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A B S T R A C T   

Objective: Coreference resolution (CR) is a natural language processing (NLP) task that is concerned with finding 
all expressions within a single document that refer to the same entity. This makes it crucial in supporting 
downstream NLP tasks such as summarization, question answering and information extraction. Despite great 
progress in CR, our experiments have highlighted a substandard performance of the existing open-source CR 
tools in the clinical domain. We set out to explore some practical solutions to fine-tune their performance on 
clinical data. 
Methods: We first explored the possibility of automatically producing silver standards following the success of 
such an approach in other clinical NLP tasks. We designed an ensemble approach that leverages multiple models 
to automatically annotate co-referring mentions. Subsequently, we looked into other ways of incorporating 
human feedback to improve the performance of an existing neural network approach. We proposed a semi- 
automatic annotation process to facilitate the manual annotation process. We also compared the effectiveness 
of active learning relative to random sampling in an effort to further reduce the cost of manual annotation. 
Results: Our experiments demonstrated that the silver standard approach was ineffective in fine-tuning the CR 
models. Our results indicated that active learning should also be applied with caution. The semi-automatic 
annotation approach combined with continued training was found to be well suited for the rapid transfer of 
CR models under low-resource conditions. The ensemble approach demonstrated a potential to further improve 
accuracy by leveraging multiple fine-tuned models. 
Conclusion: Overall, we have effectively transferred a general CR model to a clinical domain. Our findings based 
on extensive experimentation have been summarized into practical suggestions for rapid transferring of CR 
models across different styles of clinical narratives.   

1. Introduction 

The main aim of this study is to identify a practical solution for 
rapidly developing coreference resolution (CR) models for a specific 
style of clinical narratives. We will demonstrate a proof of concept using 
radiology reports as a case study. This choice has been motivated by the 
vital role these reports play in patient care as referring clinicians use 
them to determine an appropriate course of action. Narrative radiology 
reports vary excessively in their language, length and style, which may 
affect their clarity and hence the referring clinicians’ decision-making 
[1]. These issues gave rise to an idea of structured reporting, which 
has the potential for improving the clarity of radiology reports. Auto-
mated structuring of narrative reports can facilitate extraction, storage 
and retrieval of information they describe [2]. CR, which aims to 
explicitly link up all expressions that mention the same entity [3] (see 
Fig. 1 for examples), is necessary to identify sentences that belong to 

topically cohesive observations of a structured report. 
A variety of CR models have been integrated into popular open- 

source natural language processing (NLP) tools. For example, Stanford 
CoreNLP [4] alone incorporates three methodologically different CR 
approaches: statistical [5], deterministic [6] and neural [7]. The most 
recent trend in NLP towards neural network approaches can also be 
observed in CR. A CR model based on SpanBERT [8] has been incor-
porated into spaCy [9] and AllenNLP [10]. These NLP tools are generic 
and as such their performance does not necessarily translate into 
specialized domains such as the clinical one [11]. Even within a single 
domain, sublanguages can vary [12], which means that when a model is 
trained within a domain, its performance may still vary across different 
types of documents. 

Nonetheless, fine-tuning an existing CR model to previously unseen 
data represents a cost-effective strategy. Fine-tuning can be imple-
mented by simply injecting a small subset of newly annotated data into 
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the training set. However, manual annotation of the gold standard data 
has been identified as a major bottleneck in machine learning ap-
proaches to clinical NLP [13]. In an attempt to bypass this bottleneck, 
we explored a possibility of automatically producing silver standards 
following the success of such an approach in other clinical NLP tasks 
[14–17]. Unfortunately, our experiments demonstrated that this 
approach negatively impacted the performance of a fine-tuned model. 

We subsequently manually annotated two gold standards. One gold 
standard was based on random sampling and the other on active 
learning, which had been shown to be effective in training a CR model 
[18]. To facilitate the manual annotation process, we proposed a semi- 
automatic annotation process. We used a pre-trained CR model to 
annotate the new data before passing them to human annotators for 
curation. Our experiments have demonstrated improved consistency 
and efficiency of human annotation as well as the improved perfor-
mance of a fine-tuned model. In an attempt to further improve accuracy, 
we leveraged multiple fine-tuned models in an ensemble approach. In 
the remainder of the paper, we provide specific details of the suggested 
approaches and compare their results in order to suggest the best 
practices for rapid fine-tuning of existing CR models for different styles 
of clinical narratives. 

