PHYSICAL REVIEW D 108, 023001 (2023)

Fast non-Markovian sampler for estimating gravitational-wave posteriors
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This article introduces VARAHA, an open-source, fast, non-Markovian sampler for estimating
gravitational-wave posteriors. VARAHA differs from existing nested sampling algorithms by gradually
discarding regions of low likelihood, rather than gradually sampling regions of high likelihood.
This alternative mindset enables VARAHA to freely draw samples from anywhere within the high-likelihood
region of the parameter space, allowing for analyses to complete in significantly fewer cycles. This means
that VARAHA can significantly reduce both the wall and CPU time of all analyses. VARAHA offers many
benefits, particularly for gravitational-wave astronomy where Bayesian inference can take many days, if
not weeks, to complete. For instance, VARAHA can be used to estimate accurate sky locations, astrophysical
probabilities and source classifications within minutes, which is particularly useful for multimessenger
follow-up of binary neutron star observations; VARAHA localizes GW170817 ~30 times faster than
LALInference. Although only aligned-spin, dominant multipole waveform models can be used for
gravitational-wave analyses, it has the potential to include additional physics. We envision VARAHA
being used for gravitational-wave studies, particularly estimating parameters using expensive waveform
models, analyzing subthreshold gravitational-wave candidates, generating simulated data for population

studies, and rapid posterior estimation for binary neutron star mergers.
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I. INTRODUCTION

Compact binary coalescences (CBCs)—binary black
holes (BBHs), binary neutron stars (BNSs) and neutron star
(NS)-black hole (BH) binaries—are likely the only gravi-
tational wave (GW) sources observed by the network of
ground-based GW observatories so far [1-4]; although other
sources have also been suggested including, for example,
cosmic strings [5] and vector boson-star mergers [6,7]. The
well-understood GW signal morphology produced by CBCs,
see, e.g., [8-16], and references therein, facilitates the
estimation of binary parameters through parameter estima-
tion (PE), see, e.g., [17,18]. These parameter estimates are
needed to, e.g., infer the properties of the source population,
see, e.g., [19-26], enhance our understanding of the equation
of the state of neutron stars, or probe the cosmological history
of the universe [27-29].

These estimated parameters are broadly categorized as
(a) intrinsic parameters: parameters that are directly respon-
sible for the orbital evolution of the binary, such as masses,
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spins, tidal parameters, eccentricity, periastron distance, etc.,
and (b) extrinsic parameters: parameters that are observer
dependent, namely, luminosity distance, binary’s orientation
from the line of sight, sky location, coalescence phase and
coalescence time of the GW signal. For binaries moving on a
quasicircular orbit with spins aligned with the orbital angular
momentum, the extrinsic parameters do not impact the orbital
evolution of a binary and, consequently, can only impart an
overall shift to the amplitude or phase evolution of a signal.
However, for binaries moving on an eccentric orbit, or with
spins misaligned from the orbital angular momentum, the
GW signal morphology depends on the extrinsic parameters
[30,31]. Although the number of intrinsic parameters may
change depending on the physics of the problem, the number
of extrinsic parameters remains fixed at 7 [32]. The basics of
PE have been thoroughly discussed, and we cite some of the
early works [33,34].

Multiple methods have been developed to perform PE on
GW signals. The minute-scale analysis, BAYESTAR [35],
focuses on the rapid localization of GW signals by
estimating only the extrinsic parameters of the signal. It
achieves this by keeping the intrinsic parameters fixed to
the estimate provided by the GW search analysis that first
identified the signal. The packages that perform PE of both
the extrinsic and intrinsic (full) parameters through sto-
chastic sampling methods include LALInference, which was
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previously the go-to analysis for GW PE [36], PyCBC
Inference [37] and Bilby [38—41], which offer greater flexi-
bility and modularity. These analyses often employ nested
[42] or Markov-chain Monte Carlo (MCMC) sampling [43]
to obtain estimates for the binaries parameters. The pack-
ages RapidPE and RIFT use a non-Markovian approach to
create an embarrassingly parallel infrastructure and provide
comparatively faster processing times. They can also
provide the marginal likelihood for straightforward model
selection [44-46] (although see Refs. [47,48] for other
model selection algorithms). Alternatively, methods to
approximately estimate the binaries parameters have also
been developed [49], including recent advancements with
utilizing machine-learning techniques [50-56].

Typically, stochastic sampling analyses that perform full
PE can take hundreds or thousands of CPU hours of
processing time [57,58]. This high computational require-
ment is not sustainable, as the detection rate of GW signals
is expected to increase [59] due to the continued improve-
ment in the sensitivity of the GW detectors. Fast, minute-
scale PE is therefore crucial, especially for low-latency
analyses where accurate skymaps and source classification
probabilities are needed for timely follow-up by other
multimessenger facilities.

Attempts at improving computation time have primarily
focused on speeding up waveform generation and compu-
tation of the likelihood function [48,60—64], or by utilizing
machine learning techniques [50-56]. However, a signifi-
cant improvement in computation time can also be
achieved by efficiently populating the parameter space.
In this paper, we introduce VARAHA, an alternative sam-
pling technique that iteratively discards regions of low
likelihood, and converges to the region of the parameter
space that contains high posterior probability density (i.e.
the posterior mass). We achieve significant gains in speed
by introducing (a) a non-Markovian method that performs a
comparable number of computational operations, resulting
in a similar number of effective samples, as nested
sampling but in significantly fewer iterations, and (b) split-
ting one large-dimensional sampling problem into two
small-dimensional problems, where it samples the extrinsic
parameters first and uses the acquired information to also
sample the intrinsic parameters. These advantages result in
significantly reduced processing times arising from greatly
improved process parallelization and array vectorization in
the analysis.

VARAHA can perform GW PE in a matter of a few
minutes. Currently, it is limited to using waveform models
that (a) assume the spins are aligned with the orbital angular
momentum, meaning that the binary does not precess [30],
and (b) restrict attention to only the # = 2 gravitational-
wave multipole, meaning that higher multipoles are
neglected. Nevertheless, VARAHA can meaningfully be used
to perform fast PE to localize and classify a source for
electromagnetic follow-up, estimate parameters for a large

number of subthreshold GW candidates, and generate PE
for simulated populations. We intend to make future
extensions that will extend its applicability for the estima-
tion of in-plane spins, eccentricity, and tidal deformability.
Future extensions will also include uncertainties arising
from the calibration of detector data, and fast methods for
waveform generation and matched filtering, which cur-
rently consumes a significant portion of the computation.

In Sec. II we describe the basics of the analysis and the
factors responsible for the faster processing time. We
describe its application to the parameter estimation of
GWs in Sec. III. In Sec. IV, we present PE for the individual
observations GW 151226 [65] and GW 170817 [66], as well
as a population level validation using hundreds of simu-
lated signals. We also discuss the computational require-
ments of VARAHA as well as its scalability with the number
of CPUs.

II. METHOD

PE is the process of obtaining the probability distribution
of parameters, €, for a model, m, which is believed to
describe the observed data, d. Given d, PE generates an
estimate for the posterior probability density function
(PDF), p(0|d, m), through Bayes’ theorem,

p(0|d,m) x L(d|@, m)n(0|m). (1)

The likelihood, £(d|@, m), is a function of the observed
data and model parameters, and 7z(@|m) is the prior
probability for the model parameters. The posterior dis-
tribution can alternatively be described as a weighted prior,
with weights given by

wig) = 21901, @
max
where L., is the maximum likelihood.'

Typically, obtaining a closed-form expression for the
posterior probability across the parameter space € is not
possible. This means that we are not able to trivially evaluate
Eq. (1), even if a functional form for the prior distribution is
given. It is therefore common to draw samples from the
unknown posterior distribution through stochastic sampling
techniques, such as nested sampling [42] or Markov-chain
Monte Carlo [43]. For the case of nested sampling, a series
of contours of increasing likelihood converge, through an
iterative process, to the region of high likelihood. Practically,
a nested sampling routine draws a series of live points and,
at each cycle, it stores the live point with the lowest
likelihood, and replaces it with a new point drawn randomly
from the prior; the new point is accepted through the
Matropolis-Hasting’s algorithm [67] conditioned on an

'Ordinarily the weight is simply £(d|@, m). We use a slightly
modified definition to bind the maximum weight to be w < 1.
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increased likelihood. A new contour that encases the current
set of live points is generated, and eventually, the contours
converge to the regions of the highest likelihood. The stored
points, along with their weights, constitute the samples
drawn from the posterior distribution.

A drawback of nested sampling is that a few thousand live
points are evolved in series, meaning that sampling can take
thousands of cycles to complete. In addition, while the
recovered posterior distribution becomes more accurate as
the number of live points is increased, the number of cycles
needed to sample from the unknown posterior distribution
also increases (the number of cycles scales linearly with the
number of live points [68]). Dynamic nested sampling
[69,70] enables the number of live points to change through-
out the analysis. It has been shown that this can be optimized
for PE analyses, allowing for a reduction in run-time by a
factor of ~70 for relatively simple cases. This significant
improvement is possible when the region of high probability
is contained in a small region of the prior volume (as is
typically the case in high-dimensional problems) [69].

In this paper, we introduce an alternate sampling
technique that has a major advantage over nested sampling:
a significantly reduced wall and CPU time. Our sampler,
VARAHA, achieves this by (a) drawing thousands of points
from the relevant regions in the parameter space that
contain the posterior probability mass and (b) intelligently
defining a likelihood threshold, below which defines a
region of the parameter space that can be safely ignored.
This approach means that although VARAHA evaluates the
likelihood a comparable number of times as nested sam-
pling, it computes the likelihood for a large number of
points at once, meaning that the computation can be
efficiently vectorized and parallelized over multiple
CPUs for enhanced performance. This is in contrast to
computing the likelihood for a relatively low number of
points at once, as is done in nested sampling. Since
evaluating the likelihood is often the most computationally
expensive element of PE, VARAHA is able to perform PE in
a fraction of the wall and CPU time compared to other
conventional samplers.

