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ABSTRACT

Radiologists’ eye movements during medical image interpre-

tation reflect their perceptual-cognitive behaviour and corre-

late with diagnostic decisions. Previous study has shown the

significance of gaze behaviour of different time intervals for

the decision-making process. Being able to automatically pre-

dict the visual attention of radiologists for different reading

phases would enhance the reliability and explainability of ar-

tificial intelligence (AI) in diagnostic imaging. In this paper,

we investigate the time-interval visual saliency in mammo-

gram reading. We propose a novel visual saliency prediction

model based on deep learning, which predicts a sequence of

time-interval saliency maps for an input mammogram. Ex-

perimental results demonstrate the efficacy of the proposed

time-interval saliency model.

Index Terms— Saliency, eye movements, deep learning,

time-interval, mammogram

1. INTRODUCTION

Previous research has demonstrated that eye movements of

radiologists when interpreting medical images provide in-

sights into their perceptual-cognitive behaviour and decision-

making process [1, 2]. Automatically predicating radiolo-

gists’ visual attention during their diagnostic tasks benefits

the advances of medical training [3] and artificial intelligence

(AI)-aided diagnosis [4].

Visual attention representing the entire diagnostic process

has been well studied; however, radiologists’ visual attention

for different time intervals during image interpretation is criti-

cal and less studied. Previous studies suggest that radiologists

often fixate on abnormalities within the initial stages of image

interpretation for example [5, 6]. The visual search patterns

of radiologists commonly exhibit time-relevant features, due

to their behaviour of adopting different search strategies dur-

ing different reading stages and allocating varying levels of

attention to abnormal regions over time [7]. Fig. 1 illustrates

radiologists’ visual attention for different time intervals when

interpreting mammogram images, as well as the differences

in visual attention patterns between these intervals. It can be

seen that radiologists allocate their attention differently across

different time intervals. Hence, the ability to automatically

T1

0-500	ms
T2

500-1750	ms
T3

1750-3000	ms T2− T1 T3− T2

Fig. 1. Illustration of the radiologist’s different visual at-

tention allocations at different time intervals during reading

mammograms. From left to right, the first three columns

show saliency maps for T1, T2, and T3 intervals. The fol-

lowing two columns represent attention difference for T2-T1

and T3-T2, where red regions signify emerging attention, and

blue regions indicate decayed attention.

predict the visual attention of radiologists for different read-

ing intervals is of importance for the development of AI in

diagnostic imaging.

A range of saliency models have been developed and can

effectively predict the visual saliency of images [8, 9, 10,

11, 12, 13]. Although the majority of these models are de-

signed for natural images, some models are found to exhibit

commendable performance in the domain of medical imag-

ing [14]. It should be noted that these methods primarily fo-

cus on obtaining a holistic visual saliency map for the entire

image reading process, hence neglecting the temporal infor-

mation of the radiologist’s visual behaviour during image in-

terpretation. To capture temporal visual attention patterns,

some studies have attempted to model scanpaths [15, 16],

such as predicting the sequence of gaze locations observers

fixate on an image over time. Despite this effort, the vari-

ability in individual fixation locations makes scanpath anal-

ysis and modelling notably complex. Furthermore, diverse

sequences of content traversal in images might exhibit sim-

ilar attention allocation in specific image regions. Recently,

several studies have introduced modelling of temporal visual

saliency on natural images [17, 18] to overcome these chal-

lenges. These methods maintain the robustness of population-

level saliency while preserving the temporal characteristics of

visual behaviour [17, 18]. While the methods for natural im-

ages have shown promise, medical images pose unique chal-
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Fig. 2. Schematic overview of the architecture for the proposed method. A mammogram image is first encoded through an

encoder, followed by three TiS modules. These TiS modules, from top to bottom, process the saliency features of time intervals

0-500 ms, 500-1750 ms, and 1750-3000 ms, respectively. The output features from each TiS module are then decoded by a

shared-parameter decoder, producing the saliency map for each respective time interval.

lenges. It is beneficial to develop a method to predict tempo-

ral visual saliency of medical images to enhance the accuracy

and clinical relevance of machine-generated saliency maps.