2. Related work 

In 2017, Lee et al. [19] proposed an end-to-end neural CR model, 
which used a long short-term memory (LSTM) encoder. The success of 
large language models (LLMs) in NLP has also seen widespread devel-
opment of neural-based CR models. The benchmark of neural-based CR 
systems on the OntoNotes dataset [20] has been improved from the early 
65.7 % CoNLL F1-score [7] to the current 81 % [21]. These models have 
been routinely employed by open-source NLP tools. For example, the 
most recent updates were found in the spaCy and AllenNLP, both of 
which were based on SpanBERT [8] and c2f-coref model [22], which 
achieved 79.6 % F1-score on OntoNotes. 

To enhance a CR model to handle unseen data, Toshniwal et al. [23] 
proposed joint training to improve the generalization ability of a CR 
model. Their joint model achieved 70 % F1-score on average on three 
known datasets (used for joint training) and five unknown datasets (used 
only for testing) while achieving 79.6 % on OntoNotes. However, on the 
five general domain datasets that did not participate in the training, the 
F1 score improved modestly from 59.0 % to 64.1 %. On the other hand, 
Zhang et al. [17] designed an interesting joint training pipeline for 
syntactic analysis (SA) tasks, achieving high-quality predictions on un-
annotated clinical data. They utilized a general SA model to annotate 
clinical notes. The silver-standard data were then merged with the 
original training data. Subsequently, they re-trained the model and 

improved the labelled attachment score [24] from 76.0 % to 82.8 %. 
Notably, the test set on which they evaluated the model was annotated 
by the model itself, which might not correctly represent the model’s 
performance due to its bias. 

To evaluate LLMs on domain-specific CR, Lu and Poesio [3] con-
ducted comparative experiments on biomedical coreference corpora 
(CRAFT-CR) using a general-domain SpanBERT and BERT variants pre- 
trained on biomedical data. Their results showed that the general 
SpanBERT model (F1 = 47.8 %) is superior to the biomedical variants of 
BERT (with F1-scores ranging from 27.4 % to 45.3 %). As a long- 
sequence transformer model, Longformer [25] is a better alternative 
to SpanBERT for CR and has been shown to generalize better on this task 
[23]. 

Yuan et al. [18] explored the practical adaptation of active learning 
in general domain CR. They pointed out that different uncertainty-based 
query strategies may be suitable for different datasets, but in any case, 
perform better than a random query strategy. Moreover, due to the time 
consumption in understanding the context, they encouraged annotators 
to do comprehensive document annotation instead of trying to rapidly 
go through many documents with incomplete annotation. 

3. Methods 

The methods described here are designed to answer the following 
research questions. First, are pre-trained models appropriate for 
domain-specific CR? Second, can existing CR models be fine-tuned for a 
specific domain? If so, what would be the most effective data annotation 
strategy? Specifically, is manual annotation more effective than semi- 
automatic annotation where training data are annotated automatically 
by a pre-trained model and then curated manually? When manually 
annotating data, is active learning more effective than random sampling 
of training data? When automatically annotating training data, does an 
ensemble approach improve the accuracy of annotation? When adding 
new datasets, which training strategy is most effective? To answer these 
questions, we first need to select a pre-trained CR model and the source 
of data to annotate in order to fine-tune the given model. 

3.1. Pre-trained model 

Many of the recent well-performing CR models were built upon 
various LLMs and achieved very similar performances, including c2f- 
coref [22] + SpanBERT [8] (F1 = 79.6 %), Longdoc [23] + Long-
former [25] (F1 = 79.6 %) and wl-coref [21] + RoBERTa [26] (F1 =
80.0 %). Furthermore, Lu and Poesio [3] discovered that SpanBERT 
outperformed other biomedical variants of BERT. The above evidence 
suggests that these recent LLM-based models may also be eligible for the 

Fig. 1. Examples of coreferences in a radiology report. A coreference mention is represented as a continuous span. Coreference mentions with the same colour refer 
to the same entity, and thus belong to the same coreference cluster. 
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clinical domain. Given their similar performance, we selected Longdoc 
as it naturally supports joint training with better generalization ability 
and better adaptation for longer text. 

Longdoc has three components: a document encoder, a mention 
proposer and a mention cluster predictor. It uses Longformer-large [25], 
a long-sequence transformer-based model, to encode documents. The 
mention proposer and the mention cluster predictor are two stacked 
feed-forward neural networks (FFNNs). Given a candidate mention span 
x, and a mention entity e that is currently being tracked by the model, 
the proposer and predictor work as follow: 

sm(x) = FFNNm(gx) (1)  

sc(x, e) = FFNNc(gx, ge, gx ⊙ ge,ϕ(x, e) ) + sm(x) (2)  

where gx is the representation of a span x produced by the document 
encoder, sm(x) is the mention score representing the likelihood that the 
span x constitutes a mention, and sc(x, y) is the pairwise scoring function 
that decides whether the span x refers to any of the active entities e. The 
symbol ⊙ represents an element-wise product, and ϕ(x, e) concatenates 
the feature embeddings of the span x and the entity e. After that, a 
memory-based decision is activated if the span x does not refer to any 
entity. We selected the unbounded memory setting in our study. The 
whole model was jointly fine-tuned on three general domain datasets: 
OntoNotes [20], PreCo [27], and LitBank [28]. Further details are 
available in the original studies [23,29]. 

