge computing is the antithesis of cloud computing, particularly in paradigm location.

It provides high responsiveness and ensures privacy since facilities and services for edge

environments are located closer to the source. Moreover, edge computing offers advan-

tages such as low latency, increased resilience against cyberattacks, and enhanced privacy

preservation. In contrast, traditional cloud solutions are essential for handling large datasets

and approaches but are susceptible to cyberattacks, which can compromise privacy and

increase traffic on transmission channels resulting in longer response times in case assets are

exchanged between the two paradigms.

However, it is challenging to get computationally intensive resources and rapid processing

due to its reliance on scarce low-cost devices and network congestion most of the time to

complete and execute tasks. For example, when inexpensive sensors are installed for real-time

data collecting and processing, edge computing is a powerful and extensive technology for

IoT applications. However, while executing visual computing and high-powered operations,

various factors increase the likelihood of encountering several restrictions and gaps, which

might be solved by proposing new strategies.

Recently, several studies have shown a variety of strategies that make it possible for meth-

ods based on deep learning to suit resource-constrained devices. These methods manipulate

model architectures or offer new methodologies, such as quantisation, pruning, and others

like the ones proposed by studies in the literature chapter, coming up with a smaller version

by maintaining efficiency and robustness. Nevertheless, this research primarily emphasises

using existing pre-existing and lightweight models for task completion. As mentioned earlier,

the low-light enhancement models task these models were tested on cloud-based platforms

by taking advantage of massive facilities provided by vital services for results evaluation

using state-of-art object detection. Therefore, identical models are likewise applied on

edge depending on the essential metrics resulting from the detector, processing speed and

other factors. On the other hand, recalling the fact that many object detectors have quickly

emerged and developed over the last few years, however, the objective of this project is too
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far from choosing the optimal approach for completing the task at hand or even conducting a

compression among many.

Nevertheless, to provide a proof-of-concept for the suggested design. Thus, any outper-

formed algorithms are able to replace the proposed ones. Ultimately, the lightweight and

pre-existing detector named "Yolov5" implementation developed by [14] was chosen for the

detection phase, even whether the enhancement was required or not. In other words, all

input images, regardless of brightness level, are given to the same detector at the end. The

following sub-section presents a brief overview of model architecture and proprieties.

3.5.1 Yolov5 (Overview)

A one-stage real-time object detection and localisation implementation called Yolo (short for

"You-Only-Look-Once") is designed and suitable for live video streaming and still images.

"Yolo" divides an input image into separate grids when each grid detects an object within

itself. Over the last several years, a few different versions have been suggested, beginning

with "Yolov1" and continuing all the way up to "Yolov7" at the time of writing the current

thesis [95]. However, each version has distinct architectural components, shortcomings, and

benefits. Therefore, "Yolov5s" was selected to take on the detection phase among the other

types; see Table 3.3 for the chosen highlighted and others [14].

As a result, the suggested version is capable of being exported into a wide variety of

supported formats, such as TensorFlow-Lite, TensorFlow.js (for JavaScript), the OpenVino

Distribution Toolkit, TensorRT, and the Open Neural Network Exchange (ONNX). Therefore,

exporting Yolov5 to different frameworks makes it compatible with various operating systems,

libraries, and programming languages. Indeed, there is no general rule of thumb for selecting

an acceptable strategy for the detection task, except for the existing trade-off between

accuracy and speed based on the application requirements. In addition, the model was

retained in its initial and default configuration, indicating that no changes were made or any

introduced methods, such as transfer learning or fine-tuning.

Therefore, "Yolov5" is superior to prior versions in a number of respects, including

framework implementation, accessibility, training, and component availability. Yolov1-
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Yolov4, for example, is derived from the "DarkNet" network and was coded in C-language,

with the .cfg file serving as the configuration one. On the other hand, "Yolov5" utilises

PyTorch software up to the most recent version, and its configuration file is in .yaml format,

which simplifies a large number of tasks as well as updates to the network. Among the

5-versions, the minor version, "Yolo5n", is excellent for operating on the edge and mobile

devices. In contrast, "Yolo5s" is ideal for performing inference on CPU for both cloud and

edge platforms. On the other hand, larger versions such as "Yolo5m" provide a satisfactory

compromise between speed and precision. In addition, "Yolo5l" works very well with datasets

that include objects of relatively tiny sizes. Finally, the final algorithm, "Yolo5x", has the

most remarkable accuracy but is also the slowest. Because of this, it is best suited for services

with high-computational resources with multiple or single GPUs.

Table 3.3 Yolov5 model versions, n: for Nano model size, s: for Small model size, m: for Medium
model size, l: for Large model size, x: for Extra large model size & M: Number of parameters in

millions.

Type
Num. of

Parameters

Accuracy

(mAP 0.5)

CPU

(Time)

GPU

(Time)

Yolov5n 1.9 M 45.7 45 6.3

Yolov5s 7.2 M 56.8 98 6.4

Yolov5m 21.2 M 64.1 224 8.2

Yolov5l 46.5 M 67.3 430 10.1

Yolov5x 86.7 M 68.9 766 12.1

Object detection generally comprises the following stages; Backbone, Neck & Head.

However, each state-of-art varies on the chosen network for the above components, especially

among the "Yolo" editions. A pre-trained backbone network is the initial step of any object

detector. This network is responsible for feature extraction and may operate on a CPU or

GPU. The Neck section is primarily intended for use in multi-scale feature maps. On the

other hand, Head is most known for forecasting bounding boxes, classes, and confidence

scores. Compared to the earlier "Yolo" versions (1-4), the Backbone component was replaced
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with a network known as "CSP-DarkNet." CSP acronym stands for Cross Stage Partial

Networks, making it possible to process data quicker even when using networks with deeper

layers. Furthermore, PANet is employed at the Neck stage to get feature pyramids, making it

possible to extract and identify features of the same object with varying sizes and scales. For

the Head stage, retain the same network constructed in the previous "Yolo" versions (3 & 4)

to predict bounding box coordinates, object category, and class probability [39]. Moreover,

the network was given two distinct activation functions: "Leaky-ReLU" and "Sigmoid" for

the hidden and final detection layers. These activation functions were designed to improve

the performance of the network. In addition, two different types of optimization functions

are available, "SGD" and "ADAM", where "SGD" is the default one. In conclusion, the cost-

function or loss-function used was the Binary Cross-Entropy with logits loss from PyTorch

to determine the scores for objectness, class probability, and Bbox regression. Figure 3.6

illustrates the network architecture of Yolov5 with previously discussed components.

Figure 3.6 Yolov5 network architecture [39].
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3.5.2 The Intel® Distribution of OpenVINO™

The OpenVINO is an acronym for Open Virtualization for Inference and Neural Network

Optimization. The Intel company released a toolkit under the name OpenVINO Toolkit in

2018 [130]. It is a toolkit based on Convolution Neural Networks (CNN) and Artificial Neural

Networks (ANN), which enables quickly deploying different neural networks on various

Intel platforms. One of the primary advantages of the toolkit is the ability to conduct the

inference step more quickly, achieve lower latency, use less computing network bandwidth,

and maintain privacy [86]. Moreover, it gives programmers and data scientists tools to

accelerate the training and inference stages for deep learning and computer vision Software

without requiring additional coding or implementation. The Deep Learning Deployment

Toolkit (DLDT) is essential to the OpenVINO Toolkit since it comprises (1) Model Optimizer

(MO), (2) Inference Engine (IE), (3) Software, and (4) Samples. Model Optimizer trains

various neural networks with frameworks, including TensorFlow, PyTorch, Caffe, MxNet,

Keras and ONNX. Further, optimization contains the model_downloader, which allows users

to download both public and Intel models (Public: models contributed by the mentioned

frameworks and Intel: models contributed by Intel community).

In addition, a model_converter allows the transformation of any model created using the

frameworks described above into the Intermediate Representation (IR) format, which results

in the creation of two separate files with ".xml" and ".bin" extensions. All models must be in

the (IR) format to be compatible with Intel-developed systems. The Inference Engine is

the core of model execution and inference which supports multiple kinds of resources; CPU,

GPU, Vision Processing Unit (VPU), Movidius Neural Compute such as Neural Computing

Stick 2 (NCS2) and Field Programmable Gate Arrays (FPGA). Indeed, inference can be

divided and executed in parallel on Multi-device plugin systems. These models are offered

to be written in different Software’s; C++ and Python; thus, it facilitates models deployment

as well as a better comprehension of implementation regardless of users‘ backgrounds. The

last components are Samples or Demos, a bunch of ready-written scripts for running many

applications in Computer Vision (CV) and Natural Language Processing (NLP) domains, to
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name a few. Thus, a stand-alone script can execute multiple models of similar tasks with the

supported languages.

Figure 3.7 Trained models deployment using OpenVINO Toolkit [16].

The diagram 3.7 depicts the stages required to deploy a model using the openVINO

toolkit. The first step is to choose a model from the Open Model Zoo database, which

includes a large number of pre-trained models useful for projects and solving problems such

as Object Detection, Text Analysis and other high-driven tasks provided by Intel or Public

frameworks. Afterwards, the Model Downloader retrieves a chosen model through name

and other model properties specified by users. Each model is constructed with a unique

floating-point or integer precision. In addition to INT-18, precision types such as FP16 and

FP32 must be provided. As discussed previously, "Yolov5s" which consists of 191-layers,

7.2 and 7.46 million parameters and gradient, respectively, was selected to perform the

detection task on the edge environment; however, some prerequisites are necessary before

the deployment stage with the OpenVINO toolkit.

Figure 3.8 Process of converting Yolov5 to Intermediate Representation (IR) format.
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The selected model is a member of the Public group, which is explicitly implemented

in the PyTorch framework. The first step is to convert ".pt" model weights to ".onnx" using

the Model Exporter proposed by [14]. After acquiring the ONNX format, an additional

conversion step is necessary to acquire the final extensions (.xml & .bin) for deployment and

inference purposes. However, before converting the model to the Intermediate Representation

(IR), the final neural network layers‘ names of ONNX weights must be identified, which was

achieved by visualizing the network architecture using Netron [13]. The final layers before

the "transpose" operation, Conv_487, Conv_471 & Conv_455, represent the target layers to

be included in the conversion process. Once again, the Model Optimizer completes the final

conversion step; see Figure 3.8. After obtaining the desired format, the Yolov5s-openvino

model was used through the Inference Engine on the edge device Raspberry Pi (RPi) for

the detection task; details are shown in the following Table 3.4. In addition, other device

characteristics and attributes are presented in section 3.7.

Table 3.4 Inference of Yolov5s on the edge device.

Device Toolkit Version Model Used Task Plug-In Device Software Model Zoo

RPi OpenVINO_ToolKit_2022 Yolov5s.xml Object Detection Neural Computing Stick (2) Python Public

Lastly, it is essential to note that OpenVino offers several models for cutting-edge object

recognition than the proposed one. Indeed, Yolov7 [95] is the latest Yolo-versions released

when writing this thesis. However, it still needs to be endorsed by the Intel OpenVINO

community.

3.6 Dataset

Data collection is one of the leading and significant parts of any research. Nevertheless,

it takes time and effort in terms of collecting and proposing at certain times. Since it con-

tributes in many aspects, including model creation, results from visualization and measuring

approaches performance. Some studies rely on the same chosen data for experimentation and

evaluation by splitting data into train and test sets. On the other hand, others choose separate
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or a combination of different data to obtain a generalized method that likely works for

diverse circumstances. However, data availability depends on a few factors, such as domain

access restrictions and research field pervasiveness, where many have contributed to that area.

Studies focusing on poor illumination are essential because dark is an integral and inevitable

part of our daily life. In addition, illumination variance allows researchers to investigate

novel approaches to handle diverse light levels for indoor or outdoor environments.

