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Abstract: We analyze the Lie algebraic structures related to the quantum deformation of the Sato
Grassmannian, reducing the problem to studying co-adjoint orbits of the affine Lie subalgebra of
the specially constructed loop diffeomorphism group of tori. The constructed countable hierarchy
of linear matrix problems made it possible, in part, to describe some kinds of Frobenius manifolds
within the Dubrovin-type reformulation of the well-known WDVV associativity equations, previously
derived in topological field theory. In particular, we state that these equations are equivalent to some
bi-Hamiltonian flows on a smooth functional submanifold with respect to two compatible Poisson
structures, generating a countable hierarchy of commuting to each other’s hydrodynamic flows. We
also studied the inverse problem aspects of the quantum Grassmannian deformation Lie algebraic
structures, related with the well-known countable hierarchy of the higher nonlinear Schrödinger-type
completely integrable evolution flows.

Keywords: Sato Grassmannians; torus diffeomorphisms; heavenly equations; co-adjoint action; Lax
integrability; Lax–Sato equations; loop Lie algebra; Lie algebraic scheme; Casimir invariants; associativity;
Lie–Poisson structure

1. Introduction

Since the classical works by Gerstenhaber [1,2] on the deformations of associative
algebras, investigations of the related algebraic structures were strongly stimulated by the
Witten–Dijkgraaf–Verlinde–Verlinde [3,4] functional relationships, beautifully reformulated
by Dubrovin [5,6] in terms of the Frobenius manifolds and their subsequent extension to
F-manifolds. These results gave rise to the remarkable realization of one of Gerstenhaber’s
approaches [2] to deformation of associative algebras, based on the treatment of ’the set of
structure constants as parameter space for the deformation theory, taking into account that the
Frobenius and F-manifolds [7–10] are characterized by the action algebra, which is defined
on the tangent sheaf of these manifolds [5,6,11–15].

It was also observed [16,17] that deformations of associated algebras have much of
properties that are deeply motivated by the algebraic and geometric structures, associ-
ated with the Birkhoff strata of the Sato Grassmannian Gr. These strata are, in general,
specified [18,19] by means of a subset W, whose points are endowed with the corresponding
infinite-dimensional linear fibers of the tautological tangent subbundle T(W), determining
infinite families of infinite-dimensional associative and commutative algebras. Application
to the abovementioned structure constants’ parameter space for the deformation of the

Symmetry 2024, 16, 54. https://doi.org/10.3390/sym16010054 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16010054
https://doi.org/10.3390/sym16010054
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-8151-4462
https://orcid.org/0000-0001-5124-5890
https://doi.org/10.3390/sym16010054
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16010054?type=check_update&version=1


Symmetry 2024, 16, 54 2 of 18

Sato Grassmannian gave rise to some differential-matrix compatibility relationships, whose
solutions describe, in particular, an interesting class [5,20–26] of the Frobenius manifolds
within Dubrovin’s (related) reformulation scheme.

Moreover, as was suggested in [27], the deformation of the structure constants’ param-
eters can naturally be generalized to the suitably interpreted quantum deformations of the
corresponding quantum Sato Grassmannian, naturally characterized by means of some
infinite-dimensional associative operator algebra.

Having analyzed, in detail, this deformation and the corresponding structure constants’
differential-matrix relationships, we have succeeded in obtaining their Lie algebraic [28–34]
reformulation by means of reducing their solution to pure linear matrix algebra equations.
We also paid some attention to both the inverse problem aspects of the quantum Sato
Grassmannian deformation and the associated linear matrix algebra structures, generated
within the Lie algebraic scheme by the well-known countable hierarchy of the higher-order
nonlinear Schrödinger completely integrable evolution flows.

2. The Sato Grassmannian Families of Classical Deformation Structures

Since the abovementioned seminal works by Sato [16,17] on the infinite-dimensional
Grassmannian Gr, the investigation of algebraic curves in Gr, specified by some subspaces
W ⊂ Gr, became an active research field during the past decades. In particular, it was
stated in [27] that each Birkhoff stratum Σs of the Sato Grassmannian Gr contains a subset
Ws of points, carrying the infinite-dimensional linear spaces that coincide with the fibers
of the tautological subbundle T(Ws), which is closed with respect to the related pointwise
multiplication. This, in particular, means that, algebraically, all tangent spaces T(Ws) are
infinite-dimensional associative commutative algebras.

From a geometrical point of view, each fiber T(Ws) is an algebraic variety and the
whole T(Ws) is the algebraic variety, with each finite-dimensional subvariety being a family
of algebraic curves. For the big cell Σ∅, the tangent space T(Ws) is the collection of families
of normal rational curves, called Veronese webs of all degrees N ∈ N\{1}. For the stratum
Σ1, each fiber of T(Ws) is the coordinate ring of the elliptic curve and the tangent space
T(W1) is the infinite family of such rings. For the set W1,2, the space T(W1,2) is equivalent
to the families of coordinate rings of a special spatial curve with very interesting properties.
The related family of curves in T(W1,2) contains a plane trigonal curve of genus two;
moreover, it was conjectured, in [27], that the tangent space T(W1,n) in a higher stratum
Σ1,n for n ≥ 3 contains a plane (n + 1, n + 2)-curve of genus n ∈ N\{1, 2}.