3.2. Data sources 

We identified three public datasets relevant to this study, including 
OntoNotes 5.0 [20], i2b2 [30] and MIMIC-CXR (Medical Information 
Mart for Intensive Care Chest X-ray) [31,32]. 

OntoNotes 5.0 [20] is a widely-used general-domain dataset for 
developing CR models. We used its English subset which has 3,493 
manually annotated documents comprising seven genres of texts such as 
news weblogs, broadcast and so on. There are 2808 training, 343 vali-
dation, and 348 test documents. 

Recall that our aim is to use radiology reports as a case study to 
demonstrate how a CR model can be fine-tuned to perform well in a new 
clinical domain. Therefore, we need to introduce clinical data into the 
training phase. The fifth i2b2/VA challenge [30] was based on a clinical- 
domain dataset with manually annotated coreferences. It originally 
contained 814 de-identified hospital discharge summaries, but only 424 
of these documents were available for download via DBMI Data Portal 
[33]. We split the dataset into training, validation and test sets, which 
contain 296, 84 and 44 documents, respectively. 

As discharge summaries differ in their content and structure from 
radiology reports, we naturally wanted to incorporate radiology reports 
into the training data but also evaluate the performance of the CR model 
in this domain. Not surprisingly, we were not able to identify a pre- 
annotated dataset in this domain. The most appropriate raw data set 
available was MIMIC-CXR, which consists of 377,110 images and free- 
text report pairs corresponding to 227,835 radiographic exams. Only 
the reports were used in our study. More specifically, we segmented 
them into sections, and only retained the Findings and the Impression 
sections, which provided a total of 156,011 and 189,465 text snippets, 
respectively. The raw text was tokenized by spaCy [9]. The following 
section describes how this dataset was annotated. 

3.3. Data annotation 

In machine learning, annotated data are typically used to evaluate 
the performance of predictive models. A gold standard is commonly 
created by manual annotation whose quality is measured by inter- 
annotator agreement. Alternatively, a silver standard can be created 
by annotating data automatically by one or more appropriate models. 

3.3.1. Silver standard 
Zhang et al. [17] successfully transferred a general model of lin-

guistic analysis to the clinical domain. They did so by adding automat-
ically annotated data from MIMIC-III [34] to manually annotated 
English Web Treebank [35] in order to re-train the model [36] as shown 
in Fig. 2. We followed this approach to create a silver standard we refer 
to as MIMIC-Silver-Neural using Longdoc as it demonstrated better 
generalization ability than the SpanBERT + c2f model [8,22]. Both 
approaches have already been described in the related work. 

The most problematic aspect of this approach is the possibility of 
annotation errors introduced by the original model, which may be 
accumulated by the re-trained model. To improve the accuracy of the 
silver standard, we employed a variety of models for annotation and 
combined their results using an ensemble approach as illustrated in 
Fig. 2. The key idea is that when models trained on different data using 
different methods make the same prediction, the prediction itself is more 
likely to be correct. 

Many open-source NLP tools support the functionality of CR. Most 
recent implementations have opted for a neural-based approach to CR, 
but some tools, including CoreNLP [4], still offer alternative approaches. 
We selected a subset of CR models that employ fundamentally different 
approaches including a neural approach, a statistical machine learning 
approach and a traditional rule-based approach. We have already 
described the chosen neural-based approach, which was used to create 
MIMIC-Silver-Neural as the first silver standard. As for the machine 
learning model, we used a two-stacked model proposed by Clark and 
Manning [5], including a logistic classifier for mention pair prediction 
and an agent based on an imitation learning algorithm [37] to merge 
coreferring pairs. Finally, we used a multi-pass sieve model originally 
proposed by Raghunathan et al. [6] as a representative of rule-based CR 
approaches. 

Before we can reconcile CR predictions made by the three models, we 
need to understand how coreferences are formally represented. The 
results of CR are represented as clusters of coreferring mentions. Each 
cluster contains one or more mentions that refer to the same entity. Each 
mention is simply a span of text that consists of one or more tokens. 
Since the output of a CR system can be decomposed into three levels, an 
ensemble algorithm is designed bottom-up to consider outputs across all 
levels. The pseudocode of this algorithm is provided in Supplementary 
material. Fig. 3 exemplifies the key phases of the algorithm. 

