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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Satellite-observed dust emissions (DPS) 
are rare (1.8 %) even in North Africa. 

• Albedo-based dust emission model 
(AEM) coincided 71 % with DPS data. 

• The AEM simulated dust emission 27 % 
when no dust emission was observed. 

• Incompatible scales and crude model 
assumptions caused false positives. 

• DPS provide consistent and reproducible 
framework for dust emission model 
development.  

A R T I C L E  I N F O   

Editor: Pavlos Kassomenos  

A B S T R A C T   

Dust models are essential for understanding the impact of mineral dust on Earth’s systems, human health, and 
global economies, but dust emission modelling has large uncertainties. Satellite observations of dust emission 
point sources (DPS) provide a valuable dichotomous inventory of regional dust emissions. We develop a 
framework for evaluating dust emission model performance using existing DPS data before routine calibration of 
dust models. To illustrate this framework’s utility and arising insights, we evaluated the albedo-based dust 
emission model (AEM) with its areal (MODIS 500 m) estimates of soil surface wind friction velocity (us*) and 
common, poorly constrained grain-scale entrainment threshold (u*ts) adjusted by a function of soil moisture (H). 
The AEM simulations are reduced to its frequency of occurrence, P(us* > u*tsH). The spatio-temporal variability 
in observed dust emission frequency is described by the collation of nine existing DPS datasets. Observed dust 
emission occurs rarely, even in North Africa and the Middle East, where DPS frequency averages 1.8 %, (~7 days 
y− 1), indicating extreme, large wind speed events. The AEM coincided with observed dust emission ~71.4 %, but 
simulated dust emission ~27.4 % when no dust emission was observed, while dust emission occurrence was 
over-estimated by up to 2 orders of magnitude. For estimates to match observations, results showed that grain- 
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scale u*ts needed restricted sediment supply and compatibility with areal us*. Failure to predict dust emission 
during observed events, was due to us* being too small because reanalysis winds (ERA5-Land) were averaged 
across 11 km pixels, and inconsistent with us* across 0.5 km pixels representing local maxima. Assumed infinite 
sediment supply caused the AEM to simulate dust emission whenever P(us*>u*tsH), producing false positives 
when wind speeds were large. The dust emission model scales of existing parameterisations need harmonising 
and a new parameterisation for u*ts is required to restrict sediment supply over space and time.   

1. Introduction 

Atmospheric mineral dust has an important impact on many of 
Earth’s systems, human health, and global economies (Li et al., 2018; Pi 
et al., 2020; Tegen and Schepanski, 2018). The scale of this impact is, at 
least in part, prescribed by the location and environmental controls of 
the emission source (Ackerman, 1997; Schepanski et al., 2012). Dust 
emission models have been developed over decades to resolve spatial 
patterns and trends of aeolian processes (emission, transport, and 
deposition) in the dust cycle (Shao et al., 2011; Chen et al., 2017; Yuan 
et al., 2019). Dust emission models are crucial for simulation of aeolian 
processes at unsampled / unmonitored locations for comparison with 
indicators and benchmarks to understand the impact of management on 
environmental changes (Pi et al., 2020). Dust emission models are also 
essential for making hindcasts in palaeo-environmental reconstructions 
(Mahowald et al., 2010) and forecasts in dust-climate interactions in 
Earth System Models (ESMs). 

Global dust emission models were developed more than two decades 
ago (Marticorena and Bergametti, 1995) and have been rapidly adopted 
into large scale dust cycle models as part of ESMs, where their fidelity 
requires necessary compromise and simplification within their param
eterisations (Raupach and Lu, 2004). These ESMs comprise a dust 
emission (production) module, a module describing horizontal and 
vertical transport of dust aerosol (advection scheme) and a module 
parameterising dust removal processes (dry and wet deposition). Dust 
emission and dust deposition processes are the critical factors which 
ultimately determines the net atmospheric dust concentration (Textor 
et al., 2006). Accordingly, an accurate estimate of dust feedbacks on e.g., 
radiation and cloud formation processes requires an accurate repre
sentation of dust emission (Chappell et al., 2023a; Chappell et al., 
2023b). 

Early dust emission models assumed the Earth’s surface was devoid 
of vegetation and did not change over time. That assumption has been 
partially alleviated with the use of lateral cover (Raupach, 1992; Rau
pach et al., 1993) but which only very crudely represents the aero
dynamics of drag partition (Chappell et al., 2023a). Currently, two key 
simplifying assumptions remain: i) a grain-scale entrainment threshold 
remains constant within soil types and static over time; ii) an infinite 
supply of sediment for transport is available everywhere. These as
sumptions cause ESMs to continually over-estimate dust in the atmo
sphere (Zender, 2003). Since ESMs focus on dust in the atmosphere, 
modelled atmospheric dust is reduced by comparison with observed dust 
optical depth (DOD). 

Importantly, DOD is not a direct measurement of dust emission 
magnitude or frequency, key components which together underpin the 
sediment transport equation (Wolman and Miller, 1960; Lee and Tcha
kerian, 1995). Rather, DOD measures the concentration of dust in a 
specific column of atmosphere at a given moment. Extended atmo
spheric residence of dust (days to weeks) can exacerbate bias away from 
dust emission, towards atmospheric dust (Schepanski et al., 2012). 
Consequently, synoptic circulation may increase concentrations within 
pressure systems, maintaining aerosol optical depth (AOD) over specific 
areas without any significant further emission (Schepanski et al., 2012). 
While the deficiencies in existing dust emission modelling are somewhat 
understood, the inconsistency of evaluating dust emission model per
formance against DOD conceals which critical factors need to improve to 
increase dust emission model fidelity. Notably, current uncertainties in 

CMIP6 models are larger than previous generations, providing a timely 
implication that dust process parameterisations are becoming more 
uncertain as models develop (Zhao et al., 2022). For clarity, the pre
ceding description is directed solely at dust emission modelling, and we 
do not dispute the utility and benefits of dust aerosol loading to calibrate 
ESMs. To isolate the performance of the dust emission modelling, we 
introduce a framework for evaluating dust emission models before the 
routine calibration of dust cycle models against DOD. 

Satellites observe atmospheric dust. Additional expert inspection of 
satellite imagery enables the identification of dust plumes and to trace 
over space-time the dust plumes to the location from which they were 
emitted. Consequently, this use of satellite observed dust emission point 
sources (DPS) is distinct from satellite observed optical depth in the 
atmosphere which are not related directly to dust emission. Dust emis
sion typically occurs infrequently (e.g., Hennen et al., 2019), and in 
remote and inhospitable areas. Field measurements of dust emission rely 
either on a limited number of ground stations or serendipitous obser
vations. For these reasons, satellite-based remote sensing is ideally 
positioned to monitor and identify the source of these emissions. 
Currently, automated approaches are not well-established to accurately 
distinguish satellite observed DPS at the head of the plume. Therefore, 
DPS identification is performed by expert analysis, where an expert 
observer can study the shape of the plume, recognise any atmospheric 
opacity (clouds, smoke, dust, or fog) and precisely locate the dust 
emission. Consequently, DPS data currently represent the most robust 
set of dust emission observations from which to evaluate the perfor
mance of a global dust emission model (Johnson et al., 2011; Tegen 
et al., 2013; Laurent et al., 2010). 

The aim here is to demonstrate that dust emission models should be 
evaluated against observed dust emission data and ultimately provide 
correctly calibrated dust emission modules prior to inclusion in ESMs. 
We seek to evaluate the performance of global dust emission models 
against global dust emission observations at appropriate scales. Our 
novel evaluation framework is based on two innovative approaches. The 
first approach collates nine extant observed DPS data from extant peer- 
reviewed studies into a new global dataset of dust emission sources 
(Baddock et al., 2009; Bullard et al., 2008; Eckardt et al., 2020; Hennen 
et al., 2019; Kandakji et al., 2020; Lee et al., 2012; Nobakht et al., 2019; 
Schepanski et al., 2007; von Holdt et al., 2017). These DPS data describe 
dust emissions occurring over a wider range of conditions (soil and 
vegetation types and climates) than previously considered in dust 
emission modelling of only desert type conditions. These DPS data 
describe dust emission dichotomously (presence = 1) for studied areas at 
selected times. The second approach is to apply for the first time, 
established numerical weather forecasting dichotomous evaluations to 
dust emission predictions to evaluate dust emission model performance. 
We determine the coincidence in observed and modelled outcome at 
each DPS location for every day of the respective study duration. The 
second approach requires the novel use, in this field, of a contingency 
table to determine model performance through the respective number of 
daily ‘hits’ (Observed and Modelled dust), ‘misses’ (Observed dust, not 
Modelled), false positives (Modelled, not Observed dust), and correct 
negatives (no dust Observed or Modelled). 

