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ABSTRACT

Industrial cyber-physical systems (ICPS) are widely employed in supervising and controlling critical
infrastructures (CIs), with manufacturing systems that incorporate industrial robotic arms being a
prominent example. The increasing adoption of ubiquitous computing technologies in these systems
has led to benefits such as real-time monitoring, reduced maintenance costs, and high interconnectivity.
This adoption has also brought cybersecurity vulnerabilities exploited by adversaries disrupting
manufacturing processes via manipulating actuator behaviors. Previous incidents in the industrial
cyber domain prove that adversaries launch sophisticated attacks rendering network-based anomaly
detection mechanisms insufficient as the "physics" involved in the process is overlooked. To address
this issue, we propose an IoT-based cyber-physical anomaly detection system that can detect motion-
based behavioral changes in an industrial robotic arm. We apply both statistical and state-of-the-art
machine learning (ML) methods to real-time Inertial Measurement Unit (IMU) data collected from an
edge development board attached to an arm doing a pick-and-place operation. To generate anomalies,
we modify the joint velocity of the arm. Our goal is to create an air-gapped secondary protection layer
to detect "physical" anomalies without depending on the integrity of network data, thus augmenting
overall anomaly detection capability. Our empirical results show that the proposed system, which
utilizes 1D-CNNs, can successfully detect motion-based anomalies on a real-world industrial robotic
arm. The significance of our work lies in its contribution to developing a comprehensive solution for
ICPS security, which goes beyond conventional network-based methods.
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1 Introduction

Industrial cyber-physical systems (ICPS) Colombo et al. [2017], which is the backbone of Industry 4.0 Lasi et al. [2014],
are the result of adapting emerging information communication technologies (ICT) to the industrial control systems
(ICS). Implementing advanced ubiquitous computing resources enables interconnecting the cyber and physical assets
of ICPS. This provides the ability to supervise sophisticated industrial systems where each layer (e.g., production,
corporate) contains interdependent operations. Hence, a broad range of domains that manage critical infrastructures
(CIs), including manufacturing, transportation, and healthcare employs ICPS. Academia and industry refer to these
domains as "smart" Kusiak [2018] as the assets of ICPS can self-supervise. In smart systems, actuators operate
according to information generated from corresponding sensors. The heterogeneity of the industrial environment
may require an adaptive actuation that is directed by multiple sensor data. An autonomous robotic arm1 executing
repetitive patterns to assemble car parts, a conveyor belt that rotates based on the specific product carried, and a furnace
that decreases or increases gas supply to heating elements according to processed material and temperature are such
examples of cyber-physical systems.

The International Federation of Robotics (IFR) report published in 2022 Murphy [2022] shows that collaborative
robots (cobots) will lead the robotics industry after 2025. The rapid development of these autonomous robots that can
perform repetitive tasks accelerates the utilization of highly interconnected industrial infrastructures. However, high
interconnectivity means increased attack surface which mainly occurs due to the integration of information technologies
(IT) to operational technologies (OT). Thus, ICPS are exposed to attacks that were not an issue for legacy ICS. These
attacks become successful when inadequate cybersecurity measures are present causing disasters Tidy [2021], Press
[2021] as ICPS supervise CIs. The majority of attack detection solutions rely on intrusion detection systems (IDS)
Liao et al. [2013] which only perform network traffic analysis (NTA). As industrial systems have different security
requirements, the characteristics of industrial IDS differ from their peers Hu et al. [2018]. These IDS operate in the
"cyber" domain of ICPS where sophisticated attacks (e.g., stealthy attacks, advanced persistent threats (APT)) can
penetrate through to disturb the physical processes. Physics-based attack detection mechanisms Urbina et al. [2016]
observe these processes to detect any kind of abnormal behaviors hence monitoring the "physical" side of ICPS.

We consider attack detection as a sub-group of anomaly detection Chandola et al. [2009] as the anomalies in ICPS may
occur due to three main reasons: attack, failure due to degradation, and misconfiguration. These anomalies can be either
cyber or physical while both can occur either at once or at independent times. An example where both occur due to an
attack would be a successful distributed denial-of-service (DDoS) Mirkovic and Reiher [2004] attack that causes the
stoppage of the robotic arm (physical anomaly) due to missing network packets (cyber anomaly). We consider such an
attack as a cyber-physical attack Miller and Valasek [2014] as the attack causes physical alterations. An example where
only a physical anomaly occurs due to degradation would be a change in the acceleration of the robotic arm due to
corrosion on the bearings. IDS fail to detect such deviation either when the affected asset is not monitored or when the
data are spoofed by an adversary. One other precaution against cyber-physical attacks is to set thresholds for physical
characteristics (e.g., setting the joint speed limit for an industrial robotic arm, and setting the heat limit for an oven). As
these thresholds mostly determine upper and lower limits they fail to identify time-sensitive anomalies within these
limits. Hence, these kinds of events require contextual physics-based monitoring mechanisms.

Fault diagnosis Isermann [1997] an early discipline that examines unwanted physical deviations of system characteristics,
has similarities with anomaly detection. However, the primary difference is that fault diagnosis aims to identify the
reason for the anomaly. There are two main types of fault diagnosis: model-based Isermann [2005], and signal-based
Gao et al. [2015]. Model-based approaches attempt to generate an explicit model of system behavior to predict the
output while signal-based approaches process raw sensor measurements to predict the healthy state of the system.
Anomaly detection also has two similar approaches: model-based Stibor et al. [2005], and data-driven Stojanovic et al.
[2016]. The two significant drawbacks of model-based approaches are: (I) They require expert knowledge, which
is hard to obtain due to the high complexity of industrial cyber-physical systems, making this task laborious and
error-prone for humans. (II) They depend on the integrity of components, which must be trusted. This dependence
on components’ integrity raises concerns about the cybersecurity of these parameters, as they can be spoofed through
integrity attacks Tan et al. [2013]. The Stuxnet malware Langner [2011] attack on Iran’s nuclear centrifuges is a
real-world example of such an integrity attack, where attackers modified the gas centrifuge parameters. To address these
drawbacks, data-driven approaches Narayanan and Bobba [2018a], Park et al. [2018] have become increasingly popular
due to the rapid development of data technologies. These approaches utilize machine learning models, which can be
grouped into three based on supervision Chandola et al. [2009]: supervised, semi-supervised, and unsupervised. The
supervised models use labeled data for training, while the unsupervised models either do not require any training data
Liu et al. [2008] or use non-labeled data for training Kravchik and Shabtai [2018]. Semi-supervised models combine
these two.

1From now on, an arm refers to an industrial robotic arm.
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Neural networks Gurney [2018] are a type of machine learning method that mimics the structure of the human brain,
utilizing connected neurons and activation functions to learn from data. Neural networks are typically categorized
based on network structure Larochelle et al. [2009]: shallow neural networks (SNN), and deep neural networks (DNN).
Bianchini and Scarselli [2014] propose a detailed comparison regarding the complexity of these two neural network
types. The flexibility and scalability of neural networks make them desirable for industrial applications. In recent years,
academia presented many DNN-based research papers Malhotra et al. [2015], Inoue et al. [2017], Kravchik and Shabtai
[2018], Goh et al. [2017], which offer promising results, within the context of detecting physical anomalies in ICPS.

Computing infrastructures can be grouped into three based on computing location Yousefpour et al. [2019]: edge, fog,
and central/cloud. In short, we define "edge" as the location where real-world data are present, "cloud" as the servers
that are accessed via the internet, and "fog" as anything between the edge and cloud. If we imagine an assembly line,
we consider the distributed embedded devices on arms that interfere with the sensor data as edge devices, and a local
device that manages several edge devices while forwarding data (either raw or preprocessed) to the cloud as a fog
device. Central (local) servers might be preferred if cloud systems are undesired or unreachable. As Internet of Things
(IoT) devices enable access to the cloud, they are heavily utilized in both edge and fog.

Training neural networks is a resource-intensive task, requiring substantial computational resources. Cloud computing
platforms such as Amazon Web Services (AWS) Cloud [2011], Google Cloud Bisong [2019], and Microsoft Azure
Microsoft [2022] are attractive options as they offer machine learning as a service (MLaaS) Ribeiro et al. [2015]. These
platforms can be integrated into local builds to establish an automated ML pipeline as such a pipeline requires edge
devices to generate raw data, and an internet connection to access cloud services, IoT-based solutions become desirable
choices. Local data science workstations are alternatives to these services. If the domain is industrial, the industrial
internet of things (IIoT) Sisinni et al. [2018] is utilized. We consider IIoT as one of the requirements for advanced/smart
manufacturing. While the initial IIoT solutions Wang et al. [2016], Lade et al. [2017] focus on increasing production
efficiency, the use of IIoT to detect anomalies Ouyang et al. [2018], Shah and Tiwari [2018] is gaining popularity thanks
to rapid developments in ubiquitous computing technologies.