To specify the deformation structures subject to the associative algebras related to
the Sato Grassmannian Gr, we denote by H = C((ξ)) the set of formal Laurent series for
symbol ξ and by H+ = C[ξ] the corresponding set of all formal polynomials. The Sato
Grassmannian Gr is, by definition, the parametric space of a closed vector subspace W ⊂ H,
such that the projection W → H+ is Fredholmian. Each W ⊂ Gr possesses an algebraic
basis {w0(ξ), w1(ξ), ..., wn(ξ), ...}, with the basis elements wn(ξ) := ∑n

k=−∞ a(n)k ξk of finite
degree n ∈ Z. A point on the Sato Grassmannian Gr represents a linear space, generated
by thesis-basis series. The related linear bundle constructed as the disjoint union of all
these linear fibers is of particular interest, as, in the well-known case of infinite-dimensional
Grassmannians, such a bundle is referred to as the tautological tangent bundle T(Gr) over
the Sato Grassmannian.

For any subset W ⊂ Gr, the Sato Grassmannian naturally defines the corresponding
tautological subbundle T(W). The Grassmannian Gr proves to be a connected Banach space
that exhibits [35] a stratified structure. The latter can be described by means of the subset
S ⊂ Z, which is bounded from below and contains all sufficiently high integers. Then,
for a subset W ⊂ Gr, one naturally defines the set SW = {S ⊂: deg w(ξ) = s ∈ Z for any
w(ξ) ∈ W}. Moreover, for any S ⊂ Z , the related subset ΣS ⊂ Gr, defined as ΣS = {W ∈
Gr : SW = S}, is called the Birkhoff stratum, associated with the subset S ⊂ Z. The closure
of ΣS, called the Birkhoff variety, is an infinite-dimensional irreducible ind-variety of the
finite co-dimension co dim ΣS = ∑k∈Z+

(k − sk), where S := {s0, s1, ..., sn, ...} ⊂ Z, where,
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for some great enough n ∈ Z+, sn = n holds. In particular, if the set S := {0, 1, 2, ....n, ...} ⊂
Z+, the corresponding stratum has the co-dimension co dim ΣS = 0, which is a dense
open subset of the Grassmannian Gr that is called the principal stratum or the big cell.
The Birkhoff stratification (described above) of the Sato Grassmannian Gr induces the
stratification of the tautological tangent bundle T(Gr) into subbundles T(ΣS), S ⊂ Z. It
is also worth remarking here that, in addition to algebraic and geometric aspects of the
Birkhoff stratification of the Sato Grassmannian Gr, its interesting analytical structure was
also revealed. As was demonstrated in [19], the Laurent series wn(ξ) = Σn

k=−∞a(n)k ξk,
n ∈ Z, when ξ ∈ C, are the boundary values of certain functions on C\D∞, where D∞
is a small disk around the infinite point ∞ ∈ C̄. This observation was formalized by
Witten in [36], having suggested that the Sato Grassmannian can be viewed as the space of
boundary conditions for the ∂̄−operator, reduced on the domain D∞. Then, as was shown
in [36], the index inion of the ∂̄W−operator on the domain D∞ proved to be finite, that
is, ind∂̄W = card(SW −N)− card(SW̃ −N), where, by definition, SW̃ := {−n : n /∈ SW}
for any S ⊂ Z. Considering the principal stratum Σ⊘ ⊂ Gr, its basis is composed by the
Laurent series of all nonnegative degrees n ∈ N : {p0, p1(ξ), p2(ξ), ..., pn(ξ), ...} ⊂ Σ∅,
where

pn(ξ) = ξn + Σk∈Na(n)k ξ−k, (1)

where coefficients a(n)k ∈ C, n ∈ Z+ and k ∈ N. The corresponding points of Σ∅ are
represented by means of the infinite-dimensional linear subspace spanned by the basis
elements (1) and, moreover, the stratum Σ∅ itself is a family of such linear subspaces,
parameterized by these basis elements.

Now, we proceed to studying special points in the stratum Σ∅, satisfying some speci-
fied properties imposed on the corresponding fibers:

pj(ξ) ◦ pk(ξ) = ∑
l∈Z+

Cl
jk pl(ξ) (2)

for j, k ∈ Z+ imposed on the basis elements (1) and defined by some structure coefficients
Cl

jk ∈ C, j, k, l ∈ Z+. Under the conditions in (2), the tangent subbundle T(W∅) was
characterized in [13] by the following proposition.

Proposition 1. The subbundle T(W∅) is an infinite family of infinite-dimensional commutative
associative algebra, specified by the structure coefficient matrices

Cj = {Cl
jk = Cl

kj ∈ C : k, l ∈ Z+}, (3)

that satisfy the following commutative conditions:

[Cj, Ck] = 0 (4)

for all j, k ∈ Z+.

The associative and commutative algebraic structure (constructed above) on the sub-
bundle T(W∅) can be deformed by means of an infinite parametric set t = (t0, t1, t2, . . .) ∈
R∞, making use of an analytical construction, as devised in works [14,15]. This construction,
called the co-isotropic deformation, as applied to the algebraic variety T(WJ∅), consists [13]
in defining the co-isotropic submanifold Γ∅ ⊂ W∅ × R∞, endowed with the canonical
Poisson bracket {· , ·}, subject to the variables (p, t) ∈ Γ∅, such that the corresponding
skew-orthogonal complement Γ⊥

∅ ⊂ Γ∅. The abovementioned co-isotropic submanifold Γ∅
is defined as the zero-locus of the following determining relationships:

Γ∅ = { f jk(ξ, t) = pj(ξ, t) ◦ pk(ξ, t)− ∑
k∈Z+

Cl
jk(t)pl(ξ, t) = 0 : j, k ∈ Z+} (5)
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for which the canonical Poisson brackets

{ f jk, flm}|Γθ
= 0 (6)

for all j, k and l, m ∈ Z+. The conditions in (5) and (6) are geometrically equivalent to the
closedness of the ideal J∅ := ⟨ f jk : j, k ∈ Z+⟩ ⊂ T(W∅), that is, {J∅, J∅} ⊂ J∅.

