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Implementation of quadtree adaptive mesh refinement (AMR) to the moment-of-fluid (MOF) 
method is presented in the context of an interface capturing method. Filaments, thinner than 
a cell size, are resolved using a computationally efficient technique on an unconstrained quadtree 
structure. The centroid defect relative to its cell size is used as the refinement criterion, together 
with an enhanced refinement calculation and subsequently its volume conservation. In addition, 
different approaches are proposed to ensure mass conservation during the computation. This 
MOF-AMR framework is validated for a range of benchmark problems which are studied widely 
in the literature. There is no restriction on the choice of CFL number for the purely Lagrangian 
advection method considered here and this has advantages when combined with AMR. The 
current quadtree MOF-AMR method leads to much improved computational efficiency and 
accuracy relative to its grid size compared with a uniform grid. Higher levels of refinement can 
be costly, therefore the efficiency of mesh resolution is further discussed in relation to the choice 
of time step and number of AMR levels.

1. Introduction

Multiphase flow modelling has been widely used in many engineering applications. Whilst it is important, representing the 
interface between two or more materials to provide accurate prediction of complex topological structures is technically challenging. 
For simulation of natural flow processes or industrial applications such as wave breaking, droplet behaviour or bubble dynamics, 
highly deformable materials are of interest, which often involve curved interfaces due to surface tension. Accurate prediction of these 
evolving interfaces requires considerable computational resources.

To effectively improve models’ computational efficiency, adaptive mesh methods have been applied in many complex and large-

scale engineering modelling applications, including fluid dynamics, climate modelling and solid structure analysis. Examples include 
adaptive unstructured mesh [1,2], adaptive polynomial degree [3] and adaptive mesh refinement [4–11] methods. The purpose of 
adaptive mesh methods is to adjust dynamically the resolution of a grid in regions of interest or rapid change whilst maintaining 
coarse grid resolution in the regions where the solution “stagnates”. Grid adaptation is triggered using a specified refinement criterion. 
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Through “optimising” the number of grid cells used in the computation, such a grid adaptation strategy may effectively enhance 
computational efficiency while maintaining overall solution accuracy [9].

Methods for predicting the behaviour of fluids with complex interfaces include marker-and-cell method [12], front tracking 
method [13], level-set method [14,15], volume-of-fluid (VOF) method [16,17], and some meshless methods such as smoothed 
particle hydrodynamics (SPH) [18]. Some numerical techniques might be easier to implement than others, some might have better 
mass conservation property, and some might resolve complex interfaces in a superior way. Overall, all these techniques have been 
adopted widely in the literature for interface calculation.

The moment-of-fluid (MOF) method belongs to the class of methods known as interface capturing techniques and has been 
used to capture the interface between two materials [19]. It can be considered as an extension of the VOF method, in which the 
volume fraction as well as the centroid are advected to reconstruct an interface within a cell independent of neighbouring cells 
[19–21]. Recently, the standard MOF method [19] has been improved using symmetric reconstruction [22] and its capability has 
been extended to multi-materials [23,24] which has enabled filaments and thin structures to be reconstructed [25,26].

Several techniques have been used over the years to capture interfaces in the context of adaptive mesh refinement (AMR) [4]. 
These may be broadly categorised as either patch-based AMR or quadtree(octree)-based AMR. Patch-based AMR involves dividing 
the computational domain into a set of refinement patches. This allows for local control over the mesh resolution, and the patches 
can be refined or coarsened dynamically based on the numerical solution being computed. The main advantage of patch-based AMR 
is its flexibility. However, it can lead to increased complexity in the maintenance of the grid being created [27]. On the other 
hand, a quadtree(octree)-based AMR uses a tree-based hierarchical data structure. The computational domain is recursively divided 
into four subcells (in 2D), or eight for octree (in 3D) when the refinement criteria are met. This approach has the advantage of 
being computationally efficient and easier to implement due to having a well-defined data structure [9]. This method is typically 
implemented on Cartesian grids, and also used to support some finite element simulations on tetrahedral meshes [28] and particle 
methods [29].

In the past, AMR has been adopted to simulate interfacial flows using volume-of-fluid [7,10] and level-set [5,11] methods. 
Local grid refinement has been confirmed to be effective in reducing the computational cost compared to refining the entire grid 
[30–32]. Furthermore, unphysical material break-up might be avoided through local refinement techniques. The refinement criterion 
is typically based on the volume fraction or level set function in a cell. But the estimated curvature [33] and interface gradient have 
also been used as refinement criteria.

Despite the potential gain in efficiency, using adaptive mesh refinement in the context of MOF has not been sufficiently explored. 
Undoubtedly, the associated complexity and natural computational cost of the MOF method itself is the reason why AMR has been 
limited in this context. In MOF situations, where zeroth and first moments are computed for interface reconstruction, the latter is 
used as a refinement criterion. Indeed, the centroid approximation is an estimate of the quality of the interface reconstruction. This 
adaptive mesh refinement method combined with the original MOF method was first developed in 2009 by Ahn & Shashkov [34]. 
This involved the use of an unconstrained quadtree structure with up to five levels of refinement. In addition, the refinement criterion 
was set to be unique for all levels and to a value smaller than machine precision. Later, Jemison et al. [25] proposed for the first 
time a filament MOF approach in a patch-based AMR framework. In the advection process, their approach reached up to two levels 
of refinement and their criterion included a tolerance taking into account the relative subcell size. Recently, a standard MOF-AMR 
using a patch-based grid has been used in the flow simulation of droplets [35]. However, no attempt has been reported to combine 
the quadtree-based AMR and filament MOF approaches to explore their advantages in improving model performance.

The main objective of this paper is to develop a novel MOF method that can reconstruct under-resolved structures, mainly 
filaments, at any level of refinement in a quadtree-based AMR structure using a newly developed efficient symmetric MOF scheme 
[26]. Using a Lagrangian pre-image, materials are advected at a base level and then refined locally to allow for a CFL number much 
larger than unity. Therefore, the coarsening procedure becomes irrelevant. Fig. 1 highlights the key steps in the AMR reconstruction. 
In addition, a novel treatment within the MOF environment is also proposed to ensure the mass conservation property is satisfied to 
machine accuracy using a uniform redistribution procedure [36].

This paper is organised as follows. Section 2 describes the standard MOF method including how filaments are reconstructed within 
a cell on a fixed grid. Then, the adaptive mesh refinement structure and its advection procedure are presented in Section 3. Section 4

gives an insight into several volume redistribution techniques designed to conserve volume exactly in dynamic cases. In Section 5, 
results and analysis of several benchmark problems are presented. Finally, the efficiency and accuracy of the AMR is discussed in 
Section 6 and compared to a uniform grid approach. Some concluding remarks are included in Section 7.

2. MOF method

2.1. Interface reconstruction

Reconstructing a standard interface of a desired material using the MOF method requires the computation of the zeroth and first 
moments, 𝑀0 and 𝐌𝟏, respectively, within a convex cell Ω. These quantities are given by the following expressions:

𝑀0 = 𝑑𝑉 = 1
𝑛∑(

𝑥𝑖−1𝑦𝑖 − 𝑥𝑖𝑦𝑖−1
)

(1)
2

∫
Ω

2
𝑖=1
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Fig. 1. Flowchart highlighting the key steps to MOF-AMR reconstruction.
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where (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, … , 𝑛, are the co-ordinates of the vertices of a polygonal cell. Note that the reference volume fraction 𝐹𝑟𝑒𝑓
corresponds to the zeroth moment relative to the convex cell area and the reference centroid 𝐱𝑟𝑒𝑓 corresponds to the first moment 
relative to its zeroth moment.