To enable the use of these novel approaches with dust emission 
models we reduced the continuous dust emission models to the binary 
occurrence when modelled soil surface wind friction velocity (us*) ex
ceeds the entrainment threshold (u*ts) adjusted by a function of soil 
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moisture (H). This approach is emerging as a powerful new mechanism 
to overcome the poorly constrained dust frequency distribution and for 
calibrating dust emission models whilst dust emission parameterisations 
are improved (Hennen et al., 2022, 2023; Chappell et al., 2023a, 2023b). 
Our analyses are here compared regionally, with dust emission model 
performance in different soil-climate environments (in dryland regions 
with a range of soil types, vegetation density and wind speeds; Fig. 1), 
demonstrating how modelled and observed dust events coincide over 
time. These approaches enable us to identify how changes in dust 
emission model development improve dust emission model performance 
related to environmental controls, specifically variability when dust 
emission occurs due to the soil surface wind friction velocity exceeding 
the sediment entrainment threshold adjusted by soil moisture P(us* >

u*tsH) and dynamic erodibility of the soil. These analyses provide both i) 
a robust examination of contrasting dust emission model approaches 
and ii) critical information on the fidelity of wind friction velocity 
thresholds and sediment supply across dust source regions. These ap
proaches will also improve the understanding of process representation 
in the dust emission modelling e.g., if a dust emission model consistently 
fails to reproduce a certain dust emission event, our approach identifies 
the need and provides a mechanism for how to improve the model. 

We propose this new approach to routinely evaluate dust emission 
model development particularly whilst the aeolian research community 
is tackling those two key simplifying dust emission model assumptions 
about threshold and sediment supply. We recognise that dust emission 
model developments may not be sufficiently rapid to keep pace with 
applications e.g., in ESMs whilst the dust emission models are poorly 
constrained. Consequently, we recommend our recently established 
approach to using DPS data to calibrate dust emission model estimates 
and improve their performance before being used in the ESMs (Hennen 
et al., 2022; Hennen et al., 2023; Chappell et al., 2023a, 2023b). 

2. Methods and data 

2.1. Validation datasets 

We collated nine datasets from published studies across multiple dust 
emitting regions around the world (Fig. 1). This global satellite observed 
dust emission point source (DPS) dataset includes the location and 

timing of dust emission events from many but not all the major global 
dust producing drylands. For each study, satellite-derived data were 
acquired at regular intervals and subjectively inspected by an operator 
to identify the presence of dust plumes. Identification of elevated dust 
over a desert surface is particularly challenging in visible wavelengths, 
due to the spectral similarities of elevated dust and bare soil in the 
visible spectrum (Hsu et al., 2004). Therefore, images are typically 
converted into false colour composites, enhancing the image with 
spectral bands outside the visible wavelengths, specifically in the ther
mal infrared (TIR) bands (Lensky and Rosenfeld, 2008; Miller, 2003). 
Using these dust enhancement products, operators visually identify the 
point(s) where a dust plume originated and digitize each of these loca
tions as a dust emission point source (DPS). The exception is North Af
rica (Schepanski et al., 2007), where the area of dust emission is 
observed sub-daily, within a 1◦ grid (i.e., frequency of local emission – 
maximum 1 per day). In this case, the centroid position within the grid 
box is taken as the dust emission source. The DPS identification protocol 
was the same for all DPS data sets. 

The DPS data collection can be classified into two methodological 
groups, defined by the type of satellite data used. The majority (6 out of 
9) of these studies used Moderate-resolution Imaging spectroradiometer 
(MODIS) multispectral imagery, which offers twice daily (daylight) 
imagery of the Earth’s surface from each (Aqua and Terra) NASA sat
ellite. These passive optical sensors provide a maximum spatial resolu
tion of 250 m (level 1), recording surface reflectance in 36 individual 
spectral bands ranging from 0.4 μm (near ultraviolet) to 14.4 μm ther
mal infra-red (TIR; NASA). Their sun-synchronous orbits permit repeat 
observations at the same mean solar time, with Terra and Aqua space
craft crossing the equator at 10:30 am and 1:30 pm (local time) 
respectively. For dust plume identification, a dust enhancement product 
is produced using brightness temperature differences (BTD) between a 
combination of visible bands (B1: v. red: 0.645 μm;, B3: v. blue: 0.470 
μm; B4: v. green: 0.555 μm), near infrared (NIR, B26: 1.375 μm) and TIR 
bands (B31: 11.03 μm and B32: 12.02 μm) to distinguish dust plumes 
from the surface and other atmospheric conditions (e.g., clouds, biomass 
burning) (Nobakht et al., 2019). These BTDs distinguish the elevated 
plume as a thermal anomaly from the desert surface below, the calcu
lated value (dimensionless) is included as the red beam of an RGB false 
colour composite (FCC) image, with blue and green beams using visible 
bands B3 and B4 (Fig. 2a). 

The three other datasets cover North Africa, the Middle East, and 
areas in southern Africa, using the Spinning Enhanced Visible and 
Infrared Imager (SEVIRI) aboard the Meteosat Second Generation (MSG) 
satellite. This satellite operates in a geostationary orbit, with a spatial 
resolution of 3 km at nadir and frequent repeat observation (15 min). 
Atmospheric dust is identified within the narrow band thermal infrared 
(TIR) wavelengths (8.7 μm – 12.0 μm) by its spectral signature, like 
MODIS DPS (Ackerman, 1997; Banks et al., 2018, 2019; Volz, 1973). 
Atmospheric dust produces a distinctive reduction in thermal emissivity, 
when compared to clear sky conditions, across each of the TIR channels, 
with maximum absorption around 10.8 μm (Brindley et al., 2012; 
Sokolik, 2002). Again, the SEVIRI dust RGB product is rendered through 
BTDs, with red and green beams described through the difference be
tween 10.8 μm and adjacent TIR bands 8.7 μm and 12.0 μm, while the 
blue beam is limited by the BT at 10.8 μm (Lensky and Rosenfeld, 2008). 
The physical basis for this approach is given by the spectral variability of 
the refractive index for mineral dust particles across the TIR (Ackerman, 
1997). Due to the variability, the spectral difference of the indices differs 
for individual wavelength bands. Hence, calculated BTD indicate the 
presence of mineral dust aerosol. During dusty conditions, absorption in 
the 10.8 μm channel is greater than the 8.7 μm and 12.0 μm channels, 
increasing BTD 12.0 μm – 10.8 μm and decreasing BTD 10.8 μm – 8.7 
μm, creating a distinctive pink coloration of dust plumes in the RGB 
images (Banks et al., 2018, 2019) while clouds appear as red or orange 
and land surface as cyan (Fig. 2b). The thermal dust index essentially is 
sensitive to mineral dust aerosol due to the refractive index being 

Fig. 1. Global dust emission point sources (DPS), collated from 9 independent 
studies across 6 dryland environments. Each DPS was subjectively identified in 
either MODIS or SEVIRI data. Data includes >90,000 individual DPS data
points, between 2001 and 2016. The DPS data are displayed as probability of 
observations per day normalised to 1◦ grid boxes where frequency is described 
by a minimum of one DPS observation per day (maximum = 0.43; details are 
provided in main text below). Source North America: (Baddock et al., 2009; 
Kandakji et al., 2020; Lee et al., 2012); North Africa: (Schepanski et al., 2007); 
Middle East: (Hennen et al., 2019); Namibia: (von Holdt et al., 2017), South 
Africa: (Eckardt et al., 2020), Central Asia: (Nobakht et al., 2021); Australia: 
(Bullard et al., 2008). 
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spectrally variable. As the refractive index varies barely spectrally for 
soot, this index is not sensitive to soot aerosol such as from biomass 
burning. However, it shows a sensitivity to volcanic aerosols (Ackerman, 
1997); due to the colour rendering these aerosols may appear in a red 
(ash), yellow-greenish (SO2 gas) or yellow colour (ash + SO2 gas mixed), 
which can be clearly separated from the magenta colour indicating 
mineral dust aerosol (EUMETSAT RGB quick guides). 