Moreover, areas covered by dark affect monitoring activities and performing tasks due

to lack of visibility. Since low light emerges depending on daytime (e.g. twilight and

nighttime) or location (indoor and outdoor) and light source (natural or artificial), leading

object detection and other high-driven tasks struggle and perform unwell when it comes

to localizing or classifying instances. The challenges posed by low-light conditions have

necessitated the collection of a vast quantity of data, which focused on acquiring matched

images of the same scene in low light and normal circumstances. In contrast, few works, such

as the Exclusively Dark (ExDark), focus on low-light imagery for visual tasks, as suggested

by [59]. The ExDark is a suitable dataset for object detection tasks in low-light environments,

as it provides bounding box coordinates and class names for various objects. Therefore, this

dataset was introduced for two purposes: (1) To train a lightweight classifier that can classify

low-light images based on features for selecting the optimal enhancement network among

many, (2) to distinguish between bright and dark seances, and (3) To investigate and evaluate

the object identification task, specifically for outdoor environments.

The following subsections provide a brief overview of the primary dataset used for both

state-of-the-art classification and detection. In addition, the additional datasets are used for

training the proposed classifier algorithm.

3.6.1 Exclusively Dark Dataset

The ExDark is a collection of 7363 low-light images whose lighting ranges from extremely

dark nearly (Zero-Lux) to partly dark (Semi-dark). The data was collected by searching

terms such as low light, dark, semi-dark and others on websites and search engines such as

Flickr.com and Photobucket.com, to mention a few. Moreover, by extracting images from
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public datasets offered by [80] & [76], in addition to images captured by smartphones and

digital cameras. As previously indicated, the dataset comprises several forms of light that are

categorized and correspond to the following labels: (1) Low, (2) Ambient, (3) Object, (4)

Single, (5) Weak, (6) Strong, (7) Window, (8) Shadow, and (9) Twilight. Some examples are

shown in Figure 3.9. These labels assist in identifying light image types, which is helpful for

feature extraction and learning-based classification algorithms.

The ExDark dataset includes various object classes, as shown in Table 3.5. Images were

labelled based on the dominant object present in the image. For example, if an image contains

five people and two cars, the label assigned would be People since images belonging to a

specific dataset class may contain different classes.

In the current study, only the people and car instances were considered for experimentation

and to map the requirements of the 5G Wales Unlocked project scenarios. However, additional

classes, such as bus and motorcycle, were also considered. Moreover, the ground truth

bounding box coordinates were generated using Pitor’s Computer Vision Matlab toolbox

[18]. However, these coordinates have been converted to the "Yolo-Coordinates Normalized"

format to facilitate the evaluation stage since the majority of state-of-the-art object detection

algorithms produce results in this format.

The detection output consists of the following details:

1. The class name (e.g. person, car, etc.).

2. The X and Y coordinates represent the normalized centre of the bounding box.

3. The W and H represent the height and width of the bounding box.

Furthermore, this dataset was used most heavily in the performance of the enhancement

stage, followed by the detection stage due to the various light levels captured in the real-

world scenario containing multi-classes. Moreover, arbitrary samples were used to build the

classifier besides images taken in normal or bright circumstances.
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Table 3.5 The number of images per class in the ExDark dataset.

Class Name Num. of Images Num. of Objects

Bicycle 652 5%

Boat 679 6%

Bottle 547 7%

Bus 527 3%

Car 638 12%

Cat 735 4%

Chair 648 10%

Cup 519 7%

Dog 801 4%

Motorbike/Motorcycle 503 5%

People 609 31%

Table 505 6%

Total 7363 23,710

(a) Low. (b) Window.

(c) Screen. (d) Twilight.

Figure 3.9 Illustration of various light types.
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3.6.2 Additional Datasets

As mentioned, including relevant data in developing and analysing recommended approaches

is paramount. More data samples have been brought in for constructing the proposed

classifier, all coming from separate datasets. Because the ExDark dataset only contains

scenes captured in dark and partially dark circumstances, the algorithm needs bright samples

to differentiate between different light intensity levels. Therefore, bright images were

extracted form Berkeley (BSDS-500) [68], Stanford (SBD) [57] & MS COCO [56] datasets.

Moreover, sample images taken during the 5G Wales Unlocked project from Farm & Castle

use cases were also introduced to join the training and testing phases to develop the final

classifier discussed in section 3.4. The ExDark was used again to extract low-light features for

images described as dark and semi-dark. In fact, there is no definitive method or formula for

determining the precise light intensity unless it is exceedingly low-light "Dark" or excessively

high-light "Bright". Eventually, in this study, after compiling the dataset obtained from the

various sources, images are described according to the following criteria, also see Figure

3.10.

• DARK:

– If an image is totally dark, lux equals zero.

– If an object/s is visible for human perception, however, there is no natural or

artificial light in the image.

– If an image is partially dark and bright, light covering a region and dark covering

other containing object/s. Also, during dusk and dawn time.

– If light from several sources (e.g. sunlight, car & street lights) is visible but does

not incident any objects in the scene.

• BRIGHT:
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– If an image is totally bright, more than 100-lux, such as taking in the daytime.

– Even though there is no sun, the weather is cloudy, and the scene can be seen

clearly.

(a) Bright (Berkeley). (b) Bright (Stanford). (c) Bright (Farm use case).

(d) Bright (Castle use case). (e) Partially Dark (ExDark). (f) Dark (ExDark).

Figure 3.10 Illustration of the three light types used for building the classifier.

3.7 Nodes Description

This research introduced the incorporation of multi-resource constrained devices "Nodes"

into the proposed design at the edge computing paradigm for task division and speeding up

the inference stage. Because each node is responsible for a specific task, the process may be

completed much more quickly while maintaining high efficiency and timely response. In

addition, a more precise grasp of the duties performed by each node, the devices used for

task accomplishment and the environment in which they operate is provided.
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Back to the design 3.1, the first step is kicked off by the Meraki Camera when (1A) A

pre-identify signal (or signals) is detected and delivered to "Client 1" to verify and guarantee

message-content in terms of an empty or non-empty message (OID). If the message is empty,

indicating a false alert and the message will be discarded.

In any other cases, (1B) "Client 1" is responsible for requesting a screenshot through the

Application Programming Interface (API) provided by the Camera as a built-in function and

(1C) pass it to "Client 1" for additional processing. Afterwards, (2) features are extracted

from the input image, followed by a classifier to assign labels in terms of normal (bright) or

dark with the appropriate enhancement model label based on the input features. However,

in case more than one image is received, (3) a queue is designed for holding and storing

images and releasing them one at a time immediately after the processing and completion

of a single image. Once an appropriate label that accurately has been assigned representing

the image features, (4) each image follows a unique route determined by the luminosity

output. In other words, (4)(A) bright images are sent straight forward to the detector for

object localization tasks on the same node. On the other hand, inputs that are dark or partially

dark (4)(B) & (4)(C) are delivered by "Client 2" or "Client 3" to "Server 1" or "Server 2" for

light viewing enhancement, respectively. Both servers "Server 1" and "Server 2" hold "E1"

and "E2", representing the "RUAS" and "Zero-DCE++" as the optimal chosen models for the

enhancement task. Afterwards, outputs are returned to "Client 3", where a lightweight object

detection is hosted to find instances and generate object outcomes.

The different colours in the diagram represent locations where each activity was carried

out on the chosen devices. For example, steps (2 to 4) are carried out on the Raspberry Pi,

while the servers are executed on separate nodes on Jetson-Nano Developer Kit devices. Table

3.6 concisely explains each node regarding the task, device implemented and identification.

Further, the Node-Red (NR) platform, which enables users to link devices, functions, and

other services, was utilized to design, connect and test the proposed design. An example

of some functionality NR provides is buttons that can control servers by turning them on

and off, regulating and restricting the number of images stored in the queue and more. As a
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reminder, the NR was used to develop the suggested pipelines for the 5G Wales Unlocked

project scenarios.

Table 3.6 Nodes Ids, roles and edge devices.

Node Tasks Device Label

(3) Classification, Queue, Decision Making & Detection Raspberry Pi Client(s)

(2) Low-Light Enhancement Jetson Nano Server

(1) Low-Light Enhancement Jetson Nano Server

The internal characteristics of the devices utilized for the proposed design and execution

are outlined in the following Table 3.7. The Raspberry Pi is one of the single-board computers

often employed for various projects, particularly in the IoT domains. In addition, it is

regarded as a low-cost gadget due to its adaptability in managing jobs and compatibility.

However, when it comes to adapting deep learning and complex models, it performs poorly

due to the absence of high-computational resources such as the Graphic Processing Unit

(GPU). Therefore, the Jetson Nano Developer Kit devices were exploited in order to ease

running deep-learning and computer vision models, referring to low-light image enhancement

techniques.

Table 3.7 Resource-constrained devices used and their proprieties.

Device Name Model Node RAM
SD

Card

Processor
Architecture

OS
External

Attachment
Power

Adapter
GPU

RPi
Raspberry

Pi

4

Model B
(3) 4 GB 32 GB ARM-7 Raspbian

Neural

Computing

Stick 2

Voltage: 5V

Ampere: 1.5A
✗

Jetson
Jetson

Nano

Developer

Kit
(1) & (2) 4 GB 32 & 64 GB ARM-64 Ubuntu N/A

Voltage: 5V

Ampere: 2A
✓
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3.8 Chapter Summary

This chapter presented a detailed description of the recommended design for the conducted

study. It began with a visual representation, illustrating the complete process pipeline at a high

level. Each pipeline stage was then further examined and explained in separate subsections.

Additionally, an introductory overview of the implemented models was provided, as this

research aimed to leverage existing deep learning and computer vision models in conjunction

with the Internet of Things (IoT) domain. Furthermore, the environments in which these

techniques were tested and evaluated, both in Cloud and Edge-based settings, were discussed.

Finally, it is essential to emphasize that all of the findings and assessments will be presented

in the subsequent chapter with a higher level of specificity, supported by results presented in

tables, figures, evaluations, and more.
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Chapter 4

Results and Evaluation

In the previous chapter, the mechanisms and theories of each step were handled indepen-

dently by presenting graphical depiction and overview of every recommended portion of the

proposed system. However, to complete the whole picture, results and existing methodologies

for evaluation must be clarified and illustrated. Therefore, in this chapter, all the findings and

assessment techniques are presented. Furthermore, a concise review of the methodologies

used for evaluating deep learning and computer vision techniques composed of classification,

enhancement and detection models is also carried out. Moreover, physical measurements of

resource-constrained devices and cloud-based have also been included to assess how well

systems function while running heavy tasks.

The primary objectives of this study encompass a comprehensive evaluation of the

classifier’s performance in distinguishing between bright and dark images, as well as its

ability to differentiate among various dark images when applied on test-data. To achieve this,

several key performance metrics are employed. Firstly, by assessing the algorithm’s accuracy

to gauge its overall effectiveness, construct ROC curves and compute confusion matrices to

gain deeper insights into the classifier’s discrimination capabilities.

Furthermore, this study will delve into the realm of object detection by analyzing the

accuracy of object detection both before and after applying enhancement techniques. This

evaluation will involve metrics such as mean Average Precision (mAP) and Average Precision

(AP). Additionally, measuring the inference time, shedding light on the algorithm’s efficiency,
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and the number of bounding boxes generated, which can provide valuable insights into the

algorithm’s detection precision.

Beyond classifier and object detection performance, by exploring various metrics related

to the edge computing environment. This includes an examination of speed, temperature,

memory utilization, and CPU and GPU usage. All these metrics are obtained through

building a unique dashboard for each edge device using "Grafana", "Node-exporter" and

"Prometheus".

By comprehensively assessing these metrics, the aim is to gain a holistic understanding

of the system’s behavior and its performance under varying conditions. This multifaceted

approach to evaluation ensures that we obtain a thorough and nuanced view of the system’s

capabilities and limitations.

4.1 Enhancement & Detection

In this part, the findings and assessment of the image enhancement and detection model will

be carried out since both phases depend on one another. From the point of view of computer

vision, studies concentrated on contrasting new methods concerning improving image quality.

For instance, approaches based on paired data focus on producing a brighter image from

a low-light one of the same image by working with both inputs simultaneously. On the

other hand, systems that only depend on low-light inputs to gain a brighter one consider

various characteristics, including colour artefacts and noise. Therefore, these methodologies

focus and adopt metrics such as PSNR, SSMI, FSIM, and MSE [81] for measuring image

clearance and quality. The higher or lower output obtained by these metrics depending on

certain functionality decides the model performance and image quality. However, differing

from the typical evaluation of image enhancement approaches, as was pointed out before

in this research, the assessment is primary based on state-of-the-art object detection results.