A slightly scrutinized analysis of the conditions in (6), subject to the canonical Poisson
bracket, gives rise to the following matrix relationships:

∂Cj(t)/∂tk = ∂Ck(t)/∂tj, [Cj(t), Ck(t)] = 0 (7)

for all j, k ∈ Z+, which, under some conditions on R∞, belong to t-dependence imposed on
the matrices’ structures Cj(t) ∈ End E∞, j ∈ Z+, which reduce [13,37,38] to the well-known
WDVV associativity equations, describing the well-known Frobenius manifolds. Namely,
if to put, by definition, that the matrices Cj(t) ∈ End En, j = 1, N nontrivially depend on
t ∈ RN , the system of differential matrix equations was proven [5,9] to be equivalent to the
next compatible system of R ∋ λ-parametric parallel transporting equations:

∂x/∂tk + λCk(t)x = 0 (8)

on a vector x ∈ T(TN), satisfied for all k = 1, N and λ ∈ R. Moreover, as was demonstrated
in the work [31,33,34], the system (8) is compatible iff there exists such a countable set of
generating matrices lj ∈ End EN , j = −1, 0 ∪N, that, for each k = 0, N − 1, the following
set of linear recurrent differential algebraic relationships holds:

l−1trCk + l−1Ck + C⊺
k l−1 = 0, (9)

∂l−1/∂tk + l0trCk + l0Ck + C⊺
k l0 = 0,

∂l0/∂tk + l1trCk + l1Ck + C⊺
k l1 = 0,

∂l1/∂tk + l2trCk + l2Ck + C⊺
k l2 = 0,

∂l2/∂tk + l3trCk + l3Ck + C⊺
k l3 = 0...

For the case N = 3, the matrices Ck ∈ End E3, k = 0, 2, are given, owing to [5,9] by the
following expressions:

C0 =

 1 0 0
0 1 0
0 0 1

, C1 =

 0 1 0
b a 1
c b 0

, C2 =

 0 0 1
c b 0

b2 − ac c 0

, (10)

and satisfy the differential algebraic relationships

∂C1/∂t2 = ∂C2/∂t1, [C1, C2] = 0, (11)

equivalent to such evolution differential relationships:

at2 = bt1 , bt2 = ct1 , ct2 = (b2 − ac)t1 (12)

on a functional manifold M̃ ⊂ C1(R;R3) with respect to the evolution variable t2 ∈ R and
spatial variable t1 ∈ R. Since C2 = C2

1 − aC1 − bI, the additional commuting condition
[C1, C2] = 0 is satisfied automatically. The resulting evolution flow (12) with respect to the
variable t2 ∈ R proved to be [39] a Hamiltonian system. This can be easily stated if to
make use of the gradient-holonomic scheme devised in [28,40] and calculate a countable
series of conservation laws for the evolution flow (12).
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To demonstrate this in more detail, let us preliminarily rewrite the flow (12) on the
functional manifold M̃, as the following dynamical system: ∂p/∂t2

∂q/∂t2
∂r/∂t2

 =

 ∂q/∂s
r(

∂2q/∂s
)2 − ∂r/∂t1∂2 p/∂s2,


 := K[p, q, r] (13)

with respect to the evolution parameter t2 ∈ R on a suitably chosen smooth functional
manifold M ⊂ C2(R/{2πZ};R3) subject to the following Backlund-type transformation:

M̃ ∋ (a, b, c) → (∂2 p/∂s2, ∂2q/∂s2, ∂r/∂s) ∈ M, (14)

where we put, by definition, the differentiation ∂/∂t1 := ∂/∂s , subject to the spatial
variable s ∈ R/{2πZ}. To construct a countable hierarchy of conservation laws to the
dynamical system (13), it is necessary to construct an asymptotic |λ| → ∞ solution to the
linear Noether–Lax equation:

∂φ/∂t2 + K′,∗φ = 0, (15)

where φ ∈ T∗(M) satisfies the symmetry condition φ′[p, q, r] = φ′,∗[p, q, r] for all (p, q, r)⊺ ∈
M, and the mapping K′,∗ : T∗(M) → T∗(M) equals

K′,∗ =

 0 0 −∂2/∂s2 ◦ ∂r/∂s
−∂ 0 2 ∂2/∂s2 ◦ ∂2q/∂s2

0 1 ∂/∂s◦∂2 p/∂s2

, (16)

which is the adjoint Frechet derivative of the vector field mapping K : M → T(M) with
respect to the standard convolution form (·|·) on the Euclidean product T∗(M)× T(M).
Simple enough, yet slightly cumbersome, calculations give rise to the following analytical
expressions:

φ1 = (1, 0, 0)⊺, φ2 = (qsssqs + q2
ss,−rs − qs psss − qss pss, qs)

⊺, (17)

φ3 = (rs − 2pssqss − 2psqsss, psss ps + p2
ss + qss, 0)⊺, ...

generating, via the Volterra homotopy formula Hj =
∫ 1

0 dµ(φj[µp, µq, µr]|(p, q, r)⊺), j =
1, 3, such conservation laws as

H1 =
∫

dsp, H2 =
∫

ds(qrs − q2
s pss/2), (18)

H3 =
∫

ds
(

p rs + p2
s qss/2−q2

s /2
)

for the evolution flow (13). The latter are represented as a Hamiltonian system on the
functional manifold M, if there exists [28,40,41] a conservation law H ∈ D(M), allowing
the following convolutional representation: H = (ψ|(ps, qs, qs)⊺), where the covector
ψ ∈ T∗(M) satisfies the corresponding Noether–Lax condition:

