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A B S T R A C T

Weather information plays a critical role in energy applications — from designing and planning to the
management and maintenance of building energy systems, renewable energy applications, and smart utility
grids. This research examines weather and climate data for energy applications, covering their sources,
generation, implementation, and forecasting. Drivers for the use of weather data, data acquisition methods,
and parameter characteristics, as well as their impact on energy applications, are critically reviewed. The
study also analyses weather data availability from 32 commonly used online sources, considering their cost,
features, and resolution. A comprehensive weather data classification is developed based on measurement type,
information period, data resolution, and time horizon. The findings indicate that real-time local weather data
with high temporal resolution is crucial for optimal energy management and accurate forecasting of energy and
environmental behaviours. However, limitations and uncertainties exist in weather data from online sources,
particularly for developing countries, due to the limited spatio-temporal coverage.
1. Introduction

Weather and climate information are essential for decision-making
processes regarding energy applications, spanning from individual
buildings to renewable energy systems and utility grids [1]. Weather
significantly influences energy generation, transmission, and consump-
tion behaviours in these systems [2,3]. Climate-induced weather vari-
ations and extreme weather events also affect the resilience of both
energy supply and demand systems [4]. Weather-related power inter-
ruptions can have a significant and long-lasting impact [5], especially
on cities and urban areas that consume two-thirds of global primary
energy and produce 71% of the direct energy-related global green-
house gas (GHG) emissions [4]. Hence, to effectively plan, design,
size, construct, and manage buildings and energy systems, spatially
representative weather data are used for performance analysis, fore-
casting and simulation to enhance system efficiency, and to reduce
weather-related risks [6].

Weather refers to the short-term state of the atmosphere at a specific
location that changes over minutes, hours, days, and seasons [7]. It
exhibits variations across different places, even in small localities, due
to latitude, elevation, land surface types, wind exposure, distance from
the sea, building density, and pollution [1,8]. In contrast, climate
represents the long-term average weather conditions prevailing in a
particular location over a reasonable period of 30 years recommended
by the World Meteorological Organisation (WMO) [9]. Weather is a
complex atmospheric phenomenon influenced by the absorption and
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emission of solar radiation by the Earth’s surface, governed by its
thermal characteristics [10]. Absorbed solar radiation increases sur-
face temperature, which in turn warms the lower atmospheric layer,
creating a low-pressure area that drives wind circulation [11], as
shown in Fig. 1. Solar radiation also causes water evaporation from
oceans and seas, leading to its ascent and subsequent condensation into
clouds [12]. Solar radiation variations at different latitudes drive large-
scale atmospheric systems and contribute to temperature gradients
within the atmosphere [10]. Weather parameters describe atmospheric
conditions, and sets of these parameters observed over time consti-
tute weather data, which provide insights into climate patterns over
different time scales [13].

Hourly weather data is a key element in building energy simula-
tion (BES) for modelling the interactions between building thermal
properties, energy systems, occupant behaviour and outdoor condi-
tions [14,15]. Different types of weather data have been developed
to meet specific needs at different life-cycle stages, using various data
sources, and methodologies. Typical Meteorological Year (TMY) and
Test Reference Year (TRY) represent typical climatic conditions, while
weather data types such as Extreme Meteorological Year (XMY) and
Untypical Meteorological Year (UMY) capture extreme conditions [16].

However, the assumption of linearity in the relationship between
weather and system performance, as represented by typical weather
datasets, does not typically occur in reality due to the weather’s non-
linearity [17], leading to discrepancies in simulation outputs [18].
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Nomenclature

Acronyms

AMY Actual meteorological year
ANN Artificial neural network
API Application programming interface
ASHRAE American Society of Heating, Refrigerating

and Air-Conditioning Engineers
AWS Automatic weather station
BES Building energy simulation
BMS Building management system
BP Barometric pressure
BSRN Baseline Surface Radiation Network
CAMS Copernicus Atmosphere Monitoring Service
CC Cloud cover
CEDA Centre for Environmental Data Analysis
CIBSE Chartered Institution of Building Services

Engineers
CO2 Carbon dioxide
CSV Super high frequency
DBT Dry bulb temperature
DHI Diffuse horizontal irradiation
DIR Direct irradiation
DNI Direct normal irradiation
DOE The U.S. Department of Energy
DPT Dew point temperature
DR Demand response
DRY Design reference Year
DSY Design summer year
ECMWF European Centre for Medium-Range

Weather Forecasts
EP+ EnergyPlus
EPW EnergyPlus Weather
EU European Union
FS Finkelstein-Schafer
FTP File transfer protocol
GCM Global climate model
GHCN Global Historical Climatology Network
GHG Greenhouse gas
GHI Global horizontal irradiation
GI Global illuminance
HDD Heating degree day
HIRI Horizontal infrared radiation intensity
HSY Hot summer year
HTTP Hypertext transfer protocol
HVAC Heating, ventilation and air-Conditioning
IEA International Energy Agency
IoT Internet of things
IPCC Intergovernmental Panel for Climate

Change
IWEC International weather for energy calculation
LPD Liquid precipitation depth
MAPE Mean average percentage error
MBE Mean bias error
MERRA Modern-Era Retrospective analysis for Re-

search and applications
MIDAS Met Office Integrated Data Archive System
NCAR National Center for Atmospheric Research
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NCDC National Climatic Data Center
NOAA National Oceanic and Atmospheric Admin-

istration
NWP Numerical weather prediction
PV Photovoltaic
RCM Regional climate model
RCP Representative Concentration Pathway
RES Renewable energy source
RH Relative humidity
RMSE Root mean square error
SD Snow depth
SF Snowfall
SHF Super high frequency
SMY Synthetic meteorological year
SODA Solar Radiation Data
SRY Summer reference year
SVR Support vector regression
TM2 Ultra high frequency
TMM Typical meteorological month
TMY Typical meteorological year
TRY Test reference year
TWY Typical weather year
UHF Ultra high frequency
UHI Urban heat island
UMY Untypical meteorological year
UWG Urban Weather Generator
VHF Very high frequency
VIS Visibility
WD Wind direction
WG Weather generator
WMO World Meteorological Organisation
WS Wind speed
WYEC Weather year for energy calculation
XMY Extreme meteorological year

Units
◦C Celsius degree
◦F Fahrenheit degree
% Percentage
cm Centimetre
J/m2 Joule per square metre
km Kilometre
km/h Kilometre per hour
lux Unit of illuminance
m Meter
m/s Meter per second
mb Millibar
mm Millimetre
mm/h Millimetre per hour
mph Miles per hour
Pa Pascal
USD US dollar
W/m2 Watt per square metre

Weather information services have emerged as crucial infrastructure
platforms, attracting significant interest from stakeholders aiming to
develop solutions that provide real-time weather data and forecasts for
smart grid and demand response (DR) applications [19,20].
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Fig. 1. Impacts of incoming solar radiation on atmospheric processes. Based
on Trenberth and Stepaniak [11].

Many studies have investigated the development and application of
weather data for energy modelling and simulation and have examined
the influence of present-day and projected future weather on build-
ing and urban energy performance, renewable energy generation and
system resilience to weather events. However, the existing literature
lacks a comprehensive critique of weather and climate information
implementations for energy applications in terms of their uses, data
features, sources, and variability. Since a comprehensive understanding
of the roles and requirements of weather data in energy applications is
essential [21–23], this research conducted a systematic review of the
state-of-the-art on weather and climate data for energy applications,
focusing on five aspects:

1. Drivers for the use of weather data;
2. Weather data characteristics;
3. The influence of weather on building and energy applications;
4. Weather data requirements for different energy applications

across their design and operation stages; and
5. Weather data sources and approaches for acquiring meteorolog-

ical data.

Our contributions are fourfold: (a) a comprehensive understanding
of the current landscape of weather and climate data implementa-
tions for energy applications, considering drivers and usages; (b) an
overarching framework for the classification of weather data based on
type and feature; (c) a critique of the meteorological data variability
and influence on performance assessment; and (d) a state-of-the-art on
retrieval approaches and common sources of various weather data.

The rest of the research is structured as follows. The following
section discusses the systematic review methodology, followed by an
analysis of the research landscape. Section 3 critiques the drivers for
the use of weather and climate data. Different weather data imple-
mentation themes and scopes are discussed in Section 4. In Section 5,
a weather data classification is developed based on their working
principles, features and types. Section 6 examines the influence of
weather on various energy applications considering their energy effi-
ciency requirements. Section 7 analyses common meteorological data
sources in terms of type, availability, and cost. Concluding remarks and
future research directions are presented in Section 8.

2. Methodology

Extensive research across various disciplines, including the built
environment, building engineering, energy, and environmental and
atmospheric science, has explored weather data generation, weather
model output, data reanalyses, and climate model output in relation to
several energy applications. This research specifically focuses on inves-
tigating the implementation of weather and climate data for building,
energy usage, and energy generation purposes.
3

Table 1
Searching strategy outline for identifying keywords and limitations for the literature
review.

Step Criteria Detail

Keyword Topic Weather, climate, information/data
Application Energy
Scope Building, grid, network, renewable, system
Study objective Performance, demand, consumption, generation

Filter Database Scopus
Search string Weather OR Climate AND Information OR Data

AND Energy AND Application OR Building OR
Renewable OR Grid OR Network AND
Performance OR Demand OR Consumption OR
Generation

Search field Within title
Access All Open-access
Year >1999
Language English only
Discipline Engineering, Energy, Environmental Science,

Computer Science, Mathematics, Earth and
Planetary Science

Fig. 2 provides an overview of the structure and workflow of
the systematic review. The review commenced with identifying the
research motivation and objectives, followed by a systematic search
to collect and analyse relevant research. A meta-analysis is employed
using statistical techniques to quantitatively synthesise and critically
evaluate the extracted weather data, which advances the review to
a more comprehensive level of analysis [24]. The analysis focused
on weather data features, variability of parameters, influences on en-
ergy applications, and retrieval approaches and sources. The findings
address fundamental research aspects that offer robust and reliable
information for evidence-based decision-making processes for the use
of weather data for buildings and energy systems.

2.1. Systematic search

The systematic search was conducted based on four stages, as
illustrated in Fig. 3: (a) identification of sources, (b) initial screening for
relevance to the topic, (c) eligibility assessment, and (d) final screening
for inclusion in the review.

First, a preliminary study was undertaken to identify keywords
related to the review’s focus on weather and climate data for build-
ing, energy usage, and energy generation applications, which were
then sorted into four groups: topic (weather data or information, and
climate data or information), application (energy), scope (building,
renewables, grid, network, and system), and the study objective (per-
formance, demand, consumption, and generation) as listed in Table 1.
A search string was developed by combining these keywords using the
Boolean operators ‘AND’ and ‘OR’. The Scopus electronic database was
selected to search for relevant publications because of its extensive
research and chronological coverage. A set of filters was used as in-
clusion and exclusion criteria. The search was limited to the relevant
keywords within the title field. English language, all open-access types
(Gold, Hybrid, Bronze, and Green), and articles in the last twenty
years were only included. The disciplines were limited to publications
from Engineering, Energy, Environmental Science, Computer Science,
Mathematics, and Earth and Planetary Science. An advanced search was
then carried out using the predefined string, which yielded 107 articles.