The boundaries of automatically recognized coreferring mentions 
may vary across different models. For example, in the sentence “There is 
volume loss in both lower lobes. Compared to the prior study, the volume loss 
has increased.”, one of the coreference clusters contains “volume loss in 
both lower lobes” and “the volume loss”, yet it is possible that a CR system 
clustered “volume loss” and “the volume loss”. To reconcile these dif-
ferences, we proposed a token-level voting. A token receives a vote 
whenever it appears in the output of a CR model. In this way, each 
mention has an average vote ratio based on the votes its tokens received, 
ranging from 0 to 1. A value of 1 means that all the CR systems agree that 
it represents a valid coreferring mention, and 0 indicates that the 
mention is invalid. Considering that we had three independent CR sys-
tems as raters, we set a token-level threshold to 0.66 to include any 
mention accepted by the majority of raters. 

Once less likely individual mentions have been removed, the prob-
lem of reconciling mention clusters still remains. We first extract all 
pairs of mentions that belong to the same cluster. Each pair then receives 
a vote whenever it occurs in any of the CR systems’ outputs. The higher 
the number of votes, the more likely that the two mentions corefer. 
Again, the threshold was set to 0.66 to indicate the majority of votes. 
Finally, we group back the remaining mention pairs to form clusters of 
coreferring mentions. We used the results to create another silver stan-
dard we refer to as MIMIC-Silver-Ensemble. The size of both silver 
standards was chosen according to the training configuration of the 
Longdoc model on OntoNotes, where a total of 1000, 344 and 348 
documents were used for training, validation and testing, respectively. 
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3.3.2. Gold standard 
A silver standard is automatically annotated, but not manually 

verified. Manual annotation of the gold standard data is a known 
bottleneck in machine learning approaches to clinical NLP [13]. None-
theless, gold standards are regarded more reliable as they are created by 
experts who possess the knowledge necessary to interpret and follow a 
specific set of annotation guidelines. To reduce the time and resources 
associated with manual annotation, we extended the idea used to create 
the silver standard to pre-annotate the data and manually curate these 

annotations and making any additional annotations if necessary. We 
named it a semi-automatic annotation approach. This serves to improve 
not only the efficiency of manual annotation but also its accuracy. 
Namely, we noticed that annotators commonly miss some coreferring 
mentions. Although employing multiple independent human annotators 
could alleviate this problem, false negatives will still accumulate as the 
result of fatigue incurred by long-drawn-out annotation. 

Fig. 4 illustrates our approach to semi-automatic annotation. We first 
sampled a small amount of data and manually annotated them. We then 

Fig. 2. The original silver standard approach for syntactic analysis [17] (above) and our adaptation for coreference resolution (below).  

Fig. 3. A run-though example of the ensemble algorithm. The colors indicate the outputs of different models shown here as raters.  
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used them to evaluate the performance of three existing CR models as well 
as the models previously fine-tuned on a silver standard. We selected the 
most accurate one, which was a Longdoc model that was jointly fine-tuned 
on OntoNotes and i2b2 data, to pre-annotate the data. These data were 
then imported into the Brat Rapid Annotation Tool (BRAT), a web-based 
tool for text annotation [38], where they were manually curated. 

To randomly sample documents for annotation, we first stratified 
them by their estimated number of coreference clusters, which were 
automatically annotated using the Longdoc model. We first excluded 
documents that contained no coreference clusters. We then randomly 
sampled documents from each stratum. 

As an alternative to random sampling, we also considered active 
learning, which is considered to be effective in reducing annotation cost 
[39]. Following Yuan et al. [18], we divided the dataset into an anno-
tated pool and an unannotated pool and split the model training process 
into multiple iterations. Each iteration used an updated annotated pool 
to train the same initial model. Subsequently, the trained model selected 
top-k samples that may help it gain the most performance improvement 
for manual annotation and added them to the annotated pool for the 
next iteration. 

For the query strategy, we adapted the highest mention detection 
entropy proposed by Yuan et al. [18]. Given mention span x, let X ∈ {

0, 1} indicating whether x is a mention, the highest mention detection 
entropy is: 

H(x) = −
∑1

i=0
P(X = i)logP(X = i), (3)  

where the probability P(X) is computed as f(sm(x),0 ) in which f is a 
softmax function, sm(x) is a mention score function from Equation (1) 
and 0 denotes the threshold to determine whether x is a mention. 