In this work, we propose an anomaly detection system that detects movement-based physical anomalies occurring in an
industrial robotic arm. We utilize statistical and ML-based methods, including a neural network model employing 1D
convolutional neural networks (1D-CNN) layers. Recognizing that 1D-CNNs have been applied in various domains,
their use in IoT for anomaly detection based on IMU data is not extensively documented. Our study seeks to explore
this and contribute to its literature. To the best of our knowledge, we are first to propose a context-aware anomaly
detection system (CASPER) that detects movement-based anomalies by applying the 1D-CNN model on raw IMU
data gathered from an industrial robotic arm. This data are gathered via an edge development board while anomalies
are generated via the modification of arm’s joint velocity. The gathered IMU data are not subject to the network
vulnerabilities. This approach addresses the concern that built-in data being susceptible to spoofing. Our choice of
1D-CNN is driven by its computational advantages, suitable for the constraints of IoT environments, and while our
research does not focus on identifying a superior detection method, we explore the capabilities of 1D-CNN within this
specific context. Specifically, where 1D-CNN is capable of delivering comparable detection fidelity and performance to
that of more sophisticated state of the art machine approaches, whilst in combination offering superior detection speed
(low-latency inference) which is key for efficient response and recovery. CASPER also ensures the integrity of data
generated via a cyber-physical edge resource, as data is transmitted over Bluetooth Low Energy (BLE). We summarize
our key contributions as:

• We propose an anomaly detection model that utilizes 1D-CNN to detect anomalies occurring due to deviation
of joint velocities of an industrial robotic arm while offering an IoT-based edge monitoring system. We
demonstrate the performance of the proposed model on a real-world testbed. We present the work to the public
on a well-documented GitHub repository2.

• We publish a real-world dataset that contains four files in total: (I) A file that consists of accelerometer,
gyroscope, and magnetometer data of an arm that accomplishes a repetitive task, (II) two files (one per
industrial arm) that consist of built-in arm parameters such as joint current, and velocity values, (III) one pcap
file which contains all the network traffic between the local PC and the industrial robotic arms.

• We analyze the recent real-world industrial cyber-physical incidents.

• We present a thorough correlation analysis between the raw IMU data and the quaternion representation of
orientation, demonstrating how the proposed model performs when the data are correlated.

2https://github.com/hkayann/1D-CNN-Anomaly-Detection-via-CASPER
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Table 1: The Evaluation of Recent Cyber Incidents
Year Incident Subject Location Sector Attack Scope IT OT Result

2013 Prison USA Utility Cyber-Physical Prison gates were wrongfully opened
2019 Healt Facilities Australia Healthcare Cyber Health operations were delayed.
2020 HUBER+SUHNER Switzerland Manufacturing Cyber All network was shut down.
2021 Colonial Pipeline USA Utility Cyber-Physical Pipeline was shut down.
2021 Water Plant USA Utility Cyber-Physical Water is poisoned.
2021 Caffitaly Italy Manufacturing Cyber Production was stopped.
2021 MND Group France Manufacturing Cyber Production was stopped.
2021 Sierra Wireless Canada Manufacturing Cyber Production was stopped.

Legend: : The domain is directly affected, : The domain is indirectly affected, : The domain is not affected.

2 Background

Our work focuses on the application of cyber-physical anomaly detection systems to robotic arms within manufacturing
environments, where cyberattacks could cause significant disruptions. In this section, we detail a selection of real-world
cyber incidents, emphasizing the physical impact they had on industrial systems as explored in our prior research Kayan
et al. [2022]. These incidents are chosen for their clear demonstration of how cyber threats can translate into tangible
consequences in a manufacturing setting. Inspired by these examples, our experimental design involves altering the
joint velocity of a robotic arm thus simulating the disruptive effects of a cyber-physical attack. This decision allows us
to create test scenarios that are not only representative of real-world attacks but also applicable to the physical domains
our anomaly detection system aims to safeguard.

In 2013, the maximum-security prison Turner Guilford Knight Correctional Center in Florida, USA had been subjected
to two cyber incidents in one month Romanik [2013]. The prison control system was recently upgraded for a cost
of $1.4 by a firm named Black Creek Integrated Systems. All cell gates in the prison were automatically opened,
thus leading to chaos within the prison. Even though the director named the incidents a glitch, a surveillance video
had shown that some prisoners were acting as if they knew the gates were about to be opened. Hence, cybersecurity
researchers suspected that the first event was done to test the response of the guards, and the second was carried out
for a more specific reason as 2 prison members tried to attack another prisoner. These incidents have shown that even
air-gapped systems can be programmed to glitch to cause a cyber incident, hence air-gapping only is not adequate to
secure the systems.

On February 8, 2021, an adversary tried to poison Oldsmar, a city in Florida, USA Press [2021]. The adversary accessed
the computer that hosts the water treatment control software via a remote access program, then increased the amount of
sodium hydroxide above the normal level. The water concentration change was seen by an operator and immediately
reversed. Then, the remote access was disabled. How computer credentials were captured is still unknown. In this
incident, having 24/7 IT staff (which is not the case for most industrial systems) to supervise the system prevented the
possible disaster from happening. Also, the adversary did not fake the sensor readings hence the unexpected change
was detected.

In May 2021, the US Colonial Pipeline was hit by ransomware that is developed by a group known as DarkSide Tidy
[2021]. The attack was directed at a pipeline not to damage but to extort money from the owner company. All the
activities of the pipeline had to shut down due to being connected to a central system. The pipeline was equipped with
the newest digital sensors including a smart pipeline inspection gauge. However, due to being connected to a central
system, all access to sensors was blocked. Hence the operators shut down the pipeline. How the attackers deployed the
ransomware is unknown but assumed to be done via phishing e-mails. This incident is an example of the downside of
being highly interconnected.

In March 2021, Canadian IoT as a service provider Sierra Wireless was subjected to a ransomware attack Bleeping-
Computer [2021]. The IT systems of the company were locked down. The company announced that there was no
damage done to any production units and the confidential customer data was not affected thanks to being stored on an
independent platform. However, the company halted production for over two weeks until the systems were cleared.
This incident shows the importance of reaction time and having independent domains.

On December 14, 2020, HUBER+SUHNER, a fiber optic cable manufacturing company located in Switzerland, was
subjected to a cyberattack Patrick [2020]. When the internal IT monitoring system detected an unknown activity,
the company shut down all of its operations to prevent possible damage from happening at production sites due to
having a highly interconnected network. As a result, no physical damage occurred. The company contacted third-party
security providers to analyze the attack, then gradually resumed its operations. In this incident, the physical damage
was prevented thanks to the rapid reaction, however, the confidential data was stolen.
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In February 2021, the Italian coffee capsule/machine manufacturer Caffitaly System was subjected to a cyberattack
Comunicaffè [2021]. The company was outsourcing the IT services to a third-party provider, which was exploited
by adversaries. The production was halted to prevent further damage as the IT and OT systems were interconnected.
The reason/motivation behind the attack is unknown as the company did not share the details of the incident. While
outsourcing IT/Cybersecurity services to third parties is considered a compact solution by many cybersecurity providers,
this incident was caused via such a provider.

On March 22, 2021, the French artificial snow manufacturer the MND Group detected malware on its servers located
in France and Austria Wire [2021]. The company shut down its all IT network to prevent a further breach. The OT
systems were not heavily affected by the attacks thanks to being disconnected from IT systems, hence the company
halted production for only a few days as a precaution. The company put a business recovery plan into practice to recover
from the attack within a week. The details of the attack were not shared with the public. Having a ready-to-deploy
recovery plan was the key feature to mitigate the result of this cyber incident.

In September 2019, Eastern Health facilities in Victoria, Australia were subjected to a ransomware attack Press [2019].
Several servers that hosted financial, booking, and management data were shut down due to being captured, hence
the hospitals had to delay operations including not critical surgeries. The authorities and cybersecurity experts were
contacted to resolve the issue. In this incident, the attacked domain was purely cyber but, there was an indirect physical
impact that occurred due to the lack of data availability.

Most private entities subjected to cyber incidents do not publish official statements. The information is made available
via cybersecurity journals/bloggers which beclouds verifying the incident details such as the cause, response, and
already deployed security mechanisms. We observe the following from the aforementioned cyber incidents: (I) The
example attacks demonstrate that integration of IT to OT systems clearly exposes OT systems to new threats. (II)
We can safely assume that the companies have at least one intrusion detection/prevention tool (e.g., default defender,
antivirus software) in place during the incident thus proving the inefficiency of these tools. (III) Additional security
measures that observe the targeted infrastructure can detect the undesired changes. We see this both in the Iranian
nuclear program Langner [2011] and Florida water poisoning Press [2021] incidents where attacks were detected via
the supervisory staff. The recent industrial cyber incidents prove the necessity of security measures which observe the
physical properties from an air-gapped/segregated network which can ensure the integrity of industrial processes.

3 Related Work

3.1 Anomaly Detection in Industrial Systems

Anomaly detection in industrial systems is a topic where an extensive number of studies are present Fujimaki et al.
[2005], Tsang and Kwong [2005], Chandola et al. [2009], Kayan et al. [2022]. Detecting anomalies based on physical
behavioral changes via data-driven approaches is one of the hot sub-branches. These changes differ according to
the monitored asset. If this asset is an industrial robotic arm, data-driven approaches are applied where the data are
sound Bayram et al. [2021], Duman et al. [2019], IMU Narayanan and Bobba [2018b], joint current Panicucci et al.
[2020], Chen et al. [2020], electromagnetic side-channel signal Khan et al. [2019], tension Riazi et al. [2019], vibration
Park et al. [2018], or visual Yetis and Karakose [2018] data. In addition to these, we can utilize temperature data
Tanuska et al. [2021] to detect anomalies as malfunctioning industrial assets tend to generate unusual heat. As we can
remotely measure environmental sensing data such as temperature, humidity, barometric pressure, and CO2 level, we
can deploy mobile physical anomaly detection units Ghazal et al. [2020], which provide flexible real-time physical
anomaly detection, in industrial sites. Unlike model-based anomaly detection approaches, data-driven approaches can
be scaled into heterogeneous environments. SWaT Mathur and Tippenhauer [2016] is a water treatment testbed that
contains around 68 sensors and actuators. Hence, the SWaT dataset contains both discrete and continuous sensor data.
In addition, the sensors have different sampling rates. This kind of environment is challenging due to its high diversity.
Recent research Wu et al. [2017], Kravchik and Shabtai [2018], Perales Gómez et al. [2020] shows that data-driven
approaches do well even in such environments.