∂ψ/∂t2 + K′,∗ψ = gradL (19)

on the manifold M for some smooth functional L ∈ D(M). Then, the corresponding
symplectic operator ϑ−1 : T(M) → T∗(M) is given by means of the following operator
expression:

ϑ−1 = ψ′ − ψ′,∗, (20)



Symmetry 2024, 16, 54 6 of 18

whose inverse is the related Poisson operator ϑ : T∗(M) → T(M) on the functional
manifold M, which means that the dynamical system (13) is Hamiltonian and representable
[28,42] in the following canonical form:

K = −ϑ grad H, (21)

where the Hamiltonian function H = (ψ|K) − L ∈ D(M). It is easy to check that the
following convolutional representation holds:

H3 =
∫

ds
(

p rs + p2
s qss/2−q2

s /2
)
=

= ((psqss, ps pss − 1/2qs, p)⊺ |(ps, qs, qs)⊺) := (ψ|(ps, qs, qs)⊺)
(22)

providing the covector ψ = (psqss, ps pss − 1/2qs, p)⊺ ∈ T∗(M). The latter generates,
owing to Expression (20), the symplectic operator

ϑ−1 =

 qss ◦ ∂/∂s + ∂/∂s ◦ qss −pss ◦ ∂/∂s −1
−∂/∂s ◦ pss −∂/∂s 0

1 0 0

, (23)

whose inverse Poisson operator equals

ϑ =

 0 −pss ◦ ∂/∂s 1
0 −(∂/∂s)−1 −pss
−1 pss qss ◦ ∂/∂s + ∂/∂s ◦ qss + pss ◦ ∂/∂s ◦ pss

. (24)

The corresponding Hamiltonian function is given, respectively, by the functional expression

H =
∫

ds(qrs − q2
s pss/2), (25)

exactly coinciding with the conservation law H2 ∈ D(M) found above. Having now
returned to the previous variables (14), one obtains the next Poisson operator:

ϑ̃ :=

 0 0 1
0 1 −a
1 −a a2 + 2b

 ∂3

∂s3 +

 0 0 0
0 0 −2as
0 −as 3(bs + aas)

 ∂2

∂s2 +

+

 0 0 0
0 0 0
0 0 bss + a2

s + aass

 ∂
∂s ,

(26)

on the functional manifold M̃, coinciding with the one constructed before in [39], with
respect to which the initial evolution flow (12) is of Hamiltonian form: ∂a/∂t2

∂b/∂t2
∂c/∂t2

 =

 bs,
cs

(b2 − ac)s

 = −ϑ̃ grad H̃2, (27)

where the Hamiltonian function H̃2 =
∫

ds
[

a
(
(∂/∂s)−1b

)2
/2 −

(
(∂/∂s)−1b

)
c
]
∈ D(M̃).

As was observed in the abovementioned above inspiring work [39], the Hamiltonian
system looks strongly simplified in the vector eigenvalue variable u = (u1, u2, u3)

⊺ ∈ M̄ ⊂
C2(R;R3) of the matrix C1 ∈ End E3 :

det(C1 − uj I) = 0 ∼ u3
j − au2

j − 2buj − c = 0, (28)
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where

a =
3

∑
j=1

uj, b = −1
2

3

∑
j<k=1

ujuk, c =
3

∏
j=1

uj, (29)

which is the unique invariant hydrodynamical densities of the Hamiltonian system (27).
Namely, in the u-variables, the latter is representable as the equivalent Hamiltonian flow: ∂u1/∂t2

∂u2/∂t2
∂u3/∂t2

 =
1
2

 (u2u3 − u1u2 − u1u3)s
(u1u3 − u2u1 − u2u3)s
(u1u2 − u1u3 − u2u3)s

 = −η̄ grad H̄(u), (30)

where ϑ̄ : T∗(M̄) → T(M̄) is the corresponding Poisson operator:

η̄ =
1
4

 1 −1 −1
−1 1 −1
−1 −1 1

 ∂

∂s
+

∂

∂s
1
4

 1 −1 −1
−1 1 −1
−1 −1 1

 (31)

on the submanifold M̄, and H̄ = −
∫

ds(u1u2u3)—the Hamiltonian function. Returning to
the earlier topic, owing to the Backlun-type mappings (29) to the variables of the functional
manifold M̃, one easily obtains the following Poisson operator:

η̃ := 1
2

 −3 a 2b
a 2b 3c

2b 3c 4(b2 − ac)

 ∂
∂s +

∂
∂s

1
2

 −3 a 2b
a 2b 3c

2b 3c 4(b2 − ac)

+

+

 0 as/2 bt1

−as/2 0 −cs/2
−bs cs/2 0

,

, (32)

representing the evolution flow (27) as the Hamiltonian system ∂a/∂t2
∂b/∂t2
∂c/∂t2

 =

 bs,
cs

(b2 − ac)s

 = −η̃ grad H̃1 (33)

with the Hamiltonian function H̃1 = −
∫

dsc ∈ D(M̃). Taking into account that the Poisson
operators ϑ̃ and η : T∗(M̃) → T(M̃) are compatible on the submanifold M̃, one can
construct the related symmetry recursion operator Φ̃ = η̃ϑ̃−1 : T(M̃) → T(M̃) and
construct the infinite countable hierarchy of commuting both to each other and to (33), i.e.,
dispersive Hamiltonian systems

(∂a/∂tj, ∂b/∂tj, ∂c/∂tj)
⊺ := Φ̃j (∂a/∂s, ∂b/∂s, ∂c/∂s)⊺ (34)

for all j ∈ Z+. The results presented above can be formulated as the following theorem.