In other words, after enhancing an image, the detection determines the model performance

compared to the initial low-light image (before enhancement). For this research, the Object

Detection Metrics (ODM) tool has been introduced to calculate the Average Precision (AP)
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and mean Average Precision (mAP) through True Positive (TP) & False Positive (FP) on the

proposed data using different enhancer algorithms for accomplishing the evaluation task for

both stages [73].

In summary, as discussed previously, calculating mAP, AP, or other metrics is done on the

entire dataset for each technique, unlike in the classification task for a single image helping

to understand the model’s potential individually.

Average & mean Average Precision

The mean Average Precision (mAP) metric is the primary metric for object detection

to measure the model performance when finding objects in digital media (e.g. images and

videos). Nevertheless, in some circumstances, Average Precision (AP) reveals beneficial

information about the detector’s behaviour concerning certain classes. The only distinction

that can be made between "mAP" and "AP" is that the first one guarantees the object detection

correctness across all classes. In contrast, the other chose to specify detector accuracy for

each class independently instead of averaging all classes together and providing a single

accurate representation. Moreover, calculating additional metrics is essential in order to

acquire the AP and mAP measures when these metrics are Precision & Recall. Following

that, TP and FP are also required for the precision and recall estimation.

Precision = T P
T P+FP (4.1)

Recall = T P
Num. of ROI in the GT (4.2)

In the equations 4.1 and 4.2, the true positives and false positives variables indicate

a single object’s accurate and incorrect detection, respectively. In the event that a single

image contains more than one object, then each object is evaluated based on the number of

accumulated true and false positives it produces. Moreover, the total of all the annotated

objects or bounding boxes in the dataset makes up the denominator in 4.2 when these

predictions are referred to as actual predictions also called "ground truth".
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Figure 4.1 P x R 11-interpolated points curve [73].

Precision Recall
1 0.0666

0.5 0.0666
0.5 0.1333
0.4 0.1333

0.25 0.4
0.4 0.4

0.35 0.4
...

...

Figure 4.2 Sample values for example purpose.

After getting the precision and recall of a single instance among all the data through

calculating "TPs" and "FPs", an 11-interpolation precision curve is drawn to choose the most

appropriate precision values. As the name suggests, 11-points reflect the maximum precision

value of the repetitive recall values; see the values in the Table 4.2 highlighted in grey and

light-grey. In other words, at every location where the blue curve reaches its peak, see Figure

4.1. Far from this method, the all-interpolated precision approach is also used whenever all

points are utilised in the calculation of the "AP" metric in order to produce results that are

generally equivalent to the 11-point method [128]. Regarding the table mentioned above, the

precision values using the 11-interpolated method are (1, 0.5, & 0.4). Following that, "AP"

is calculated at every interpolated point, based on a line (sketch line) crossing over all the

points, creating a bar-chart shape. The following equation represents the formula to calculate

"AP".

AP = 1
11 ∗ [1+0.0666+0.43+0.43+0.43+0+0+0+0+0+0]

As was noted before, "mAP" is an extension of "AP". First by determining the average

precision per class in the entire dataset, then add up all of these "APs" and divided by the

total number of classes. The formula of "mAP" is defined as:

mAP =
APperson+APcar+......+APclass_name

Total number of classes

It is worth mentioning that the Intersection Over Union (IOU) plays a crucial part in

determining true positives and false positives based on selected threshold predictions that are
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above or below the threshold, either regarded as accurate or inaccurate to the corresponding

ground truth, respectively. Therefore, "AP" may be expressed and computed depending

on a selected threshold, such as ”AP50” or ”AP70” based on a specific value. However, this

research considers the conventional and most often used criterion; ”AP50” when IOU is ≥ 0.5.

The above summary concisely describes the methodology for object detection assessment.

Indeed, evaluating large-volume datasets consisting of hundreds or thousands of images

may require more effort and time. In addition, the presence of several objects in a single

image makes comparing actual and predicted instances much harder. Therefore, the Object

Detection Metric Tool suggested by [73] has been used for the purpose of this study in order

to facilitate the evaluation stage. The tool is simply a software interface that comprises a

wide variety of choices and functions, including the following:

1. Annotations (GT) field: Require to upload the ground truth files.

2. Images field: Require to upload the image files.

3. Classes field*: Require to upload a ".txt" file containing all object classes.

4. Annotations (Pred) field: Require to upload the predictions produced by the object

detection proposed.

5. Coordinates Format options*: Let the user choose specific annotation formats such as

COCO, ImageNet, PASCAL_VOC and YOLO in different file extensions like (.xml, .txt,

.csv & .json) since each format has a particular order and representation of coordinates,

class name and confidence.

6. Metrics options: Allow the user to choose certain metrics to measure by specifying

the IOU, such as the AP50 (IOU=0.5) and AP70 (IOU=0.7). In addition, the APsmall ,

APmedium & APlarge (for only evaluating images with small, medium and large objects,

respectively) and other metrics.

7. Output field: Require to store results, including Recall and Precision graphs, dominant

classes in a bar-chart representation and the mentioned metrics in (6) based on the user

choice.
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Table 4.1 Low-Light Image Enhancement Models Metricises.

Model
Name

Time
(Avg.)

Small
Size

Large
Size

Num. of
Predictions

Person
(AP %)

Car
(AP %)

Bus
(AP)

Motorcycle
(AP %)

mAP
(%)

Dataset
Class

Num. of
GT

C
ar

:1
70

0
Pe

rs
on

:2
07

3

RUAS
0.155642109 (220, 293) (2906, 4372) 1836 0.561224528 0.725613 0 0.163888889 0.483575393 Car

0.116654272 (220, 293) (3240, 4320) 2393 0.764149502 0.614653 0.602123802 0.068783069 0.512427411 Person

MBLLEN
0.66023511 (220, 293) (2906, 4372) 1810 0.565170199 0.717141 0 0.178289474 0.486866725 Car

0.547931034 (220, 293) (3240, 4320) 2321 0.762791374 0.633442 0.705555556 0.247863248 0.587413037 Person

DSLR
0.115511758 (256, 128) (2816, 2176) 1442 0.396873364 0.610899 0 0.1 0.369257454 Car

0.108595364 (256, 128) (3072, 2048) 1850 0.641212207 0.481265 0.45 0.037037037 0.402378515 Person

CSDNet_LOL
0.004949153 (220, 293) (2906, 4372) 1622 0.503275328 0.627325 0 0.169196429 0.433265456 Car

0.005011957 (220, 293) (3240, 4320) 2226 0.718213306 0.563028 0.578190045 0.244444444 0.525968848 Person

CSDNet_UPE
0.004997886 (220, 293) (2906, 4372) 1752 0.69593783 0.569286 0 0.154230769 0.473151575 Car

0.004963689 (220, 293) (3240, 4320) 2339 0.744311158 0.588396 0.685233285 0.166666667 0.546151881 Person

CSDGAN
0.005002942 (220, 293) (2906, 4372) 1322 0.354788032 0.512038 0 0.1 0.322275482 Car

0.004984538 (220, 293) (3240, 4320) 1569 0.52368753 0.474782 0.486666667 0 0.371284167 Person

LiteCSDNet_LOL
0.003251195 (220, 293) (2906, 4372) 1654 0.504354897 0.504355 0 0.225 0.462414332 Car

0.003180135 (220, 293) (3240, 4320) 2288 0.743488007 0.55304 0.442424242 0.063492063 0.450611137 Person

LiteCSDNet_UPE
0.003255874 (220, 293) (2906, 4372) 1752 0.559631785 0.692967 0 0.138461538 0.463686846 Car

0.00350241 (220, 293) (3240, 4320) 2330 0.749761812 0.585606 0.533333333 0.185185185 0.513471591 Person

SLiteCSDNet_LOL
0.002361181 (220, 293) (2906, 4372) 1612 0.466353523 0.635202 0 0.146666667 0.416073941 Car

0.002368723 (220, 293) (3240, 4320) 2129 0.704490473 0.547832 0.442424242 0.301587302 0.499083555 Person

SLiteCSDNet_UPE
0.00260198 (220, 293) (2906, 4372) 1763 0.562609064 0.701017 0 0.194230769 0.485952174 Car

0.002595422 (220, 293) (3240, 4320) 2290 0.75938246 0.566169 0.52 0.088888889 0.483610027 Person

ElightenGAN
6.387862654 (220, 293) (2906, 4372) 1760 0.556398886 0.687834 0 0.051538462 0.431923678 Car

5.642735687 (220, 293) (3240, 4320) 2363 0.753130348 0.639641 0.688888889 0.222222222 0.575970615 Person

KinD
2.15504834

(512, 512)
1417 0.409384109 0.665634 0 0.029375 0.368130944 Car

2.146603167 1807 0.650444146 0.543983 0.4 0.055555556 0.412495778 Person

RetinexNet
7.574797142 (220, 293) (2906, 4372) 1022 0.374192587 0.428496 0 0.083333333 0.295340715 Car

7.129853362 (220, 293) (3240, 4320) 1592 0.569940018 0.421569 0.433333333 0.111111111 0.383988253 Person

TBEFN
6.252371732 (220, 293) (2906, 4372) 1683 0.517205266 0.678272 0 0.115 0.436825852 Car

5.773925743 (220, 293) (3240, 4320) 2325 0.756089557 0.610158 0.63030303 0.206349206 0.55072487 Person

Zero-DCE
0.002905036 (220, 293) (2906, 4372) 1673 0.535303947 0.690317 0 0.138568723 0.45472981 Car

0.00227529 (220, 293) (3240, 4320) 2324 0.762514419 0.624653 0.624242424 0.240740741 0.563037753 Person

Zero-DCE++
0.001261152 (220, 293) (2906, 4372) 1776 0.534454591 0.687074 0 0.174444444 0.465324245 Car

0.001186221 (220, 293) (3240, 4320) 2382 0.778788608 0.595033 0.717016317 0.277777778 0.592154014 Person

Table 4.2 Baseline Metricises (Before Enhancement).

Model
Name

Time
(Avg.)

Size
(Smaller)

Size
(Larger)

Num. of
Predictions

Person
(AP %)

Car
(AP %)

Bus
(AP %)

Motorcycle
(AP %)

mAP
(%)

Dataset
Class

Num. of
GT

Baseline
0.118526646 (220, 293) (2906, 4372) 1704 0.577746343 0.725887436 0 0.066 0.45676682 Car 1700

0.119407895 (220, 293) (3240, 4320) 2240 0.750083478 0.593559626 0 0.0277 0.34285522 Person 2073

The metrics and coordinates style chosen for the current study are the following ones:

IOU@0.5, APPerClass; {Person, Car, Motorcycle & Bus}, mAP and YOLO-Normalized

coordinates which are sorted as <class_id>, <confidence> & <x_center> <y_center>

<width> <height>. * indicates same file or format used for both ground truth and predictions.

The assessment of the low-light image enhancement models based on the previously

suggested approaches for the object identification algorithm is shown in Table 4.1. The

dataset contains images captured through multiple devices, such as sensor cameras and

smartphones, to name a few; thus, an average of all the timings was computed to evaluate
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how well the model performed on various input scales and sizes represented in the attribute

"Time (Avg.)". In addition, it is worth mentioning that only the time variable belongs to the

enhancement model, whereas the remaining are calculated based on the detection outputs.

Regarding image sizes, maximum and minimum "Width" (W) and "Height" (H) are also

considered when input dimensions vary in that range. Unlike the classification stage, which

resizes the inputs to (128 x 128) pixels to accelerate the process of extracting features and

predicting the appropriate label, the original dimensions are passed to the subsequent tasks

after the classification task takes place.

Additionally, identical metrics for the baseline model (Directly applied to images before

enhancement) used for the detection part "Detectron2" are shown in Table 4.2. The time

variable is the only change which more accurately indicates the acceleration of the detection

process than the enhancement. As mentioned in previous chapters, the 5G Wales Unlocked

project focused on identifying two types of instances; "People" & "Car". However, both

tables displayed extra predicted classes such as "Bus" and "Motorcycle" since images were

shot in random street areas, which may include various instances. In addition, by examining

both tables, it is evident that in the majority of the cases, whether before or after enhancing,

the detector performs poorly with low accuracy for the "Bus" class with an "AP" equal to

or nearly equal zero and in some cases for "Motorcycle" class. Thus, it can be deduced that

only a tiny portion of these classes contributed to the "People" and "Car" datasets since

the ExDark dataset comprises several datasets per class. Moreover, the total Region of

interests (ROIs) predicted are presented in Figures 4.3a & 4.3b for the "People" and "Car"

datasets, respectively, when the detection task is applied directly to the original data and after

enhancing through the mentioned enhancement approaches.

