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Abstract 

This paper proposes a novel approach for generating artificial thermal images for induction motor faults using Wasserstein 
Generative Adversarial Network with Gradient Penalty (WGAN-GP) and Conditional Wasserstein Generative Adversarial 
Network with Gradient Penalty (cWGAN-GP) frameworks. Traditional fault classification methods based on vibration signals 
often require extensive preprocessing and are more susceptible to noise. In contrast, thermal images offer easier classification and 
require less preprocessing. However, challenges arise due to the limited availability of thermal images representing different fault 
conditions and data confidentiality. To overcome these challenges, this paper introduces the utilisation of WGAN-GP and cWGAN-
GP with health condition labels to create high-quality thermal images artificially. The results demonstrate that the cWGAN-GP 
approach is superior in generating thermal images that closely resemble real images of induction motors under various health 
conditions with a Maximum Mean Discrepancy (MMD) score of 1.023 compared to 1.078 using WGAN-GP. Furthermore, 
cWGAN-GP requires less training time (7.25 hours to train all health conditions classes) compared to WGAN-GP (12 hours to 
train the Inner fault class only) using NVIDIA V100. In addition to using EMD and MMD metrics for quantitative analysis of the 
GAN model, the evaluation process incorporated the expertise of a pre-trained CNN model, namely AlexNet, to assess cWGAN-
GP’s discriminative capabilities of the generated samples and their alignment with the real thermal images, which resulted in an 
overall accuracy of  98.41%. Therefore, these proposed approaches offer a promising solution to address the lack of public datasets 
containing induction motor thermal images representing different health states. By leveraging these models, it will be feasible to 
enhance induction motor condition monitoring systems and improve the process of fault diagnosis. 
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1. Introduction 

Induction Motors (IM) are considered essential parts in various industries, and 40%-50% of IM faults are due to 
rolling bearings. However, bearings are used to hold elements to maintain proper IM rotation. Bearings consist of 
inner and outer races and some rolling balls inside a cage that keeps balls at equal distances. In fact, faults happen 
gradually; the earlier the fault detection, the less impact and risk are likely to occur. As faults grow, they can reduce 
IM capabilities, put workers’ lives at risk, and alter operations quality [1]. Bearing vibration signal analysis is the 
traditional way of fault classification, where raw vibration signals are rarely used; hence, vibration signals need to be 
preprocessed using either time-domain analysis or frequency-domain analysis [2]. On the other hand, thermal images 
resulted in more accurate fault classification of up to 100% accuracy with less preprocessing time than vibration signal 
fault classification, as shown in [3] and [4]. Thermal images are more stable than vibration signals; hence, thermal 
images are less sensitive to speed fluctuation scenarios, making them more efficient [5].  

However, thermal images have certain drawbacks. For instance, the installation cost of cameras and the potential 
for camera misalignment can result in an inaccurate recognition process [6]. Furthermore, the limited availability of 
data and imbalanced distribution of thermal images across specific or all health conditions can significantly impact 
the performance of condition monitoring systems  [7]. To address these limitations, various oversampling techniques 
have been employed to generate additional samples from the minority classes. One such technique is the Synthetic 
Minority Oversampling Technique (SMOTE), which uses interpolation based on nearest neighbours. Another 
approach is the Adaptive Synthetic Sampling Technique (ADASYN) [8]. However, it's important to note that 
oversampling techniques can be susceptible to overfitting and noise creation, mainly when dealing with high-
dimensional and sparse data. These techniques may also generate samples that are more similar to the majority class 
rather than the desired class [9]. Moreover, while improving classification accuracy is a common approach, it may not 
be effective when the degree of imbalance is high unless more data is added to the training model [10]. Additionally, 
the expansion of image data through the inclusion of noise and local blur can be seen as an artificial preprocessing 
technique. However, it is important to note that these methods may not adequately capture the diversity present in the 
original samples and potentially hinder fault recognition [11]. In contrast, Generative Adversarial Networks (GANs) 
offer a new and promising approach to sample generation. GANs provide a framework for learning complex features 
from high-dimensional, imbalanced, and small dataset distributions, and they have been widely utilised in fault 
diagnosis applications [8, 9, 10, 11]. 

