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Using simple, intuitive arguments, we discuss the expected accuracy with which astrophysical
parameters can be extracted from an observed gravitational wave signal. The observation of a chirplike
signal in the data allows for measurement of the component masses and aligned spins, while measurement
in three or more detectors enables good localization. The ability to measure additional features in the
observed signal—the existence or absence of power in (i) the second gravitational wave polarization,
(ii) higher gravitational wave multipoles or (iii) spin-induced orbital precession—provide new information
which can be used to significantly improve the accuracy of parameter measurement. We introduce the
simple-pe algorithm which uses these methods to generate rapid parameter estimation results for binary
mergers. We present results from a set of simulations, to illustrate the method, and compare results from
simple-pewith measurements from full parameter estimation routines. The simple-pe routine is able
to provide initial parameter estimates in a matter of CPU minutes, which could be used in real-time alerts
and also as input to significantly accelerate detailed parameter estimation routines.
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I. INTRODUCTION

Gravitational wave astronomy has quickly evolved from
the first observation in 2015 [1] to now regular observations
of black hole binary mergers [2–7]. Future improvements to
the existing ground-based gravitational wave detectors
[8,9] are expected to increase the frequency of observations
further, with mergers being observed daily, or even more
frequently, in the coming years [10]. With a large number
of observed signals, we can expect that many of them are
not unique, and mostly serve to improve the sampling of the
underlying astrophysical populations. However, there will
be a small number of signals which probe new areas of the
parameter space, for example due to having particularly
large or small masses and spins (see e.g. [11]); significant
mass ratios (see e.g. [11,12]); clear evidence of neutron star
structure; eccentricity (see e.g. [13]) and, most tantaliz-
ingly, evidence for physics beyond Einstein’s relativity.
There is, then, a desire to be able to, quickly and easily,

determine which signals are likely to provide interesting
results so that energy can be focused on them.
Detailed parameter estimation routines have already been

developed [14–30], and are routinely used to recover the
parameters of observed signals. Furthermore, increasingly
accurate gravitational waveforms have been developed,
which incorporate evermore physical effects—highermulti-
poles, accurate treatment of black hole spins, inclusion of
accurate neutron star equation of state, use of numerical
relativity results, eccentricity, beyond GR, etc. [31–51].
Thus, we can infer the parameters of the system using ever
more sophisticated methods. However, there are two issues.
First, as more physical effects are added to the waveforms,
the time taken to generate these waveforms, and to sample
the expanding parameter space, increases; although there
has been recent effort to reduce this computational cost
through bespoke optimizations [52–54], and by harnessing
machine learning techniques [55,56]. Second, the parameter
estimation routines provide estimates and uncertainties, but
typically do not identify the features in the waveform that
enable the measurement of given parameters with the stated
accuracy.
There is a long history of work aimed at understanding,

at a more basic level, how parameters can be extracted from
the observed gravitational waveform and providing some
idea of the expected accuracy of measurements. For
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example, Refs. [57–61] give early examples of investiga-
tions into measurements of masses and the degeneracy of
mass and spin. With increased interest in multimessenger
astronomy, various methods to understand gravitational
wave localization have also been developed [62–67]. The
impact of higher gravitational wave multipoles were also
examined in Refs. [68,69] and the impact of spin-induced
orbital precession in detail in Refs. [70–74]. All along,
warnings of using approximation techniques to investigate
the full, high-dimensional parameter space in a single
analysis have been given [64,66].
In this paper, we synthesize the physical insights

mentioned above to provide a hierarchical understanding
of parameter recovery from gravitational wave observa-
tions. To do so, we begin with the basic information—the
observation of a gravitational wave chirp in one detector.
In this case, the shape of the waveform can be used to infer
some details of the masses and spins. For lower mass
binaries, where the merger does not contribute too
significantly to the signal power, the chirp mass is
measured with good accuracy, while for higher masses
the total mass determines the waveform during merger and
ringdown. Additional information about the phasing of the
system allows for inference of the mass ratio and the
components of black hole spin aligned with the orbital
angular momentum. A single detector provides essentially
no information about sky location, other than what can be
inferred probabilistically (the signal is more likely to
come from a sky location where the detector is more
sensitive). We can infer a maximum distance for the
source. However, for most cases, an accurate distance
measurement is not possible as it is degenerate with the
orientation and sky location.
As more features are observed, it is possible to extract

additional astrophysical parameters from the signal. Extra
measurements arise from either the observation of the
signal in additional detectors, or from the observation of
additional waveform features in a detector or network of
detectors. If the signal is observed in more than one
detector, this enables localization of the source and meas-
urement, in principle, of both gravitational wave polar-
izations. The relative amplitude and phase of the second
polarization provide additional constraints on the distance
to and orientation of the binary. Additional waveform
features include higher gravitational wave multipoles and
spin-induced orbital precession. In both cases, these fea-
tures can be considered as adding additional components to
the gravitational wave signal which are, to a good approxi-
mation, orthogonal to the dominant chirp waveform. The
significance of higher multipoles is typically more pro-
nounced for systems with more unequal masses. The
relative amplitudes of the higher multipoles also depend
upon the orientation, with many higher multipoles vanish-
ing for face-on systems. Thus observation of higher multi-
poles can allow for improved measurement of mass ratio

and orientation of the binary. The observation of precession
requires nonzero in-plane spin components and allows
inferences about the in-plane spins as well as the orienta-
tion of the binary. In this paper, we consider the impact of
adding each of the above features, and how it can improve
the parameter recovery.
The paper is laid out as follows. In Sec. II we describe the

observable features of the waveform, in Sec. III we describe
how the observable features of the waveform can be used to
infer the system parameters. In Sec. IV we provide details
of an implementation with results in Sec. V, including a
comparison between our results and those obtained with
Bilby [16,18,20], in Sec. VA. In Sec. VI we provide a
summary and discussion of future work. In Appendix Awe
provide additional details of the waveform decomposition
and in B provide results for a low signal-to-noise ratio
(SNR) signal.

II. THE OBSERVABLE FEATURES
IN A GRAVITATIONAL WAVEFORM

The gravitational waveform observed at a detector is
given by

hXðtÞ ¼ Re½FXh�; ð1Þ

where

FX ¼ FXþ þ iFX
× ð2Þ

and FXþ;× are the detector response functions for the
detector X which depend upon the location of the source
relative to the detector, and

h ≔ hþ − ih×; ð3Þ

where hþ;× are the two polarizations of the gravitational
wave, which depend upon the details of the source. In this
paper, we restrict attention to black hole binary mergers for
which the signal is relatively short-lived, so that we can
treat Fþ;× as constant over the duration of the signal.1

The gravitational waveform emitted during a binary
merger can naturally be decomposed into a set of spin-
weighted spherical harmonics as [76,77]

hðtÞ ¼
X
l≥2

Xl
m¼−l

hl;mðt; λ⃗Þ−2Yl;mðθ;ϕÞ; ð4Þ

where −2Yl;m is the spin-weighted spherical harmonic of
weight −2, θ and ϕ give the orientation of the observer
relative to a coordinate system used to identify the spherical

1This approximation is appropriate for binary mergers in the
advanced detector network, but breaks down for low-mass
mergers in next-generation detectors [75].
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harmonics, λ⃗ encodes the physical parameters of the
system (masses, spins, etc.) and t is the time. Here, and
throughout this section, we follow the notation used in
[42,78]. The frequency evolution of the harmonics
depends upon the orbital frequency of the binary, with
the dominant harmonic being the ðl; mÞ ¼ ð2; 2Þ having a
frequency which is double the orbital frequency during
the inspiral phase. Various models for the gravitational
waveform emitted during the merger of quasicircular
black hole binary mergers have been developed in recent
years, see e.g. [32,39,43,47].
For binaries where the spins are misaligned with the

orbital angular momentum, neither the orientation of the
spins nor the magnitude and orientation of orbital angular
momentum remain fixed and both precess around the
direction of the total angular momentum, which does
remain approximately constant [79]. This orbital precession
leads to amplitude and phase modulations in the observed
gravitational wave signal, on the precession timescale
which is typically slower than the orbital period. These
modulations can be interpreted as the beating of different
harmonics whose frequencies differ by multiples of the
precession frequency [70,80]. Thus, for a binary with
misaligned spins, precession will cause a splitting of each
ðl; mÞ multipole in Eq. (4) into multiple harmonics whose
frequencies differ by the precession frequency.
In many cases, the multipoles for a precessing system are

approximated by “twisting up” [40,81] the multipoles of
the nonprecessing counterpart based upon the evolution of
the orientation of the orbital angular momentum. The
direction of the orbital angular momentum L̂, relative to
the total angular momentum Ĵ is given by two angles; the
opening angle β (cos β ¼ L̂ · Ĵ) and the precession phase, α
relative to a fixed orientation, αo (also denoted ϕJL). Then,
the precession frequency is given by

Ωp ¼ α̇: ð5Þ

To fully describe a coprecessing coordinate system, we
require a third Euler angle ϵ, defined via

ϵ̇ ¼ α̇ cos β; ð6Þ

which determines the rate of rotation of the coprecess-
ing frame.
The multipoles for a precessing system are given by

hl;mðtÞ ¼
Xl
n¼−l

hNPl;nðtÞDl
n;mðαðtÞ; βðtÞ; ϵðtÞÞ; ð7Þ

where hNPl;n denotes the waveform for the equivalent non-
precessing system or, equivalently, the waveform observed
in a frame that is coprecessing with the binary, Dl

n;m

denotes the Wigner D-matrix,

Dl
n;mðα; β; ϵÞ ¼ eimαdln;mð−βÞe−inϵ; ð8Þ

and dln;m the Wigner d-matrix given, for example, in [78]. It
is straightforward to insert the expression for the precessing
multipoles, Eq. (7), into the multipole expansion of the
waveform, Eq. (4), to obtain the waveform for a precessing
binary. To do so, we first note that the coordinate system
ðθ;ϕÞ is naturally aligned with the total orbital angular
momentum Ĵ. Therefore, if the system is viewed in a
direction N̂, the angle θ ¼ θJN is the angle between Ĵ and
N̂. In addition, the orientation of the x-axis is specified
relative to the (initial) precession phase so that ϕ ¼ −αo.
Therefore,

hðtÞ ¼
X
l;m;n

−2Yl;mðθJN;−αoÞDl
n;mðα; β; ϵÞhNPl;nðt; λ⃗Þ: ð9Þ

Waveform models have been developed to generate
accurate representations of the leading multipoles in the
gravitational waveform [32,39,43,47]. For example,
numerous models provide the (2,2), (3,3), (4,4) multipoles
and in addition the (2,1) and (3,2) multipoles.

A. Waveform components

The gravitational waveform, hðtÞ, as given in Eq. (9), is
expressed as an infinite sum of waveform components.
However, only a small number of these make a significant
contribution to the waveform. By identifying the most
significant waveform components, and restricting attention
to them, we can simplify the waveform with little loss of
accuracy. In previous works [69], we have shown that, for
nonprecessing waveforms, it is the (2, 2) and (3, 3)
multipoles which are most significant across the majority
of the parameter space, with the (4, 4) also contributing
significantly for systems with high, comparable masses.
Similarly in [70,72], we have shown that the two leading-
precession harmonics of the (2, 2) mode provide the
dominant contribution, although see [82] for examples of
highly precessing systems where the third precession
harmonic also contributes significantly. Here, we present
the expansion in terms of precession harmonics and higher
multipoles simultaneously.
In [70], we demonstrated that the leading (2, 2) wave-

form could be decomposed into five precession harmonics
and, furthermore, that these precession harmonics formed a
natural hierarchy, with each subsequent mode suppressed
by an additional power of

b ¼ tanðβ=2Þ: ð10Þ

For the majority of systems, the opening angle is signifi-
cantly smaller than 45°, so that b≲ 0.4 (see Fig. 3 of [70]
for details). The opening angle only approaches 45° for
systems with unequal masses and a large spin on the more
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massive black hole—in this case, the spin can be compa-
rable to the orbital angular momentum. Consequently, for
the majority of the binary black hole parameter space, b can
be used as a small expansion parameter, and terms of higher
order in b can be neglected. In Appendix A, we perform a
decomposition for a generic waveform, comprising several
multipoles and demonstrate that each multipole can be
written in terms of precession harmonics with increasing
powers of b.
Let us restrict attention to the most significant waveform

component and the leading subdominant contributions.
The leading-waveform component, which we denote
h22;0 arises as the dominant precession contribution to the
(2, 2) multipole. The two most significant subleading
contributions are h22;1, the leading-precession correction
to the (2, 2) multipole, and h33;0 and the leading contri-
bution the (3, 3) multipole. The waveform can be written as

h ≈
do
dL

ðe2iϕoh22;0 þ τ4e−2iϕoh�22;0Þ
ð1þ τ2Þ2

þ do
dL

4τðe2iϕoh22;1 − τ2e−2iϕoh�22;1Þ
ð1þ τ2Þ2

þ do
dL

τðe3iϕoh33;0 þ τ4e−3iϕoh�33;0Þ
ð1þ τ2Þ3 ; ð11Þ

where dL is the luminosity distance, do is a fiducial
distance, ϕo is the reference phase and

τ ¼ tanðθJN=2Þ ð12Þ

describes the orientation of the binary.2

The detailed expression for the waveform in terms of the
coprecessing harmonics are given in Eqs. (A11) and (A16).
Most notably, the subdominant precession harmonic is
reduced in amplitude by a factor b and offset in frequency
from the dominant harmonic by the precession frequency
Ωp, so that

h22;1 ¼ be−iðα−αoÞh22;0: ð13Þ

In addition, the (3, 3) multipole has a frequency which is
1.5 times the (2, 2) multipole.
We are interested in the relative amplitudes of the

different waveform components. This is most usefully
given in terms of the expected SNR for each component
in a gravitational wave detector. Given a detector with a
sensitivity given by the power spectral density (PSD) SðfÞ,
the expected SNR of a waveform h is

ρh ≔ jhj ¼
ffiffiffiffiffiffiffiffiffiffiffi
ðhjhÞ

p
; ð14Þ

where the inner product, ðajbÞ, between two time series
aðtÞ and bðtÞ is defined as

ðajbÞ ¼ 4Re
Z

df
ãðfÞb̃�ðfÞ

SðfÞ ð15Þ

and ãðfÞ, b̃ðfÞ are the Fourier transforms of aðtÞ and bðtÞ,
respectively.
We denote the amplitude of the h22;0 component as σ

(consistent with e.g. [83]), and define the amplitudes of the
other components relative to this. Therefore, we have

jhkj≕ σαk; ð16Þ

where, by definition α22;0 ¼ 1,

α22;1 ¼ b̄ and α33;0 ¼ α33: ð17Þ

The quantity b̄ is the average value of the b ¼ tanðβ=2Þ
over the observed waveform, and this gives the relative
amplitude of the precession harmonic. The amplitude of the
higher multipole is used to define α33. As discussed in
detail in [69,70], both of these quantities are generally
significantly less than unity. In obtaining the waveform as
given in Eq. (11), we have neglected terms which are of
order b2 or bα33. In addition, we have neglected terms of
order αlm for ðl; mÞ ≠ ð3; 3Þ. In some regions of parameter
space, the (4, 4) multipole can be more significant than the
(3, 3). While we do not consider that case in this paper, the
results in the following sections could easily be rederived
for an alternative higher multipole.
In Fig. 1 we show the contribution of the different

waveform components to the full waveform. It is clear that
the (2, 2, 0) waveform is dominant, while the (2, 2, 1) and
(3, 3, 0) waveforms have similar amplitudes which are
significantly smaller than the (2, 2, 0). Furthermore, these
three components provide an excellent approximation to
the full waveform. The overall network SNR of the signal is
set to 25 which givens SNRs of 14.5, 18.6, and 8.3 in H1,
L1, and V1, respectively. This signal has a network SNR of
4.4 in both the (3, 3, 0) and (2, 2, 1) waveform components.
Finally, we can calculate the overlap between the full
waveform and the approximate waveform,

O ¼ ðhjh0Þ
jhjjh0j : ð18Þ

[Note that in the above, we do not maximize the
overlap over phase or time but require them to be identical
in the full waveform and the approximate one]. The overlap
between the full waveform and the (2, 2, 0) component
is 0.965, while the overlap with the 3-component wave-
form is 0.997. Thus, our approximate waveform is only

2In Appendix A, we have not explicitly extracted the dL or ϕo
factors from the waveform. It is straightforward to do this by
redefining the waveform components to be those associated with
a binary at distance do and coalescence phase ϕo ¼ 0.
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distinguishable from the full waveform at a SNR of over 30,
which is larger than any observed binary black hole SNR
observed in O1-O3 [4] (see e.g. [59,84] and Sec. III for
details of the distinguishability criteria).

B. Orthogonalization of waveform components

In Sec. III, we argue that identifying power in the
leading-precession or higher-multipole waveform compo-
nents can play a crucial role in improving parameter
estimates, as only a subset of the parameter space will
be consistent with the observation of additional features. In
addition, nonobservation allows us to exclude regions of
parameter space which predict the presence of an observ-
able feature. So far, we have made the simplifying
assumption that the different waveform components, spe-
cifically the precession harmonics and higher multipole
waveforms, are orthogonal to the leading (2, 2, 0) wave-
form. In many cases, the assumption of orthogonality
between waveform components is reasonable, particularly
between the (2, 2, 0) waveform and the higher multipoles
[69]. However, this does break down in certain regions of
parameter space, most notably at higher masses where there
are fewer waveform cycles in the observable band of the
detector [70].
To obtain SNR in higher multipoles or precession which

is orthogonal to the leading waveform component, we must
project the waveform component for the mode k onto the

space orthogonal to the leading mode. Since the relative
phase between the waveform components depends upon
the physical parameters of the system it is a free parameter.
Hence the projection of mode k which is orthogonal to the
leading component (with an arbitrary phase) is

hk;⊥ ¼ hk −
ðhojhkÞ
jhoj2

ho −
ðeiπ=2hojhkÞ

jhoj2
eiπ=2ho; ð19Þ

where the waveform eiπ=2ho is simply ho rotated through
90°. Let us define the complex overlap between the
waveform mode k and the dominant mode as

ok ¼
ðhojhkÞ
jhojjhkj

þ i
ðeiπ=2hojhkÞ
jhojjhkj

ð20Þ

then the orthogonal SNR in the mode k is reduced by a
factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − joðkÞj2

p
,

ρk;⊥ ¼ ρk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jokj2

q
: ð21Þ

In addition, the total SNR in the signal is

ρ2 ¼ ρ2o þ
X
k≠o

fρ2k þ 2Re½ok�ρoρkg: ð22Þ

The overlap between the two modes will always lead to a
reduction in the perpendicular SNR of the mode k.