Theorem 1. The WDVV associativity equations in (11) are equivalent to the bi-Hamiltonian
systems in (27) and (33) on a smooth functional submanifold M̃ ⊂ C2(R;R3), subject to two
compatible Poisson operators: (26) and (32). This compatible Poissonian pair generates an associated
countable hierarchy of commuting to each other Hamiltonian flows (34) of dispersive type.

Remark here that, in general, solutions to System (9) for N > 4 are not available in a
compact analytical form and their analysis still needs very sophisticated algebraic tools
and analytic techniques. Moreover, this leaves very interesting aspects of constructing
reasonable superalgebraic analogs [43] of the WDVV associativity equations and the related
Dubrovin-type super-algebraic connections (8).
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3. The Sato Grassmannian Families and Generalized Quantum Deformation Structures

Proceed now to a quantum deformation of the Sato Grassmannian Gr, specified by
the following condition: each closed subspace W ⊂ Gr possesses an algebraic pseudo-
differential basis {ŵ0(ξ), ŵ1(ξ), ŵ2(ξ), . . .} that consists of the pseudo-differential operator
elements ŵn(ξ) := ∑n

i=−∞ a(n)i ξ i ∈ PDO(ξ), n ∈ Z+, with the differentiation symbol ξ
naturally acting on the dense subspaces of the smooth functions C∞(R;C). Then, one can
construct, analogically, the principal quantum stratum ∑̂∅ ⊂ Ĝr endowed with the Laurent-
type of nonnegative degree pseudo-differential basis { p̂0(ξ), p̂1(ξ), . . . , p̂n(ξ), ..} ∈ ∑∅,
where

p̂n(ξ) = ξn +
∞

∑
k=1

a(n)k ξ−k (35)

with the coefficients a(n)k ∈ C∞(RN ;C) for all k ∈ N and n ∈ Z+.
Now, let us consider special points of the quantum stratum ∑̂∅, satisfying, on its fiber,

the following finite quantum algebraic multiplicative property:

p̂j(ξ) ◦ p̂k(ξ) =
∞

∑
l=0

Cl
jk(t) p̂l(ξ) (36)

for all j, k ∈ Z+, defined by the corresponding structure constants Cl
jk(t) ∈ C∞(RN ;C) for

j, k and l ∈ Z+. In order to define the quantum deformation coefficients, we impose on the
basis operations in (36) the following canonical commutation relationships:

[ p̂j, p̂k] = 0 = [t̂j, t̃k], [ p̂j, t̂k] = h̄δjk (37)

for all j, k ∈ 0, N − 1, where ”h̄” denotes the so-called classical Planck constant. For the
multiplication property (37) to be realized, one needs to restrict the operator relationships

f̂ jk(ξ) = − p̂j(ξ) ◦ p̂k(ξ) +
N−1

∑
l=0

Cl
jk(t) p̂l(ξ) (38)

upon the kernel subspace HN ⊂ H, where

f̂ jk(ξ)HN = 0 (39)

for all j, k = 0, N − 1. A naturally imposed condition [27], which should be a priori satisfied,
following from the conditions in (36) consists in the commutation relationships

[ f̂ jk(ξ), f̂lm(ξ)]HN = 0 (40)

for all j, k and l, m = 0, N − 1, which is equivalent to the co-isotropy condition (6) used be-
fore. As was stated in [27], the condition in (40) is equivalent to the associativity conditions

[( p̂j(ξ) p̂k(ξ)) p̂l(ξ)− p̂j(ξ)( p̂k(ξ) p̂l(ξ))]HN = 0 (41)

for all j, k and l = 0, N − 1, reducing the next structure constants’ equations to

h̄∂Cj/∂tk − h̄∂Ck/∂tj + [Cj, Ck] = 0 (42)

for all j, k = 0, N − 1. The system of differential relationships (42) on the structure matrices
Cj ∈ C∞(RN ; End EN), j = 0, N − 1, can be described effectively by means of the Lie
algebraic methods [28,31,41,44], allowing one to represent their t-evolution as some special
flows on the orbits of the co-adjoint action of a suitably constructed affine Lie algebra of
vector fields on the torus TN

C , which is briefly described below.
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4. Quantum Deformations and the Related Lie Algebraic Structures

To study the algebraic properties of the structure constants Equation (42), we make
use of the Lie algebraic approach devised before in [28,31,33,34], within which we consider
the linear diffeomorphism loop group G̃ := Diff(Tn

C), n ∈ N, of the torus Tn
C ≃ Tn ⊗C,

consisting of the set of smooth linear mappings {C ⊃ S1 → G = Diff(Tn)}, extended,
respectively, holomorphically from the circle S1 ⊂ C, both on the set D+ of the internal

points of S1 and on the set D1 of the external points λ ∈ C\D1
+ so that limλ→∞ g̃(λ) = Id ∈

G for any g̃(λ) ∈ G̃, λ ∈ D−. The corresponding diffeomorphism loop Lie algebra splitting
G̃ = G̃+ ⊕ G̃−, where, by definition, G̃+ := d̃i f f+(Tn) ⊂ Γ(Tn

C) is the Lie subalgebra,
consisting of affine vector fields on the torus Tn

C, which suitably holomorphic on the disc
D1
+ and G̃− := d̃i f f+(Tn) ⊂ Γ(Tn

C), consisting of affine vector fields on the torus Tn
C,

which are suitably holomorphic on the disc D1
− ⊂ C. The adjoint space G̃∗ = G̃+ ⊕ G̃∗