The selection of an appropriate GAN for generating artificial images of thermal induction motor health conditions 
is a critical aspect of this research. Previous studies in this field have been limited, with only a few papers released 
recently [12]. Commonly used GAN models in fault diagnoses,  such as Deep Convolutional GAN (DCGAN), 
Auxiliary Classifier GAN (ACGAN), Wasserstein GAN (WGAN), and variational auto-encoding GAN. However, it 
has been observed that the quality of data generated by the original GAN and improved DCGAN is still relatively low 
[10, 11]. However, the Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP) has 
demonstrated improved stability in training, prevention of mode collapse, and generation of high-quality images [13, 
14, 15]. WGAN-GP has also proven its effectiveness in fault sample generation [16] and supplementing low-
dimensional fault data [17].  The use of Wasserstein distance in WGAN provides a more meaningful measure of the 
difference between probability distributions and leads to better convergence by avoiding vanishing gradients [18]. 
Additionally, the training process in WGAN-GP does not require a careful balancing between the Generator and the 
Discriminator [19].  WGAN-GP has also been employed in the imbalance fault classification of bearings, overcoming 
convergence issues observed in the original GAN structures. WGAN-GP demonstrated faster convergence within 400 
iterations and improved model performance compared to the original WGAN, thanks to the gradient penalty [10].  

WGAN-GP was utilised to generate additional vibration signal spectra for imbalanced bearing fault classification 
problems, demonstrating improved convergence and faster training speed with the gradient penalty [5]. In 2022, GANs 
and convolutional neural networks were explored for imbalanced vibration signal datasets in induction motors, 
proving their efficiency. However, there was still room for improvement in utilising labelled data for induction motor 
fault classification, as models trained on generated data differed in accuracy compared to real data [20]. In January 
2023, a paper focused on WGAN-GP for creating vibration signals in the rotor-bearing system, showing high-quality 
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signal generation and increased diagnostic accuracy [21]. Another paper published in the same month generated 
thermal images for various health conditions in rotating machinery, achieving good results but suggesting the 
incorporation of label information in GANs training [5].  

The scarcity of induction motor datasets collected under diverse health conditions poses challenges due to data 
availability, confidentiality, and time constraints. While GANs have been used to generate additional tabular vibration 
data for condition monitoring, utilising GANs for thermal image synthesis in induction motor condition monitoring is 
a promising but relatively new research area. Hence, GANs are commonly employed to generate supplementary 
tabular vibration data, while thermal image condition monitoring offers more accurate results with minimal 
preprocessing steps due to their lower sensitivity to noise. 

Previous studies have primarily focused on creating artificial image models for each fault type separately, leaving 
a research gap. This paper aims to use conditional GANs to simultaneously create artificial thermal images for 
different health conditions in induction motors by incorporating health conditions as a new network input. 
Additionally, the traditional WGAN-GP and conditional WGAN-GP approaches will be compared to evaluate their 
effectiveness in improving the accuracy of generated thermal images, thereby enhancing the performance of the 
induction motor's condition monitoring system. 

The paper makes several significant contributions to the field of induction motor condition monitoring, including: 
1. Generating thermal images synthetically that correspond to various health conditions using WGAN-GP. 
2. Examining the effectiveness of training individual WGAN-GP models for each health state. 
3. Enhancing the quality of generated images and reducing the required training time by incorporating health 

state labels through cWGAN-GP. 
4. Comparing and contrasting the WGAN-GP and cWGAN-GP approaches using a combined assessment 

approach. 
This paper covers the theoretical background in section 2, the methodology, including model creation and collected 

dataset in section 3, the results and discussion in section 4, and the conclusion is found in section 5.  

2. Theoretical Background  

2.1. The introduction of  Generative Adversarial Networks (GANs) 

GANs are machine learning models that learn the distribution of each class without explicitly separating them 
into distinct classes like traditional techniques such as decision trees or support vector machines. Instead, GANs focus 
on generating new data points (𝑥𝑥) similar to the training data without considering the relationship between x and y, 
i.e., p(x|y). Training GANs involve updating the parameters of the Generator (G) and Discriminator (D) using 
optimisation methods like stochastic gradient descent (SGD), Adam, or RMSProp. The goal is to reach a Nash 
equilibrium, where D is no longer able to distinguish between real images 𝑥𝑥 and generated fake images(𝑥𝑥! = 𝐺𝐺(𝑧𝑧)) 
[22]. GANs have two probability distributions called 𝑃𝑃"	, the distribution from G's implicit distribution, and 𝑃𝑃$, the 
probability distribution of real images. The Discriminator outputs a number between 0 and 1, representing the 
probability that the input image is real, with a score close to 1 indicating a real image. The Generator and Discriminator 
are continuously updated to improve the model's ability to generate data closer to real images and discriminate between 
real and fake data using the objective Equation(1) [10]:  

 
min
%
max
&

𝑉𝑉(𝐷𝐷, 𝐺𝐺) =	 𝔼𝔼𝒙𝒙∽)!(+)[log(𝐷𝐷(𝑥𝑥))] +	𝔼𝔼𝒛𝒛∽)"(.)[log(1 − 𝐷𝐷(𝐺𝐺(𝑧𝑧)))] (1) 