Additionally, the actual ROIs supplied by the dataset are represented as the ground truth.

For example, figure 4.3a demonstrates that the detector is able to distinguish more items

as the ground truth with the help of numerous tested models in comparison to the baseline

model. In a similar manner, specific models perform better than the actual predictions when

applied to the "Car" dataset 4.3b. On the other hand, these extra detections might represent

false predictions or accurate instances that the annotators probably excluded during the
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annotation process. However, the "mAP" metric is calculated in order to confirm the correct

ROIs to the corresponding ones in the ground truth. This is because the process and concept

of evaluation only compare the position and size of anticipated ROIs to those already present

in the ground truth. Therefore, incorrect predictions are believed to be extra or missing,

affecting the model’s accuracy.

(a) The number of ROIs for "People" dataset.

(b) The number of ROIs for "Car" dataset.

Figure 4.3 The number of predictions (Before Enhancement vs After Enhancement vs Ground truth).

The following tables present the outcomes, encompassing a comprehensive overview of

diverse model metrics. Nevertheless, certain models exhibit sub-optimal performance in
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specific areas. Thus, the next set of seven tables individually showcases the exemplary model

or models for distinct aspects, aiding in the comparative analysis of the models.

❉ Speed of Processing

After averaging the "Time", which represents the required time to enhance a single image

despite size and scale, table 4.3 shows the slowest and fastest model in speed, including the

top one highlighted in green and best second approach per dataset class.

Table 4.3 The fastest and slowest enhancement model (in sec).

Car Person

Slow Fast Slow Fast

RetinexNet: 7.574797142

ElightenGAN: 6.3878626564

Zero-DCE++: 0.001261152

SLiteCSDNet_LOL: 0.002361181

RetinexNet: 7.129853362

TBEFN: 5.773925743

Zero-DCE++: 0.001186221

Zero_DCE: 0.00227529

❉ mean Average Precision (mAP)

The "mAP" represents the overall accuracy of the state-of-art object detection algorithm on

images after the enhancing stage. Different models obtained higher accuracy and performed

better than the baseline, as illustrated in Table 4.4.

Table 4.4 The high and low "mAP" model (in %).

Car Person

Low High Low High

RetinexNet: 0.295340715

CSDGAN: 0.322275482

MBLLEN: 0.486866725

SLiteCSDNet_UPE: 0.485952174

Baseline: 0.34285522

CSDGAN: 0.371284167

Zero-DCE++: 0.592154014

MBLLEN: 0.587413037

❉ Average Precision Per Class "AP"

The following table(s) dedicate the model accuracy for a specific class, "Person, Car, Bus &

Motorcycle" respectively, various models contribute by outperforming in a particular object

class than the others. However, the "Zero-DCE++" is still dominant in the majority of

classes.
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Table 4.5 The high/low "AP" model for "Person" class (in %).

Car Person

Low High Low High

CSDGAN: 0.354788032

RetinexNet: 0.374192587

CSDNet_UPE: 0.69593783

Baseline: 0.577746343

CSDGAN: 0.52368753

RetinexNet: 0.569940018

Zero-DCE++: 0.778788608

RUAS: 0.764149502

Table 4.6 The high/low "AP" model for "Car" class (in %).

Car Person

Low High Low High

RetinexNet: 0.428496223

LiteCSDNet_LOL: 0.504354897

RUAS: 0.725612762 RetinexNet: 0.421568551

CSDGAN: 0.474782473

ElightenGAN: 0.639641001

MBLLEN: 0.633441969

Table 4.7 The high/low "AP" model for "Bus" class (in %).

Car Person

Low High Low High

All Models: 0 All Models: 0 Baseline: 0 Zero-DCE++: 0.717016317

Table 4.8 The high/low "AP" model for "Motorcycle" class (in %).

Car Person

Low High Low High

KinD: 0.029375

ElightenGAN: 0.051538462

LiteCSDNet_LOL: 0.225

SLiteCSDNet_UPE: 0.194230769

CSDGAN: 0

Baseline: 0.027777778

Zero-DCE++: 0.27777778

MBLLEN: 0.24786

❉ Number of ROIs

Finally, the number of predictions in the Table below 4.9, made by the ideal models after

enhancement. It is easy to notice that the baseline is not perfect and is not even included on

the list of predictions with the lowest accuracy.

Table 4.9 The high/low number of predictions.

Car Person

Low High Low High

RetinexNet: 1022

CSDGAN: 1322

RUAS: 1836

MBLLEN: 1810

CSDGAN: 1569

RetinexNet: 1592

RUAS: 2393

Zero-DCE++: 2382
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(a) Original. (b) Zero-DCE++. (c) RUSA.

(d) CSDNet_UPE. (e) Lite_CSDNet_UPE. (f) SLite_CSDNet_UPE.

(g) MBLLEN. (h) ElightenGAN. (i) TBEFN.

(j) DSLR. (k) KinD. (l) RetinexNet.

Figure 4.4 Comparison of model enhancement for the detection stage on "Car" dataset,
Sample "2015_02902.png".
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(a) Original. (b) Zero-DCE++. (c) RUSA.

(d) CSDNet_UPE. (e) Lite_CSDNet_UPE. (f) SLite_CSDNet_UPE.

(g) MBLLEN. (h) ElightenGAN. (i) TBEFN.

(j) DSLR. (k) KinD. (l) RetinexNet.

Figure 4.5 Comparison of model enhancement for the detection stage on "Person" dataset,
Sample "2015_06337.jpg".
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Table 4.10 Predictions results of Figures 4.4 & 4.5, Green: outperformed the ground truth and Blue:
outperformed the baseline and ground truth.

(a) Sample "2015_02902.png" form
"Car" dataset.

Predictions from Num. of Preds.

GT 6

Baseline 4

CSDNet_UPE 5

DSLR 4

ElightenGAN 5

KinD 5

Lite_CSDNet_UPE 5

MBLLEN 5

RetinexNet 5

RUAS 4

SLite_CSDNet_UPE 5

TBFEN 5

Zero-DCE++ 5

(b) Sample "2015_06337.jpg" from
"Person" dataset.

Predictions from Num. of Preds.

GT 7

Baseline 7

CSDNet_UPE 8

DSLR 7

ElightenGAN 7

KinD 7

Lite_CSDNet_UPE 8

MBLLEN 9

RetinexNet 8

RUAS 9

SLite_CSDNet_UPE 7

TBFEN 8

Zero-DCE++ 7

Consequently, Figures 4.4 and 4.5 illustrate the various detection outputs after each en-

hancement step’s running. For the sake of making an accurate comparison between the

enhancement models for both datasets "Car" & "Person", the same sample was selected

and kept the original image size and their results are shown in the Tables 4.10a & 4.10b.

The highlighted rows correspond to actual predictions "GT" and a direct detection without

undergoing the enhancement stage "Baseline". It can be noticed that most approaches can

detect all instances except one missing object compared to the ground truth detections. In

addition, these models performed well and surpassed the baseline, which achieved only

4-detection out of 6 for the sample "2015_02902.png". On the other hand, there was a

dramatic increase in recognizing objects for "2015_06337.jpg" when nearly all techniques

achieved more detections than the ground truth. For instance, after investigating the output

by the "MBLLEN" technique, it was discovered that more (people) were covered by dark
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pixels, missed or excluded from the ground truth. In addition to "MBLLEN", other models

also achieved higher detection than the ones with "8". The rows that have been highlighted

are those that relate to actual predictions "GT" and direct detection without undergo through

the enhancement step "Baseline". Compared to the detections made using the ground truth,

most methods can identify all instances except one missing item. In addition, these models

performed exceptionally well and outperformed the baseline, which only detected four out

of six instances of the sample "2015 02902.png" compared to the models’ results. On the

other hand, the ability to recognize objects for the file "2015 06337.jpg" was significantly

improved when almost all of the methods obtained more detections than the ground truth.

For example, after investigating the results produced by the "MBLLEN" approach, it was

found that a more significant number of (people) were obscured by dark pixels, ignored,

or left out of the ground truth altogether. In addition to "MBLLEN", other models also

achieved greater detection than those with 8-predictions. It is worth mentioning that the

enhancement stage improved in detecting more objects and exploring new objects covered by

dark. However, there are situations in which using these approaches has no impact or cannot

identify new objects owing to a wide variety of circumstances including, but not limited to,

image quality, object dimensions and sizes, incident light on objects, and a few more. Thus

for further demonstration, outputs in the Table of figures 4.11 show sample results using

"Zero-DCE++". The results are specified as the following conditions: "Better", "Same" and

"Worst" detection.

In conclusion, this section helped to rapidly identify and locate the best solutions for

the low-light image enhancement task. It was owing to the fact that the assessment was

carried out on the whole dataset as opposed to the image level as in the classification task

described in earlier parts. In addition, testing a detection technique on a large dataset

after enhancement has been introduced helps limit what models have the best and worst

performance. Therefore, in the following sections, only best practises techniques were

studied and assessed to save time and prevent any overload on the resource-constrained

devices. In addition, the methodologies were selected based on the investigated metrics that
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were discussed while considering the variables that are compatible with the devices with

limited resources.

Table 4.11 Sample outputs in terms of "Better": outperformed after enhancing, "Same": no effect
with enhancing & "Worst": perform poorly after enhancing.

Cond. Original Before IE After IE

B
et

te
r

Sa
m

e
W

or
st

4.2 Lightweight Dynamic Classification

In this section, we will delve into the classifier outcomes and assessment, commencing with

data pre-processing, feature extraction, and training the proposed Random Forest classifier.
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The dynamic classifier acquires attributes and assigns images to the optimum enhancement

model category, contingent upon the low-light input characteristics. In simpler terms, images

with inadequate illumination are classified to be enhanced by the optimal enhancement

network.

4.2.1 Pre-Processing

Before progressing to feature extraction and model training, this section encompasses several

stages for data preparation. Firstly, the entire dataset was utilized for constructing the

classifier, unlike the previous stages of enhancement and detection, where only the person

and car sub-datasets were employed for evaluation, saving time in exploring the optimal

techniques.

Drawing upon the prior examination of object detection alongside enhancement tech-

niques, exclusively the most optimal models were selected to construct the classifier. These

models exhibit diversity in speed, image quality, average precision (AP), and mean average

precision (mAP) accuracy. Each model undertook the enhancement of the complete dataset

alongside object detection. Subsequently, inputs displaying an mAP ≥ 0.9 concordance

between prediction and ground truth were exclusively considered and relocated to distinct

directories, effectively representing unique images embodying a specific technique. The

workflow exemplified in Figure 4.6 illustrates the methodology employed for acquiring these

distinct samples. Moreover, Table 4.12 provides an overview of the number of distinct images

corresponding to each technique after removing duplicates. It is evident that the number of

acquired unique samples is relatively modest in comparison to the overall size of the dataset.

Table 4.12 Unique samples with mAP ≥ 0.9 after applying image enhancement techniques and
detection on the whole 7k ExDark dataset.

Model Name Number of unique images Time (sec)

CSDNet_UPE 33 0.005

LiteCSDNet_UPE 23 0.0035

LiteCSDNet_LOL 52 0.0032

RUAS 113 0.12

SLiteCSDNet_UPE 59 0.002

Zero_DCE++ 102 0.0012
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Figure 4.6 Unique images per enhancement technique, where each technique is represented as E1,
E2,...EN .

Henceforth, solely the RUAS and Zero-DCE++ techniques were deemed eligible for

inclusion in the classifier development process representing labels for low-light inputs. This

decision was based on their exceptional achievement in yielding the most significant number

of unique images and their commendable performance across various aspects. On the other

hand, samples from Berkeley, Stanford, MSCOCO, and the 5G Wales Unlocked datasets

were utilized as representatives of bright scenes. Scenes were systematically categorized and

organized based on predefined criteria and assumptions to determine whether they belonged

to the bright or dark category. For example, images captured under daylight conditions

with ample illumination were classified as bright, while those taken during dawn, dusk, and

nighttime were classified as low-light scenarios.