Second, at the screening stage, search results were refined to 87
articles by reviewing titles and abstracts to screen for irrelevance and
duplication. Additional 42 studies were recognised by examining refer-
ences and citations in all 87 articles in order to ensure adding relevant
studies missed at the initial search, bringing the total publications to
129.

Third, 129 full-text articles were reviewed for eligibility by re-
applying the initial inclusion criteria. Twenty-one ineligible articles
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Fig. 2. An overview of the structure and workflow of the systematic review process.

Fig. 3. Systematic search workflow.
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Fig. 4. A classification of the state-of-the-art on weather data for energy applications.
Sub-categories are based on applications and implementation scopes.

were excluded for duplication, non-English versions, full-text unavail-
ability, or irrelevance to the review topic. Some duplications at this
stage were due to the same research appearing in both a conference
and a journal. In such cases, the most recent, robust and rigorous
publication of the two was included in the review.

Finally, 108 articles and reviews were selected for a thorough
critical investigation and synthesis to address and achieve the research
questions and objectives.

2.2. Research landscape

2.2.1. Classification
Initial findings suggest that research ranges from the generation of

weather and climate data to their use in the simulation and forecasting
of energy and environmental performance. Hence, it is necessary to
classify the existing body of knowledge not only for the scientific
discourse but also to identify future directions of research. The existing
literature can be broadly classified into four main topics:

1. Weather dataset generation for the present-day and future cli-
mates;

2. Impacts of weather on energy and environmental performance;
3. The use of weather information for forecasting energy use and

future weather data; and
4. Weather data analysis (pre- and post-processing) to enhance data

integrity and usability.
5

Fig. 5. Publications on weather data for energy applications over the last two decades.

Each topic can be further classified into several sub-topics based on
its usage and scope, as illustrated in Fig. 4. Considering the use-specific
requirements of data, the level of weather localisation, and geographic
extents, three implementation scopes are identified, as follows.

1. Building: Individual or co-located buildings within the same
micro-climate;

2. Renewable energy system (RES): Within a single site and micro-
climate; and

3. Community/grid: Spanning a larger geographical boundary than
a building with varying micro-climatic characteristics.

Detailed discussions on each weather data implementation topic and
scope are provided in Section 4.

2.2.2. Chronology
Weather data implementations for energy applications have gained

significant research attention over the past twenty-five years, as illus-
trated in Fig. 5. The number of publications steadily increased until
2011, followed by an acceleration in the growth that was fuelled by sev-
eral factors. These include rising global demand for energy, increased
awareness of environmental impacts from energy systems, societal
aspirations of decarbonisation, and regulatory and policy develop-
ments around net-zero emissions. Research on weather data generation
and weather impacts on energy performance has quadrupled, while
publications on data forecasting and analysis have tripled.

2.2.3. Geographical distribution
Reviewed publications originated from 30 countries across five con-

tinents, as shown in Fig. 6. Most articles were from developed countries
with a longstanding focus on energy efficiency and decarbonisation
across Europe, Asia, and North America. The USA had the highest num-
ber of articles, followed by the UK, Italy, China, and Australia. Gaps
in research activity and possibly capability are evident in developing
countries that are projected to be at risk from climate change. For
instance, there was only one article from Africa.

3. Drivers for weather data utilisation

The need for weather data utilisation for energy applications relates
to the increasing desire for performance-driven design and manage-
ment of buildings and energy systems [20,25]. Key drivers for the use
of weather data have been conducted based on underlying research
motivations among the existing literature, which include performance
assessment, policy and legislation, smart grids and demand response,
adaptation to climate change, and data sharing economy.
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Fig. 6. Spatial distribution of publications on the use of weather data in energy
applications.

Table 2
The usage of meteorological data type and temporal resolution over life-cycle stages of
energy applications.

Type Resolution Decision Application

Climate Days to
months

Initial design and
planning

Renewable energy systems, site
design, and building form and
energy systems

Weather Minutes to
hours

Detail design,
management and
control

Energy systems deployment,
operation and maintenance

3.1. Performance analysis

The International Energy Agency (IEA) considers weather to be the
key factor influencing building thermal behaviour and energy perfor-
mance [26]. Most of the European residential and commercial energy
demand goes towards occupant comfort through HVAC systems, which
consume up to 75% of the total energy [27,28]. Hence, meteorological
data is essential for modelling energy systems, forecasting renewable
energy generation and variability, and operating energy systems in an
efficient, stable, and reliable manner — both in present-day and future
weather conditions [29].

Meteorological data of varying detail and resolution are needed
during all life-cycle stages of energy applications, as shown in Table 2.
Climatic data with low-temporal resolution is routinely used during
the early life-cycle stages to provide insights into the overall perfor-
mance against typical weather conditions. In the case of buildings,
the goal is to ensure a comfortable indoor environment by modulating
ambient conditions while reducing energy demand and corresponding
GHG emissions [17]. On a larger scale, climate data is required to
predict energy use and generation behaviour for the planning and
design of utility infrastructure and renewable energy systems [30].
In contrast, high-temporal-resolution weather data, up to sub-minute,
is desirable for detailed design, management, and control of energy
applications by predicting performance (consumption and generation),
faults (for predictive maintenance), and warnings — thus supporting
decision-making during later life-cycle stages [20].
6

Site-representative weather data is a prerequisite not only in dy-
namic simulations [31] but also in data-driven and artificial intelli-
gence models. The U.S. Department of Energy (DOE) provides infor-
mation for more than 400 energy-related tools, of which around 120
are dedicated to whole building energy simulations, renewable energy
technologies, and sustainable design [32], which carry out detailed
energy calculations based on the multiplicity of inputs for building
characteristics and systems under the influence of external weather
and occupancy levels [33]. Simulation tools play an important role
in supporting decisions for building and energy application design.
The weather-related analysis is also used for optimal system operation,
building energy code analysis, and design compliance verification [15].
At the other end of the spectrum, data-driven models combine long-
term historical weather records with past performance data to predict
and investigate future energy and environmental performance of en-
ergy systems by adopting statistical (e.g. regression and time-series
modelling) or artificial intelligence techniques.

3.2. Policy and legislation

Increasing awareness of the environmental impact of the built en-
vironment and aspirations towards a net-zero emission society have
resulted in stringent policies and regulations on energy efficiency,
resource conservation, and onsite renewable energy generation [34].
Regulatory bodies across the world have implemented national stan-
dards, certification schemes, and rating and labelling schemes to reduce
energy use, GHG emissions, and the overall environmental impact from
buildings without compromising occupant thermal comfort [35,36].

Energy regulations set minimum energy efficiency requirements
while building energy certifications are directly linked to building
energy rating and labelling systems [2]. In the 1990s, the Building
Research Establishment Environmental Assessment Method (BREEAM)
was developed in the UK, one of the earliest building energy bench-
marking systems, and the Leadership in Energy and Environmental
Design (LEED) was developed by the US Green Building Council in
2000s [37]. Most European building regulations follow the Energy
Performance of Buildings Directive (EPBD, 2002 and 2010) [38] and
the Energy Efficiency Directive (2012) [25] to achieve a highly energy-
efficient and decarbonised building stock by 2050. Generally, these
legislative drivers depend on the evaluation and benchmark of build-
ing energy performance through a wide range of methodologies –
to predict, evaluate, and analyse energy behaviours [2,3] – which
require the use of weather data for enhancing the effectiveness of the
instrument [39].

3.3. Smart grids and demand response

Smart grids provide a flexible infrastructure to operate and enhance
the efficiency of energy management in integrated energy applications
by reducing peak-to-average loads and minimising the cost of produc-
tion [40,41]. These grids may also integrate intermittent renewable
energy sources (RES) such as solar, wind, and geothermal that require
reliable and localised weather information for accurate predictions of
grid loads and energy generation to achieve optimal performance [42].

Smart grids and systems enable interactions between the utility
network and end-users and play an active role in managing the electric
power system to balance supply and demand; this contribution of end-
users is often referred to as demand response (DR) [19,43]. These
systems engage end-users by sending them dynamic electricity tariffs
and information on renewable energy production and demand [44].
Demand response systems may also control HVAC systems, appliances,
and devices in response to smart grid signals [45]. Real-time monitor-
ing and forecasting are essential for machine-to-machine and human-to-
machine responses to DR signals. For instance, end-users could switch
on their air-conditioning systems when the weather is hot to pre-cool
the building while being outside [46].
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3.4. Adaptation to climate change

Overwhelming evidence indicates that climate change would lead
to a significant rise in global temperatures and would in turn impact
the built environment and the entire energy generation, transmission,
and consumption [47,48]. For instance, a decrease in cold stress will
reduce space heating loads in winter, while a rise in heat stress will
increase mechanical cooling loads in summer and increase the risk of
overheating in naturally ventilated buildings. More cooling demand
results in higher energy consumption, which in turn may exacerbate
climate change [34]. In high-latitude regions, a reduction in space
heating loads is most likely, while an increase in cooling loads may
occur in low-latitude areas. Both an increase in cooling and a reduction
in heating loads can be associated in mid-latitude regions [49]. Hence,
strategies for reducing energy demand and mitigating the impacts
of increasing temperature will require representative estimations of
heating and cooling loads to avoid over-/under-design of environ-
mental systems [34]. Oversized systems may operate partially and
inefficiently, while undersized systems may fail to achieve comfort con-
ditions [50]. The use of projected weather data is, therefore, essential
for assessing the performance of buildings and energy systems in future
climates [51–53].

Different approaches for predicting future weather conditions have
been developed, such as extrapolating statistical methods (degree-
days), imposing offset methods, stochastic weather models, and general
circulation models (GCM) [52]. GCM is the most reliable approach,
specifically at continental scales, where the impacts of local topog-
raphy factors might be ignored. GCMs generate monthly averages of
global/regional climates with spatial resolutions ranging between 100–
300 km2. However, GCM outputs are often unsuitable for direct use in
hermal and energy simulation and forecasting, which require localised
eather data at hourly or sub-hourly resolution. Hence, GCM outputs
re downscaled to generate weather data with appropriate spatial and
emporal resolutions [54].

.5. Citizen weather observation and data sharing

Extreme and severe weather conditions can lead to grid failure,
nergy generation shortages, increasing energy demand, and disaster-
nduced destruction. Continuous monitoring of meteorological vari-
bles is, therefore, essential to mitigate the risks of natural hazards
o buildings and energy systems [6]. Weather data considering ex-
reme events is required for designing resilient energy systems by
stimating peak energy demand and supply [16]. Increased avail-
bility of user-friendly and affordable weather stations enabled more
eographical-dispersed citizen observers to share weather data from
ersonal Weather Stations (PWS) via online weather networks, such
s Weather Underground, the Met Office Weather Observations Web-
ite, and the Citizen Weather Observer Program (CWOP) operated
y the National Oceanic and Atmospheric Administration (NOAA).
hese platforms facilitate an acceptable source of real-time weather
ata for some weather parameters for locations far from or without
rofessional meteorological stations [55]. Besides, sharing weather data
an play a crucial role during extreme and severe weather events.
or instance, Gharesifard and Wehn [6] showed the role of individ-
al engagement in sharing weather observations as a key factor for
ecision-makers in developing strategies to improve extreme and severe
eather predictions.