3.2 Role of IoT within Anomaly Detection

Time series data generated by sensors in IoT applications often exhibit temporal correlations resulting in contextual
anomalies where the context is time. Detection of such anomalies can be challenging as compared to point anomalies,
making available solutions computationally complex Park et al. [2018], Karim et al. [2019]. This proposes no issue
if the detection is done offline (see Section 3.4). Real-world industrial applications are mostly time-sensitive (e.g.,
manufacturing, fuel extraction). In this case, the common approach is to use IoT sensors/devices to enable cloud access
where high computing power is available Manimurugan [2021]. However, the occurrence of delay causes researchers to
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pursue alternative approaches Sater and Hamza [2021], Ngo et al. [2021]. This delay can also be eliminated by applying
anomaly detection on edge devices. The available methods are pretty limited but expanding David et al. [2020] thanks
to the rapid development of ubiquitous technologies. IoT devices are also used for real-time monitoring Pavithra and
Balakrishnan [2015], Prathibha et al. [2017] which might be critical (see Section 2) when the other security mechanisms
in place fail. We utilize IoT for edge data monitoring while considering edge anomaly detection implementation as
future work.

3.3 Applying Machine Learning on Multimodal Sensor Data

In an ideal scenario, multiple sensor data sources are employed to monitor/supervise systems as each sensing modality
provide unique/more context combined to produce an accurate representation of the environment. This approach is
common in human activity recognition (HAR) applications Münzner et al. [2017], Roitberg et al. [2015]. For example,
the Apple Watch Apple [2022] tracks a user’s sleep by combining heart rate and accelerometer data or calculates the
number of steps taken based on geolocation and acceleration data. The features extracted from these modalities are
either combined into a single feature vector (feature concatenation) Guo et al. [2016], Nguyen et al. [2018], Zhang et al.
[2019] or utilized individually (ensemble classifiers) Wei et al. [2017], Subasi et al. [2018], Ani et al. [2017], Haladjian
et al. [2020]. Traditional machine learning (ML) methods use a single modality for each stage of the ML application
Rushe and Mac Namee [2019]. Multimodal fusion approaches employ all modalities at each stage Bernal et al. [2017],
Debie et al. [2019]. Cross-modality learning approaches Hong et al. [2020], Zhang et al. [2021] utilize all modalities
during feature learning while training and testing are performed with the same single modality, which differs from
shared representation learning Yi et al. [2015], Mehrkanoon [2019], where different modalities are used for testing and
training.

3.4 Sensor Data Analysis with ML-based Approaches

Data-driven ML methods are grouped into three Géron [2019] based on the: (I) supervision, (II) time, and (III) working
principle. Supervision. ML methods are supervised if labels (e.g., anomaly, normal) are fed during training. Supervised
methods are common in human activity recognition (HAR) Bedri et al. [2017]. However, labeled data might be hard to
obtain. In this case, the semi-supervised method, which is a mix of supervised and unsupervised, is applied. Generating
labels from unlabeled data for training is an example use case. Pipe damage detection Sen et al. [2019] is one of
the areas where semi-supervised learning is preferred. Unsupervised learning is applied if the model is expected to
learn without any human interference. These methods are popular in anomaly detection Kayan et al. [2021] where
normal data are fed during training and then the model is expected to recognize unknown/novel data. The learning
also might depend on a policy where the model learns by its actions. Reinforcement learning is such an example that
can be seen in game-playing robots Silver et al. [2017]. The learning might be online or offline. Online algorithms
learn on the fly while batch/offline learning makes use of pre-gathered data to train the model. Adaptive ML models
Moin et al. [2021] require online learning algorithms due to novel streaming data. Offline learning is more common
in classification tasks such as natural language processing (NLP) Lopez and Kalita [2017] where the capacity of the
model depends on the size/content of the training data. ML models can also be classified into two according to working
principles: instance-based, and model-based. The instance-based ones analyze the correlation between the known
points and new points while the model-based algorithm tries to understand the behavior of data patterns. Instance-based
methods are popular in image classification Ciregan et al. [2012] while model-based methods are seen in predictive
analytics/forecasting Sakurai et al. [2015].

CNNs offer several advantages over their counterparts: are widely used in various machine learning applications due to
their advantages over traditional models while one of them is to extract features automatically eliminating the need for
manual feature extraction, a labor-intensive task. CNNs have a lower computational complexity than fully connected
models, as local neurons are only connected to a certain group of layers, and feedback loops, as seen in Recurrent
Neural Networks (RNN), are not required Salehinejad et al. [2017]. CNNs can be either 1D, 2D, or multi-dimensional.
While 2D-CNNs are the de facto choice for input data with a strong 2D structure that correlates spatially (e.g., images,
and speech) Li et al. [2021], 1D-CNNs are useful for time series data as such data are expected to have strong temporal
correlations LeCun et al. [1995]. 1D-CNNs are less computationally intensive and require significantly fewer operations,
rendering them highly effective for real-time sensing applications. The survey of Kiranyaz et al. [2021] suggests that
1D-CNNs can perform motor fault detection much faster than other neural network-based approaches. Additionally,
Shahid et al. [2022] demonstrate that 1D-CNNs achieve performance comparable to 2D-CNNs in classifying crank
angle degree signals for engine fault detection. In predicting the remaining useful life of turbofan engines, Athanasakis
et al. [2022] shows that 1D-CNNs can equal the performance of other models while having smaller sizes and lower
inference latency. Freire et al. [2022] further provides a detailed computational complexity analysis, highlighting
that 1D-CNNs scale more efficiently than their counterparts. Their efficiency extends to the point where they can be
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Table 2: 1D-CNN Efficiency Across Use Cases
Reference Use Case Results

Athanasakis et al. [2022] Remaining Useful Life Prediction of Turbofan Engines 1D-CNN achieves an optimal balance of efficiency compared to LSTM, XGBoost, and Random Forest.
Freire et al. [2022] Digital Signal Processing LSTM layers have the highest complexity among Dense and 1D-CNN layers.
Kiranyaz et al. [2021] Motor Fault Detection 1D-CNN can provide detection up to 45 times faster than other neural network-based algorithms.
Shahid et al. [2022] Motor Fault Detection 1D-CNNs demonstrate performance nearly similar to 2D-CNNs but with less processing required.

Figure 1: Demonstrates an example acceleration data of one industrial robotic arm joint. While the point anomaly p1
does not appear across the data (or appears very less in numbers), the contextual p2 does. While p1 can be detected
via simple thresholding, more sophisticated methods are required to detect p2. Collective anomaly is the event where
point/contextual anomaly occurs simultaneously across all joints.

implemented on ultra-low-power devices (<1 mW) 3, an aspect we plan to explore in future work. Table 2 summarizes
these studies. The various recent applications of 1D-CNNs include ball bearing fault detection Ince et al. [2016], water
treatment system anomaly detection Kravchik and Shabtai [2018], HAR Cho and Yoon [2018], seizure detection Jana
et al. [2020], and music genre classification Allamy and Koerich [2021].

4 Anomalies

In the field of data science, anomalies are data that deviate from the expected patterns of behavior. In other disciplines,
such anomalies may also be referred to as "abnormalities" , though this term is also used to define a behavior. This
section provides an overview of different types of anomalies, decision-making methods, and techniques for generating
anomalous data.

4.1 Anomaly Types

Anomalies are classified into three categories Chandola et al. [2009]: (I) point anomalies, (II) contextual anomalies,
and (III) collective anomalies. Point anomalies differ from the rest of the data. Being the most common ones, if the
anomaly type is not mentioned, it usually refers to point anomalies Lu et al. [2017], Sadeghioon et al. [2018], Yan and
Yu [2019]. Contextual anomalies are harder to detect as such detection requires context (e.g., time, location) analysis
where defining one might be challenging. The application that generates time series data tends to contain contextual
anomalies where the context is the time Carmona et al. [2021], Liu et al. [2017]. Collective anomalies is a group of data
that differs from the rest being relatively rare due to their nature. Triggering certain malicious network actions in order
can cause a collective anomaly that can be identified via network anomaly detection methods Ahmed and Mahmood
[2014, 2015]. Figure 1 demonstrates each type of anomaly that can occur on an industrial robotic arm that operate in
manufacturing plants.

4.2 Anomaly Decision Methods for Sensor Data

Anomalies are defined as either binary (e.g., 0 for normals and 1 for anomalies) or via anomaly score which mostly
scales between 0 and 1. Then these scores might be converted into binary labels by using a certain threshold. While
boundary-defining methods such as SVMs Narayanan and Bobba [2018a] tend to utilize binary definitions, decision
tree-based approaches such as Isolation forest Liu et al. [2008] utilizes anomaly scores. On the other hand, regression

3https://github.com/tensorflow/tflite-micro/blob/main/tensorflow/lite/micro/micro_mutable_op_resolver.h
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Table 3: Anomaly Creation Methods
Reference Testbed Attack Anomaly Creation Method

Narayanan and Bobba [2018a] Industrial Robotic Arm - Set industrial arm to follow a different trajectory.
Chen et al. [2020] Industrial Robotic Arm - Manually injecting faults.
Khan et al. [2019] Robotic Arm Syringe Pump ✓ Implementing control-flow hijack and firmware modification attacks.
Riazi et al. [2019] Belt-driven Robotic Arm - Loosening and tightening the belt.
Park et al. [2018] Robot Manipulator - Adjusting the amount of air injected into vacuum ejector.
Angle et al. [2019] High Voltage Motor Development Kit - Modifying the firmware to allow to damage the kit.
Vuong et al. [2014] Robotic Vehicle ✓ Conducting DoS attack.
Wu et al. [2019] 3D Printer - Injecting faulty files to 3D printer to print a damaged product.
Gao et al. [2018] 3D Printer - Modifying the firmware to change printer features such as printing velocity.
Li et al. [2019c] Rotor Kit - Adding weights to a mass load.
Bezemskij et al. [2016] Robotic Vehicle ✓ Conducting replay attack, creating rogue node, manipulating compass, and breaking wheel.
Sonntag et al. [2017] Industrial Robotic Arm - Hitting to an industrial arm.
Sisinni et al. [2018] Robotic Vehicle ✓ Conducting DoS, command injection, and malware attack.
CASPER Industrial Robotic Arm - Manually manipulating the joint velocity of the arm.

methods (e.g., gradient boosting, logistic regression) estimate a value. Then statistical methods are applied to the
residuals which are the absolute difference between the predicted and actual values.