VARAHA iteratively discards regions of the parameter
space that do not contribute to the posterior distribution and
restricts attention to the remaining regions of high like-
lihood through a series of cycles. Subsequent cycles draw
points from within only the regions of high likelihood
identified in the previous cycle. Once the final volume has
been found, the points contained within the final volume
are returned, along with weights given by Eq. (2). We
pictorially show VARAHA’s algorithm in the top row of
panels in Fig. 1.

VARAHA defines each volume to contain likelihoods
greater than £,. This volume is defined as

V(L) = / OIL(d|0, m) — £,]d0 3)

and the posterior probability mass contained within the
volume is

P(L,) = /@[ﬁ(dw,m) — L, ]p0|d,m)do. (4)

Here ©[x] is the Heaviside step function, ®[x] = 1 forx > 0
and 0 otherwise. As £, — —oo, the probability tends to 1
and the volume becomes the full prior volume. However, by
choosing £, for which P(L,) is close to, but slightly
smaller than, unity the volume can be significantly smaller
than the full prior volume. VARAHA defines £, such that the
corresponding volume V(L) contains a probability Py,.
This likelihood value is hereafter referred to as the like-
lihood threshold. By identifying this region and sampling
only from it, VARAHA can very efficiently generate samples.

The challenge, then, is to efficiently find the volume that
contains a probability Py, referred to as the live volume.
Since it is generally not possible to evaluate Eq. (4)
analytically to find the appropriate likelihood threshold,
other than for simple toy examples, VARAHA computes it
numerically and iteratively identifies both the appropriate
threshold and the corresponding region of parameter space.

At the beginning of the first cycle, shown in the top left
panel of Fig. 1, the live volume is simply the full prior
volume. A large number of live points, Ny = Ny, are
randomly generated within the live volume (shown in green
in the figure), and at each point, the likelihood is evaluated.
We can use these points to perform a Monte Carlo integral
of Eq. (4) to obtain the required likelihood threshold Ly,
that contains the desired Pg,. However, particularly for
sharply peaked posteriors in large parameter spaces, it is
likely that only a small number of points will contribute
significantly to the Monte Carlo integral. Therefore, in
addition, we also calculate the likelihood threshold Ly
such that a minimum number of points, N;,, lie above the
threshold. If Ly, < Ly, we have successfully identified
the region which contains Py,. However, if Ly < Ly,
we have not sampled the posterior distribution sufficiently
densely. In this case, we exclude the regions of parameter
space with likelihood below Ly  and repeat the process.

Selecting N,,;, points with the largest likelihoods iden-
tifies a region of high likelihood in the parameter space,
which is shown by the orange dots in the top row of
panels in Fig. 1. The volume of this region is given by
Eq. (3) and is numerically evaluated through the
Monte Carlo integration,

(5)

where V, is the full prior volume. The uncertainty in the
Monte Carlo integration is directly related to the Poisson
fluctuations in N ;,:
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FIG. 1.

Top row: a pictorial representation of VARAHA’s sampling algorithm for a two-dimensional Gaussian likelihood distribution

with mean [0.5, 0.5] and covariance [0.5, 0.5]. The left, middle and right panels show cycle 1, cycle 2 and cycle 3, respectively. The
purple dots show the points randomly drawn from within the multidimensional grid and the green dots show the points that have a
likelihood larger than the likelihood threshold from the previous cycle (step 1). The orange dots show the points with a likelihood larger
than the likelihood threshold calculated at the current cycle (step 2). The red line shows the contour of fixed likelihood equal to the
likelihood threshold, representing the live volume, and the black lines show the multidimensional grid that surrounds the live volume
(step 5). Bottom row: a pictorial representation of a nested sampling algorithm for the same two-dimensional Gaussian likelihood
distribution; for this case, we use the DYNESTY [70] nested sampler. The left, middle and right panels show cycle 1, cycle 3000 and cycle
4200 respectively, and the gray dots show the nested live points.

_ VN 1%
OV =~ oV = VON—mm = . (6)

pts N min

The set of N, points provide an estimate of the volume
and discretely constitute the region of the parameter space
enclosed by this volume. With N, chosen to be a few
thousand, the error in the estimated volume is the order of a
few percent.
The procedure outlined above presents two situations:
(i) The posterior mass enclosed by Ly is larger than
Py,..—Starting from the full prior volume, the live
volume reduces to the volume enclosed by Ly
(bounded by the red contour in Fig. 1). The
fluctuation in Ly  , due to sampling with a finite
number of points, will have a negligible impact on
the posterior mass contained by it. The largest
fluctuation occurs for a uniform distribution and
is equal to the Monte Carlo (MC) errors of a few
percent in the volume. However, in general, the
likelihood distribution is expected to decay from one
or several maxima.

(ii) The posterior mass enclosed by Ly, is smaller than
P..—This occurs when there are a large number of
points with non-negligible weights, n > N,;,, and a
threshold smaller than Ly is required to enclose
the posterior mass, Py,. To estimate n, VARAHA
calculates the empirical distribution function (EDF),
F(L,), which simply gives the fraction of points
with likelihood less than E*.z The final likelihood
threshold is then calculated as Ly, := £~ (Py,).

VARAHA evolves the first situation (i) using multiple cycles

of MC integration until it reaches the second situation (ii).
Each cycle performs the integration using live volumes,
which themselves decrease as cycles progress. A generalized
form of Eq. (3) for this progression is given by

*We really wish to calculate the cumulative distribution
function (CDF). However, since we only have discrete samples,
the true CDF is unknown. We, therefore, approximate the CDF by
computing the EDF and taking a conservative limit to ensure that
we enclose at least the desired probability. A bound on the
difference between the EDF and CDF is given, e.g., by using the
Dvoretzky-Kiefer-Wolfowitz-Massart inequality [71].
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(7)

For the second and consecutive cycles, VARAHA samples
from the live volume and ignores the remaining parameter
space. Since we only store samples contained within the
volume and not the volume itself, the structure of the live
volume is not known. VARAHA navigates this by (a) gen-
erating a multidimensional grid covering the full parameter
space, and (b) selecting those hypercubes that contain at
least one of the live points from the previous cycle. Once
the relevant hypercubes have been identified, the live
volume has been reconstructed. N points are now
uniformly scattered within the reconstructed live volume
(the purple points in the top middle panel of Fig. 1). The
likelihood of all the points is calculated and only those with
a likelihood above the threshold are kept (the green points
in the top middle panel of Fig. 1). Since the same number of
points are now scattered within a much smaller volume,
VARAHA is able to increase the number of live points
contained within the live volume and thus setting the stage
to perform the next MC integration.

It is important to choose an appropriate spacing for the
multidimensional grid. If the grid spacing is too large, the
reconstructed live volume is much larger than the value
estimated in Eq. (5). If the grid spacing is too small, the
reconstructed live volume will not include relevant regions of
the parameter space that did not get sampled due to random
fluctuations in the location of points. VARAHA constructs the
multidimensional grid over the full parameter space, requir-
ing that the volume of each hypercube in the grid is equal to
the error in the estimated volume 5V. We motivate this choice
as follows: the chosen hypercube volume is /N, times
larger than the average volume of V/N,,, approximately
occupied by each live point. This choice ensures that the
volume will have a maximum uncertainty of SV if this
uncertainty arises due to Poisson fluctuation near a single live
point. In this case, the multidimensional grid is expected to
enclose most of V even though constructed using information
gained from the MC volume V. A uniform grid spacing in all
dimensions, therefore, leads to the number of bins per
dimension: Ny, = (V/6V)(/Nan) | where Ny, is the
dimensionality of the parameter space.”

The iterative process described above gradually increases
the value of the likelihood threshold and discards the
uninteresting regions of the parameter space. However, a
very small amount of posterior mass is also lost in the
process. A new likelihood threshold approximately
increases the discarded posterior mass by an amount,

*In some problems, there is significantly more structure in
some dimensions of parameter space than others. Then, it is
desirable to employ a grid with different numbers of bins in each
dimension. The challenge, however, is to derive requirements for
the relative number of bins in each dimension.

2w

where j identifies the samples that are enclosed by the
live volume in the current cycle, and ﬁNmm is the new
likelihood threshold calculated for the next cycle. This
corresponds to the posterior mass contained between two
concentric circles in Fig. 1. In practice, when deciding if
Ly, > Ly, by calculating the EDF, we require the
discarded posterior mass not to accumulate to more than
1 — Pg,. This implicitly ensures that the posterior mass
enclosed by the live volume is at least Py,. VARAHA does
not evolve the likelihood threshold any further if the
discarded posterior mass becomes very close to 1 — Py,.
Even though the likelihood threshold no longer evolves, the
number of bins used to create the multidimensional grid
continues to increase as the number of samples inside the
live volume also increases.

Cycles are terminated once the desired accuracy is
obtained. The stopping condition could be determined based
on a fixed number of weighted samples or a fixed number of
cycles. At the end of the analysis, VARAHA returns a set of
weighted samples, where the weight of each sample is
determined by Eq. (2). All the samples have a likelihood
value greater than the final value of Ly,. Samplers that
employ MCMC methods typically return a set of unweighted
samples, with sample weights equal to 1. It is possible to
generate these samples from the weighted samples by
performing rejection sampling on the weighted samples
(see the Appendix for details). The final set of unweighted
samples has a sample size that is approximately ), w; [72].
However, since neg > > ; w; [73], with equality only if all
the weights are equal to 1, the rejection sampling process
leads to a reduction in the information contained in the
samples.