In order to reconstruct a piece-wise linear interface in the context of the MOF method, the distance between the reference and 
reconstructed centroids is minimised while preserving the value of the zeroth moment. Eq. (3) describes the objective function 𝐸𝑐(𝐧)
to be minimised, where 𝐧 defines the unit outward normal to the interface. A minimisation algorithm is needed for non-rectangular 
cells, and a novel bisection method is used herein [26]. For rectangular cells, in particular Cartesian cells, an analytical solution is 
available, which eliminates the need to use a minimisation algorithm.

𝐸𝑐(𝐧) =
|||𝐱𝑟𝑒𝑓 − 𝐱𝑎𝑐𝑡(𝐧)

||| (3)

where 𝐱𝑎𝑐𝑡(𝐧) refers to the reconstructed centroid (see Fig. 2).

2.2. Filament reconstruction

Filaments are thin structures created during material deformation. Since they are usually smaller than a cell size, some special 
treatment has been developed [37,38]. It is worth noting that a standard MOF approach cannot resolve their exact topology. When 
considering filaments, two interfaces appear within a cell, one on each side of the thin structure, which means that two reconstruc-

tions are needed to capture the topology accurately (see Fig. 3 for an example). In this approach, the thin structure needs to be 
detected before it can be reconstructed, creating the need of an extra step in the MOF reconstruction procedure. This extra step 
involves the use of the conglomeration algorithm detailed in Hergibo et al. [26]. This conglomeration algorithm detects the num-

ber of groups, i.e. conglomerates, that are present in a cell by collecting all sub-polygons adjacent to each other. A multi-material 
reconstruction procedure is needed when filaments are involved. Therein, a symmetric reconstruction is used in the paper, which 
minimises both conglomerates considered. This reduces the number of combinations and is therefore computationally more efficient. 
Eq. (4) refers to the objective function 𝐸𝑠𝑦𝑚𝑐 in a symmetric reconstruction process:
3

𝐸𝑠𝑦𝑚𝑐 (𝐧) = |||𝐱𝑟𝑒𝑓 − 𝐱𝑎𝑐𝑡(𝐧)
|||+ |||𝐱𝑟𝑒𝑚𝑟𝑒𝑓 − 𝐱𝑟𝑒𝑚𝑎𝑐𝑡 (𝐧)

||| (4)
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Fig. 2. Reference vs. reconstructed interface using a standard MOF approach. 𝐱1,...,𝐱4 represent the cell vertices and ⃗𝐧 denotes the outward normal of the reconstructed 
interface.

Fig. 3. Schematic diagrams showing the different MOF reconstruction approaches. Filament MOF has the potential to offer exact reconstruction.

where the superscript rem denotes the remaining conglomerates in a cell.

Note that the number of conglomerates is capped at three for the sake of computational efficiency. A sequential reconstruction 
is needed to minimise the centroid error regardless of the reconstruction of the other conglomerates considered [22]. By definition, 
all the possible combinations of material are tested to find the reconstruction that minimises all centroids present in a cell. The total 
centroid defect 𝐸 can be calculated using:

𝐸 =

√√√√ 𝑛∑
𝑖

|||𝐱𝑟𝑒𝑓 (𝜇𝑖) − 𝐱𝑎𝑐𝑡(𝜇𝑖)
|||2 (5)

where 𝜇𝑖 characterises each material in a cell. In filament reconstructions, 𝜇𝑖 refers to each conglomerate until the fictitious material 
is assigned.

2.3. Advection on a uniform mesh

Advection of a material defines the process of its dynamic evolution through translation, rotation, and deformation. These are 
of particular interest when evaluating the precision of an interface tracking/capturing technique/method. This paper uses a purely 
Lagrangian approach [26] as opposed to a mixed Eulerian-Lagrangian approach [21]. The benefits of using a Lagrangian approach 
include a less restrictive choice of Courant-Friedrichs-Lewys (CFL) number and an unsplit advection approach in which a Lagrangian 
4

pre-image is used to capture the volume fraction and centroid of a material at the previous time step.
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Fig. 4. General idea of data structure used in an AMR framework. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this 
article.)

The vertices of a cell are advected backwards in time using a second-order Runge-Kutta scheme (RK2) before determining its 
intersection with the pre-image. Advection forwards are then performed for centroids and reconstruction using the relevant volume 
fraction. The key steps of the advection procedure are summarised as follows:

(i) Backtrace any cells that may contain the desired material using RK2.

(ii) Intersect the backtrace cell with any material encountered to evaluate the reference volume fractions.

(iii) Advect individual centroids and compute their weighted average to obtain the reference centroid.

(iv) Reconstruct using one of the following techniques:

(a) Standard MOF using a piecewise linear interface between two materials.

(b) Filament MOF using conglomeration algorithm to reconstruct a filament.

Despite showing a refined grid, Fig. 5 demonstrates visually the steps for MOF advection and is also valid for a uniform grid.

3. Adaptive mesh refinement

The main motivation for using AMR is to balance the trade-off between solution accuracy and computational cost. High defor-

mation regions are of interest for AMR in order to produce high-resolution prediction in these complex areas. The process of mesh 
refinement must be informed by an appropriate criterion and the reconstruction error is used to inform grid adaptation in the current 
MOF method [34]. Typically, the refinement process involves splitting each cell into 4 subcells in 2D, and 8 subcells in 3D; coars-

ening involves merging subcells into a larger (sub)cell when the specific condition is met. Generally, the refinement and coarsening 
processes are repeated until either a desired accuracy is achieved or a certain level of refinement is reached.

3.1. Data structure

This work adopts the quadtree-based AMR and the data structure is designed to store and manipulate the hierarchy of meshes 
with ease and efficiency, as well as allowing communication between levels [9]. The quadtree data structure forms a tree where 
the root node represents the coarsest mesh (base mesh), and each additional level of refinement creates four children nodes to their 
parent node. This work introduces a simplified approach in which the data structure replicates a quadtree algorithm up to two levels 
of refinement such that children cells can be accessed from a parent cell at every level up to two. The other advantage is that no 
subroutines are needed to find or access neighbours. In addition, unlike many other AMR codes, the new approach does not constrain 
the refinement level of neighbouring cells or subcells.

An arbitrary cell on the quadtree mesh generated using the new approach is indexed as (𝑖, 𝑗, 𝑖𝑠, 𝑗𝑠) where (𝑖, 𝑗) represents the base 
mesh indices and 𝑖𝑠 = 1, ..., 𝑀𝑠 and 𝑗𝑠 = 1, ..., 𝑀𝑠 are the subcells indices, with 𝑀𝑠 = 2𝑙𝑒𝑣 and 𝑙𝑒𝑣 denoting the level of refinement 
starting at 0 for the base mesh. Subsequently, the size of the new subcells is defined by 𝑑𝑥(𝑙𝑒𝑣) = Δ𝑥∕2𝑙𝑒𝑣 and 𝑑𝑦(𝑙𝑒𝑣) = Δ𝑦∕2𝑙𝑒𝑣
with 𝑙𝑒𝑣 being 0, 1 or 2. Naturally, at Level-0, 𝑑𝑥(0) = Δ𝑥. In addition, the cell-centre coordinates can be directly decided through 
the following relationships 𝑥𝑐 = 𝑥(𝑖) + (𝑖𝑠 − 1) ⋅ 𝑑𝑥(𝑙𝑒𝑣) in the 𝑥-direction and 𝑦𝑐 = 𝑦(𝑗) + (𝑗𝑠 − 1) ⋅ 𝑑𝑦(𝑙𝑒𝑣) in the 𝑦-direction. The cell 
area |Ω| (𝑙𝑒𝑣) is then defined by |Ω| (𝑙𝑒𝑣) = 𝑑𝑥(𝑙𝑒𝑣)𝑑𝑦(𝑙𝑒𝑣), and for a uniform mesh, the cell area is simply defined as |Ω|. Accessing 
children cells use the logic from a parent cell’s index parity 𝑖𝑠. Children subcells indices can be called using (2𝑖𝑠 − 1, 2𝑖𝑠) when the 
parent index 𝑖𝑠 is even, and (𝑖𝑠, 𝑖𝑠 + 1) when 𝑖𝑠 is odd. This logic is valid up to Level-2 and works in both horizontal and vertical 
directions. The data structure and index system are highlighted in Fig. 4.