FIG. 1. The gravitational waveform emitted by a 40 − 10M⊙ black hole binary, with aligned spin of 0.5 and in-plane spin of 0.4 on the
larger black hole and zero spin on the smaller, oriented at an angle θJN ¼ 0.6. In the plot we show the full waveform and, in addition, the
leading contributions to the waveform: the (2, 2, 0) component which is the leading contribution to the (2, 2) multipole, the (2, 2, 1)
component which is the leading-order precession correction to the (2, 2) multipole and the (3, 3, 0) component which is the leading
contribution to the (3, 3) multipole. The (2, 2) multipole is the most significant and the (3, 3) is the next largest. In addition, we show the
expected detector sensitivities for the advanced LIGO and Virgo observatories for the fourth gravitational wave observing run (O4) [85].
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However, the total SNR can be increased or decreased
depending upon the phase of the overlap between the two
signal components. See [70] for a discussion of this in the
context of precession.

C. The two gravitational wave polarizations

We have, in Eq. (11), presented an expression for the
gravitational waveform emitted by a precessing binary,
restricting to the leading-order precession effects as well
as the most significant signal multipoles. We observe a
hierarchical decomposition of the signal in terms of the
precession parameter b̄ and higher-multipole amplitude
α33. It is tempting to identify the viewing angle, encoded
in τ ¼ tanðθJN=2Þ, as an additional expansion parameter,
and separate terms in Eq. (11) which appear with higher
powers of τ. However, for a single detector, it is not
possible to distinguish the two gravitational wave polar-
izations encoded in hk and h�k. When we generalize to a
network of detectors, τ does become an appropriate
expansion parameter.
In Eq. (1) we gave the observed signal in a gravitational

wave detector, as a function of both the gravitational wave
signal h and the detector’s antenna response F. In many
cases, including here, it is more natural to work with the left
and right circular polarizations of the gravitational wave.
The detector response to the circular polarizations is F and
F�, respectively, and the observed waveform can be
expressed as

hXðtÞ ¼ Re

� X
k∈modes

hk½FXAR
k þ ðFXÞ�AL

k �
�
; ð23Þ

where, for our purposes, the sum over modes is restricted to
(2, 2, 0), (2, 2, 1) and (3, 3, 0). The amplitudes of these
modes can be read off from Eq. (11) as

AR
22;0 ¼

do
dL

e2iϕo

ð1þ τ2Þ2 ; AL
22;0 ¼

do
dL

τ4e2iϕo

ð1þ τ2Þ2 ;

AR
22;1 ¼

do
dL

4τe2iϕo

ð1þ τ2Þ2 ; AL
22;1 ¼

do
dL

−4τ3e2iϕo

ð1þ τ2Þ2 ;

AR
33;0 ¼

do
dL

4τe3iϕo

ð1þ τ2Þ3 ; AL
33;0 ¼

do
dL

4τ5e3iϕo

ð1þ τ2Þ3 : ð24Þ

When expressing the waveform amplitudes in terms of
left and right circular polarizations, they separate in powers
of τ ¼ tanðθJN=2Þ, so that the waveform is right circularly
polarized at τ ¼ 0 (a face-on signal), and AL

k ¼ 0. It is
therefore tempting to introduce τ as an expansion param-
eter, in a similar way to b and α33. However, the analogy
is not exact. The astrophysical population of binaries is
expected to be randomly oriented, so that cos θJN is
uniformly distributed between −1 and 1. Thus, there
will be systems taking all possible values of τ, including

edge-on systems for which τ ≈ 1 and face-off systems for
which τ → ∞. For a face-away signal, it is natural to
change to a coordinate

γ ≔ cot

�
θJN
2

�
¼ tan

�
π − θJN

2

�
ð25Þ

so that γ ¼ 1=τ, and γ ¼ 0 corresponds to a left circularly
polarized waveform. Therefore, we can always perform
an expansion in the smaller of τ and γ.3 Next, we note that
the amplitude of gravitational wave emission in the
(2, 2, 0) component is strongest for τ ≈ 0 (and γ ≈ 0).
Consequently, there will be an observation bias towards
sources which are close to face-on or face-away [86], and
indeed the majority of signals are expected to be observed
with θJN < 60°, for which τ ¼ 1=

ffiffiffi
3

p
—in which case the

amplitude of the second circular polarization is reduced by
a factor of 9. Thus, it is reasonable to include the
orientation angle as our third expansion parameter, and
keep only leading terms in τ.
Since a single gravitational wave interferometer is only

sensitive to one polarization of the signal, we require a
network of detectors4 to measure the polarization content of
the signal. Therefore, we extend our analysis to a gravi-
tational wave detector network. To do so, we define the
multidetector inner product as the sum over individual
detector contributions

ðajbÞ ≔
X

X∈ dets

ðaXjbXÞX; ð26Þ

where the subscript X on the inner product denotes the fact
that the PSD varies between detectors. The expected
network SNR is simply the quadrature sum over detectors
of the individual detector SNRs. The expected SNR of each
polarization and each waveform component in the network
of detectors is

ðρR;Lk Þ2 ¼ σ2jFj2α2kjAR;L
k j2; ð27Þ

where σ2 and jFj2 denote vector dot products over the space
of detectors. Thus, the network SNR depends upon the
detector sensitivities, σ, the network response F, the
relative significance of the waveform component, αk,
and its overall amplitude, AR;L

k .
To measure the left circular polarization, we are inter-

ested in the power orthogonal to the right circular polari-
zation. Therefore, we need to calculate the overlap between
the two circular polarizations. To do so, it is convenient to

3In what follows, we will restrict to τ ≤ 1, with the under-
standing that the calculation can be easily repeated for τ > 1 by
switching to the variable γ.

4Alternatively a single gravitational wave observatory com-
prising multiple interferometers, such as the Einstein Telescope,
can be used to infer the polarization content.
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introduce the concept of the dominant polarization frame
[87,88]. The detector response functions F depend upon the
unknown polarization angle of the source. In many cases, it
is more convenient to fix a preferred polarization frame
when considering the network response and then include
the polarization angle ψ in the description of the waveform.
To this end, we introduce the weighted network response

w ¼ σFe−2iψ ; ð28Þ

where ψ is the polarization angle. Thenw is simply a vector
describing the sensitivity of each detector to the gravita-
tional wave signal, as encoded by the product of the
detector’s sensitivity, σ and the response to the gravitational
wave, F. We fix the polarization angle by working in the
dominant polarization frame for which the network is
maximally sensitive to the þ polarization and, conse-
quently, minimally sensitive to the × polarization
[87,88]. In the dominant polarization frame, w satisfies

wþ · w× ¼ 0 ⇔ w · w ¼ w� · w�: ð29Þ

We characterize the network by its overall sensitivity to
the dominant polarization, which is given by jwþj. The
sensitivity to the second polarization is jw×j. Following
[89], we define the relative sensitivity between to þ and ×
linear polarizations which is given by

αnet ¼
jw×j
jwþj

: ð30Þ

In many cases, the detector network is significantly more
sensitive to a single polarization of gravitational waves. For
example [87,89], the typical sensitivity to the second
polarization for the advanced LIGO-Virgo network is
0.3. As additional detectors are added to the network, both
the overall sky coverage and sensitivity to the second
polarization improves.
In general, the two circular polarizations are not orthogo-

nal. The complex overlap between the left and right circular
polarizations is

oL ¼ ðFhkjF�hkÞ
jFhkj2

þ iðFhkeiπ=2jF�hkÞ
jFhkj2

¼
�
1 − α2net
1þ α2net

�
ðcos 4ψ þ i sin 4ψÞ; ð31Þ

where, to obtain the result, we have used the form of w
given in Eq. (28) as well as the definition of αnet from
Eq. (30). For a single detector or network sensitive to only
one polarization (αnet ¼ 0), the two polarizations are
completely degenerate, as expected. For a network with
equal sensitivity to the two polarizations (αnet ¼ 1), the two
circular polarizations are orthogonal. For a typical signal in
the advanced LIGO-Virgo network, αnet ≈ 0.3 and the

overlap between the two circular polarizations is
oL ≈ 0.9. This places us in a very different situation than
for precession and higher multipoles where the overlap is
typically small.
When attempting to identify the presence of the second

circular polarization, we must identify the power that is
orthogonal to the leading polarization. This is obtained by
projecting a left-circular signal onto the space orthogonal to
that spanned by right-circular signals, in the same way as
we did in Eq. (19) to obtain hk;⊥. The fact that there is
significant overlap between the polarizations has two major
impacts. First, the observable power in the second polari-
zation is significantly reduced,

ρL;⊥ ¼ ρL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − joLj2

q

¼
�

2αnet
1þ α2net

�
ρL: ð32Þ

Second, the fact that the overlap is large means that the
overall power in the signal can vary considerably as the
polarization angle changes. Specifically, the network
SNR is

ρ2net ¼ ðhjhÞ ¼ σ2jFj2
X
k

α2k

�
ðAL

k Þ2 þ ðAR
k Þ2

þ 2AL
kA

R
k

�
1 − α2net
1þ α2net

�
cos 4ψ

�
: ð33Þ

As before, we have made the approximation that αk is the
same for each detector in the network. This is a reasonable
approximation—the overall sensitivity of the detectors is
captured by σ. Provided the shape of the PSD is similar
between detectors, then the relative importance of the
different waveform components will also be similar.

D. The observed waveform

We have now identified three expansion parameters
which enable us to identify the dominant contribution to
the waveform, and the leading subdominant contributions.
In particular, we parametrize the precession contribution
through b ¼ tanðβ=2Þ, the higher multipoles through αlm,
their amplitude relative to the (2,2) mode, and the second
polarization through the binary orientation τ ¼ tanðθJN=2Þ.
Keeping only the leading terms and the most significant

subleading terms in each of these parameters, we obtain the
waveform as

h ≈
do
dL

�
e2iðϕoþψÞ

ð1þ τ2Þ2 h22;0 þ
τ4e2iðϕo−ψÞ

ð1þ τ2Þ2 h�22;0

þ 4τe2iðϕoþψÞ

ð1þ τ2Þ2 h22;1 þ
4τe3iϕoþ2iψ

ð1þ τ2Þ3 h33;0

�
: ð34Þ
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Here, we have chosen to absorb the (unknown) polarization
angle into the expression for the waveform, and sub-
sequently work in a fixed polarization frame. Thewaveform
is comprised of four terms. The first is the dominant
contribution—it is the right circularly polarized waveform
for the leading contribution of the (2, 2) mode. The other
contributions are all subdominant in different ways. The
second term is the left circularly polarized contribution. This
is downweighted by the fourth power of τ ¼ tanðθ=2Þ ≤ 1
and, additionally, the observable power is reduced due to the
significant overlap between the left and right circular
polarized signals. The third term is the leading-precession
correction which is downweighted by the precession ampli-
tude b ¼ tanðβ=2Þ as well as τ. The final term is the most-
significant higher-multipole contribution to the waveform,
which is down-weighted by the reduced amplitude of the
highermultipole, encoded inα33.We note that the formalism
is equally applicable to predominantly left circularly polar-
ized signals, for whichwe simply convert to γ ¼ cotðθJN=2Þ
and cases where a different multipole, for example (4, 4), is
the second most significant.
The expected SNR in the leading mode is given by

ρo ¼
do
dL

jσFj
ð1þ τ2Þ2 : ð35Þ

The expected SNR in the different subdominant waveform
components are

ρL ¼ ρo

�
2αnetτ

4

1þ α2net

�
; ð36Þ

ρ33 ¼ ρo

�
2α33τ

1þ τ2

�
; ð37Þ

ρprec ¼ ρo½4b̄τ�: ð38Þ

The values of b, α33 and αnet are given, for different binary
parameters and network configurations in [69,70,89],
respectively. In the expressions above, we have explicitly
included the overlap between the two polarizations, which
gives rise to the 2αnet=ð1þ α2netÞ factor, but neglected the
overlaps with the precession and higher multipoles signals
as these are typically smaller. Additionally, we have not
included the impact of the additional waveform compo-
nents on the recovered SNR consistent with the lead-
ing mode.

III. EXTRACTING ASTROPHYSICAL
PARAMETERS FROM AN OBSERVED SIGNAL

Once a gravitational wave signal has been observed, the
challenge is to extract the astrophysical parameters of the
source. Over the years, numerous methods have been
developed to obtain parameter estimates, typically using
Bayesian methods and densely sampling the parameter

space [14–27,90]. Here, we take a different approach and
attempt to identify the primary feature that enables the
measurement of one, or a combination of, the astrophysical
parameters of a source. By doing so, we build up an
intuitive understanding of how the parameters can be
extracted from the observed waveform. We consider a
quasicircular (noneccentric) binary described by fifteen
parameters; the masses,m1 andm2, of the black holes, their
spins, denoted by the vectors S1 and S2, the orientation of
the binary given by the phase ϕo, inclination angle θJN and
source polarization ψ , and the location of the system
relative to the earth, given by the sky location ðα; δÞ,
distance dL, and arrival time to of the signal.
In Sec. II, we demonstrated that the waveform can be

expressed as a dominant component, with three subdomi-
nant contributions which are the leading-order corrections.
The signal can be decomposed in terms of three expansion
parameters: τ ¼ tan θJN=2, where θJN is the angle between
the binary’s total angular momentum and the line of sight;
b ¼ tan β=2, where β is the opening angle between the
orbital and total angular momentum and governs the
observability of precession effects; αl;m, the sensitivity of
the network to the leading subdominant multipole, ðl; mÞ,
relative to the (2, 2) multipole. By expressing the waveform
in this way, we are able to identify the impact that the
observability (or otherwise) of these three features has upon
the parameter recovery. In some cases, the next-order
corrections will be observable but, as we argue later, they
are unlikely to dramatically impact the parameter recovery.
Each of the features above enables us to break a degeneracy
between parameters. Identification of the next-order terms
merely allows us to refine the measurements, but does not
lead to an ability to measure entirely new features.
Throughout this section, we provide examples using

signal shown in Fig. 1; the gravitational waveform emitted
during the merger of a 40M⊙—10M⊙ black hole binary
with aligned spins of 0.5 on the larger black hole and 0 on
the smaller black hole. The system is placed at a distance to
provide a total network SNR of 25 in the LIGO-Virgo at
projected O4 sensitivity [85]. We vary the distance, viewing
angle and in-plane spins of the system to investigate the
impact of observability of precession, higher multipoles
and the second circular polarization on parameter recovery.

A. Parameter measurement accuracy

Given an observed signal s in a gravitational wave
detector, the likelihood ratio for the data to contain a signal
h, rather than just Gaussian noise n, is given by

Λðλ⃗; sÞ ¼
exp

h
− 1

2
ðs − hðλ⃗Þjs − hðλ⃗ÞÞ

i

exp
h
− 1

2
ðsjsÞ

i ; ð39Þ

where the inner product ðajbÞ was previously introduced in
Eq. (15). For a network of detectors, the likelihood is the
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product of likelihoods for individual detectors. In order to
calculate the posterior distribution for the parameters λ⃗, we
use Bayes formula

pðλ⃗jsÞ ∝ Λðλ⃗; sÞπðλ⃗Þ; ð40Þ

where πðλ⃗Þ is the prior distribution on the parameters λ⃗.
Let us return to Eq. (39) and consider the case where the

data s is well-approximated by a signal with parameters λ̂,
in the sense that ðsjhðλ⃗ÞÞ ≈ ðhðλ̂Þjhðλ⃗ÞÞ. When considering
simulated signals, it is natural to identify hðλ̂Þ with the
known signal. More generally, as discussed in Sec. IVA, it
is straightforward to identify the peak likelihood and
identify this as λ̂. Then, the peak likelihood is related to
the expected SNR, defined in Eq. (14), through

Λðλ̂; sÞ ≈ exp½ρ2h=2�: ð41Þ

We can also explore the features of the likelihood as the
parameters λ⃗ are varied. Substituting into Eq. (39), we see
that the likelihood depends upon the difference between the
waveforms

Λðλ⃗jλ̂Þ ∝ exp
�
−
1

2
jhðλ̂Þ − hðλ⃗Þj2

�
ð42Þ

Next, following [59], we relate this to the similarity
between waveforms, as characterized by the match, M,
defined as

Mðh1; h2Þ ¼ max
dt;dϕ

ðh1jh2Þ
jh1jjh2j

; ð43Þ

where dt and dϕ denote the time and phase offset between
the two waveforms, respectively. In particular, we can
reexpress the likelihood as

Λðλ⃗jλ̂Þ ∝ exp

�
−
ρ2h
2
ð1 −M2Þ

�
: ð44Þ

As a final approximation, we assume that the match
varies quadratically with the difference in parameters δλ⃗.
This is true at leading order, but at low SNR and for large-
dimensional parameter spaces, this approximation breaks
down [66]. Nonetheless, the quadratic approximation can
be useful in investigating the properties of the signal. To use
it, we construct the waveform metric, gab, defined through

Mðδλ⃗Þ ≈ 1 − gabδλaδλb where δλ⃗ ¼ λ̂ − λ⃗: ð45Þ

Then, the likelihood is approximated as

Λðλ⃗jλ̂Þ ∝ exp ½−ρ2hðgabδλaδλbÞ�: ð46Þ

The eigenvectors and eigenvalues of the matrix gab provide,
respectively, the principal directions and the measurement
accuracy in these directions. Specifically, the approximate
contour containing a fraction p of the posterior distribution,
for a signal with SNR ρh is given by

gabδλaδλb ¼
χ2kð1 − pÞ

2ρ2h
; ð47Þ

where k is the dimension of the parameter space under
consideration and χ2kð1 − pÞ is the chi-square value with k
degrees of freedom for which there is a (1 − p) probability
of obtaining that value or larger. We will typically be
interested in generating 90% contours, and will be working
in 2, 3, or 4 dimensions, in which case the thresholds are
gabδλaδλb ≤ 2.3; 3.1; 3.9ρ−2h for k ¼ 2, 3, 4 respectively.