Equation(1) consists of two terms; G takes a noise vector z sampled from a prior distribution 𝑃𝑃.	and generates a 
sample G(z) in the target data distribution. D takes a sample 𝑥𝑥 from either the real data distribution 𝑃𝑃$	or the generated 
data distribution 𝑃𝑃. (i.e., D(G(z))), and outputs a probability score indicating whether the input is a real or fake sample. 
The first term in the equation is the expected value of the logarithm of D’s output on real samples 𝑥𝑥, while the second 
term is the expected value of the logarithm of D’s output on fake samples G(z) [10].  

2.2. Wasserstein GAN (WGAN) 

WGAN differs from other GANs by not using a sigmoid at the end of the model and using the Wasserstein 
distance metric (EMD) as its loss function instead of the Jensen-Shannon Divergence (JSD) used in traditional GAN 
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models. In WGAN, D is called a "critic" because it evaluates the quality of generated samples by assigning them a 
score or "criticism" rather than classifying inputs as real or fake [13]. Equation(2) consists of two parts. In the first 
part, the critic applies the function f to a real image x from the real probability distribution. In the second part, x is 
taken from G’s output, which is generated from a latent noise vector, and then the critic is applied to the generated 
image. The critic is constrained with max

‖0‖123
, ensuring the function is Lipchitz continuous. This constraint is important 

for the critic to differentiate between real and generated samples. The critic estimates the Wasserstein distance between 
the real and generated data distributions, guiding G to generate more realistic samples. The critic aims to maximise 
the expression, while G aims to minimise this distance [18]. 

 
max
‖0‖123

𝔼𝔼+~)![𝑓𝑓(𝑥𝑥)] −	𝔼𝔼+~)#[𝑓𝑓(𝑥𝑥)] (2) 

2.3. Wasserstein GAN with Gradient Panelty (WGAN-GP) 

WGAN-GP addresses the limitations of weight clipping in regular WGAN. Instead of weight clipping, Gradient 
Penalty (GP) is used to enforce the Lipschitz constraint on the critic. WGAN-GP, introduced in 2017 by Arjovsky et 
al. [13, 18], improves stability, resolves mode collapse, and optimises hyperparameters in training. It measures the 
difference between generated and real images using the Wasserstein distance metric. Additionally, the algorithm 
includes a gradient penalty term in the critic for smoothness. The number of generator and critic iterations, as well as 
the strength of the gradient penalty, can be adjusted using a lambda term [23]. 

2.4. Conditional WGAN-GP (cWGAN-GP) 

cWGAN-GP is an extension of traditional GANs called Conditional Generative Adversarial Networks (CGAN). 
It introduces an additional input, denoted as 𝑦𝑦, to the network, which can represent additional information such as 
class names, data from another model, vectors, or images. This conditional factor adds a new dimension to the min-
max game between G and D [24]. 

 The objective function of cWGAN-GP, as shown in  Equation(3), involves D outputting a high value when given 
real data point x conditioned on a label y drawn from the true distribution 𝑃𝑃$ [22, 24]. The second part of the objective 
function calculates the expected value of the logarithm of D’s output when given a fake data point generated by G 
using a noise vector z drawn from a prior distribution P(z) conditioned on the same label y [24]. The goal is to optimise 
G and D to minimise this objective function, generating high-quality conditional samples. 

 
min
%
max
&

𝑉𝑉(𝐷𝐷, 𝐺𝐺) =	 𝔼𝔼𝒙𝒙∽)!(+)[log(𝐷𝐷(𝑥𝑥|𝑦𝑦))] +	𝔼𝔼𝒛𝒛∽)"(.)[log(1 − 𝐺𝐺(𝑧𝑧|𝑦𝑦))] (3) 

2.5. GAN Performance Evaluation Measures: Generated Images Similarity Assessment Approaches 

Evaluating GAN performance is challenging due to the lack of standardised metrics and the subjectivity of human 
visual evaluation, although visual similarity assessment is used in collaboration with other quantitative metrics [5, 7]. 
This section explores the utilisation of non-visual quantitative metrics for assessing image similarity, providing 
insights into the quality, diversity, and similarity of generated images using GAN compared to real images. 
Additionally, the section discusses the utilisation of pre-trained CNN models for non-visual image similarity 
assessment. 