In order to allow for the manipulation of variables, an additional index representing the level of refinement is used in the data 
structure. Because the data structure may contain several variables accounting for volume fraction, centroid or polygon representation 
at different levels of refinement, a specific variable is used in the code for identifying which level of refinement is reached. The logical 
variable last_lev_refinement(i,j,is,js,lev) allows one to enable or disable any values of unused level of refinement. A true value means 
5

that subcell 𝑖, 𝑗, 𝑖𝑠, 𝑗𝑠 at level 𝑙𝑒𝑣 is the last refinement and contains a valid volume fraction to be intersected. A false value shows 



Journal of Computational Physics 499 (2024) 112719P. Hergibo, Q. Liang, T.N. Phillips et al.

Fig. 5. Schematic showing advection of moments in an AMR framework.

that the subcell 𝑖, 𝑗, 𝑖𝑠, 𝑗𝑠 at level 𝑙𝑒𝑣 is not the last level of refinement and values are ignored. In general, when a higher level of 
refinement is triggered, the logical value of last_lev_refinement of the corresponding parent subcell at a lower level is set to false. 
The value of this logical variable is set to true for all children subcells. Mathematically, the set Φ𝑙𝑒𝑣 , including subsets Φ0, Φ1 and 
Φ2, respectively, represents all cells at their finest refinement i.e. Φ𝑙𝑒𝑣 = Φ0 ∪ Φ1 ∪ Φ2 with Φ𝑖 ∩ Φ𝑗 = ∅ for 𝑖 ≠ 𝑗. This means, with 
reference to the colour scheme of Fig. 4, Φ0 corresponds to green cells, Φ1 to yellow subcells and Φ2 to red subcells. Algorithm 1

details how to loop and access any variables in our code.

Algorithm 1 AMR data structure.

for lev = 0,2 do

for i = 1, N_cell_x do

for j = 1, N_cell_y do

𝑀𝑠 = 2𝑙𝑒𝑣; 𝑑𝑥(𝑙𝑒𝑣) =Δ𝑥∕2𝑙𝑒𝑣; 𝑑𝑦(𝑙𝑒𝑣) =Δ𝑦∕2𝑙𝑒𝑣
for is = 1, Ms do

for js = 1, Ms do

% EXAMPLE : accessing the volume fraction of a subcell

volume_fraction(i,j,is,js,lev)

% EXAMPLE : checking the last level of refinement of a subcell

last_lev_refinement(i,j,is,js,lev) ← true

end for

end for

end for

end for

end for

3.2. Refinement criterion

In previous VOF methods or level set methods, refinement was triggered when the volume fraction is in a certain range or when 
the estimated curvature gradient reaches a certain value. In the adopted MOF method, the centroid error is used as the criterion for 
refinement. Indeed, when a standard MOF or a filament MOF procedure is used in a cell, reconstruction error is a good indicator of 
how accurate the reconstruction is. Eq. (5) includes material centroid error and fictitious material in a filament case. In this paper, 
the refinement criterion is dependent on the cell size, here 10−9𝑑𝑥(𝑙𝑒𝑣), finer than [25] and not set to a fixed tolerance, which is 
different from previous MOF-AMR schemes [34].

3.3. Advection procedure on a refined mesh

Similar to advection on a uniform mesh, advection on a refined mesh entails the use of a Lagrangian pre-image. This requires 
intersecting the material at the previous time step without omitting the different levels of refinement. All levels of refinement need

to be intersected. As per the uniform approach, the backtrace cell is advected backwards using RK2, and the area intersected in 
this pre-image relative to the subcell area corresponds to the volume fraction of the refined subcell. Eventually, the centroids of all 
polygons intersected forming the volume fraction are advected forward using the same scheme and the weighted average will define 
the new reference centroid. The respective reference volume fraction and centroid are used for reconstruction.

Our approach differs from other general MOF-AMR schemes since here filament MOF is enabled. The ability to capture filaments 
has significant advantages over a standard MOF method and has been shown to generate high accuracy on a uniform mesh [26]. For 
6

the sake of capturing filaments, the base mesh is used as the backtracking level, meaning that Level-0 is advected first at all time. 
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Fig. 6. Schematic showing backtracking of moments in an AMR framework. (□) symbols refer to vertices advected using RK2. (△) symbols refer to mid-point vertices 
being interpolated. Color scheme shows green vertices for Level-0; Yellow vertices and dashed lines for Level-1 vertices and subcells; Level-2 vertices and subcells are 
in red.

To determine which cells need advecting, neighbouring volume fractions are used at Level-0 to evaluate its potential of being an 
interface, similar to a uniform advection.

In the case of a cell being refined, the backtrace at a defined level of refinement is performed as follows. The central point 
common to all child subcells is advected using the usual RK2 subroutine. All other vertices are interpolated from the backtrace at 
Level-0. This will guarantee exact material intersection with the level of refinement below, hence exact mass conservation. This is 
performed in a similar fashion for Level-2.

(i) Backtrace the four vertices from a Level-0 cell using RK2.

(ii) Advect the common node using RK2.

(iii) Interpolate the four mid-points from the Level-0 backtrace cell.

(iv) Create four new subcells.

Fig. 6 shows the procedure in place for backtracking a subcell in this refinement framework. This ensures the intersection with 
a refined backtrace cell with the interface. This approach differs from the one introduced by Ahn and Shashkov [34] where a 
simplified backtracking approach is used. As stated above, our approach does not create gaps and overlaps, and therefore a simpler 
mass redistribution procedure can be implemented.

3.4. Time-step on a refined mesh

In numerical simulations, the typical time step is determined according to the CFL condition. In this paper, the CFL number 
is chosen to be unity unless stated otherwise. The Lagrangian approach enables an unrestricted choice of the CFL number [26]. 
Specifically, the time step is chosen with respect to the base mesh. When refining a mesh locally, the time step used at a refined cell 
is the same as the one adopted at the base mesh, and so the CFL number is 2 for Level-1 and 4 for Level-2 cells. Alternative time step 
strategies such as adaptive time stepping can be employed, but for simplicity these were not adopted here as no instability issues 
were encountered using the present approach.

4. Mass conservation during advection

4.1. Uniform global mass redistribution

Mass conservation is difficult to enforce in a grid refinement procedure. Local redistribution in a refinement step can lead to a 
large deformation of the interface, hence global redistribution is used in this paper. When using a global redistribution approach, 
over/under-filled cells are considered. These cells are formed by only one material, however their area intersected leads to a volume 
fraction being either less or greater than unity. These cells have their volume fraction set to unity and the difference to unity 
multiplied by the cell area |Ω| (𝑙𝑒𝑣) is added to a global variable. Let us call the global redistribution variable 𝛿. On a uniform 
7

approach, 𝛿 is redistributed to 𝑁 mixed cells, i.e. cells with an interface. In fact, the 𝛿∕(|Ω|𝑁) amount is redistributed to mixed 
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cells. In the case that not all of the mass is redistributed, an iterative procedure is enacted to ensure all mass is redistributed. Indeed, 
lack of mass redistribution can penalise mass conservation at other levels.