B. The chirp waveform

We begin by restricting attention to the dominant
component of the waveform, arising from the right circu-
larly polarized,5 leading contribution to the (2, 2) harmonic
and neglect subdominant contributions from the second
polarization, higher multipoles and precession. As is well-
known, the amplitude and phase evolution of the waveform
can be used to extract the masses and (aligned) spins of the
black holes [91,92].
The amplitude and phase evolution of the binary-merger

waveform is given, at large separations, by the post-
Newtonian expansion [93] of Einstein’s equations and,
close to and at merger, from numerical simulations of
binary systems which are combined to provide full models
of the gravitational wave signal [31–51]. In the inspiral
stage, the leading-order evolution of the waveform is given
by the chirp mass

M ¼ ðm1m2Þ3=5
ðm1 þm2Þ1=5

¼ Mη3=5; ð48Þ

wherem1 andm2 are the masses of the two components,M
is the total mass and η the symmetric mass ratio given by

M ¼ m1 þm2; η ¼ m1m2

M2
: ð49Þ

Corrections to the phasing arise at subsequent post-
Newtonian orders (powers of v=c), with the first correction
at 1PN depending upon the mass ratio, η, and the
coefficient at 1.5PN order depending also upon the com-
ponents of the black hole spins which are aligned with the
orbital angular momentum. Consequently, the chirp mass is

5As before we assume τ < 1 so that the waveform is prefer-
entially right circular polarized. The calculation is equally
applicable to left circular waveforms under the replacement
τ → γ.
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the best-measured mass parameter, while the mass ratio and
binary spins are typically less well-constrained.
In Fig. 2, we show the posterior probability distribution

for our fiducial source (m1 ¼ 40M⊙ and m2 ¼ 10M⊙ with
SNR 25) when varying only the masses. The posterior
distribution is generated by calculating the match across the
mass space and substituting into Eq. (46) to obtain the
likelihood. The ellipse represents the approximate 90% con-
fidence interval obtained from calculating the metric over
the two-dimensional mass space. The metric provides a
good approximation to the likelihood, although the fact that
the lower probability contours are curved (rather than
elliptical) shows that the simple quadratic approximation
is beginning to break down.
In Fig. 3, we show the posterior probability distribution

for the components of the black hole spins aligned with the
orbital angular momentum. We denote the aligned spin
components as

χ1z ¼
S1 · L̂
m2

1

and χ2z ¼
S2 · L̂
m2

2

: ð50Þ

We keep the other parameters of the signal fixed while
allowing the aligned spins to vary. As expected, there is a
clear degeneracy between the inferred spins. And, as with
the mass space, the metric approximation provides a good
description of the likelihood distribution. On the figure, we
have also plotted lines of constant effective spin,

χeff ¼
m1χ1z þm2χ2z

m1 þm2

; ð51Þ

which is typically used to describe a binary’s in-plane spin.
Since our fiducial system has aligned spin only on the

larger black hole, χeff does not accurately describe the spin
degeneracy, as can be seen in Fig. 3.
We therefore use an alternative effective spin

parameter throughout the remainder of this paper, which
accurately describes the spin degeneracy shown in Fig. 3,
and attribute this spin to both black holes equally (i.e.
χ1z ¼ χ2z ¼ χalign).

6 We use

χalign ¼
mα

1χ1z þmα
2χ2z

mα
1 þmα

2

; ð52Þ

where α ¼ 4
3
. This was chosen since it accurately describes

the spin-degeneracy for low-mass systems (including the
one considered here), it is similar to χhu which describes the
number of orbits before merger [94], as can be seen in
Fig. 3, and it has the nice property that it is equal to χ1z
when χ1z ¼ χ2z.
Having restricted to a single aligned spin parameter, we

can calculate the posterior distribution across the remaining
three-dimensional parameter space of masses and (aligned)
spins. Figure 4 shows the likelihood on two-dimensional
slices through the parameter space. The likelihood distri-
bution at each point in the M–η space is obtained both by
maximizing the match over the aligned spin values and
evaluating the likelihood using the maximized match.
The distribution for other pairs of parameters is calculated
similarly. In addition, we plot ellipses corresponding
to the 90% contours using either the two-dimensional
metric (fixing the third parameter) or a three-dimensional

FIG. 2. The posterior distribution for chirp mass and mass ratio.
The contours show the posterior probability density function
(pdf), the dashed blue contour shows the 90% region obtained
from the pdf and the solid orange ellipse shows the approximate
90% region. In this, and all following plots, the pdf is plotted so
that the value at the peak is unity.

FIG. 3. The posterior distribution for the aligned spins, with
other parameters kept fixed. The contours show the posterior pdf,
the dashed blue contour shows the 90% region obtained from the
pdf and the solid orange ellipse shows the approximate 90%
region. Lines of constant χeff , χhu, and χalign are plotted as gray
dotted lines, gray dash-dotted lines and black dashed lines
respectively.

6We do not make this restriction on the simulated signals, only
on our parameter recovery.
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metric projected into the two-dimensional space under
consideration. The three-dimensional metric accu-
rately reproduces the likelihood distribution. The two-
dimensional metric significantly underestimates the
parameter uncertainties due to correlations between the
parameters, particularly mass ratio and spin [40]. For
example, in Fig. 2, the symmetric mass ratio is bounded
between η∈ ½0.145; 0.175� (mass ratio between 3.5 and 4.5
to 1) while allowing the spin to vary increases the range to
η∈ ½0.125; 0.195� (a mass ratio between 3∶1 and 6∶1).
In all cases, we observe that the quadratic approximation

given by the metric provides a good fit to the posterior
distribution. In particular, the principal directions of the
metric match those of the distribution and the surfaces of
constant probability are reasonably well-described by
ellipses. However, there are some discrepancies, most
notably the shape of contours in the M − χ space and
the asymmetry of contours in the η − χ space.
The overall amplitude, phase and time of arrival of the

signal also carry physical information. The amplitude of
the observed gravitational wave scales with the mass of the
system and is inversely proportional to the distance.
Furthermore, the signal amplitude varies with the orienta-
tion of the binary relative to the line of sight, and the
binary’s location relative to the detector network. These
facts are encoded in our expression for the SNR in the
leading mode, Eq. (35), which we restate here:

ρo ¼
do
dL

jFσj
ð1þ τ2Þ2 ;

where, as before jFσj denotes a sum over the detectors in
the network. The variation of masses and spins impacts σ,
the location of the source impacts F, while the orientation is
encoded in τ. All of these combine to limit the accuracy
with which the distance to the source can be measured. The
phase of the SNR also provides information about the

signal. In particular, looking at Eq. (34), we see that the
phase of the waveform is given by 2ðϕþ ψÞ. Thus, the
measurement of the SNR phase enables us to determine a
combination of coalescence phase and polarization angle.
Finally, we note that the observed gravitational wave

signal is redshifted as it travels to the detector. This reduces
the frequency of the waveform by an overall factor of
(1þ z). For black hole binary systems, the frequency
content of the observed waveform also scales with the
total mass of the binary. Consequently, when the distance/
redshift to the system is not known, we are only able to
infer the redshifted massM ¼ Msourceð1þ zÞ, and not the
source mass. In the remainder of the paper, all results are
shown in terms of the redshifted chirp mass M.

C. Observation in a network of detectors

In a network of detectors, we independently measure
SNR, signal phase and time of arrival in each of the
detectors. In addition to improving the accuracy of mass
and spin measurements by increasing the observed SNR,
this also enables measurement of the sky location of the
source and the second gravitational wave polarization.

1. Source localization

Localization of a transient gravitational wave source in a
network of detectors is primarily achieved through timing:
the relative time delays between the observed signal at the
different detectors can be inverted to provide a sky region
from which the source originates [62,95]. The timing
accuracy in a single detector is given by σt ¼ ð2πρσfÞ−1
where σf is the frequency bandwidth of the system and ρ is
the SNR. With two detectors, timing alone can restrict the
source to a ring on the sky, although it is often possible to
identify a most likely region on the ring based upon the
relative amplitude and phase of the signal in the two
detectors [96,97]. With three detectors, the source can be

FIG. 4. The posterior distribution for the chirp mass, symmetric mass ratio and effective spin. Each plot shows a two-dimensional slice
through the parameter space, where the value of the third parameter is chosen to maximize the value of the likelihood. The blue dashed
contour shows the 90% region and the orange ellipse shows the approximate 90% region based on calculating the parameter space
metric, as discussed in detail in Sec. III. The black ellipse shows the region based on fixing the third parameter to equal the
simulated value.
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localized by timing to two regions of the sky, one above and
the other below the plane formed by the three detectors.
Observation in three detectors also affords three measure-
ments of the signal amplitude and phase. In many cases,
consistency with a gravitational wave signal comprised of
two polarizations enables the identification of a preferred
sky region [96,98].
For the purposes of this paper, we are not interested in a

detailed discussion of source localization. Nonetheless,
uncertainty in the sky location of the source will impact
the inference of other parameters. Most notably, an accurate
estimate of the detector response F in Eq. (35) enables an
accurate measurement of the distance to the source dL.
Similarly, the sensitivity of the network to the second
polarization, encoded in αnet determines the expected SNR
in the left circular polarization or, inverting the problem,
measurement of αnet and the SNR in the left circular
polarization enables inference of the binary orientation
from Eq. (36), as we discuss in detail below.
Figure 5 shows the inferred localization for a simulated

signal. The signal has a total SNR of 25 in the LIGO-Virgo
network, using the expected sensitivity of the fourth
observing run [10]. For the given sky location and detector
sensitivity, that translates to a SNR of 14.7 in H1, 18.5 in
L1, and 8.3 in V1. Using only timing information, the event
is localizes to an area of 135 deg2. By requiring a
consistent amplitude and phase across the detectors, the
localization area improved to 80 deg2. This localization is
poorer than achieved for some high SNR events, such as
GW170817 [99] and GW190814 [11] due to the selected
sky location, close to the plane of the detectors. For this
event, large changes in sky position led to relatively small
impact on the time of arrival of the source.

2. Binary orientation and distance

Observation of a signal in a network of detectors enables
the measurement of the second gravitational wave polari-
zation. In Sec. II C we obtained expressions for the
expected SNR in the left and right circular polarizations,
with the ratio between them, which depends upon αnet and
τ, given in Eq. (36), and repeated below:

ρL ¼ ρo

�
2αnetτ

4

1þ α2net

�
:

For our example signal, the sensitivity to the second
polarization is αnet ¼ 0.35, which varies between 0.3 and
0.65 over the localization region (as shown in Fig. 5). Thus,
sensitivity to the second polarization is reduced by a factor
of 2αnet=ð1þ α2netÞ ≈ 0.6 relative to the leading polariza-
tion. Then, measurement of ρo and ρL, coupled with a
knowledge of αnet provide an estimate of the binary
orientation, encoded in τ.
In Fig. 6, we show how the binary orientation can be

restricted based upon the measurement of the SNR in the

two polarizations. As is clear from the equation above, the
masses, spins and overall network sensitivity will not
impact the estimation of τ. Nonetheless, they do impact
the inferred distance. Consequently, for simplicity of
presentation, we consider the case where the masses, spins
and sky location of the source are fixed. Then the measured
SNR in the right circular polarization provides a measure-
ment of ð1þ cos θJNÞ2d−1L . Similarly, measurement of the
SNR in the left circular polarization provides a measure-
ment of ð1 − cos θJNÞ2d−1L . In the figure, we show two
example signals, with binaries inclined at 35° and 67°
respectively. For each, we show the region in distance–θJN
space consistent with the observed SNRs. For an expected
SNR ρ̂ the measured squared SNR will be noncentrally χ2

distributed with a noncentrality parameter ρ̂2 and two

FIG. 5. The 90% source localization ellipse for our simulated
signal. The localization is obtained using time of arrival and
consistency in amplitude and phase of the gravitational wave
signal in the detectors [98]. The orange × shows location of the
simulated signal, the greenþ shows the “mirror” location (re-
flection in the plane of the detectors). The top panel shows the
localization ellipse overlaid on the network sensitivity while the
bottom shows the sensitivity to the second polarization, αnet.
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degrees of freedom [69,83]. Thus, for any measured SNR,
we can infer region in the distance-inclination space that
would give an expected SNR consistent with the observa-
tion. The fractional uncertainty in SNR is proportional to
ρ−1 and, consequently, the observation of the (lower SNR)
left circular polarization provides a significantly weaker
constraint than the right circular polarization.
For the binary at 35°, there is negligible power observ-

able in the second polarization and the binary is consistent
with being face-on. However, the binary orientation cannot
be accurately measured and can only be restricted to lie in
the range θJN ≲ 50°. The system inclined at 67°, has an
SNR of 3 in the left circular polarization so that the system
is no longer consistent with a circular polarized gravita-
tional wave. The binary orientation can now be restricted to
lie in the range 40°≲ θJN ≲ 70°. In these examples, the
likelihood is shown as a function of distance and binary
orientation. As discussed in [89], it is more appropriate to
use a distance prior which is uniform in (comoving-)
volume and an orientation distribution flat in cos θJN .
These distributions will add further weight to large dis-
tances and face-on systems making it more difficult to
identify inclined sources.
Finally, we note that the phase of the second polarization

has a different dependence on the polarization angle ψ , as
can be seen in Eq. (34). Thus, observation of both polar-
izations enables measurement of both the coalescence
phase ϕ and the polarization ψ .

D. Higher-order multipoles

As discussed in detail in Sec. II, all gravitational wave
signals will contain contributions from multipole moments
other than the (2, 2). For the majority of signals, we do not
expect to observe these multipoles, as their amplitude will

be too small. However, if it is possible to observe additional
harmonics or place limits on the power contained in them,
then we can further constrain the range of parameters
consistent with an observed signal. The SNR in the (3, 3, 0)
waveform component, relative to the (2, 2, 0) component is
given in Eq. (37). It scales linearly with 2τð1þ τ2Þ−1 ¼
sin θJN and α33, the relative significance of the (3, 3, 0)
harmonic. The value of α33 increases with the mass of the
binary and is higher for binaries with more unequal
components (see Fig. 2 in [69] for details). Therefore,
the (3, 3, 0) component is most significant in unequal mass
binaries viewed away from face-on (or face-off).
Given an observed SNR in the (3, 3, 0) waveform, we

can obtain a region in the distance-inclination plane which
is consistent with the observed signal, overlaid on the
constraints from the two polarizations of the (2, 2, 0)
waveform. For concreteness, we use the same system as
before, a binary with masses of 40M⊙ and 10M⊙, which is
inclined at θJN ¼ 35°. This gives a SNR of 4.4 in the (3, 3,
0) waveform. In Fig. 7, we show how measurement of the
SNR in the (3, 3, 0) waveform can be used to restrict the
distance and orientation of the binary. Since this is a binary
with a significant mass ratio, the (3, 3, 0) waveform plays a
much more significant role in determining the orientation
of the binary than the second polarization, which has
negligible SNR. The observation of the (3, 3, 0) waveform
clearly shows that the binary is not face-on, with θJN ≳ 15°.
For the events GW190412 and GW190814, it was obser-
vation of power in the (3, 3, 0) waveform which enabled
measurement of the binary orientation.
In Fig. 8, we show the region in mass-ratio and binary

orientation that is consistent with a given observed value of
ρ33. The range of θJN at q ¼ 4 corresponds to that in Fig. 7.
However, when we allow mass ratio to vary, the allowed

FIG. 6. Inference of the distance to and orientation of the binary based upon the observed SNR in the two circular polarizations. The
blue contours show the probability density from the observed SNR in the right polarization, the green contours show the pdf from SNR
in the left polarization and the red regions show the combined pdf. For both examples, the SNR of the source is 25. For the left figure, the
binary is inclined at 35°, giving an SNR of 0.15 in the left circular polarization. For the right figure, the binary is inclined at 67° giving an
SNR of 3 in the second polarization.
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region encompasses close-to-equal-mass systems which are
significantly inclined or unequal mass systems which are
close-to face on. Since the mass-ratio is already restricted
by the observed leading-order waveform, as discussed in
Sec. III B, the measurement of the higher-multipole SNR
can be used to restrict the binary orientation, as shown on
the figure. It is straightforward to add additional multipoles

to this analysis, and the relative power will typically have a
different dependence on θJN . However, additional multi-
poles will likely refine the measurements but probably not
significantly improve them.
The measurement of the phase of the (3, 3, 0) waveform

can be used to extract measurements of both the signal’s
polarization and phase angle. Looking at Eq. (34), we see
that the phase of the (3, 3, 0) waveform differs from the
(2, 2, 0) by the coalescence phase ϕ. Thus, observation of
both waveform components allows for measurement of the
phase and, consequently, also the polarization.