2.5.1  Generated Images Similarity Assessment: GAN Similarity Metrics  

• Fr´echet Inception Distance (FID)  

FID was introduced by Heusel et al. in 2017. It measures the distance between the real distribution and the 
distribution generated by the trained model. It is computed using Equation(4), where, 𝜇𝜇$ and 𝜇𝜇" are the mean value 
for real images and generated images, respectively, and 𝐶𝐶$ and 𝐶𝐶" are the covariance of the image features [7]. A 
lower FID indicates a better model with images closer to real ones. Hence, FID fits a Gaussian distribution to the 
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hidden activation of InceptionNet for each image set and computes the Fr’echet Distance (also known as Wasserstein-
2 distance) between the Gaussians [25]. 

 

• Maximum Mean Discrepancy (MMD) 

Measures the dissimilarities between generated and real images by capturing independent samples from each 
distribution. It quantifies the distance between the actual distribution and the generated distribution, with a lower score 
indicating better model performance [14].  Equation(5) presents the MMD score using the Gaussian kernel.	𝑃𝑃$ and 	𝑃𝑃" 
represents the real and generated image distribution, respectively, while x and y are samples drawn from these 
distributions. The first term captures the similarity of samples within the real distribution 𝑃𝑃$, the second term measures 
the similarity between samples from the real and generated distributions v and 𝑃𝑃", and the third term assesses the 
similarity of samples within the generated distribution 𝑃𝑃"	[26]. 

 

• Earth Mover’s Distance (EMD) 

Also known as the Wasserstein distance, EMD measures the distance between two probability distributions [26]. 
It represents the minimum amount of work or effort needed to transform one distribution into another [15].  
Equation(6) defines EMD, where 𝛾𝛾 is a transport plan specifying the amount of mass to be transported from each point 
in 𝑃𝑃$to each point in 𝑃𝑃". ∏A𝑃𝑃$ , 𝑃𝑃"B represents the set of all joint distributions, and 𝛾𝛾(𝑥𝑥, 𝑦𝑦) indicates the amount of work 
needed to transform the distributions Pr into Pg from point 𝑥𝑥 to point 𝑦𝑦. The The Wasserstein distance is calculated 
as the infimum (greatest lower bound) of the expected distance ǁx-yǁ between randomly sampled pairs of points (𝑥𝑥, 𝑦𝑦) 
from γ [19]. 

 

2.5.2  Generated Images Similarity Assessment: CNN Deep Learning Classification Models  

Classification problems involve mapping inputs to outputs, typically achieved through supervised learning. After 
training a classification model, its quality of learning is evaluated by testing it on unseen data and predicting the 
respective classes. Alternatively, pre-trained CNN models can be used to assess the similarity between generated and 
real images. This involves training the pre-trained model on an artificial image dataset and evaluating its performance 
on a real dataset [27]. Transfer learning offers an efficient approach by leveraging knowledge from a source domain 
to a target domain, allowing customisation of the CNN architecture based on the selected dataset [1]. Various CNN 
architectures have been employed, including ResNet152V2, MobileNetV2, and AlexNet [27]. Evaluation of deep 
transfer learning models commonly utilises accuracy Equation(7), precision Equation(8), and recall Equation(9) 
metrics. These Metrics rely on the correct classification of true positives (TP) and true negatives (TN), representing 
accurate identification of positive and negative instances. Additionally, they consider false positives (FP) and false 
negatives (FN), which refer to the incorrect classification of negative and positive instances, respectively . 

 

Accuracy = (TP	+	TN)/(TP	+	FN	+	TN	+	FP) (7) 
Precision	=	TP/TP	+	FP	 (8) 
Recall	=	TP/TP	+	FN	 (9) 

3. Methodology 

3.1. Dataset Used 

The data used in this study were captured in the Wolfson Magnetics Laboratory at Cardiff University School of 
Engineering, using a Forward Looking InfraRed (FLIR) thermal camera positioned 30cm from the centre of the 

𝐹𝐹𝐹𝐹𝐹𝐹A𝑃𝑃$ , 𝑃𝑃"B = 	O𝜇𝜇$ − 𝜇𝜇"O + 𝑇𝑇𝑇𝑇(𝐶𝐶$ + 𝐶𝐶" − 2(𝐶𝐶$𝐶𝐶"))3 5⁄  (4) 