Overall, three gold standards were created, which we refer to as 
MIMIC-Gold-Random, MIMIC-Gold-Active-Learning and MIMIC-Gold- 
Test. MIMIC-Gold-Random and MIMIC-Gold-Active-Learning were an-
notated by a single human annotator in an attempt to mimic an agile 
development scenario where only one human annotator is available. 
Both MIMIC-Gold-Random and MIMIC-Gold-Active-Learning were 
sampled from the same subset of MIMIC-CXR. MIMIC-Gold-Random was 
created by interval random sampling from the stratified dataset (see 
above). MIMIC-Gold-Active-Learning was created by an entropy-based 
sampling method from the whole dataset. MIMIC-Gold-Random was 
annotated in five iterations of 100 documents, resulting in a total of 500 
annotated documents. MIMIC-Gold-Active-Learning was annotated in 
13 iterations, resulting in a total of 475 annotated documents. 

The feasibility of using a single annotator for providing training data 
was evaluated by testing the model on data annotated by multiple an-
notators. This dataset, called MIMIC-Gold-Test, contains 200 docu-
ments. For each document, two human annotators were asked to 
annotate it independently. Their results were merged manually by the 
third annotator who also had access to the pre-annotated document. Any 
disagreements were solved by discussion. The annotators were trained 
for 10 min to use BRAT and to familiarise with the annotation schema. 

The annotated dataset described here has been shared with the 
community on the PhysioNet platform where it is accessible by regis-
tered users who completed their credentialing process and signed a data 
use agreement [40]. 

3.4. Model training 

The original model can be re-trained by combining newly annotated 
domain-specific data with the original training data. Different training 
strategies can be used to fine-tune the model on domain-specific data. 
Joint training is a simple yet effective method that collates multiple 
datasets to create a new dataset and use it to train a new model from 
scratch. This method can effectively improve the generalization ability 
of a CR model [25]. Alternatively, continued training utilizes a pre- 
trained model to initialize a model to be fine-tuned on a target data-
set. It has been successfully used for rapid transfer of CR models from 
one dataset to another [41]. 

3.5. Evaluation methods 

3.5.1. Data annotation 
Krippendorff’s alpha [42] is commonly used to measure the inter- 

annotator agreement (IAA), but in its original form it is too rigid for 
measuring the agreement on co-reference clusters as it only considers 
whether two clusters are identical or not. However, it can easily 
accommodate distance metrics to assign different weights to different 
relationships between coreference clusters. We adopted a distance 
metrics proposed by Passonneau [43], which considers four binary re-
lationships between coreference clusters, including identical, subsume, 
intersect and disjunct. They are assigned the weights of 0, 0.33, 0.67 and 
1, respectively. In the remainder of the article, we refer to these two 
versions of Krippendorff’s alpha as weighted and unweighted Krippen-
dorff’s alpha, respectively. 

Fig. 4. The semi-automatic annotation pipeline and the corresponding model selection process.  
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3.5.2. Model performance 
Most commonly, CR models are evaluated using the average F1-score 

among MUC, B3 and CEAFe as proposed in CoNLL-2012 Shared Task 
[44]. We followed this convention in our study. Given a set of ground 
truth entities GT = {eGT

1 , eGT
2 ,⋯, eGT

N } and a set of predicted entities PD =

{ePD
1 ,ePD

2 ,⋯,ePD
N }, where each entity corresponds to a coreference cluster, 

which consists of a set of mentions ei = {mi,1,mi,2,⋯,mi,K}, these mea-
sures are calculated as follows:   

PB3 =

∑|PD|

i=1

∑|GT|

j=1

⃒
⃒
⃒ePD

i ∩ eGT
j

⃒
⃒
⃒

2

|ePD
i

⃒
⃒

∑|PD|

i=1

⃒
⃒ePD

i

⃒
⃒

,RB3 =

∑|PD|

i=1

∑|GT|

j=1

⃒
⃒
⃒ePD

i ∩ eGT
j

⃒
⃒
⃒

2

⃒
⃒eGT

j

⃒
⃒
⃒

∑|GT|

i=1

⃒
⃒eGT

i

⃒
⃒

(7)    

where cluster
(
ePD

i , eGT
i
)

groups the mentions in ePD
i according to the 

mentions in eGT
i and align(PD,GT) represents the optimal one-to-one 

mapping between PD and GT using the Kuhn–Munkres algorithm [45], 
where ePD

i aligns to at most one eGT
i . 