Absorption across the TIR wavelengths due to water vapour reduces 
the cooling trend created by atmospheric dust, presenting a potential 
limitation for each method (Brindley et al., 2012). The presence of 
meteorological cloud or elevated dust emission from upwind sources can 
obscure observation of the source of emission in a single image. Using 
SEVIRI’s high (15-min) observation frequency, the observer will ‘back- 
track’ plume position and size in sequential images to identify the 
location of where it first appears, allowing clear delineation of over
lapping plumes (Hennen et al., 2019). The fine spatial resolution (250 
m) of MODIS data describe the plume in great detail, partially mitigating 
the limitation of overlapping plumes as the observer can identify indi
vidual plume shapes, (Baddock et al., 2009). Spatial changes in surface 
condition (vegetation, geology) cause variations in surface TIR emis
sivity, potentially obscuring typical plume BTD profiles in RGB render
ings (Banks et al., 2018, 2019; Banks and Brindley, 2013). Subjective 
interpretation can effectively mitigate many of these limitation sce
narios, providing a better interpretation of plume dynamics than non- 
dynamic automated retrieval algorithms, which are constrained by the 
need to work in all surface and atmospheric conditions (Schepanski 
et al., 2012). 

The ability of human operators to interpret plume shape and make 
decisions on potential false positives currently exceeds those of auto
mated approaches, although not without caveats (Sinclair and LeGrand, 
2019) but which do not account for our grid box aggregations (see 
Section 3.3). Importantly, DPS studies typically determine specific 
criteria for determining an emission event, including i) the deflation 
surface is clearly identifiable at the head of emission plume; and ii) 
meteorological clouds or upwind dust emission plumes must not obscure 
the source of emission plume. Therefore, these data represent the 
cutting-edge of dust emission observations, allowing spatial verification 
by genuine emission events. These data represent a dichotomous ac
count of dust emission, where only dust events are recorded DPS = 1. 
The absence of dust emission is not recorded. Consequently, there is an 

inherent bias in these data towards the occurrence of dust emission from 
observable events and in their quantitative analysis we must account for 
this bias using (weather forecast evaluation) statistics designed to 
handle this bias in dichotomous data (see Section 3.3). 

Importantly, DOD data share many of the limitations that affect DPS 
observations. In particular, optically thin dust is detected in DOD, pro
ducing a bias towards large dust events like DPS. Commonly, ESM 
simulation calibration and/or performance evaluation is performed 
using ground-based AOD (AERONET) or satellite-based data. However, 
only few of the many AERONET ground-stations are located near to dust 
emission sources. Accordingly, validation of dust emission model results 
and DPS data with AERONET station data is inappropriate, due to their 
displacement from emission source dynamics and their reliance on 
transported/atmospheric dust. In contrast, satellite derived DOD esti
mates are continuous, providing measurements across all global dust 
source regions (Ginoux et al., 2012). However, as DOD measures the 
total column of atmospheric dust, it is difficult to distinguish between 
transported (aged) and freshly emitted (new) dust plumes. Conse
quently, DOD is also not consistent with DPS and dust emission model 
results (Chappell et al., 2023a, 2023b). 

We do not use DOD estimated from satellite observations here 
because the spatio-temporal variation in the dust emission processes is 
not directly represented. The DOD concentrations are only partly related 
to emission processes, as a product of emission frequency and magni
tude. However, residence time is critical, as near surface winds and size- 
dependant deposition rates continually alter plume composition 
following emission event. Furthermore, automated DOD (Deep Blue 
product) collection processes are well known (cf., Ginoux et al., 2012 
end paragraph 46) to be predominantly constrained to highly reflective 
areas (e.g., sand), with reduced reliability over water and vegetated 
surfaces. 

2.2. Albedo-based dust emission model (AEM) 

We calculated the albedo-based dust emission (AEM) daily at 500 m 
across Earth following the established approach (Chappell and Webb, 
2016; Chappell et al., 2023a, 2023b; Hennen et al., 2022, 2023). Esti
mates of sediment transport Q (g m− 1 s− 1) are used to simulate dust 
emission. The Q were calculated for a given particle diameter (d), soil 
moisture (w), wind speed at height h (Uh), and albedo (ω) as 

Fig. 2. Dust enhancement products from a) MODIS, RGB bands = R: Dust enhancement (Miller, 2003), G: B4 (0.555 μm) and B: B3 (0.470 μm). Source (Nobakht 
et al., 2019). B) SEVIRI, RGB bands = Red (ΔTBR (12.0 μm – 10.8 μm), Green (ΔTBG (10.8 μm – 8.7 μm), and Blue B9 (10.8 μm). Source EUMETSAT. 
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where ρa is air density (1.23 kg m− 3), g is gravitational acceleration 
(9.81 m s− 2), c is a dimensionless fitting parameter (set to 1), and u*ts(d)
is threshold wind friction velocity (m s− 1). The soil surface wind friction 
velocity us* is the momentum remaining after the removal of momentum 
by roughness elements at all larger scales (topography, vegetation). The 
entrainment threshold u*ts (Marticorena and Bergametti, 1995) is 
described and explained in detail in standard workflows (Darmenova 
et al., 2009). The H(w) is a function which adjusts u*ts when soil mois
ture (w) inhibits entrainment following Fécan et al. (1999). The above 
Eq. (1) describes how the magnitude of sediment transport is calculated 
and adjusted by the frequency of occurrence (0 or 1) i.e., us* > u*tsH. 

We used a robust direct estimation of the coupled parameter 
us*/Uh with an estimation uncertainty of 0.0027 m s− 1 (Chappell and 
Webb, 2016): 

us*

Uh
= 0.0311

(

exp
− ωns

1.131

0.016

)

+ 0.007, (2)  

where ωns is the normalised and rescaled albedo (ω) translated and 
scaled (ωn) from a MODIS range (ωnmin = 0, ωnmax = 35) for a given 
illumination zenith angle (ϴ = 0◦) to that of the calibration data (a =
0.0001 to b = 0.1) using the following rescaling equation (Chappell and 
Webb, 2016): 

ωns =
(a − b)

(
ωn(θ) − ωn(θ)max

)

(
ωn(θ)min − ωn(θ)max

) + b. (3) 

Shadow is the complement of waveband (λ) dependent albedo, 1 −

ωdir(0◦, λ) and the spectral influences due to e.g., soil moisture, miner
alogy and soil organic carbon, were removed by normalizing (Chappell 
et al., 2018) with the directional reflectance viewed and illuminated at 
nadir ρ(0◦, λ): 

ωn =
1 − ωdir(0◦, λ)

ρ(0◦, λ)
=

1 − ωdir(0◦)

ρ(0◦)
. (4) 

This approach can be implemented with any type / scale of albedo 
measurement. Here the approach was implemented by making use of the 
available MODIS black sky albedo to estimate ωn, and the shadow is 
normalised by dividing it by the MODIS isotropic parameter fiso 
(MCD43A1 Collection 6, daily at 500 m) to remove the spectral 
influences: 

ωn(0◦) =
1 − ωdir(0◦, λ)

fiso(λ)
=

1 − ωdir(0◦)

fiso
. (5) 

The fiso is a MODIS parameter that contains information on spectral 
composition as distinct from structural information (Chappell et al., 
2018). Theory, field and laboratory-based measurements demonstrate 
the structural information is waveband independent (Chappell et al., 

2007; Jacquemoud et al., 1992; Pinty et al., 1989). The normalization of 
MODIS data using this parameter and that of MODIS Nadir BRDF- 
Adjusted Reflectance (NBAR) is similarly sufficient to remove the 
spectral content using all bands examined (Chappell et al., 2018). In 
practice, we calculated ωn using MODIS band 1 (620–670 nm). Notably, 
this approach will work with albedo from ground measurements (Ziegler 
et al., 2020) monitored from airborne and satellite remote sensing, or 
modelled prognostically in energy-driven ESMs. Consequently, this 
approach enables the simulation of dust in a past or future climate. To 
retrieve the us* as a function of Uh, the daily maximum wind speed at h =
10 m above soil surface is provided by ECMWF Climate Reanalysis, 
ERA5-Land hourly wind field data at 11 km spatial resolution (Muñoz 
Sabater, 2019). 

Dust emission flux F (<10 μm; kg m− 2 s− 1) is calculated as: 

FAEM(d) =
∑

d

(
1 − Af

)
(1 − As)MQ(d)10(13.4%clay − 6.0) with 0% < clay%

< 20%. (6) 

The clay% was restricted to 20 %, consistent with previous work 
(Marticorena and Bergametti, 1995) which, when applied in a regional 
model calibrated to dust optical depth showed reasonable results 
(Woodward, 2001). We calculated 0.1 < d < 10 μm and adjusted the 
mass in the assumed global, tri-modal, log-normally distributed source 
modes by M = 0.87 following Zender (2003). In each pixel, the coverage 
of snow (As) and whether the soil surface is frozen (Af) is used to reduce 
dust emission and is obtained from daily ERA5-Land model data. Unlike 
existing dust models, the use of ωns to dynamically estimate us* removes 
the need for vegetation indices and fixed vegetation coefficients to 
determine effective aerodynamic roughness (Hennen et al., 2022, 2023; 
Chappell et al., 2023a, 2023b). Furthermore, as us*is spatially explicit, it 
is unnecessary to pre-condition dust emission by applying a preferential 
dust source mask i.e., positive bias in areas perceived to have more 
erodible soils (e.g., surface depressions). 