𝑀𝑀𝑀𝑀𝐹𝐹A𝑃𝑃$ , 𝑃𝑃"B = 	𝔼𝔼+,+!∽)![𝑘𝑘(𝑥𝑥, 𝑥𝑥
!)] − 2𝔼𝔼+,+$∽)!,8∽)#[𝑘𝑘(𝑥𝑥, 𝑦𝑦)] +	𝔼𝔼8,8!∽)#[𝑘𝑘(𝑦𝑦, 𝑦𝑦

!)] (5) 
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models. In WGAN, D is called a "critic" because it evaluates the quality of generated samples by assigning them a 
score or "criticism" rather than classifying inputs as real or fake [13]. Equation(2) consists of two parts. In the first 
part, the critic applies the function f to a real image x from the real probability distribution. In the second part, x is 
taken from G’s output, which is generated from a latent noise vector, and then the critic is applied to the generated 
image. The critic is constrained with max

‖0‖123
, ensuring the function is Lipchitz continuous. This constraint is important 

for the critic to differentiate between real and generated samples. The critic estimates the Wasserstein distance between 
the real and generated data distributions, guiding G to generate more realistic samples. The critic aims to maximise 
the expression, while G aims to minimise this distance [18]. 
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Fig.  1. Thermal images for all the faults and healthy condition: (a) 8bars; (b)Inner; (c) Outer; (d) Ball; (e ) 4bars; (f) Healthy; and (g) 1bar. 

 
 

housing. The camera was connected to a computer to capture images of six artificially induced faults and one healthy 
or normal condition, as shown in Fig. 1. A total of 120 images was captured under three load types, resulting in 360 
images per condition [1, 28]. 

 

 
 

3.2. Models creation 

This paper has trained four WGAN-GP models for Inner, Outer, 8bars and healthy. Then all health conditions 
were trained together using the cWGAN-GP model to generate high-quality artificial thermal images of the induction 
motor under various health conditions. Two resolutions were generated: 32x32 as a baseline for quick and easy 
comparisons between different GAN architectures and 128x128 for higher resolution outputs. In the following 
sections, the proposed WGAN-GP and cWGAN-GP frameworks will be presented.  

3.2.1.  Proposed Wasserstein GAN with Gradient Penalty (WGAN-GP) Framework 

Fig.  2 illustrates the overall WGAN-GP framework for generating thermal images of induction motors under 
various health conditions. The framework involves training D and G to produce realistic images. D distinguishes 
between real and fake images, while  G generates images to fool D. The loss function is based on the Wasserstein 
distance between the distributions of real and fake images with a  gradient penalty to control D’s power. Training 
alternates between D and G until convergence. The Generator is a neural network that takes a 100-dimensional latent 
vector as input and uses transpose convolutional layers to generate images of size Cx128x128, where C is the number 
of channels. The model uses a main module consisting of several convolutional layers followed by a Tanh activation 
function to generate the image. The output of the main module is then passed through the Tanh function to normalise 
the pixel values between -1 and 1.  D is a neural network with three layers of filters (256, 512, 1024), taking images 
of size 128x128, with C channels and outputting a single value indicating real or fake. The input image is passed 
through a sequential module and then flattened to be fed into a fully connected layer.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.  2. The Proposed Wasserstein GAN with Gradient Penalty (WGAN-GP) Framework 

 
3.2.2.  Proposed Conditional Wasserstein GAN with Gradient Penalty (WGAN-GP) 

To enhance the generation of induction motor thermal images under different health conditions, we introduce 
cWGAN-GP. This approach incorporates label information into the model inputs, enabling G and D networks to 
generate class-specific images that benefit from patterns of other classes, leading to faster convergence. Fig.  3 
illustrates the cWGAN-GP framework, which includes a condition vector as input for both G and D networks, 
representing the image class. The loss function incorporates the Wasserstein distance and a gradient penalty term for 

a             b                  c               d            e                     f                     g
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smoothness in D. The Generator in the cWGAN-GP framework is similar to WGAN-GP, with the addition of a one-
hot encoded condition vector representing all health state classes. It takes a concatenated input of the latent vector and 

condition vector, using transpose convolutional layers to generate Cx128x128 images. The model includes a main 
module with convolutional layers and a Tanh activation function. The Discriminator in cWGAN-GP is similar to 
WGAN-GP, with the addition of a condition vector concatenated with the input image, resulting in an input shape of 
(10, 128, 128) after combining the label information. The output of D is a single value indicating real or fake. 