. Weather data implementations

This section critically discusses the four weather data topics and
heir implementation scopes, highlighting the cross-relations between
hem. Investigations of weather influences on the performance of en-
rgy applications attract high research interest among other research
7

opics. Table 3 summarises the detailed analysis of articles included
in the systematic literature review related to meteorological data for
energy applications in terms of research field subjects, sub-topics, and
scopes of implementation. Almost three-quarters of the literature has
focused on weather impacts on the performance of energy applications,
especially in the scope of building energy use or demand. This is due
to significant correlations between thermal and energy (consumption or
production) behaviour of buildings and weather conditions. Addition-
ally, the complex weather-dependent interaction of building geometry
and construction, systems and occupants, as well as the diversity of
buildings in different climatic zones have contributed to the growth in
research on the topic.

Significant inner-relationships can be observed among all four re-
search topics. Fig. 7 provides an interdisciplinary overview of research
topics, illustrating the shares and interrelationships between sub-topics
and implementation scopes. The direction and size of the inner tracks
highlight internal connections among research topics and implemented
energy applications. Research on weather dataset generation and data
forecasting, particularly energy predictions, is often extended further
to investigate the performance of energy applications with regard to
the developed weather data. Furthermore, research under the data
analysis theme may also be used to generate weather datasets and ex-
amine weather impacts on energy performance, especially downscaling
monthly future weather data to finer data resolutions.

4.1. Weather dataset generation

The need for representative meteorological information for simu-
lating the performance of an energy application and forecasting its
behaviour in past, present, or future weather conditions is the key
catalyst for the development of different types of weather datasets.
Based on the type of the developed weather file, research on this subject
can be divided into:

• Typical weather year datasets (TWY) representing the domi-
nant weather conditions at a particular location are often derived
based on a broad range of historical meteorological [14,16,56,57,
60–65,67,69] or future years [54,59,65,66,68] data;

• Reference weather files that represent specific weather con-
ditions, such as Test Reference Year (TRY), are obtained by
extracting one yearly weather dataset with the most average [70,
72,74] or hot summer weather [59,71,73] from a set of multiple
years;

• A year-to-year actual weather file, known as the Actual Mete-
orological Year (AMY), is usually employed in developing local
weather data [75,78,82] or evaluating energy performance with
regards to different weather datasets [16,58,65,67,76,77,79–81,
83,153];

• Localised weather data is aimed at developing more accurate
local typical or actual weather datasets for the effective rep-
resentation of the urban microclimate [14,64,75,78,82,84–86,
88];

• Extreme datasets include untypical climate events that might be
experienced at a particular location for building applications [54,
63,77] or for general implementations [58,71];

• Future datasets representing weather conditions that may occur
in the near, medium, or far future are often developed on a
basis of typical or year-to-year weather datasets for building
energy applications [48,54,65,66,68,76,81,91–96] and general
usage [58,59,90]; and

• Other customised weather datasets are developed by utilising a
short range of hourly data [98] or existing hourly weather year
files [62,97,99].

The necessity of achieving a healthy, energy-efficient, and resilient
built environment is the key motivation for the adoption of these
weather datasets for the scope of buildings [14,48,54,62–66,68,76–
78,81,82,84–86,91–96,99,153]. However, a few are applied to general
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Table 3
A summary of the existing literature on meteorological data for energy applications in terms of research applications, topics, and scopes of implementations.

Research area Research scope

Topic Feature No. General Building Renewable energy source Community

Thermal Energy Solar Wind Hybrid HPa SGb PNc UEd

Weather
dataset
generation
(47)

Typical 19 [56–60] [16,61–64] [14,16,54,61,62,
65–69]

Reference 6 [59,70,71] [72–74] [72,74]
Actual 13 [58,75] [16,76–79] [16,65,67,76–83] [82]
Localised 10 [75] [64,78,84–86] [14,78,82,84–87] [82,86–88]
Extreme 5 [58,71] [63,77] [54,77]
Future 17 [58,59,89,90] [76,91–94] [48,54,65,66,68,76,

81,91–96]
Other 4 [97,98] [62,99] [62,99]

Weather
impacts on
energy (77)

Datasets 39 [15,16,32,61,
72–74,76–
79,84,92,100–
106]

[15,16,32,54,61,64,
65,67,69,72,74,76–
84,87,92,95,96,
100–111]

[112] [112,113] [112] [82,109]

Variables 21 [78,85,99,114–
116]

[78,81,85,99,107,
115,117–121]

[122] [123–125] [123,125,
126]

[127] [128] [128]

Actual 20 [15,16,32,63,
74,77,84,85,
100,101,103,
129]

[15,16,32,67,74,77,
80,81,84,85,100,
101,103,107,110,
117,121,129]

[130] [112] [112]

Local 8 [32,78,84–86] [14,32,64,78,82,
84–86]

[123] [82,86]

Untypical/
extreme

9 [62,73,77,105] [54,62,77,87,105] [125] [131] [132,133]

Climate
change/future

22 [76,91–94,134] [48,54,65,66,68,76,
81,91–96,109,117,
121,134–137]

[138] [109,135,
136]

Data
forecasting
(27)

Weather 6 [48] [112] [112,139,
140]

[112,139] [141]

Energy 22 [142] [115,134,143,
144]

[81,107,110,115,
117,119–121,134,
136,137,143,144]

[139] [124,139,
145,146]

[139,146] [128,131,
147]

[128] [136,148]

Data analysis
(30)

Missing data 2 [149,150]
Data accuracy 6 [151,152] [16,32,102] [16,32,102] [153]
Downscale 18 [89,90] [16,78,91–94,

105]
[14,16,48,54,65,78,
87,91–96,105]

[140] [87,154]

Other 6 [61,114,129,
143]

[61,107,129,143] [155]

Total 108 17 35 61 10 12 6 1 3 3 12

a HP = Heat pump.
b SG = Smart grid.
c PN = Power network.
d UE = Urban energy.
energy implementations [58,71,75,97,98] and at urban scale for en-
ergy estimations [82,88,153]. Detailed discussions on the generation
methods of common weather datasets are provided in Section 5.4.

4.2. Weather impacts on energy behaviours

The significant correlations and underlying research motivations
for performance-driven design and management, energy policy and
building legislation, and resilience to climate change primarily drive in-
vestigations on the impact of weather conditions on energy behaviours
– consumption or generation – in different applications. Researchers
may generate weather datasets and then extend their study of the
impacts on energy performance, or directly obtain existing weather files
from weather data archives and databases. According to the types of
weather data used in investigations, this research topic can be divided
into the following sub-topics:

• Multiple dataset comparison: Researchers widely examine the
influences of weather variations on energy performance by com-
paring the results of the use of different weather datasets and
analysing their applicability for energy simulations, especially
for building energy scope [15,16,32,54,61,64,65,67,69,72–74,
76–84,92,95,96,100–111,153], the performance of urban energy
use [82,109], or renewable energy resources [112,113];

• Individual weather variables: Some research may be focused
on particular parameters to analyse their relevance to the per-
formance of building energy applications [78,81,85,99,107,114–
121], renewable energy resources [122–127,130], or utility grids
[128];

• Using actual data: Research demonstrates the significant im-
portance of using multi-year actual data compared to typical
data for analysing weather impacts on building energy perfor-
8

mance [15,16,32,63,67,74,77,80,81,84,85,100,101,103,107,110,
117,121,129], in which the annual variation in heating and cool-
ing energy demands may be around 10% [15,32,67,74,85,101],
or between 11% up to 45% [16,77,84,100,103,107,121] in spe-
cific climate regions;

• Local weather data: The utilisation of more accurate weather
data in terms of location (i.e. local weather/micro-climate data)
has gained wide attention in last years to consider the effects of
the built environment and UHI on buildings [14,32,64,78,84,85]
and urban energy levels [82,86];

• Untypical/extreme events: Despite the necessity of considering
extreme weather, few studies have investigated energy demand
under untypical or severe conditions at buildings [54,62,73,77,
105,153] or utility grids [131–133]; and

• Climate change and future conditions: Authors often use syn-
thetic data produced by Weather Generators (WG) and Numerical
Weather Prediction (NWP) models to investigate the impacts
of future conditions and climate change on building (thermal
and energy) performance [48,54,65,66,68,76,81,91–96,109,117,
121,134–137] and urban energy [109,135,136]. However, lim-
ited attention is paid to climate change impacts on the energy
performance of RESs and utility grids [138,156].

Researchers often use physics-based energy
simulations [14–16,32,54,61–69,72–74,76–86,91–96,99–111,116,119,
120,123,127,135,156], statistical calculations
[48,114,115,118,122,126,129,130,133,138,157], data-driven models
[112,117,121,124,125,128,131,132,136], or a combination of energy
simulations and data-driven models [134,137] to examine the
weather’s impact on energy performance. Overall, buildings gained
wide research interest, in particular building energy performance,

while utility grids and urban energy received limited attention.
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Fig. 7. Relationship between research topics and implementation scopes in the existing literature on weather data for energy applications.
4.3. Data forecasting

As mentioned earlier, weather data is essential in smart energy
management systems and the assessment of energy application perfor-
mance in future climates to improve energy efficiency, minimise GHG
emissions, and mitigate weather-related risks. The adoption of weather
data in data forecasting may have two approaches: (i) applying energy
simulation and prediction methods to examine weather impacts on
energy performance in the present/future, which is eliminated from this
research topic due to its similarity with the previous topic; (ii) using
weather data for forecasting energy and weather data in the current or
short-/medium-/long-term future conditions;

• Weather prediction: Using historical weather records to fore-
cast future climate conditions by applying statistical [48] or
data-driven models [112,139–141,150]; and

• Energy prediction: Employing weather data for predicting
present or future energy behaviours, such as building energy con-
sumption [81,107,110,115,117,119–121,134,136,137,143,144],
urban and grid energy loads [19,128,131,136,147,148], or the
generation of renewable energy resources [124,139,145,146],
by using statistical methods [115,142,146,148,157], simulation-
based [81,107,110,119,120,144], data-driven [117,121,124,128,
131,136,139,143,145,147], or hybrid models [134,137].
9

4.4. Weather data analysis

Dealing with weather data often requires applying data preprocess-
ing approaches to ensure the reliability of weather information, such
as:

• Fill missing data gaps and enhance data integrity [149,150];
• Assess the accuracy of weather datasets by data analogy and

analysis using several error metrics, such as the Mean Bias Error
(MBE), the Mean Average Percentage Error (MAPE), the Root
mean square error (RMSE), and the coefficient of determination
(R2) [16,32,102,151,152,157];

• Downscale weather data into a finer temporal or spatial reso-
lution using dynamic and statistical methods. For instance, the
Morphing approach is widely utilised to downscale monthly fu-
ture data from GCMs into an hourly weather dataset [48,53,54,
65,89–96] or localise region climate data [14,78,140]; and

• Other areas of weather data analysis include climate classifi-
cation [61,129], energy model calibration [107,143], weather
characteristic [155], and on-site meteorological monitoring sys-
tems [114].