At other levels of refinement, over/under-filled cells may also occur in the intersection process, meaning that mass needs to be 
redistributed at all levels. However, on a refined mesh, mass has been redistributed at a lower level with cells needing refinement. 
Therefore, another local variable “distributed” is considered in the redistribution process corresponding to the mass redistributed in 
each cell/subcell at a lower level. It allows us to keep track of redistribution to cells that may trigger refinement, with the sum of 
them all being 𝛿𝑙𝑜𝑤_𝑙𝑒𝑣. Indeed, mass may be redistributed to cells that will be refined, hence that amount needs to be shared to the 
next refinement level. All cells needing refinement have their mass redistributed at a lower level added to the 𝛿 of the refinement 
level. Then, the new amount of mass redistributed is 𝛿 + 𝛿𝑙𝑜𝑤_𝑙𝑒𝑣. Therefore, for each cell, the new volume fraction 𝐹𝑖 is calculated 
using

𝐹𝑖 ← 𝐹𝑖 +
(𝛿 + 𝛿𝑙𝑜𝑤_𝑙𝑒𝑣)|Ω| (𝑙𝑒𝑣)𝑁𝑚𝑖𝑥

(6)

where 𝑁𝑚𝑖𝑥 corresponds to the number of mixed cells in the domain at a certain level. The following subroutine gives more insight 
into the redistribution procedure (Algorithm 2). In this subroutine, the amount of mass that is not repaired “not_repaired” is taken 
into account because some “almost” full/empty cells may not be able to receive/give their contribution. In these instances, the 
redistribution subroutine is repeated until the amount of mass is close to machine precision. The amount redistributed is kept in the 
variable “distributed”.

Algorithm 2 Redistribution in a refined mesh.

Initialise 𝛿, 𝛿𝑙𝑜𝑤_𝑙𝑒𝑣

𝑟𝑒𝑝𝑎𝑖𝑟 ← 𝛿 + 𝛿𝑙𝑜𝑤_𝑙𝑒𝑣

𝑛𝑜𝑡_𝑟𝑒𝑝𝑎𝑖𝑟𝑒𝑑← 𝑟𝑒𝑝𝑎𝑖𝑟

%Note : 𝛿𝑙𝑜𝑤_𝑙𝑒𝑣 = 0 at Level-0

while (𝑛𝑜𝑡_𝑟𝑒𝑝𝑎𝑖𝑟𝑒𝑑 > 10−13) do

if (mixed_cell ← true .AND. 𝑟𝑒𝑝𝑎𝑖𝑟 < 0) then

%REPAIR IS NEGATIVE - REMOVE VOLUME FRACTION

if (𝑣𝑜𝑙𝑓𝑟𝑎𝑐(𝑖, 𝑗, 𝑖𝑠, 𝑗𝑠, 𝑙𝑒𝑣) + 𝑟𝑒𝑝𝑎𝑖𝑟∕(|Ω| (𝑙𝑒𝑣)𝑁_𝑚𝑖𝑥) < 0) then

%CELL VOLUME FRACTION CANNOT BE NEGATIVE - RESET TO 0

𝑛𝑜𝑡_𝑟𝑒𝑝𝑎𝑖𝑟𝑒𝑑 = 𝑛𝑜𝑡_𝑟𝑒𝑝𝑎𝑖𝑟𝑒𝑑 + 𝑣𝑜𝑙𝑓𝑟𝑎𝑐(𝑖, 𝑗, 𝑖𝑠, 𝑗𝑠, 𝑙𝑒𝑣) ∗ (|Ω| (𝑙𝑒𝑣)𝑁_𝑚𝑖𝑥)
else

𝑣𝑜𝑙𝑓𝑟𝑎𝑐(𝑖, 𝑗, 𝑖𝑠, 𝑗𝑠, 𝑙𝑒𝑣) = 𝑣𝑜𝑙𝑓𝑟𝑎𝑐(𝑖, 𝑗, 𝑖𝑠, 𝑗𝑠, 𝑙𝑒𝑣) + 𝑟𝑒𝑝𝑎𝑖𝑟∕((|Ω| (𝑙𝑒𝑣)𝑁_𝑚𝑖𝑥)
𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑(𝑖, 𝑗, 𝑖𝑠, 𝑗𝑠, 𝑙𝑒𝑣) = 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑(𝑖, 𝑗, 𝑖𝑠, 𝑗𝑠, 𝑙𝑒𝑣) + 𝑟𝑒𝑝𝑎𝑖𝑟∕𝑁_𝑚𝑖𝑥

𝑛𝑜𝑡_𝑟𝑒𝑝𝑎𝑖𝑟𝑒𝑑 = 𝑛𝑜𝑡_𝑟𝑒𝑝𝑎𝑖𝑟𝑒𝑑 − 𝑟𝑒𝑝𝑎𝑖𝑟∕𝑁_𝑚𝑖𝑥

end if

else if (mixed_cell ← true .AND. 𝑟𝑒𝑝𝑎𝑖𝑟 > 0) then

%REPAIR IS POSITIVE - ADD VOLUME FRACTION

if (𝑣𝑜𝑙𝑓𝑟𝑎𝑐(𝑖, 𝑗, 𝑖𝑠, 𝑗𝑠, 𝑙𝑒𝑣) + 𝑟𝑒𝑝𝑎𝑖𝑟∕(|Ω| (𝑙𝑒𝑣)𝑁_𝑚𝑖𝑥) > 1) then

%CELL VOLUME FRACTION CANNOT MORE THAN UNITY - RESET TO 1

𝑛𝑜𝑡_𝑟𝑒𝑝𝑎𝑖𝑟𝑒𝑑 = 𝑛𝑜𝑡_𝑟𝑒𝑝𝑎𝑖𝑟𝑒𝑑 + (1 − 𝑣𝑜𝑙𝑓𝑟𝑎𝑐(𝑖, 𝑗, 𝑖𝑠, 𝑗𝑠, 𝑙𝑒𝑣)) ∗ (|Ω| (𝑙𝑒𝑣)𝑁_𝑚𝑖𝑥)
else

𝑣𝑜𝑙𝑓𝑟𝑎𝑐(𝑖, 𝑗, 𝑖𝑠, 𝑗𝑠, 𝑙𝑒𝑣) = 𝑣𝑜𝑙𝑓𝑟𝑎𝑐(𝑖, 𝑗, 𝑖𝑠, 𝑗𝑠, 𝑙𝑒𝑣) + 𝑟𝑒𝑝𝑎𝑖𝑟∕((|Ω| (𝑙𝑒𝑣)𝑁_𝑚𝑖𝑥)
𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑(𝑖, 𝑗, 𝑖𝑠, 𝑗𝑠, 𝑙𝑒𝑣) = 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑(𝑖, 𝑗, 𝑖𝑠, 𝑗𝑠, 𝑙𝑒𝑣) + 𝑟𝑒𝑝𝑎𝑖𝑟∕𝑁_𝑚𝑖𝑥

𝑛𝑜𝑡_𝑟𝑒𝑝𝑎𝑖𝑟𝑒𝑑 = 𝑛𝑜𝑡_𝑟𝑒𝑝𝑎𝑖𝑟𝑒𝑑 − 𝑟𝑒𝑝𝑎𝑖𝑟∕𝑁_𝑚𝑖𝑥

end if

end if

end while

% WHEN REDISTRIBUTION IS TRIGGERED AT NEW REFINEMENT LEVEL

𝛿𝑙𝑜𝑤_𝑙𝑒𝑣 =
∑
𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑(𝑖, 𝑗, 𝑖𝑠, 𝑗𝑠, 𝑙𝑒𝑣) if(𝑙𝑎𝑠𝑡_𝑙𝑒𝑣_𝑟𝑒𝑓𝑖𝑛𝑒𝑚𝑒𝑛𝑡(𝑖, 𝑗, 𝑖𝑠, 𝑗𝑠, 𝑙𝑒𝑣) == false)

Several approaches can be used when redistributing the mass globally. Two of them are presented in this section, these are termed 
the directly proportional and inversely proportional distribution approaches.