−
⊂ Λ1(Tn

C), where the space G̃∗
+ consists of the affine differential forms on the torus Tn

C, and
the space G̃∗

− consists of the affine differential forms on the torus Tn
C, tending to zero as

|λ| → ∞ and defined subject to the following nondegenerate convolution on the product
G̃∗ × G̃ :

(l̃|ã) := resλ∈C

∫
Tn
⟨l|a⟩dnx, (43)

for any affine vector field ã := ⟨a(λ)x|∂/∂x⟩ ∈ G̃ and affine differential form l̃ :=
⟨a(λ)x|dx⟩ ∈ G̃∗ on Tn

C, depending linearly on the torus coordinate vector x ∈ Tn and
λ ∈ C, where, by definition, ⟨. | .⟩ is the usual bilinear form on the Euclidean space En and
∂/∂x := (∂/∂x1, ∂/∂x1, . . . , ∂/∂xn)⊺ is the usual gradient operator.

Let us now consider the set I(G̃) of Casimir invariant smooth functionals hj : G̃∗
− → C,

j ∈ Z+, defined by the co-adjoint Lie subalgebra G̃ action

ad∗gradhj(l̃)
l̃ = 0 (44)

at a seed element l̃ ∈ G̃∗, which can be rewritten in the following differential–functional
form:

⟨ ∂

∂x
◦ |φ(j)(l)x⟩lx + ⟨lx| ∂

∂x
φ(j)(l)x⟩ = 0, (45)

where, by definition, l̃ = ⟨lx|dx⟩, gradhj(l̃) := ⟨φ(j)(l)x| ∂
∂x ⟩, φ(j)(l) ∼ λj ∑k∈Z+

φ(k)λ
−k, as

|λ| → ∞ for all j ∈ Z+. Then, the classical Adler–Kostant–Symes algebraic scheme, applied
to a suitably chosen seed element l̃ ∈ G̃∗, gives rise to the evolution flows

h̄∂l̃/∂tj := −ad∗gradhj(l̃)+
l̃, (46)

commuting to each other for all j ∈ Z+ and generating completely integrable Hamiltonian
systems on the adjoint space G̃∗

−. The latter makes it possible to construct a formal enough,
yet regular, algorithmic approach to describing matrix structure constants (Equation (42)),
specified by the affine diffeomorphism loop Lie algebra G̃+ and a seed element l̃ ∈ G̃∗

+ of
the form

l̃ = ∑
j∈ N

λ−j⟨ljx|dx⟩ (47)

where lj ∈ End En, j ∈ N, generated by the corresponding Casimir functionals hj ∈
I(G̃∗

+), j ∈ Z+. Moreover, taking into account that the flows in (3) on G̃∗
+ are commuting to

each other, one easily states the following proposition.

Proposition 2. The infinite hierarchy of the linear vector flows

h̄
∂x
∂τk

=
k

∑
j=0

λk−j φ(j)x (48)
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on the torus Tn
C, as well as the related infinite hierarchy of the augmented vector fields

Φk := h̄∂/∂τk +
k

∑
j=0

λk−j⟨φ(j)x)|∂/∂x⟩ (49)

on Tn
C ×R∞ are commuting to each other:

[Φs, Φk] = 0 (50)

for all s, k ∈ Z+. Moreover, the matrix coefficients φ(j) ∈ End En, j ∈ Z+, satisfy differential
algebraic relationships

h̄
∂φ(0)

∂τj
= 0, h̄

∂φ(1)
∂τ1

−
[

φ(0), φ(2)

]
= 0,

h̄
∂φ(2)
∂τ1

− h̄
∂φ(1)
∂τ2

−
[

φ(1), φ(2)

]
= 0, ...,

(51)

and so on.

Let us now assume that a taken seed element (47) additionally generates, as |λ| → ∞,
the set of Casimir functional gradient elements

gradh(1)s (l̃) ∼ λ ∑
j∈Z+

λ−j⟨φ
(s)
(j)x|∂/∂x⟩, (52)

where coefficients φ
(s)
(j) ∈ EndEn, j ∈ Z+, s = 1, n, satisfy the following matrix relationships:

l1 trφ
(s)
(0) +

(
l1 φ

(s)
(0) + φ

(s)⊺
(0) l1

)
= 0,

l1trφ
(s)
(1) +

(
l1 φ

(s)
(1) + φ

(s)⊺
(1) l1

)
+ l2trφ

(s)
(0) +

(
l2 φ

(s)
(0) + φ

(s)⊺
(0) l2

)
= 0,

l1trφ
(s)
(2) +

(
l1 φ

(s)
(2) + φ

(s)⊺
(2) l−1

)
+ l2trφ

(s)
(1)+

+
(

l2 φ
(s)
(1) + φ

(s)⊺
(1) l2

)
+ l3trφ

(s)
(0) +

(
l3 φ

(s)
(0) + φ

(s)⊺
(0) l3

)
= 0,

l1trφ
(s)
(3) +

(
l1 φ

(s)
(3) + φ

(s)⊺
(3) l1

)
+ l2trφ

(s)
(2) +

(
l2 φ

(s)
(2) + φ

(s)⊺
(2) l2

)
+

+l3trφ
(s)
(1) +

(
l3 φ

(s)
(1) + φ

(s)⊺
(1) l3

)
+ l4trφ

(s)
(0) +

(
l4 φ

(s)
(0) + φ

⊺(s)
(0) l4

)
= 0, ...