Here we use a new approach to tackle the inconsistency of evaluating 
dust emission model performance against dust optical depth. By using 
satellite observed dust emission point source (DPS) frequency this 
approach enables us to investigate the impact for dust emission 
modelling of the assumptions that the soil surface is smooth and covered 
with an infinite supply of loose erodible material which when mobilised 
by sufficient us* causes transport and dust emission. This (energy- 
limited) assumption is rarely justified in dust source regions, where the 
soil surface is rough due to soil aggregates, rocks, or gravels, sealed with 
biogeochemical crusts, or loose sediment is largely unavailable. This 
new approach has enabled the dust emission model to be calibrated by 
replacing the frequency distribution of these traditional approximations 
of threshold and sediment supply, with the frequency distribution from 
DPS data (Hennen et al., 2022, 2023; Chappell et al., 2023a, 2023b). For 
clarity, here we do not calibrate the AEM using the DPS data. First, we 

Q(d,w,ω,Uh) =

⎧
⎪⎪⎨

⎪⎪⎩

c
ρa

g
u3

s*(ω,Uh)

(

1 +
u*ts(d)H(w)
us*(ω,Uh)

)(

1 −

(
u*ts(d)H(w)
us*(ω,Uh)

)2
)

0, us* ≤ u*ts(d)H(w)

, us* > u*ts(d)H(w), (1)   

Table 1 
Contingency table describing the frequency of occurrences in the observations and simulations. The joint distribution boxes (Hit, False Positive, Miss, Correct Negative) 
compare the binary responses of the observations and simulations. The totals describe the marginal distribution for either observation or simulation and are inde
pendent of each other.   

Modelled Yes Modelled No Total 

Observed Yes ‘Hit’ ‘Miss’ ‘Hit’ + ‘miss’ 
Observed No False positive Correct negative False positive + Correct negative 
Total ‘Hit’ + false positive ‘Miss’ + correct negative Grand total  
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calculated the DPS probability of occurrence P(DPS > 0), a first order 
approximation of the probability of sediment transport P(Q > 0), which 
is directly proportional to the probability of dust emission P(F > 0) at 
those locations. Next, we equated the study durations to the frequency 
that us* exceeds u*ts adjusted by H: 

P(DPS > 0) ≈ P(F > 0)∝P(Q > 0) = us* > u*tsH
{

1
0 . (7) 

During each simulation, the correct response P(F > 0)
{

1
0 depends 

on the correct u*tsH obtained from the DPS data. 

2.3. Dichotomous testing 

At each of the satellite-derived DPS we used the AEM to predict dust 
emission, daily across the entire time period. The AEM dust emission at 
these locations were converted to dust emission occurrence (0 = no dust; 
1 = dust) for comparison with the DPS using dichotomous tests. 
Dichotomous tests are used where the prediction and observation vari
able contain a maximum of two distinct outcomes. This categorical 
verification is used in numerical weather forecasting, typically for spe
cific meteorological events (e.g., tornado, rain, or snow), where the 
verification question is “Did/Will this event occur?” In each instance, 
observation and simulation will provide a binary response, (i.e., 1 = Yes 
it will/did occur, 0 = No it did not / will not occur), these responses can 
be compared in a contingency table, where the responses are categorised 
as either Hit (observation = 1, simulation = 1), Miss (observation = 1, 
simulation = 0), False Positive (observation = 0, simulation = 1) or a 
Correct Negative (observation = 0, simulation = 0; Table 1). We simu
late the presence or absence of dust emission at each DPS location for 
every day of observation, aggregated at 1◦ resolution, where if any of the 
DPS (observed or simulated) locations produces dust (Eq. (7)), then that 
grid box scores 1 on that day. Dichotomous statistics compare the 
coincidence of these ones. Nan (not-a-number) boxes describe lost data 
due to remote sensing issues (cloud mask, bright pixel mask) are 
excluded from the analysis. For clarity the number per region are 
described in the results. Aggregating these 1◦ grid boxes overcome dis
crepancies in the precision of precisely locating the dust emission point 
source associated with different operators (Sinclair and LeGrand, 2019). 
These grid boxes also overcome the broader issue that the sample sup
port of individual DPS data are too small for tolerable within and be
tween class variance (Gotway and Young, 2002). 

We use P(us*>u*tsH) to describe the relative conditions of each grid 
box, with ‘windier’ locations providing a larger probability of exceeding 
threshold. We chose this metric over mean us* as dust emission is ex
pected to be a rare event and would obscure the diversity in extreme 
wind conditions within the long-term mean. 

3. Results 

3.1. Satellite observed dust emission point source (DPS) frequency 

The frequency of satellite observed dust emission point source (DPS) 
data and albedo-based dust emission model (AEM) estimates were 
calculated for DPS locations in 6 global dryland regions (using 9 
studies). Table 2 describes regional DPS observations as probabilities, 
where the total number of opportunities are calculated by the number of 
DPS locations, multiplied by the number of days (minus the number of 
missing data – see Methods section). A total of 37,352 unique DPS lo
cations were identified across the nine studies, covering 1945 unique 1◦

grid boxes. By applying Eq. (7), a total of 59,688 dust emissions were 
identified. Missing data are defined as the number of days that the grid 
cell is unable to produce a forecast. That is, each of the DPS points within 
a given cell on a given day, each produce a null value due to a missing 
parameter in the model on that day. This is typically caused by masking Ta
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in the MODIS daily imagery (due to cloud) preventing a description of 
surface roughness. On average, 34.4 % of data were missing across the 
nine regions, with North Africa producing the fewest (18.9 %), and 
Central Asia producing the most (54.5 %). Corresponding missing data 
were removed from both modelled and observed data to maintain con
sistency in results. 

Overall, DPS observations show dust events to be rare. The regional 

maximum probability in North Africa was only 0.027, ~10 dust days y− 1 

per 1◦ grid box (Table 2). In other regions, the probability of dust 
emission varies, with the Middle East producing the second largest 
(0.019; ~7 days y− 1 per 1◦ box), followed by Central Asia (0.008; ~3 
days y− 1 per 1◦ box), and the Namibian coast in Southern Africa (0.007; 
~3 days y− 1 per 1◦ box). Each of the North American, Australian and 
South Africa regions produce probabilities >0.003 (~1 day y− 1 per 1◦

box), with the smallest probability of 0.001 (<1 day y− 1 per 1◦ box) in 
the arid south-west USA (Kandakji). 

Simulated AEM estimates P(F > 0) is between 1 and 2 orders of 
magnitude greater than observations in each region. Comparing DPS 
with P(F > 0) shows that the relative order between regions differed. 
North Africa produced the second smallest probability of AEM dust 
emission (0.18; ~65 days y− 1 per 1◦ box), with interior South Africa 
(Eckardt) producing a smaller probability (0.12; ~44 days y− 1 per 1◦

box). The Namibian Coast produced the largest AEM dust emission 

Table 3 
Categorical statistics for albedo-based dust emission model (AEM) simulations 
(F > 0) when compared to all satellite observed dust emission point sources 
(DPS) combined.   

Modelled Yes Modelled No Total 

Observed Yes 0.6 1.2 1.8 
Observed No 27.4 70.8 98.2 
Total 28 72 100  

Fig. 3. Empirical cumulative distribution functions (ECDF) of satellite observed dust emission point sources (DPS) from 9 studies across 6 dryland regions compared 
to MODIS (500 m pixels) albedo-derived wind friction velocity (us*) estimated using ERA5-Land (11 km pixels) wind speed at 10 m height. The vertical black line 
approximates (for the visualisation) the actual model entrainment threshold (u*ts) used fixed over space (for given soil types) and static over time. The distribution of 
us* either side of the black line (u*ts) represents the probability of modelled dust emission during (a) all modelled days during the duration of the respective study, (b) 
observed days, including only modelled us* conditions at locations and days where DPS emissions were observed. Red dashed line describes the theoretical u*ts 

required to omit 98 % (blue horizontal line) of occurrences from the global combined distribution of us* conditions (black dashed line), matching the observed 
frequency of the 9 regional studies (combined) (Table 3). 
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Fig. 4. Maps describing the probability of dust emission P(us* > u*tsH) at a 1◦ grid resolution, during (A) observed days and locations where dust point source (DPS) 
emissions were observed, and (B) all days and locations during the length of the respective study. The difference (C) in ΔP between observed and all days describes 
the relative difference in us* conditions during each period. Red grid boxes describe positive ΔP, meaning winds are larger during DPS dust events than during all 
modelled days. Blue grid boxes describe negative ΔP, indicating winds are slower during DPS events than during all modelled days. Light blue, yellow, and orange 
grid boxes described neutral ΔP, indicating none, or very little, discernible difference between wind conditions during DPS events and all modelled days. 
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probability (0.76; ~256 days y− 1 per 1◦ box), followed by North 
American regions (0.46–0.5; ~168–183 days y− 1 per 1◦ box), the Middle 
East (0.42; ~153 days y− 1 per 1◦ box), Australia (0.32; ~117 days y− 1 

per 1◦ box), and Central Asia (0.22; ~80 days y− 1 per 1◦ box). 