4.2. Directly proportional global mass redistribution

Amongst redistribution procedures, the directly proportional redistribution seems intuitive. The redistribution occurs in a similar 
fashion as the uniform case. However, the mass is redistributed proportional to the volume fraction in a cell. Hence, the total volume 
fraction of all mixed cells is calculated. The repair is then performed using the redistribution process in which the new volume 
fraction is given by

𝐹𝑖 ← 𝐹𝑖 +
(𝛿 + 𝛿𝑙𝑜𝑤_𝑙𝑒𝑣)|Ω| (𝑙𝑒𝑣) 𝐹𝑖∑𝑁𝑚𝑖𝑥

𝑗=1 𝐹𝑗

(7)
8

This approach may alter the shape of the interface to a lesser extent.
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4.3. Inversely proportional global mass redistribution

Opposite to the previous concept, mass is redistributed inversely proportional to its volume fraction in this approach. Concep-

tually, a proportional approach may lead to several iterations of redistribution because a large mass is redistributed to an “almost” 
full/empty cell, and therefore the mass that is not repaired may be large. By using the inversely proportional approach, more mass 
is redistributed to those almost empty cells which intuitively would reduce the number of redistribution iterations, but may alter the 
shape of the interface more. The repair is redistributed as follows

𝐹𝑖 ← 𝐹𝑖 +
(𝛿 + 𝛿𝑙𝑜𝑤_𝑙𝑒𝑣)|Ω| (𝑙𝑒𝑣) (1 − 𝐹𝑖)∑𝑁𝑚𝑖𝑥

𝑗=1
(
1 − 𝐹𝑗

) (8)

5. Results

5.1. Error evaluation

Computing errors play an important part of interface capturing methods as it is the primary indicator of the accuracy of a 
method. Comparing errors enables one to evaluate the merits of different methods. The 𝐿1 error norm 𝐸𝐿1

, which is based on 
a volume fraction approach, is one of these numerical indicators. On a refined grid, the 𝐿1 error is evaluated on the base mesh, 
which means that refined subcells are grouped together to form a single volume fraction on the base mesh. Using the data structure 
described in Section. 3, the error can be evaluated using

𝐸𝐿1
=
∑
𝑖,𝑗

|||𝐹𝑓𝑖𝑛𝑎𝑙(𝑖, 𝑗) − 𝐹𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑖, 𝑗)||| |Ω| (0) (9)

where |Ω|(0) represents the cell area at Level-0, 𝐹𝑓𝑖𝑛𝑎𝑙(𝑖, 𝑗) and 𝐹𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑖, 𝑗) are calculated in similar fashion:

𝐹𝑓𝑖𝑛𝑎𝑙(𝑖, 𝑗) =
∑
𝑙𝑒𝑣

∑
𝑖𝑠,𝑗𝑠⊂{Φ𝑙𝑒𝑣}

𝐹 (𝑖, 𝑗, 𝑖𝑠, 𝑗𝑠, 𝑙𝑒𝑣) |Ω| (𝑙𝑒𝑣)|Ω| (0) (10)

where 𝐹 represents the volume fraction in a subcell and Φ𝑙𝑒𝑣 corresponds to the set including subsets Φ0, Φ1 and Φ2, respectively. If 
a cell contains subcells at Level-1 and Level-2, then Eq. (10) aims at summing up their volume fraction with respect to their subcell 
grid size. If a cell has not been refined, then Level-0 remains and 𝐹𝑓𝑖𝑛𝑎𝑙(𝑖, 𝑗) is the volume fraction at Level-0. The relative error norm 
𝐸𝑟 is given by

𝐸𝑟 =
𝐸𝐿1∑

𝑖,𝑗
||(𝐹𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑖, 𝑗))|| |Ω| (0) (11)

The symmetric error is another indicator of the error in reconstruction. This error indicator provides an estimation of the discrep-

ancy in the area between the initial and final states. The symmetric error 𝐸𝑠𝑦𝑚 is similarly given by

𝐸𝑠𝑦𝑚 =
∑|||𝜔𝑟𝑒𝑓 ∪𝜔𝑎𝑐𝑡 −𝜔𝑟𝑒𝑓 ∩𝜔𝑎𝑐𝑡||| (12)

where 𝜔𝑟𝑒𝑓 denotes the initial state reference interface, which is potentially curved, and 𝜔𝑎𝑐𝑡 denotes the final state reconstructed 
polygon.

Eventually, the mass difference is also used as an indicator. Mass conservation is critical during dynamic cases. In this paper, 
mass corresponds to the area encompassed within the original interface i.e.

Δ𝑚 =
∑|||𝐹𝑓𝑖𝑛𝑎𝑙||| |Ω| (𝑙𝑒𝑣) −∑||𝐹𝑖𝑛𝑖𝑡𝑖𝑎𝑙|| |Ω| (𝑙𝑒𝑣) (13)

While the order of convergence is always calculated on a uniform mesh, an attempt at finding the pseudo-order of convergence 
of the mesh is presented here. Indeed, the order of convergence calculated with a uniform mesh is related to the mesh size but 
also to the ratio of number of cells between refinement levels. In that respect, we aim to give a ratio of maximum grid cells. The 
pseudo-order of convergence 𝑂𝐶 is given by

𝑂𝐶 = log

(
𝐸
𝑠𝑦𝑚

1

𝐸
𝑠𝑦𝑚

2

)
∕ log

⎛⎜⎜⎝
√
𝑛𝑚𝑎𝑥2
𝑛𝑚𝑎𝑥1

⎞⎟⎟⎠ (14)

where 𝐸𝑠𝑦𝑚 corresponds to the symmetric difference error of a particular grid and 𝑛𝑚𝑎𝑥 its maximum number of grid cells. Note that 
Eq. (14) is also valid for a uniform mesh and so the ratio of maximum number of cells in a constant environment gives the same 
9

order of convergence equation as in a uniform mesh.
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Fig. 7. Static reconstruction for a 16 × 16 base grid with zero, one and two levels of refinement and the associated symmetric difference error zoomed in on area 
[0.25, 0.75] × [0.5, 1.0].

Table 1

Dependence of the 𝐿1 error, 𝐸𝐿1
, and relative error, 

𝐸𝑟 , on refinement level for the Zalesak slotted disc 
problem using a 32 × 32 base mesh.

Refinement level 𝐸𝐿1
𝐸𝑟

0 2.55 × 10−3 4.38 × 10−2
1 5.31 × 10−4 9.13 × 10−3
2 1.98 × 10−4 3.41 × 10−3

5.2. Static reconstruction

Static reconstruction consists of reconstructing the interface of a material using the same AMR logic as that described in Section 3. 
The only variation is that no advection is necessary. The refinement procedure still applies and the refinement criterion remains. 
The intersection of a circle of radius 𝑟 = 0.15 centred at [0.5, 0.75] in a unit domain on a finer grid is determined using the exact 
interface rather than the material configuration at the previous time step. Exact mass conservation is achieved at all levels. Fig. 7

highlights the difference in precision during reconstruction when refining the interface using zero, one or two levels of refinement. 
The symmetric difference error gives a good insight into the increased precision and accuracy obtained when using a higher level of 
refinement.