(53)

and so on. Now consider the flows (48) for k = 1 on the torus Tn with respect to the
evolution parameters τ

(s)
1 := ts ∈ R, s = 1, n, generated by different solutions (52) to the

determining Equation (2) as |λ| → ∞ :

h̄
∂x
∂ts

= (λCs + Ts)x, (54)

where x ∈ Tn and matrices Cs := φ
(s)
(1), Ts := φ

(s)
(0) ∈ End En, s = 1, n. As the flows (54)

are also commuting to each other, being generated, owing to (46), by the related Casimir
functionals h(s)1 ∈ I(G̃∗

−), s = 1, n, the following differential matrix relationships hold:

[Cs, Ck]− h̄ ∂Ck
∂ts

− h̄ ∂Cs
∂tk

= 0, [Ts, Tk] = 0,

[Ts, Ck] + [Cs, Tk]− h̄ ∂Ck
∂ts

− h̄ ∂Cs
∂tk

= 0...,
(55)
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for all s, k = 1, n. Moreover, the matrices Ts, Cs and lj ∈ End En, j ∈ N, s = 1, n, satisfy the
next supplementing hierarchy of matrix equations:

l1trCs +
(
l1Cs + C⊺

s l1
)
+ l2trTs +

(
l2Ts + T⊺

s l2
)
= 0,

h̄ ∂l1
∂tk

= l1trCk + l1Ck + C⊺
k + l2trTk + l2Tk + T⊺

k l2,

h̄ ∂l2
∂tk

= l2trCk + l2Ck + C⊺
k l2, l1trTs + l1Ts + T⊺

s l1 = 0, ...
(56)

for the seed matrices lj ∈ End En, j ∈ N, where the Casimir functional–gradient matrices
Ts ∈ End En, s = 1, n, are constant, not depending on the evolution parameters ts ∈ R,
s = 1, n.

It is now easy to observe that the first line of the matrix differential–algebraic relation-
ships (55) coincides exactly with the quantum structure constants’ deformation equations
in (42), thus solving, in part, the problem posed earlier, subject to the quantum Sato Grass-
mannian generalization modulo-determining abovementioned matrices Ts, Cs ∈ End En,
s = 1, n, satisfying the determining algebraic Equations (56). The latter algebraic matrix
problem proves, up to date, to be complicated enough to require one to develop more
sophisticated algebraic–analytic tools and computational techniques. Nonetheless, to more
deeply understand the quantum deformation structure of the Sato Grassmannians, we
analyze below the inverse problem related with the problem under regard, which consists
in determining a suitable seed element l̃ ∈ G̃∗

−, generating a priori an infinite hierarchy of
linear vector fields on a torus that commute to each other and are related with suitably
defined Lax-type integrable [28,41,45] dynamical systems on smooth functional manifolds.

5. The Quantum Grassmannian Deformation Structure: The Nonlinear Schrödinger
Hierarchy Inverse Problem Aspects

Let us begin by recalling the classical Zakharov–Shabat result [41,45] about the
differential–algebraic completely integrable Nonlinear Schrödinger-type equation:

ut2 − (ut1t1 − 2u2v)/2 = 0, (57)

vt2 + (vt1t1 − 2uv2)/2 = 0

and all their commuting to each other symmetries:

ut3 = ut1t1t1 /4 − 3uvut1 /2, (58)

vt3 = vt1t1t1 /4 − 3uvvt1 /2,

ut4 = −ut1t1t1t1 /8 + 3vu2
t1

/4 + uvut1t1 − 3u3v2/4 + uvt1 ut1 /2 + u2vt1t1 /4,
vt4 = vt1t1t1t1 /8 + 3vu2

t1
/4 − uvvt1t1 + 3u2v3/4 − uvt1 ut1 /2 − v2ut1t1 /4, ...

and so on with respect to evolution parameters tj ∈ R, j ∈ N, considered as evolution flows
on the jet-manifold J∞(R∞;C2). The flows in (58) arise [41,45–47] as the compatibility
conditions for the following affine evolution flows:

∂x
∂t1

=

(
−λ u
v λ

)
x,

∂x
∂t2

=

(
−λ2 + 1

2 uv λu − 1
2 ut1

λv + 1
2 vt1 λ2 − 1

2 uv

)
x, (59)

∂x
∂t3

=

(
−λ3 + 1

2 λuv + 1
4 (vut1 − uvt1) λ2u − λ 1

2 ut1 +
1
4 (ut1t1 − 2u2v)

λ2v + 1
2 λvt1 +

1
4 (vt1t1 − 2uv2) λ3 − 1

2 λuv − 1
4 (vut1 − uvt1)

)
x,

∂x
∂t4

=



−λ4+(2uvλ2 + 2u vt1 λ−
−ut1 vλ)/4 + (u vt1t1 − ut1 vt1−

−3u2v2 + v ut1t1)/8

uλ3 − (2ut1 λ2 + 2u2v
−ut1t1 λ)/4 + (6vuut1 − ut1t1t1)/8

vλ3+(2vt1
λ2 + 2vt1t1 λ−

−2uv2λ)/4 + (vt1t1t1 − 6uvvt1)/8

λ4−(2uvλ2+u vt1 λ
−ut1 vλ)/4 − (u vt1t1 − ut1 vt1−

−3u2v2 + v ut1t1)/8

x, ...
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on the torus T2
C with respect to the real temporal parameters tj ∈ R, j ∈ N, , depending on

the parameter λ ∈ C. These evolution flows generate the following equivalent hierarchy:

X(t1)=
∂

∂t1
+(−λx1 + ux2)

∂

∂x1
+(vx1 + λx2)

∂

∂x2
,

X(t2) =
∂

∂t2
+ [(−λ2 +

1
2

uv)x1 + (λu − 1
2

ut1)x2]
∂

∂x1
+

+[(λv − 1
2

vt1)x1 −
1
4
(λ2 − 1

2
uv)x2]