4.2.2 Features Extraction and Random Forest

As mentioned before, the "RUAS" and "Zero-DCE++" strategies were chosen to contribute

to the system that was implemented at the edge for the enhancement phase and classification

phase based on the unique samples obtained. These techniques are represented by the labels

E1 and E2, respectively. In addition, the label E0 indicates that no enhancement is required

for inputs deemed to be bright.

During the extraction phase, multiple filters were implemented; however, not all con-

tributed to the model’s ability to produce an acceptable prediction during the training phase.

Further details can be found in the following kernels: (1) The Gabor filter bank, (2) The
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Sobel, Scharr, Laplacian and Prewitt’s operators for edge detection, (3) The Gaussian blur,

(4) The Median filtering, (5) The Variance filter, (6) Sharpen filter, and, finally, the most

critical feature, (7) Original pixels. It should be noted that while many filters apply to data

sources that use RGB and grayscale colour space, only filters applicable to RGB colour were

introduced and applied to the collected data, as RGB provides more information and attributes

for describing the entire image in different aspects. For example, grayscale representation,

ranging from 0 to 255, only describes areas through black, white, or in-between pixel colours.

A Gabor filter was defined using a range of values, such as σ is equal to 1 & 3, θ equal to

0 & 0.785, γ to 0.05 & 0.5, λ to 0 & 0.0785 & 1.57 & 2.356, Ksize equal to 9 and φ to

1, allowing the production of a unique Gabor kernel (e.g. G1,G2, ...GN). In contrast, the

Sobel operator was utilised in its default configuration without any adjustments except for

extracting original pixel values at the beginning of each test. These convolution kernels were

then applied to the images. After feature extraction, the resulting attributes were reshaped

into a 1D-vector and introduced into the classifier for training and predicting on the test set,

see Figure 4.7.

The data was split into 90% and 10% for training and testing sets, respectively. For faster

processing, inputs are resized into 128x128. Moreover, the number of trees in the random

forest classifier was set to n_estimators=48, which was determined as the optimal value

using the GridSearchCV technique for hyperparameters with a random_state=42 for all trials.

Figure 4.8 illustrates that the mean test score of 93% can be attained by applying 48 trees.

Figure 4.7 Unique images per enhancement technique, where each technique is represented as E1,
E2,...EN .
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Figure 4.8 The plot represents the n_estimators in a range of 10 to 80 with the mean test scores. It
can be noted that the best score is achieved when trees=48, obtaining a score of 93%.

Table 4.13 displays the top-5 accuracies, where more than 20 trials were conducted, in-

cluding traditional machine learning and modern approaches. Feature creation was achieved

by arbitrarily utilizing an assortment of filters, applying up-sampling for imbalanced data and

finding the optimal values using hyperparameters. It is worth mentioning that upsampling was

introduced to evaluate the classifier’s accuracy with more sample data, which showed a dra-

matic increase in accuracy. The accuracy was calculated using the "metrics.accuracy_score"

function, which compares the predicted labels on the test set with the actual labels. As a

result, when combining the Gabor filter with pixel values and employing only the Sobel

operator. Experiment (5) outperformed the ones that relied on producing high-order kernels

for the Gabor filter and modern pre-trained weights Convolutional Neural Networks (e.g.

VGG-16) as a feature extractor. These features were reshaped into a one-dimensional vector

and were generated by applying six kernels with different values. The algorithm can complete

the extraction and prediction phases on a single input with a random size within 0.2 msec on

a Raspberry Pi, adhering to real-time processing requirements with a low response time at

the edge. In addition, the accuracy of data validation on the test set is 85.24%, suggesting

that an appropriate technique for the enhancing phase may distinguish certain dark features

and differentiate dark from bright scenes. However, it should be noted that this conclusion

was reached through a single experiment on a small portion of the data. The confusion matrix

depicted in Figure 4.9a indicates the classifier’s ability to differentiate between bright and

low-light images and between the two chosen techniques.
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Table 4.13 Details of the conducted experiments with different convolution kernels and VGG-16
CNN (as a feature extractor), where OP, GB, US and HP stand for Original Pixels, Gabor Bank

Filter, Up-Sampling and Hyperparameters, respectively.

Exp ID Filters/ Model US HP Accuracy

1 OP, GBF and Sobel ✗ ✓ 85%

2 OP, GBF and Sobel ✓ ✗ 81%

3 VGG-16 ✓ ✗ 75%

4 VGG-16 ✓ ✓ 78%

5 OP, GBF and Sobel ✓ ✓ 85.24%

Nevertheless, the model encounters challenges in discriminating images exhibiting RUAS

or Zero-DCE++ characteristics. Moreover, Figure 4.9b displays the Receiver Operating

Characteristic (ROC) curve mainly used to evaluate the performance of binary classification

models. Moreover, the ROC curve plots the True Positive Rate (TPR) against the False

Positive Rate (FPR) at different threshold values for classification. The TPR represents the

proportion of valid positive instances correctly identified as positive. In contrast, the FPR

represents the proportion of valid negative instances incorrectly classified as positive [21].

The classifier has a ROC accuracy of 96.6%, indicating that the model can discriminate

between positive and negative instances, which implies that the classifier can correctly

classify positive instances while minimizing false positives.

(a) (b)

Figure 4.9 (a) Confusion matrix, "0" for Bright, "1" for the RUAS model and "2" for the
Zero-DCE++ model. (b) ROC curve for the multi-classification.
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Table 4.14 Samples results from test set with actual and predicted labels ("A" stands for Actual and
"P" for Predicted label).

Index A B C

1

A: E0

P: E0

A: E0

P: E0

A: E1

P: E1

2

A: E1

P: E1

A: E2

P:E2

A: E2

P: E2

3

A: E1

P: E2

A: E2

P: E1

A: E2

P: E1
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As a direct consequence, random samples were chosen from the validation data and shown

in the Table of figures 4.14 with their actual labels and predicted labels by the proposed

classifier. The classifier successfully determined the appropriate labels in the indices (1 & 2).

As previously said, "E0" scenes such as (1A & 1B) are acquired when daylight is still and

bright pixels dominate. When at least a few items that can be identified by human vision or

computer machines, like the ones in (1C & 2A), are characterized as being dark or partly dark.

In addition, the photos (2B & 2C) have a dark appearance. On the other hand, the findings in

the third index show that incorrect predictions may be made when inputs represented as "E1"

are interpreted as "E2" or vice versa.

4.3 Edge Environment

This section presents the best practice enhancement models through their paces and assesses

them for use in an edge environment. The models have been selected based on the findings of

benchmarking performed as well as the classifier creation described in the previous section.

The performance of the large model "Detectron2" on both paradigms is shown in Table 4.15.

Both datasets show that accuracy after the enhancement model has been applied improved

and remains unaffected even on the edge paradigm. The only distinction is the time required

to detect instances on a single image.

Table 4.15 Evaluation of the large model "Detectron2" on the Cloud and constrained device, w: with
enhancement & wo: without enhancement.

System mAP % AP (Person) % AP (Car) % Speed (in sec) Size

Cloud (wo) 0.42103767 0.625056609 0.638056402
500 x 500

Cloud (w) 0.425116397 0.573534606 0.701814585
0.09

Edge (wo) 0.42103767 0.625056609 0.638056402

Edge (w) 0.425116397 0.573534606 0.701814585
4.4 500 x 500
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Consequently, "Yolov5-tiny" object detection was used on edge in conjunction with the

enhancement models for the suggested design, due to the device’s availability. The test bed

consisted of 40-images taken randomly from both datasets of various brightness levels (e.g.

different low-light & bright) with only "People" and "Car" instances. In addition, images were

scaled down to 500 by 500 pixels in both paradigms for fair comparison and fast processing.

Moreover, the evaluation of the tiny detector was carried out using the same evaluation

methods of the large model. The first row highlighted in Table 4.16 expresses metrics of a

straightforward inference of the detector with the original data without enhancement. As

an example, "RUAS (UPE)" for the enhancement stage boots each of "mAP" and "AP" for

both classes in contrast to the baseline model. In addition, the "ElightenGAN" produces

more accurate findings regarding the "Car" category, although it takes a very long time to

process. On other hand, the remain models perform poorly in comparison to "Yolo-tiny".

Consequently, "Zero-DCE++" & "RUSA" have been selected in order to contribute to the

edge design implementation based on the assessment results on the cloud environment; as

was stated in section [3.4]. Additionally, a sample output comparing results before and after

enhancement models are applied shown in Figure 4.10.

(a) Yolo (Only). (b) RUAS with Yolo (c) Zero-DCE++ with Yolo.

Figure 4.10 Detection outputs on the resource-constrained devices using Yolov5-tiny.

Further, the computational resources metricise of each device, also known as "Node"

or "Edge Server" contributed to the proposed design, were considered throughout this
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investigation. For experimentation, three images per category; bright as (E0) and dark as

(E1) and (E2) were carried out to evaluate device computation for a unique scenario. Table

4.17 shows different measurements simultaneously by running an input image for each class

when resources such as RAM usage, Temperature readings, CPU & GPU usages are also

gauged and considered for each test. For instance, the ideal mode indicates device stability,

and no processing occurs across all nodes. On the other hand, a bright image was used as

the input for "Test 1". Thus, since no processing is needed, the detection job is immediately

executed on the same node, and it is unnecessary to be forwarded to surrounding nodes for

enhancement. In addition, it is essential to note that the CPU utilisation and temperature of

"Node 3" rise due to the execution of the classification and detection tasks only. Following

the same principle, "Test 2 & Test 3" with dark images as inputs that required to have their

brightness improved through "Node 1 & Node 2" prior to the recognition task. Similarly to

"Node 3", resources increased dramatically since classification and detection are involved, in

addition to the GPU utilisation for the "Jetsons" devices (e.g. 99 % of usage), which these

enhancement models rely upon during processing.

Table 4.16 Yolo-tiny object detection with/without enhancement metrics on constrained devices.

Model Name Time inference (in sec) mAP % AP (Person) % AP (Car) %

Yolo-tiny 0.003 0.298226188 0.340724316 0.553954248

RUAS (UPE) 0.03 0.333046362 0.387374462 0.611764624

RUAS (Dark) 0.055 0.243440646 0.268292683 0.462029256

Zero-DCE++ 0.001 0.257393576 0.302882483 0.469298246

Zero-DCE 0.0067 0.245649369 0.195121951 0.541826156

SLiteCSDNet_UPE 0.025 0.275467783 0.288930582 0.537472767

SLiteCSDNet_LOL 0.025 0.241038582 0.189701897 0.533413849

CSDNet_UPE 0.05 0.251191625 0.241685144 0.511889731

ElightenGAN 9.81 0.280634461 0.285178236 0.556725146
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Table 4.17 Nodes computational resource metrics, where N/A: Not applicable, N/U: Not used in
processing, C: Classification task, OD: Object Detection task, IE: Image Enhancement task, Node 1:

Enhancement model (1), Node 2: Enhancement model (2) & RPi: Raspberry Pi.

Test ID

CPU

Usage

GPU

Usage

RAM

Usage

Temp

Usage

Task

involved?

RPi

(Node 3)

Jetsons Jetsons

RPi

(Node 3)

Jetsons

RPi

(Node 3)

Jetsons

RPi

(Node 3)

Jetsons

Node 1 Node 2 Node 1 Node 2 Node 1 Node 2
Node 1 Node 2

Node 1 Node 2
CPU GPU CPU GPU

Idle Mode 1.47% 7.23% 14.5% 0% 0% 800 MB 1.23 GB 1.28 GB 41 C° 29 C° 27.5 C° 27 C° 25.5 C° N/U N/U

1 15% N/A N/A 1.15 GB N/U 49.9 C° N/U N/U C + OD N/U

2 14.70% N/U 65.60% N/U 13% 1.19 GB N/U 3.16 GB 50 C° N/U 31 C° 29.5 C° C + OD N/U IE

3 17.20% 31% N/U 98% N/U 1.13 GB 2.68 GB N/U 49.2 C° 36 C° 33.5 C° N/U C + OD IE N/U

Moreover, an experiment that lasted for twenty-four hours was carried out to guarantee

the system’s consistency and prevent any disconnection in the servers. Table 4.18 illustrates

resource measurements in the ideal mode by keeping the servers alive for an entire day when

no processing is required or needed. The amount of RAM used by both nodes is roughly

half the amount supplied (4GB), which suggests that more tasks may be completed or take

place beside the running ones. In addition, managing various low-light levels may be handled

by combining optimal approaches (multiple networks) inside a single node. Moreover,

additional nodes for various purposes (e.g. rain & fog removal, noise suppression...etc.) can

join the proposed design to handle different circumstances. The moderate "Temp" values for

both nodes indicate that device environments are steady with no risks of overheating or side

detriments.