E. Precession

Black hole spins which are mis-aligned with the orbit
leads to precession of the orbital plane [79] which man-
ifests as amplitude and phase modulations of the signal. As
discussed in Sec. II A, precession leads to a splitting of the
gravitational wave multipoles. In particular, the (2, 2)
multipole is split into five, where the (2, 2, 0) harmonic
is the leading term and the (2, 2, 1) harmonic is the first-
order precession correction. The SNR in the (2, 2, 1)
precession harmonic, relative to the leading (2, 2, 0)
harmonic, is given in Eq. (38) as 4τb̄, where b̄ is the
average value of b ¼ tanðβ=2Þ and β is the opening angle
between the total and orbital angular momenta. To leading
order during the inspiral phase,

tan β ¼ S⊥
Lþ Sk

; ð53Þ

where S⊥ and Sk are the perpendicular and parallel
components of the spins and L is the orbital angular
momentum. The effective precession spin parameter, χp,
is obtained by averaging the in-plane spins of the system
over a precession cycle, so that S⊥ ≈m2

1χp. Thus, meas-
urement of precession SNR allows us to infer a combina-
tion of the precession spin and binary orientation.
In Fig. 9 we show the region of χp − θJN parameter space

which is consistent with a precession SNR of 4.7 In this
case, the signal can clearly be identified as precessing and,
therefore, both the in-plane spin and binary orientation are
bounded away from zero. Nonetheless, there remains a
broad range of parameter space consistent with the obser-
vation, ranging from maximal in-plane spins for binaries
inclined at 15° to edge-on binaries with χp ≈ 0.1.
In contrast to the left circular polarization and higher

multipoles, the observation of precession is unlikely to lead
to a significant improvement in the measurement of the
binary orientation, distance or phase. The reason for this is

FIG. 7. The restriction of the distance to and inclination of the
binary based upon the observed SNR in the two circular polar-
izations and the (3, 3, 0) harmonic. The blue contours show the
probability density from the observed SNR in the right polari-
zation, the green from power orthogonal to the right polarization,
the orange from the (3, 3, 0) harmonic and the red show the
combined distribution. In calculating the (3, 3, 0) harmonic
contours, we have kept the mass ratio fixed to the true value,
allowing it to vary will broaden this distribution. The SNR of the
source is 25, and it is inclined at an angle of 35°, giving an SNR of
0.15 in the second polarization and 4.3 in the (3, 3, 0) harmonic.

FIG. 8. The restriction of the mass ratio to and inclination of the
binary based upon the observed SNR in the (3, 3, 0) multipole.
The orange band gives the posterior based only on measurement
of the (3, 3, 0) multipole, the gray band is the region of mass-ratio
space consistent with the (2, 2, 0) waveform and the red contours
give the region consistent with both measurements.

7In the figure, the simulated value is slightly offset from the
center of the inferred region. This is due to the fact that there is a
small amount of power in the left circular polarization in the
(2, 2, 1) harmonic which we do not account for when inferring χp
and θJN from ρp.

FAIRHURST, HOY, GREEN, MILLS, and USMAN PHYS. REV. D 108, 082006 (2023)

082006-14



that the amplitude and phase of the precession SNR depend
upon the in-plane spins, encoded in the precession spin χp
and the precession phase αo. Thus, measurement of the
precession SNR enables a measurement of χp while
measurement of the phase of the precession SNR enables
us to extract the precession phase αo, as can be seen from
Eq. (34).8 Of course, if the binary orientation has already
been restricted through observation of a second gravita-
tional wave polarization or higher multipoles, then this can
lead to significant restrictions on χp, as is shown in Fig. 9.
As an example, the event GW190814 [11] was observed to
SNR ≈ 6 in the (3, 3) multipole but minimal SNR in
precession, enabling the inference of a very low spin for the
primary.
In-plane spins will impact the phase evolution of the

(2, 2, 0) waveform component. This can be seen in
Eq. (A11), where the waveform acquires an additional
phase of exp½2iðα − αo − ϵÞ� relative to the nonprecessing
signal. Under the approximation that the opening angle β is
small and approximately constant, we can simplify Eq. (6)
to obtain

ϵ ≈ αð1 − β2=2Þ þ const: ð54Þ

Therefore, the phase is approximately quadratic in β.
Furthermore, for small values, the opening angle is linearly
dependent upon χp. Thus, the phasing due to precession
will, to leading order, scale with χ2p. To investigate the
impact of this, we should reexamine the accuracy with
which the masses and aligned spins can be measured when
we also allow for precession.
In Fig. 10, we show the posterior distributions for

the precessing and aligned spin components, keeping the
masses fixed. In addition, we construct the metric in the
two-dimensional χalign–χ

2
p space. The metric accurately

reconstructs the posterior, whereas working in χalign–χp
coordinates does not accurately capture the degeneracy.
From Fig. 10, it is clear that the value of χp is essentially
undetermined from the phasing of the leading waveform
component (the reason that the contour does not extend to

χp ¼ 1 is that the total spin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2p þ χ2align

q
is required to be

less than 1). Nonetheless, we must include the degeneracy
between χp and the other mass and spin parameters when
calculating posterior distributions for the parameters.

F. Summary

In the preceding sections, we have laid out how the
gravitational wave parameters are encoded into the gravi-
tational wave signal and how, upon observing the signal
and various specific features, we are able to extract
estimates of the different parameters. Here, we provide a
brief summary of the above discussions.
The amplitude and phase evolution of the (leading

harmonic of) the gravitational waveform enables us to
measure:
(1) The redshifted chirp mass, Mð1þ zÞ of the signal.
(2) The symmetric mass ratio η.

FIG. 9. The restriction of the in-plane spin and the binary
orientation besed upon the observed SNR in precession, ρp. The
purple contours show the probability density from a system with
χp ¼ 0.4 inclined at 35°, giving an observed SNR in precession of
4.0. Since the precessing spin is otherwise unconstrained,
measurement of ρp provides minimal restriction to the binary
orientation—the inclination is restricted to be above 15°. How-
ever, if the orientation is already constrained, e.g. from the
observation of higher multipoles, as indicated by the gray band,
then the range of permitted values of χp can be significantly
reduced, as indicated by the red region.

FIG. 10. The posterior distribution for the precessing and
aligned spins of the system, keeping other parameters fixed.
The contours are generated by calculating the match, the orange
contour is generated in the χ2p–χalign space, but plotted against χp.

8See [100] for a discussion of the measured precession SNR in
existing gravitational wave events and [101] for a discussion of
the measurability of the precession phase.
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(3) A combination χalign of the aligned spins χ1z and χ2z.
The individual spins are typically unmeasurable.

(4) The time of coalescence of the system, as measured
at the detector.

There is significant degeneracy between these parameters,
most notably the mass ratio and aligned spins.
When the system is observed in a network of detectors
(5) The right ascension of the source.
(6) The declination of the source.

When the system is observed in at least three observatories,
we typically localize to a region with an area of a few
square degrees. Signals observed in two detectors are only
localized to (a fraction of) a ring in the sky with areas of
hundreds of square degrees.
Using the detector antenna response, we are able to

identify
(7) The amplitude of the gravitational wave signal,

which enables inference of a combination of distance
to the source and its orientation, ð1� cos θJNÞ2=dL.

(8) The phase of the dominant circular gravitational
wave polarization (ϕ� ψ ).

If we are able to identify either the second polarization or
power in higher multipoles, or both, this enables measure-
ment of
(9) The binary orientation, and consequently a more

accurate distance measurement.
(10) A second phase measurement, which enables the

separate inference of the coalescence phase ϕo and
polarization ψ .

We note that for an aligned-spin system, this comprises all
of the parameters when we simplify to a single, effective
spin parameter; two masses, one spin parameter, four
extrinsic parameters, sky location and time of arrival.
Thus, in principle, with a network of detectors, all of the
parameters can be measured. Those which are observed
with the least accuracy tend to be the second combination
of effective spin and mass ratio, and those which require an
observation of the second polarization or higher multipoles.
With measurement of power in precession we can

measure
(11) The precession spin χp, provided the orientation is

already constrained and, if not, then a combination
of χp and θJN .

(12) The precession phase, αo (also denoted ϕJL).

IV. SIMPLE-PE IMPLEMENTATION

The intuitive understanding of how the binary parame-
ters are encoded in the observed gravitational wave signal,
given in Sec. III F, can be used to develop a simple,
computationally cheap parameter-estimation routine.
Here, we introduce the simple-pe [102,103] algorithm
that has been developed for this purpose.
The outline of the method is as follows. First, we identify

the peak of the likelihood in the mass and spin space in the
network of detectors, maximizing the time of arrival,

amplitude and phase of the signal independently in each
detector. The values of masses and spins at the peak are
used as central values for those parameters. The arrival
times, relative amplitudes and phases of the signal in each
observatory are used to obtain an estimate for the sky
location of the source. Around this peak, we construct
posterior distributions for the masses and spins of the
binary, using the expected accuracies and known degen-
eracies presented in Sec. III B. We matched filter the data at
the peak of the likelihood to identify the SNR in the
second-polarization, higher-multipole and precession
waveforms. Then, based upon the expected SNR in each
of these features as a function of the masses, spins and
binary orientation, we identify regions of parameter space
that are consistent with the observed SNRs. In particular,
the SNR in the second polarization can be used to restrict
the orientation, both mass ratio and orientation are con-
strained by the SNR in higher multipoles and in-plane spins
restricted using the SNR in the leading-precession correc-
tion to the waveform. Finally, we infer the distance
distribution based on the masses, network sensitivity and
binary orientation.

A. Find the maximum likelihood in mass-spin space

The first step is to identify the peak of the likelihood, or
equivalently the maximum SNR, across the mass and spin
space. In Sec. III B, we have shown that the masses and
aligned spin can be inferred from the phasing of the
dominant waveform component. In Sec. II we have argued
that the higher multipoles and precession waveform
components could contribute a non-negligible amount
of SNR to the overall signal. Thus, when finding the peak
of the SNR or likelihood, we must consider whether it is
necessary to incorporate the power in either of these
features.
Figure 11 shows the SNR of the (2, 2, 0), (2, 2, 1), and

(3, 3, 0) waveform components when matched-filtered
against the same simulated signal which we have consid-
ered previously—masses of 40 and 10M⊙ with aligned spin
components of 0.5 and 0, respectively, and χp ¼ 0.5. We
compute the SNR for the L1 detector, across a range of
masses, keeping the values of χalign and χp fixed. The
simulated signal has an SNR of 18.5. As expected, from
Sec. II D, the SNR in the (2, 2, 0) component is the largest
and has a value of almost 18 by itself. Interestingly, though,
the peak of the SNR, occurs at masses offset from the
simulated values. The offset in the peak SNR is largely
caused by precession. For this signal, the overlap between
the two precession harmonics (2, 2, 0) and (2, 2, 1) is ≈0.2
and, therefore, one obtains a higher SNR in the (2, 2, 0)
harmonic at values of the masses where it picks up some of
the power in the (2, 2, 1) harmonic. This can be clearly seen
from the SNR distribution for the (2, 2, 1) harmonic, which
decreases significantly from ρp ¼ 4 at the simulated values
to ρp ¼ 3 at the (2, 2, 0) peak. The structure of the SNR in
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the (3, 3, 0) waveform is very similar to the leading mode,
varying between ρ33 ≈ 2.6 to 2.9 across the region of
interest. It will therefore have a limited contribution to
the offset of the peak. When combining the SNRs in the
three waveform components, we find that the peak is
approximately in the correct location. Interestingly, it is
not in the exact location, and this arises because we are
using χalign and χp to describe the signal and these
parameters do not perfectly describe the simulated wave-
form. The simulated signal has spin on only the larger black
hole while we assign the same (aligned)-spin value χalign to
both components when identifying the signal. While this
has limited impact for nonprecessing systems, the differ-
ence can be greater in precessing systems as the final black
hole spin and spin orientation will be impacted by the
component spins.
In performing parameter estimation on the signal, we

identify the location of the peak SNR as follows. First, we
find the peak SNR of the (2, 2, 0) waveform across the mass
and aligned spin space, using a fixed value of χp. To do so,
we filter the data from each detector independently and sum
the maximum in quadrature (over time and phase) of the

SNR in each detector. We use the scipy.optimize
routine [104] with an initial guess offset from the peak—in
this example, we offset M ¼ 16.6M⊙, η ¼ 0.15, and
χalign ¼ 0.4, although we have varied the starting point
to demonstrate that it has minimal impact on the optimi-
zation result. For our example signal, we obtain values of
M ¼ 16.87M⊙, η ¼ 0.180, and χalign ¼ 0.44 for the peak
of the (2, 2, 0) SNR, which is consistent with the peak
shown in Fig. 4. For a real signal, we would use the
parameters returned by the search and, indeed, gravitational
wave searches have now implemented a similar maximi-
zation procedure to obtain mass and spin measurements
more accurately, see e.g. [105].
Based on the discussion above, and the plots in Fig. 11, it

is clear that we can obtain an improved estimate of the peak
location using the two-harmonic SNR [70] which incor-
porates the power in the (2, 2, 1) harmonic. To do so, we
perform a second optimization step, again over the chirp
mass, mass ratio and aligned spin space, to identify the
peak of the two-harmonic waveform. We use the previously
identified peak to seed the second maximization. Although
we have included the precession correction, we do not vary
the precession spin χp at this stage, as we find that it is not
helpful in identifying the peak. This is to be expected, given
the significant degeneracy between the precession and
aligned spins shown in Fig. 10. The precession spin is
better constrained by the amplitude of the (2, 2, 1)
harmonic, which we consider later. At present, the opti-
mization routine is not able to accurately identify the peak
of the two-harmonic SNR. We are continuing to investigate
the reason for this. Consequently to obtain an accurate
peak, we currently construct a dense grid of points around
the (2, 2, 0) peak and filter them against the two precession
harmonics to find the peak SNR. We make use of the
parameter-space metric to identify the eigendirections and
generate a grid of points which covers the 3σ uncertainty
region around the (2, 2, 0) peak. This method identifies
the peak with good accuracy, but does slow down our
analysis, as filtering the grid is computationally intensive.
The peak of two-harmonic SNR is identified to occur at
M ¼ 16.69M⊙, η ¼ 0.171 and χalign ¼ 0.421.

B. Obtain the sky location

There are several rapid sky localization analyses, most
notably BAYESTAR [96], that can return the sky position of
the signal quickly and accurately. Our goal here is not to
present a new localization method, as that problem is
already well-addressed [62,95]. Nonetheless, we do require
an estimate of the sky location of the source, and its
uncertainty, for several purposes. Most notably, knowing
the sky position enables us to estimate the network
sensitivity, and this is critical to obtaining a good estimate
of the distance to the source, from Eq. (35). In addition, the
sky location is used to calculate sensitivity to the second

FIG. 11. The SNR distribution for across the mass space for the
L1 detector for the modes (2, 2, 0), (2, 2, 1), and (3, 3, 0). The
system masses are marked with a ×. The system has a precessing
spin χp of 0.4. The peak of the matched-filter SNR for each mode
is marked with aþ (the peak for the (2, 2, 1) component is off the
plot). The SNR of the (2, 2, 0) waveform peaks away from the
simulated mass values due to the presence of power in precession.
The combined SNR of the (2, 2, 0), (2, 2, 1), and (3, 3, 0)
components peaks closer to the simulated value. The remaining
discrepancy arises from using χp and χalign, rather than the full
spin vectors, to describe the binary spins.
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polarization, αnet, and the observed power in the second
polarization.
To estimate the sky location, we use a simple chi-squared

minimization, as described in the Appendix of [62], to
identify the preferred location. For the simulated signals
discussed in this paper, the signal is observed in the LIGO-
Virgo network, so that timing alone provides two locations
(above and below the plane of the detectors). We generate a
localization for each, as described in Sec. III C 1—in this
case they overlap, so we obtain a single sky patch. Across
the sky patch, we calculate the network sensitivity jFσj and
the sensitivity to the second polarization αnet. For the
analysis presented here, we use the mean and variance
of the network sensitivity and the mean value of αnet in
reconstructing the source parameters.

C. Generate samples in the mass and spin space

Starting from the maximum likelihood point, we calcu-
late the approximate uncertainties in the masses and spins
using the parameter space metric, introduced in Sec. III A.
As has been discussed in detail [59,91,106,107], the choice
of parameters used in the metric expansion can have a
significant impact on the domain of validity of the quadratic
approximation in Eq. (46),

Mðδλ⃗Þ ≈ 1 − gabδλaδλb where δλ⃗ ¼ λ̂ − λ⃗:

We use the chirp massM, symmetric mass ratio η, aligned
χalign and in-plane spins, parametrized by χ2p—the reason
for using χ2p is discussed in Sec. III E. These provide a good
basis for estimating the parameter accuracy.
In many cases, the metric is calculated by taking

derivatives of the waveform in various parameters
[108,109], to obtain the leading-order variation. Here,
we instead choose to take finite differences when evalu-
ating the metric. This means that any higher-order terms,
which are of interest for the scale of variations being
considered, will be appropriately included in the metric.
Since we are particularly interested in identifying the high-
likelihood region, e.g. the 90% confidence interval for the
physical parameters, this provides a natural scale at which
to evaluate the metric. (A similar method has previously
been introduced in [110]). For the four-dimensional param-
eter space under consideration, the 90% region is given by

gabδλaδλb ¼
3.9
ρ2h

: ð55Þ

To generate the metric, we begin with the four basis
vectors in the directions ðM; η; χalign; χ2pÞ. We scale each
basis vector to obtain the mismatch required for the
observed SNR of the system, as given in Eq. (55). In
principle, the mismatch will be symmetric in steps �δλa

but, as can be seen in Fig. 4 this is not exactly true for finite
steps. Therefore, we take the average mismatch between

positive and negative variations. These immediately pro-
vide the diagonal elements of the metric gab. To obtain the
off-diagonal elements, we calculate the mismatch for steps
in directions �δλa � δλb, where a and b run over the four
parameters. We average over the mismatches to obtain an
estimate of the off-diagonal terms in gab. Thus, by
calculating a small number of matches, we obtain an
expression for the metric gab.
Typically the co-ordinate directions are not a good

choice of basis for calculating the metric, since the
degenerate directions do not lie along the physical param-
eters, as can be seen in Fig. 4. Thus, while the uncertainties
in individual parameters will be well-approximated by
calculating the metric along the physical parameters, the
correlations will typically be less well-estimated. To
improve the accuracy of the metric, we iteratively update
it to use coordinates which lie along the eigendirections in
the parameter space. Specifically, we first calculate the
metric using variations δλa along each physical parameter.
We then generate the eigendirections of the initial metric
and test whether they do, indeed, describe the principal
axes of the parameter degeneracy ellipse. If not, then we re-
normalize them to have the desired mismatch [given in
Eq. (55)], and recalculate the metric in these new coor-
dinates. We stop when the metric is no longer changing
significantly, specifically, we test whether the eigendirec-
tions of the old metric remain eigen-directions of the
updated metric (within a given tolerance, i.e. that the
vectors reproduce the desired mismatch and are orthogo-
nal). Figure 12 shows the importance of this iterative
process for a low SNR system. For higher SNRs, the
effect is less significant.