4.3 The Use Case Scenario

While the use of public datasets Mathur and Tippenhauer [2016], Li et al. [2019b,a], Deng and Hooi [2021], Goh
et al. [2017] enables benchmarking similar works, having no control over anomaly creation beclouds the recreation of
desired challenging scenarios. This also applies to simulation-only studies Filonov et al. [2016], Ringberg et al. [2008].
Thus, real-world testbeds are required to assess practicality. Generating anomalies on such a testbed that replicates
the original industrial process (e.g., manufacturing) is challenging due to the risk of damaging high-cost equipment.
Literature review reveals a preference for non-destructive methods in generating anomalies within cyber-physical
systems, especially when dealing with high-value assets like industrial robotic arms Sonntag et al. [2017], Chen et al.
[2020], Narayanan and Bobba [2018b]. Direct physical attacks tend to be reserved for lower-cost equipment to avoid
the high costs and risk of irreparable damage to more expensive machinery Khan et al. [2019], Vuong et al. [2014],
Bezemskij et al. [2016], Sisinni et al. [2018]. This study follows recognized methods. Due to the high precision required
by industrial robotic arms, small alterations in velocity or trajectory can lead to significant operational disruptions. While
past research Narayanan and Bobba [2018b] has examined trajectory-based anomalies, our investigation concentrates
on velocity adjustments introducing anomalies within operational limits. Table 3 demonstrates the anomaly creation
processes of related work.

In this work, we implement a scenario inspired by the Florida water poisoning incident Press [2021], where an adversary
gains control of an industrial system. The attack unfolds in two main stages: (I) Initially, the adversary sends a phishing
email to the enterprise network and gains initial access by acquiring the necessary credentials. Then, the adversary
bypasses the firewall and begins spoofing the joint velocity data, thereby disrupting the manufacturing process. Due to
the joint velocity data being spoofed, the network-based intrusion detection system fails to recognize this event, as the
data appears normal. This also holds true for built-in Human-Machine Interfaces (HMIs), as the staff monitoring the
data would perceive everything as functioning normally. There are only two methods to detect such an event when the
integrity of the network data is compromised: either the onsite staff notices the unexpected changes, or a third-party
edge anomaly detection mechanism that supervises the affected industrial robotic arm, independent of the network, can
be employed as proposed in this work. Figure 2 illustrates an example attack scenario.

5 CASPER - System Overview

The CASPER consists of edge, fog, and central components that offer an open-source low-cost IoT-based monitoring
system. In this section, we present each component of CASPER while justifying our design choices.

5.1 Edge Components

In this work, we use edge development boards that contain 32-bit microcontroller units (MCUs) for the following
reasons: (I) These boards are easy to deploy (attachable), low-cost, and power-efficient devices. The IoT environments
are dynamic, heterogeneous, and resource-constrained. Thus, we need the aforementioned characteristics to have a
sustainable model. (II) They should support BLE, which is a wireless personal area network (WPAN) technology, that
enables low-power encrypted wireless communication. (III) They either allow the integration of third-party sensors or
come with built-in ones. The boards with built-in sensors remove the need for additional attachments thus offering

8
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Figure 2: Example attack scenario implemented in this work.

Table 4: Edge Development Boards Tech Specifications
Name Arduino Nano 33 BLE Sense Adafruit Feather nRF52840 Sense Nicla Sense ME

SoC (Microprocessor) nRF52840 (ARM Cortex M4) nRF52840 (ARM Cortex M4) nRF52832 (ARM Cortex M4)

Memory 256 KB SRAM, 1MB flash 256 KB SRAM, 1MB flash 64 KB SRAM, 512 KB flash

Connectivity BLE 5.0 BLE 5.0 BLE 4.2

Sensor (Module Name)

IMU (LSM9DS)
Microphone (MP34DT05)

Gesture, Light, Proximity (APDS9960)
Barometric Pressure (LPS22HB)

Temperature, Humidity (HTS221)

IMU (LSM6DS33 & LIS3MDL)
Microphone (PDM MEMS)

Gesture, Light, Proximity (APDS9960)
Barometric Pressure (BMP280)

Temperature, Humidity (SHT-30)

IMU (BHI260AP & BMM150)
Gas, Pressure, Temperature, Humidity (BME688)

Pressure (BMP390)

Table 5: Cloud/Central/Fog Tech Specifications
Google Colab Pro Data Science Workstation Raspberry Pi 4B

GPU Tesla P100-PCIE-16GB NVIDIA RTX A6000-48GB None
CPU Intel Xeon @2.20GHz Intel Xeon W-2245 @3.90GHz Broadcom BCM2711, Quad core Cortex-A72 64-bit SoC @ 1.5GHz
RAM 24 GB 128 GB 4 GB

accessible deployment. We compare three edge development boards based on the aforementioned requirements: (I)
Arduino Nano 33 BLE Sense Team [2021b], (II) Adafruit Feather nRF52840 Sense Adafruit [2021], (III) Nicla Sense
ME Team [2021a]4. Table 4 compares tech specifications of the utilized edge devices. As we focus on detecting
motion-related anomalies of an arm where corresponding data generated on the edge, we consider the following:

• The edge development board should have built-in inertial measurement unit (IMU) sensors. These sensors
measure linear acceleration, magnetic direction, and angular velocity to define an orientation.

• The edge development board must provide BLE Siekkinen et al. [2012] connectivity. We observed in our
previous work Kayan et al. [2021] that BLE offers low power usage and flexibility thus favored in resource-
constrained environments. In addition, most system-on-chips (SoC) provide BLE, hence we do not need any
additional modules/devices as seen in Zigbee Ergen [2004] networks.

5.2 Fog Components

The fog device manages several edge devices while acting as a bridge between the edge and the cloud. As the edge
devices are resource-constrained, in an IoT environment, connecting internet via the fog device is an optimal solution in
most cases. However, as ICPS supervise CIs, one might prefer not to have a cloud connection due to security challenges
Sajid et al. [2016]. In this case, the fog device is also expected to have enough capacity to perform preconfigured tasks

4From now on, we may mention these boards with their initial names only.
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(e.g., data monitoring, edge device supervision, data preprocessing). Low cost is another deciding factor as they might
be required in great numbers depending on the capacity of industrial area. Based on these, we use an embedded single
board computer (SBC) as a fog device in this work. We consider the following as key characteristics: (I) It must be
portable, small, and low-cost, (II) must be able to connect to the internet, (III) must support BLE as we send edge data
over BLE to SBC, (IV) must be able to run an operating system (OS) that supports software tools such as Node-RED
(nodered.org) and Grafana (grafana.com). We explain details regarding these tools in the following section.

In this work, we utilize Raspberry Pi 4 (RPi4) as SBC as previous research Babu et al. [2019], Gonzalez-Huitron
et al. [2021] offer promising benchmarking results Luo et al. [2018]. RPi4 runs on DietPi OS Knight [2021], that
minimizes resource usage when running Node-RED and Grafana. A more cost-efficient option would be using an edge
development board as fog device, however, due to a lack of on-device training and visualizing support, currently they
are not feasible.

5.3 Cloud/Central Components

As ML model training is a resource-intensive task, a cloud or central device with high computing power is required. In
an ideal scenario where ML models are deployed for real-world applications, online learning is implemented to prevent
the fade of model’s efficiency due to undesired events such as concept drift. However, in this work, we do offline
learning as our primary target is to investigate the efficiency of 1D-CNN for anomaly detection while offering real-time
IoT-based monitoring on a realistic environment. We use local data science workstation as central component for
resource-intensive operations (e.g., training, development of alternative ML algorithms for comparison) while utilizing
fog device to supervise edge data. Table 5 demonstrates the key specifications of central, fog device, and an example of
Google Colab Pro instance to give an insight about the capability of utilized workstation.

6 Evaluation

This section presents a detailed description of the experimental setup utilized in this study, including the essential
components of the testbed and the use case scenario. We conduct a comparative analysis of three different edge
development boards in terms of the generated IMU data and introduce the CASPER dataset. We assess the effectiveness
of various statistical and machine learning-based methods in detecting movement-based anomalies of an industrial
robotic arm. We conduct a comprehensive evaluation of the proposed approach on a real-world industrial robotic arm
testbed.

6.1 Experimental Setup

6.1.1 Testbed Components

We utilize a real-world industrial testbed that simulates a pick-and-place task seen in manufacturing systems. Table
6 and Table 7 present the testbed components while explaining their key features and tasks. Figure 3 visualizes each
component, demonstrates how each component communicates, defines the purpose of each joint of the arm and shows
rotations, presents the use case scenario step-by-step, and proposes the real testbed image where the control boxes are
not visible due to being located under the desk. The frame and mounting plates of the custom platform are made of
aluminum while the legs are made of steel.