Most research on this topic is adopted for building purposes [14,16,
32,48,54,61,65,78,91–96,102,105,107,114,129,143], general energy
usage [89,90,149–153], urban/city energy implementations [154],
wind power applications [140,155]
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Fig. 8. Meteorological data classification based on data features including type, time period, resolution, and time horizon.
5. Weather data classification

Meteorological information has diverse and complex characteristics,
ranging from parameter coverage to data scale and resolution. How-
ever, an up-to-date and well-considered classification for weather data
is due. In this section, a comprehensive weather data classification is
developed according to defining data characteristics, as illustrated in
Fig. 8. This classification aims to provide a clear framework for organ-
ising and analysing meteorological data, which considers key factors
such as data source, spatial and temporal resolution, and the time
period and horizon. Statistical analysis for the features of used weather
data in the reviewed literature, such as temporal resolution and the
length of data (time horizon), is undertaken over each topic, as sum-
marised in Table 4. By using a standardised classification, researchers
and meteorologists can better understand and compare different types
of weather data, leading to an improved decision-making in various
energy applications.

5.1. Data type

Based on the data source, two types of weather information are
available. First, real data represents actual observations at a specific
location and time, measured using sensors and instruments in weather
stations, satellites, weather radars, and balloons [67]. Actual data
provides valuable insights into weather conditions due to its accuracy
and reliability, which allows researchers to validate models and simula-
tions, ensuring that the results are realistic and applicable to real-world
scenarios. Therefore, real data was frequently used in the reviewed
literature (58%) for topics relevant to weather influences on energy
application and dataset generation.

Second, synthetic data is produced by weather generators (WGs)
and numerical weather prediction (NWP) models. These models use
historical weather observations to generate historical or future time-
series data across multiple spatial and temporal scales [58,158,159].
Synthetic weather data is usually used in the existing literature (14%)
to generate future weather data and investigate the impacts of cli-
mate change on energy performance. Both real and synthetic data
are employed in research (28% of the literature), for instance, to lo-
calise future weather datasets or to investigate the evolution of energy
performance over time.
10
5.2. Time period

Weather data can be classified into three based on the time period it
represents: current, past and future. Current weather data, also known
as real-time data, represents information on weather conditions at the
moment of observation, which is delivered immediately after collection
according to the observation frequency [160]. Once the real-time data
is archived, it becomes historical data that can be used for predicting
future weather conditions and generating weather datasets.

Future weather data can be further divided into weather forecasts
and climate projections. Weather forecasts indicate the atmospheric
state in the near future by using computer simulations, such as NWP
models [161]. These forecasts can be categorised into three types based
on the prediction horizon [162]: (i) short-term (a few minutes to a few
days ahead) [163], (ii) medium-term (a few days to several months
ahead), and (iii) long-term (one or more years ahead) [164]. Climate
projections are predictions for atmospheric conditions in future decades
and are generated using global climate models (GCMs) and regional
climate models (RCMs), to provide long-term projections until 2100, or
even 2300 [165]. Examples include NASA:GISS-AOM (USA), INM:CM3
(Russia), BCM2 (Norway), CSIRO:MK3 (Australia), and MIROC3 2-
HI (Japan) [94,166], as well as, CMIP3/5 and the UKCP09/UKCP18
projects that are developed to investigate climate variability over the
UK [58,167].

5.3. Resolution

Temporal and spatial resolution are the main features of meteo-
rological information [168]. The temporal resolution is the record-
ing frequency of weather observations varying from seconds up to
hours, which could be labelled into high-temporal (less than 1 to
10-min) [169], medium-temporal (15 to 60-min), and low-temporal
resolutions (more than hourly data; 3, 6, and 12-h) [170]. However,
weather data may also contain daily and monthly averages in a given
location [160].

Hourly weather data is widely used in related research because
it is broadly available in weather databases, archives, and weather
year files, as illustrated in Fig. 9. Sub-hourly data is less commonly
used, despite its reliability and accuracy, but it is often used for local
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Table 4
A summary of key features of the utilised weather data for each research topic in the existing literature.

Research area Temporal resolution [Minute] Time horizon

Topic Feature High Medium Low Daily/Monthly RTa Multiple [Year] Yearlyb

[⩽10] [15–60] [>60] average Short [⩽1] Medium [1–10] Long [>10]

Weather dataset
generation

Typical [64] [14,16,54,56,57,
59–69]

[14,16,54,57,59–
64,66–69]

[14,54,57,59,60,
62–69]

[60,65,67] [16,56,57,61,63,
64,68,69]

[64]

Reference [59,70–74] [71] [74] [70–73]
Actual [16,65,67,75–83] [16,67,81] [65,76] [79,81] [65,67,77,78,82] [16,76,80,83] [80,81]
Localised [64] [14,64,75,78,82,

84–88]
[14] [78,82,85] [64,87] [64,85,86]

Extreme [54,63,71,77] [54,71] [77] [63,71,77]
Future [48,54,59,65,66,

68,76,81,90–92,
94–96]

[81,93] [48,54,65,76,89–
92,94–96]

[81,94] [65,93,95,96] [48,68,76,89,90] [48,81,90,92,94]

Other [62,97–99] [98] [97,99]

Weather impacts
on energy

Datasets [64,100,110] [16,32,61,65,67,
72,73,76–78,80–
82,84,87,92,100–
103,107,108,
112]

[16,64,67,81,
105]

[54,65,69,76,92,
95,96,102,112,
113]

[110] [32,79,81,87,
112]

[65,67,74,77,78,
82,95,96,100,
108,109]

[15,16,61,64,69,
72,73,76,77,80,
83,101–103,105,
113]

[15,32,64,80,81,
92,101,102,106,
111]

Variables [128] [78,81,85,99,
107,114,116–
121,123–128]

[81] [115,122] [81,126] [78,85,114,120,
123–125,127,
128,130]

[121] [81,85,99,118–
120]

Actual [100,110] [15,16,32,63,67,
74,77,80,81,84,
85,100,101,103,
107,112,117,121,
129]

[16] [112] [110] [81] [67,74,77,85,
100,112,129]

[15,16,63,77,80,
101,103,121]

[15,32,80,81,85,
101]

Local [64] [14,32,64,78,82,
84–86]

[14] [32,64,78,82,85] [32,64,85,86]

Untypi-
cal/extreme

[54,62,73,77,87,
131]

[105] [54] [87,131,132] [77] [73,77,105]

Climate
change/future

[48,54,65,66,68,
76,81,91,92,94–
96,109,117,121,
134–138,156]

[93] [48,54,65,76,91,
92,94–96,134,
137]

[81,138] [65,93,95,96,
109,136]

[48,68,76,121,
134,137]

[48,81,92,94,
156]

Data forecasting Weather [140,141] [48,112,139,140,
150]

[48,112] [112,141] [112,139,150] [48] [48]

Energy [110,128,142,
143,147]

[81,107,117,119–
121,124,128,131,
134,136,137,139,
144–146]

[81] [115,134,137] [110] [81,124,131,143] [120,128,136,
139,145–147]

[121,134,137,
148]

[81,119,120]

Data analysis Missing data [149,150] [149] [150]
Data accuracy [16,32,102,152] [16] [102,151,153] [32,152] [16,102,151,153] [32,102]
Downscale [140] [14,16,48,78,87,

90,92,94,140]
[16,93,105] [14,48,54,65,89–

92,94–96,154]
[87,140] [78,93–96] [16,48,89,90,

105,154]
[48,90,92,94]

Other [143,155] [61,107,114,129,
143]

[61,114,129,143,
155]

a Real-time data.
b Yearly weather datasets.
weather and data predictions. Daily and monthly averages are used in
research topics related to future data generation, benchmarking energy
performance and investigating climate change impacts.

Weather information is limited by the location of the weather
station where the observations are collected, but meteorological data
can represent climate averages for a region or country, known as micro-
and macro-climates. Micro-climates are localised variations in climate
around a specific location, while macro-climates are larger in scale,
such as a region or country. Hence, the micro-climate is embedded in
and influenced by the macro-climate [171].

Spatial resolution refers to the reanalysis data that assimilates
weather observations to create global or regional data over several
decades [172]. Researchers often use the term ‘spatial resolution’ to
refer to the geographic coverage configuration (grid spacing) of a
weather model [153,173,174]. The horizontal grid spacing describes
the distance between two grid cells of the simulation model, which is
defined in hundreds of meters or degrees of latitude and longitude [140,
175–178]. High-resolution models with smaller grid spacing provide a
better representation of topography and capture smaller-scale weather
features [179,180]. For example, MERRA provides weather datasets
that are interpolated to a 0.5° × 0.625° (approximately 55.6 × 69.4 km)
grid [181].

5.4. Time horizon

Time horizon in weather data refers to the size or length of the
observation, which can range from a single record to multiple years of
records [32]. Different research topics employ different time horizons,
as shown in Fig. 10. Weather data time horizons can be classified into
three types:

First, a single interval record includes an individual parameter
value or a set of several parameters in the past, present, or future. For
11
Fig. 9. Temporal resolutions of the utilised weather data among the literature.

Fig. 10. Distribution of weather data horizons applied in the literature.

example, real-time weather data are often employed in online/live data
prediction and energy management applications [110].

Second, a range of multiple intervals up to several months, which
is mostly used in the literature and can be classified into (i) short-term
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Fig. 11. Sequential weather information flow for generating different types of meteorological data and weather year datasets.
Table 5
Key weather variables included in meteorological datasets.

Parameter Abbrv. Unit

Dry-bulb temperature DBT F, °C
Dew point temperature DPT F, °C
Relative humidity RH %
Global horizontal irradiance GHI W/m2, J/m2

Diffuse horizontal irradiance DHI W/m2, J/m2

Direct irradiance DIR W/m2, J/m2

Direct normal irradiance DNI W/m2, J/m2

Global illuminance GI lux
Horizontal infrared radiation intensity HIRI W/m2, J/m2

Wind speed WS km/h, m/s, mph
Wind direction WD degree
Wind gust WG km/h, m/s, mph
Barometric pressure BP mb, Pa
Liquid precipitation depth LPD mm
Cloud cover CC %, tenth
Snow depth SD cm, mm
Snowfall SF cm, mm
Visibility VIS km, m

(less than one year), varying from a couple of hours to multiple months,
which is often used for training short-term prediction models [126,141]
or investigating energy behaviours at a particular weather event [131,
132,138]; (ii) medium-term (from one to ten years) is widely employed
to analyse energy performance in respect to up-to-date weather condi-
tions [96,108,114] or update typical weather datasets [60,65,67,78]
using the last decade’s data; and (iii) Long-range (more than ten years)
is usually used for generating typical [16,56,57,61,63,68] and Ref. [70–
72] weather year datasets as a range of 20–30 years is sufficient to
include prevailing climate conditions and investigate weather variances
over the years [9,182].