1 ul 5

A. Implementation

VARAHA implements this algorithm as follows:

(1) Sprinkle points within the multidimensional grid.—
(@) Ny points are uniformly drawn from the
reconstructed live volume and the likelihood for
all points is calculated. (b) Live points with a
likelihood larger than the threshold from the pre-
vious cycle are then identified. If this is the first
cycle, Ny points are uniformly distributed within
the entire prior volume and all points are kept,
meaning that N = Ny, (this is equivalent to
setting the likelihood threshold from the previous
cycle to negative infinity).

(2) Calculate the likelihood threshold.—The likelihood
that accumulates no more than 1— Py, of the
truncated posterior mass up to the current cycle,
L 18 calculated using the Ny, live points that are
enclosed by the live volume. A second threshold,
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Ly, ., which ensures that Ny, points lie above the
threshold, is also calculated. The final likelihood
threshold is chosen to be the minimum of these two
values.

(3) Calculate the volume of the live volume.—The
volume and uncertainty in the live volume is
calculated through MC integration; see Eq. (5).

(4) Calculate effective sample size.—All points from the
current or previous cycles that cross the current
likelihood threshold are stored as weighted samples.
The number of effective samples is calculated using

w;)?
Neff = % (9)

where w; is the weight of each sample, defined in
Eq. (2) [74].

(5) Reconstruct the live volume.—A multidimensional
grid is created that spans the whole parameter space
and hypercubes that register at least one live point
are kept. The resulting hypercubes reconstruct the
live volume.

(6) Repeat—Steps 1 to 5 are repeated until a stopping
criterion is reached. Example stopping criteria in-
clude terminating once a specific number of effective
samples have been obtained or terminating after a
specific number of cycles have elapsed. The final
output is then a set of weighted samples, where the
weights are given by the likelihood evaluated at the
sample, normalized by the maximum likelihood;
see Eq. (2).

B. Sampler settings

The number of samples drawn from the uniform dis-
tribution N, the posterior mass required to be contained
within the live volume, Py, and the minimum number of
points to retain, N,,,, are the sampler parameters that the
user is free to specify. In our testing, we found that the
choice of N has only a small effect on the recovered
posterior probability. Although reducing N, decreases
the number of computations in each cycle, it increases the
number of cycles needed to obtain the required effective
number of samples. We find that choosing N to be in the
range 100,000-1,000,000 provides a good compromise
between these. Similarly, N i, sets the minimum fractional
error on the estimated MC volume. In our testing, we found
that as the dimensionality of the problem increases, N,
should increase correspondingly. Depending on the com-
plexity, N, within the range of 1000-10,000 is adequate
for most distributions with dimensionality between 2 and 8.

As VARAHA only keeps points that cross a specific
likelihood threshold, defined through Py,., we deliberately
discard part of the parameter space with low likelihood
during each cycle. This can have an impact on the
recovered posterior distribution if Py, is too small.

In contrast, if the threshold is chosen to be too large, then
we exclude a limited region of parameter space, which
leads to a significant increase in analysis time for limited
benefit. In our testing, we found that Py, = 0.999 is
sufficient for most cases.

C. Comparison with nested sampling

In Fig. 1, we compare the convergence of VARAHA (top
panels) and a nested sampling algorithm (DYNESTY" [70],
bottom panels) for a simple two-dimensional Gaussian
likelihood distribution. We used the static version of
DYNESTY with default settings, but increased the number
of live points to 1000, as this is similar to the number of live
points used for gravitational-wave analyses, see, e.g.,
[39]. For this example, VARAHA used N, = 20,000,
Nmin = 1000 and Pthr =0.999.

As expected, VARAHA rapidly converges to the region of
high likelihood (within three cycles), while DYNESTY
requires significantly more cycles to constrain to a similar
region of the parameter space (~4200 cycles). The signifi-
cant reduction in the number of cycles of VARAHA,
compared to DYNESTY, is primarily caused by the likelihood
threshold: we see that in VARAHA’s first cycle, we constrain
the high likelihood region to within a circle of radius 5,
while DYNESTY takes ~3000 cycles to constrain to a
comparable region of the parameter space. VARAHA further
constrains the high likelihood region to within a circle of
radius 2.5 within three cycles, while DYNESTY takes
~4200 cycles to obtain a similar constraint. This culmi-
nates in a significantly reduced wall and CPU time.
VARAHA also obtains a larger number of effective samples,
with ngg ~ 6000 compared to n.g ~ 4000 for DYNESTY.

D. The evolution of the multidimensional grid

One of the key features of VARAHA is that it is able to
draw points from within the live volume without having to
know the structure. It achieves this by generating a
multidimensional grid that covers the full parameter space
and registering hypercubes that contain at least one point
with likelihood above the previous likelihood threshold. To
demonstrate this in practice, we analyze a complex two-
dimensional distribution and explicitly show how the
multidimensional grid is constructed and how it converges
to the region of high likelihood. The chosen distribution has
multiple disconnected regions of equal likelihood. While
this example is only two dimensional, the disconnected
peaks in likelihood can prove challenging to identify.
Since this distribution is analytically known, it provides
a good illustration of VARAHA. For this example, we used

*We use DYNESTY = 1.0.1, as this is the version in the
International Gravitational-Wave Observatory Network (IGWN)
Conda environment (https://computing.docs.ligo.org/conda/) at
the time of writing.

023001-6


https://computing.docs.ligo.org/conda/
https://computing.docs.ligo.org/conda/
https://computing.docs.ligo.org/conda/
https://computing.docs.ligo.org/conda/

FAST NON-MARKOVIAN SAMPLER FOR ESTIMATING ...

PHYS. REV. D 108, 023001 (2023)

7_
8_
6.
6! ol
4 4- I B
|
2} 3
Tr] ol oF
ol ]
1t +
2t 0

0 5 10 0

FIG. 2. Plot showing the evolution of the multidimensional grid that surrounds the live volume, when VARAHA samples from a
complex two-dimensional distribution with a constant density. The purple dots show the points randomly drawn from within the
multidimensional grid and the green dots show the points that have a likelihood larger than the likelihood threshold from the previous
cycle (step 1). The orange dots show the points with a likelihood larger than the likelihood threshold calculated at the current cycle (step
2) and the black lines show the multidimensional grid that surrounds the live volume (step 5). The left, middle and right panels show to
the first, third and fifth cycles, respectively. In the right panel, the red line shows the contour of fixed likelihood equal to the likelihood

threshold, representing the final live volume.
Npis = 20,000, Ny = 1000 and we terminated VARAHA
once five cycles have elapsed.

In Fig. 2 we show the evolution of the multidimensional
grid. We see that in the first cycle, VARAHA is able to
identify the rough location of the high-likelihood region
and construct a coarse multidimensional grid that surrounds
the entire volume. As VARAHA progresses, we see that the
number of hypercubes increases and the multidimensional
grid converges to the complex two-dimensional distribution
with gaps appearing between adjacent hypercubes where
there is little to no probability support. Unlike in Fig. 1, we
do not see any green dots beyond the first cycle. This is
because VARAHA rapidly identifies the high-likelihood
region (owing to a constant density throughout) in the
first cycle and maintains a constant likelihood threshold for
all subsequent cycles. This implies that all points that cross
the previously defined likelihood threshold (green dots) are
used as live points for the current cycle (orange dots).

E. Example: Bimodal multivariate
Gaussian distribution

Next, we showcase the full VARAHA sampling algorithm.
We chose to analyze a six-dimensional bimodal multivari-
ate Gaussian distribution and compare results with existing
nested and Markov-chain Monte Carlo samplers. We also
explicitly show how the likelihood threshold evolves as the
number of cycles increases. For this example, we termi-
nated VARAHA once 20,000 effective samples were col-
lected. During our sampling we used Py, = 0.999, N, =
400,000 and N,,;, = 1000.

We analyzed an asymmetric multivariate Gaussian dis-
tribution with each mode’s mean and covariance randomly
chosen: the mean of the first and second modes are randomly
chosen between [—1, 1] and [-5, —3], respectively, and we
use a covariance matrix that is obtained by applying an

inverse Wishart distribution [75] to a diagonal matrix with
elements randomly chosen between 1 and 2.

The output of VARAHA is shown in Table 1. The prior
volume spans from —20 to 20 in each dimension. As
VARAHA converges to the region of high likelihood, the
number of bins steadily increases over the cycles, reflecting
the decreased uncertainty in the recovered volume. As
expected, the likelihood threshold monotonically increases
from —170 to —13.6 as the number of cycles increases. The
likelihood threshold for the first three cycles is set by Ly
with subsequent cycles using Ly,.. For the fourth cycle and
beyond, the likelihood threshold remains fixed, which
reflects the fact that the volume enclosing Py, of the
posterior mass has been found. The number of effective
samples is relatively low in the first few cycles since the
majority have £; < L., but increases steadily as the
likelihood threshold increases. VARAHA obtains just over

TABLE I.  Output from VARAHA showing the evolution of the
number of bins in each dimension Ny, the likelihood threshold
in each cycle, and the number of effective samples 7. from the
multivariate Gaussian example. The likelihood threshold in each
cycle is set by either Ly or Ly, depending on the situation (see
text for details); for this case, the first three cycles are setby Ly,
and subsequent cycles are set by Ly,,. The sampled distribution is
a bimodal multivariate Gaussian and VARAHA collected more than
20,000 effective samples across 13 cycles in 30 seconds on a
single CPU thread.