6.1.2 Use Case Scenario

9-DOF multi-jointed industrial robotic arms are used in various industrial applications. These applications include
manufacturing-related tasks such as welding, soldering, screw driving, brazing, placing, casting, and painting. The
trajectory of the arm depends on the task. For instance, pick-and-place applications mostly require a horizontal trajectory
while screw-driving ones require both. The arms repeat the same high-precision tasks which are completed within
the certain time intervals. In this work, we examine a pick-and-place scenario (see Figure 3c) while considering the
following assumptions:

• The movement is repetitive, has a certain frequency, and continuous.
• The arm is autonomous hence does not require any human interaction aside from the initialization phase where

no adversarial behaviors are in place.
• The adversary aims to disrupt the physical process. Thus, the behavior of the arm deviates as a result of an

attack. The deviation from the behavior might occur as a result of accidental events (e.g., bumping into an
industrial arm) as well.
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Table 6: Hardware Components
Component Name Key Features Purpose Location

UR3e 6-DoF Industrial Grade Arm 5kg payload, 500mm reach Pick and place. Edge

2FG7 OnRobot Parallel Gripper 37mm maximum width
140N maximum gripping force Gripping, and releasing the steel ball. Edge

Controller Box Built-in ethernet port
Input/output (IO) sockets

Main control unit of the arm.
Enables remote controlling via urp scripts. Edge

Custom Platform ~2.5 meter width, ~1 meter height
~1.5 meter length, mostly steel

Base for the arms.
Contains two inclined parts that allows ball to roll. Edge

Steel Ball 25.40mm diameter, 66.84g weigth It is passed from one arm to another via inclined platform. Edge

Nicla Sense ME BLE connectivity
IMU sensors Generates IMU data and forward to fog over BLE. Edge

Pi-HMI
Touchpad Screen
ML capable
BLE & Wi-Fi connectivity

Supervises the IMU data and resource usage. Fog

Network Switch Power over ethernet (PoE) Provides TCP/IP communication between PC and arms.
Powers Pi-HMI. Fog

Laptop Runs Ubuntu, RTDE compatible Runs Python script to control arms.
Generates dataset. Central

Data Science Workstation High computing power Does the training/evaluation of proposed/compared ML models Central

Table 7: Software Components
Software Name Purpose Version

Grafana Provides interactive visualization of IMU data. 9.0.9
InfluxDB Stores the IMU data. 1.8
DietPi OS Manages Pi-HMI. Power efficient OS for Pi. 8.0
Ubuntu Manages the central PC. 20.04
Python Enables programming of the simulation. 3.8
Universal Robot Scripts (urp) Communicate with python script to execute commands. 5.11
Arduino Sketch Runs on Nicla Sense ME. Generates and transmits the IMU data. 1.6.10
Node-RED Sets up the BLE connection between Pi-HMI and Nano BLE Sense. 3.0

• The integrity of the built-in data is compromised as the adversary has complete control over the communication
between the central laptop and the robotic arms.

6.2 Sensor Fusion & Edge Development Board Comparison

Micro-electro-mechanical systems (MEMS) sensors that generate IMU5 data are: (I) accelerometer and (II) gyroscope,
and (III) magnetometer. The accelerometer measures the linear acceleration which defines the velocity change in units
of either gravitational force (g) or meters per second squared (ms−2). The gyroscope measures the angular velocity
which defines the rotational change in motion in units of degrees per second (dps). The magnetometer measures local
magnetic field strength in units of Tesla (T). These three sensors are used in attitude heading reference systems (AHRS)
(also known as magnetic, angular rate, and gravity (MARG)) to define an accurate 3D orientation Islam et al. [2017].
Sensor fusion algorithms are applied to come up with accurate orientation representation. Euler angles and quaternions
are two common parameters in this context. Euler angles suffer from gimbal lock which causes the loss of one degree of
freedom. Thus, quaternion representations are preferred. Mahony Mahony et al. [2008] and Madgwick Madgwick et al.
[2011] are two popular AHRS filters that define orientation via quaternions. Madgwick filter generates less root mean
squared error (RMSE) while being computationally expensive in a negligible matter Ludwig et al. [2018] in Adafruit
and Arduino boards where we utilize open-source libraries67. We use proprietary libraries8 developed by Bosch for the
Nicla Sense ME where quaternions are generated via the Mahony algorithm. We compare the quality of the IMU data

5Sometimes IMU is defined as magnetic and inertial measurement unit (MIMU) due to the presence of magnetometer.
6github.com/adafruit/Adafruit_AHRS
7github.com/arduino-libraries/Arduino_LSM9DS1
8github.com/arduino/nicla-sense-me-fw
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(a) Demonstrates the testbed. We transfer edge data to
Raspberry Pi via BLE. The local PC controls two industrial
robotic arms over TCP/IP. (b) The real image of the industrial robotic arm.
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VIV III

(c) The demonstration of the pick-and-place use case sce-
nario. Both arms are in a home position at the beginning.
The steel balls stand near the stopper. The scenario steps are
as follows: (I) First, the arms grab the steel ball from the
inclined platform. (II) Then, they drop the steel ball to the
other inclined platform. (III) Steel balls roll down until the
stopper. Each arm completes the process around 20 seconds
(see section 6.1.2 for further details).
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(d) The arm joints and their rotations. While base, shoulder,
and elbow joints provide larger movements, wrist joints
provider finer movements. Tool flange is the part where we
attach 2FG7 parallel gripper.

Figure 3: Testbed and use case scenario.

Table 8: Edge Development Board Testing
Edge Development Board Arduino Nano 33 BLE Sense Adafruit Feather nRF52840 Sense Nicla Sense ME

Charge Consumption (mAh) [Quaternion, *Raw Data] [24.1, 24.2] [12.9, 12.6] [14.9, 15.7]

Sensor Type (Range & Sensitivity)

Acc. ([-4, 4] g & 0.122 mg)

Gyro. ([-2000, +2000] dps & 70 mdps)

Mag. ([-400, +400] µT & 0.014 µT)

Acc. ([-4, 4] g & 0.732 mg)

Gyro. ([-2000, +2000] dps & 1 mpds)

Mag. ([-400, +400] µT & 0.014 µT)

Acc. ([-4, 4] g & 0.239 mg)

Gyro. ([-2000, +2000] & 30 mdps)

Mag. ([±1300 (x, y), ±2500(z)] µT & 0.02 µT)

Cost 35.10 £ 31.92 £ 59.82 £
* By "Raw", we mean accelerometer, gyroscope, and magnetometer data. T : Tesla, dps: degrees per second, g: G-force. Acc: Accelerometer, Gyro: Gyroscope, Mag: Magnetometer. Ranges are
the default ones.

while also observing the quaternion generation to visually observe the stability of sensors (see Figure 4). We observe
the following:

• Adafruit consumes less power overall. Out of three edge development boards, the power consumption of
Adafruit is significantly lower than Arduino while being closer to Nicla. If we supply these boards with 9 Volts
250 mAh battery, we would expect the Adafruit to run around 20 hours, Nicla to run around 16 hours, and
Arduino to run around 10 hours.

• Nicla provides the most stable data. As Adafruit and Arduino generate a higher noise, it is hard to judge if the
resolution reflects the actual change. However, analysis of gyroscope data revealed the existence of random
spikes, which may introduce potential outliers to the data.
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(a) The gyroscope from Arduino generates random spikes when we query with magnetometer data. Thus, we applied a smoothing
filter (moving median with a window length of three) to eliminate these. The graph on the left is without the filter.
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(b) We generated three sample datasets with 5000 data points at 20Hz to observe the behavior of IMU sensors of each edge board.
We applied the available calibration methods (the methods provided in open-source code repositories) and have not tweaked the
source codes. Our findings show that Nicla generates less noisy data overall.
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(c) We generated quaternion data from each edge development board. The comparison shows that Nicla generates the most stable
quaternion data while Adafruit and Arduino are subjected to initial drift.

Figure 4: Edge data generation comparison.
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Table 10: The CASPER Dataset
Data Features Number of Data Points/Packets Size

Nicla - IMU
Accelerometer (x, y, z)

Gyroscope (x, y, z)
Magnetometer (x, y, z)

1750932 138.9 MB

Arm Parameters*

Timestamp
Joint Positions
Joint Velocities
Joint Currents
Joint Voltages

Cartesian Coordinates
Generalized Forces
Joint Temperatures

Execution Time
Safety Status

Norm of Cartesian Linear Momentum
Robot Current

Tool Acceleration
Tool Current

Tool Temperature
Tool velocity

Elbow Position
Elbow Velocity

TCP Force
Anomaly State

1762650 2.0 GB

Network 267** 14582826 3.7 GB

*: This is for only one single arm, we have two arms in total. **: This is the number of common TCP features
that can be extracted from the pcap file. The total number of available features (wireshark.org/docs/
dfref) are a lot more.

6.3 Dataset Generation and Characteristics

In this work, we change the arm’s motion by modifying the joint velocity to create anomalies. We apply changes at
different magnitudes to evaluate the sensitivity of the proposed anomaly detection system. Thus, we have two states:
normal state where the arm joints move at default velocity (1.05 rad/s), anomalous state where the arm joints move at
various velocities. The anomalous state also has two phases: the first phase where the joint velocities are higher than
the default, and the second phase where the opposite applies. We explore a range of velocities, from a 100% increase,
which is the maximum permitted due to safety constraints, to a 5% decrease which represents the smallest change that
consistently results in observable data alterations. These variations are pre-defined and timed hence allowing us to
accurately label the dataset with the exact timestamps when the arm’s movements transition from normal to anomalous
behavior. The Table 9 demonstrates the anomalies with respect to time.