FIG. 12. Degeneracy between mass ratios and spins for a signal
with SNR of 10. The black ellipse shows the predicted degen-
eracy obtained from a metric calculated with variations along η
and χalign. The orange ellipse shows the final result after with
variations taken along the eigendirections of the degeneracy. The
final metric matches the degeneracy well, as shown in the pdf,
while the initial metric significantly underestimates it.
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The metric provides an approximate likelihood over the
mass and spin parameter space, using Eq. (46). Since the
likelihood is approximated as a multivariate Gaussian, we
can very quickly generate large numbers of samples across
the mass and spin parameter space. To do so, we generate
the requested number of points drawn from four normal
distributions, and then use the metric to project these to the
physical parameter space.

D. Generate samples in distance and orientation

We assume that sources are distributed uniformly in
volume and that their orientations are uniformly distributed.
While the latter assumption should be generically valid, at
small or large distances sources will not be uniformly
distributed—they will either follow the local density of
galaxies or cosmological effects, including a redshift
dependence on the merger rate, become important.
Nonetheless, it is standard to generate parameter estimates
using uniform volume distribution and then reweight for
astrophysical or cosmological distributions later [4,111].
A uniform in volume distribution of sources leads to a

preference for the observation of face-on (or face-away)
sources due to their greater gravitational wave amplitude
[see, e.g. Eq. (35)] [86]. In Sec. III C 2, we have argued that
the majority of observed sources will have significantly
greater SNR in one of the two circular polarizations.
Therefore, we wish to obtain the distribution for cos θJN
for a signal observed with a fixed SNR in the right or left
circular polarization. This is given as

pðcos θJNÞ ∝
Z

d2LddL d cos θJN

× δ

�
ρo − jσFj do

dL

�
1� cos θJN

2

�
2
�
; ð56Þ

where δ denotes the Dirac delta function. It is straightfor-
ward to marginalize over the distance distribution and
identify that the (originally flat in cos θJN) distribution
becomes

pðcos θJNÞ ∝ ð1� cos θJNÞ6; ð57Þ

where the positive/negative corresponds to right/left polari-
zation respectively. We use this distribution to generate
samples in θJN corresponding to left and right circularly
polarized signals.
Given the sky location of the source and the (complex)

SNR observed in each detector, it is straightforward to
obtain the SNR in the right and left circular polarizations,
ρR;L. As described in [98], we achieve this by first rotating
to the dominant polarization frame, and calculating the
network’s sensitivity to the þ and × polarizations, wþ and
w× respectively. We then use the given sky location and
project the (complex) SNR observed in each detector onto
the space of circularly polarized signals using,

Pij
circ ¼

�ðwiþ � iwi
×Þðwj

þ � iwj
×Þ

jwþj2 þ jw×j2
�
; ð58Þ

where i and j run over the detectors in the network and the
þ=− gives the SNR in the left and right polarizations
respectively. The relative SNR in each of the circular
polarizations can be used to appropriately weight the
probability that the signal is predominantly either left or
right circularly polarized. Since the likelihood is propor-
tional to exp½ρ2R;L=2�, this provides the appropriate nor-
malization factor to weight the number of samples drawn
from the left and right circular polarization distributions for
θJN . In many cases, the signal will be preferentially right
(or left) circularly polarized, in which case the majority of
samples will correspond to face-on (or face-away) orienta-
tion. If αnet is small, it is often impossible to distinguish
between left and right circular polarizations. In this case,
there will be large numbers of samples for both face-on and
face-away signals, with a minimum at edge on since these
systems emit the weakest gravitational wave signal.
Given the binary orientation θJN , we can obtain the

distance from Eq. (35), which we repeat below,

ρo ¼
do
dL

jσFj
ð1þ τ2Þ2 :

The inferred distance depends upon the network response
jσFj through the detector response encoded in F and the
masses and spins through the detector sensitivity to the
signal encoded in σ. We incorporate both of these effects
when estimating the distance. For the network sensitivity,
we simply draw samples from a Gaussian, based upon the
previously measured mean and variance. To incorporate
variations in the mass and spin space, we must recalculate σ
for each sample, given the values of mass and spin. Since σ
is a slowly varying function across mass and spin (it will
typically vary by at most tens of percent over the mass-spin
posterior), we first interpolate across the space and then use
the interpolation function to evaluate σ at each of the
samples. Finally, the observed SNR has measurement
uncertainty, which is well-modeled by a noncentral χ2

distribution with two degrees of freedom and a noncen-
trality parameter ρR;L. Thus, given a value of θJN and σ for
each sample, we randomly sample ρo and jFj from the
appropriate distributions and use Eq. (35) to calculate the
distance.

E. Restrict the parameters using additional
waveform components

In the previous subsections, we have described a method
to obtain samples in masses, spins, distance and binary
orientation. This provides a good initial estimate of the
binary parameters but we have additional information
which can still be used to improve the parameter estimates.
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In particular, we have not yet used the measured SNRs in
the second polarization, higher multipoles or precession.
The measured SNR in the second polarization, preces-

sion and higher multipoles can be used to improve
measurement of the binary parameters, as discussed in
detail in Secs. III C 2, III D, and III E. For each of the
samples, we calculate the expected SNR in the each of these
features, using the given masses, spins, distance and
orientation. In particular, the SNR in the second polariza-
tion is given by Eq. (36) and depends upon the orientation
θJN and αnet. The expected SNR in higher multipoles is
given in Eq. (37) and depends upon the orientation and
relative significance of the higher multipoles, encoded in
αlm, which is primarily determined by the mass ratio [69].
The expected SNR in precession is given in Eq. (38) and
depends upon the binary orientation and the opening angle
between the orbital and total angular momenta. The open-
ing angle is largely determined by the in-plane spins, χp,
but also varies with mass ratio and aligned spin. Those
samples where the expected SNR in these waveform
features matches the observed SNR are given a higher
weighting than those where the expected and observed
SNRs differ significantly.
We calculate the observed SNR in the second polariza-

tion, precession and higher multipoles by matched filtering
the waveform components, evaluated at the maximum
likelihood point identified in Sec. IVA, against the data.
In detail, the precession and higher multipole SNRs are
obtained by matched filtering the h22;1 and h33;0 waveforms
against the data from the network of detectors and
evaluating the SNR in each detector at the time where
the SNR for h22;0 is maximum. To obtain the SNR in the
second polarization, we project the SNR in the (2, 2, 0)
component into the space orthogonal to the right/left
circular polarization, as described in Sec. II C. For each
sample, we calculate the likelihood of obtaining the
observed SNR in these waveform components—it is given
by a noncentral chi-squared distribution with two degrees
of freedom, where the noncentrality parameter is the
expected SNR at the parameter values of the sample and
the distribution is evaluated at the observed SNR. Thus,
points in the parameter space which accurately predict the
observed SNR in the second polarization, higher multipoles
and precession are preferred to those which predict either
too much or too little SNR in these features. We assign
weights to each of the samples, based upon the product of
the probabilities for obtaining the given SNR in each of the
three features, and then use these weights to importance
sample the points to produce our final result.
In the above, we have used only the SNRs calculated at

the maximum likelihood point. This has the benefit of
significantly reducing computational cost, as we do not
need to recompute the likelihood at every sample. From
Fig. 11, we see that the distribution of the higher multipole
SNR has a similar structure to the leading waveform

component, although in the example show the peak is
somewhat offset. Furthermore, in the region of mass and
spin space consistent with the (2, 2, 0) waveform (shown,
e.g., in Fig. 4) the SNR in the (3, 3, 0) waveform
component varies by around 10%. Therefore, it is a
reasonable approximation to take this to be constant. For
the second polarization, the variation of SNR with an
incorrect estimate of θJN (which will lead to an over/
underestimation of the SNR in the second polarization)
should be independent of the masses and spins. For
precession, the SNR distribution in mass and spin space
is significantly different than the (2, 2, 0) waveform.
Nonetheless, the variation in precession SNR over the
mass and spin space of interest is ≈30% and so we can
reasonably treat this as constant. Finally, for speed, we
precompute slowly varying quantities such as b̄ and α33
coarsely over the parameter space and then interpolate them
when calculating the expected SNR in each waveform
component.

F. Summary

The simple-pe algorithm generates a set of discrete
samples that approximate the mass, spin, distance and
orientation posterior distribution for the observed gravita-
tional wave signal. The mass and spin distributions are
approximated as multidimensional Gaussian distributions
centered around the point with the maximum SNR in the
(2, 2) multipole (incorporating two precession harmonics).
While the sky location is inferred from the SNRs in the
network, the information is only used in estimating the
overall network sensitivity to the two gravitational wave
polarizations, and their variation over the localization
region. The distance and orientation are generated assum-
ing uniformly distributed events in both volume and binary
orientation, and weighting for observability. Correlations
between the inferred distance/orientation and mass/spin
parameters arise through the requirement that the binary
parameters accurately predict the observed power in the
second polarization, higher multipoles and precession.
Finally, we must discuss priors. So far, we have been

evaluating the likelihood, either through the metric expan-
sion or via observed SNRs in different waveform compo-
nents. We have explicitly considered priors on distance and
orientation, where we chose a distribution uniform in
volume and in cos θJN . This means that, over the mass
and spin space, we have effectively imposed flat priors in
the parameters that we are using to generate samples,
namely M,η, χalign and χ2p. In the majority of analyses,
priors are chosen to be uniform in component masses, spin
magnitudes, and orientations, see e.g. Refs. [2,4,112,113].
While, for many systems, the masses are well-constrained
and the differing prior causes little impact, this is not the
case for equal mass systems. To transform to a prior which
is uniform in component masses requires
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pðM; ηÞ ∝ Mffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p ð59Þ

which blows up at equal mass (η ¼ 1
4
). To address this, we

limit the denominator to 50, effectively truncating the prior
at η ¼ 0.2499. This leads to aminor under-sampling of near-
equal mass systems (with a mass ratio between 1 and 1.04).
Similarly, we transform from uniform priors on χalign and χ2p
to uniform priors on component spin magnitudes and
orientations using the transformations given in [114].
These priors are implemented by drawing a large number
of samples from the underlying distributions and then using
rejection sampling to retain samples with a distribution
matching the desired priors, see, e.g. Appendix C
in Ref. [18].
The entire analysis presented above runs in a few

minutes on a single CPU.9 It can be neatly separated into
two parts: in the first, we matched-filter the data to identify
the maximum SNR point, the sky location and power in
each of the waveform components: second polarization,
higher multipoles, and precession. For the estimation of the
binary parameters, we make use of these values and then
calculate distributions in masses, spins, orientation and
distance. This second step requires the PSD of the detector
data to obtain the metric, but not the data themselves.

V. SIMPLE-PE RESULTS

We use four simulated signals to demonstrate an appli-
cation of the simple-pe algorithm described in Sec. IV.
The goal of the examples is to demonstrate the accuracy of
the parameter estimation across the mass, spin, distance,
and orientation space. In particular, we are interested in
seeing that the quadratic approximation from the metric is
appropriate for generating samples in the mass and spin
space. Furthermore, we would like to investigate how the
observed SNR in the additional waveform components can
impact parameter recovery. To do so, we choose signals
with many parameters in common, and vary only those
which will impact the SNR in the second polarization,
higher multipoles and precession. The common parameters
of the systems are provided in Table I. In all cases, the
signals have masses of 40M⊙ and 10M⊙, with aligned spin
components of 0.5 on the more massive black hole and zero
on the smaller system. The binaries are located at a fixed
sky location (the same as shown in Fig. 5).
The binary orientation and in-plane spins are varied to

give examples with negligible or significant power in both
higher multipoles (HM) and precession (prec). The power
in the second polarization also varies but, in none of the

cases we have considered is it sufficient to enable confident
observation of the second polarization. We fix the distance
to the signals to ensure a SNR of 25 in the LIGO-Virgo
network with expected O4 sensitivity. The set of varying
parameters for each signal are given in Table II, along with
the SNR in each of the waveform components.
In Fig. 13, we show the simple-pe posterior obtained

for signal (4), with negligible power in the second polari-
zation, but significant power in both higher multipoles and
precession. The posteriors obtained are in good agreement
with the simulated values, with both the θJN and χp
distributions clearly peaked away from zero. In addition,
we see clear correlations between several pairs of param-
eters. As expected, the mass ratio and aligned spin are (anti)
correlated due to their impact on the phase evolution of the
waveform. The distance and binary orientation are also
anticorrelated based upon the measured SNR in the (2, 2, 0)
waveform component—to achieve a given SNR an inclined
signal must be at a smaller distance. Finally, the binary
orientation and precessing spin are (anti)correlated as larger
values of either leads to a larger SNR in precession. We also
observe a slight correlation between orientation and mass
ratio. This arises from the necessity to obtain the correct
SNR in higher multipoles—the SNR increases with θJN but
decreases for increasing η (more equal mass binaries).

TABLE I. Common parameters of the simulated signals.

Source-frame primary mass, [M⊙] 40.0
Source-frame secondary mass, [M⊙] 10.0
Source-frame chirp mass, M [M⊙] 16.65
Symmetric mass ratio, η 0.16

yth component of the primary spin 0
zth component of the primary spin 0.5
Secondary spin magnitude 0
Effective spin, χeff 0.4
Aligned spin, χalign 0.42

Right ascension, α [rad] 1.2
Declination, δ [rad] 0.3
Polarization, ψ [rad] 0.5
Network alignment factor, αnet 0.364
GPS merger time, [s] 1677672000.0

TABLE II. Parameters that vary for the simulated signals.

Signal

(1) (2) (3) (4)

HM Prec HM-prec

Effective precession spin, χp 0.01 0.1 0.7 0.4
Opening angle, β 0.003 0.06 0.4 0.2

Angle between L and N, ι 0.005 0.6 0.1 0.6
Angle between J and N, θJN 0.006 0.6 0.4 0.6
Luminosity distance, dL [Mpc] 982 825 859 814

SNR in (3,3) multipole, ρ33 <0.1 4.3 2.8 4.2
SNR in precession, ρp <0.1 1.02 4.4 4.4
SNR in second polarization <0.1 0.1 <0.1 0.2

9In the current implementation, filtering the two-harmonic
SNR over a grid to find the peak takes around 15 minutes and
dominates the computational time. Other techniques, such as
relative binning [28], may reduce this computational cost, and we
leave an investigation future work.

SIMPLE PARAMETER ESTIMATION USING OBSERVABLE … PHYS. REV. D 108, 082006 (2023)

082006-21



Next, we consider how the parameter recovery varies for
the three other systems listed in Table II. While the
distributions of all parameters do change somewhat, we
focus on the binary orientation, θJN , and precessing spin,
χp. These parameters have the greatest impact on the

observed SNR in precession and higher multipoles and
we therefore expect them to be most impacted by the
changes. Of course, the distance will also vary (as is clear
from Table II), but this is primarily due to our requirement
of a fixed SNR in the signal. Although the mass ratio

FIG. 13. The posterior distribution for masses (chirp mass M and symmetric mass ratio η) spins (aligned χalign and precessing χp),
distance dL and binary orientation θJN . The shaded regions in the two-dimensional figures show the 1, 2, and 3σ regions for the
parameters and the one-dimensional distributions show the median and 90% symmetric confidence interval. The simulated values are
shown as red lines. For all of the parameters, the inferred values are in good agreement with the simulation. The binary was deliberately
generated to have negligible power in the second polarization, and significant power in both higher multipoles and precession, signal
(4) in Table. II.
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remains fixed, one might expect its recovery to vary when
higher multipoles and precession are observed (as was the
case for GW190412, [12]). However, since the signal is
already identified as unequal mass from the (2, 2, 0)
waveform, they have little impact on the mass ratio
distribution. For all 3 signals—one with negligible power
in both higher multipoles and precession, one with signifi-
cant power in higher multipoles, and another with signifi-
cant power in precession—we see that the recovered θJN
and χp are in good agreement with the simulated values. For
all 3 cases, the simulated values lie within the 1σ con-
fidence interval. Furthermore, the inferred ranges of θJN
and χp can be explained by the SNR in higher-order
multipoles and precession. In each case, the binary
orientation is restricted by the measured (3, 3, 0) SNR.
The precession SNR increases with both χp and θJN as, to
a good approximation is scales with χp · θJN . Thus, the
measured precession SNR limits the permitted range
in the two-dimensional space. As expected a higher
observed (3, 3) multipole SNR leads to a larger inferred
θJN while a larger precession SNR leads to larger values of
both θJN and χp.
The events we have investigated were deliberately

chosen to lie in a region of the parameter space where
higher-order multipoles, precession and power in the
second polarization are all likely to be observed. In
particular, we selected a high SNR signal with unequal
masses, observed well away from face-on. For this exam-
ple, even when there is no power in higher multipoles or
precession, the lack of power can be used to restrict the
physical parameters, as shown in 14. The majority of

gravitational wave observations are expected to be low
SNR and close to equal mass. For these systems, it is very
unlikely that additional waveform features will be identi-
fiable. In this case, lack of power in precession, higher
multipoles and second polarization have limited impact on
the inferred parameters. In Appendix B.

A. Comparison with other samplers

In Fig. 15, we show the posterior distributions for a
signal with power in the second polarization, and signifi-
cant power in higher multipoles and precession obtained
using simple-pe (as shown in Fig. 13) with that obtained
using DYNESTY [115] (generated through the Bilby infra-
structure [16,18,20]). DYNESTY was chosen as it is com-
monly used for gravitational wave follow-up analyses (see
e.g. Refs. [4,7]). We see that in general, there is good
agreement between the two sampling techniques, with the
simple-pe results algorithm presented here consistent
with DYNESTY for all parameters. The simple-pe pos-
teriors are somewhat broader than those obtained with the
full Bayesian parameter estimation routine. Most notably,
the distance and precession spin posteriors are significantly
broader. The distance uncertainty arises from three effects;
a degeneracy between distance and orientation, a degen-
eracy between distance and mass, and a variation of
distance over the sky region. For this signal, it is the
variation of detector sensitivity over the sky patch that gives
the greatest contribution to the distance uncertainty. While
our localization routine returns a reasonable approximation
to the sky patch, it does give a significantly larger region
than DYNESTY and this explains the difference in distance

FIG. 14. The posterior distribution for the binary’s orientation θJN and precessing spin χp for 3 simulated signals; Left: a binary with
insignificant power in precession and higher-order multipoles, signal (1). Middle: a binary with significant power in higher-order
multipoles, signal (2), and Right: a binary with significant power in precession and some power in higher-order multipoles, signal (3).
The blue shaded regions in the two-dimensional figures show the 1, 2, and 3σ regions for the parameters. The black dash-dotted lines
show lines of constant ρp, and the orange shaded regions show lines of constant ρ33; the darker region encompasses the injected value.
The one-dimensional distributions show the median and 90% symmetric confidence interval. The simulated values are shown as red
lines. We note that the priors on θJN and χp vanish at zero leading to zero posterior support there, and consequently posteriors peaked
away from the injected values, as shown in the left-hand panel.