          Fig.  3. The proposed Conditional Wasserstein GAN with Gradient Penalty (cWGAN-GP) Framework 
 
4. Results and discussion  

4.1 Generated Images Similarity Assessment: Visual Quality Assessment  

 The WGAN-GP and cWGAN-GP approaches yielded promising results in generating realistic thermal images. 
The cWGAN-GP approach, which incorporates class information, demonstrated further improvements in image 
generation, allowing for better control over the generated images. Fig. 4 showcases generated images using the 
cWGAN-GP approach, exhibiting a resolution of 128x128 and belonging to seven different health condition classes. 
Meanwhile, Fig. 5 presents generated images using the WGAN-GP approach, with a resolution of 128x128 and 
belonging to the healthy condition class. Visually, both sets of generated images demonstrate a high degree of 
variability and closely resemble real motor thermal images. However, additional quantitative assessment is needed. 

Fig.  4. Generated Images with Resolution 128x128 using cWGAN-GP. Each row represents a different health condition class from row one to 
row seven, representing 8 bars, Inner, Outer, Ball, 4 bars, Healthy, and 1 bar, respectively. 

 
 

 

 

Fig.  5. Generated images (class: Healthy) with resolution 128x128 using WGAN-GP 
 

4.2 Generated Images Similarity Assessment: GAN Similarity Metrics (MMD, EMD) 

Different evaluation scores serve different purposes in assessing image generation, considering both similarities 
and diversities between real and generated images which was discussed in section 2.5. FID measures image similarities 
by utilising the Inception network to extract and compare features. However, FID scores can be misleading if the 
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Inception network is biased or mismatched, particularly when working with datasets lacking visual diversity or 
exhibiting high similarity. In contrast, EMD and MMD are robust metrics that focus on comparing distributions. They 
allow for evaluating the similarity between generated samples and the real data distribution, even when visual 
appearances may appear similar to the human eye. EMD measures the distance between probability distributions, 
while MMD quantifies the distance between sets of data, capturing their statistical properties [26, 29, 30, 31]. 

Thermal images present unique challenges for human visual perception, necessitating a comprehensive 
evaluation. This section compares the WGAN-GP and cWGAN-GP approaches for generating thermal images of 
induction motors under various health conditions. Two evaluation metrics, EMD and MMD, are used to assess the 
similarity between generated and real images. The experiments were conducted using NVIDIA T4 and NVIDIA V100 
GPUs with different training times and epochs. The NVIDIA V100 GPU demonstrated superior performance, 
processing nearly three times faster than the NVIDIA T4 GPU. All experiments were performed on Google Colab 
Pro, utilising the allocated GPUs. 

Table 1 provides a detailed performance comparison of the WGAN-GP and cWGAN-GP approaches. Initially, 
WGAN-GP trained models for each health condition, starting with a 32x32 resolution for the Inner fault class as a 
baseline. Subsequently, the scope expanded to include four health condition classes. Training duration and epochs 
varied for each condition, ranging from 18.5 hours for Inner and Outer faults to 36 hours for 8-bar faults. The training 
was terminated based on plateaued evaluation metrics and visually acceptable generated images. While training 
individual models resulted in high-quality 128x128 images, it required substantial time that varies per health condition; 
for instance, the Outer fault condition model took more than one day. 

 

Table  1. Comparison of GPU types, training time, epochs, FID, MMD, EMD, resolution, class name, and method used for generating synthetic 
images. The table includes results for four different classes using WGAN-GP and all seven classes using Conditional WGAN-GP. 

 

In contrast, the cWGAN-GP approach trained all fault types together, reducing overall training time and 
increasing efficiency. WGAN-GP evaluation indices represent the average of four conditions, while cWGAN-GP 
evaluation indices represent the average of all conditions. The EMD metric quantifies dissimilarity in terms of spatial 
alignment and intensity variations. WGAN-GP achieved a lower average EMD score of 4.663 for four conditions 
compared to cWGAN-GP's score of 4.816 for all conditions, indicating a slightly higher degree of similarity between 
the generated and real images in terms of spatial alignment and intensity characteristics. 

The MMD metric compares the mean feature representations of real and generated image distributions. cWGAN-
GP obtained a lower MMD score of 1.023, suggesting a better capture of real image characteristics, while WGAN-
GP had a slightly higher score of 1.078. Thus, the cWGAN-GP approach outperforms the WGAN-GP approach in 
capturing the distribution and characteristics of real images. Additionally, the cWGAN-GP approach's advantage lies 
in training all fault types together, reducing the overall training time and increasing methodology efficiency. 