Table 9: The Generated Anomalies
Time Interval (minutes*) 900-936 972-1008 1044-1080 1116-1152 1188-1224 1260-1296 1332-1368 1404-1440
Velocity Change 10% Increase 35% Increase 65% Increase 100% Increase 50% Decrease 5% Decrease 20% Increase 25% Decrease

*Whole test is 1460 minutes. The arm joints runs at normal velocity during non-mentioned time intervals.

In total, the CASPER dataset is a time series dataset containing four files generated from a pick-and-place operation
lasting around 24 hours: The first Comma Separated Values (CSV) file consists of IMU data. We gather data via
Nicla attached to one of the arms (see Figure 3b). The data include accelerometer, gyroscope, and magnetometer data.
The second and the third files (one file per arm) contain built-in arm parameters (e.g., joint positions, velocities, and
currents). We gather both data at 20Hz which corresponds 50 ms difference between two consecutive data points. The
final file is a PCAP containing the network traffic between the local controller PC and the arms. Table 10 demonstrates
the datasets while providing the feature names and characteristics. In this study, our focus is solely on the data generated
by Nicla, as our objective is to investigate the effectiveness of an air-gapped IoT anomaly detection system. We share
the built-in and network data for researchers who are working in related fields.
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Figure 5: Demonstrates IMU data generated via an edge development board attached to an industrial robotic arm. We
can easily see that the anomalies reflect on the X-axis of gyroscope data.

6.4 Anomaly Detection

Anomaly detection application on IMU data obtained from an edge development board attached to an industrial robotic
arm that performs repetitive tasks contains the following challenges: (I) Each arm is idle for a certain period causing
data to contain a high number of near-zero data points. This beclouds the use of common feature extraction methods
for time series data, such as applying rolling mean/median to input windows. (II) IMU data by nature contain highly
correlated features, which can lead to unstable predictions generated by less reliable models due to multicollinearity.
(III) There is a possibility of label mismatching. We modify the joint velocity of the arms via a controller PC. However,
the data that we apply anomaly detection to is generated via a different source (an edge development board). Hence,
we also utilize one of the features (X-axis of a gyroscope) where anomalies are obvious to generate accurate anomaly
labels. Figure 5 presents the IMU data generated by Nicla where we can spot the anomalies on the aforementioned
feature. The anomaly detection methodology as follows: The dataset is divided into two sets, non-anomalous and
anomalous, and the optimization of anomaly detection algorithms is done on the non-anomalous set where we target the
minimized loss (RMSE) without overfitting the models. Then, anomalous windows are inputted into these optimized
models where window labeling is performed through thresholding where thresholds are determined via grid search. The
performance of these models is then evaluated using the confusion matrix, and relevant performance metrics (accuracy,
recall, F1 score, and precision) are generated.

6.4.1 Feature Processing

We employ several feature processing techniques. First, we remove some of the noise by applying rolling median
filter (see Fig. 6). The optimal window length for the filter is found via grid search considering the trade-off between
information loss and noise reduction. We apply z-score normalization to the data-driven models only, by fitting the
models exclusively with the training data to prevent the validation/test data from having access to any training data
characteristics.

6.4.2 Correlation Analysis

We apply autocorrelation to find the highest time-dependent Pearson correlation coefficient (r) denoted as ρ where
E is the expected value, µ is the mean and σ is the standard deviation (see Equation 1) to find the periodicity. Our
autocorrelation analysis reveals the period with the highest Pearson correlation coefficient which guides us to set a
755-point window size for the 1D-CNN and other detection methods enhancing anomaly sensitivity. Non-anomalous
runs show a different periodicity that becomes evident when comparing with the anomalous ones as seen in Table 11.
We also analyze how features (sets of features) correlate with each other due to the aforementioned reasons. We make
the following observations from the feature correlation heatmap (see Figure 7), and canonical-correlation analysis
(CCA) (see Table 12): (I) The X and Y-axes of the accelerometer are the most correlated features followed by the Y-axes
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of accelerometer and magnetometer. (II) Gyroscope features do not correlate with others. (III) The accelerometer and
gyroscope features are the least correlated features. (IV) CCA shows that the overall, accelerometer and magnetometer
features correlate. As correlated input features are undesired, we also investigate the correlation of the quaternion
representation of IMU data. We see two main advantages of utilizing quaternions over raw IMU: (I) The transformation
reduces the number of input features from 9 to 4, (II) the quaternions generated via the Madgwick algorithm do not
show any collinearity on the contrary of Mahony algorithm. Figure 8 compares the correlation heatmap of quaternions
generated by both algorithms.

ρXX(t1, t2) =
E[(Xt1)− (µt1)(Xt2)− (µt2)]

σt1σt2

(1)

Figure 6: Demonstrates the effect of noise removal on all features. The bottom three figures are the noise-removed data.

Table 11: Autocorrelation Analysis for Non-Anomalous and Anomalous Runs
Run Type AccX AccY AccZ GyroX GyroY GyroZ MagX MagY MagZ

Non-Anomalous (r, w) 0.995, 755 0.998, 755 0.977, 755 0.997, 755 0.996, 755 0.995, 755 0.998, 755 0.999, 755 0.999, 755
Anomalous (r, w) 0.994, 757 0.998, 799 0.971, 769 0.997, 770 0.996, 791 0.993, 775 0.997, 759 0.999, 799 0.998, 775

Note: r represents the Pearson correlation coefficient and w denotes the window length.

Table 12: Canonical-correlation Analysis
Accelerometer - Gyroscope Accelerometer - Magnetometer Gyroscope - Magnetometer
[0.48561, 0.07371, 0.02834] [0.96962, 0.58022, 0.27068] [0.41173, 0.30430, 0.07603]

6.4.3 Baseline

We employ a statistical baseline as a benchmark to validate the effectiveness of data-driven approaches. This baseline is
crafted by segmenting the data into input windows derived exclusively from non-anomalous segments. The length of
these windows corresponds to the period identified through our correlation analysis, which reflects the strong periodicity
due to the robotic arm’s movement patterns. We focus on the temporal correlations by adjusting the window sizes via
reducing the lag observed between the input windows. This lag, initially varying from -3 to 3 data points, tends to
increase over time, potentially leading to a quarter-window delay. To address this and strengthen our baseline, we select
the initial window, comprising 755 data points, as our reference. Both mean and median windows are then computed
from this reference. Subsequently, we assess the baseline performance by calculating the overall Root Mean Square
Error (RMSE), as detailed in Equation 2:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2)

where yi is the actual and ŷ2i is the predicted value. The mean baseline beats the median one hence used to detect
anomalies via thresholding based on RMSE. This optimized approach ensures that the baseline is not only simple but

16



A PREPRINT - DECEMBER 29, 2023

AccX AccY AccZ GyroX GyroY GyroZ MagX MagY MagZ

Ac
cX

Ac
cY

Ac
cZ

G
yr

oX
G

yr
oY

G
yr

oZ
M

ag
X

M
ag

Y
M

ag
Z

1.000 -0.956 -0.003 0.028 0.025 0.029 0.263 0.694 0.098

-0.956 1.000 0.013 -0.014 -0.025 -0.042 -0.294 -0.727 -0.168

-0.003 0.013 1.000 -0.141 0.071 -0.092 0.462 -0.341 -0.410

0.028 -0.014 -0.141 1.000 0.889 -0.330 0.192 -0.043 -0.035

0.025 -0.025 0.071 0.889 1.000 -0.291 0.292 -0.160 -0.173

0.029 -0.042 -0.092 -0.330 -0.291 1.000 0.060 0.013 0.183

0.263 -0.294 0.462 0.192 0.292 0.060 1.000 -0.184 -0.138

0.694 -0.727 -0.341 -0.043 -0.160 0.013 -0.184 1.000 0.691

0.098 -0.168 -0.410 -0.035 -0.173 0.183 -0.138 0.691 1.000

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 7: The correlation of input features. We see that several features are highly correlated (e.g., X and Y-axes of
accelerometer. This is expected due to the nature of IMU data.
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(a) Correlation heatmap of Madgwick Quaternions.
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(b) Correlation heatmap of Mahony Quaternions.

Figure 8: A comparison of correlation heatmaps of two common quaternion algorithms.

also robust capturing the periodic nature of our dataset. We measure the performance of anomaly detection methods
via a confusion matrix consisting of four main parameters: (I) True positives (TP)-when an anomaly is detected as an
anomaly, false positives (FP)-when normal is detected as an anomaly, true negatives (TN)-when normal is detected
as normal, false negatives (FN)-when normal is detected as an anomaly. We calculate performance metrics which are
accuracy, precision, F1-score, and recall via these parameters as shown below. Figure 9 demonstrates the lag, mean, and
median baselines and their difference, and confusion matrix of baseline.

6.4.4 Partial Least Squares regression

Due to the high correlation of input features, we investigate the feasibility of using Partial Least Squares regression as
an anomaly detection method. PLS reduces the number of predictors to 7 capturing around 99% of the variation of the
data where the correlations between the predictors are near-zero. The computational complexity of PLS is far less than
data-driven approaches. While the loss (RMSE) is similar to data-driven approaches, the PLS fails to generate relatively
high RMSEs when the input consists of anomalous points.