In this paper, we first explore the importance of predict-

ing time-interval visual saliency during radiologists’ mammo-

gram examination, and then propose a novel model tailored

for this task. This model leverages multiple time-interval

saliency modules to achieve saliency prediction for mammo-

grams. Experimental results demonstrate the effectiveness of

the proposed model, and it outperforms the state-of-the-art vi-

sual saliency models for predicting time-interval saliency of

mammograms.

2. PROPOSED METHOD

2.1. Time-interval saliency in mammogram reading

Our study is based on a large-scale mammography eye move-

ment dataset comprising 196 mammogram images and eye-

tracking data of 10 radiologists [19] scanning each image for

3000 milliseconds (ms). To explore the temporal saliency in

mammograms, we divided the total reading time of 3000ms

into three intervals: 0-500 ms (T1), 500-1750 ms (T2), and

1750-3000 ms (T3). This interval division is based on the

following reasons: First, for mammogram scanning, the eye

movement behaviour of radiologists during the first 500 ms

is significantly different from that in the period of 500-3000

ms [20]. Second, according to research [18], dividing time

into equal intervals is effective for exploring the temporal

aspects of visual saliency. The discrepancy in visual atten-

tion distribution between the different time intervals is as-

sessed by calculating the Pearson’s Correlation Coefficient

(CC) and similarity (SIM) between the time-interval saliency

maps [11]. The results in Table 1 show that the discrepancy

between the time-interval saliency maps is evident (i.e. CC

and SIM values are smaller than 0.7). Furthermore, statistical

significant difference is found in CC and SIM for the compar-

Table 1. Discrepancy between saliency maps across different

time intervals for mammogram images. T1, T2, and T3 denote

time intervals 0-500 ms, 500-1750 ms, and 1750-3000 ms,

respectively.

CC SIM

T1 T2 T3 T1 T2 T3

T1 1 0.5778 0.5706 1 0.4775 0.4634

T2 0.5778 1 0.6391 0.4775 1 0.5529

T3 0.5706 0.6391 1 0.4634 0.5529 1

isons of (T1, T2) versus (T2, T3), and (T1, T3) versus (T2, T3)

(Mann–Whitney U tests, p < 0.01). These findings indicate

profound differences in visual saliency across the T1, T2, and

T3 time intervals, emphasising the importance of predicting

time-interval visual saliency maps in mammograms.

2.2. Time-interval saliency prediction for mammograms

For temporal saliency prediction in mammograms, we pro-

pose a deep learning model, with its architecture illustrated

in Fig. 2. In the proposed model, a mammogram image is

first input into a static encoder for feature extraction; subse-

quently, the extracted features are fed into a series of time-

interval saliency (TiS) modules to obtain visual saliency

information for different time intervals; the output saliency

maps are generated by a static decoder based on the saliency

features of different time intervals.

Previous research has shown the pivotal role of encoders

in predicting visual saliency for mammograms [14]. Follow-

ing this approach, our model adopts the encoder as depicted

in [14] to effectively extract mammogram image features,

namely F0. In order to obtain the temporal visual saliency,

F0 is processed by the TiS modules. Each TiS module lever-

ages features from both previous iterations and the preceding

time interval to derive saliency features for the current inter-

val. Specifically, let TiS(i,j) represent the j-th layer of TiS
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Fig. 3. Details of one time-interval saliency module (TiS(i,j)).

applied to the i-th time interval, this process can be expressed

as:

F(i,j) = TiS(i,j)(F(i−1,j),F(i,j−1)), (1)

where F(i−1,j) = F(i,j) when i = 1; F(i,j−1) = F0 when j =
1. For a single TiS module, the details are illustrated in Fig. 3.