GPU Type Training Time (Hours) Epochs MMD EMD Resolution Class Name Method 
NVIDIA T4 4.5 5000 0.24 0.32 32x32 Inner WGAN-GP 

NVIDIA V100 12 10000 1.10 4.64 128x128  Inner 
NVIDIA T4 18.5 5000 1.07 4.70 Healthy 
NVIDIA T4 18.5 5000 1.10 4.72 Outer 
NVIDIA T4 36 10000 1.04 4.59 8 bars 

      1.078 4.663 Average (8bars, Inner, Outer, Healthy)(128x128) 
NVIDIA T4 11 10000 0.21 0.29 32x32 Inner Conditional-

WGAN-GP 0.59 0.18 8 bars 
0.81 0.13 Outer 
0.25 0.18 Ball 
0.66 0.15 4 bars 
0.30 0.21 Healthy 
0.31 0.21 1bar 
0.09 0.12 All Classes 

NVIDIA V100 7.25 10000 1.07 4.83 128x128 Inner 
1.02 4.78 8 bars 
1.01 4.74 Outer 
1.26 4.80 Ball 
1.08 4.75 4 bars 
0.99 4.88 Healthy 
1.23 5.08 1 bar 
1.13 4.70 All Classes 

      1.023 4.816 Average (8bars, Inner, Outer, Healthy)(128x128) 
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Considering the better similarity scores (MMD) achieved by the cWGAN-GP approach and its reduced training time, 
it can be concluded that the cWGAN-GP approach is superior to the WGAN-GP approach in generating thermal 
images that closely resemble real images of induction motors under various health conditions while also being more 
efficient in terms of training time. 
 

4.3 Generated  Images Similarity Assessment: Pre-Trained AlexNet Classification  

To further enhance the evaluation process, a pre-trained CNN model called AlexNet was used, using the 
Stochastic Gradient Descent with Momentum (SGDM) optimiser and 0.0001 Learning Rate (LR) with seven classes 
(health conditions) and 56.8M total learnable parameters. These parameters include weights and biases associated 
with the layers in the network. By leveraging the knowledge and features learned by AlexNet from large-scale image 
classification tasks, we can evaluate the generated samples based on their classification accuracy or other relevant 
metrics. This approach enables us to assess the discriminative capabilities of the generated samples and their alignment 
with the real data distribution. In which an artificial dataset was generated using cWGAN-GP has 288 images per 
health condition, then was divided randomly into 80% training and 20% validation, then tested on unseen original lab-
collected images and resulted in 98.41% overall classification accuracy, 98.41% precision and 98.49% recall. 
However, Table 2 shows the accuracy per health condition type as follows:  

 

Table   2. Accuracy per health condition using AlexNet 

 

5. Conclusion 

This study explored and compared two frameworks, namely WGAN-GP and cWGAN-GP, for generating 
artificial thermal images of induction motors with different health conditions. The evaluation process of comparing 
the similarity between the real images and the artificially created images included visual quality assessment, evaluation 
using GAN similarity metrics (MMD and EMD), and classification using a pre-trained AlexNet model. Both 
approaches produced high-quality thermal images that closely resembled real motor images when visually and 
qualitatively evaluated. Quantitatively, the generated images were evaluated using two similarity metrics, EMD and 
MMD. While WGAN-GP achieved a slightly better EMD score of 4.663 for four conditions compared to cWGAN-
GP's score of 4.816 for all conditions, cWGAN-GP obtained a lower MMD score of 1.023, indicating a closer 
resemblance to real images in terms of statistical properties. This suggests that the generated images from cWGAN-
GP exhibit similar texture, shape, and overall distribution as observed in the real images. To further validate the 
generated images, a pre-trained AlexNet model was utilised for classification on the cWGAN-GP dataset, which 
achieved an overall classification accuracy of 98.41% as well as higher accuracy rates for some health conditions. In 
conclusion, the cWGAN-GP approach proved to be superior in generating thermal images that closely resemble real 
images of induction motors with various health conditions. Its ability to incorporate class information facilitated faster 
convergence, pattern recognition, and diversity in image generation. The proposed approach achieved a higher 
similarity MMD score, reduced training time, and demonstrated high classification accuracy on real datasets, whereby 
highlighting its effectiveness and efficiency. These findings have contributed to the field of thermal image generation 
and demonstrate the potential for applications in motor condition monitoring and fault diagnosis. Future research will 
prioritise practical applications and advancements in fault diagnosis in real-world scenarios. Specifically, it will 
explore adapting the models to handle noise in thermal images, like camera rotation, and utilising data augmentation 
techniques to generate scenario-specific thermal images. These efforts, which aim to streamline condition monitoring 
systems to enhance fault detection and diagnosis, will offer reliable alternatives or support to vibration-based methods 
in induction motor condition monitoring. 
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Inception network is biased or mismatched, particularly when working with datasets lacking visual diversity or 
exhibiting high similarity. In contrast, EMD and MMD are robust metrics that focus on comparing distributions. They 
allow for evaluating the similarity between generated samples and the real data distribution, even when visual 
appearances may appear similar to the human eye. EMD measures the distance between probability distributions, 
while MMD quantifies the distance between sets of data, capturing their statistical properties [26, 29, 30, 31]. 