SIMPLE PARAMETER ESTIMATION USING OBSERVABLE … PHYS. REV. D 108, 082006 (2023)

082006-23



inference. The precessing spin is also less well-measured
by the simple-pe result. Similar results are obtained for
the three other systems discussed in Sec. V, namely that the
simple-pe posteriors are comparable with, although
typically broader than those obtained with DYNESTY.
Importantly, DYNESTY took ∼20 hours to complete when
parallelized over 400 CPUs while the work presented here
took ∼20 minutes on a single CPU.

VI. DISCUSSION

In this paper, we have presented a detailed discussion of
the primary way in which different physical parameters
impact the observed gravitational wave signal emitted
during a black hole binary coalescence.Using these insights,
we have developed a parameter estimation method,
simple-pe, that uses this information to provide

FIG. 15. Same as Fig. 13 but with the posteriors obtained with DYNESTY (generated through the Bilby infrastructure [16,18,20])
overlaid in black. DYNESTY took ∼20 hours to complete when parallelized over 400 CPUs while simple-pe took ∼20 minutes on a
single CPU.

FAIRHURST, HOY, GREEN, MILLS, and USMAN PHYS. REV. D 108, 082006 (2023)

082006-24



estimates of the physical parameters of the system. By
restricting focus to the observable impact on the gravita-
tional waveform, we are able to obtain rapid parameter
estimates which naturally incorporate degeneracies between
physical parameters. We have presented parameter estima-
tion results for a small set of signals and, in Sec. VA, shown
that our results are in good agreementwith those obtained by
the Bilby [16] sampler which is used in interpreting gravi-
tational wave observations [4]. The simple-pe results are
obtained in a fraction of the time and recover broadly the
same results as themore intensive samplers. There have been
numerous other analyses developed which provide rapid
parameter estimation for gravitational wave observations
[17,20–26,29,30,90,96]. However, many of these use wave-
forms that exclude either precession or higher multipoles or
both. Thus, while they are able to provide reasonable
estimates of masses, aligned spins and sky locations, they
are unable to probe some of the interesting astrophysics that
will only be uncovered through highermultipoles (which are
one of the best ways to clearly identify unequal mass
systems) or precession (which is the only way to probe
in-plane spins). Furthermore, the simple-pe analysis has
the advantage of providing clear interpretation as towhy and
how the various parameters are measured and the accuracy
achieved. For example, in Fig. 14, we can understand the
inferred orientation and in-plane spins based upon the higher
multipole and precession SNRs.
Here, we have restricted attention to a limited number of

simulated signals, primarily to describe the methods
employed and the properties of the observed signal which
enable measurement of various parameters. In the main
paper, we have focused on an example where additional
waveform features are observable and can therefore be used
to improve parameter recovery. In Appendix B, we present
an example for a low SNR signal with close to equal masses
for which higher multipoles and precession have minimal
impact. This does not constitute a comprehensive test of the
analysis. In a future paper, we plan to present an in depth
investigation of simple-pe results using both a large set
of simulations and also existing GW observations [4].
In future observing runs, the rate of observed binary

mergers will increase as instrumental sensitivity improves.
For example, in the O4 run [10], several events per week
are expected and in O5 and beyond we could regularly be
observing multiple events per day. Thus, it becomes ever
more important to obtain detailed estimates of the binary
properties in a short time-frame—comparable to the time
between events. The simple-pe analysis provides a tool
that can become part of the process for quickly under-
standing the observations. We are able to provide good
parameter estimates in a matter of minutes. The analysis,
inevitably, introduces some approximations, for example
by considering only the most significant higher multipole
and precession harmonic. In addition, in the current
implementation, we do not extract the phase, polarization

or precession phase angles, although we have briefly
discussed how this could be done. Finally, the simple-
pe analysis does not, currently, include calibration uncer-
tainties which can broaden the recovered parameter widths
[116]. Thus, in its current implementation, simple-pe
will not provide the most accurate estimate of the binary
parameters. Nonetheless, a fast and reasonably accurate
estimate of the binary parameters is useful to rapidly
identify interesting events for prioritized analysis and
provide parameter estimates to guide follow-up electro-
magnetic observations, where knowledge of masses, mass
ratio and binary orientation can impact the expected signal
[117]. Furthermore, there may be applications, for exam-
ple, studies of the black hole population [111] or searches
for lensed events [118], where the accuracy provided by
simple-pe is sufficient to obtain the results. Finally,
where full parameter estimation is required, the initial
parameter estimates provided by simple-pe can be
used to inform the detailed parameter estimation routines.
For example, the posteriors obtained by simple-pe
could be importance sampled by Bilby to produce a final set
of posterior samples, as has been done previously to
obtain faster results for higher multipoles and eccentric-
ity [13,119].
There are a number of additional features which can lead

to an observable effect in the emitted gravitational wave-
form, including matter effects, eccentricity and mode
asymmetries. For binaries containing one or two neutron
stars, the waveform will carry information about the
structure of the star, this arises as additional post-
Newtonian corrections during the inspiral and also a
difference in the merger and post-merger signal from that
of a black hole binary [120,121]. For binaries on non-
circular orbits, the emitted gravitational wave signal carries
an imprint of the orbital eccentricity [122]. For several of
the binaries observed in O3, there is tantalizing evidence of
eccentricity [13,123]. Finally, for binaries where the orbit
precesses, there are asymmetries between the gravitational
wave signal emitted above and below the orbital plane.
These correspond to the “bobbing” of the binary and the
final kicks given to the system following merger [124,125].
Detailed studies of these additional features, and their
impact on parameter measurements, have been pursued
by several groups. Studies of neutron star structure include
[126,127]; eccentricity had been studied in [13,128] and
mode asymmetries are discussed in Refs. [125,129].
All three of these features are amenable to the approach

presented in this paper. The presence of neutron-star
structure will impact the overall frequency and phase
evolution of the system, and is likely to be primarily
measured from the leading waveform component. Mode
asymmetries lead to a difference between, e.g. the (2, 2)
and (2, −2) multipoles. By separating into the leading
(symmetric) and subdominant (antisymmetric) compo-
nents, we obtain an additional waveform component
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whose amplitude will help constrain the in-plane spins.
Eccentricity impacts the overall evolution of the waveform,
and it is well-known that the eccentricity is degenerate with
mass (both higher eccentricity and higher mass lead to a
faster merger). However, eccentricity also leads to addi-
tional harmonics in the waveform, at multiples of the orbital
frequency [130]. Therefore, it seems likely that a combi-
nation of techniques will be required to incorporate
eccentricity. Finally, we note that most waveform models
include only a subset of the physical effects we have
discussed, as each additional effect expands the dimen-
sionality of the parameter space to be simulated. Our
approach of identifying the leading effect on the waveform
of each new (astro)physical phenomenon has the potential
to help guide development of future waveform models.
Additionally, even if complete models are not available, we
could incorporate all of their leading-order effects into the
simple-pe analysis to obtain a more complete picture of
each observed binary.
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APPENDIX A: MULTIPOLE DECOMPOSITION
OF THE GRAVITATIONAL WAVEFORM

In the body of the text, we derived the expression for the
gravitational waveform as a sum over multipole moments
ðl; mÞ with an additional “splitting” of the harmonics due
to precession, given in Eq. (9), which we repeat here,

h ¼
X
l;m;n

−2Yl;mðθ;ϕÞDl
n;mðα; β; ϵÞhNPl;nðt; λ⃗Þ: ðA1Þ

Our aim is to explicitly extract the waveform dependence
upon the opening angle β and to show that we can
decompose the waveform into components with a natural
hierarchy in the parameter b ¼ tanðβ=2Þ.
We begin by expanding the spherical harmonics using

−2Yl;mðθJN;−αoÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
dlm;2ðθJNÞe−imαo ðA2Þ

and

Dl
n;mðα; β; ϵÞ ¼ eimαdln;mð−βÞe−inϵ; ðA3Þ

to obtain

h ¼
X
l

Xl
m;n¼−l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r

× hNPln d
l
m;2ðθJNÞdln;mð−βÞe−inϵeimðα−αoÞ: ðA4Þ

Next, we impose the restriction that the gravitational wave
emission is symmetric above and below the plane of the
binary so that hl;n ¼ ð−1Þlh�l;−n.10 This allows us to
express the waveform in terms of multipoles with n ≥ 0 as

h ¼
X
l

Xl
n¼0

Xl
m¼−l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
dlm;2ðθJNÞeimðα−αoÞ

× ½hNPln dln;mð−βÞe−inϵ þ ð−1ÞlðhNPln Þ�dl−n;mð−βÞeinϵ�:
ðA5Þ

Next, we collect together the β terms as we want to obtain
an expansion in terms of the parameter b ¼ tanðβ=2Þ.
To do so, we use the discrete symmetries of the Wigner
d-matrices, dln;mð−βÞ,

dln;m ¼ ð−1Þm−ndlm;n ¼ ð−1Þm−ndl−n;−m ðA6Þ

and a relabeling of m → −m in the second term of
Eq. (A5) to extract the factor dln;mð−βÞ from both terms.
In addition, for consistency with previous work, we relabel
the indices by switching n and m. This enables us to
use ðl; mÞ to label the multipole moments of the waveform
in the frame aligned with the orbital angular momentum
and n (∈ ½−l;l�) to denote the precession harmonics.11

Combining these steps leads to a final expression for the
waveform in terms of nonprecessing multipoles as

10This is a reasonable approximation but, particularly for large
in-plane spins, there is an asymmetry in the emitted radiation
[43]. The formalism presented here can be extended to that more
general case, but we leave that to future work.

11Following [70], we will later introduce k∈ ½0; 2lþ 1� as the
harmonic labeling precession, and show that the harmonics have
a power-law structure with index k.
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h ¼
X
l

Xl
m¼0

Xl
n¼−l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
dlm;nð−βÞ

× ½dln;2ðθJNÞðhNPlm e−imϵeinðα−αoÞÞ
þ ð−1Þl−mdln;−2ðθJNÞðhNPlm e−imϵeinðα−αoÞÞ��: ðA7Þ

In the following subsections, we examine the structure
of the waveform in Eq. (A7) by considering the (2, 2) and
(3, 3) multipoles explicitly, as well as the general case of the
ðl;lÞ and ðl;l − 1Þ multipoles.

1. The (2,2) two-harmonic waveform

The two-harmonic waveform introduced in [70] can be
recovered by restricting to the (2, 2) multipole in Eq. (A7)
and then further restricting to the two leading-order terms in
b. We briefly summarize the calculation below.
The Wigner d-matrices for l ¼ m ¼ 2 are given by

d22;nð−βÞ ≔ C2;ncos2þnð−β=2Þsin2−nðβ=2Þ

¼ C2;n
ð−bÞ2−n
ð1þ b2Þ2 ; ðA8Þ

where C2;�2 ¼ 1, C2;�1 ¼ 2, C2;0 ¼
ffiffiffi
6

p
, and b ¼ tanðβ=2Þ.

This enables us to express the waveform amplitudes
as a power series in b. Similarly, it is convenient to express
the Wigner d-matrices for θJN appearing in Eq. (A7) in
terms of

τ ≔ tanðθJN=2Þ: ðA9Þ

Restricting to l ¼ m ¼ 2 in Eq. (A7) and substituting
the explicit form of the Wigner d-matrices for both −β and
θJN gives

h22 ¼
X2
n¼−2

ffiffiffiffiffiffi
5

4π

r
ðC2;nÞ2b2−n
ð1þ b2Þ2

×

�
τ2−n

ð1þ τ2Þ2 ðh
NP
22 ðtÞe−2iϵeinðα−αoÞÞ

þ ð−τÞ2þn

ð1þ τ2Þ2 ðh
NP
22 ðtÞe−2iϵeinðα−αoÞÞ�

�
: ðA10Þ

This shows the desired structure, with each of the
precession harmonics appearing with a factor of b2−n.
Using the fact that b < 1, we can restrict to the two
leading-precession harmonics (b0 and b1). Specifically,
we introduce

h22;0 ¼
ffiffiffiffiffiffi
5

4π

r
1

ð1þ b2Þ2 h
NP
22 ðtÞe−2iϵe2iðα−αoÞ;

h22;1 ¼
ffiffiffiffiffiffi
5

4π

r
b

ð1þ b2Þ2 h
NP
22 ðtÞe−2iϵeiðα−αoÞ: ðA11Þ

Both waveforms accumulate a secular phase of 2iϵ relative
to the nonprecessing waveform, as first noted in [79]. The
amplitude of the second precession harmonic is reduced by
a factor of b relative to the first and the frequency is reduced
by the precession frequency Ωp, where Ω̇p ¼ α.
The two-harmonic waveform is given as

h22 ≈
ðh22;0 þ τ4h�22;0Þ

ð1þ τ2Þ2 þ 4τðh22;1 − τ2h�22;1Þ
ð1þ τ2Þ2 ; ðA12Þ

reproducing the expression provided in [70].

2. The (3, 3) waveform

Let us now obtain a similar expression for the (3, 3)
multipole, following a similar procedure as in the previous
section. As before, we wish to evaluate the multipole
amplitude explicitly in terms of b and τ. The required
Wigner d-matrices are

d33;nð−βÞ ≔ C3;ncos3þnðβ=2Þsin3−nð−β=2Þ

¼ C3;n
ð−bÞ3−n
ð1þ b2Þ3 ; ðA13Þ

where C3;�3¼1 and C3;�2¼
ffiffiffi
6

p
and, as before, b¼

tanðβ=2Þ. This gives

h33 ¼
X3
n¼−3

ffiffiffiffiffiffi
7

4π

r
C3;n

ð−bÞ3−n
ð1þ b2Þ3

× ½d3n;2ðθJNÞðhNP33 e−3iϵeinðα−αoÞÞ
þ d3n;−2ðθJNÞðhNP33 e−3iϵeinðα−αoÞÞ��: ðA14Þ

Thus, we see that the terms appear with an amplitude factor
b3−n. For the (2, 2) harmonic, we restricted to the two most
significant precession contributions (b0 and b1). We will do
the same for the (3, 3) multipole. For the leading-order
precession contribution b0, we can evaluate the d33;�2ðθJNÞ
terms Eq. (A13). For the first-order precession correction, we
need to evaluate d32;�2 which are given by

d32;2ðθÞ ¼
1 − 5τ2

ð1þ τ2Þ3 ;

d32;−2ðθÞ ¼
5τ4 − τ6

ð1þ τ2Þ3 ; ðA15Þ

where τ ¼ tanðθ=2Þ.
We introduce the precession contributions to the (3, 3)

multipole as12

12We have chosen the normalization of the (3, 3) waveform to
match the one used in [69]. This differs from the more “natural”
normalization where the prefactor would be

ffiffiffiffiffiffiffiffiffiffi
7=4π

p
. This choice

of normalization has no impact on the results in the paper.
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h33;k ¼
1

4

ffiffiffiffiffiffi
21

2π

r
bk

ð1þ b2Þ3 ðh
NP
33 e

−3iϵeð3−kÞiðα−αoÞÞ: ðA16Þ

We can then express the (3, 3) multipole, to first order
in b as

h33 ≈
4τðh33;0 þ τ4h�33;0Þ

ð1þ τ2Þ3

þ −4τð1 − 5τ2Þh33;1 þ 4τðτ2 − 5Þh�33;1
ð1þ τ2Þ3 : ðA17Þ

We are also interested in isolating the h33;0 and h33;1
waveform harmonics. To do so, we follow [70] and generate
a waveform at different orientations and combine them to
produce a waveform containing only the leading-precession
harmonic for the (3, 3) multipole. For the (2, 2) multipole,
only the 0 and 4 precession harmonics are nonzero for face-
on systems so the simplest way to generate the leading-
precession harmonic is simply to generate a face-on system
—this will be correct up toOðb4Þ, and even that contribution
can be easily removed by subtracting two waveforms with
different phase and polarization (see [70] for details). For the
(3, 3) multipole, the leading-precession harmonic vanishes
for a face-on system. Indeed, it is often stated that the (3, 3)
multipole vanishes for face-on systems, actually this is not
true if the system is precessing as the b1 and b5 precession
harmonics are nonzero. Thus, to Oðb4Þ the face on (3, 3)
multipole gives the b1 precession harmonic. Specifically,

h33;1 ≈ h33ðθJN ¼ 0; αo ¼ 0;ϕ ¼ 0;ψ ¼ 0Þ: ðA18Þ

This will be correct to Oðb4Þ. The contribution from the
k ¼ 5 harmonic can be removed by taking the average of the
above waveform and one generated with αo ¼ π

4
, ϕ ¼ − π

6
.

To generate the leading-precession harmonic for the (3,
3) multipole, we require the waveform for θJN ¼ π

2
(τ ¼ 1).