Let g(·) represent the sequence of convolution, normalisation,

and GELU activation. In each TiS, for i > 1, we obtain Fq by

flattening g(F(i−1,j)+F(i,j−1)), and Fk and Fv by flattening

g(F(i,j−1)); for i = 1, all three are derived from flattening

g(F(i,j−1)). Subsequently, the cross-interval attention can be

computed using the following formula, yielding F⋆ with the

dimensions consistent with the input feature maps:

F⋆ = rn(Softmax(Fq ×FkT )×Fv), (2)

where rn(·) represents reshape and normalisation. Finally, the

final output of TiS(i,j) is:

F(i,j) = g(F⋆ + F(i,j−1)) (3)

A static decoder is employed to reconstruct the outputs of

these TiS modules into saliency maps for respective time in-

tervals. The decoder is composed of a series of blocks, each

containing a convolutional layer, normalisation, ReLU activa-

tion, and bilinear upsampling. These blocks reduce the chan-

nel dimensions of the saliency features for each time interval

and adjust them to the spatial dimensions of the input mam-

mogram image. In our proposed architecture, although sepa-

rate saliency maps are generated for different time intervals,

they utilise a common decoder with shared parameters.

3. EXPERIMENTAL RESULTS

3.1. Experimental settings

Previous studies [14] have indicated that network weights

pre-trained on large-scale natural image saliency datasets

are beneficial for visual saliency prediction of mammogram

Table 2. Performance comparison between Baseline×3 and

the variants of the proposed model. N represents the number

of TiS used in each time interval.
CC↑ SIM↑ NSS↑ AUC↑

T1

Baseline×3 0.7971 0.6434 3.7957 0.9635

N = 1 0.8109 0.6578 3.8583 0.9643

N = 2 0.8152 0.6621 3.8885 0.9646

N = 3 0.8162 0.6623 3.8943 0.9646

T2

Baseline×3 0.8095 0.6799 2.9880 0.9468

N = 1 0.8132 0.6844 3.0058 0.9469

N = 2 0.8139 0.6849 3.0125 0.9469

N = 3 0.8139 0.6850 3.0156 0.9469

T3

Baseline×3 0.7811 0.6556 2.8219 0.9437

N = 1 0.7827 0.6578 2.8294 0.9438

N = 2 0.7831 0.6579 2.8295 0.9439

N = 3 0.7818 0.6577 2.8270 0.9438

images. Accordingly, networks in our experiment were ini-

tialised with parameters pre-trained on SALICON [21], one

of the most widely used and largest natural image saliency

datasets. Thereafter, we employed 7-fold cross-validation on

the eye-tracking mammogram dataset as described in sec-

tion 2.1. More specifically, the dataset was partitioned into

seven distinct subsets, each encompassing 28 images from 14

cases. In each run, a single subset was reserved for testing,

another for validation, while the remaining five were amal-

gamated for training. Optimal models were derived using

the early-stop strategy with patience of 5 epochs and were

subsequently evaluated on the designated test set. The final

results represent the mean performance across all seven runs.

The loss functions used for each time interval are consistent

and comprise a linear combination of CC, SIM, normalised

scanpath saliency (NSS), and Kullback-Leibler divergence,

as detailed in [14]. The optimisation process leverages the

AdamW optimiser [22], commencing with an initial learning

rate of 4×10−5, which is multiplied by 0.1 every two epochs.

To evaluate the model performance in terms of the agree-

ment between the predicted saliency maps and the ground

truth, various evaluation metrics have been identified in the

literature [23]. In this paper, four prevalent metrics, includ-

ing CC, SIM, NSS, and area under ROC curve (AUC), are

selected to render a holistic and impartial assessment for

saliency prediction.

3.2. Effectiveness of time-interval saliency prediction

To evaluate the efficacy of our proposed method for predicting

saliency across temporal intervals of mammograms, we de-

fined a baseline model demoted as Baseline×3. Baseline×3

involves three instances of our model, but each having all TiS

modules removed. Each of these instances was trained indi-

vidually to predict the saliency map for a specific time inter-

val. Let N represents the number of TiS modules of a single



Table 3. Performance comparison with state-of-the-art visual saliency models. The ⋆ symbol denotes static models, each

comprising three model instances trained and tested individually on T1, T2, and T3, while † denotes temporal saliency models.