6.4.5 1D convolutional neural network

We design a 1D-CNN-based ML algorithm to detect anomalies. We expand the receptive field by stacking two 1d-CNN
layers to extract deeper local/temporal features. These layers are followed by a max pooling layer that makes the
model more robust to overfitting. Finally, we output our features via the fully connected layer. We are implementing
a sliding window approach in which the input window consists of 755-time steps (window length), while the output
window consists of only 1-time step, then we shift by 1-time step. We do not manually eliminate any lags as we have
done for the baseline. Rectified Linear Unit (ReLU) is used as an activation function because it is well-known for its
computational efficiency and its ability to introduce non-linearity, which is essential for capturing the complex patterns
in the IMU data without overfitting Szandała [2021]. We employ grid search for hyperparameter tuning, optimizing loss
on non-anomalous data to ensure our model generalizes. Hyperparameter limits are set to prevent overfitting, halting
adjustments when they compromise model performance or loss metrics. We follow the same approach for the anomaly
labels. The sliding windows with more anomaly points are accepted as anomalous (see Algorithm 1). We see that the
1D-CNN beats the baseline by a high margin. Figure 10 demonstrates the model architecture, hyperparameters tried
during the grid search, and the related confusion matrix.
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Figure 9: The lag is obvious as the gap between the window increases. Mean baseline RMSE is 0.3909, while the
median one is 0.3999. Hence, mean baseline performs better than the medium baseline with metrics of 84.6% accuracy
and 83.4% F1 score.

Algorithm 1 Sliding Window-based Anomaly Detection Algorithm

Require: Test data X ∈ Rn×9, µtraining ∈ R1×9, σtraining ∈ R1×9, threshold list T ∈ Rk

Ensure: List P ∈ 0, 1l, where l = m− 755 + 1, where m = n− 755, where n = |X|,
1: X̂ =

X−µtraining

σtraining
▷ Normalize test data via training parameters

2: W ∈ R755×9 ▷ Initialize a sliding window with size 755
3: R = [], S = [], P = [] ▷ Initialize empty lists for RMSE values, RMSE rolling sums and final labels
4: for i = 1 to n− 755 do
5: W = X̂i : i+ 754, : ▷ Select the ith window of test data
6: ŷ = f1D-CNN(W ) ∈ R1×9 ▷ Predict the next point using 1D-CNN model
7: y = ŷ · σ + µ ∈ R1×9 ▷ Inverse normalize the predicted value

8: ri =
√

1
9

∑9
j=1(yi,jtarget − yi,j)2 ▷ Calculate RMSE per time step

9: R← [ri] ▷ Append to RMSE list
10: end for
11: Si =

∑i
j=i−W+1 Rj for i = W,W + 1, . . . , |R| ▷ Apply rolling sum for RMSEs with window length W

12: for j ← 1 to |T | do ▷ Generate a prediction label list via thresholding
13: P ← []
14: for i← 1 to |S| −W + 1 do
15: if Si > Tj then
16: P ← P + [1]
17: else
18: P ← P + [0]
19: end if
20: end for
21: end for
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(a) The architecture of the 1D-CNN model and the utilized hyperparameters.

(b) The loss graph of the model. (c) The confusion matrix for 1D-CNN.

Figure 10: Demonstrates the neural network architecture, loss graph, and the confusion matrix. One epoch takes around
4 minutes for the final chain of cross-validation.

6.4.6 Long Short-Term Memory Recurrent Neural Network

For time series data, Long Short-Term Memory (LSTM) networks are often the go-to choice due to their ability to
effectively ’remember’ past inputs over extended time intervals. In our approach, we utilize an LSTM model specifically
tailored to our dataset’s characteristics. The model consists of two LSTM layers, each followed by batch normalization
to improve training stability. The first LSTM layer returns sequences to ensure continuity of state across the time steps,
while the second LSTM layer does not, serving as a form of feature extraction. To mitigate overfitting, a dropout layer
is included after the first batch normalization. This model also includes additional dense layers to further process the
learned features. The final dense layer reshapes the output to match the number of features in our dataset, ensuring that
the model’s output is appropriately structured. Detailed insights into the performance of the model, loss graph, and
specific hyperparameters are available in our GitHub repository.

6.4.7 XGBoost

Among decision tree regressors, we adopt the XGBoost which is a state-of-the-art boosting algorithm. We specify
the mean squared error loss function and train our model. Experimental results reveal that XGBoost is capable of
achieving comparable performance, even when trained on just 10% of the data corresponding to the first fold of
cross-validation, while also boasting greater computational efficiency than its neural network counterparts. Notably, we
implement Algorithm 1 with a singular modification, wherein we shift data with window length generating only two
windows (input, and target which is the window length shifted version of input) instead of traditional sliding windowing
that we implemented on 1D-CNN. This is necessary as tree-based algorithms rely on 2-dimensional inputs. Optimal
hyperparameters, including the number of estimators and the maximum depth, are selected via grid search. We do not
manually eliminate the lag as we have done for the baseline.
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6.4.8 One-Class SVM

The One-Class SVM is employed for its unique method of defining the normal operational state without requiring
labeled anomaly data. This feature proves beneficial in situations where anomalies are not frequent (e.g., industrial
cyber-physical systems). The One-Class SVM creates a boundary that seeks to contain all these data points by
constructing a model based on the "non-anomalous" operational data. Anomalies are then identified as data points
that fall outside this decision boundaries. In our work, the One-Class SVM fails to perform optimally. It struggles
with contextual anomalies, which are anomalies defined by their occurrence within specific contexts in a temporal
sequence. These anomalies require an analysis of temporal relationships between data points to be accurately identified,
a capability the One-Class SVM does not have.

6.4.9 Autoencoders

Autoencoders are designed to compress data into a reduced dimensionality and subsequently reconstruct it back to
its original form. In anomaly detection applications, the reconstruction error is used to determine whether an input
is anomalous. Their versatility comes from the types of layers used, such as LSTM, 1D-CNN, 2D-CNN, or dense
layers, each offering different characteristics. Autoencoders are computationally more expensive than previously
mentioned neural network regression methods due to their dual components and the necessity to reconstruct the
entire input. In this work, we implement three types of autoencoders: Dense-AE, 1D-CNN-AE, and LSTM-AE. The
Dense-AE effectively detects anomalies when there is an increased joint velocity but struggles with decreased velocity
runs, as the reconstructed samples mimic anomalous behavior, resulting in low RMSEs. On the other hand, both
1D-CNN-AE and LSTM-AE perform well for both types of anomalous runs. The best performing network architectures
and hyperparameters are identified via grid search.

6.4.10 Comparison of anomaly detection methods.

Table 13 showcases the performance of various anomaly detection systems implemented on IMU data. To provide
a foundational benchmark, we include a null model that consistently predicts the majority class in the dataset (for
example, "All Anomaly"), alongside the statistical baseline. This approach validates the efficacy of more complex,
data-driven methods. The statistical baseline, adjusted manually to eliminate lags, demonstrates strong performance,
achieving approximately 96% accuracy. PLS faces challenges in anomaly detection, struggling to differentiate between
normal and anomalous data, which results in small losses and renders thresholding methods ineffective. Similarly, the
One-Class SVM performs poorly, primarily due to its inability to account for the temporal nature of the data and lack of
contextual understanding. In contrast, 1D-CNN-AE and 1D-CNN show robust performance with low inference latency.
1D-CNN-AE achieves the highest F1 score, followed by the 1D-CNN, XGBoost, and the statistical baseline. Despite
having the lowest inference latency, XGBoost maintains high accuracy and precision, making it ideal for time-sensitive
applications. However, it generates a higher amount of false positives than 1D-CNN, which affects its desirability in
real-world settings compared to the savings in detection latency for the time that would be taken analyzing false alarms.

Overall, the experimental results support our choice of selecting 1D-CNN as a viable low-latency and accurate model
architecture for cyber-physical anomaly detection. Our testing shows that it delivers superior or comparable detection
performance to more complex algorithms and model architectures, with superior detection speed. This makes it better
suited to scenarios requiring accelerated response and recovery. All models utilized in this study are available in our
GitHub repository for further exploration and use.

6.5 IoT Supervision System

In this work, we present a method for real-time monitoring in an industrial environment where industrial robotic arms
present. Our system employs an IoT device to collect IMU data from the arm. This data are then transmitted to a local
fog device (PiHMI) for instant monitoring. Data transfer from the edge is conducted over BLE, with the Nicla Sense
ME leveraging an nRF52832 microcontroller for BLE 4.2 connectivity. This ensures encrypted data transmission. We
use Node-RED, an open-source flow-based programming tool, to build our real-time monitoring system. We utilize a
Node-RED package9 which we developed to enable receiving data from the edge device at the fog layer. This setup
enables continuous IMU data monitoring, vital for safety and efficiency in industrial processes as evidenced by past
incidents (refer to Section 2). InfluxDB is used as a data historian akin to those in industrial settings. Grafana retrieves
IMU data from InfluxDB and displays it in real-time on the screen of the PiHMI. Fog device runs on DietPi OS which
is an lightweight operation system. Figure 11a demonstrates the Node-RED setup, Figure 11b displays the Grafana
dashboard, and Figure 11c presents the utilized hardware and software tools.

9https://www.npmjs.com/package/node-red-contrib-ble-sense
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Table 13: Comparison of Anomaly Detection Approaches
Approach Accuracy Recall (TPR*) FPR* Precision F1 Score Inference Latency (µs)
Null Model 0.505 1.0 1.0 0.505 0.671 NA*
Statistical Baseline 0.9576 0.9339 0.0180 0.9814 0.9571 124.18
One-Class SVM 0.502 0.506 0.6352 0.637 0.564 896.07
PLS 0.5047 1.0 1.0 0.5047 0.6708 41.73
1D-CNN 0.9924 0.9984 0.0137 0.9867 0.9925 36.97
XGBoost 0.9920 0.9995 0.0154 0.9850 0.9922 5.27
LSTM 0.9226 0.8922 0.0463 0.9514 0.9209 51.80
Dense-AE 0.7464 0.5783 0.0818 0.8782 0.6974 103.96
1D-CNN-AE 0.9954 0.9982 0.0073 0.9928 0.9955 214.66
LSTM-AE 0.9118 0.8957 0.0717 0.9272 0.9112 1031.3

NA*: Not applicable.
FPR*: False Positive Rate.
TPR*: True Positive Rate

(a) A Node-RED setup enabling BLE communication and data
logging.