4. Experiments and results 

4.1. Data annotation 

We compared two annotators against each other. We also compared 
each annotator against the agreed ground truth. The corresponding re-
sults are shown in Fig. 5. Not surprisingly, the IAA was consistently 
higher for the semi-automatic approach. The semi-automatic approach 
also improved the efficiency of human annotators. Of note, data were 
annotated manually ahead of the semi-automatic annotation, which 

may have contributed to the efficiency of the annotators as they 

PMUC =

∑|PD|

i=1
(|ePD

i | − |cluster
(
ePD

i , eGT
i

)
|)

∑|PD|

i=1
(|ePD

i | − 1)
,RMUC =

∑|GT|

i=1
(|eGT

i | − |cluster
(
eGT

i , ePD
i

)
|)

∑|GT|

i=1
(|eGT

i | − 1)
(6)   

PCEAFe =

∑

ePD
i ,eGT

j ∈align(PD,GT)

2 × |ePD
i ∩ eGT

j

⃒
⃒
⃒

⃒
⃒ePD

i | + |eGT
j

⃒
⃒
⃒

|PD|
,RCEAFe =

∑

ePD
i ,eGT

j ∈align(PD,GT)

2 × |ePD
i ∩ eGT

j

⃒
⃒
⃒

⃒
⃒ePD

i | + |eGT
j

⃒
⃒
⃒

|GT|

(8)   

Fig. 5. (a) The inter-annotator agreement measured by Krippendroff’s alpha (b) Time spent on annotation. Ground truth (GT) was created by reconciling the results 
of the two annotators A and B by the third independent annotator. Weighted and unweighted stand for the corresponding versions of Krippendroff’s alpha. 
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familiarized themselves with the annotation process. On the other hand, 
we noticed that the design of BRAT visualization negatively affected the 
efficiency of coreference annotation, especially for longer documents 
featuring a larger number and size of coreference clusters. Therefore, an 
annotation tool better suited for the CR task may be able to better exploit 
the increased efficiency that comes with the semi-automatic approach. 

4.2. Large language model 

Longdoc has three components: a document encoder, a mention 
proposer and a mention cluster predictor. It uses a Longformer-large 
model [25] as a document encoder. In the context of the recent ad-
vances in LLMs, we performed a series of experiments by replacing the 
original encoder and evaluating the performance of the corresponding 
fine-tuned CR model. We considered a total of six LLMs including: (1) 
BERT [46], an early transformer encoder, (2) SpanBERT [8], which is 
designed to better represent and predict text spans, (3) Longformer [25], 
which is based on RoBERTa [26] and is able to handle longer documents, 

(4) Longformer-coref [23], a fine-tuned version of Longformer for gen-
eral domain CR, (5) GPT2 [47], a generative model based on the 
transformer decoder, and (6) Flan-T5 [48], an encoder-decoder model 
trained by prompting for a wide range of NLP tasks. 

Fig. 6 shows that Longformer-coref outperformed all other encoders. 
Longformer-coref accepts input consisting of 4096 tokens, which is far 
longer than 1024 tokens accepted by GPT2 and 512 tokens accepted by 
the remaining encoders. This means that Longformer-coref can utilize 
longer context for the training of CR. Interestingly, the results suggest 
that a generative model such as GPT2 is not fit for the task at hand. 
Interestingly, the higher number of parameters in LLM (e.g. GPT2 and 
Flan-T5) does not necessarily improve the performance on specific NLP 
tasks such as CR. 

4.3. Model training 

We designed 13 experiments whose settings and the corresponding 
results evaluated against the MIMIC-Gold-Test dataset are shown in 

Fig. 6. CR performance using various LLM as document encoders. The CR models were trained on MIMIC-Gold-Random and tested on MIMIC-Gold-Test. The True/ 
False values of the fine-tune option indicate whether the encoder’s parameters were updated/frozen during training. 

Table 1 
Experimental settings with respect to the training data, training methods and initial models. “√” indicates the dataset used for training (fine-tuning). The performance 
is given as F1-score based on the three metrices described in Section 3.5.2. These values were then averaged to provide an overall performance. In the initial models of 
experiments EX1-EX7, all parameters apart from the document encoder were set randomly.  

Experiment OntoNotes i2b2 MIMIC Training F1 

Silver Gold 

Neural Ensemble Random Active learning Method Initial model MUC B3 CEAFe Avg 

EX1 √ √     Joint Random  64.6  65.4  67.5  65.9 
EX2 √  √    Joint Random  61.6  64.2  68.0  64.6 
EX3 √ √ √    Joint Random  61.2  64.1  68.2  64.5 
EX4 √   √   Joint Random  61.1  61.3  63.2  61.9 
EX5 √ √  √   Joint Random  58.1  58.2  59.6  58.6 
EX6     √  General Random  74.0  74.9  76.5  75.1 
EX7 √ √   √  Joint Random  76.4  77.4  79.1  77.6 
EX8     √  Continued Longdoc  76.0  77.0  78.6  77.2 
EX9     √  Continued EX1  75.9  76.9  78.9  77.2 
EX10     √  Continued EX2  76.2  76.8  78.4  77.2 
EX11     √  Continued EX4  77.0  78.1  79.9  78.4 
EX12      √ Continued EX4  76.5  77.6  79.7  77.9 
EX13     √ √ Continued EX4  77.8  79.2  81.4  79.5  