3.2. Categorical dust emission model performance 

The performance of the albedo-based dust emission model (AEM) is 
assessed through the coincidence of simulated and observed occurrence 
(or lack) of dust emission. These results are described globally in 
Table 3, where all results from all regions are collated into a contingency 
table describing the proportion of each of four outcomes (see Table 1 for 
outcome descriptions). Dust emission observations account for only 1.8 
% of all possibilities (grid boxes multiplied by days). In comparison, the 
AEM over-predicts the frequency of dust emission by an order of 
magnitude relative to the DPS observations, producing dust emission 28 
% of the time. The model and observations agree 71.4 % of the time, 
including 0.6 % where both model and observations produce dust 
(‘hits’), and 70.8 % of the time when neither predicts dust emission 
(‘correct negatives’). During the remaining 28.6 % of the time, the 
model predicts dust 27.4 % of the time when no dust emission was 
observed (‘false positives’) and fails to predict dust emission 1.2 % of the 
time when dust emission was observed (Table 3). 

The variation in modelled dust emission frequency between global 
regions is explained by the varying cumulative distribution functions 
(empirical) of wind shear velocity (us*) conditions at the soil surface 
(Fig. 3). In Fig. 3, the probability of dust emission is defined by the 
intersection of the distribution of us* conditions and the entrainment 
threshold adjusted by the soil moisture function (approximated for the 
visualisation as u*tsH = 0.2 m s− 1; vertical black line), where all simu
lations greater than the varying thresholds generate dust emission (i.e., 
F > 0). In each case, us* is influenced by the roughness us*/Uh and surface 
wind speed (Uh). The results show a range of conditions between each of 
the regions. Along the Namibian coastline (von Holdt) us* is distinctly 
larger than all other regions (mean 0.23 m s− 1). In contrast, South Af
rican (Eckardt) dust sources have predominantly small us* (mean 0.11 m 
s− 1; Fig. 3a). In the arid south-west of North America, average us* re
mains consistent across each of the three regions (0.19 m s− 1), and 
marginally greater than Australia and the Middle East (each ~0.17 m 
s− 1). Despite producing the same mean, the frequency at which North 
American regions exceed threshold varies. These regional data suggest 
that the Chihuahuan Desert (Baddock), produces a larger proportion of 
us* conditions at extreme values (small and large values of us*), whereas 
the Southern High Plains (Kandakji and Lee) produce a larger frequency 
closer to the mean. Along with South Africa, us* conditions in Central 
Asia (mean = 0.14 m s− 1) and North African (mean = 0.13 m s− 1) are the 
smallest, with us* values proportionally smaller than the collective 
global distribution (dashed black line). 

Fig. 3b shows the distribution of us* conditions during observation 
periods (locations and days with observed dust only). These data 
determine the proportion of ‘hits’ (coinciding observed and simulated 
dust) by P(us*>u*tsH). With a greater proportion of us* values and a u*ts 
threshold of 0.2 m s− 1 approximated for the visualisation (vertical black 
line), the north American regions generate a high probability 
(0.97–0.99) of ‘hits’. In contrast, North Africa, Central Asia, South Af
rica, and the Namibian Coast all produce ‘hit’ probabilities below 0.5, 
due to the smaller frequency of large us* conditions. The Middle East 
(0.55) and Australia (0.84) have larger probabilities but continue to 
‘miss’ a significant proportion of observed dust events. These results 
show that a large proportion of the observations (up to 79 % in North 
Africa) occur during us* conditions below the fixed threshold, with all 
regions except North America (see Lee and Baddock datasets) producing 
a minimum observed us* below the fixed threshold. Some us* are so small 
as to be extremely unlikely to produce dust and indicate that some wind 
speeds at the scale of 11 km pixel are inadequate. 

To demonstrate the impact of u*ts on the probability of dust emission, 

we consider the adjustment of regional u*ts to match global DPS fre
quency P(us*all > u*tsH) = 0.018, where us*all is the ECDF of us* conditions 
at all locations during all days (black dashed line in Fig. 3a). Fig. 3a 
shows that the global combined distribution of us* conditions would 
require u*ts = 0.36 m s− 1 (red dashed vertical line). We compared the 
intersections of each ECDF at u*tsH = 0.2 m s− 1 (approximated for the 
visualisation; black vertical line) with that at u*tsH = 0.36 m s− 1 (red 
dashed vertical line) to illustrate the differences for percentage ‘hits’ 
(Fig. 3b). The ‘hits’ reduced in all regions, produced a maximum 
reduction of 55 % in Australia (84 % with u*tsH = 0.2 m s− 1, to 29 % with 
u*tsH = 0.36 m s− 1), and a minimum reduction of 20 % in North Africa 
(21 % to 1 %). North America produces the largest percentage of ‘hits’ 
(57 % – 71 %), while all observed events are missed in South Africa (‘hit’ 
= 0 %). All other regions reduce the proportion of ‘hits’ below 10 %. 
Overall, during all observed dust events (black dashed ECDF; Fig. 3b), 
us* < u*ts 68 % of the time, indicating wind speeds are too small over two 
thirds of the time when we know dust emission has occurred (i.e., DPS >
0). 

3.3. Dust emission model variability at a local (1◦) scale 

The ECDF analysis in Fig. 3 indicates an underestimation of us* 
conditions most of the time during observed dust events. Consequently, 
68 % of known dust events are not modelled. Regionally, this value 
varies depending on the range of us* conditions during observed events 
(Fig. 3b). Fig. 4a describes Pobs (us* > u*tsH) during observed dust events 
at a 1◦ grid box. By considering only days which are known to produce 
dust, these data describe how well the model captures blowing dust 
conditions, where perfect performance would produce 1 in each box. 
Therefore, Fig. 4a identifies spatial patterns in model performance 
within regions, elucidating spatial variability in us* conditions during 
known dust emission events (i.e., every grid box is dark red in Fig. 4a). 
The variability in grid box Pobs is independent of regional conditions, 
instead elucidating spatial patterns in us* conditions during known dust 
emission events. 

During observed days, Pobs is consistently large (>0.8) across North 
America, and the southerly reaches of Australia including the Lake Eyre 
Basin, the Simpson and Strzelecki Deserts to the south (Fig. 4a). Across 
North Africa, Pobs remains generally small, increasing in the north 
(0.4–0.6) along the Mediterranean coast, and decreasing to a minimum 
(<0.2) in the south and east. The Bodele Depression is not evident as a 
hotspot because of its unique dust producing mechanism which are not 
represented in the AEM (see Discussion section for more details). In the 
Middle East, Pobs is large (>0.6) across large areas of the Arabian 
Peninsula, including Mesopotamia in the north, the Red Sea Coast in the 
west and Oman to the south. Iran has large variability, with Pobs (<0.2) 
in the north-east, increasing Pobs (>0.6) in the Sistan Basin to the east, 
along the Makran Coast to the south and on the shores of the Caspian Sea 
to the north. Central Asia produces the largest variability, peaking (Pobs 
> 0.8) in the Gobi Desert (China) in the east, the Kara-Kum Desert and 
Aral Sea area (Kazakhstan) to the west, while many central areas, 
including the Taklamakan Desert, produce small Pobs. In the Namib 
Desert, along the Namibian Coast, Pobs peaks (>0.6) to the north, while 
inland Pobs reduces significantly (<0.2). In the interior of southern Af
rica, Pobs is generally small (<0.4), with a peak (>0.6) in the south- 
eastern extent of the Kalahari Desert. 