Third, arranging weather information in a systematic yearly for-
mat is known as a weather year file. Fig. 11 illustrates the weather
data flow for generating yearly datasets that contain information for
several weather variables for a complete year derived from multiple
years [80,101]. Table 5 lists common weather parameters included in
weather year datasets. A multitude of datasets representing different
weather events have been developed over the past 45 years to be
used in building energy simulations [106]. Different weather datasets
have been used in the literature to generate and downscale weather
data [48,90,92] or compare energy patterns under different weather
datasets [15,58,64,101,102]. Weather yearly formats are sorted into
three groups as follows:
12
5.4.1. One continuous year
Real or synthetic data for one continuous year representing histor-

ical or future weather conditions is the fundamental type of weather
yearly format [32], such as the Actual Meteorological Year (AMY) and
Synthetic Meteorological Year (SMY). One continuous year of historical
records is used for developing different weather datasets (typical and
extreme), as shown in Fig. 11.

5.4.2. Typical year
Typical Weather Year (TWY) is the most popular dataset, which

usually contains 8760 hourly meteorological records derived from mul-
tiple years (more than 20 years) representing the prevailing climatic
conditions of a specific location [183]. Two approaches for developing
TWYs are available based on various selection methods, weighting
structures, and data parameters [16]: (i) selecting one AMY as a typical
year, such as the Test Reference Year (TRY); or (ii) developing a
synthetic year dataset by identifying most average individual months
from the basis years, known as the Typical Meteorological Months
(TMM), and then assembling them into a composite 12-month yearly
format [15] by using the Finkelstein-Schafer (FS) statistic [184] and
the Cumulative Distribution Function (CDF) for certain daily weather
indices [185] (e.g. dry-bulb, global solar radiation, and wind speed),
according to Eqs. (1) and (2).

FS(𝑝,𝑚,𝑦) =
𝑁𝑚
∑

𝑖=1

|

|

|

CDF(𝑖,𝑚,𝑦) − CDF(𝑖,𝑚,𝑁𝑌 )
|

|

|

(1)

WS =
∑

𝑤𝑖FS𝑖 (2)

where FS statistic for weather parameter 𝑝 for month 𝑚 in year 𝑦 is
the sum of absolute differences between the values for each day 𝑖 in
an individual month 𝑚’s CDF in year 𝑦, and the long-term CDF for the
same month over all years considered 𝑁𝑌 . Then, average months are
assessed based on a weighted sum (WS) of the FS statistics. The month
with the lowest WS value is selected as the most-average month, where
𝑤 is the weighting factor for each weather parameter 𝑖 [185].

Most common TWYs are:

• Test Reference Year (TRY): An actual year of observations se-
lected from a period of records by applying statistical methods
to exclude years with extreme monthly records until one year
with the meanest weather conditions remains [72]. It was initially
proposed for US locations and included data for air temperature
(dry-bulb, wet-bulb, and dew point), barometric pressure, humid-
ity, wind direction and speed, and cloud cover and type. Later,
the procedures were modified and expanded to generate a full
dataset for several worldwide locations with various weighting
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and inclusion criteria [58]. For instance, CIBSE, in association
with the UK Met Office, has developed TRYs that included the
most average twelve months selected from almost 20 years (be-
tween 1984 and 2013) by using the FS method [101] to initially
select most three months with daily mean values for the dry-bulb
temperature, cloud cover, and relative humidity, then pick the
most average month with wind speed data [186]. This process is
repeated over the 12 months [73].

• Typical Meteorological Year (TMY): Developed by the Sandia
National Laboratories (SNL) in association with the National Cli-
matic Data Center (NCDC) in the USA by using the FS method
for selecting TMMs from more than 20 years of data based on
the analysis of dry-bulb, dew-point, and wind speed, besides
global solar and direct normal radiation [72]. In the later ver-
sions (TMY2 and TMY3), the weighting factors for dry-bulb and
dew-point temperatures have been modified compared to wind
speed, as well as using updated time periods of data for both
versions (TMY2: 1961–1990, TMY3: 1991–2005) [187]. Although
the weighting factors for different weather parameters have a
relatively small impact on the accuracy of weather-driven en-
ergy models, the differences in these factors can be significant
depending on the applications [188].

• International Weather for Energy Calculation (IWEC): Devel-
oped by ASHRAE to unify international weather files similar
to TMY3 [101], in which the month without extreme events
and with the nearest mean dry-bulb temperature to the overall
average of this month over the years is selected, then daily values
are replaced until the average of that month is within 0.2◦F of
the overall average. In IWEC2, weighting factors for global solar
radiation have been decreased and increased for direct normal
radiation [58].

• Weather Year for Energy Calculation (WYEC): Also initiated
by ASHRAE through three research projects (RP-100, RP-239,
and RP-364) from 1970 to 1983 to generate a weather dataset
representing more typical weather patterns than either a sin-
gle representative year or assembled months [101]. The WYEC
construction method is similar to that used in IWEC for deter-
mining the month with the closest mean dry-bulb from a set of
30 years [189]. WYEC was updated in the early 1990s (WYEC2
or WYEC Version 2) according to the TMY format and included
solar radiation and illuminance data calculated from the cloud
information using Perez’s sky model [18].

.4.3. Extreme year
Typical year datasets provide average weather data with no in-

ormation about natural weather variances or untypical and severe
vents, such as heatwaves or cold snaps, which are crucial for mod-
lling overheating in buildings and estimating peak energy supply and
emand [58]. Therefore, specialised datasets are designed to describe
ntypical weather events [63], such as:

• Design Summer Year (DSY): Representing a ‘near extreme’ warm
summer, DSY was introduced by CIBSE in 2002 for evaluating
possible overheating in naturally ventilated buildings [190]. DSY
is a single year with the third warmest summer (from April
to September) according to the dry-bulb averages selected from
20 years of data (1983–2004), similar to TRY [191]. Additional
probabilistic DSY (pDSY) types are developed to represent differ-
ent hot summer events: pDSY1 with a moderately warm summer,
pDSY2 with a short and intense warm spell, and pDSY3 with a
long and less intense warm spell [192].

• Design Reference Year (DRY): Containing near-extreme winter
and summer conditions for designing and sizing building energy
systems [71], DRY follows the TRY method in identifying the
three months with the lowest mean of weighted dry-bulb, humid-
ity, and global solar radiation combination [193] from twenty
13
synthetic years produced by the UKCP09. These twenty years
are placed in the middle of the lower/upper quartile of a set
of 3000 years sorted by the monthly dry-bulb averages. Then,
the closest average month of wind speed to the 20-year mean is
selected.

• Extreme Meteorological Year (XMY): Including the hottest sum-
mer and the coldest winter throughout records from 1999 to
2013, XMY is developed to represent extreme events rather than
typical weather patterns. XMY is based on the same weighting and
selection methods as TMY but chooses months with the highest
and lowest hourly mean values instead of averages [111].

• Untypical Meteorological Year (UMY): Integrating 12 months
from 30 years of weather data using the same methods as WYEC2
for weighting parameters. However, the selection criteria are
modified to indicate maximum and minimum dry-bulb temper-
atures, daily solar radiation, and maximum wind speed to repre-
sent extreme events [105].

• Hot Summer Year (HSY): To overcome the limitations of DSYs in
thermal comfort simulations, HSY was proposed based on phys-
iologically equivalent temperature (PET). Two different versions
of HSY for future weather data were developed: pHSY-1, which
is based on weighted cooling degree hours (WCDH) and pHSY-2,
which is based on PET. Both pHSY-1 and pHSY-2 were found to
be more robust than the pDSY. However, pHSY-1 is more suitable
for assessing the severity and occurrence of overheating, while
pHSY-2 is more appropriate for evaluating thermal discomfort or
heat stress [59].

. Use of weather parameters in lifecycle stages

Weather conditions greatly affect energy generation, transmission,
nd consumption in buildings and energy applications [1–3]. Each
nergy application has close relationships with certain weather vari-
bles that influence its energy and environmental performance. Sixteen
arameters derived from the reviewed literature are widely used for
ifferent energy applications. Dry-bulb temperature is the most widely
sed, followed by wind speed, humidity, and global solar radiation,
s summarised in Table 6. Reliable information for these parameters
s required at different decision-making stages, as summarised in Ta-
le 7. Most parameters are essential in both the design and operation
hases, and some are only needed during one stage, as discussed in the
ollowing sub-sections.

.1. Design

Building envelopes separate the conditioned indoor spaces from
he unconditioned outdoor environment, significantly impacting occu-
ant thermal comfort [194]. Physical characteristics such as building
eometries and envelopes control heat exchange through construc-
ion materials, openings, and shading elements [195]. Heat transfer is
ainly influenced by dry-bulb temperature, humidity, solar radiation

global, direct, diffuse, and direct normal radiation), longwave radia-
ion (HIRI), precipitation (rain and snow), and wind. These factors are,
herefore, relevant for thermal and energy performance applications
hroughout the building design and management stages, especially for
hole building simulation [195].

Indoor building systems may require different parameters; for in-
tance, dew-point temperature and relative humidity influence building
atent loads, while atmospheric pressure is needed during the design
nd sizing of HVAC systems [196]. Natural ventilation is directly in-
luenced by wind speed and direction, dry-bulb temperature, pressure,
nd humidity [116]. Meanwhile, daylighting levels mainly depend on
he global illuminance that is impacted by solar radiation and cloud
over [197].

The performance of renewable energy systems depends on variables
elated to their natural source characteristics, which play a major
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Table 6
Usage of major weather parameters in the reviewed research, arranged by application and topic.