Bold indicates the best performance.
T1: 0-500 ms T2: 500-1750 ms T3: 1750-3000 ms

CC↑ SIM↑ NSS↑ AUC↑ CC↑ SIM↑ NSS↑ AUC↑ CC↑ SIM↑ NSS↑ AUC↑
DVA⋆ [8] 0.7438 0.5737 3.4034 0.9584 0.7230 0.5879 2.5338 0.9336 0.7491 0.6218 2.5959 0.9386
UNISAL⋆ [12] 0.7765 0.6251 3.6344 0.9605 0.7484 0.6355 2.6591 0.9376 0.7328 0.6166 2.5519 0.9364
EML-NET⋆ [10] 0.7800 0.6167 3.6661 0.9614 0.7678 0.6443 2.8011 0.9412 0.7482 0.6226 2.6331 0.9376
MSI-Net⋆ [13] 0.7902 0.6354 3.6515 0.9625 0.7941 0.6633 2.8368 0.9439 0.7650 0.6368 2.6750 0.9406
SAM-VGG⋆ [9] 0.7917 0.6227 3.6218 0.9618 0.7739 0.6436 2.7063 0.9395 0.7235 0.5988 2.4525 0.9329
TranSalNet⋆ [11] 0.7919 0.6379 3.7257 0.9619 0.7928 0.6662 2.9154 0.9444 0.7576 0.6371 2.7072 0.9400

TempSAL† [18] 0.8083 0.6555 3.8301 0.9636 0.7974 0.6710 2.8896 0.9449 0.7744 0.6489 2.7645 0.9421

Our Model† 0.8152 0.6621 3.8885 0.9646 0.8139 0.6849 3.0125 0.9469 0.7831 0.6579 2.8295 0.9439

T
1

T
2

T
3

TempSALOur	ModelGT DVA TranSalNetSAM-VGGMSI-NetEML-NETUNISAL

Fig. 4. Examples of time-interval saliency predictions. Rows, from top to bottom, represent time intervals: 0-500 ms, 500-1750

ms, and 1750-3000 ms. The leftmost column represents the Ground Truth (GT), the other columns show the predictions of

state-of-the-art saliency models.

time interval. As can be seen from Table 2, by incorporat-

ing the TiS modules for time-interval saliency prediction, the

proposed approach outperforms Baseline×3 across all met-

rics and time intervals. This indicates the efficacy of utilis-

ing the proposed method with TiS modules for time interval

saliency prediction in mammogram images. Besides, the pro-

posed model avoids the increased model parameters and com-

putational consumption caused by training multiple model in-

stances multiple times. Further comparison among the model

variants with N=1, N=2, and N=3 reveals that overall the per-

formance reaches a peak when N=2. To achieve optimal and

consistent outcomes across the time intervals, we set N=2 in

our proposed model.

3.3. Comparison with the state-of-the-art

To further substantiate the efficacy of the proposed method,

we benchmark its performance against seven state-of-the-art

visual saliency prediction models. Among these models, six

are static models, including EML-NET [10], UNISAL [12],

SAM-VGG [9], MSI-Net [13], DVA [8], and TranSalNet [11];

TempSAL [18] is a temporal saliency model. For a fair com-

parison, these models were first initialised by their pre-trained

parameters and fine-tuned appropriately on the mammogram

dataset with the same 7-fold cross-validation strategy as used

for the proposed model. More specifically, for each static

model, we instantiated three separate models, each trained in-

dependently to predict the saliency map for one specific time

interval, similar to the approach taken with Baseline×3. For

the temporal saliency model, the experimental approach ap-

plied was consistent with that of the proposed model. As

demonstrated by the quantitative performance comparison in

Table 3, the proposed model outperforms these state-of-the-

art visual saliency models across all metrics. Additionally,

Fig. 4 provides visualised results of the predictions. These re-

sults indicate the superior capability of the proposed method

in predicting the time-interval saliency maps of mammogram

images compared to other state-of-the-art models.

4. CONCLUSION

In this study, we have investigated the significance of the

time-interval visual saliency in mammogram examinations

conducted by radiologists. Then, we have developed a deep

learning model that can accurately predict the time-interval

saliency for mammograms. Experimental results have vali-

dated the effectiveness of our proposed model, and demon-

strated its superior performance over existing state-of-the-art

visual saliency prediction models.
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