For comparison, Fig. 4b describes Pall (us* > u*tsH) during all days at 
each 1◦ grid box. These data include observed events which comprise 
only a small proportion (<1.8 %) of all days (Table 3). Accordingly, 
these results reveal how likely the model is to create false positive dust 
events, where a good model performance would produce very small Pall 
values (i.e., zero false positives / grid box = white; Fig. 4b). Here, large 
spatial variability in Pall occurs across Australia, and North America and 
the Middle East. Pall remains consistently small (<0.4) in North Africa, 
and parts of north-east Iran, Central Asia, and South Africa. Pall peaks 
(>0.8) in the Namib Desert (Namibia), western Arabian Plateau (Saudi 
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Table 4 
Description of categorical albedo-based dust emission model (AEM) outputs due to varying probabilities of us* > u*tsH 
during observed DPS dust days and all days. Colours indicate the symbology applied to 1◦ grid boxes in Fig. 4. 
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Arabia), Mesopotamia (Iraq / Syria), Makran Coast (Iran), Sistan Basin 
(Iran/Afghanistan) and discrete parts of the Kara-Kum (Kazakhstan), 
Taklamakan (China), and Gobi (China) Deserts. 

The difference between Pobs and Pall (ΔP Eq. (8); Fig. 4c) describes 
how distinct the us* conditions are in each grid box during each period: 

ΔP = Pobs
(
us*(observed) > u*tsH

)
− Pall

(
us*(all) > u*tsH

)
(8)  

assuming (for simplicity and consistent with the approximation for 
previous visualisations) u*tsH = 0.2 m s− 1. Those ΔP values close to 
0 indicate no, or very small, differences in us* conditions, indicating that 
the AEM does not recognise a difference in the probability of us* 
exceeding threshold. These conditions occur across large parts of the 
Sahara Desert, Central Asia, where small us* conditions continue (Pobs 
and Pall < 0.2). In parts of the Arabian Peninsula (including northern 
Mesopotamia), ΔP remains small as us* conditions continue to exceed 
threshold most of the time (Pobs and Pall > 0.6). Positive ΔP indicates an 
increase in us* during observed dust emission days compared to all days. 
These conditions occur in most dust sources in Australia, North America, 
Western Arabian Peninsula (Jordan, north-west Saudi Arabia), where us* 
conditions are large during dust events (Pobs > 0.8) and smaller during 
all days (Pall < 0.4). The ΔP remains positive in south-eastern Kalahari 
Desert, Central Iran, and the Mediterranean coast of North Africa where 
smaller us* conditions during observed dust events (Pobs 0.4–0.8), remain 
distinctly larger than on all days (Pall < 0.2). Negative ΔP indicates 
larger us* during all days compared to observed days. These conditions 
occur throughout the Namib Desert, the coast of the Arabian Gulf (Saudi 
Arabia), the Makran Coast and Dasht-e-Lut Desert (Iran), where us* 
conditions exceed threshold most of the time (Pall > 0.8) and are rela
tively small during observed dust events (Pobs < 0.6). Discrete areas of 
the Kara-Kum, Taklamakan, and Gobi Deserts also produce negative ΔP, 
as large peaks in us* conditions (Pall > 0.8) during all days, exceed those 
on observed days (Pobs < 0.6). 

3.4. Diagnostic dust emission model performance relative to dust emission 
observations 

The P(us* >u*tsH) during DPS events describes the model accuracy in 
either the us* conditions known to have created dust emission (i.e., DPS 
= 1) or the correct dust entrainment threshold (Fig. 4a; top row in 
Table 4). By plotting the combinations of these occurrences, we can 
understand which meteorological events are best described by dust 
emission models and/or where the dust entrainment threshold is poorly 
constrained. In common with other dust emission models, the AEM has 
no description of the spatio-temporal variation in soil erodibility and 
assumes an infinite sediment supply at all locations. Consequently, 
whenever us* > u*tsH the AEM simulates dust emission. During DPS 
observations, by comparing P(us* >u*tsH) with all modelled days 
(Fig. 4b), we can determine areas where sediment supply is poorly 
described by an infinite sediment availability i.e., no difference in P(us* 
> u*tsH) between observed days and all days (top left and bottom right in 
Table 4) or comparing P(us* > u*tsH) is larger during all days than during 
DPS observations (bottom left in Table 4). 

Where there is no clear separation in us* conditions during observed 
events and all days, we can interpret these results in two ways, 
depending on the P(us* > u*tsH). If that P is large during both periods 
(bottom right in Table 4), the model will correctly simulate dust most of 
the time during DPS observations (‘hits’ are large). In this case, dust 
producing us* conditions are well described, but the lack of erodibility 
parametrisation means dust emission will continue to be simulated 
beyond those days observed in the DPS data (‘false positives’ are large). 
If that P is small (top left in Table 4), dust-producing us* conditions are 
not well described (‘hits’ are small) and are therefore not distinguished 
from all day events during observed DPS days (‘false positives’ remain 
small). 

4. Discussion 

The collective dust emission frequency from nine separate studies 
demonstrate that dust emission is a rare event (on average 1.8 % of all 
space-time occurrences; Table 3) indicating extreme conditions (e.g., 
large wind speeds) even in the more readily recognised dust emission 
areas (e.g., the Sahara Desert, the Arabian Peninsula; <100 days y− 1). 
Notably, an independent study using the Multiangle Imaging Spectror
adiometer (MISR) also found spatially patchy dust plume distribution, 
with frequency of <135 days y− 1(Yu et al., 2018). In comparison, the 
albedo-based dust emission model (AEM) simulations estimate dust 
emission frequency 28 % of the time. This AEM over-estimation is 
consistent with the need for ESMs to be globally tuned down by several 
orders of magnitude to match dust optical depth (Zender, 2003). The 
AEM over-estimation particularly in North Africa has considerable im
plications for ESMs because they are “…generally tuned to fit the ob
servations in a given part of the world and often this tuning is done with 
observations from North Africa” (Huneeus et al., 2011; p.7809). 
Consequently, the ESMs are very likely to be simulating dust emission 
too frequently, with too little intensity and with reduced diversity in the 
contributing dust with different mineralogy from other regions (Chap
pell et al., 2023a, 2023b). These results confirm earlier findings that dust 
emission models must first be calibrated against DPS data before being 
calibrated against dust optical depth (Chappell et al., 2023a, 2023b). 

Notably, the over-estimation remains despite the AEM model using a 
calibration of wind friction against aerodynamic roughness (Chappell 
and Webb, 2016; Webb et al., 2020) Chappell et al., 2023a, 2023b). 
There are two components of this AEM over-estimation that we think 
need to be considered: (i) it is systematic across dryland dust sources 
across Earth; (ii) the disparity is in total frequency and daily coincidence 
of observed and simulated emission. Without considering both compo
nents synchronously, it will be difficult for dust emission model de
velopments to determine if the dust emission model simulated the 
correct frequency by chance (i.e., same frequency on different days), and 
under which environmental conditions the model performs. 

The AEM coincides with DPS occurrences (observed and not 
observed) 71.4 % of the time. However, during observed dust events, the 
AEM only coincides with DPS events 0.6 % of the time. Since the AEM 
provides a realistic (calibrated) representation of us*, these results sug
gest that the inconsistency in modelled and observed frequencies is due 
to a combination of three broad factors: (1) discrepancies in the 
formulation of the entrainment threshold adjusted by soil moisture 
(u*tsH); (2) incompatible scales in dust emission modelling e.g., the 
grain-scale u*ts is incompatible with the areal us* (MODIS 500 m) and 
areal wind speed at a larger scale (ERA5-Land; 11 km), and (3) the 
inadequate assumption of an infinite supply of loose, erodible sedi
ments. Each of these three main factors can be interpreted by comparing 
the conditions which exceed entrainment threshold P(us* > u*tsH) during 
observed DPS days, to all days (Table 4) at multiple scales including, 
regional (Fig. 3) and local (Fig. 4). We should also not exclude a possible 
bias in the DPS data towards few (detectable) large magnitude events 
and away from smaller magnitude, larger frequency occurrences below 
the detectable limit of these DPS observations. However, there is limited 
quantitative information available, and we raise awareness of these 
sources of uncertainty below. 