5.3. Benchmark: Zalesak slotted disc

This benchmark test case involves a slotted disc which is rotated anti-clockwise in a rigid body rotation around the centre of 
the domain [39]. The circle of radius 𝑟 = 0.15 has a rectangular slot of width 𝑤 = 0.05 in its centre part with a maximum height of 
ℎ = 0.85. The velocity field for this test case is given by

𝐮(𝑥, 𝑦) =
[
0.5 − 𝑦
𝑥− 0.5

]
(15)

Even though no filaments are formed during the advection process, the filament capability of our code is still enabled. The 
rotational nature of this test case also highlights the fact that no deformation occurs in the material, hence the mass redistribution 
algorithms are enabled but not used as the backtrace is always of the same size as the cell area. This highlights the powerful choice 
of backtrace when refining a mesh as described in Section 3. Three different grids are presented, explicitly 32 × 32 as base mesh and 
a Level-1 and Level-2 of refinement. The number of iterations is 𝑛𝑖𝑡 = 300 and Δ𝑡 = 2𝜋∕𝑛𝑖𝑡.

The error indicator used in this test case is the interpolated 𝐿1 error. Table 1 presents the error for different levels of refinement. 
Fig. 8 emphasises the difference between initial and final reconstructions, as well as the intermediate reconstructions captured during 
the full rigid body rotation. The shape of the interface is maintained well, except around the sharp edges of the rectangular slot. 
The MOF method, as it stands, is not able to reconstruct these sharp edges even when refining the grid locally. Note, however, 
that the straight interface around the longer edges of the rectangle is not refined during the initial condition. Indeed, because MOF 
reconstructs these cells exactly, the refinement criterion is not triggered. The main difference compared with the method of Ahn et 
al. [34] is that the tolerance used in that paper is independent of the cell dimension. This means that, with a tolerance set to be 
smaller than machine precision, even cells that are reconstructed exactly will be refined. Fig. 9 taken from Ahn et al. [34] shows that 
the neighbourhood of slots is refined while it is not in our initial reconstruction.

The Zalesak slotted disc is also a good benchmark to evaluate the efficiency of the method through a time distribution. The time 
10

investigation is an average percentage of time per iteration. Five main blocks exist in this code, the first involves identifying Level-0 
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Fig. 8. Zalesak slotted disc test case for a 32 × 32 base grid and one and two levels of refinement. Top row of figures shows the initial reconstruction. Bottom row of 
figures shows the evolution of the shape of the interface.

Fig. 9. Figure taken from Ahn et al. [34] highlighting their initial reconstruction and choice of refinement for the Zalesak slotted disc.

cells that will need to be advected. This second and third part involves backtracking cells at any levels and also the intersection 
procedure. The final block involves global mass redistribution and interface reconstruction. Fig. 10 highlights the percentage of 
time taken in each block of the code both for a 32 × 32 and 64 × 64 grid. The second plot shows data for the same finest level of 
refinement. Note the advection identification subroutine is insignificant, so is the redistribution procedure. Most of the time is taken 
in the intersection procedure as expected due to looping through all cells and subcells. As more levels are considered, the percentage 
of time increases in the intersection procedure. However, the time spent in reconstruction does not increase significantly because of 
a limited number of cells reaching higher levels. In addition, the likelihood of them not being filament reconstruction cells mitigates 
the computational cost.

5.4. Benchmark: reversible vortex T=8

The reversible vortex is an advection benchmark that has been widely studied in the literature [40]. This deformation case sees a 
circle of radius 𝑟 = 0.15 within a unit domain and centred at [0.5, 0.75] shearing its body along a divergence-free velocity field given 
11

by
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Fig. 10. Percentage of time spent on key MOF processes per iteration for a 32 × 32 and 64 × 64 grid for Level-0, Level-1 and Level-2, respectively (left). Comparison 
of time distribution for same finest level of refinement (right).

Table 2

Symmetric difference error, order of convergence, mass difference and runtime for 
the reversible vortex test case at final reconstruction using a filamentary approach. 
The pseudo-order of convergence is given in parentheses.

Refinement level 0 1 2

𝐸𝑠𝑦𝑚 3.05 × 10−3 1.14 × 10−3 8.93 × 10−4
Order of convergence - 1.41(4.25) 0.35(0.77)

Mass difference 3.3 × 10−15 −6.7 × 10−15 2.5 × 10−13
Runtime (s) 15.7 35.2 92.2

𝐮(𝑥, 𝑦, 𝑡) =
[
−sin2(𝜋𝑥) sin(2𝜋𝑦)
sin2(𝜋𝑦) sin(2𝜋𝑥)

]
cos(𝜋𝑡∕𝑇 ) (16)

in which 𝑇 represents the full period. In most cases, 𝑇 = 8 and in our case, the Courant-Friedrichs-Lewy (CFL) number is 1. In that 
respect, the number of iterations 𝑛𝑖𝑡 = 256 and Δ𝑡 = Δ𝑥. The structure of the deformed interface exhibits filaments which indicates 
that the filament procedure is activated within our AMR scheme. Fig. 11 highlights the results for a base mesh of 32 × 32 with 0, 1
and 2 levels of refinement. The maximum deformation at 𝑡 = 𝑇 ∕2 is shown as well as the final state at 𝑡 = 𝑇 . Indeed, during the final 
state, the symmetric difference error can be used when comparing with the initial reconstruction. It is important to note that during 
the refinement process, the local CFL number reaches 2 and 4, respectively, for refinement at Level-1 and Level-2. Mass difference 
and runtime are also explicitly displayed in Table 2.

The evolution of the number of cells is displayed in Fig. 12. As expected, Level-0 offers a constant number of cells throughout the 
iterations, while the number of cells for Level-1 and Level-2 increase gradually until the vortex is reversed. Note the small drop in 
the number of cells in the final iteration before reversal. At this instant in time the magnitude of the velocity field vanishes which 
limits the error in reconstruction.

5.4.1. Influence of the mass redistribution procedure

In this section the influence of the mass redistribution procedure is examined. In most cases, mass is redistributed uniformly. 
However, as discussed in Section 4, directly proportional and inversely proportional redistributions are implemented and explored 
in this paper. Fig. 13 shows the seemingly marginal differences between these approaches in terms of reconstruction. Runtime is 
also comparable with a uniform distribution. However, in terms of mass conservation, machine precision is not achieved. The main 
difference lies in the way the redistribution of mass is achieved. While a directly proportional approach seems to be a natural way to 
follow, the number of iterations necessary to redistribute mass is increased compared to a uniform approach. Similarly, the inversely 
proportional approach iterates more times without increasing the runtime significantly.

5.4.2. Influence of the initial refinement

The initial reconstruction is the lower limit of error possible when reconstructing the interface. Indeed, it may differ between 
the initial reconstruction and the dynamic case. In general, when using a refinement structure, the initial refinement is the same 
as the advection process. This is the case for all other cases in this present study. Hence, this section assesses the influence of the 
12

initial refinement on the final reconstruction. In the following case, the circle is reconstructed using different levels of refinement at 
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Fig. 11. Reversible vortex test case using 𝑇 = 8 for the base grid 32 × 32 with zero, one and two levels of refinement. Top row of figures shows the maximum 
deformation. Bottom row of figures shows the final interface.

Fig. 12. Evolution of the number of cells when using different levels of refinement during the reversible vortex test case.

the initial stage, then advected using either Level-0, Level-1 or Level-2. Fig. 14 shows the final reconstruction for different levels of 
refinement at the initial stage.

A slightly adapted data structure is used to accommodate the correct segmentation. In our code, (𝑖, 𝑗, 𝑖𝑠, 𝑗𝑠, 𝑙𝑒𝑣) is the data structure 
used for adaptive mesh refinement. However, space allocation is performed at the start using the desired maximum refinement level 
𝑑𝑖𝑣_𝑚𝑎𝑥, i.e. 𝑖𝑠 has an allocation of 2𝑑𝑖𝑣_𝑚𝑎𝑥 and so has 𝑗𝑠. Note that this allocation would not work if the maximum level was 0 at 
the initial stage but then 2 during the advection process as the allocation would not be performed. This allows us to use any initial 
condition in terms of refinement levels as one can see in Fig. 7. Note that the final state is not highly dependent on the initial level 
of refinement.