Y. Liao et al.                                                                                                                                                                                                                                     



Journal of Biomedical Informatics 149 (2024) 104578

8

Table 1. Experiment EX1 sets the baseline by incorporating readily 
available annotated clinical datasets but without using data (MIMIC) 
from the target domain (radiology reports). Experiments EX2-EX5 were 
designed to observe the effect of the silver standard on fine-tuning a 
model using joint training. Experiment EX6 sets the baseline for the 
remaining experiments that trained CR models using the gold standard 
data. It does not take advantage of either joint or continued training. 
Experiment EX7 combines readily available annotated clinical datasets 
with data (MIMIC) from the target domain (radiology reports) using 
joint training. Experiments EX8-EX11 were designed to explore the 
effectiveness of continued training and the impact of different initial 
models on such training. Experiments EX11-EX12 explored the effec-
tiveness of active learning for training data sampling. Finally, experi-
ment EX13 combined the two gold standards to train the final model. All 
experiments used Longformer-coref to encode documents except for 
experiment EX8, whose initial model (Longdoc) uses Longformer to 
encode documents by default. 

With F1 = 58.6–64.6 %, the silver standard approach (see rows EX2- 
EX5) proved ineffective in fine-tuning a model relative to the baseline 
(see row EX1, F1 = 65.9 %). Nevertheless, when the corresponding 
model (e.g. EX4) was used to initialize continued training (see row 
EX11), the performance (F1 = 78.4 %) improved compared to other 
models trained on gold standard (see rows EX8-EX10, F1 = 77.2 %). 

When training data are limited in size due to the manual data 
annotation bottleneck, we need to optimize the ratio between the sub-
sets used for training and validation, respectively. We used the settings 
of experiment EX11, to conduct further experiments with different splits 
of data into training and validation subsets. Starting with our default of 
100 out of 500 documents used for validation, we reduced the number of 
documents reserved for validation and evaluated the corresponding 
models on the test data. Fig. 7 provides the corresponding results. Even 
though some authors suggest maximizing the number of training doc-
uments at the expense of the validation ones, going as far as using a 
single document for validation (e.g. [41]), our results suggest that a 
minimum of 25 validation documents were required. Any further in-
creases did not improve the performance. However, it is worth noticing 
that our dataset is very different from the PreCo dataset used by Xia and 
Van Durme [41]. MIMIC-Gold-Random has on average 101 words and 4 
mentions per document, while PreCo has 330 words and 105.6 mentions 
per document [27]. Therefore, both approaches are in agreement that at 
least 100 (25 × 4 ≈ 1 × 105.6) mentions should be used to validate the 
model. Nonetheless, we recommend conducting a series of experiments 

with different training/validation splits to optimize the performance of a 
fine-tuned CR model. 

Starting from the experiment EX11, we changed the ratio between 
training/validation sets from 400:100 to 475:25. This improved the F1- 
score of EX11 from 78.4 % to 79.8 % (see Fig. 7). The same settings were 
then used to conduct experiment EX12 on gold standard data sampled 
using active learning. We can see that at F1 = 79.8 % random sampling 
outperformed active learning (see row EX12, F1 = 77.9 %) even when 
both gold standards were combined (see row EX13, F1 = 79.5 %). From 
the results reported in Table 1, we can see that the best performance was 
just below 80 %. Without any fine-tuning, the original Longdoc model 
achieved only F1 = 64.1 %. 

Finally, we wanted to compare the performance of our fined-tuned 
model to external baseline methods (see Table 2). We selected several 
high-performing models from a community leaderboard, which is 
maintained specifically for coreference resolution on OntoNotes [49]. 
Given that these models have been routinely employed by open-source 
NLP tools [4,9,10], we also included other CR models supported by 
these tools. For example, the most recent update found in AllenNLP [10] 
was based on SpanBERT [8] and c2f-coref model [22], which achieved 
79.6 % F1-score on OntoNotes. 