4.1. Discrepancies in the formulation of entrainment threshold (u*tsH) 

By using dichotomous descriptions of dust emission frequency, we 
provide an assessment of model performance which emphasises the 
coincidence of events rather than just a comparison of total frequency. 
This assessment distinguishes simulations associated with dust emission 
events, from simulations of dust emission on all days, to provide a 
powerful description of dust emitting conditions from those on all days. 
Our results show that modelled dust emission occurs regularly i.e., us* >

u*tsH where and when no dust emission is observed (27.4 % of all 
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simulations; Table 3). These findings form the alluring suggestion that 
dust emission model performance can be improved by matching u*tsH to 
the correct global frequency of observed dust emissions (globally = 1.8 
%; u*tsH = 0.36 m s− 1). However, reducing the number of ‘false posi
tives’ in this way will systematically reduce the proportion of correct 
observations (i.e., ‘hits’) in all regions by as much as 55 % (Australia), 
with only 1 % of all observations in North Africa correctly simulated. An 
alternative solution might appear to adjust u*tsH to maximise the num
ber of ‘hits’ P(us*obs > u*tsH) = 1 and globally would require a fixed u*tsH 
= 0.006 m s− 1. However, this alternative will increase the proportion of 
‘false positives’ to 99.9 %. Neither of these approaches are recom
mended for the reasons described. 

Despite the rarity of dust observations (occurring only 1.8 % of the 
time; Table 3), the ECDF data show that dust emission events rarely 
represent extreme us* conditions (P(us*obs) = < P(us*all); Fig. 3), because 
in most cases there is no distinct difference in us* conditions between 
observed days and all days. These results demonstrate that there is no 
reasonable basis to calibrate model performance through an adjustment 
to a fixed global threshold (u*tsH). Whilst this may seem axiomatic to 
some, the assumption of global and fixed u*ts has endured for more than 
two decades since dust emission models were first developed. In 
contrast, a threshold varying in space-time responding to erodibility 
dynamics should improve model performance in areas where there is a 
clear positive change in frequency of occurrence (i.e., top right in 
Table 4;us*obs > us*all). Our regional results indicate that this condition 
(us*obs > us*all) occurs in North America and Australia, where the AEM 
identifies an increased mean us* during observed DPS events (Fig. 3). In 
both regions, dust emission occurs during the passage of large frontal 
systems (Rivera Rivera et al., 2009; Strong et al., 2011) in response to 
cyclonic activity. The ability to accurately model these synoptic condi
tions would allow u*tsH to be adapted (increased) to reduce the number 
of ‘false positive’ simulations without negatively affecting the model’s 
ability to simulate ‘hits’. However, calibration of u*tsH in this way is also 
not recommended because it fundamentally tunes the model response to 
those specific conditions. It would not enable modelling to be physically- 
based in responding to a changing environment which is essential for use 
in understanding past and future climate projections. 

4.2. Incompatible scales in dust emission modelling 

By describing the ECDFs of us* during observed days and locations 
(Fig. 3b), a new understanding emerges assuming that the coupled 
property, wind friction velocity normalised by wind speed (us*/Uh) is 
well constrained, by being calibrated against aerodynamic wind tunnel 
measurements (Chappell and Webb, 2016). Wind speeds used in the 
AEM are too small to enable us* to exceed u*tsH during roughly 2 out of 3 
observed events Pobs (us* > u*tsH) = 0.6. For example, North American 
DPS are from predominantly barren parts of the region and show little 
variation in us*/Uh, either spatially or temporally (Hennen et al., 2022). 
This characteristic of DPS data extends globally, with most dust emission 
point sources coinciding with barren conditions (us*/Uh > 0.028) which 
do not change much, most of the time (standard deviation <0.002) 
either within or between the few years of measurements available. In 
these locations, variation in us* conditions of the DPS locations is created 
mainly by variation in Uh. Accordingly, when a dust event is observed 
but us* does not exceed u*tsH, we assume that the AEM has not correctly 
simulated the associated dust-producing wind conditions at that loca
tion. In the text which follows, we elaborate on regional conditions and 
AEM performance given these assumptions. 

North Africa produces the smallest probability of dust-producing 
winds during observed dust events (P = 0.2; Fig. 4a). However, there 
is large spatial variability in P, with larger values along the Mediterra
nean coast and western Africa (P > 0.4) than inland, where eastern parts 
of the Sahel have P < 0.2. Dust emission in the north of the region occurs 
through cyclogenesis and associated formation of fronts (Schepanski 
et al., 2009). Specifically, Sharav cyclones (also named Mediterranean 

cyclones), track across the Mahgreb region towards the eastern Medi
terranean Basin (Caton Harrison et al., 2021; Knippertz and Todd, 
2012). These conditions are often associated with an active warm front, 
characterised by pronounced dust uplift (Schepanski et al., 2009). 
Saharan Depressions are also found anticyclonically over Western Af
rica, where they ultimately transit north and east into a Mediterranean 
cyclone (Schepanski and Knippertz, 2011). These synoptic scale mete
orological conditions are described well in the AEM, with a distinct 
change in us* (increasing P) during observed dust events compared to all 
days (Fig. 4c, top right in Table 4). 

In parts of the Sahel, dust emission is associated with mesoscale 
meteorological drivers, including the diurnal break-down of the 
nocturnal low-level jet (LLJ) (Schepanski et al., 2009) and sudden in
crease in wind speeds at the leading edge of cold-pool density currents, 
formed from deep moist convection (Knippertz and Todd, 2012; Lawson, 
1971). Fig. 4a shows that neither of these conditions are frequently 
identified in the AEM, with P < 0.2 during observed events. These small 
P values very likely arise from our use of ERA5-Land global wind field 
data (11 km pixels; daily maximum winds) which, like most global 
modelled wind field data, will struggle to describe episodic, mesoscale 
events such as LLJs and cold pooling (Fan et al., 2020; Caton Harrison 
et al., 2021). Instead, these wind data describe a single spatial mean 
value per 11 km pixel, which is subsequently used to form us* which is 
then compared to u*tsH (at the grain scale without adjustment). The 
problem with this mean value is not that it is provided at 11 km, but that 
the spatial mean wind is derived from the 40 m ‘blending’ height. When 
that 11 km spatial mean value is provided by ERA5-Land at the 10 m 
height it is assumed that the aerodynamic roughness length is static over 
time and fixed over space (for a given land cover type; see technical 
ECMWF details). Our AEM used maximum daily ERA5-Land wind speeds 
to increase the chance of simulating dust-producing winds. However, 
maximum values still describe the spatial mean across the 11 km pixel, 
during that period. If peak wind speeds occur suddenly and/or in only a 
portion of an 11 km pixel, the mean pixel value will not capture the 
magnitude of those peak wind conditions at a given point dust source. 
Consequently, no distinct change in peak us* conditions can be identified 
during local (discrete) or sudden dust emission events, as demonstrated 
by the parity in P(us* >u*tsH) during observed dust events and all days 
(Neutral ΔP – Fig. 4c). These results indicate that the (ERA5-Land) 
downscaling of wind using simplifying assumptions about aerodynamic 
roughness is limiting our ability to tackle sub-grid scale heterogeneity in 
wind fields and related applications in dust emission e.g., impact of 
wildfires on mineral dust emission (Menut et al., 2022). For clarity, we 
do not interpret this to mean that we should use finer resolution infor
mation. That will not tackle the sub-grid scale heterogeneity. We 
interpret this to mean that the downscaling of the wind field aero
dynamic roughness needs to be improved. 

4.3. Inadequate assumption of infinite supply of fine sediments 

The AEM over-estimated the frequency of dust emission at all DPS 
sites. However, it also failed to simulate all of the observed dust emission 
events. The dichotomous statistics demonstrate that AEM dust emission 
occurs predominantly when no observation was made (27.4 % of the 
time; Table 3). At these dust sources, P(us* > u*tsH) is large all the time 
(bottom row in Table 4). As the AEM has no description of the avail
ability of dry, loose material to generate sediment transport (soil erod
ibility), it will produce dust emission whenever us* conditions are large 
enough to exceed u*ts (many false positives). The entrainment threshold 
is exceeded more frequently in areas where the prevailing wind speeds 
remain frequently large. Our results show large daily P(us* > u*tsH) 
across Mesopotamia, the Sistan Basin (Iran / Afghanistan) and the 
Namibian Desert (Fig. 4b), where dust emission is simulated >80 % of 
the time in response to frequent large winds. These occur in the north- 
westerly Shamal winds of Mesopotamia (Bou Karam Francis et al., 
2017; Yu et al., 2016), the Sistan winds in eastern Iran (Rezazadeh et al., 
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2013) and the Berg winds across the Namibian coast (von Holdt et al., 
2017). The DPS observations peak in some of these regions, yet continue 
to occur infrequently, with P(DPS > 0) <0.3. With sufficient us* to 
initiate dust emission 80 % of the time, the scarcity of observations in
dicates an absence of erodible material. Despite an assumed infinite 
supply of loose material in the model, dryland environments are well- 
known to be supply-limited (Bullard et al., 2011; Klose et al., 2019; 
Parajuli et al., 2014; von Holdt and Eckardt, 2018; Zender, 2003). 
Ephemeral processes, and the preferential transposition of fine materials 
are often considered key in the episodic nature of dust emission (Rashki 
et al., 2017). In supply-limited areas, once these fine materials are 
deposited, there exists a finite period of increased dust emission po
tential. During the intervening periods, supply is either exhausted or 
protected from erosive winds by the formation of biogeophysical crusts 
(Vos et al., 2020) or surface ‘armouring’. Accordingly, dust source areas, 
like the Sistan Basin, Tigris-Euphrates Basin (Syria/Iraq), and the Kuiseb 
River catchment (Namibia), where ephemeral or fluvial systems (with 
variable flow rates) occur, will tend to be limited by the production of 
fine materials (von Holdt and Eckardt, 2018). While the impact caused 
by the simplistic model assumption of infinite sediment supply, is most 
apparent in frequently windy areas, our results (27.4 % ‘false positive’ 
simulations) suggest that the mismatch between the assumption and the 
DPS observations of dust emission occurs in all dryland areas (Fig. 4b). 