In this case, the amplitude of the left and right circular
polarizations, given by the τ and τ5 terms in Eq. (A17), are
equal and the signal is linearly polarized, with power only
in theþ polarization. The same is true for the b2, b4, and b6

harmonics, while the b1 and b5 harmonics have power only
in the × polarization and the b3 harmonic vanishes. Thus,
the þ polarized waveform at θJN ¼ π

2
provides the leading-

precession harmonic, accurate to b2. We can further
improve the accuracy by noting that the precession phase
αo appears with a different factor for the different modes. In
particular, generating the waveform at α0 ¼ 0; π

2
leads to the

a phase shift of π in the leading harmonic and 2π in the b2

harmonic. Therefore, to accuracy of b4 we can write

h33;0 ≈
1

2

�
h33þ

�
θJN ¼ π

2
; αo ¼ 0;ϕ ¼ 0

�

þ h33þ

�
θJN ¼ π

2
; αo ¼

π

2
;ϕ ¼ π

6

��
: ðA19Þ

Again, it is not difficult to obtain the waveform accurate to
all powers in b by generating waveforms with αo ¼ � π

4
and

appropriately combining them to remove the b4

contribution.

3. The waveform for l =m multipoles

Here, we briefly sketch the derivation for a generic ðl;lÞ
multipole. The calculation is essentially identical to the one
above for the (3, 3) multipole. In particular, we first
evaluate the dll;nð−βÞ term using the explicit form of the
Wigner d-matrices

dll;nð−βÞ ≔ Cl;ncoslþnðβ=2Þsinl−nð−β=2Þ

¼ Cl;n
bl−n

ð1þ b2Þl ; ðA20Þ

where Cl;n is a real number (we give the value where
necessary). Thus we can write

hll ¼
Xl
n¼−l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
Cl;n

ð−bÞl−n
ð1þ b2Þl

× ½dln;2ðθJNÞðhNPlle−ilϵeinðα−αoÞÞ
þ dln;−2ðθJNÞðhNPlle−ilϵeinðα−αoÞÞ��: ðA21Þ

As before, we immediately see that the ðl;lÞmultipole has
the same decomposition in terms of b, with a clearly
identified leading-order term when n ¼ l. Restricting to
this leading-precession contribution we note that
Cl;�l ¼ 1. In addition, we can evaluate the dl2;�lðθJNÞ ¼
dll;�2ðθJNÞ term using Eq. (A20), where we note the values

C22 ¼ 1, C32 ¼
ffiffiffi
6

p
, C42 ¼ 2

ffiffiffi
7

p
.

Then, to leading order in the precession parameter b,

hll ≈
2ð2τÞl−2ðhll;0 þ τ4h�ll;0Þ

ð1þ τ2Þl ðA22Þ

with the normalization again chosen to match that intro-
duced in [69] and

hll;0 ∝
1

ð1þ b2Þl ðh
NP
lle

−ilϵeilðα−αoÞÞ: ðA23Þ

The proportionality constant is determined through the
desired normalization for hll.
As with the (2, 2) multipole, if we were to keep

subdominant precession harmonics, their amplitudes would
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be suppressed by powers of bwhile their frequencies would
be reduced by multiples of the precession frequency.

4. The waveform for m =l − 1 multipoles

The other multipoles which can contribute significantly
to the observed gravitational wave signal are the (2, 1) and

(3, 2) multipoles [42], so we also look briefly at the
multipoles with m ¼ l − 1. Now, the Wigner d-matrix can
be written as

dll−1;nð−βÞ ¼
Al;nð−bÞl−nþ1 þ Bl;nð−bÞl−n−1

ð1þ b2Þl ;

FIG. 16. The posterior distribution for masses (chirp mass M and mass ratio q ¼ m2=m1) spins (aligned χalign and precessing χp),
distance dL and binary orientation θJN for a binary with masses 39M⊙ and 32M⊙ at a SNR of 12. The shaded regions in the two-
dimensional figures show the 1, 2, and 3σ regions for the parameters and the one-dimensional distributions show the median and 90%
symmetric confidence interval. The simulated values are shown as red lines. At this low SNR, we observe broad posteriors for many
parameters, in particular orientation and precessing spin.
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where Aln and Bln are real numbers and, since the power of
b must be non-negative, Al;−l ¼ Bl;l ¼ 0.
As for the other harmonics, we see that the form of the

hl;ðl−1Þ waveform can be factorized into terms with a
prefactor of bk. Since the (3, 2) and (2, 1) multipoles are
subdominant [69], we restrict to the leading order, b0,
contributions. These arise from the jnj ¼ m ¼ l − 1 terms,
for which Al;−ðl−1Þ ¼ Bl;ðl−1Þ ¼ 1. Therefore, we obtain

hlðl−1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

r
1

ð1þ b2Þl ðA24Þ

½dll−1;2ðθJNÞðhNPlðl−1Þeiðl−1Þðα−αo−ϵÞÞ
− dll−1;−2ðθJNÞðhNPlðl−1Þeiðl−1Þðα−αo−ϵÞÞ��: ðA25Þ

Finally, we note that for the ðl;l − 1Þ multipoles the
subdominant precession term would include two additional
harmonics—one at a frequency Ωp above the dominant
harmonic and one a frequency Ωp below.

APPENDIX B: SIMPLE-PE EXAMPLE FOR LOW
SNR EVENT

In this appendix, we show the results for a simple-pe
analysis of a low SNR event with close to equal masses. As
discussed in Sec. V, such a system will have limited SNR in
higher-order multipoles, precession and the second GW
polarization for the majority of possible orientations and in-
plane spin configurations. Therefore, we expect that the
lack of SNR in these features will do little to restrict the
inferred properties of the binary, most notably the orienta-
tion and in-plane spins. This is borne out in the results
shown in Fig. 16. The binary is simulated with masses
39M⊙ and 32M⊙ (in the detector frame), giving a redshift
of z ¼ 0.33 and a network SNR of 12. There is minimal
power in precession, higher-order modes and the second
polarization with all features having SNR < 0.5. This leads
to broad distributions in χp, mass ratio q and orientation
θJN. Furthermore, there is only peak preference for a left
(rather than right) circular polarization, which leads to the
observed bimodality in orientation. While a detailed
investigation of simple-pe results for GW observations
is beyond the scope of this paper, we note that the widths of
parameter posteriors are broadly consistent with observed
signals [4].
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Ohme, G. Pratten, and M. Pürrer, Simple Model of
Complete Precessing Black-Hole-Binary Gravitational
Waveforms, Phys. Rev. Lett. 113, 151101 (2014).

[41] S. Khan, K. Chatziioannou, M. Hannam, and F. Ohme,
Phenomenological model for the gravitational-wave signal
from precessing binary black holes with two-spin effects,
Phys. Rev. D 100, 024059 (2019).

[42] S. Khan, F. Ohme, K. Chatziioannou, and M. Hannam,
Including higher order multipoles in gravitational-wave
models for precessing binary black holes, Phys. Rev. D
101, 024056 (2020).

[43] V. Varma, S. E. Field, M. A. Scheel, J. Blackman, D.
Gerosa, L. C. Stein, L. E. Kidder, and H. P. Pfeiffer,
Surrogate models for precessing binary black hole simu-
lations with unequal masses, Phys. Rev. Res. 1, 033015
(2019).

[44] V. Varma, S. E. Field, M. A. Scheel, J. Blackman, L. E.
Kidder, and H. P. Pfeiffer, Surrogate model of hybridized
numerical relativity binary black hole waveforms, Phys.
Rev. D 99, 064045 (2019).

SIMPLE PARAMETER ESTIMATION USING OBSERVABLE … PHYS. REV. D 108, 082006 (2023)

082006-31

https://doi.org/10.1103/PhysRevD.91.042003
https://doi.org/10.1103/PhysRevD.91.042003
https://doi.org/10.1088/1538-3873/aaef0b
https://doi.org/10.1088/1538-3873/aaef0b
https://doi.org/10.3847/1538-4365/ab06fc
https://doi.org/10.3847/1538-4365/ab06fc
https://arXiv.org/abs/1805.10457
https://doi.org/10.1093/mnras/staa2850
https://doi.org/10.1093/mnras/stab2236
https://doi.org/10.1093/mnras/stab2236
https://doi.org/10.1093/mnras/staa2483
https://doi.org/10.1093/mnras/staa2483
https://doi.org/10.1038/s41567-021-01425-7
https://doi.org/10.1103/PhysRevD.102.104057
https://doi.org/10.1103/PhysRevLett.127.241103
https://doi.org/10.1103/PhysRevLett.127.241103
https://doi.org/10.1103/PhysRevLett.130.171403
https://doi.org/10.1088/2632-2153/ac3843
https://doi.org/10.1088/2632-2153/ac3843
https://doi.org/10.1088/2632-2153/abfaed
https://doi.org/10.1088/2632-2153/abfaed
https://doi.org/10.1103/PhysRevD.103.103006
https://arXiv.org/abs/1806.08792
https://arXiv.org/abs/2210.02706
https://arXiv.org/abs/2210.16278
https://doi.org/10.1103/PhysRevD.95.044028
https://doi.org/10.1103/PhysRevD.98.084028
https://doi.org/10.1103/PhysRevD.101.124040
https://doi.org/10.1103/PhysRevD.101.124040
https://doi.org/10.1103/PhysRevD.102.044055
https://doi.org/10.1103/PhysRevD.95.024010
https://doi.org/10.1103/PhysRevD.95.024010
https://doi.org/10.1103/PhysRevD.89.084006
https://doi.org/10.1103/PhysRevD.93.044006
https://doi.org/10.1103/PhysRevD.93.044006
https://doi.org/10.1103/PhysRevD.93.044007
https://doi.org/10.1103/PhysRevLett.120.161102
https://doi.org/10.1103/PhysRevLett.113.151101
https://doi.org/10.1103/PhysRevD.100.024059
https://doi.org/10.1103/PhysRevD.101.024056
https://doi.org/10.1103/PhysRevD.101.024056
https://doi.org/10.1103/PhysRevResearch.1.033015
https://doi.org/10.1103/PhysRevResearch.1.033015
https://doi.org/10.1103/PhysRevD.99.064045
https://doi.org/10.1103/PhysRevD.99.064045


[45] G. Pratten, S. Husa, C. Garcia-Quiros, M. Colleoni, A.
Ramos-Buades, H. Estelles, and R. Jaume, Setting the
cornerstone for a family of models for gravitational waves
from compact binaries: The dominant harmonic for non-
precessing quasicircular black holes, Phys. Rev. D 102,
064001 (2020).

[46] C. García-Quirós, M. Colleoni, S. Husa, H. Estellés, G.
Pratten, A. Ramos-Buades, M. Mateu-Lucena, and R.
Jaume, Multimode frequency-domain model for the gravi-
tational wave signal from nonprecessing black-hole bina-
ries, Phys. Rev. D 102, 064002 (2020).

[47] G. Pratten et al., Computationally efficient models for the
dominant and subdominant harmonic modes of precessing
binary black holes, Phys. Rev. D 103, 104056 (2021).

[48] H. Estellés, A. Ramos-Buades, S. Husa, C. García-Quirós,
M. Colleoni, L. Haegel, and R. Jaume, Phenomenological
time domain model for dominant quadrupole gravitational
wave signal of coalescing binary black holes, Phys. Rev. D
103, 124060 (2021).

[49] H. Estellés, S. Husa, M. Colleoni, D. Keitel, M. Mateu-
Lucena, C. García-Quirós, A. Ramos-Buades, and A.
Borchers, Time-domain phenomenological model of
gravitational-wave subdominant harmonics for quasicircu-
lar nonprecessing binary black hole coalescences,
Phys. Rev. D 105, 084039 (2022).

[50] H. Estellés, M. Colleoni, C. García-Quirós, S. Husa, D.
Keitel, M. Mateu-Lucena, M. d. L. Planas, and A. Ramos-
Buades, New twists in compact binary waveform model-
ling: A fast time domain model for precession, Phys. Rev.
D 105, 084040 (2022).

[51] E. Hamilton, L. London, J. E. Thompson, E. Fauchon-
Jones, M. Hannam, C. Kalaghatgi, S. Khan, F. Pannarale,
and A. Vano-Vinuales, Model of gravitational waves from
precessing black-hole binaries through merger and ring-
down, Phys. Rev. D 104, 124027 (2021).

[52] C. Devine, Z. B. Etienne, and S. T. McWilliams, Optimiz-
ing spinning time-domain gravitational waveforms for
Advanced LIGO data analysis, Classical Quantum Gravity
33, 125025 (2016).

[53] T. D. Knowles, C. Devine, D. A. Buch, S. A. Bilgili, T. R.
Adams, Z. B. Etienne, and S. T. Mcwilliams, Improving
performance of SEOBNRv3 by ∼300x, Classical Quantum
Gravity 35, 155003 (2018).

[54] B. Gadre, M. Pürrer, S. E. Field, S. Ossokine, and V.
Varma, A fully precessing higher-mode surrogate model of
effective-one-body waveforms, arXiv:2203.00381.

[55] S. Khan and R. Green, Gravitational-wave surrogate
models powered by artificial neural networks, Phys.
Rev. D 103, 064015 (2021).

[56] L. M. Thomas, G. Pratten, and P. Schmidt, Accelerating
multimodal gravitational waveforms from precessing com-
pact binaries with artificial neural networks, Phys. Rev. D
106, 104029 (2022).

[57] C. Cutler and E. E. Flanagan, Gravitational waves from
merging compact binaries: How accurately can one extract
the binary’s parameters from the inspiral waveform?, Phys.
Rev. D 49, 2658 (1994).

[58] E. Poisson and C. M. Will, Gravitational waves from
inspiraling compact binaries: Parameter estimation using

second post-Newtonian wave forms, Phys. Rev. D 52, 848
(1995).

[59] E. Baird, S. Fairhurst, M. Hannam, and P. Murphy,
Degeneracy between mass and spin in black-hole-binary
waveforms, Phys. Rev. D 87, 024035 (2013).

[60] B. Farr et al., Parameter estimation on gravitational waves
from neutron-star binaries with spinning components,
Astrophys. J. 825, 116 (2016).

[61] K. K. Y. Ng, S. Vitale, A. Zimmerman, K. Chatziioannou,
D. Gerosa, and C.-J. Haster, Gravitational-wave astrophys-
ics with effective-spin measurements: Asymmetries and
selection biases, Phys. Rev. D 98, 083007 (2018).

[62] S. Fairhurst, Source localization with an advanced gravi-
tational wave detector network, Classical Quantum Gravity
28, 105021 (2011).

[63] L. Wen and Y. Chen, Geometrical expression for the
angular resolution of a network of gravitational-wave
detectors, Phys. Rev. D 81, 082001 (2010).

[64] C. L. Rodriguez, B. Farr, W.M. Farr, and I. Mandel,
Inadequacies of the Fisher information matrix in
gravitational-wave parameter estimation, Phys. Rev. D
88, 084013 (2013).

[65] W. Zhao and L. Wen, Localization accuracy of compact
binary coalescences detected by the third-generation
gravitational-wave detectors and implication for cosmol-
ogy, Phys. Rev. D 97, 064031 (2018).

[66] M. Vallisneri, Use and abuse of the Fisher information
matrix in the assessment of gravitational-wave parameter-
estimation prospects, Phys. Rev. D 77, 042001 (2008).

[67] K. Grover, S. Fairhurst, B. F. Farr, I. Mandel, C.
Rodriguez, T. Sidery, and A. Vecchio, Comparison of
gravitational wave detector network sky localization ap-
proximations, Phys. Rev. D 89, 042004 (2014).

[68] C. Kalaghatgi, M. Hannam, and V. Raymond, Parameter
estimation with a spinning multimode waveform model,
Phys. Rev. D 101, 103004 (2020).

[69] C. Mills and S. Fairhurst, Measuring gravitational-wave
higher-order multipoles, Phys. Rev. D 103, 024042 (2021).

[70] S. Fairhurst, R. Green, C. Hoy, M. Hannam, and A. Muir,
Two-harmonic approximation for gravitational waveforms
from precessing binaries, Phys. Rev. D 102, 024055 (2020).

[71] S. Fairhurst, R. Green, M. Hannam, and C. Hoy, When will
we observe binary black holes precessing?, Phys. Rev. D
102, 041302 (2020).

[72] R. Green, C. Hoy, S. Fairhurst, M. Hannam, F. Pannarale,
and C. Thomas, Identifying when precession can be
measured in gravitational waveforms, Phys. Rev. D 103,
124023 (2021).

[73] G. Pratten, P. Schmidt, R. Buscicchio, and L. M. Thomas,
Measuring precession in asymmetric compact binaries,
Phys. Rev. Res. 2, 043096 (2020).

[74] N. V. Krishnendu and F. Ohme, Interplay of spin-
precession and higher harmonics in the parameter estima-
tion of binary black holes, Phys. Rev. D 105, 064012
(2022).

[75] M. L. Chan, C. Messenger, I. S. Heng, and M. Hendry,
Binary neutron star mergers and third generation detectors:
Localization and early warning, Phys. Rev. D 97, 123014
(2018).

FAIRHURST, HOY, GREEN, MILLS, and USMAN PHYS. REV. D 108, 082006 (2023)

082006-32

https://doi.org/10.1103/PhysRevD.102.064001
https://doi.org/10.1103/PhysRevD.102.064001
https://doi.org/10.1103/PhysRevD.102.064002
https://doi.org/10.1103/PhysRevD.103.104056
https://doi.org/10.1103/PhysRevD.103.124060
https://doi.org/10.1103/PhysRevD.103.124060
https://doi.org/10.1103/PhysRevD.105.084039
https://doi.org/10.1103/PhysRevD.105.084040
https://doi.org/10.1103/PhysRevD.105.084040
https://doi.org/10.1103/PhysRevD.104.124027
https://doi.org/10.1088/0264-9381/33/12/125025
https://doi.org/10.1088/0264-9381/33/12/125025
https://doi.org/10.1088/1361-6382/aacb8c
https://doi.org/10.1088/1361-6382/aacb8c
https://arXiv.org/abs/2203.00381
https://doi.org/10.1103/PhysRevD.103.064015
https://doi.org/10.1103/PhysRevD.103.064015
https://doi.org/10.1103/PhysRevD.106.104029
https://doi.org/10.1103/PhysRevD.106.104029
https://doi.org/10.1103/PhysRevD.49.2658
https://doi.org/10.1103/PhysRevD.49.2658
https://doi.org/10.1103/PhysRevD.52.848
https://doi.org/10.1103/PhysRevD.52.848
https://doi.org/10.1103/PhysRevD.87.024035
https://doi.org/10.3847/0004-637X/825/2/116
https://doi.org/10.1103/PhysRevD.98.083007
https://doi.org/10.1088/0264-9381/28/10/105021
https://doi.org/10.1088/0264-9381/28/10/105021
https://doi.org/10.1103/PhysRevD.81.082001
https://doi.org/10.1103/PhysRevD.88.084013
https://doi.org/10.1103/PhysRevD.88.084013
https://doi.org/10.1103/PhysRevD.97.064031
https://doi.org/10.1103/PhysRevD.77.042001
https://doi.org/10.1103/PhysRevD.89.042004
https://doi.org/10.1103/PhysRevD.101.103004
https://doi.org/10.1103/PhysRevD.103.024042
https://doi.org/10.1103/PhysRevD.102.024055
https://doi.org/10.1103/PhysRevD.102.041302
https://doi.org/10.1103/PhysRevD.102.041302
https://doi.org/10.1103/PhysRevD.103.124023
https://doi.org/10.1103/PhysRevD.103.124023
https://doi.org/10.1103/PhysRevResearch.2.043096
https://doi.org/10.1103/PhysRevD.105.064012
https://doi.org/10.1103/PhysRevD.105.064012
https://doi.org/10.1103/PhysRevD.97.123014
https://doi.org/10.1103/PhysRevD.97.123014


[76] K. S. Thorne, Multipole expansions of gravitational radi-
ation, Rev. Mod. Phys. 52, 299 (1980).