Thermal images present unique challenges for human visual perception, necessitating a comprehensive 
evaluation. This section compares the WGAN-GP and cWGAN-GP approaches for generating thermal images of 
induction motors under various health conditions. Two evaluation metrics, EMD and MMD, are used to assess the 
similarity between generated and real images. The experiments were conducted using NVIDIA T4 and NVIDIA V100 
GPUs with different training times and epochs. The NVIDIA V100 GPU demonstrated superior performance, 
processing nearly three times faster than the NVIDIA T4 GPU. All experiments were performed on Google Colab 
Pro, utilising the allocated GPUs. 

Table 1 provides a detailed performance comparison of the WGAN-GP and cWGAN-GP approaches. Initially, 
WGAN-GP trained models for each health condition, starting with a 32x32 resolution for the Inner fault class as a 
baseline. Subsequently, the scope expanded to include four health condition classes. Training duration and epochs 
varied for each condition, ranging from 18.5 hours for Inner and Outer faults to 36 hours for 8-bar faults. The training 
was terminated based on plateaued evaluation metrics and visually acceptable generated images. While training 
individual models resulted in high-quality 128x128 images, it required substantial time that varies per health condition; 
for instance, the Outer fault condition model took more than one day. 

 

Table  1. Comparison of GPU types, training time, epochs, FID, MMD, EMD, resolution, class name, and method used for generating synthetic 
images. The table includes results for four different classes using WGAN-GP and all seven classes using Conditional WGAN-GP. 

 

In contrast, the cWGAN-GP approach trained all fault types together, reducing overall training time and 
increasing efficiency. WGAN-GP evaluation indices represent the average of four conditions, while cWGAN-GP 
evaluation indices represent the average of all conditions. The EMD metric quantifies dissimilarity in terms of spatial 
alignment and intensity variations. WGAN-GP achieved a lower average EMD score of 4.663 for four conditions 
compared to cWGAN-GP's score of 4.816 for all conditions, indicating a slightly higher degree of similarity between 
the generated and real images in terms of spatial alignment and intensity characteristics. 

The MMD metric compares the mean feature representations of real and generated image distributions. cWGAN-
GP obtained a lower MMD score of 1.023, suggesting a better capture of real image characteristics, while WGAN-
GP had a slightly higher score of 1.078. Thus, the cWGAN-GP approach outperforms the WGAN-GP approach in 
capturing the distribution and characteristics of real images. Additionally, the cWGAN-GP approach's advantage lies 
in training all fault types together, reducing the overall training time and increasing methodology efficiency. 

GPU Type Training Time (Hours) Epochs MMD EMD Resolution Class Name Method 
NVIDIA T4 4.5 5000 0.24 0.32 32x32 Inner WGAN-GP 

NVIDIA V100 12 10000 1.10 4.64 128x128  Inner 
NVIDIA T4 18.5 5000 1.07 4.70 Healthy 
NVIDIA T4 18.5 5000 1.10 4.72 Outer 
NVIDIA T4 36 10000 1.04 4.59 8 bars 

      1.078 4.663 Average (8bars, Inner, Outer, Healthy)(128x128) 
NVIDIA T4 11 10000 0.21 0.29 32x32 Inner Conditional-

WGAN-GP 0.59 0.18 8 bars 
0.81 0.13 Outer 
0.25 0.18 Ball 
0.66 0.15 4 bars 
0.30 0.21 Healthy 
0.31 0.21 1bar 
0.09 0.12 All Classes 

NVIDIA V100 7.25 10000 1.07 4.83 128x128 Inner 
1.02 4.78 8 bars 
1.01 4.74 Outer 
1.26 4.80 Ball 
1.08 4.75 4 bars 
0.99 4.88 Healthy 
1.23 5.08 1 bar 
1.13 4.70 All Classes 

      1.023 4.816 Average (8bars, Inner, Outer, Healthy)(128x128) 
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