5.4.3. Influence of the mesh refinement criteria
As described above the refinement criteria in a MOF framework is the discrepancy between the reference and reconstructed 
13

centroid. This section discusses the influence of having a finer or coarser criterion. Note that the criterion is non-dimensionalised by 
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Fig. 13. Visual comparison between a uniform, directly proportional and inversely proportional mass redistribution at maximum deformation.

Fig. 14. Final reconstruction for the reversible vortex test case using 𝑇 = 8 for the base grid 32 × 32, one and two levels of refinement. Levels indicate the level of 
refinement at the initial stage.

the cell size so that it is more meaningful than using machine precision. A lower tolerance has a great influence on the reconstruction 
precision, but it also has implications on the number of cells in the domain and indeed the runtime. In setting a suitable tolerance, 
one has to consider the trade-off between accuracy and runtime. Runtime is comparable for all test cases and a significant difference 
is not found. Fig. 15 shows the intermediate and final reconstruction as well as the evolution of the number of cells in the domain. 
The maximum number of cells is also comparable, however the evolution shows an interesting feature where the last iteration before 
reversal exhibits a large drop in the number of cells. Indeed, the last iteration corresponds to the cos(𝜋𝑡∕𝑇 ) term vanishing, meaning 
the reconstruction is an almost-static reconstruction. The Level-0 advection will be able to reconstruct more filaments. Combined 
with a low tolerance, the number of cells in the domain decreases significantly.

5.4.4. Influence of the backtrace on interface reconstruction

The choice of backtrace within a refinement framework can influence results greatly. Indeed, the natural choice is to perform 
backtracking on the subcell itself, ascribed here as Regular. However, there are some advantages and disadvantages which are 
explained below. On the one hand, the intersection procedure of our approach must intersect the entirety of the desired material at all 
times. In this regard, our backtracking approach is to use Level-0 as reference and make sure that all refined levels intersect the same 
area as previous levels. This ensures exact mass conservation. However, the refined backtrace subcells are slightly deformed, which 
means the reference volume fraction and centroid are somewhat distorted. On the other hand, the regular backtrace creates gaps and 
overlaps that are very small [34]. This does not guarantee a full intersection of the material, leading to poor conservation of mass. 
Despite this loss of mass, the interface reconstruction is not distorted which may indicate a smoother interface reconstruction. The 
correct backtracking consisting of advected hanging nodes may also create non-convex cells, which means more complex algorithms 
are needed. This approach has been discarded. Fig. 16 emphasises the difference between a regular backtrace and our proposal for 
one and two levels of refinement.

Table 3 shows that the error is smaller when using a regular backtrace. Yet, having a smaller symmetric difference error may 
not guarantee good mass conservation. In addition, the regular backtrace choice seems to be computationally faster. Indeed, the 
backtracking procedure is only relevant for the subcell itself, whereas in our model, higher levels need to account for the previous 
14

levels of refinement for its backtracking procedure.
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Fig. 15. Influence of the mesh refinement criterion tolerance on intermediate and final reconstruction and evolution of the number of cells in the domain.

Fig. 16. Comparison between a regular backtrace and our choice of backtracking a refined subcell at the final state.

Table 3

Comparison between our model and a regular backtrace 
regarding interface reconstruction.

Our model Regular backtrace

Level-1

𝐸𝑠𝑦𝑚 1.14 × 10−3 7.84 × 10−4
Mass difference −6.7 × 10−15 9.8 × 10−5
Runtime (s) 35.3 31.0

Level-2

𝐸𝑠𝑦𝑚 8.93 × 10−4 6.26 × 10−4
Mass difference 2.5 × 10−13 −2.6 × 10−4
Runtime (s) 92.2 75.2
15
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Fig. 17. Droplet flow test case for a 32 ×32 base grid with zero, one and two levels of refinement. Figure shows the maximum deformation (red) and the final interface 
(green).

Table 4

Symmetric difference error, mass difference and runtime for the droplet flow 
test case at final reconstruction using a 32 × 32 base mesh compared to refer-

ence solutions.

Refinement level 0 1 2

𝐸𝑠𝑦𝑚 in [25] 2.48 × 10−3 6.37 × 10−4 2.96 × 10−4
Order of convergence - 1.96 1.10
Runtime (s) 191.3 529.3 940.4

𝐸𝑠𝑦𝑚 1.53 × 10−3 2.55 × 10−4 1.90 × 10−4
Mass difference −2.82 × 10−4 −4.78 × 10−7 −4.92 × 10−16
Runtime (s) 2.9 7.8 21.2

5.5. Benchmark: droplet flow

Originally proposed by Ahn and Shashkov [34] and further developed by Jemison et al. [25], the droplet flow test case deforms 
an initial circle of radius 𝑟 = 0.125 centred in a unit domain using a nonlinear divergence-free velocity field given by

𝐮(𝑥, 𝑦, 𝑡) =
[

0.125(8𝑥− 4)
0.125

[
−(8𝑦− 4) − 4 −

(
1 − (8𝑥− 4)2 − (8𝑥− 4)4

)]]𝑓 (𝑡) (17)

where

𝑓 (𝑡) =
⎧⎪⎨⎪⎩
1 0 ≤ 𝑡 < 𝑇𝑚𝑎𝑥 − 𝑡𝜖∕2
cos

(
𝜋(𝑡−𝑇𝑚𝑎𝑥+𝑡𝜖∕2

𝑡𝜖

)
𝑇𝑚𝑎𝑥 − 𝑡𝜖∕2 ≤ 𝑡 ≤ 𝑇𝑚𝑎𝑥 + 𝑡𝜖∕2

−1 𝑇𝑚𝑎𝑥 + 𝑡𝜖∕2 < 𝑡 ≤ 2𝑇𝑚𝑎𝑥

(18)

represents the amplitude of the velocity field which varies in time so that at time 𝑡 = 𝑇𝑚𝑎𝑥 the initial droplet is recovered to its 
original position.

Filaments are formed during the advection process. A leading tip is generated, making this case challenging. The base mesh is 
32 × 32, the number of iterations is 𝑛𝑖𝑡 = 160 and Δ𝑡 = 0.01. Two levels of refinement are tested. Fig. 17 highlights the shape of 
the intermediate 𝑡 = 𝑇𝑚𝑎𝑥 and final interface using different levels of refinement. All figures show adequate results compared to the 
original circle. In addition, filaments are well reconstructed except when the tip needs to be reconstructed using refinements. This 
tends to lead to spurious break ups in the material.

Table 4 provides the information on the symmetric difference error, mass difference and runtime. Note that the mass difference 
is not as accurate as expected. Indeed, for the coarser refinement, some material tends to leave the domain near the bottom edge. 
The Level-1 figure shows that some material at the final state was advected very near the edge of domain, suggesting that for levels 0
and 1, some has left the domain. This highlights a major drawback of our approach. Indeed, when using a Level-0 advection scheme 
combined with filaments, material that breaks away from the main material tends to stay detached, or is reconstructed poorly even 
when using some levels of refinement.

5.6. Benchmark: S-shape

First tested by Ahn and Shashkov [34] and Jemison et al. [25], the S-shape benchmark case is a challenging material deformation 
test where an initial circle of radius 𝑟 = 0.25 centred in a unit domain is deformed in a nonlinear divergence-free velocity field given 
16

by
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Fig. 18. S-shape test case for a 32 × 32 base grid with zero, one and two levels of refinement. Top row of figures shows the maximum deformation. Bottom row of 
figures shows the final interface.

Table 5

Symmetric difference error, mass difference and runtime for the S-shape 
test case at final reconstruction compared to Jemison et al. [25].