Table 4.18 Metrics of the Edge-Servers (Nodes) running for a whole day (ideal mode).

Measure/Node Node 1 Node2

RAM Usage 2.72 GB 2.78 GB

CPU/GPU Temp 34 C°/ 33 C° 29 C° / 28.5 C°

CPU/GPU Usage 7.93% / 0% 14.90% / 0%

The "Latency" is a vital aspect to consider since the implemented design is suggested

on devices with limited resources; thus, it is one of the most critical variables. In other

words, the whole amount of time required to perform Classification, Enhancement, and
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Detection on a single picture. The following Tables 4.19a and 4.19b illustrate the amount of

time required to complete a separate task and the overall one across all tasks. In addition, it

is interesting to note that the sole difference between RUAS and Zero-DCE++ pertains to the

enhancement process, whilst all other tasks are completed using the same approaches. Since

the classification stage only resizes for label prediction, original dimensions are passed to

subsequent nodes.

Table 4.19 Total time taken for processing one-image (from source to destination).

(a) RUSA.

Node Id Task Time (in sec)

1 Classifier 0.4

2 Enhancement 0.03

3 Detection 0.03

Total Time: 0.46

(b) Zero-DCE++

Node Id Task Time (in sec)

1 Classifier 0.4

2 Enhancement 0.001

3 Detection 0.03

Total Time: 0.431

Furthermore, the "Grafana" software was used in order to record the constrained-

resources devices metrics and measurements presented in the previous Tables 4.17 & 4.18.

Grafana is an open-source platform for data visualisation that enables users to express their

data in the form of charts, graphs, and other sorts of representations [15]. Therefore, this

study utilised the tool to measure the examined metrics by providing each device with an

independent dashboard for performance monitoring and documenting any changes in the

parameters being tracked. In addition, Grafana is much more helpful for single-board com-

puters when connected to "Node-Exporter" and "Prometheus". Since "Node-Exporter" is

used to extract the essential metrics values from a particular device such as RAM, CPU

and Temp, to name a few, whereas "Prometheus" allows direct communication between the

machine and grafana platform by sending the desired metrics directly to the dashboards for

illustration and monitoring purposes [12]. Therefore, a distinct dashboard is developed for

each device. These dashboards are shown in the following Figures 4.11a, 4.11b & 4.11c to

represent Raspberry Pi (for the classification and detection tasks) and the two Jetsons (for the

enhancement task), respectively. The computational resources were recorded and monitored
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while the jobs were carried out. For instance, Figure 4.11b, specifically the GPU usage,

displays a peak signal of 99% of the total usage while the enhancement step is active and

taking place. In addition, other critical mete-data, such as "timestamps", makes it possible to

link a specific utilisation with the activity being performed.

(a) Raspberry Pi-4B Dashboard (Node 3).

(b) Jetson Nano Developer Kit Dashboard (Node 1).
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(c) Jetson Nano Developer Kit Dashboard (Node 2).

Figure 4.11 Grafana dashboards for constrained-resources devices.

As stated before, the complete implementation of the suggested approaches was carried

out and tested using the ""Node-Red" platform. The NR allows numerous machines and

services to connect and interact with one another either locally or remotely. Figure 4.12

illustrates the design components from the source to the final destination. To differentiate

between the many stages, each colour in the figure represents a particular "Node" with a

brief description of each node’s role. The "Blue" colour refers to all the tasks running on the

Raspberry Pi (Node 3) whereas "Green & Light-green" for Jetson Nanos devices (Node 1

& Node 2). On the other hand, the "Yellow" represents built-in functions and nodes in the

NR workspace for various purposes (e.g. Decision making, splitting and merging messages,

converting formats and further).

Consequently, the outputs consist only of messages or notifications that include the

following components: the number of detected objects, the object classes (e.g. people,

vehicles, etc.) and the timestamp, to name a few. In addition, the image output is produced

for a particular scene, complete with instances, their bounding boxes, confidences and class

names.
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Figure 4.12 The proposed design implemented in Node-Red.
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In designing the Node-RED experiment, reliance is placed on several fundamental as-

sumptions to facilitate smooth operations. First and foremost is the recognition that the

quality of input images plays a crucial role, influencing both the accuracy of image classifi-

cation and subsequent decisions regarding enhancement techniques. A pivotal assumption

concerns the consistent and reliable capabilities of the edge devices involved. Any variations

in these capabilities could potentially disrupt accurate image classification and the subsequent

selection of appropriate enhancement methodologies.

The stability of Node-RED is also regarded as essential, as it guides decision-making

processes related to the selection of enhancement techniques based on image classification

outcomes. Ensuring a dependable and steady internet connection for seamless data transfer

between stages is another key assumption. Furthermore, the accuracy of the classification

model is considered paramount, influencing the appropriateness and effectiveness of chosen

enhancement techniques.

The relationship between stages, particularly the presumed positive impact of enhance-

ments on object detection, introduces complexity and requires careful consideration. Object

detection precision, real-time processing capabilities, and the assumption of continuous pro-

cessing collectively contribute to the overall effectiveness and efficiency of the experimental

testbed. Lastly, the assumption of minimal user interaction emphasizes a preference for a

streamlined and automated workflow, acknowledging the potential influence of unexpected

inputs on classification and enhancement decisions. Documenting these assumptions is

critical for maintaining transparency and facilitating a nuanced interpretation of results in

real-world applications.
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4.4 Chapter Summary

In this chapter, all the assessments and outcomes were conducted, and their presentation was

in-depth. First, every component of the proposed system was broken down and explained

individually, beginning with the classification stage, which included the following steps;

data preparation, the feature extraction part, followed by the traditional machine learning

algorithm "Random Forest" for classifying and producing labels during the training and

testing stages. Afterwards, methods for enhancing low-light images were tested and assessed

alongside the cutting-edge object identification algorithm. Indeed, enhancement models

that excelled in some areas after being benchmarked on the cloud paradigm for the feature

extraction phase were selected to contribute to the whole design. On the other hand, for

the detection component, it is recommended to use a "Large-model" for the Cloud and a

"Small-model" for the edge environment, which is comprised of many restricted devices. In

addition, the computing resource metrics of these devices were considered to evaluate the

system’s performance and stability while a process was being carried out. Lastly, the findings

presented are reviewed and discussed in the next and last chapter. Also, future directions are

given, along with particular constraints encountered throughout this research.
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Chapter 5

Discussion & Conclusion

In this last chapter, findings and analysis are given significant attention and addressed in depth.

Moreover, it details the challenges encountered throughout the study and offers potential

ways to address them. In addition, by putting forth innovative concepts and approaches for

enhancing the scalable nature and adaptability of the design suggested. Ultimately, this thesis

comes to a close with a brief overview of the endeavour. Additionally, an extra example has

been included in Appendix A to demonstrate and better understand the obtained findings.

Finally, all references relating to this thesis may be found at the very end of this document.

5.1 Discussion

In order to conduct a comprehensive analysis, each stage suggested in the proposed design

is discussed independently. Starting by the core of this research, the Meraki cameras are

installed across all the 5G Wales Unlocked project use cases and acted like sensors. The

cameras initiate a pre-identify signal in case a potential anomaly occurs in the fields with

the aid of a tiny AI algorithm embedded within the camera (referred to as Edge camera; a

camera that can carry out a job in an intelligent and automated way without the need for any

involvement from a human being). Therefore, by leveraging the potential signal produced

by the edge camera, further analysis may be carried out to ensure event correctness through

more effective procedures and methodologies to prevent anomalous occurrences and mitigate
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annoying false warnings. One of the most critical capabilities of the camera is providing

scenes brightness, also known as "Lux" value, and it represents the overall brightness of the

image with a single number that may vary from zero (for wholly dark or black settings) and

greater (for bright scenes). In addition, the numbers that fall in the middle of the spectrum

indicate varying degrees of brightness. Despite this, the brightness function of the camera

was not used in any way throughout this study, nor was it ever considered for different reasons.

First, the lux-value is determined by taking the average of all the pixel values, which may be

done by converting an RGB image into various colour spaces (e.g. Gray-scale or YCbCr,

where "Y" represent the luminance map of an input image). Because of this, it is difficult to

represent a whole scene with a monocular value accurately. Secondly, weather conditions are

unpredictable and inevitable in most cases leading to mashups of scene representations in

terms of cloudy bright or dark, foggy and rainy, to name a few. Therefore, more than a single

value is needed to contribute to a better understanding of scene properties. On top of that, it

is challenging to achieve diverse brightness levels in different scenarios when cameras are

fixed in position and height, similar to the 5G Wales Unlocked scenarios.

Furthermore, since this study focuses on captured images with varying short exposures,

producing different short-exposure images of the same scene takes time and effort. Based

on that, the primary emphasis was placed on retrieving low-light images from publicly

available datasets such as the Exclusively Dark Image Dataset, also known as the "ExDark".

The dataset is postulated and represented as the input data captured from multiple types of

cameras (e.g. surveillance systems, mobile and camera sensors) placed in various indoor

or outdoor environments. In addition, to facilitate the assessment of several enhancement

models on various low-light scenes, the dataset was collected under various situations, such

as varying angles, resolutions, the amount of noise that had accumulated, and different

kinds of weather. These situations were considered during inspecting and understanding the

utilized data. However, neglecting the luminosity feature provided by the Meraki camera

for the reasons mentioned earlier encourages the necessity of implementing an algorithm to

separate and distinguish brightness levels or at least normal images captured in the daytime

with sufficient lighting from ones that lack bright pixels taken in darkness, such as nighttime.
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Therefore, a lightweight dynamic classifier was introduced for the current study for

managing brightness levels. The new suggested pipeline with an additional classification

method is substantially different from the standard pipeline proposed during the 5G Wales

Unlocked project, which only uses images captured in the daytime with sufficient light

and needs to be designed to distinguish images with various light intensities. Whether it

was a binary or categorical label, many different approaches, procedures, and tactics were

researched and examined for the classification task. Most of these studies concentrate on

contemporary techniques such as Deep Learning (DL), whereas others focus on Traditional

Machine Learning (TML). When selecting acceptable methods, it is necessary to consider

several essential aspects before making a decision. For instance, the computing resources

available (e.g. GPUs, storage, etc.), place of the processing and network availability, to

mention a few. Consequently, classification techniques that depend on deep learning method-

ologies demand a large amount of data for training purposes, generating heavy models that

may not fit on devices with limited resources.

Furthermore, this research examined the proposed design in the context of both computing

paradigms: cloud-based and edge-based. It aimed to identify the differences between them.

Generally, large models slow down the inference stage, increasing the time-responsiveness

"Latency" at the end-user side. Moreover, research projects often use heavy methods hosted

and supported with high-computational resources (e.g. cloud or fog paradigms) to complete

and accelerate processing in a shorter period. On the other hand, studies rely on partly

processing what is known as a "Joint Modelling" when tasks are shared between the Cloud

and Edge computing paradigms. In this scenario, specific challenges may be overcome

by using a large model for handling heavy workloads and completing on-edge cameras or

constrained devices, for example. However, network congestion and bandwidth size affect

factors like latency since some tasks are required to be transmitted to the Cloud.

, with a particular emphasis on the edge paradigm, which is one of the primary objective.