[77] L. E. Kidder, Using full information when computing
modes of post-Newtonian waveforms from inspiralling
compact binaries in circular orbit, Phys. Rev. D 77, 044016
(2008).

[78] D. Brown, S. Fairhurst, B. Krishnan, R. A. Mercer, R. K.
Kopparapu, L. Santamaria, and J. T. Whelan, Data formats
for numerical relativity waves, arXiv:0709.0093.

[79] T. A. Apostolatos, C. Cutler, G. J. Sussman, and K. S.
Thorne, Spin induced orbital precession and its modulation
of the gravitational wave forms from merging binaries,
Phys. Rev. D 49, 6274 (1994).

[80] A. Lundgren and R. O’Shaughnessy, Single-spin precess-
ing gravitational waveform in closed form, Phys. Rev. D
89, 044021 (2014).

[81] M. Boyle, R. Owen, and H. P. Pfeiffer, A geometric
approach to the precession of compact binaries, Phys.
Rev. D 84, 124011 (2011).

[82] C. McIsaac, C. Hoy, and I. Harry, A search technique to
observe precessing compact binary mergers in the ad-
vanced detector era, arXiv:2303.17364.

[83] B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown, and
J. D. E. Creighton, FINDCHIRP: An algorithm for detec-
tion of gravitational waves from inspiraling compact
binaries, Phys. Rev. D 85, 122006 (2012).

[84] L. Lindblom, B. J. Owen, and D. A. Brown, Model wave-
form accuracy standards for gravitational wave data
analysis, Phys. Rev. D 78, 124020 (2008).

[85] LIGO Scientific and Virgo Collaborations, Noise curves
for use in simulations pre-O4, https://dcc.ligo.org/LIGO-
T2200043/public (2022).

[86] B. F. Schutz, Networks of gravitational wave detectors and
three figures of merit, Classical Quantum Gravity 28,
125023 (2011).

[87] S. Klimenko, G. Vedovato, M. Drago, G. Mazzolo, G.
Mitselmakher, C. Pankow, G. Prodi, V. Re, F. Salemi, and
I. Yakushin, Localization of gravitational wave sources
with networks of advanced detectors, Phys. Rev. D 83,
102001 (2011).

[88] I. W. Harry and S. Fairhurst, A targeted coherent search for
gravitational waves from compact binary coalescences,
Phys. Rev. D 83, 084002 (2011).

[89] S. A. Usman, J. C. Mills, and S. Fairhurst, Constraining the
inclinations of binary mergers from gravitational-wave
observations, Astrophys. J. 877, 82 (2019).

[90] V. Tiwari, C. Hoy, S. Fairhurst, and D. MacLeod, VAR-
AHA: A fast non-Markovian sampler for estimating
gravitational-wave posteriors, Phys. Rev. D 108, 023001
(2023).

[91] C. Cutler and E. E. Flanagan, Gravitational waves from
merging compact binaries: How accurately can one extract
the binary’s parameters from the inspiral wave form?,
Phys. Rev. D 49, 2658 (1994).

[92] C. Hanna et al., Fast evaluation of multidetector consis-
tency for real-time gravitational wave searches, Phys. Rev.
D 101, 022003 (2020).

[93] L. Blanchet, Gravitational radiation from post-Newtonian
sources and inspiralling compact binaries, Living Rev.
Relativity 9, 4 (2006).

[94] J. Healy and C. O. Lousto, Hangup effect in unequal mass
binary black hole mergers and further studies of their
gravitational radiation and remnant properties, Phys. Rev.
D 97, 084002 (2018).

[95] S. Fairhurst, Triangulation of gravitational wave sources
with a network of detectors,NewJ. Phys.11, 123006 (2009).

[96] L. P. Singer and L. R. Price, Rapid Bayesian position
reconstruction for gravitational-wave transients, Phys.
Rev. D 93, 024013 (2016).

[97] A. H. Nitz, T. Dent, T. Dal Canton, S. Fairhurst, and D. A.
Brown, Detecting binary compact-object mergers with
gravitational waves: Understanding and Improving the
sensitivity of the PyCBC search, Astrophys. J. 849, 118
(2017).

[98] S. Fairhurst, Localization of transient gravitational wave
sources: Beyond triangulation, Classical Quantum Gravity
35, 105002 (2018).

[99] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), GW170817: Observation of Gravitational Waves
from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119,
161101 (2017).

[100] C. Hoy, S. Fairhurst, M. Hannam, and V. Tiwari, Under-
standing how fast black holes spin by analyzing data from
the second gravitational-wave catalogue, Astrophys. J.
928, 75 (2022).

[101] J. Roulet, S. Olsen, J. Mushkin, T. Islam, T. Venumadhav,
B. Zackay, and M. Zaldarriaga, Removing degeneracy and
multimodality in gravitational wave source parameters,
Phys. Rev. D 106, 123015 (2022).

[102] S. Fairhurst, C. Hoy, R. Green, C. Mills, and S. A. Usman,
https://stephen-fairhurst.docs.ligo.org/simple-pe/, MIT li-
cense (2023).

[103] S. Fairhurst, C. Hoy, R. Green, C. Mills, and S. A. Usman,
https://git.ligo.org/stephen-fairhurst/simple-pe, MIT li-
cense (2023).

[104] P. Virtanen et al. (SciPy 1.0 Contributors), SciPy 1.0:
Fundamental algorithms for scientific computing in Python,
Nat. Methods 17, 261 (2020).

[105] T. Dal Canton, A. H. Nitz, B. Gadre, G. S. Cabourn Davies,
V. Villa-Ortega, T. Dent, I. Harry, and L. Xiao, Real-time
search for compact binary mergers in Advanced LIGO and
Virgo’s third observing run using PyCBC live, Astrophys. J.
923, 254 (2021).

[106] F. Ohme, A. B. Nielsen, D. Keppel, and A. Lundgren,
Statistical and systematic errors for gravitational-wave
inspiral signals: A principal component analysis, Phys.
Rev. D 88, 042002 (2013).

[107] B. Farr, E. Ochsner, W. M. Farr, and R. O’Shaughnessy, A
more effective coordinate system for parameter estimation
of precessing compact binaries from gravitational waves,
Phys. Rev. D 90, 024018 (2014).

[108] B. J. Owen, Search templates for gravitational waves from
inspiraling binaries: Choice of template spacing, Phys.
Rev. D 53, 6749 (1996).

[109] B. J. Owen and B. S. Sathyaprakash, Matched filtering of
gravitational waves from inspiraling compact binaries:
Computational cost and template placement, Phys. Rev.
D 60, 022002 (1999).

[110] H.-S. Cho, E. Ochsner, R. O’Shaughnessy, C. Kim, and
C.-H. Lee, Gravitational waves from black hole-neutron

SIMPLE PARAMETER ESTIMATION USING OBSERVABLE … PHYS. REV. D 108, 082006 (2023)

082006-33

https://doi.org/10.1103/RevModPhys.52.299
https://doi.org/10.1103/PhysRevD.77.044016
https://doi.org/10.1103/PhysRevD.77.044016
https://arXiv.org/abs/0709.0093
https://doi.org/10.1103/PhysRevD.49.6274
https://doi.org/10.1103/PhysRevD.89.044021
https://doi.org/10.1103/PhysRevD.89.044021
https://doi.org/10.1103/PhysRevD.84.124011
https://doi.org/10.1103/PhysRevD.84.124011
https://arXiv.org/abs/2303.17364
https://doi.org/10.1103/PhysRevD.85.122006
https://doi.org/10.1103/PhysRevD.78.124020
https://dcc.ligo.org/LIGO-T2200043/public
https://dcc.ligo.org/LIGO-T2200043/public
https://dcc.ligo.org/LIGO-T2200043/public
https://dcc.ligo.org/LIGO-T2200043/public
https://doi.org/10.1088/0264-9381/28/12/125023
https://doi.org/10.1088/0264-9381/28/12/125023
https://doi.org/10.1103/PhysRevD.83.102001
https://doi.org/10.1103/PhysRevD.83.102001
https://doi.org/10.1103/PhysRevD.83.084002
https://doi.org/10.3847/1538-4357/ab0b3e
https://doi.org/10.1103/PhysRevD.108.023001
https://doi.org/10.1103/PhysRevD.108.023001
https://doi.org/10.1103/PhysRevD.49.2658
https://doi.org/10.1103/PhysRevD.101.022003
https://doi.org/10.1103/PhysRevD.101.022003
https://doi.org/10.12942/lrr-2006-4
https://doi.org/10.12942/lrr-2006-4
https://doi.org/10.1103/PhysRevD.97.084002
https://doi.org/10.1103/PhysRevD.97.084002
https://doi.org/10.1088/1367-2630/11/12/123006
https://doi.org/10.1103/PhysRevD.93.024013
https://doi.org/10.1103/PhysRevD.93.024013
https://doi.org/10.3847/1538-4357/aa8f50
https://doi.org/10.3847/1538-4357/aa8f50
https://doi.org/10.1088/1361-6382/aab675
https://doi.org/10.1088/1361-6382/aab675
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.3847/1538-4357/ac54a3
https://doi.org/10.3847/1538-4357/ac54a3
https://doi.org/10.1103/PhysRevD.106.123015
https://stephen-fairhurst.docs.ligo.org/simple-pe/
https://stephen-fairhurst.docs.ligo.org/simple-pe/
https://stephen-fairhurst.docs.ligo.org/simple-pe/
https://stephen-fairhurst.docs.ligo.org/simple-pe/
https://git.ligo.org/stephen-fairhurst/simple-pe
https://git.ligo.org/stephen-fairhurst/simple-pe
https://git.ligo.org/stephen-fairhurst/simple-pe
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.3847/1538-4357/ac2f9a
https://doi.org/10.3847/1538-4357/ac2f9a
https://doi.org/10.1103/PhysRevD.88.042002
https://doi.org/10.1103/PhysRevD.88.042002
https://doi.org/10.1103/PhysRevD.90.024018
https://doi.org/10.1103/PhysRevD.53.6749
https://doi.org/10.1103/PhysRevD.53.6749
https://doi.org/10.1103/PhysRevD.60.022002
https://doi.org/10.1103/PhysRevD.60.022002


star binaries: Effective Fisher matrices and parameter
estimation using higher harmonics, Phys. Rev. D 87,
024004 (2013).

[111] R. Abbott et al. (LIGO Scientific, VIRGO, and KAGRA
Collaborations), The Population of Merging Compact
Binaries Inferred Using Gravitational Waves Through
GWTC-3, Phys. Rev. X 13, 011048 (2023).

[112] R. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), GWTC-2: Compact Binary Coalescences Observed
by LIGO and Virgo During the First Half of the Third
Observing Run, Phys. Rev. X 11, 021053 (2021).

[113] LIGO Scientific Collaboration and Virgo Collaboration,
GWTC-2.1: Deep extended catalog of compact binary
coalescences observed by LIGO and Virgo during the first
half of the third observing run—parameter estimation data
release, Zenodo, 10.5281/zenodo.5117703 (2021).

[114] T. Callister, A thesaurus for common priors in
gravitational-wave astronomy, arXiv:2104.09508.

[115] J. S. Speagle, DYNESTY: A dynamic nested sampling pack-
age for estimating Bayesian posteriors and evidences,
Mon. Not. R. Astron. Soc. 493, 3132 (2020).

[116] S. Vitale, C.-J. Haster, L. Sun, B. Farr, E. Goetz, J. Kissel,
and C. Cahillane, Physical approach to the marginalization
of LIGO calibration uncertainties, Phys. Rev. D 103,
063016 (2021).

[117] B. D. Metzger, Kilonovae, Living Rev. Relativity 20, 3
(2017).

[118] R. Abbott et al. (LIGO Scientific and VIRGO Collabora-
tions), Search for lensing signatures in the gravitational-
wave observations from the first half of LIGO–Virgo’s
third observing run, Astrophys. J. 923, 14 (2021).

[119] E. Payne, C. Talbot, and E. Thrane, Higher order
gravitational-wave modes with likelihood reweighting,
Phys. Rev. D 100, 123017 (2019).

[120] S. De, D. Finstad, J. M. Lattimer, D. A. Brown, E. Berger,
and C. M. Biwer, Tidal Deformabilities and Radii of
Neutron Stars from the Observation of GW170817, Phys.
Rev. Lett. 121, 091102 (2018); 121, 259902(E) (2018).

[121] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), GW170817: Measurements of Neutron Star Radii
and Equation of State, Phys. Rev. Lett. 121, 161101 (2018).

[122] P. C. Peters, Gravitational radiation and the motion of two
point masses, Phys. Rev. 136, B1224 (1964).

[123] V. Gayathri, J. Healy, J. Lange, B. O’Brien, M.
Szczepańczyk, I. Bartos, M. Campanelli, S. Klimenko,
C. O. Lousto, and R. O’Shaughnessy, Eccentricity estimate
for black hole mergers with numerical relativity simula-
tions, Nat. Astron. 6, 344 (2022).

[124] M. Boyle, L. E. Kidder, S. Ossokine, and H. P. Pfeiffer,
Gravitational-wave modes from precessing black-hole
binaries, arXiv:1409.4431.

[125] A. Ramos-Buades, P. Schmidt, G. Pratten, and S. Husa,
Validity of common modeling approximations for precess-
ing binary black holes with higher-order modes, Phys. Rev.
D 101, 103014 (2020).

[126] G. Pratten, P. Schmidt, and N. Williams, Impact of
Dynamical Tides on the Reconstruction of the Neutron
Star Equation of State, Phys. Rev. Lett. 129, 081102
(2022).

[127] D. Finstad, L. V. White, and D. A. Brown, Prospects for a
precise equation of state measurement from Advanced
LIGO and Cosmic Explorer, arXiv:2211.01396.

[128] A. M. Knee, I. M. Romero-Shaw, P. D. Lasky, J. McIver,
and E. Thrane, A Rosetta Stone for eccentric gravitational
waveform models, Astrophys. J. 936, 172 (2022).

[129] P. Kolitsidou, J. Thompson, and M. Hannam, Systematic
biases is binary-black-hole parameter measurements due to
the neglect of antisymmetric multipoles (to be published).

[130] T. Damour, A. Gopakumar, and B. R. Iyer, Phasing of
gravitational waves from inspiralling eccentric binaries,
Phys. Rev. D 70, 064028 (2004).

[131] C. R. Harris et al., Array programming with NumPy, Nature
(London) 585, 357 (2020).

[132] A. Nitz, I. Harry, D. Brown, C. M. Biwer, J. Willis,
T. D. Canton, C. Capano, L. Pekowsky, T. Dent, A. R.
Williamson et al., gwastro/pycbc: PyCBC release v1.15.2,
Zenodo, 10.5281/zenodo.3596447 (2019).

[133] C. Hoy and V. Raymond, PESummary: The code agnostic
parameter estimation summary page builder, SoftwareX
15, 100765 (2021).

[134] J. D. Hunter, Matplotlib: A 2D graphics environment,
Comput. Sci. Eng. 9, 90 (2007).

FAIRHURST, HOY, GREEN, MILLS, and USMAN PHYS. REV. D 108, 082006 (2023)

082006-34

https://doi.org/10.1103/PhysRevD.87.024004
https://doi.org/10.1103/PhysRevD.87.024004
https://doi.org/10.1103/PhysRevX.13.011048
https://doi.org/10.1103/PhysRevX.11.021053
https://doi.org/10.5281/zenodo.5117703
https://arXiv.org/abs/2104.09508
https://doi.org/10.1093/mnras/staa278
https://doi.org/10.1103/PhysRevD.103.063016
https://doi.org/10.1103/PhysRevD.103.063016
https://doi.org/10.1007/s41114-017-0006-z
https://doi.org/10.1007/s41114-017-0006-z
https://doi.org/10.3847/1538-4357/ac23db
https://doi.org/10.1103/PhysRevD.100.123017
https://doi.org/10.1103/PhysRevLett.121.091102
https://doi.org/10.1103/PhysRevLett.121.091102
https://doi.org/10.1103/PhysRevLett.121.259902
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1103/PhysRev.136.B1224
https://doi.org/10.1038/s41550-021-01568-w
https://arXiv.org/abs/1409.4431
https://doi.org/10.1103/PhysRevD.101.103014
https://doi.org/10.1103/PhysRevD.101.103014
https://doi.org/10.1103/PhysRevLett.129.081102
https://doi.org/10.1103/PhysRevLett.129.081102
https://arXiv.org/abs/2211.01396
https://doi.org/10.3847/1538-4357/ac8b02
https://doi.org/10.1103/PhysRevD.70.064028
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5281/zenodo.3596447
https://doi.org/10.1016/j.softx.2021.100765
https://doi.org/10.1016/j.softx.2021.100765
https://doi.org/10.1109/MCSE.2007.55