(b) Real-time IMU data are visualized via Grafana dash-
board.

Nicla Sense ME

Hardware

Soware

PiHMI
IMU Data

Grafana

Raspberry Pi Touchscreen PoE Hat

InfluxDB

DietPi OS

(c) The overview of the real-time monitoring system.

Figure 11: The open-source real-time IoT-based monitoring system.

We prefer open-source and lightweight tools that offers high degree of customization and system longevity. The edge
device runs a cpp file, and the fog device is configured using Node-RED and Grafana interfaces while the database is
set up using the command line interface (CLI) of InfluxDB. Table 14 reveals the RAM usage and power consumption of
the Nicla Sense ME. Generating IMU data accounts for 44.3% of RAM usage, while the effect of use of BLE on RAM
usage is negligible. A moderate increase in resource consumption, especially in BLE and data visualization phases,
indicates the system can function effectively without straining the hardware. With a 9-volt 500mAh battery, Nicla
operates for 32.5 hours generating IMU data, 48.5 hours when idle, and 28.4 hours transmitting data over BLE. Table 15
displays PiHMI’s resource usage. The minimal active CPU and RAM usage of PiHMI highlight the lightweight nature
of the employed tools. These insights confirm the system’s ability to meet real-time data processing and visualization
demands, a critical component for immediate monitoring and decision-making in industrial settings.
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Table 14: Nicla Resource Usage
RAM Usage (bytes) Charge Consumption (Ah)

Idle 7720 (12%) 0.0103
IMU* 36224 (56.3%) 0.0154
BLE** 36360 (56.6%) 0.0176

IMU*: imu.cpp file only generates IMU data. ble.cpp generates
IMU data and sends over BLE to PiHMI.

Table 15: PiHMI Resource Usage
RAM Usage (Megabytes) CPU Usage

Idle 179 (5%) 0.8%
BLE* 235 (6.2%) 5%

BLE*: When PiHMI is actively displaying IMU data
on dashboard.

6.6 Discussions

Undesired delay due to lack of control. We utilized two UR3e industrial robotic arms classified as collaborative robots
equipped with a control box and an HMI (known as a teach pendant). The intended use of the manufacturer for this arm
involves control through the teach pendant limiting synchronization with other industrial edge components such as
additional robotic arms or conveyor belts. To address this issue, the manufacturers developed a custom protocol, known
as Real Time Data Exchange (RTDE), which enables remote control. This protocol relies on the Python socket library10,
which provides TCP/IP communication. However, due to the limited control over delay offered by the library, the local
PC and both robotic arms were not entirely synchronized during the experiment, which resulted in undesired delays.

Matching anomaly labels from a different data source. The anomalies are created via the local controller PC which
also generates the built-in data. The anomaly detection is done on the data generated from an attached edge development
board. Both data-generating processes (fixed at 20Hz) are independent of each other. Due to mismatching lengths of
these two data occurring due to the edge development board not running at 20Hz exactly, we utilize one of the features
where the anomalies are obvious to generate correct anomaly labels. This requires manual identification of the drift and
the obvious presence of anomalous behavior on a certain feature which might not be the case for all scenarios.

Correlated input features due to nature of an IMU data. The correlation of IMU features is expected as they define
the aspects of motion. Our correlation analysis demonstrates that the accelerometer and magnetometer features exhibit
a high correlation for the pick-and-place use case scenario. This finding highlights the effectiveness of the proposed
1D-CNN-based model even in the presence of highly correlated input features. As our future work aims to run this
model on an edge development board, we have analyzed the feature correlation of quaternion representations which
consists of only four features allowing us to reduce computational complexity. Our analysis shows that Madgwick
quaternions are less correlated than Mahony quaternions making them more promising for our research work with the
current dataset.

Realistic data with high number of zeros. In industrial environments, it is common for edge actuators to remain idle
during periods of cooperation. In our investigation, we simulated an environment where two industrial robotic arms
operated consecutively, resulting in a dataset with a large number of near-zero values. Disregarding these values is
not feasible, as anomalies can be identified through variations in idle time. However, the presence of a high number
of near-zero values presents two significant challenges: (I) Traditional feature extraction methods for time series data
(e.g., mean, median, kurtosis, and skewness) lose their validity. (II) Window sampling based on the highest Pearson
correlation coefficient can produce unaligned windows, necessitating manual lag elimination for approaches that require
aligned windows.

Grid search to find optimal hyperparameters and thresholds. Grid search is a commonly used approach for identifying
optimal hyperparameters in data-driven methods. However, the computational complexity of this technique increases
exponentially with each additional parameter, rendering the process time-consuming. Since grid search is often
conducted manually, there is a possibility of human error. Despite guidelines for conducting grid search effectively,
there remains a need for a more optimized methodology for initializing and accurately estimating the best parameters.
This issue is also relevant when determining the most appropriate threshold for anomaly detection implemented via
forecasting. Therefore, it is crucial to explore novel methodologies that enable more efficient and reliable hyperparameter
optimization and anomaly threshold estimation.

Cause independent cyber-physical detection. The proposed 1D-CNN model demonstrates the ability to detect the
smallest anomaly introduced in the experiment, a 5% reduction in joint velocities. 1D-CNN layers trained on non-
anomalous data can extract discriminative features that capture the precise pattern of the time series data in a way
that when the input (predictor) consists of anomalies the output (response) is disrupted enough to be detected through
thresholding. As a result, the proposed approach’s performance is independent of the cause of an anomaly, whether it
be due to a cyberattack, aging, power failure, or a physical accident. This approach is vulnerable to adversarial attacks
if the adversary gains control over the industrial robotic arm during the training process which is unrealistic, given the

10https://docs.python.org/3/library/socket.html
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accuracy requirements of industrial applications, any unexpected physical deviation would likely have been detected by
the relevant staff, leading to a halt in training/production.

Continuous anomalous runs longer than the input window. The proposed baseline approach relies on a sample window
generated through averaging non-anomalous windows. A stronger baseline approach that accounts for these correlations
would involve averaging averaging the root-mean-square errors (RMSEs) of consecutive windows. However, while this
method can effectively detect the beginning of an anomalous run, it is prone to failure when the input window contains
anomalous points. Similarly, linear regression methods are sensitive to anomalous data, as such data can skew the
regression line. Data-driven approaches, which learn non-anomalous feature representations of sequence data, are more
robust to anomalous inputs. These models may struggle to accurately predict anomalous data, since it deviates from
the learned pattern during training, leading to higher RMSE, which enables the detection of anomalous windows via
thresholding. The proposed 1D-CNN model, representing a data-driven approach, shows promising results in anomaly
detection, particularly for industrial cases where high accuracy is crucial.

7 Conclusions and Future Work

IT and OT convergence continues to accelerate the development of smart manufacturing systems, where ubiquitous
network connectivity and automation optimize production process quality, output speed/volume, and reduce maintenance
downtime. However, this greater connectivity and automation inversely lead to an expanded attack surface, exposing
cyber-physical systems to attacks and exploitation. Now, more than ever, these can lead to cascading impacts and safety
incidents across industrial operations. Today, while network security monitoring is heavily relied upon to detect threats
across OT systems, network-based intrusion detection systems alone are not sufficient. Modern attackers targeting
industrial domains often evade network monitoring tools by "living off the land" and using insecure-by-design industrial
applications and devices for lateral system movement and attack execution. As the primary motivations for attacks
against cyber-physical systems are sabotage or denial of service, where attackers aim to manipulate physical sensing
or actuation, building resilience in detecting and responding to such incidents is key. Cyber-physical monitoring
mechanisms that can learn and report abnormal physical and process behavior are crucial. Moreover, these mechanisms
require a higher order of data integrity for analysis, which necessitates: i) segregated analysis mediums and data sources
resistant to tampering, ii) low-resource edge computing systems practical for deployment, and iii) low-latency inference
for rapid anomaly detection and response.

Toward addressing these challenges, we proposed CASPER, an out-of-band IoT anomaly detection system for cyber-
physical systems that utilizes physical machine analytics to detect movement-based anomalies in an industrial robotic
arm process. Our experimental results showed that a 1D-CNN-based model is capable of accurately detecting anomalies
in the robotic system with comparable performance and lower detection latency than state-of-the-art machine learning
and deep learning methods. Furthermore, our feature-design and model architecture enable the system to learn the
behavior of time series (sequential) data, even when input features are highly correlated. For instance, the proposed
model can detect a 5% decrease in joint velocities, the minimal applied deviation for the system. We also proposed
and demonstrated the deployment of the anomaly detection system on an open-source IoT monitoring platform using
BLE to transmit edge data via Node-RED. This exemplifies the feasibility of our approach as a practical retrofitted
edge-computing platform for a realistic autonomous industrial endpoint system. Future research and development
are expected to follow two paths: 1) The continued development of edge-based cyber-physical anomaly detection
systems for industrial OT and IoT endpoints, using our architecture as a reference template, and 2) the exploration of
1D-CNNs as an effective machine learning architecture and model for resource-efficient and accurate AI-driven anomaly
detection in resource-constrained edge security systems. In future work, we plan to expand the range of cyber-physical
anomaly use cases (e.g., adding additional weight, touching the arm, shaking the testbed) to show the system’s efficacy
across various cyber-physical threats, implement online anomaly detection learning via cloud/fog system architecture,
use quaternions as an anomaly detection feature to increase model accuracy and resource efficiency, and enable near
real-time edge-based anomaly detection to minimize detection latency for rapid incident response and system recovery.
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