Cycle Nyins Log-likelihood threshold Teg

1 4 —-170.7 3
3 12 -26.9 6
4 19 —-13.6 21
8 28 -13.6 2896
13 32 -13.6 22323
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FIG. 3. Corner plot [76] showing the posterior PDF obtained by

VARAHA and the true bimodal multivariate Gaussian distribution
across four of the six dimensions. The two-dimensional contours
show the 1.5¢ and 2.50 confidence levels and the individual
histograms on the leading diagonal show the data marginalized to
a particular dimension. VARAHA completes sampling in 30 sec-
onds on a single CPU thread.

23,000 effective samples from a total of approximately
800,000 weighted samples. Of course, rejection sampling
could be used to obtain a set of unweighted samples;
however, this would result in a smaller final sample size.
We see that a larger number of cycles is needed than in the
previous example, which is a result of the higher dimen-
sionality of the likelihood surface.

In Fig. 3, we plot the posterior distribution obtained with
VARAHA and the known analytic distribution. We see that
VARAHA recovers the true distribution to high accuracy, with
the mean and widths of each mode correctly identified. For
comparison, we also analyzed the same analytic distribution
with two external samplers: DYNESTY [70], a nested sampler,
and Bilby MCMC [41], a Markov-chain Monte Carlo sampler,
both operated through the Bilby infrastructure [38].° In our
testing, we found that VARAHA finished sampling in 30 sec-
onds on a single CPU: atleast 60x faster than either DYNESTY
or Bilby MCMC. Although the run times for both DYNESTY and

For both DYNESTY and Bilby MCcMC, we used the default
settings provided by Bilby with some modifications to ensure
reasonable convergence. Both samplers used a single CPU. For
DYNESTY, we used 1000 live points and a nact (the number of
autocorrelation times before accepting a point) of 5. For Bilby
MCMC, we used four temperature chains and we specified that we
would like to obtain 10,000 independent samples. VARAHA made
five million likelihood calculations over thirteen vectorized
cycles. In comparison, nested sampling made 2.5 million like-
lihood calculations over 25,000 iterations.

Bilby MCMC can vary significantly depending on the chosen
settings, it is unlikely that either sampler can obtain a
comparable number of posterior samples as VARAHA in
30 seconds that accurately recovers the mean and widths
of each mode, when using a single CPU.

III. APPLICATION TO PARAMETER
ESTIMATION OF GRAVITATIONAL WAVES

In this section, we demonstrate the application of
VARAHA to the PE of gravitational wave signals. We focus
only on gravitational waves originating from compact
binary mergers and compare results to those obtained with
LALInference, the software that has regularly been used since
the first gravitational-wave detection in 2015 [17] (see also
[36-40,44,45,50,51,56,77,78]). For this article, we restrict
attention to quasicircular binaries with spins aligned with
the orbital angular momentum, referred to as an aligned-
spin binary, meaning that the binary does not precess [30].
In addition, we focus only on the leading (2,2) harmonic of
the waveform, which is typically the most significant
contribution to the observed GW signal [79]. In this case,
the binary parameters can be cleanly decomposed into
intrinsic parameters, which determine the properties of the
binary, and extrinsic parameters, which determine the
location and orientation of the binary relative to the earth.
Throughout this work, we use the IMRPhenomD [80,81]
gravitational-wave model to evaluate the likelihood since it
is optimized for aligned-spin binary systems that contain
only the leading (2,2) harmonic (see also [82-85]).

For an aligned-spin model, the intrinsic parameters
primarily affect the amplitude and phase evolution of the
gravitational wave, and the extrinsic parameters only affect
the overall amplitude, phase and time of arrival of the signal
at each of the detectors. Table II lists the extrinsic and

TABLE II. GW signal parameters sampled by VARAHA. We
group extrinsic parameters, except coalescence time, into one
variable Q (top section), and all the intrinsic parameters into @
(bottom section). The component masses m; and m, are charac-
terized by the mass ratio g = m,/m; and chirp mass M =
(mymy)C) /(my 4 m,)(1/5). The masses are measured in the
frame of the detector from the signal that has already suffered
cosmological redshift.

Label Description

a Right ascension of the source

o Declination of the source

dr Luminosity distance of the source

] Inclination angle

W Polarization angle

b, Coalescence phase

t, Coalescence time in the reference detector
M Detector frame chirp mass

q Mass ratio defined to be less than 1
11 First aligned spin component

X Second aligned spin component
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intrinsic parameters of the system estimated by VARAHA.
VARAHA allows separable sampling of extrinsic and intrin-
sic parameters and breaks one large dimensional problem
into two small ones. We note that other analyses, e.g.,
RapidPE/RIFT [44,45], employ a similar methodology as used
by VARAHA. This framework is extensible to include higher
harmonics in the gravitational-wave signal and additional
signal parameters, such as in-plane spins, which lead to
additional physical effects in the waveform, and can reduce
biases in the recovered PE [4,86-92]. It will require
accounting for the morphological dependence of a signal
on the extrinsic parameters. This extension will be inves-
tigated in future work.

A. Factorizing the likelihood

For a network of gravitational-wave detectors (e.g.
[93-95]), the probability that the observed detector data
contains a gravitational wave signal from a coalescing
binary and with parameters, (¢.,€Q,#), is given by the
Bayes formula as

L(d|t,,Q.0)x(,..Q.0)
{d}

where d = {d,,d,, ...} represents the strain data observed
in each gravitational-wave detector, ¢, is the coalescence
time in the reference detector, Q denotes the remaining
extrinsic parameters, and @ are the intrinsic parameters.
Under the assumption that the data in each detector is
independent, stationary, Gaussian and containing a gravi-

p(t.,Q,0]d) =

, (10)

tational wave signal, a Gaussian likelihood, E(Zi|tc, Q.0),
is constructed as

log(L(dlr..R.0)) = ¢ > (d' — hi|d' — i)

iedets
= ¢ ((d|d') - (d'|n')
iedets
— (W'|d") + (W'|n")), (11)

where ¢ = (27)7%/? for a k dimensional distribution and
h' = h'(t.,9Q,0) is the expected GW signal in the ith
detector. The term {d} is the marginal likelihood (or
evidence),

{d} = / £(d|t,.Q.0)x(1,,Q.,0)d0dQdr,.  (12)

In Eq. (11), the complex noise weighted inner product
between two time-domain functions (a(#)|b(z)) is defined
in the frequency domain as

<mmmm:4/“@ﬁﬁgiw: (13)

Jmin S(f )

where S(f) is the power spectrum of the detector noise [33],
a(f) and b(f) are the Fourier transforms of a(¢) and b(z),
respectively, and star represents the complex conjugate.
Equation (13) can be evaluated at an arbitrary time shift
by using the convolution theorem and taking the inverse
Fourier transform [96],

(a(t)|b(t + A1) = 4 /f f m“*%ewmdf. (14)

Consequently, the likelihood can be evaluated for a fixed
set of intrinsic parameters, from a single inner product
calculation.

Returning to Eq. (11), the first term, (d;|d;), is inde-
pendent of the parameters Q and € and is therefore
constant. Since it will be absorbed in the normalization
for Eq. (10) we neglect it in what follows. The final term is
the inner product of the expected signal in the ith detector
with itself,

(n' (1. Q.0)|1(1..Q.0)) = 0'(Q.0)°. (15)

If h(0) is the signal arriving from a binary with intrinsic
parameters @ at a unit distance, from overhead the detector
and with the orbital plane facing the observer, the relative
amplitude of a signal from a given distance d; sky location
and orientation is determined by the effective distance,
given by

) : 1 2
Dy =d; /\/ [F’j <$) + FX2cos? } (16)

where the detector response functions F', , depend upon
the sky location, polarization and time of arrival of the
source [97]. Thus, once

0,(0)* = (h(0)|h(8)) (17)
has been calculated, it is straightforward to evaluate gi as

s =22, (18)

Finally, we turn to the two middle terms in Eq. (11)
which constitute the inner product of the data d’ with the
expected signal. We have already seen that the variation of
the signal amplitude can be encoded in the effective
distance Déff. Similarly, the phase of the signal observed
in detector i is given by [98]

) ) ) Fi, 2
dh=¢'=2¢,, wheregb’ztan"( Xﬂ), (19)

Fi 1+ cos

and the time of arrival is given by
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i =t.+ AF(Q,1.), (20)

where At' depends upon the location of the source relative
to the detectors.

Since the amplitude and phase evolution of the signal is
unchanged by the extrinsic parameters, we can calculate the
inner product for any set of extrinsic parameters by
rescaling and time shifting the inner product time series
for the reference waveform /(@). Thus, the inner product of
the data d’ with the expected signal is given by

@ (1. ©.6)) — <di| hi (@, tii)eixp(i¢éz)>
eff

_ 9(0)p'(6. 1') exp(ighy)
Dleff

, (21)

where we have defined the signal to noise ratio (SNR) for
the template with intrinsic parameters 6 as

(|h@.1))
(h{O)[1(0))

The third term in Eq. (11) is simply the complex conjugate
of (21).

Combining these expressions, the resulting log-likelihood
from Eq. (11) assumes the form

pi(a’ 1) = (22)

log (£(d|t.. . 0))
_ Z |: IQ() ff Qo( )|Dpilf(feaﬂ)|cos(A¢i> , (23)

iedets

where A¢' is the difference between the measured phase in
detector i and the expected phase, given the parameters of the
signal:

Ap' = arg(p'(0.1)) = g (24)

The log-likelihood is maximized for a given set of
intrinsic parameters when Di; = ¢(8)/p(0.1.), and the
cosine term in the last equation is unity. However, as the
cosine term is solely dependent on the phase acquired
due to the extrinsic parameters and p;(#.) is dependent on
the arrival times in different network detectors, the maxi-
mization puts a time-phase constraint [99].