Research area Weather data

Topic Feature Set Variable

Min Max Avg DBT DPT RH BP GHI DIR DHI DNI WS WD WG CC GI LPD VIS HIRI

Weather
dataset
generation

Typical 2 11 6 15 6 12 9 13 4 2 3 12 8 4 1 6
Reference 3 8 5 5 1 5 2 4 1 1 3 1 1 1
Actual 2 10 6 7 3 7 4 3 2 3 6 5 2 1 1
Localised 1 6 3 7 1 4 1 3 5 3
Extreme 3 7 5 3 1 3 1 3 1 1 2 1
Future 2 10 6 11 3 9 5 9 4 2 2 9 2 5 1 4
Other 1 6 3 4 1 2 2 1 1 1 1

Weather
impacts on
energy

Datasets 2 11 6 22 7 20 10 19 6 6 5 22 12 7 1 9 1
Variables 1 7 4 16 1 12 3 7 3 3 13 8 1 2 3 1
Actual 1 9 5 13 2 11 5 8 3 2 11 9 1 3 1
Local 1 9 4 6 4 1 4 1 4 3 1 1
Untypi-
cal/extreme

2 11 6 4 2 2 2 2 2 1 1 3 1 1 2

Climate
change/future

1 10 5 15 4 10 4 11 2 2 13 5 4 1 2

Data
forecasting

Weather 2 8 5 4 2 4 3 5 5 2 2 1
Energy 2 8 5 16 4 12 7 6 1 1 16 9 2 3 7

Data
analysis

Missing data 1 5 3 2 1 1 1 1
Data accuracy 1 9 5 5 3 2 4 1 4 2 1 1
Downscale 2 11 6 13 4 11 6 12 5 2 2 11 4 5 1 4
Other 1 7 4 4 1 2 1 1 3 3 1

Overall 1 11 4 66% 17% 45% 25% 44% 10% 10% 5% 56% 30% 2% 11% 1% 20% 2% 1%
Table 7
Weather parameters required for various energy applications across their life-cycle.

Weather parameter Application

Whole building Building systems Community/grid Renewable energy

Heating Cooling Ventilation Lighting Solar Wind Geothermal

DBT D/O D/O D/O D/O D/O D/O D/O D/O D/O
DPT D/O D/O
RH D/O D/O D/O D/O D/O O D/O D/O
GHI D/O D/O D/O D/O D/O D/O
DHI D/O D/O D/O D/O D/O
DIR D/O D/O D/O D/O D/O
DNI D/O D/O
GI D/O
HIRI D/O
WS D/O D/O D/O D/O D/O D/O
WD D/O D/O D/O D D/O D/O
WG D/O D/O D/O
BP D D D/O O D/O
LPD D/O D/O D/O D/O O O
CC M M M D/O O D/O
SD D/O D/O D/O D/O O O
SF D D D O O
VIS M M M

D = Needed for application design only; O = Needed for application operation only; D/O = Needed for application design and operation; M = Needed when solar
radiation variables are missing.
role in designing and operating RESs. For instance, solar PV outputs
depend predominantly on the amount of solar radiation received at
the module surface, which is directly related to global, direct, dif-
fuse, and direct normal radiations, as well as sky clearness (cloud
cover) [198]. However, generation efficiency is affected by the module
surface’s temperature, which is influenced by dry-bulb temperature,
humidity, precipitation, and wind speed. Meanwhile, wind direction
is required for designing the physical structures to support the PV
module systems [199]. Wind power primarily depends on wind speed,
which is affected by air temperature, humidity, and pressure; how-
ever, precipitation, especially ice and hail, could impact power gen-
14

eration performance [124]. Similarly, geothermal energy is dependent
on underground heat; however, air temperature, humidity, and wind
are needed for heat rejection systems that subsequently influence the
efficiency of the whole system [200].

Overall, the dry-bulb temperature is the most influential and re-
quired variable for most building and energy applications throughout
their life-cycle [201], followed by humidity, global solar radiation, and
wind. The dew-point temperature is rarely used, as it can be simply
calculated from relative humidity. Indicators derived from dry-bulb
temperature records, e.g. heating and cooling degree-days are used in
estimating energy consumption and performance benchmarking [201].
Detailed solar radiation components such as direct, diffuse, and direct

normal radiation data are often required in energy applications. Other
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Table 8
Weather parameters and temporal resolutions recommended for handling various energy applications.

Weather
parameter

Temporal resolution [min]

Building systems Community/grid Renewable energy

Solar Wind Geothermal

⩽1 5 15 ⩾60 ⩽1 5 15 ⩾60 ⩽1 5 15 ⩾60 ⩽1 5 15 ⩾60 ⩽1 5 15 ⩾60

DBT R R B R R B/R B R R B/R B R R B/R B R B/R B
DPT R R B B B
RH R R B R R B/R B R R B/R B R R B/R B R B/R B
GHI R R B R R B/R B R R B/R B
DHI R R B B B R R B/R B
DIR R R B B B R R B/R B
DNI R R B B B R R B/R B
GI R R B
HIRI R R B
WS R R B R R B/R B R R B/R B R R B/R B R B/R B
WD R R B R R B/R B R R B/R B R B/R B
WG R R B R R B/R B R R B/R B R B/R B
BP R R B R R B/R B R R B/R B
LQD R R B R R B/R B R R B/R B R R B/R B
CC R R B M M M M M M M
SD R R B R R B/R B R R B/R B R R B/R B
SF B B B R R B/R B R R B/R B
VIS M M M M M M M M M M

B = Appropriate resolution for benchmarking; R = Required resolution for efficient management; M = Needed when solar radiation variables are missing.
parameters are only required for certain applications; for instance
‘wind gusts’ is a key parameter in studies on wind power genera-
tion [124,145]. Meanwhile, cloud cover and visibility may be needed
when solar radiation is missing in the weather data for operating
building envelope elements, heating/cooling systems, daylighting, and
solar energy generation [110]. Snow information, though important
for energy performance in cold climates, has been under-explored in
energy applications, likely due to availability limitations.

6.2. Operation and maintenance

Energy management systems require high-frequency accurate and
reliable weather information for energy-efficient operation and main-
tenance while mitigating weather-related risks [21,202]. For instance,
intelligent building management systems (BMS) monitor and analyse
a vast amount of building and weather data to achieve high levels of
indoor thermal and visual comfort, as well as energy efficiency and cost
savings [203].

Table 8 summarises the recommended temporal resolutions for key
weather parameters used in building and energy applications. Medium-
temporal resolutions (5–15 min) are sufficient for building applications,
as the impact of external conditions takes time to propagate through
the building envelope. High-temporal data (1–15 min) is essential for
community/utility grids and renewable energy applications. For some
renewable energy applications, such as solar and wind power, weather
data with a frequency of less than 1 min is desirable. Although hourly
and low-resolution (daily, monthly and annual) data are not suitable
for operational purposes, they are still useful for energy benchmark-
ing [27] and comparison [201]. Therefore, it is important to identify
the sensitivity of weather parameters for a particular energy application
to determine the required level of detail [21].

7. Weather data sources

A broad number of sources derived from the reviewed literature
are available for acquiring meteorological information, as shown in
Fig. 12. These sources allow access to different weather data types with
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varying geographical and temporal coverage, which can be grouped
into (i) local sources that are widely used to obtain reliable local
weather data; (ii) regional coverage databases; (iii) global coverage
databases; (iv) weather software to generate typical weather year files;
(v) online third-party weather services providing real-time, forecast,
or historical weather data; and (vi) weather generators to produce
future climatic data. Data availability and features among the widely
used meteorological data sources have been investigated to identify
recommended retrieval approaches for weather information, which are
discussed in the following sub-sections.

7.1. Off-site approach

Obtaining meteorological information from third-party sources is
known as an ‘‘off-site method’’. Ongoing research and technological
advancements on off-site methods, such as meteorological organisa-
tions, online research/commercial services, and aggregated/archived
websites, have increased to provide different types of reliable weather
data (e.g. real-time, historical, forecast, or year files). For instance, the
National Oceanic and Atmospheric Administration (NOAA) – formerly
the National Climatic Data Center (NCDC) – is one of the most widely
used databases that provide access to significant historical data archives
from land-based stations (Integrated Surface Database-ISD), weather
radars, and balloons, in addition to forecasts from NWP models [204].

Table 9 lists the availability, resolution, and data types of weather
parameters among common online archived databases with a global
coverage while Table 10 elaborates accessibility types, licences, costs,
and sources for these databases. It is noteworthy that weather data
features and prices presented are subject to change based on their ser-
vice providers. Historical data for major weather parameters is usually
available across all databases, such as dry-bulb temperature, relative
humidity, global solar radiation, and barometric pressure, while visi-
bility and detailed solar radiation variables (diffuse, direct, and direct
normal) are limited. Meteorological information among these databases
is obtainable with different temporal resolutions, ranging from 1–
180 min, through a web data services or an API interface at almost
no cost.

Available weather data characteristics of widely used online

weather API services with global/regional coverage are summarised in
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n

Table 9
Weather data types, parameters, and temporal resolutions availability among common online meteorological databases.

Service Producta Weather parameter Res.b [min]

DBT DPT RH GHI DHI DIR DNI HIRI WS WD WG BP LPD CC SD SF VIS Min. Max.

NOAAd F, H Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 30 60
MERRAe H Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 5 c

CAMSf H Y Y Y Y 1 60
SODAg H Y Y Y Y Y Y Y Y Y 10 60
BSRNh H Y Y Y Y Y Y Y 1 5
CEDAi H Y Y Y Y Y Y Y Y Y Y Y Y Y Y 60 180
NCARj F, H Y Y Y Y Y Y Y Y Y Y <1 c

Shinyk H Y Y Y Y Y Y Y Y Y Y Y Y Y Y 60 c

ECMWFl F, C, H Y Y Y Y Y Y Y Y Y Y Y Y 4 60
PVGIS H Y Y Y Y Y Y Y Y Y 60 c

Meteonormm F, C, H Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 1 60

Y = Available variable.
a F = Forecast, C = Current, H = Historical.
b Temporal resolution.
c Daily and monthly averages.
d National Oceanic and Atmospheric Administration (NOAA), https://www.ncdc.noaa.gov/.
e The Modern-Era Retrospective analysis for Research and Applications (MERRA), https://disc.gsfc.nasa.gov/datasets?project=MERRA-2/.
f Copernicus Atmosphere Monitoring Service (CAMS), http://www.soda-pro.com/web-services/radiation/cams-radiation-service.
g Solar radiation data (SODA), http://www.soda-pro.com/web-services/meteo-data/merra.
h Baseline Surface Radiation Network (BSRN), https://dataportals.pangaea.de/bsrn/.
i Centre for Environmental Data Analysis (CEDA), http://archive.ceda.ac.uk/.
j National Center for Atmospheric Research (NCAR), https://rda.ucar.edu/.
k Shiny weather data, https://www.shinyweatherdata.com/.
l European Centre for Medium-Range Weather Forecasts (ECMWF), https://apps.ecmwf.int/datasets/.
m Photovoltaic Geographical Information System (PVGIS), https://ec.europa.eu/jrc/en/pvgis.
Table 10
Weather data accessibility and costs through online meteorological databases.

Service Accessibility Licencea Cost [$] Source

OA LA CO NC Min. Max.