The results presented in Table 2 compare the performance on 
OntoNotes against the performance achieved on the MIMIC-Gold-Test. 
First of all, we can observe a significant drop in performance, which is 
consistently over 10 percent points across all models. This re-iterates the 
need to fine-tune CR models for different styles of clinical narratives. 
Focusing our attention on the performance on MIMIC data, we can see 
that the best performance was still below 70 %. Specifically, determin-
istic CR methods [6,43–45] performed poorly achieving only F1 = 46.7 
% on average. At F1 = 51.6 %, a statistical CR model [5] performed only 
slightly better. The best neural models with performance on OntoNotes 
around 80 % (the last four rows), failed to reproduce these results on 
MIMIC data. On the other hand, at F1 = 80.6 %, our best result obtained 
by combining three fine-tuned models EX11-EX13, was in line with the 
state-of-the-art results (F1 = 79.6 %-81.6 %). Therefore, we conclude 
that our approach was successful in fine-tuning a generic CR model for 
clinical domain. 

To summarize, the most practical route to rapidly fine-tuning an 
existing CR model is to randomly sample data and pre-annotate them 
with the given model or, even better, with an ensemble of different 
models. Use these silver-standard annotations to estimate the number of 
coreferring mentions aiming to reserve at least 100 mentions for vali-
dation. If necessary, randomly sample additional data for training. Use 
the silver standard together with other relevant, readily available, an-
notated data, to fine-tune an initial model. Manually curate the silver 
standard to establish a gold standard. Continue training the initial model 
on the gold standard to obtain the final CR model. 

5. Conclusion 

We discussed a practical challenge of quickly utilizing existing 
models to address CR on an unseen dataset. We first attempted to fine- 
tune a CR model with a silver standard, which was assembled without 

Fig. 7. The effect of training/validation split ratios on model performance. The 
validation documents were sampled from a total of 500 documents. The 
remaining documents were used for training. Each bar indicates the polar and 
mean values via short lines and a circular point, respectively. 

Table 2 
External baseline results. The performance is given as F1-score based on the 
three metrices described in Section 3.5.2. These values were then averaged to 
provide an overall performance.  

Model OntoNotes MIMIC Library 

Deterministic [6,50–52]  59.3  46.7 CoreNLP [4] 
Statistical [5]  63.0  51.6 CoreNLP [4] 
Neuralcoref [53]  63.9  50.1 spaCy [9] 
c2f + SpanBERT [8]  79.6  64.9 AllenNLP [10] 
Longdoc + Longformer [23]  79.6  64.1  
LingMess + Longformer [54]  81.4  63.4  
CAW + RoBERTa [55]  81.6  69.1   
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human intervention. Our experiments asserted that this approach is not 
suitable for fine-tuning a CR model. However, the by-product of 
applying this method – an ensemble algorithm that we designed to 
reduce the bias of any single model annotation – achieves a significant 
improvement in precision albeit at the expense of the recall. We then 
designed a semi-automatic annotation approach that can improve the 
consistency and efficiency of manual annotation. 

We created two small gold-standard datasets via random sampling 
and active learning respectively and compared their performance. We 
discovered that active learning should be applied with caution. Applying 
active learning in practice is challenging because datasets with different 
characteristics are sensitive to query strategies. The feasible matching 
between datasets and query strategies is still unclear. In a low-resource 
scenario, an arbitrary choice of query strategy does not necessarily 
outperform random sampling. Based on our experiments, there may be a 
compromise when it is difficult to choose the right query strategy, which 
first uses randomly sampled data to make the model have a stable de-
cision boundary and then employs active learning to refine the decision 
boundary and increase the upper limits of the performance. 

We observed that in low-resource settings without introducing silver 
standards and ensemble methods, the performance of continued training 
is typically close to joint training, yet both approaches outperform the 
training from scratch. We conclude that using continued training with a 
relatively small, annotated dataset is adequate for transferring a CR 
model. 

Finally, we conclude that the semi-automatic annotation approach 
combined with continued training is well suited for the rapid transfer of 
CR models under low-resource conditions. The ensemble approach has 
the potential to further enhance the quality of model outputs when a set 
of transferred models are available. Overall, we have effectively trans-
ferred a general CR model to the clinical domain and comprehensively 
demonstrated our outcomes as well as any setbacks encountered. 

6. Statement of significance 

Problem: 
Existing open-source Coreference Resolution (CR) tools may not 

generalize well on unseen clinical data. 
What is already known: 
Existing CR models are typically generic and as such their perfor-

mance does not necessarily transfer into clinical domains. Even within a 
single domain, sublanguages can vary, which means that when a model 
is trained within a domain, its performance may still vary across 
different types of documents. 

What this paper adds: 
This study has effectively transferred a general CR model to the 

clinical domain. Our findings based on extensive experimentation have 
been summarized into practical suggestions to the research community 
in terms of rapidly applying CR to different styles of clinical narratives. 
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