The expression in Eq. (23) clearly separates the like-
lihood dependence on the intrinsic parameters 6 from the
extrinsic parameters Q and the coalescence time 7. In
particular, the effective distance, D'y, phase, ¢§, and time
of arrival ' in each detector depends only upon the extrinsic
parameters Q and the time of arrival ¢.. The SNR time
series associated with the fiducial waveform h(@), and its
overall normalization, is dependent only on the intrinsic
parameters 6. However, the specific time at which to

evaluate the SNR does depend upon the intrinsic param-
eters through Ar. In the following sections, we make
repeated use of this splitting of the likelihood to independ-
ently estimate the intrinsic and extrinsic parameters. In
particular, the most time-consuming step is the generation
of simulated waveform and evaluation of the SNR time
series. Thus, by writing the likelihood in the form of
Eq. (23), it becomes clear that the entire extrinsic parameter
space, for a fixed set of intrinsic parameters, can be
explored with a single evaluation of the SNR time series.

B. Extrinsic parameters

VARAHA starts by first fixing the intrinsic parameters 6 to
areference waveform and samples the posterior distribution
for the seven extrinsic parameters, € and ?.. BAYESTAR
[35], a rapid, non-Markovian sky localization algorithm
commonly used by the LIGO, Virgo and KAGRA collab-
orations (see e.g. [66]), also samples the extrinsic param-
eters by fixing the intrinsic parameters to a reference
waveform. In this subsection, we explain how VARAHA
varies from BAYESTAR and demonstrate that it is able to
compete with BAYESTAR’S performance.

In the initial evaluation, it is natural to use the values for
the intrinsic parameters, @,, which are reported by the
search analysis that identified the signal [100-103].
The detector which has the largest value of p’(@,) in the
network is chosen as the reference detector. We then
perform PE over the seven-dimensional extrinsic parameter
space using the method described in Sec. II. The first step
involves scattering millions of points across the extrinsic
parameter space. Since five dimensions are angles, it is
natural to cover the full range of possible values:

= [0, 27]
sin(é) [-1,1]
cos(1) = [-1,1]
$e = [0,27]

w = [0,2x]. (25)

The initial choice of bounds for the coalescence time and
luminosity distance requires more care. We wish to
determine the narrowest ranges of 7. and d; that will
ensure we chose a range that encloses the posterior mass. If
the initial choice is too narrow, then we risk missing part of
the relevant parameter space and if it is too broad this will
lead to unnecessary exploration of uninteresting regions of
the parameter space which will increase the analysis time.

To fix the range of coalescence time, we restrict attention
to the reference detector (the one with the largest SNR). We
assume that the extrinsic parameters are chosen to maxi-
mize the likelihood contribution from the reference detec-
tor, i.e. that Dig. = ¢'(8,)/]p'(6,.1.)| and that the phase
Ag¢; = 0. In that case, the likelihood contribution from the
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reference detector is 1 |p'(0,.7.)*. This is normally dis-
tributed in ... Furthermore, from the GW search result, we
know the time ¢, which gives the maximum SNR,
p'(0,.1,). As we vary the coalescence time . in the
reference detector, the observed SNR will be reduced
and, consequently, the maximum contribution of the
reference detector to the likelihood will be reduced. The
initial range of coalescence times is chosen so that the
boundary is at least 4-0, i.e. we require

SO t)P ~ 00 )P < /2. (26)

So far we have restricted attention to a reference detector.
Let us assume that there exists a set of extrinsic parameters
which is a good fit to the data in all detectors, i.e. Diy ~
0',)/p'(0,,t,)] and A¢' ~0. Then, as we vary the
coalescence time ¢,, at best we will find a set of extrinsic
parameters that matches the data in all detectors other than
the reference, while in the reference detector, the time is
offset from the observed peak. Thus, the loss in likelihood
in the reference detector gives an (approximate) lower limit
on the loss in the network likelihood.

We restrict the initial range of allowed coalescence times
that satisfies Eq. (26). Figure 4 plots an example for the
bounds on p(z.) estimated for the data from the LIGO
Hanford detector corresponding to the signal GW151226
[65]. The discrete values of p(z..) are obtained by taking a
discrete inverse Fourier transform of the frequency domain
inner product between data and waveform, sampled at
2048 Hz. A smooth function is obtained by interpolating
using a cubic spline.

The initial range of distances is chosen to ensure that the
chosen range encloses the posterior mass. We also require the

10.00F
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: y N
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g 900f
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X
8.50"— i
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8.00—— : - ) —
0.0065 0.0070 0.0075 0.0080 0.0085
tc [s] +1.135136351e9

FIG. 4. The figure plots p(z.) for values of ¢, around the
observed GPS of the signal GW151226 [65] for the LIGO-
Hanford detector. The dotted red lines set the bound on 7, as
described in Eq. (26). The dashed blue lines show the 99.9%
credible interval of the posterior distribution on 7. obtained from
performing parameter estimation on the full set of extrinsic
parameters.

bounds to be as small as possible to prevent VARAHA from
sampling in regions of parameter space with low likelihood.
Returning to Eq. (15), we see that the effective distance is
always equal to or greater than the luminosity distance, with
equality only for face on systems (cos: = +-1), lying either

directly above or below the detector (v/F', > + Fi.> = 1). We
choose the maximum distance to be 3 times the effective
distance in the reference detector:

dp™ = 3Dy =301(0,)/|0'(0,.1,)]  (27)

as well as choosing a minimum distance of 0. At a distance,
dp®™, the maximum possible likelihood in the reference
detector occurs for a face-on, overhead system. In that case,
the log-likelihood is reduced by an amount $ [p'(0,.1,)[*. At
an SNR of 7 in the reference detector, which corresponds to a
relatively weak signal, this leads to a reduction in the log-
likelihood of 11. However, as with the discussion of the
coalescence time, it is likely that there will also be a reduction
in the likelihood in the other detectors, meaning this is a lower
limit on the loss in the network likelihood. As often is the case,
instead of the distance, we use a uniform prior on the volume,

p(dy) < di. (28)

We have verified the efficacy of our choices on the range
of coalescence time and distance by performing parameter
estimation runs on hundreds of simulated signals.

As an example, we estimate the extrinsic parameters for
the signal GW151226 [65]. We scatter N, = 1,000,000
points within the multidimensional grid for each cycle (step 1
inSec. II), set Py, = 0.9999 when evaluating Ly, and keep a
minimum of N;, = 8000 points at each cycle to evaluate
Ly, . (step 2 in Sec. II). We terminate sampling once eight
cycles have elapsed. Table I1I shows the evolution of various
quantities. The process collects ~10,000 effective samples
from a total of ~160,000 weighted samples in eight cycles.
As expected, for the first two cycles, the likelihood threshold
is set by Ly  while for later cycles, where there is a higher
probability of randomly scattering points within the high
likelihood region, the threshold is set by Ly,. Unlike in
previous examples, the likelihood threshold is positive and

TABLE III.  Output from VARAHA showing the evolution of the
number of bins in each dimension Ny, the likelihood threshold
in each cycle (either Ly __ or Ly, depending on the situation, see
text for details), and the number of effective samples n.; when
estimating the extrinsic parameters for GW151226.

Cycle N, Log-likelihood threshold Negr

1 4 56.8 42
2 6 69.4 257
4 8 72.1 2671
8 8 72.1 9751
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FIG. 5. Points obtained when sampling over the extrinsic parameters for the observation GW151226. The top left panel shows the first
cycle, the top right shows the second cycle, the bottom left shows the fourth cycle and the bottom right shows the eighth cycle. The
purple dots show the points randomly drawn from within the multidimensional grid, the green dots are all of the points that have a
likelihood larger than the likelihood threshold from the previous cycle and the orange dots are the points with likelihoods larger than the
likelihood threshold for the current cycle. The black lines show the multidimensional grid that surrounds the live volume. Eight cycles

were completed in less than 45 s using one CPU thread and accumulated around 10,000 effective samples.

increases monotonically. This is because we have neglected
the (d|d) termin Eq. (11). Figure 5 pictorially shows VARAHA
converging to the most probable sky location of GW151226.
We see that as the number of cycles increases, the live volume
shrinks to the region of high likelihood. As a result, the
number of bins in a multidimensional grid that encloses the
live volume steadily increases with each cycle. This indicates
that the error on the MC volume is steadily decreasing over
time. For this example, VARAHA localizes GW 151226 within
45 seconds on a single CPU thread. Assuming an approx-
imately linear scaling with the number of CPU threads, we
expect to localize most gravitational-wave signals in less than
five seconds when parallelizing over ten CPU threads
(see Sec. IV C for a discussion about CPU scaling). The
exact run-time of BAYESTAR is unknown for this case, but we
expect that BAYESTAR completed in ~2 minutes when run-
ning on a single CPU thread (based on Fig. 12 in [35]).