NOAAb HTTP, FTP, API Y 0 0 Weather stations, radars, balloons
MERRAc HTTP Y Y 0 0 Reanalysis model
CAMSd HTTP Y 0 0 ECMWF
SODAe HTTP Y 0 0 MERRA-2
BSRNf HTTP, FTP Y 0 0 Weather stations
CEDAg HTTP Y 0 0 BADC, NERC
NCARh HTTP, FTP, API Y 0 0 Models, satellites, observations
Shinyi HTTP Y 0 0 ECMWF-ERA5, CAMS
ECMWFj HTTP, API Y Y Y 0 126,000m CAMS, satellites
PVGISk HTTP Y 0 0 ECMWF-ERA5, COSMO-REA
Meteonorml Software, API Y Y 125 680n Weather stations, satellites

Y = Available variable.
a Licence types: OA = Open access, LA = Limited access, CO = Commercial, NC = Non-commercial.
b National Oceanic and Atmospheric Administration (NOAA), https://www.ncdc.noaa.gov/.
c The Modern-Era Retrospective analysis for Research and Applications (MERRA), https://disc.gsfc.nasa.gov/datasets?project=MERRA-2/.
d Copernicus Atmosphere Monitoring Service (CAMS), http://www.soda-pro.com/web-services/radiation/cams-radiation-service.
e Solar radiation data (SODA), http://www.soda-pro.com/web-services/meteo-data/merra.
f Baseline Surface Radiation Network (BSRN), https://dataportals.pangaea.de/bsrn/.
g Centre for Environmental Data Analysis (CEDA), http://archive.ceda.ac.uk/.
h National Center for Atmospheric Research (NCAR), https://rda.ucar.edu/.
i Shiny weather data, https://www.shinyweatherdata.com/.
j European Centre for Medium-Range Weather Forecasts (ECMWF), https://apps.ecmwf.int/datasets/.
k Photovoltaic Geographical Information System (PVGIS), https://ec.europa.eu/jrc/en/pvgis.
l https://meteonorm.com/en/.
m Cost in euros is based on the average exchange rate for 2019, at AC1 = $1.119 [205].

Cost in CHF is based on the average exchange rate for 2019, at $1 = CHF 1.006 [205].
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Fig. 12. Weather data sources and tools used among the literature.

Tables 11 and 12, where most services also have a shortage in providing
detailed solar radiation variables (e.g. diffuse, direct, direct normal, and
infrared radiation). Historical, real-time, and forecast data are available
across most of them, with different resolutions ranging from 5 min to
daily averages.

Meanwhile, various weather year dataset types have been devel-
oped by many international organisations based on different year pe-
riods for different locations across the world, as shown in Table 13.
Available weather year files via common online databases are listed
in Table 14, which are developed using real/synthetic information
from weather stations or generators. For instance, Meteonorm gen-
erates weather datasets for any location worldwide based on data
from weather stations, satellites, and global aerosol climatology in-
formation [215]. WeatherShift uses a global climate change model to
generate future typical year files according to emissions scenarios and
warming percentiles [216].

7.1.1. Strength and weakness of off-site sources
While off-site weather data acquisition offers significant cost savings

over on-site methods, its inherent limitations in availability, spatial
resolution and temporal granularity introduce uncertainties [1,217], as
discussed below.

• Availability limitations are primarily due to the uneven distri-
bution of meteorological stations, particularly in developing na-
tions [1], which force the use of information from the nearest
stations, leading to spatial uncertainties. Therefore, a distance of
30–50 km and an elevation range of a hundred metres needed
to be considered during station selection [101]. Fig. 13 illustrates
the spatial distribution of WMO stations worldwide [204] – a lack
of weather stations is highly prevalent in developing countries
17
[1], where opportunities for climate-resilient development might
be missed in new construction [218].

• Micro-climate discrepancies are due to geographical differences,
as most online databases and services obtain information from
weather stations located on the outskirts, airports, or open lands
[32]. Besides, the built environment, comprising building materi-
als, urban textures, lack of vegetation, and pollutants, influences
the local climate, contributing to air temperature increases [219]
– known as urban heat island (UHI) effects that may range
between 1–10◦C in Europe based on time, seasons, and locations
(Mediterranean, Central, and Northern Europe) [220]. Although
UHI decreases building heating demand during cold seasons, it
results in increased cooling loads during hot seasons.

• Embedded uncertainties in most weather year files are due to re-
lying on one-period or old records to represent climate conditions
without considering climate variances over years [221].

• Temporal and spatial uncertainties are inherent in GCM out-
puts as they provide regional and monthly climate data, which
requires additional downscaling steps to convert it to finer spatio-
temporal resolution [48,52]. Besides, climate change predictions
are model- and scenario-dependent, influencing temperature vari-
ations based on GHG emissions and economic growth rates [54].

7.2. On-site approach

Collecting meteorological data at the required place using measur-
ing instruments and sensors is called the ‘‘on-site approach’’. A weather
station is a set of sensors working together to accurately state and
transmit weather information [222]. Different types of weather sta-
tions are available based on measuring methods (manual/automatic),
accuracy (personal/professional), fixation (fixed/portable), or even ob-
serving sensors. Traditional or manual weather stations depend on
human recording, which increases the possibility of error. On the
other hand, automatic weather stations (AWS) are defined as ‘‘any
observing system which creates and archives digital records of one or more
weather variables’’ [223] and are widely used to save labour and reduce
errors. Besides, self-powered AWSs can be installed in remote and
previously inaccessible locations. Professional automatic weather sta-
tions are widely used due to their reliability, durability, accuracy, and
validity in meeting the requirements of international meteorological
organisations and standardisation bodies such as the National Institute
of Standards and Technology (NIST) [224]. Common sensors for major
weather variables embedded in a typical weather station are listed
in Table 15, where more sophisticated stations might have additional
sensors, such as a ceilometer and a pyrheliometer, to monitor detailed
solar radiation and cloud variables [223,225].

A schematic of an AWS is illustrated in Fig. 14, where data flows
through four phases: measuring, acquiring, transmitting, and display-
ing/storing. Sensors are connected to a data logger, the AWS core,
which is responsible for information aggregation, preprocessing, and
archiving in built-in memory before being dispatched to end-users
(servers or computers). Data loggers handle data transmission via wired
(e.g. copper wire, fibre optic cable) or wireless communication proto-
cols, such as cellular networks, terrestrial wireless (VHF/UHF/SHF),
satellite-based, or even ‘‘sneakernet’’ [9]. AWSs are usually powered
from the grid or self-powered by a renewable source (e.g. solar PV),
while data loggers maintain additional power supply through backup
batteries to avoid blackouts [223].

An IoT-based weather station is the most recent AWS variant that
uses the Internet of Things (IoT) for obtaining and dispatching weather
information to a cloud service for processing and analysing, then setting
responses based on outputs [226]. IoT is described as ‘‘a network of
interconnected devices with local intelligence that shares access to push and
pull information or status from the networked world’’, which connects
various devices and enables not only human-device but also device-

device interaction [227], such as informing drivers of weather status to
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Fig. 13. Global spatial distribution of WMO weather stations. The data is obtained from the Global Historical Climatology Network (GHCN) database, NOAA.
Table 11
Weather data types, variables, and temporal resolutions availability among common weather API services.

Service Producta Weather parameter Res.b [min]

DBT DPT RH GHI DHI DIR DNI HIRI WS WD WG BP LPD CC SD SF VIS Min. Max.

Weatherbit.io F Y Y Y Y Y Y Y Y Y Y Y Y Y 60 1440
C Y Y Y Y Y Y Y Y Y Y Y Y Y 60 60
H Y Y Y Y Y Y Y Y Y Y Y Y Y 60 1440

Meteoblue F Y Y Y Y Y Y Y Y Y Y Y Y Y 5 1440
C Y Y Y Y Y Y Y Y Y Y Y Y Y 60 60
H Y Y Y Y Y Y Y Y Y Y Y Y Y 60 1440

OpenWeatherMap F Y Y Y Y Y Y Y Y Y 180 1440
C Y Y Y Y Y Y Y Y Y 60 1440
H Y Y Y Y Y Y Y Y Y 60 1440

AccuWeather F, C Y Y Y Y Y Y Y Y 60 60
Weather Unlocked F, C Y Y Y Y Y Y Y Y Y Y Y 180 1440
Dark Sky F, C, H Y Y Y Y Y Y Y Y Y Y Y 1 1440
ClimaCell F, C, H Y Y Y Y Y Y Y Y Y Y Y Y 1 1440
AerisWeather F, C, H Y Y Y Y Y Y Y Y Y Y Y 60 1440
Weather F, C, H Y Y Y Y Y Y Y Y Y Y 60 1440
Underground
Foreca F Y Y Y Y Y Y Y Y Y Y Y 15 1440

C, H Y Y Y Y Y Y Y Y Y Y Y 60 1440
World Weather F, C, H Y Y Y Y Y Y Y Y Y Y Y 60 1440
Online
MeteoGroup F, C, H Y Y Y Y Y Y Y Y Y Y Y Y Y 60 1440
Meteotest F, C, H Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 60 60
MesoWest H Y Y Y Y Y Y Y Y Y Y Y Y 5 5
NCAR F, H Y Y Y Y Y Y Y Y Y Y <1 c

NOAA H Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 30 60
ECMWF F, C, H Y Y Y Y Y Y Y Y Y Y Y Y 4 60

a F = Forecast, C = Current, H = Historical.
b Temporal resolution.
c Daily and monthly averages.
avoid fatal accidents in traffic management systems [141] or notifying
people through email/SMS when air temperature is below/above a
certain limit [227].

The AWS’s characteristics and costs vary according to its data
measuring features in terms of accuracy, resolution, and range. Fig. 15
illustrates the measuring traits of common personal and professional
AWSs in the market. Four key weather parameters, namely dry-bulb
temperature, relative humidity, and atmospheric pressure, are com-
monly available in all AWSs. More than 85% of these stations are
18
professional, with highly sensitive sensors. For instance, most pro-
fessional AWSs are able to measure dry-bulb temperatures between
−40◦C and 70◦C with a 0.1◦C resolution and accuracy around ±0.1◦C.
Likewise, dry-bulb temperature measuresments using personal AWSs
range from −40◦C to 65◦C with a 0.1◦C resolution, but with less
accuracy, of around ±1◦C. A personal AWS capable of measuring basic
weather parameters at an acceptable level of accuracy costs less than
500 USD, while professional models with more accurate measurements
and advanced features range from 1000 USD to over 10,000 USD, as
shown in Fig. 16.
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Table 12
Weather information costs and spatial coverage among online weather API services.

Service Producta Cost [$/month] Coverage

Min. Max.

Weatherbit.io F 0 470 Global
C 0 0
H 160 470

Meteoblue F, C 37b,c,d 224b,c,d Global
H 0 224b,c,e

OpenWeatherMap F, C 0 2000 Global
H 45 950f

AccuWeather F, C 0 500 Global
Weather Unlocked F, C 0 450 Global
Dark Sky F, C, H 0 150g USA, Canada, UK and Europe
ClimaCell F, C, H 0 200h Global
AerisWeather F, C, H 0 70i Global
Weather Underground F, C, H – –j Global
Foreca F, C, H 950b Europe
World Weather Online F, C, H 5 –k Global
MeteoGroup F, C, H – –l Global
Meteotest F, C, H – –m Global
MesoWest H 0 0 USA
NCAR F, H 0 0 Global
NOAA H 0 0 Global
ECMWF F, C, H 0 13,750b,c Global

a F = Forecast, C = Current, H = Historical;
§Temporal resolution;
∗daily and monthly averages.
b Cost in euros is based on the average exchange rate for 2019, at AC1 = $1.119 [205].
c Cost based on yearly access fee.
d Additional costs will be added for the data packages, the price of the data package is per daily request over one year [206].
e The cost varies based on the access type (API, email, HTTP) [206].
f Cost varies based on years back or particular location [207].
g Cost based on 500,000 requests over the day, the price is $0.0001 per request and the first 1000 requests are free of charge
[208].
h Cost varied based on access plan, a 14-days free trial with limit calls 1000/day available [209].
i A free trial access is available for two months [210].
j Notice that prices are not listed on their website [211].
k The plan pricing is based on a number of factors such as number of forecast days, locations and requests [212].
l Notice that prices are not listed on their website [213].
m Cost varies based on the number of locations, type and long of the data. Notice that prices are not listed on their website
[214].
Table 13
Weather datasets availability in various regions.