This research emphasizes implementing stages on multiple resource-constrained devices

within the edge paradigm and studying associated metrics as part of a proof-of-concept. In

other words, each explained and stated phase in previous chapters are conducted dependently
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on a separate device "Node" obtaining lower time-response and maintaining exact or rough

performance. Feature engineering for feature extraction along with the traditional machine

learning algorithm "Random Forest" were used to develop a lightweight approach capable of

running on a device with limited resources (e.g. Raspberry Pi, with limited storage and CPU

usage). Instead of relying on modern approaches to extract features, a feature engineering

approach uses the Gabor filter, original pixel values, and the Sobel filter. Alongside various

image enhancement algorithms exhibiting varying performance and functionality, the feature

extractor can identify unique features representing each specific enhancement technique. For

instance, the image enhancement algorithm E1 may excel in handling noisy dark scenes,

while E2 may be more effective in addressing foggy dark scenes.

This study only targets detecting anomalies People and Car classes. The presented

ExDark dataset contains 7363 images that have been organised and stored within individual

class folders, each representing a single class making retrieving the appropriate images for a

given task more effortless. Moreover, the collection only contains samples in completely dark

or moderately dark environments. As a result, additional samples were collected with enough

light from well-known public databases such as Berkeley, Stanford, and MS-COCO datasets.

They were combined to produce a range of different brightness levels. In addition, by enabling

the classifier to study the data, it can discern between bright and dark situations. The process

of discriminating between dark and bright scenes is simple and logical. However, no general

guideline or rule of thumb exists for deciding on partially-dark scenes. Therefore, humans

have different ways of seeing semi-darkness, and the necessities of different situations call

for different interpretations.

For example, the timing of sunrise and sunset and areas partly covered by black pixels

are some of the criteria that might represent scenes as semi-dark. However, selecting a

particular enhancement model for a given sort of low-light conditions cannot be aided by

these viewpoints. For instance, I1 (representing an image sample that is only partially

dark) is improved by E1, whereas E2 for completely darkened scenes I2. Therefore, several

enhancement techniques were tested and evaluated against each other, with the primary

objective of improving object detection in order to enhance images with appropriate technique
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based on the image features. All enhancement algorithms were put through their paces by

being tested and evaluated on the complete datasets. After going through the first step, which

consisted of enhancement (using low-light image enhancement techniques; see Table 4.4,

images moved on to the second stage, the detection (with Detectron2). Therefore, allowing

for the calculation of essential metrics helped put constraints on optimal approaches besides

the trade-offs between them.

As a result, consideration has been given to incorporating aspects such as processing

speed and training during inference and especially the object detection performance to the

development of the classifier. According to the findings, the "Zero-DCE++" method is

the optimum approach for the vast majority of situations. In terms of more rapid inference

on several different input dimensions, around (0.001 second). In addition, the highest was

accomplished using the following methodologies: "Zero-DCE++" (on the Person dataset)

and "MBLLEN" (on the Car dataset). The baseline model produced an "mAP" value of

(0.34 & 0.45) for the "Person and Car" datasets. Both models achieved a higher "mAP"

value, equivalent to (0.59 & 0.48), than the baseline model. Again, when assessing a single

class "AP", the "Zero-DCE++" outperforms other approaches for the "Person, Bus, and

Motorcycle" classes with accuracies of (0.77, 0.71, & 0.27), respectively. However, the

baseline results for several classes had extremely few advanced placements or almost none.

The "EnlightenGAN", on the other hand, did quite well in the "Car" class, obtaining an "AP"

score of (0.64). In addition, the "RUAS" was the only model that produced more significant

prediction after enhancement than the others did for both datasets, about 2393 and 1836

bounding boxes, respectively, compared to the actual predictions; 2073 and 1700. Indeed, the

graphs in 4.5 demonstrate that at least seven different methods are able to identify a greater

number of objects than either direct detection (without enhancement) or even the ground

truth ones.

Consequently, the following is a list of best practice approaches for the enhancement

component, depending on evaluation and findings. Instead of relying on the techniques

investigated in this study, it is essential to note that alternative techniques, either those now

in use or those not yet developed, may be used to brighten dark images. Similarly, alternative
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state-of-the-art object identification algorithms that exceed the one picked or trained on dark

or night data may achieve greater accuracy and better performance than the one chosen.

The below-listed techniques are selected and preferred for joining and contributing to the

proposed design on the edge environment and the classifier modelling part.

• Zero-DCE++ • RUAS • CSDNet_UPE

• LiteCSDNet_UPE • SLiteCSDNet_UPE • MBLLEN

• ElightenGAN • SLiteCSDNet_LOL

After benchmarking the models on the Cloud-paradigm, those models were evaluated on

the edge environment. However, to obtain quicker inference and fitting restricted devices, the

large detector "Detectron2" was switched out with a lighter one "Yolo-tiny". Due to the fact

that the purpose of this study is to measure the detection performance after enhancement rather

than evaluate enhancement methods based on image quality—the enhancement techniques

provided exact results on limited resources as in environments with high-computational

resources. However, when it comes to the detection stage, outputs vary compared to the large

detector. The reason behind this is crucial and logical since tiny versions undergo several

techniques, such as pruning or quantisation, which allow us to obtain a smaller version of a

neural network model that is smaller and more efficient. Therefore, these techniques scarify

some accuracy to achieve that goal. As a result for the edge environment, the "RUAS" among

all the techniques outperformed with an "mAP" equal to 33% compared to the baseline

"Yolo-tiny", which achieved 29% on randomly chosen samples of 40-images.

Moreover, inference speed remains as reached during benchmarking with 0.001 seconds

& 0.03 seconds for the "Zero-DCE++" and the "RUAS" respectively. Consequently, the

findings suggest that utilising and executing these models on devices with minimal resources

is feasible to acquire results in real-time, "Low latency". Moreover, the detection results also

highlight the importance of image-enhancing approaches as a step of pre-processing, which

helps to increase the number of objects that can be identified and discovered in low-light

settings, "High-accuracy". As stated, all phases may be replaced with modern or optimal

approaches.
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Furthermore, there were instances in which the enhancement step led to the attainment of

the same outcomes as those obtained by direct inference or even worse, as was depicted in

Table 4.14. The reason might be that some techniques add additional artefacts to the output

image after enhancing, such as noise, unwanted colours or distortion and brightening bright

pixels. All these factors can potentially affect existing objects by covering or vanishing

objects’ characteristics such as edges and texture. Therefore, relying solely on one approach

might not produce the desired results. Thus, the classification task was built to manage

the enhancement stage for a single image depending on the technique‘s capabilities and

attributes. During the classifier generation step, the models listed in 5.1 were utilised since

they are considered the most effective approaches; this was done to reduce time and effort

while ensuring that the findings were correct. Further, calculating the "mAP" for a solo

image and only outputs with values equal to or greater than 0.9 were taken into consideration.

Afterwards, since similar samples are used across all the techniques, only unique images are

filtered to represent the outperform enhancers.

(a) CSDNet_UPE. (b) ElightenGAN. (c) MBLLEN.

(d) Zero-DCE++. (e) SLiteCSDNet_UPE. (f) RUAS.

Figure 5.1 Unique samples outperformed by specific techniques.
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Following the filtering process of unique inputs, Figure 5.1 exhibits a few original samples

with high mean average precision . For example, sample 5.1a depicts one of the inputs that

"CSDNet_UPE" used to enhance and identify all objects obtaining an accuracy of (≥ 0.9)

and outperforming the other techniques. In contrast, other methods accomplish a lower

level of success than the threshold. Consequently, input properties and features of similar

or comparable ones may be improved by the same model, "CSDNet_UPE". In addition,

these samples assist in differentiating between many methods and appropriately for the

classifier creation by isolating those characteristics that may reflect a distinct and unique

enhancing approach via a feature extraction stage. Nonetheless, the findings demonstrated

a restricted number of images acquired from each method; see Table 4.13. As a point of

comparison, the lowest number of samples obtained is "4" by "LiteCSDNet_LOL", and the

highest number of samples achieved is "30" by "MBLLEN". As a result, the feature extraction

process, which relies on a minimal quantity of data, could not perform as efficiently with

large-volume of data. Because of this, only two enhancement strategies could contribute

to this research because of their fast inference and high level of true positives prediction

compared to the ground truth, where these approaches are; the "Zero-DCE++" and "RUAS".

As mentioned earlier, the "Zero-DCE++" showed promising results in different aspects as

the fastest model and performed well on the detection task. On the other hand, the "RUAS"

has similar attributes besides the ability to detect more instances.

As a result, the classifier achieved an accuracy of 85.24 % for categorising inputs to

their respective labels. Moreover, images taken under normal circumstances may easily be

differentiated from low-light ones. On the other hand, it might be challenging to differentiate

between the suggested enhancing approaches. One possible explanation is that each approach

can only outmatch a certain number of distinct samples. Further, putting the suggested

design into action on limited devices demonstrated substantial performance and the system’s

scalability. Despite distinct nodes being responsible for completing the duties given to

them differently, however, a high processing speed may still be accomplished when a single

sample of H x W dimensions are processed roughly in one second through all of the steps

(Classification, Enhancement, and Detection). Thus, the minimal time satisfies the real-time
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requirements, and lower latency is achieved on the end-user side when receiving notifications

or alerts.

In summary, this research narrowed its focus to two main key points. The first pertains

to the 5G Wales Unlocked project, addressing specific limitations encountered during its

implementation. The second point deals with the gap identified in prior studies, as outlined

in the literature review. The 5G project encountered numerous limitations that resulted in

inefficient anomaly detection, particularly in scenes with insufficient light, such as dark nights.

Indeed, a significant percentage of false alerts was received during nighttime, suggesting

a probability of anomalies and due to the poor image quality and low light, validating the

presence of objects was challenging. Furthermore, additional challenges arose from blurring

and other types of noise. Despite these issues, the object detection approaches still managed

to identify some instances, especially when compared to images with low-light problems.

On the other hand, previous studies that explored anomaly detection in edge computing

primarily focused on recognizing objects in clear image data, where lighting conditions

are sufficient (e.g., daytime) and the images are free from noise, maintaining high quality.

Additionally, they often utilized a limited and the same dataset for validation.

Therefore, in this research, a technique was developed to address the gap created after

mapping the primary challenge in the 5G project with the gaps identified in literature studies.

This was achieved by testing several low-light image enhancement techniques to brighten

dark images as a pre-processing step, thereby boosting detection accuracy. Additionally,

the study involved a detailed analysis of each enhancement technique to determine the best

practice approaches to join the proposed design. Moreover, the data collected during the 5G

project was integrated into both the creation and validation phases to test the technique on

real-world data, specifically images captured in the daytime to diverged from the common

practice of relying on the same dataset used in all studies in the literature.

Moreover, the creation of a lightweight classifier helped distinguish between images cap-

tured with low-light conditions and those with ample light. As a result, images with sufficient

light are directly sent to the detection task to identify objects, requiring no enhancement.
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Additionally, this approach serves to differentiate between the old proposed pipeline in the

5G project and the new one.

Furthermore, the proposed technique was implemented on both edge and cloud-based

computing to assess its reliability on both paradigms, with a particular emphasis on the edge.

Finally, a proof-of-concept was developed to implement the entire design on the edge, rather

than relying on high-computational resources such as the cloud or dividing tasks between the

edge and the cloud, as studied in previous research. Additionally, the goal was to demonstrate

the feasibility of incorporating other tasks into the proposed nodes and adding additional

nodes for different purposes in the design.

5.2 Limitations & Future Work

Several constraints and gaps have been faced during the implementation and evaluation

phases of the studied methodologies. Firstly, the ExDark dataset collection includes images

taken in low-light environments with varying amounts of available light. However, the data

collection and creation goal was not aimed at resolving low-light image enhancement tasks

while emphasising more on high-driven tasks such as object detection and classification

by providing objects bounding boxes coordinates and environment types based on bright-

ness levels, respectively. This was explored while applying the detection stage after the

enhancement.