C. Intrinsic parameters

In order to obtain samples from the full posterior distri-
bution, we need to vary both the intrinsic and extrinsic
parameters in Eq. (23). However, as changing the extrinsic
parameters only changes the overall amplitude, phase and
time of arrival of the gravitational wave signal (since we are
restricting to the leading multipole of a nonprecessing
system), samples can be obtained by combining independent
and separated sampling over the extrinsic and intrinsic
parameters. In order to achieve this, we require two like-
lihoods: one which is conditioned only on the extrinsic
parameters (introduced in Sec. IIIB), and another,

marginalized likelihood, which is dependent only on the
intrinsic parameters of the source. The marginalized like-
lihood that is dependent only on the intrinsic parameters is
simply [44]

Line(d)0) = / dr,.dQL(d|t,.Q.0). (29)

This procedure breaks one high-dimensional problem into
two smaller-dimensional problems and has two significant
benefits. First, the computational requirement of sampling
decreases with decreased dimensionality [42] which is
expected to reduce the overall cost. Second, an analysis
sampling the full parameter space needs to generate a
simulated gravitational waveform for each likelihood calcu-
lation, and compute the inner product of the waveform with
the detector data. Often the computational cost to generate and
filter these waveforms is high. By splitting the sampling, for
each waveform generation and matched filtering operation,
the likelihood over arbitrary values of extrinsic parameters
can be calculated using inexpensive operations that change
the overall amplitude, phase and time of the signal.

To evaluate the marginalized likelihood in Eq. (29), we
integrate over the extrinsic parameter space for each draw of
the intrinsic parameters 6. We identify the high-likelihood
region of the intrinsic parameter space by following the
method outlined in Sec. II, albeit with the likelihood
calculation replaced by the more complex calculation of
L To begin, we define the region of interest in the intrinsic
parameter space. Here, our four parameters are the chirp mass
M, mass ratio ¢, and the spins of each black hole aligned
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(or antialigned) with the orbital angular momentum y; and
x> We set the initial range of the intrinsic parameter space
to be

M = [My— AM, My + AM)]
q = [0.05,1.0]
71 =1-0.9,09]
2> =[-0.9.09]. (30)

The ranges for mass ratio and spins are primarily driven by
the region of validity of the IMRPhenomD waveform model
[80,81], as well as the physical restriction that g < 1, [y| < 1.
The central value of the chirp mass range, M, is the chirp
mass of the GW search template that identified the signal.
The width AM is chosen as

AM = min<1.2 x 1073 <9> M§/3,M},-1/20>, (31)
o

where p, is the reported SNR. The first term in Eq. (31) is
motivated by the expected accuracy of measurements of
the chirp mass for low-mass signals where the inspiral is the
dominant part of the signal observed in the detectors [33]. The
second term in Eq. (31) is taken from empirical uncertainties
of chirp mass measurements from GWTC-3 [4] and is
conservatively broad to ensure that the range is broader than
the observed distribution. We again note that the mass values
are in the frame of the detector, thus M = (1 + 2) Mquree-

For each draw of intrinsic parameters €, we marginalize
the likelihood by integrating it over a fiducial parameter
space for the extrinsic parameters, ,. To generate Q,,, we
make use of the samples generated in the extrinsic
parameter space associated with the intrinsic parameters
identified by the search, 6. In general, we expect there to
be a minimal correlation between the masses and spins and
several of the extrinsic parameters. As discussed in
[35,104], while changing the masses and spins will impact
the measured coalescence time in each detector, the relative
time delay will be only weakly impacted and, consequently,
the inferred sky location will be largely independent of the
intrinsic parameters. Similarly, the orientation of the binary,
encoded in the inclination : primarily depends upon the
observed ratio of power in the two gravitational wave
polarizations and this is unlikely to change significantly
with mass or spin. Finally, although the intrinsic amplitude
of a gravitational wave signal does vary linearly with mass,
the chirp mass width is constrained to be at most a few
percent of the measured value resulting in the inferred
distance varying a few percent with changes in mass. Thus,
the overall change in the volume that contains the high
likelihood region in the extrinsic parameter space only
varies a few percent with any change in the intrinsic
parameters. To accommodate these fractional changes,
we use 0, and specify a lower Py, for the intrinsic
parameter space than what is desired for the extrinsic

parameters. This means that VARAHA defines each volume
in the intrinsic parameter space to accommodate a slightly
smaller probability than what is desired for the extrinsic
parameters. For instance, if Py, = 0.999 is specified for
the extrinsic parameters, VARAHA uses a Py, = 0.995 for
the intrinsic parameters. This ad hoc choice results in the
recovery of sane posteriors even at a population level.
However, we will ascribe a more rigorous treatment of this
problem in a future presentation.

We generate ©,, by retaining samples of (a, 8,1, d;) that
cross the likelihood threshold from the extrinsic-only analysis
and augment it with samples from the remaining three
parameters: (y, ¢.,t.) as defined later. For each draw in
the intrinsic parameter space, we evaluate Eq. (29) by numeri-
cally integrating over 90.6 The observed gravitational wave
phase and coalescence time will vary significantly with the
masses and spins. Thus, we draw (¢.., ) from the full range
(0,27). In addition, due to the degeneracy between the
coalescence phase and the polarization angle, retaining
samples of the latter from the extrinsic-only analysis or
regenerating them does not impact the posterior on the
intrinsic parameters. The appropriate range for the coalescence
time .. can be derived using the same method as for the initial
point@,, as described around Eq. (26), although using the peak
SNR in the reference detector for the intrinsic parameters 6;.
For each sample in Q, we precalculate D', and ¢y, Each draw
of 0; requires waveform generation, matched filtering of the
data and calculation of likelihood using these precalculated
values. Finally, the (marginalized) likelihood is obtained by
approximating the integral in Eq. (29) by writing

Line(d0) =Y > L(dy]t,@5.0).  (32)
i kedets
We continue sampling using different draws of €; and follow
our sampling procedure guided by their marginalized like-
lihood values.

Calculating the marginal likelihood is computationally
expensive. An approximate but optimistic value can be
calculated by maximizing the likelihood independently
over the time of arrival and phase in each detector. This
is done by ignoring the phase term in Eq. (29) and using the
maximum SNR in each detector independently. By ignor-
ing both of these factors, we obtain a likelihood which will
always be equal to or greater than the true likelihood:

ﬁimr(g\ej) SZexp( Z {_lglf{'(aj)z_'_ 05(0;)

2 <Déff)2 Déff

kedets

<o (0,1
<ep( Y- Smant,0)). @

kedets

®Note that the prior remains uniform in this procedure. The
samples corresponding to Q, are uniformly distributed.
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The last line in Eq. (33) further maximizes the likelihood on
all the extrinsic parameters. The benefit is that the term in
the second line can be calculated after matched filtering the
data, in addition, for the term in the first line we only need
to generate D'y, for each of the intrinsic samples. Both these
calculations require significantly less computation than the
full likelihood calculation. We thus marginalize only if both
of these values are larger than the likelihood threshold.

The marginalized likelihood L;,(d|@;) assigns a weight
for each point in the intrinsic parameter space

o L:intr(d‘aj)
WJ - —. 9
Linax (J)
where L,,(j) is the maximum marginalized likelihood

value among all the samples. In addition, we obtain a
weight w’, for each sample €/, corresponding to the intrinsic

(34)

parameters 6;, which is simply

i £(2|017 tC{’ Q{)

J
w; = P
: Linax (i, )

where L..(i,j) is the maximum likelihood of all the
samples in the fiducial volume estimated for each sample of
the intrinsic parameters.

Independent samples in the full eleven-dimensional
parameter can be generated by performing rejection sam-
pling on w!. However, storing all these weights is chal-
lenging. We circumvent this problem by randomly keeping
only one set of extrinsic parameters for each set of intrinsic
parameters and discarding the rest. This choice is made by

(35)

performing rejection sampling on the weights w{ to select a
single €, and 7/ for each ;. Thus for each point in the
intrinsic parameter space that we sample, we store a single
sample (6, Q}, t;) and the weight, w;, associated with the
intrinsic parameter, 6;.

We are now left with the sampling of intrinsic parameters
and the associated marginalized likelihoods, in the succes-
sive cycles we identify live volumes across four dimensions
(M, q,x1,x2)- For each cycle, we evaluate the margin-
alized likelihood values and continue the cycles until we
obtain the desired number of effective samples,

N¢f'f — (Z W/)2 )
int Z ng

We continue sampling intrinsic parameters for
GW151226. We scatter points within the multidimensional
grid for each cycle (step 1 in Sec. II), set Py, = 0.9999 when
evaluating L., and keep a minimum of N,,;, = 1000 points
at each cycle to evaluate Ly  (step 2 in Sec. ). We
terminate sampling once eight cycles have been completed.

(36)

"As we do not accurately compute the likelihood for all the
intrinsic samples [see Eq. (33)] we sample until the number of

live points increases by Ny, and count N accordingly.

TABLE IV. Output from VARAHA showing the evolution of the
number of bins in each dimension Ny, the likelihood threshold
in each cycle (either Ly or Ly, depending on the situation, see
text for details), and the number of effective samples .. Here we
estimate the intrinsic parameters for the observation of
GW151226.

Cycle N, Log-likelihood threshold Negf

1 8 65.6 133
2 11 71.4 940
4 13 71.4 3420
8 15 71.4 9070

Table IV lists the number of bins in the multidimensional
histogram, the likelihood threshold and the number of
effective samples over the cycles. Like previous examples,
the likelihood threshold increases initially before reaching a
final value. Figure 6 shows the evolution of the live volume in
the M-¢ plane with the increase in cycle number.

D. Implementation

To summarize, VARAHA analyzes gravitational-wave

signals as follows:

(1) Obtain posterior on the extrinsic parameters.—
Obtain the posterior distribution for the extrinsic
parameters by following the steps detailed in Sec. II
A. The full gravitational-wave likelihood is used but
we fix the intrinsic parameters to the values reported
by the GW search pipelines.

(2) Construct a fiducial volume for the extrinsic param-
eters.—Retrieve luminosity distance, inclination
angle, right ascension, and declination and augment
with the remaining extrinsic parameters as defined
in Sec. III C.