Refinement level 0 1 2

𝐸𝑠𝑦𝑚 in [25] 2.11 × 10−2 1.34 × 10−3 4.74 × 10−4
Runtime (s) 157.2 773.1 1871.5

𝐸𝑠𝑦𝑚 1.57 × 10−2 1.11 × 10−3 1.41 × 10−3
Mass difference −3.47 × 10−10 −2.44 × 10−4 3.30 × 10−3
Runtime (s) 35.9 61.7 180.7

𝐮(𝑥, 𝑦, 𝑡) =
[

0.25[(4𝑥− 2) + (4𝑦− 2)3]
−0.25[(4𝑦− 2) + (4𝑥− 2)3]

]
𝑓 (𝑡) (19)

where 𝑓 (𝑡) is given in Eq. (18). In this case, 𝑇𝑚𝑎𝑥 = 4 and 𝑡𝜖 = 2. The total number of iterations for a base mesh 32 × 32 is 𝑛𝑖𝑡 = 320
and Δ𝑡 = 0.025.

The deformation creates a highly deformed material creating thin filamentary structures in the centre of the domain. For this 
benchmark, our filament capable MOF procedure is used. Fig. 18 shows the maximum deformation of the material and its final 
state. Table 5 provides the information on the symmetric difference error, mass difference and runtime. The Level-0 grid shows poor 
reconstruction because the thin strand of material in the centre of the domain is difficult to reconstruct even with a filament approach 
using three conglomerates. When more than three conglomerates exist, a standard MOF reconstruction is used which tends to merge 
materials together [26]. Using one or two levels of refinement exhibits a better reconstructed interface. However, mass conservation 
is not well maintained for this challenging case due to the reversion of a large portion of thin filamentary structures. The significant 
loss of mass affects the symmetric difference error at Level-2, which is larger than the reconstruction at Level-1.

6. Discussion on the efficiency of MOF-AMR filament capability

Any AMR framework is known to use a reasonable trade-off between accuracy and runtime, refining regions of interest while 
decreasing the total number of cells used in computation compared to a uniform grid. In general AMR practices, runtime increases 
17

with refinement levels while the error decreases (or the region of interest becomes more accurately defined). However, in the MOF 
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Table 6

Efficiency table testing three different grids with the same maximum level of refine-

ment. BM 128 relates to Base Mesh and its resolution. CFL numbers are expressed 
for the base mesh.

BM 128 Level-0 BM 64 Level-1 BM 32 Level-2

CFL 1.0 1.0 1.0
𝐸𝑠𝑦𝑚 1.56 × 10−4 2.36 × 10−4 8.93 × 10−4
Max number of cells 16384 5530 3061

Number of iterations 1024 512 256

Runtime (s) 115.3 81.2 92.9

CFL 1.0 0.5 0.25
𝐸𝑠𝑦𝑚 1.56 × 10−4 1.65 × 10−4 2.42 × 10−4
Runtime (s) 115.3 165.5 296.9

Fig. 19. Visual results of the efficiency test of the MOF-AMR filament capable procedure using different CFL numbers therefore a constant number of iterations.

context, regions of high deformation can be reconstructed with ease using filaments while maintaining a reasonable computational 
cost. In this regard, one can try to compare the efficiency of different levels of a MOF-AMR filament capable procedure. Indeed, 
a filament reconstruction with a higher base resolution but with a lower level of refinement may be equivalent to a lower base 
resolution reconstruction but with a higher level of refinement. This section tries to give an insight into compromising runtime and 
error for the well-known reversible vortex benchmark. At first we use a constant unity CFL number on the base mesh, meaning the 
local CFL number for refined grids is 2 and 4, respectively, for Level-1 and Level-2. Secondly, we consider an effective CFL number 
for the finest resolution meaning that the number of iterations is constant for all three configurations. The base mesh CFL number 
for one level of refinement is 0.5 and for two levels of refinement 0.25.

One can see from Table 6 that with a constant CFL number, runtime is better for one level of refinement, which is also better 
than two levels of refinement. This is due to the fact that Level-1 has to be reconstructed first. In addition, the number of cells used 
is very small compared to a uniform mesh even with the highest refinement levels. When using the same effective CFL number, i.e. 
equivalent at the finest resolution, runtime increases significantly with the increased number of iterations. Similarly, the symmetric 
difference error increases. Fig. 19 shows the improved final reconstruction. Comparison of performance on a fine uniform grid and 
a grid using one level of refinement, both using filament capable methods, shows that there is a significant improvement in runtime 
18

and number of cells for the latter while the error is very similar in both cases. This solution may be a more desirable option. Fig. 20
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Fig. 20. Number of cells and symmetric difference error for the efficiency test.

shows a significantly smaller number of cells used. In addition, much better reconstruction is achieved with a smaller CFL number. 
The influence of high CFL numbers (> 2) on interface accuracy has not been demonstrated.

7. Conclusions

In this paper, a new quadtree-based adaptive MOF method has been presented where filament structures are resolved using a 
symmetric multi-material approach on a refined grid. A simplified quadtree structure has been implemented with logical connection 
between parent and children cells up to two levels of refinement. A Lagrangian backtracking approach for refined grids is proposed 
that enables exact material intersection during the advection process, hence ensuring mass conservation. The refinement criterion 
is based on the centroid defect relative to the cell or subcell size, ensuring linear interfaces are reconstructed exactly without the 
need for refinement. As a result, the proposed framework achieved good results in terms of accuracy and runtime while using 
computational resources in a more efficient manner. Comparison between different levels of refinement for the same minimum cell 
size provides insight into the most efficient use of this framework and the MOF method in general.

This MOF-AMR method is tested on several benchmark problems with high material deformation. All of these benchmark prob-

lems are compared with a couple of similar MOF approaches using refinement. First, the Zalesak slotted disc shows less refined 
cells at the initial stage and achieved good qualitative results. Other benchmarks such as the reversible vortex show highly precise 
reconstruction at maximum deformation under different levels of refinement. The droplet flow and the S-shape test case yielding 
highly deformed structures are presented with filament reconstruction. Qualitatively, results are comparable to other MOF meth-

ods. The limitation of our method lies in the number of refinement levels available in an unconstrained adaptive grid structure. 
Our refinement approach differs from other MOF-AMR reference methods [25,34] but shows acceptable results. Machine precision 
mass conservation algorithms are achieved for benchmark problems such as the reversible vortex, whilst further improvements are 
required for other problems such as the droplet flow or the S-shape case. Furthermore, runtime has been significantly decreased com-

pared to previous methods. In this study, no high-performance libraries are used and calculations are carried out on a single core. 
High-performance frameworks would offer strong scalability and efficient algorithms for handling large parallel octree operations 
[37,41–43]. Yet, complexity and potential resource requirements may be challenging. In comparison, our data structure offers ease 
of use and accessibility, suitable for smaller-scale efforts. Many advantages follow from this decision such as the absence of load 
balancing, numbering, and neighbouring search. However, the authors are aware of potential issues related to limited scalability and 
versatility, memory access, parent node data optimisation and general computing performance.

The present MOF-AMR method tends to decrease the cross-stream diffusion of advected material and can reconstruct sharp edges 
or tips of filaments with greater accuracy using up to two levels of refinement. Further improvement may be made to address these 
numerical issues by using the recent new moment-of-fluid method [44] or the parabolic interface reconstruction [45]. In addition, 
the number of conglomerates has less influence on the centroid defect as these scenarios tend to trigger refinement. In future work we 
would like to advect and reconstruct several materials within the same domain which will most likely involve reconstructing more 
than three materials. In this AMR framework, optimising the levels of refinement could be of interest to reduce the computational 
cost by using prediction algorithms. Coupling our MOF-AMR framework with a fluid flow solver is our next aim targeting complex 
multiphase flow problems, which can potentially reduce the computational cost without sacrificing accuracy.
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