The findings and analysis that compared predictions produced by the detector to ground

truth, apart from human inspection and investigation, the following was determined: (1)

After brightening methods were used for low-light images, in some occasions, more items

seemed covered and obscured by darkness or black pixels. Thus, these recently found items

are absent in labels that allow them to be included in the ground truth and be considered

through the evaluation step; see Figure 5.2. For a better understanding, the original picture

[5.2a] includes two instances, both vehicles; one on the right is part of the ground truth

predictions, while on the left was discovered by enhancement, 5.2b. Moreover, it should be

noted that direct detection is also unable to identify the labelled "Car" on the right; however,
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this was the goal of the current research. As a result, the newly discovered items considerably

impact the object identification performance as a whole, leading to obtaining an inadequate

"mAP" and set of results. In addition, (2) A significant number of instances are missed or

un-labelled in the ground truth, which includes far away and tiny objects, in addition to only

partially displayed objects; see Figure 5.3 for more illustration. Once again, this leads to

a significant reduction in the overall accuracy of the detection. Further, it is necessary to

consider that modern state-of-arts object detection algorithms are being created or will seek

to increase resilience and reliability. Consequently, it is necessary to take into account objects

captured under a variety of situations. (3) Regarding the classification task, the number

of unique images that can outperform for single enhancement model is limited, especially

during the feature extraction phase. Because of this, it is recommended that the additional

public datasets might boost the likelihood of obtaining more unique images per enhancement

technique from which to extract relevant characteristics.

(a) Before Enhancement. (b) After Enhancement.

Figure 5.2 Sample image of "Car" hidden in the dark (Purple Bounding Box).
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Figure 5.3 Sample image with objects that only appear partially of the whole image (Left & Right
"Cars").

As stated before, the goal is to utilize pre-existing methods for low-light image enhance-

ment and object recognition roles; therefore, novel or other existing approaches for both

tasks might replace the currently suggested and studied ones supposing that they provide

promising results. Moreover, the numerous techniques for dealing with poor light conditions

produced varying results due to the fact that the methods’ development included a variety of

distinct strategies. During the learning phase, for example, methods that merely relied on

low-light data paired and unpaired images. In addition, the availability of a wide variety of

datasets that differ in scenarios, existent objects, and resolution, to name a few, may develop

a one-of-a-kind method that is well suited to a particular low-light environment and use cases.

Indeed, several methods demonstrated varying degrees of success in illuminating dark scenes

and correctly recognizing objects, in addition to discovering new instances in shadowy and

gloomy regions. Therefore, it is advisable not to depend on just one method; nevertheless,

mixing many best practices may assist in covering a more significant number of facets. The

restricted devices’ observed metrics and processing capacity pointed to a major orientation

toward consolidating more jobs and computations onto a single device.

In a future study, several networks (containing numerous low-light enhancing approaches)

may be carried out in a single "Node" to control issues relating to inadequate illumination.

Thus, the appropriate enhancer from among the selected networks is carried out depending on
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the acquired input attributes. Further, moving techniques related to a particular problem to a

separate and independent node enables the addition of more "Nodes" to the design, which can

then be used to handle different conditions, such as Deblurring, Deraining or Defogging, and

noise removal, to name just a few. In addition, an image may be pre-processed and directed

to numerous nodes before the actual detection operation is carried out when a classification

algorithm produces multi-labels representing the input content and circumstances. Regarding

the ExDark utilized, it is possible to consider upgrading the dataset ground truth as a different

line of study. In other words, methods for enhancing dark pixels allow the discovery of new

objects not defined or labelled to be included with the actual predictions.

As a result, the entire dataset can be run through the same models studied or only

outperformed ones to enhance and then re-labelling those objects, which assists researchers

who focus on related areas in evaluating new methodologies in low-light image enhancement

domain with the high-driven tasks; object detection and classification obtaining reasonable

results.

5.3 Conclusion

This research aimed to enhance object detection in low-light conditions using existing image

enhancement techniques, with a particular focus on detecting people and vehicles (referred

to as anomalies). To achieve this goal, various image enhancement techniques were tested

in combination with object detection. In addition, a classifier to distinguish between bright

and dark images and classify different dark levels based on image features was introduced.

Furthermore, by implementing the proposed design on multiple IoT edge devices within the

edge computing paradigm and compared the system’s performance with the cloud-based

system.

This research was carried out in accordance with the 5G Wales Unlocked project, which

was supported by the Department for Digital, Culture, Media & Sport (DCSM-UK) and

intended to identify abnormalities in a variety of settings as well as domains. Along the

project, several restrictions and gaps were encountered. The most notable was a pre-identify
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signal received during and after sundown, followed by an automated "API" requesting a

screenshot from the edge camera. Most of the time, the requested images have undesirable

singles and distortion due to many black pixels, making it difficult to distinguish and identify

the contents and objects within the images, especially anomalies. Therefore, this study’s

primary goal was to use previously developed methods in deep learning and computer vision

to improve the performance of identifying abnormalities in situations when the available

light was limited. Indeed, intensive methodologies and strategies have been studied over

the past few years, only open-sourced and readily accessible techniques were presented and

investigated to achieve the goal, allowing us to investigate further techniques that provide

reliable results for future works.

Moreover, several advantages and disadvantages were revealed throughout the assessment

stage, demonstrating strategies, capabilities and differences. In fact, the findings demonstrated

a discernible enhancement in both the visual content and its quality in some instances.

However, it is essential to remember that the primary purpose was to identify or detect

objects within an image rather than comparing strategies for the enhancement role itself. In

addition, more is needed to develop an innovative approach in the computer vision domain

that may be compared or competitive to prior techniques.

Further, compared to direct detection when enhancement is not required, outputs detection

after enhancement demonstrated a significant increase in accuracy as well as in the number

of detected instances, regardless of whether they were performed on all classes or a single

one. Logically, increased detection might relate to erroneous detection in most instances.

However, monitoring and analysing the detector via the "mAP" and other metrics ensured

the recognition of correct extra or hidden objects in challenging settings. Thus, introducing

this stage as a prerequisite is essential for managing low-light circumstances in domains

supported by surveillance systems and vision sensors. To name a few, Zero-DCE++, RUAS

and MBLLEN have all shown considerable progress in improving detection accuracy. For

example, the best practice model "Zero-DCE++" demonstrated a percentage increase of 73.5

% on the "Car" class, while the same for "MBLLEN" showed a percentage increase of 6.6 %.

However, the two percentages have significant gaps due to various characteristics regards
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the "Person" class, including the amount of noise accumulated, resolutions, dimensions, and

others. As a result, the findings of this study recommend putting these strategies into practice

as a preliminary step before moving on to further procedures and analysis. Moreover, prior

research has suggested that state-of-the-art object identification algorithms be trained on

enormous low-light datasets to be used effectively in nighttime or gloomy environments.

However, the problem stills have been experiencing relates to items being entirely hidden by

darkness and low-value pixels almost reaching zero in value.

On the other hand, novel approaches or existing ones consisting of integrated feature

extraction stages for enhancement and detection to develop an entire model may produce

a large and heavy one that needs to improve in performance and fitting regarding resource-

constrained devices. For example, the proof-of-concept stated at the beginning of this

research was achieved by implementing the proposed system on limited resource devices

showing a possible execution of approaches regarding low-light enhancement separately by

maintaining each speed roughly to 1 second with high-performance in detecting anomalies.

Thus, having jobs running independently on a single ("Node") encourages moving many

systems to the edge instead of relying on high-computational resources such as the Cloud

and Fog paradigms. In addition, partial processing requires data transmission or placing

a specific task in the Cloud paradigm or near the edge environment, increasing latency,

potential cyber-attacks, and channel congestion, to name a few.

Furthermore, most studies classify scenes according to the level of brightness present; for

example, a particular label may signify low, moderate, or high levels of light. On the other

hand, there is no general rule of thumb for determining the different degrees of darkness

except for entirely dark or bright. The recommended classifier presents an innovative method

for categorising images with low light levels based on enhancement techniques’ ability

to boost the detection phase. The "Zero-DCE++" and "RUAS" techniques provided the

highest mean average accuracy on a single input during the detection stage. As a result,

these approaches obtained the most significant counts of correct detection images for both

dataset classes as well as unique images. In addition, the "MBLLEN" performed better than

the others, including the ones mentioned above; nonetheless, the selection considers the
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amount of time required for the inference, given that the primary goal is to reduce the time

response on the edge nodes. The "Zero-DCE++" and "RUAS" that obtained a higher number

of unique images as well as performed better on the datasets labelled "Car" and "Person"

respectively, were trained each on the performed dataset in order to extract features and

train the lightweight method for classifying low-light samples. In addition, to distinguishing

them from images captured with sufficient light. The classification results demonstrated the

possibility of using feature engineering approaches along with traditional machine learning

algorithms while operating on restricted devices with an inference time of around 0.2 seconds.

Despite the small number of samples used in the process of creating the classifier, an

accuracy of 85.24% was achieved on the test set, indicating the ability to differentiate

between totally bright images from low-light ones, as well as among various low-light

properties for the appropriate enhancement method. Indeed, the findings demonstrated rivalry

amongst all approaches in some facets, such as when model "X1" performed better than

model "X2" on "Image1" or vice versa. Therefore, the capabilities of the various models

permit a combination and integration of several models for handling various input conditions

and directing it to the most confident approach based on particular features within the image,

making it feasible by the fact that the models can work together rather than relying on a

single method and improving the objects identification task.
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Appendix A

In this section, additional results are presented for better comprehension of how image

enhancement methods help achieve higher accuracy for the detection stage compared to

direct detection (before enhancement) and the ground truth itself. It is worth mentioning that

only best practice methods were selected and considered for the following examples. Figures

A.1, A.2, A.3 & A.4 demonstrate randomly selected samples to examine the approach’s

functionality and capabilities. After more investigation, the optimal technique is shown

by the green box surrounding the model names, which provide extra correct predictions

compared to ground truth and direct detection; see the figure’s captions. Moreover, the results

regarding several predictions for each method are presented in the following figures A.5, A.6,

A.7 & A.8.

The bars coloured "Green" represent the ground truth (GT), and "Orange" represent

detection before enhancement (Direct). On the other hand, the remaining coloured "Blue"

represent low-light image enhancement models. In addition, the total number of predictions

is divided into two numbers, a top and bottom value. The top and bottom values correspond

to the number of "Car" and "Person" instances within an image, respectively. While Figure

A.7 only represent the "Person" class for all instances. It can be noted that objects are

correctly detected and discovered in comparison to when no enhancement is applied, as well

as to original predictions. Moreover, the outperformed methods among all samples differ,

indicating that a single method might perform in a specific context and condition. Thus, this

emphasises the need for these methods to operate together instead of relying on only one in

order to recognise objects in low-light environments with various circumstances.
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(a) Original (Direct). (b) Zero-DCE++. (c) RUSA.

(d) CSDNet_UPE. (e) Lite_CSDNet_UPE. (f) SLite_CSDNet_UPE.

(g) MBLLEN. (h) ElightenGAN. (i) TBEFN.

(j) DSLR. (k) KinD. (l) RetinexNet.

Figure A.1 Comparison of model enhancement for the detection stage on sample "2015_02448.jpg".

131



(a) Original (Direct). (b) Zero-DCE++. (c) RUSA.

(d) CSDNet_UPE. (e) Lite_CSDNet_UPE. (f) SLite_CSDNet_UPE.

(g) MBLLEN. (h) ElightenGAN. (i) TBEFN.

(j) DSLR. (k) KinD. (l) RetinexNet.

Figure A.2 Comparison of model enhancement for the detection stage on sample "2015_02926.jpg".
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(a) Original (Direct). (b) Zero-DCE++. (c) RUSA.

(d) CSDNet_UPE. (e) Lite_CSDNet_UPE. (f) SLite_CSDNet_UPE.

(g) MBLLEN. (h) ElightenGAN. (i) TBEFN.

(j) DSLR. (k) KinD. (l) RetinexNet.

Figure A.3 Comparison of model enhancement for the detection stage on sample "2015_06339.jpg".
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(a) Original (Direct). (b) Zero-DCE++. (c) RUSA.

(d) CSDNet_UPE. (e) Lite_CSDNet_UPE. (f) SLite_CSDNet_UPE.

(g) MBLLEN. (h) ElightenGAN. (i) TBEFN.

(j) DSLR. (k) KinD. (l) RetinexNet.

Figure A.4 Comparison of model enhancement for the detection stage on sample "2015_06574.jpg".
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Figure A.5 Ground Truth vs Direct vs After Enhancement for sample "2015_02448.jpg".

Figure A.6 Ground Truth vs Direct vs After Enhancement for sample "2015_02926.jpg".
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Figure A.7 Ground Truth vs Direct vs After Enhancement for sample "2015_06339.jpg".

Figure A.8 Ground Truth vs Direct vs After Enhancement for sample "2015_06574.jpg".
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