(3) Obtain posterior on the intrinsic parameters.—
Marginalize the full likelihood on the fiducial
volume calculated in step 2, and obtain the posterior
distribution for the intrinsic parameters by following
steps detailed in Sec. I A. We now use the margin-
alized likelihood given in Eq. (32) and a smaller Py,
than in step 1. The fiducial volume based on the
extrinsic parameters remains fixed.

E. Processing time

The faster processing times of this analysis are due to the

following reasons:

(1) A large dimensional problem has been broken into
two small dimensional problems resulting in re-
duced computational requirement.

(2) The sampling method is entirely likelihood driven
and swiftly converges to the relevant region of the
parameter space.

(3) Taking inverse Fourier transform of Eq. (13) allows
constraining bounds on ¢, and vectorized estimation
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FIG. 6. The 2D projection of the evolution in the M-q plane for the analysis sampling the intrinsic parameters for the observation
GW151226. The left panel shows the first cycle, the middle panel shows the fourth cycle and the right panel shows the eighth cycle. The
purple dots show the points randomly drawn from within the multidimensional grid, the green dots are all of the points that have a
likelihood larger than the likelihood threshold from the previous cycle and the orange dots are the points with likelihoods larger than the
current likelihood threshold. The black lines show the multidimensional grid that surrounds the live volume with likelihood equal to the
likelihood threshold.

of likelihood values at thousands of samples in the IV. RESULTS
fiducial set of extrinsic parameters. .

(4) The waveform morphology of the inferred templates A. Example: GW151226
is expected to be similar. This analysis does not Figure 7 compares the VARAHA's posterior with the
match filter if the phase accumulated in the detec- ~ posterior obtained using LALInference. Both analyses use
tor’s sensitivity band (~20-2000 Hz) by the fiducial =~ IMRPHENOMD [80,81] for waveform generation and use
waveform and a template waveform differs by more ~ almost equivalent priors on masses and spins. LALInference
than 30 radians (approximately five cycles). allows priors on the component masses, while VARAHA

(5) This analysis does not marginalize over extrinsic ~ uses uniform priors on the chirp mass and mass ratio. We
parameters if an approximate but optimistic estimate ~ used a wide prior for the component masses in LALInference
of marginalized likelihood given in Eq. (33) is  and then applied a chirp mass constraint to produce almost

smaller than the likelihood threshold. equivalent priors between the two algorithms. There is a
(6) Analysis has been rigorously optimized and per-  good agreement in the two results; there are small
forms a judicious vectorized operation to save on  differences in the marginalized one-dimensional posteriors,
computation times. but they are consistent at the 90% confidence level.

—— VARAHA
LALInference

) I 60° 60°
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E“ o [ 30
Q § \
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o Y [ !
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FIG. 7. Plot comparing the posterior distributions obtained from VARAHA (blue) and LALInference (orange) when analyzing GW151226.
The left panel contains a corner plot for the primary and secondary masses as well as ypy [Eq. (5) in [105]]. The right panel shows the most
probable sky location of GW 151226 as well as the inferred distance. In both panels, contours enclose 90% probability mass.
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This difference is likely a result of the slightly different
priors assumed between the two codes. We also see good
agreement in the recovered skymap and distance estimate,
with any deviations likely a consequence of LALInference
marginalizing over the calibration uncertainty while
VARAHA does not yet have the functionality to do so.
VARAHA obtained the posterior in less than one CPU hour.
Based on the experience gained while running the two
codes on different signals, we expect more than 2 orders of
magnitude shorter computation times for VARAHA.

B. Example: GW170817

VARAHA can rapidly estimate the origin of the observed
gravitational wave. This can have significant implications
on electromagnetic follow-up programs for BNS observa-
tions. To demonstrate this, we analyze GW170817 using
data from all three detectors and compare the estimated
skymap with the location of the known host galaxy: NGC
4993 [66].

Figure 8 shows two skymaps: the skymap produced when
VARAHA samples only the extrinsic parameters, and the
skymap produced when VARAHA samples both the intrinsic
and extrinsic parameters. We see that within two CPU
minutes, VARAHA is able to localize GW 170817 to within
49 square degrees (at 90% confidence) when sampling over
only the extrinsic parameters. For this analysis, VARAHA used
Ny = 1,000,000, Ny, = 8000, Py, =0.999 and we
stopped sampling once eight cycles were completed. The
localization area was reduced to 17 square degrees (at
90% confidence) after 16 CPU hours when VARAHA samples
over the intrinsic and extrinsic parameters. For this more

RN
. N
/ / { /// 5 e

25 50 75
Mpc

FIG. 8. The most probable sky location of GW170817 when
VARAHA samples only the extrinsic parameters (gray) and
intrinsic plus extrinsic parameters (blue). The reticle marks in
the top-right inset show the position of NGC 4993. The bottom-
right panel shows the posterior distribution for the luminosity
distance and the black vertical line shows the distance to NGC
4993. The contours show the 90% confidence interval. The
extrinsic-only analysis completed eight cycles in less than two
minutes using one CPU thread. The intrinsic plus extrinsic
analysis was completed in two hours using eight CPU threads.

detailed analysis, VARAHA used N, = 1000, Py, = 0.995
and we terminated sampling once eight cycles were com-
pleted. For comparison, BAYESTAR localizes GW170817 to
within 31 square degrees (at 90% confidence) when analyzing
only the extrinsic parameters, and LALInference localizes
GW170817 to within 23 square degrees (at 90% confidence)
[66] when analyzing both intrinsic and extrinsic parameters.
Although the exact run times of BAYESTAR and LALInference are
unknown for this case, we expect that BAYESTAR completed in
~2 CPU minutes (based on Fig. 12 in Ref. [35]) and
LALInference completed in ~500 CPU hours (based on
Ref. [58]).2 Consequently, VARAHA matches the performance
of BAYESTAR when sampling over only the extrinsic param-
eters, but, importantly, significantly improves upon
LALInference When sampling over the intrinsic and extrinsic
parameters. We note, however, that there has been recent work
to reduce the run-time of LALInference by utilizing reduced
order quadrature models [106], as well as using meshfree
approximations [107]. Since the inclusion of intrinsic param-
eters is preferred, as it reduces the 90% contour for most cases,
VARAHA may be pivotal for the rapid follow-up of binary
neutron star observations.

C. Population level test

We evaluate the population level accuracy of VARAHA by
performing a percentile-percentile (P-P) test [108]; this test
involves performing hundreds of parameter estimation runs
on synthetic signals embedded in simulated detector noise.
The P-P test investigates if the measured interval of
parameters at a credibility f% also encloses f% of true
values among all the measurements. We perform parameter
estimation on 500 simulated signals and show the P-P plot
in Fig. 9. The parameters of the synthetic signals are drawn
from VARAHAs prior, and we only analyze signals that cross
a chosen SNR threshold. As described Sec. III D, we first
estimate the extrinsic parameters. We do this by fixing the
intrinsic parameters to the true values used when generating
the synthetic signals. This is a reasonable choice as we do
not expect the detector noise to bias the measurement, and
the inferred population should average out to the true
population. We then construct the fiducial volume for the
extrinsic parameters and use it to estimate the marginalized
likelihood for sampling the intrinsic parameters, as well as
obtaining the 11-dimensional posterior on the full param-
eter space, as described in Sec. III C.

The distribution of injection parameters is listed in
Egs. (25) and (30). The luminosity distance is uniform
in volume and chirp mass is uniformly distributed between

The estimated run times of BAYESTAR and LALInference are
based on results generated with, potentially, older CPUs than
those used by VARAHA. Running on identical CPUs may decrease
the expected run-time of BAYESTAR and LALInference. For the latest
BAYESTAR run times, see https://Iscsoft.docs.ligo.org/ligo.skymap/
performance.html.
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FIG. 9. Percentile-percentile (P-P) plot for 500 simulated
injections. The 1-, 2- and 3-¢ confidence intervals are indicated
by the gray bands. For results to be unbiased the trails are
required to be enclosed by the bands [108].

10M and 20M . Any injection that crosses a matched
filter network SNR of 10 is selected for estimating the
parameters. In this analysis, the network is comprised of
advanced LIGO Livingston/Hanford and the advanced
Virgo detector [109,110].

Most of the injections required eight seconds of
simulated noise to accommodate the duration of
simulated signals last in the detector’s sensitivity band
(~20-2000 Hz). Figure 10 shows the time taken by the
analysis in performing PE. The median time needed was
less than four minutes using ten threads. Almost all the PE
runs were completed in less than sixteen minutes. We see
that, in general, VARAHA takes longer to analyze binaries
with more asymmetric masses, with the longest run-time of
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FIG. 10. Plot showing the wall time taken to perform PE on 500
synthetic signals embedded in simulated detector noise (see
Fig. 9). Each of the 500 individual PE runs used ten CPU
threads and each point is color coded by the median of the

inferred mass ratio distribution. The median wall time is four
minutes.

40 minutes arising from a binary with mass ratio g = 0.1.
Waveform generation and matched filtering consumed
around 60% of the time and calculation of the reduced
likelihood consumed around 30% of the time.

In Fig. 11, we show the scalability of the analysis with
the number of CPU threads. We perform two additional
sets of runs each using an expensive likelihood calculation
and performed using one and 40 CPU threads, respec-
tively. We make the likelihood calculation expensive, by
including a one-tenth of a second delay in waveform
generation, to reflect what we expect the scalability to be
when VARAHA is extended to include additional physics
(for example precession, higher order multipoles and
eccentricity) since these waveform models are more
expensive to generate than the simple aligned-spin case.
The median time when using 40 CPU threads was
508 seconds while the median time when using one
CPU thread was 16,910 seconds. Increasing the number
of threads by a factor of 40 reduced the analysis time by a
factor of 33. We expect this scaling to improve if the
likelihood calculation is made more expensive.