4.4. Uncertainties in evaluating dust emission models 

Several sources of uncertainty are associated with the evaluation of 
dust emission estimates including the use of dust emission point source 
(DPS) data in this work. The uncertainties surrounding DPS data are 
known but largely unquantified as we develop this new framework for 
the evaluation of dust emission model development. We provide a 
description of these DPS uncertainties below which includes the ratio
nale for new and additional work to support this new framework. First, 
we place the uncertainties of this new framework into the broader 
context of how dust emission models are currently evaluated and how 
much (total) uncertainty is known and quantified with dust emission 
modelling itself. This ensures that the value of this new framework is 
appreciated. 

At the largest ESM scale, the dust emission model itself is not eval
uated, the dust cycle model is evaluated against dust optical depth. This 
approach assumes that there is no global spatio-temporal bias in the dust 
emission model (Huneeus et al., 2011; p.7809). Recent evidence in
dicates that at this global scale that assumption is not valid and uncer
tainty in the dust emission model was largely unrecognised and much 
larger than expected (Chappell et al., 2023a, 2023b). Recent work using 
global DPS data to calibrate the AEM has provided the first quantitative 
estimate of dust emission model uncertainty (Chappell et al., 2023a). At 
the regional scale, numerical weather prediction models are typically 
evaluated using dust optical depth (LeGrand et al., 2023). Despite being 
at a fine spatio-temporal resolution, this approach also does not enable 
the dust emission model itself to be evaluated. At the field scale, active 
dust concentration measurements are used. Whilst this approach brings 
the evaluation closer to the dust emission process, uncertainty remains 
as to the difference between proximal and distal dust being measured. 
Therefore, it seems reasonable to conclude that we have very poor 
constraints on dust emission model uncertainty across these different 
scales. 

For our new framework, we have described the methodologies for 
establishing dust emission point source (DPS) data which include pro
tocols for consistent and repeatable identifications. The reproducibility 
issues raised by earlier studies of DPS data (e.g., Sinclair and LeGrand, 
2019) are avoided here with our use of 1◦ grid cells. The difference 
between previous approaches and our approach is similar to the way in 
which incompatible spatial data are combined (Gotway and Young, 
2002). By using large 1◦ grid cells we have many samples of dust 
emission observations across relatively few cells, which adequately 

represents the within-class variance. Without this large support size, the 
large number of samples would be spread over very many smaller cells 
reducing the number of samples per cell which would increase the 
within-class variance and hamper the ability to reliably detect differ
ence. In other words, uncertainties associated with individual DPS 
identifications (or ground-based dust optical depth measurements) are 
reduced considerably by our 1◦ grid cell aggregated approach. 

Uncertainty in validity of DPS data focusses on how they represent 
the magnitude and frequency of dust emissions. Hennen et al. (2019; 
Fig. 2) assigned a level of confidence (to their SEVIRI DPS data of the 
Middle East) which serves as a useful basis for discussing these sources of 
uncertainty. Here, low confidence levels are primarily indicative of 
difficult observation conditions, including the presence of meteorolog
ical clouds, and night-day temperature differences (Murray et al., 2016). 

Level 1 data have the greatest confidence ascribed to them. The DPS 
data associated with MODIS are sun-synchronous which exclude dust 
emissions during the night. Similarly, reduced land surface ‘skin’ tem
perature, and night-time atmospheric temperature inversion reduced 
thermal contrast during nighttime conditions, potentially precluding a 
portion of SEVIRI DPS events at night (Hennen et al., 2019). However, 
we did not filter the daily wind speed maxima used in the albedo-based 
dust emission to be sun-synchronous. Whilst night-time dust observa
tions are omitted from MODIS DPS, they are included in SEVIRI DPS. 
Across the global DPS dataset this reduces the possibility of a systematic 
bias. 

Level 2 and 3 confidence in DPS data are associated with partial 
cloud cover close to the dust emission source, where upwind dust 
emission activation does not obscure the observed emission surface. The 
detection of these level 3 emissions typically occurs downwind of other 
dust plumes, or within challenging surface conditions, where DPS 
identification requires meticulous monitoring of dust plume evolution 
through sequential images (Hennen et al., 2019). The MODIS DPS data 
are unable to provide this plume tracking and are very likely to be biased 
away from these types of dust. However, across the global DPS data, the 
mixture of MODIS and SEVIRI data is unlikely to include a systematic 
bias. Furthermore, counting dust emission events in the model above a 
small threshold emission flux may help bound the bias in the DPS data. 
For each of these different levels of confidence, we have been unable to 
find any information in the literature on the magnitude of any potential 
bias in DPS data. 

5. Conclusions 

Several new insights for model performance have arisen from this 
work with implications for the prospects of dust emission modelling. 
Satellite observed dust emission point source (DPS) data aggregated to 
be compatible with the scale of dust emission model simulations, 
demonstrate that dust emission is rare, even in areas where there are 
many more dust sources in the region (e.g., North Africa, Middle East). 
Notwithstanding recent improvements in dust emission modelling using 
the albedo-based approach, the AEM currently over-estimates dust 
emission occurrence by several orders of magnitude. We describe else
where how these over-estimates are reduced by calibration with DPS 
data. 

Our AEM over-estimation of dust emission is globally systematic, 
which we interpret here to be due to (i) the consistent difference be
tween the scale of the wind friction velocity (using MODIS albedo at 500 
m) and the scale of wind field data (using ERA5-Land at 11 km pixels) 
and (ii) estimates of wind speed (downscaled from 40 m to 10 m height) 
based on land surface roughness values static over time and fixed over 
land cover classes. Similarly, we know that the entrainment threshold is 
derived at the grain scale which is incompatible with those areal esti
mates of wind and wind friction velocity. Furthermore, the long- 
standing dust emission modelling assumption of an infinite supply of 
dry, loose and available sediment is evidently unreasonable and causing 
some of the discrepancy between dust emission modelling compared 
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with DPS data. 
Our results demonstrate that the following future improvements in 

dust emission modelling will be most effectively tackled in an integrated 
approach because of the interaction between magnitude and frequency 
of sediment transport and dust emission, by:  

• evaluating how various atmospheric conditions are represented by 
DPS data, by conducting DPS studies across a wider range of dust 
source types in alternate dust source regions. This work may usefully 
include an attempt to quantify the bias in DPS data.  

• overcoming the current incompatibility of grain-scale entrainment 
threshold with one which is area-weighted and varies over space- 
time with soil surface conditions. Applying linear scaling of the 
normalised shadow data before those normalised shadow data are 
calibrated to the wind friction velocity will overcome the long- 
standing non-linearity in sediment transport and dust emission 
modelling.  

• improving the parametrisation of sediment supply / availability by 
spatially area-weighting, changing over space, and scaling linearly 
for consistency with other model data. 

Our results suggest that routine evaluation of dust emission model 
performance should be against dust emission measurements for which 
we now have a large database of satellite observed dust emission point 
source (DPS) data. We emphasise in our evaluation, the important dif
ference between dust emission observations and atmospheric dust con
centrations and the role each type of data plays in identifying model 
performance. Rather than evaluate developments in dust emission 
model parameterisation by assessment against dust in the atmosphere 
(e.g., dust optical depth), we recommend that evaluations of global dust 
emission modelling improvements are made first against global dust 
emission point source data. Dust emission model fidelity will then be 
described by the coincidence in space and time with those dust emission 
observations. In due course, we expect this new approach to re-balance 
dust emission modelling towards the skill of dust emission schema. As 
new data sources emerge, and emission schema develop this new eval
uation approach will benefit the dust modelling research community, by 
avoiding enduring modelling deficiencies through objective critical re- 
evaluation. 
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