Acronym Name Region Period Locations

From To

ArgTMY Argentina TMY Argentina 1994 2014 15
CTZ California Climate Zones USA Various 16
CWEC Canadian Weather for Energy Calculations Canada 1953 1995 80
CSWD Chinese Standard Weather Data China 1982 1997 270
CTYW Chinese Typical Year Weather China 1982 1997 57
ETMY Egyptian Typical Meteorological Year Egypt 1982 2003 11
IGDG Italian Climatic data collection Italy 1951 1970 66
IMGW Weather data set for Poland Poland Various 61
IMS Weather Data for Israel Israel 1968 1996 4
INETI Synthetic data for Portugal Portugal 1951 1980 2
ISHRAE Indian Typical Years India 1991 2005 62
ITMY Iran Typical Meteorological Year Iran 1992 2003 6
KISR Kuwait Weather Data Kuwait 1986 1997 2
RMY Australia Representative Meteorological Year Australia 1967 2004 69
SWEC Spanish Weather for Energy Calculations Spain 1961 1990 52
SWERA The Solar and Wind Energy Resource Assessment Worldwide Various 48
WYEC Weather Year for Energy Calculations USA/Canada 1953 2001 77
TMY3 Typical Meteorological Year USA and others 1991 2005 1020
TRY Test Reference Year UK 1984 2013 14
IWEC2 International Weather for Energy Calculations Worldwide 1991 2005 3012
19
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Table 14
Weather datasets availability and costs among common online databases.

Database Dataset Licencea Coverage Source

OA LA CO NC

CIBSEb TRY, DSY Y Y UK Weather stations
Climate.Onebuildingc various Y Global Weather stations
DOEd CTMY, CTMY2, CTZ2, TMY, TMY2, TMY3, TRY, WYEC, WYEC2 Y Canada and USA Weather stations
EnergyPluse various Y Global Weather stations
Meteonormf TMY3 Y Y Global Weather generator
PVGISg TMY Y Global Weather generator
WeatherShifth FTMY Y Global Weather generator
White Box Technologiesi IWEC2, TMY3, CTZ2, CWEC2, ISHRAE Y Y Y Global Weather stations
Ladybugj various Y Global Weather stations

Y = Available variable.
a Licence types: OA = Open access, LA = Limited access, CO = Commercial, NC = Non-commercial.
b https://www.iesve.com/support/weatherfiles/cibse2016.
c http://climate.onebuilding.org/default.html.
d http://doe2.com/index_wth.html.
e https://energyplus.net/weather.
f https://meteonorm.com/en/typical-meteorological-years.
g https://ec.europa.eu/jrc/en/pvgis.
h https://www.weathershift.com.
i http://weather.whiteboxtechnologies.com.
j https://www.ladybug.tools/epwmap/.
Table 15
Common meteorological sensors included in weather stations.

Type Sensor Weather parameter Unit

Typical Thermometer Air temperature F, °C
Barometer Atmospheric pressure mb, pa
Hygrometer/Psychrometer humidity %
Anemometer Wind speed m/s, mph
Wind vanes Wind direction degree
Pyranometer Global solar radiation W/m2, J/m2

Rain gauge Liquid precipitation within a specific time interval mm
Ultrasonic snow sensor Snow depth cm, mm

Advanced Ceilometer Cloud cover and height %, m
Pyrheliometer Global, direct, and diffuse irradiance and direct normal irradiance W/m2, J/m2
7.2.1. Strength and weakness of on-site sources
Ongoing electronic sensor developments in the last decade have in-

creased the range, accuracy, reliability, and cost savings of AWSs, while
enabling more individuals and organisations interested in meteorology
to monitor local weather. However, selecting the right AWS remains
a crucial challenge, requiring careful consideration of factors such as
measurable parameters, data accuracy, and cost. Besides, data loss may
occur due to system failure, power shortages, or damage caused by
severe conditions. Inaccurate data may occasionally be due to, for ex-
ample, sensor failures, blockages caused by inadequate maintenance, or
the inability to differentiate between rainfall and wet snow [223,228].

8. Conclusion

This review examined the role of weather and climate data in en-
ergy applications throughout their life cycles, particularly in buildings,
renewable energy sources, and utility grids. An exhaustive analysis of
published literature revealed six critical aspects:

• Drivers and roles of weather data in energy applications:
The growing interest in performance-based design, management,
and operation of buildings and energy systems has created a
greater need for meteorological data. Weather data is essential
for evaluating the performance of energy applications in the past,
present and future, both through simulation and forecasting. It is
20

also used to benchmark energy and environmental performance
against policies and regulations, to support smart grid and de-
mand response applications, and to adapt to climate change.
Additionally, weather data have also been used in applications
to mitigate the risks of natural hazards to buildings and energy
systems.

• Weather data implementations in energy applications:
Weather impacts on energy and environmental performance are a
major research topic, with around 75% of the existing literature
focusing on this topic. Nearly 50% of studies have investigated
weather dataset generation for present-day and future climates,
while around 25% have focused on using weather information to
forecast future energy use and improve the integrity and usability
of weather data.

• Weather data classification: By examining the data collected
in this review, a comprehensive classification system for weather
data has been developed based on four features: data type (actual
or synthetic), time period (historical, current, or future), data
resolution (temporal: low, medium, high, or averaged; and spa-
tial: micro, macro, regional, or global), and data time horizon
(single or multiple years). This classification system is devised to
help users navigate the complex landscape of weather data and
identify the most suitable data for their specific applications.

• Variability and influence of weather parameters: Dry-bulb
temperature is the most influential and required weather param-
eter for most energy applications, including building heat trans-
fer, heating and cooling systems, and renewable energy sources,

https://www.iesve.com/support/weatherfiles/cibse2016
http://climate.onebuilding.org/default.html
http://doe2.com/index_wth.html
https://energyplus.net/weather
https://meteonorm.com/en/typical-meteorological-years
https://ec.europa.eu/jrc/en/pvgis
https://www.weathershift.com
http://weather.whiteboxtechnologies.com
https://www.ladybug.tools/epwmap/
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Fig. 14. Automatic weather station schematic and data flow from measurement to storage.
followed by humidity, solar radiation, and wind. Although re-
newable energy sources such as solar and wind are significantly
influenced by the related natural source characteristics, air tem-
perature, wind, and humidity also affect the efficiency of entire
systems.

• Operational requirements: Efficient operation and management
of buildings and energy systems require reliable and accurate
weather data to inform decision-making and mitigate risks across
the life-cycle. High temporal resolution (⩽15 min) is needed for
operational purposes in most energy applications, while hourly
data is sufficient for performance assessment. Monthly and an-
nual data are often used for benchmarking and compliance. Sub-
minute data is desirable for some renewable energy applications,
such as solar and wind power.

• Meteorological dataset acquisition approaches and
challenges: The suitability and effectiveness of weather data
for accurate analysis, simulation, and forecasting depend on the
methods of acquisition and quality of observations. Increased
availability of user-friendly and affordable weather stations has
made it easier to collect on-site weather data. However, choosing
an appropriate weather station can be challenging, as there are a
variety of factors to consider, such as sensor accuracy, data res-
olution and access, and siting requirements. Off-site approaches
provide access to a wider range of weather information, but can
be limited by data availability and spatio-temporal resolution.
Additionally, off-site data may not be representative of local
conditions, particularly in complex terrains or urban locations.
NOAA and ECMWF are two of the most widely used archives
that provide open access to significant actual observations and
reanalysis data for historical and future weather, respectively.
Meanwhile, EnergyPlus and Meteonorm provide many typical
year datasets for various worldwide locations.

The review has identified the following gaps and limitations in
existing knowledge regarding the use of weather data, which present
opportunities for further research:
21
• A large percentage of weather data-related research has focused
on the impact of weather parameters on building energy and
environmental performance, including their relationship with a
variety of building elements and operation strategies. However,
similar research on renewable energy sources and utility grids has
been less extensive and less rigorous.

• Although this review’s findings emphasise the importance of using
accurate local weather data for modelling, assessing, and forecast-
ing energy and environmental performance, limited attention is
given to implementing local or actual weather data in both RESs
and utility grids. The literature also lacks studies on the impact
of extreme weather conditions on the performance of RESs.

• Most weather services and databases lack detailed solar radiation
variables, such as diffuse, direct, direct normal, and infrared ra-
diation intensity that are often needed for whole building energy
simulation.

• Off-site and widely-used typical weather data are often used with-
out considering their inherent uncertainties, which can arise from
a lack of nearby representative meteorological stations, spatial
and land-use differences between the site and the location of
the weather information source, and the use of outdated weather
data.

Overall, key recommendations from this research are summarised
as:

• The quality and appropriateness of weather datasets have a signif-
icant impact on the reliability and accuracy of energy simulation
and forecasting outcomes. Typical weather data is best suited
for early-stage design, investigation of energy and environmen-
tal behaviour, benchmarking, energy-efficiency certification and
compliance, and feasibility assessment of building renovation
strategies. Otherwise, reference- and extreme-year weather data
should be used for resilience analysis, and the design and sizing
of energy systems for worst-case scenarios.
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Fig. 15. Measuring traits of common AWSs on the market in terms of resolution, accuracy, and minimum and maximum ranges.
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Fig. 16. Average costs of common professional and personal AWSs on the market.
• To avoid over- or under-estimating the influence of weather infor-
mation on the long-term performance of energy applications, it is
important to use actual weather data over a long-term horizon,
as this data includes both typical and extreme weather events
such as heatwaves, floods, wind storms, and tornadoes. Related
energy applications include assessing energy system performance,
conducting energy audits, calibrating models, studying energy
costs and greenhouse gas emission reduction, and mitigating
weather-related risks.

• Future weather data is used to simulate the behaviour of buildings
and energy applications in the near future for energy management
applications, such as demand response and model predictive con-
trol, or in the far future to mitigate the impacts of climate change.
Although short-term hourly weather forecasts and datasets are
typically used for near-future energy management applications,
high-temporal-resolution weather data (⩽15 min) is ideally re-
quired for accurate data prediction and forecasting, especially for
time-sensitive and application-critical weather variables.
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