V. DISCUSSION

In this article, we introduced a new sampling method that
estimates Bayesian posteriors by identifying the volume
that encloses the posterior mass and calculating the like-
lihood values inside the identified volume. This approach
significantly increases our ability to parallelize the analysis

25+ [ 1 Thread
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1 Linear scaling
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S
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FIG. 11. Plot showing the wall time taken to perform PE on 100

synthetic signals embedded in simulated detector noise when the
likelihood calculation is made expensive by including a delay in
the waveform generation. The wall time taken when using a
single CPU thread is shown in blue and 40 CPU threads in
orange. Both analyses used identical settings. Assuming a linear
CPU scaling from the one CPU thread analysis, the expected time
taken to analyze 100 PE runs on 40 CPU threads is shown by the
blue dashed histogram. In reality, increasing the number of CPU
threads to 40 reduces the computation time by a factor of 33.
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over multiple CPU threads and increases the efficacy to use
vectorized likelihood calculations. In addition, we intro-
duced the use of a likelihood threshold to judiciously
populate the parts of the parameter space based on our prior
understanding of the distribution at hand. Compared to
nested sampling, which focuses directly on the estimation
of probability mass, this approach is less robust in
estimating higher-dimensional multimodal distributions.
Our sampling method is ideally suited for estimating
parameters of the compact binaries from their GW signals.
These parameters are inherently assumed to follow a
unimodal likelihood distribution. We show that a large
one-dimensional sampling problem can be broken into two
small-dimensional sampling problems. Using vectorized
likelihood calculations, we first sample the extrinsic
parameters and subsequently obtain posteriors on the
intrinsic parameters. We employ several approximations
of the likelihood functions to draw boundaries in the
parameter space and calculate likelihood values in the
parts that meaningfully contribute to the posterior distri-
bution. Tests indicate that our analysis can estimate
parameters for most of the BBH signals in a few minutes.
VARAHA has the potential to include additional param-
eters when estimating parameters. The sky location is
dominated by GW’s time of arrival at the detectors of
the network. The choice of intrinsic parameters has a weak
impact, thus it is expected the samples of these parameters
obtained using fiducial waveform can be used in calculat-
ing the marginal likelihood [44]. In comparison, the
luminosity distance shows a greater dependence, specifi-
cally when higher harmonics are involved [111]. To
accommodate this dependence luminosity distance samples
obtained from fiducial waveform, using a relaxed value of
likelihood threshold that encompasses a wider range, can
cater to this dependence. The luminosity distance can also
be numerically marginalized as it just divides the individual
terms in Eq. (23). For the same reason, the inclination angle
needs to be sampled along with the intrinsic parameters.
Thus, including higher harmonics in the aligned spin model
will increase the dimensionality from 4 to 5 when sampling
using marginalized likelihood. Inclusion of in-plane spins
will require including in-plane spins’ magnitude and phase
angle further increasing the dimensionality [112]. We have
verified, the computational requirement for a six—eight
dimensional distribution is comparable to what is needed
from nested sampling. In addition, the PE also needs to
account for inaccuracies introduced when calibrating the
interferometric output [113]. Usually, this implies a sig-
nificant increase in the dimensionality of the problem.
However, being independent of GW signals, the inclusion
of calibration errors only requires modulating the amplitude
and phase of a template commensurate with the calibration
error envelope and independent of the value of the intrinsic
parameters. As VARAHA provides just a collection of
samples with the corresponding weights, we anticipate

this can be achieved by estimating the likelihood in the
vicinity of live samples as guided by the calibration error
envelopes. Alternatively, a Metropolis-Hastings algorithm
can be constructed to calculate likelihoods in the vicinity of
samples. Incorporating calibration errors should increase
the computational requirement.

There is significant scope to decrease the computation
time further. The most expensive component of the analysis
is waveform generation and matched filtering. Both of
these can be significantly reduced by using existing
proposals [77,114,115]. We reconstruct the volume con-
taining the probability mass using a structured multidi-
mensional grid. It results in the reconstructed volume being
much larger than what is estimated from the MC integral. A
more efficient reconstruction can employ the use of
unstructured grids reducing the number of cycles needed
to obtain an effective sample size. Many of the calculations
are done on the fly (time delay between detectors and
antenna patterns) and can be precalculated to save compu-
tation time. The computation can also be reduced by
choosing the right set of parameters [116,117]. The choice
of intrinsic parameters, which are often degenerate with
each other, is expected to change the structure of the live
volume. A complicated structure will prove more chal-
lenging to reconstruct using hypercubes. A choice of
parameters that disentangles the well and poorly measured
parameters will result in less complicated live vol-
ume [117].

VI. CONCLUSION

The presented analysis offers significant improvement in
processing time for estimating the parameters of a CBC
while producing results comparable with the contemporary
samplers. Although VARAHA is currently restricted to using
only aligned-spin waveform models, it has the potential to
include additional physics, such as precession, eccentricity
or tidal deformability. However, for most cases, we expect
that GW signals can be accurately modeled as produced
from aligned spin binaries since the degree of orbital
precession is often difficult to measure, see, e.g., [118].
This means that often the posterior distribution simply
recovers the prior [119-121]. Of course, for binaries that
precess [91], this means that some information is lost.

We use a uniform prior on all the parameters but, as we
calculate the likelihood for each of our samples, it is
straightforward to recalculate these likelihood values with
anew prior by simply dividing the probability density of the
new prior with the old one and multiplying it to the likelihood
value [122]. As we can also calculate the marginal likelihood
the samples can naturally be used for model selection.
Furthermore, owing to the reduced computational time
compared to other samplers, VARAHA is a natural choice
for data diagnostics in understanding the systematics or non-
Gaussianity in data associated with a signal, as well as
performing parameter estimation on gravitational-wave data
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collected by the Laser Interferometer Space Antenna (LISA)
[123] and third generation detectors [124,125] where PE is
likely to be slow due to the large observation times.

This code is highly parallelizable as individual threads
do not communicate. It also does not have to address any
problem that a usual MCMC encounters. This may include
proper mixing of chains, tuning of the code and potential
correlations due to low proposal acceptance rate.
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APPENDIX: IMPORTANCE SAMPLING

Assuming the parameters of the statistical model, 0, are
defined using the probability density p(@), the mean and
standard deviation of parameter 8 € @, when marginalizing
over the other parameters, is simply

)do

(0) =
0() (A1)

/9p(0
- \/ [ ©-wrpew.

Often these integrals are intractable and a practical way to
estimate these quantities is by drawing random samples 0;
from the true distribution p(@). The mean and variance of ¢
can then be estimated from the values ; € 0; as

ézzgi/N,
o =1/ (0; = 0)*/N,

where i indexes the N samples drawn.

Alternatively, one can use importance sampling and
estimate the integrals in Eq. (A2) by calculating the
weighted mean and weighted standard deviation [133],

(A2)

Vi Ziwiei
0=="—,
Ziwi
Wi<9i - 9)2

where i indexes the N samples drawn from a proposal
distribution (@) and w; is the sample weight,

(A4)

Calculating parameter expectation values and uncer-
tainties using a limited number of samples inevitably
introduces sampling errors. When performing importance
sampling, these errors also depend on the choice of
proposal distribution. The measurement of 6 depends on
the values of the weights, and the standard error relative to
the true mean behaves as

>i(w7)
(Ziwi)z,

oy = 0p/ (AS)

where o, is the standard deviation of the parameter @ in the
distribution being sampled. When samples are drawn from
the true distribution, p(@), then w; =1 and the error
reduces to the standard proportionality of 1/v/N [134].

Consequently, an effective sample size for a given
proposal distribution can be defined as [74]

(A6)

The effective number of samples, 7., approximately
represents the number of samples one would need to
measure 6 as accurately using samples from the true
distribution. Since n.; < N, with equality if and only if
samples are drawn from the distribution p(@), it follows
that we require a greater number of samples when drawing
from an alternate distribution. A detailed discussion on
effective sample size is provided in [74] and the included
references.
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Estimation of parameters using the Bayes equation,

p(0|d)  p(d|6)(0). (A7)
is in essence importance sampling. The proposal distribu-
tion acts as the prior distribution and the weights are
replaced by a likelihood function £ = p(d|@) conditioned
on the observed data d. Thus, we use these terms inter-
changeably. The posterior distribution is just the weighted
prior distribution,

p(0]d) o wa(0). (AB)
with the weights given by
w=exp(£), £ =log(L)—log(Lmx).  (A9)

where we have scaled £, such that the maximum value of #
is zero. Such a scaling does not impact any discussion
earlier as it gets absorbed when normalizing Eq. (A9).

It helps obtain equal-weight samples after performing
rejection sampling on the weights.

A point to consider is that, if rejection sampling is
performed on the value of weights, it will result in a sample
size of close to Y, w; with all the samples having equal
weights of 1 [72]. However, such a procedure results in loss of
information as n. is always larger than » _; w;. Often MCMC
methods are employed to sample from the posterior proba-
bility distribution. All the algorithms performing PE using
MCMC methods implement some kind of rejection sampling.
Although they produce equally weighted samples, they
discard a good fraction of the likelihood information [73].

Using a proposal distribution that is significantly differ-
ent from the true distribution when estimating parameters
using importance sampling leads to most of the samples
having very small weights, resulting in a severely reduced
neg and a grossly inefficient analysis. If uniform priors are
used, a naive estimation of likelihood inside an arbitrary big
box leads to most samples having very small weights.
Unlike MCMC methods, importance sampling is severely
impacted by the curse of dimensionality.
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