∂

∂x2
, (60)

X(t3) =
∂

∂t3
+ [((−λ3 +

1
2

λuv +
1
4
(uvt1 − vut1))x1+

+ ((λ2u +
i
2

ut1)−
1
4
(ut1t1 − 2u2v))x2]

∂

∂x1
+

+ [(λ2v − 1
2

λvt1) +
1
4
(vt1t1 − 2uv2))x1+

+ ((λ3 − 1
2

λuv)− 1
4
(uvt1 − vut1))x2]

∂

∂x2
,

of affine vector fields on the augmented torus T2
C ×R3, commuting to each other, that is,[

X(t1), X(t2)
]
= 0,

[
X(t2), X(t3)

]
= 0,

[
X(t3), X(t1)

]
= 0 (61)

for all t1, t2, t3 ∈ R and x ∈ T2. The latter makes it possible to describe mathematical
properties of this countable hierarchy of commuting to each other vector fields within
the Lie algebraic approach, devised before in [31,33,34] and, in part, formulated in the
preceding section.

Namely, let T2
C := T2 ⊗C and G̃ := D̃i f f (T2

C) denote the linear loop torus diffeomor-
phism group [35] of smooth mappings {C1 ⊃ S1 → Di f f (T2

C)} of the unit circle S1 ⊂ C1,
holomorphically extended to the inner part D+ ⊂ C1 of this circle S1 and to its outer part
D− ⊂ C1, under the condition that, for any g̃(λ), λ ∈ D−, limλ→∞ g̃(λ) = Id ∈ Di f f (T2

C).
Then, the affine loop Lie algebra G̃ := d̃i f f (T2

C) splits as the direct sum G̃ = G̃+ ⊕ G̃−
of the subalgebras, holomorphic, respectively, in the inner D+ and outer D+ parts of the
unit circle S1 ⊂ C1. Consider also a countable hierarchy of smooth Casimir invariants
h(j) ∈ I(G̃∗), j ∈ Z+, on the adjoint space G̃∗ ≃ Λ1(T2

C) with respect to the bilinear
form (43) on G̃∗ × G̃ ; assume that their gradients grad h(j)(l̃) := ⟨grad h(j)(l)x|∂/∂x⟩ ∈
G̃, j ∈ Z+, when calculated at the seed element l̃ = ⟨lx|dx⟩ ∈ G̃∗ and projected on the
subalgebra G̃+, coincide, respectively, as |λ| → ∞ with the following matrix expressions:

grad h(1)+ (l) =
(

−λ u
v λ

)
, h(2)+ (l) =

(
−λ2 + 1

2 uv λu − 1
2 ut1

λv + 1
2 vt1 λ2 − 1

2 uv

)
, (62)

grad h(3)+ (l) =
(

−λ3 + 1
2 λuv + 1

4 (vut1 − uvt1) λ2u − λ 1
2 ut1 +

1
4 (ut1t1 − 2u2v)

λ2v + 1
2 λvt1 +

1
4 (vt1t1 − 2uv2) λ3 − 1

2 λuv − 1
4 (vut1 − uvt1)

)
,

grad h(4)(l) =



−λ4+(2uvλ2 + 2u vt1 λ−
−ut1 vλ)/4 + (u vt1t1 − ut1 vt1−

−3u2v2 + v ut1t1)/8

uλ3 − (2ut1 λ2 + 2u2v
−ut1t1 λ)/4 + (6vuut1 − ut1t1t1)/8

vλ3+(2vt1
λ2 + 2vt1t1 λ−

−2uv2λ)/4 + (vt1t1t1 − 6uvvt1)/8

λ4−(2uvλ2+u vt1 λ
−ut1 vλ)/4 − (u vt1t1 − ut1 vt1−

−3u2v2 + v ut1t1)/8

, ...

and so on. Here, by definition, we put

grad h(j)
+ (l̃) :=

(
λj grad h(l̃)

)
|+, (63)
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and denote by h(l̃) ∈ I(G̃∗) the related Casimir functional on G̃∗, generated by a suitably
chosen seed element

l̃ := ∑
j∈N,

λ−j⟨ljx|dx⟩, (64)

specified at any m ∈ Z+ by some matrix elements lj ∈ End Cn, j ∈ N, satisfying the
determining algebraic relationship

ad∗grad h(l̃) l̃ = 0. (65)

The gradient elements in (63), owing to the classical Adler–Kostant–Souriau scheme [28,41,42,44],
generate the following vector fields that commute to each other:

∂l̃/∂ts := ad∗
grad h(s)+ (l̃)

l̃ (66)

on the adjoint space G̃∗
−, reducing to some differential-matrix equations on the matrix

elements lj ∈ End Cn, j ∈ N:

∂l0/∂ts = l0trφ(s) + (l0 φ(s) + φ⊺
(s)l0) + ...+

+lstrφ(0) + (ls φ(0) + φ⊺
(0)ls+1),

∂l1/∂ts = l1trφ(s) + (l1 φ(s) + φ⊺
(s)l1) + ...

+ls+1trφ(0) + (ls+1 φ(0) + φ⊺
(0)ls+1),

∂l2/∂ts = l2trφ(s) + (l2 φ(s) + φ⊺
(s)l2)+

+l3trφ(s−1) + (l3 φ(s−1) + φ⊺
(s−1)l3)+

+... + l2+strφ(0) + (l2+s φ(0) + φ⊺
(0)l2+s),

...
∂l3/∂ts = l3trφ(s) + (l3 φ(s) + φ⊺

(s)l3) + l4trφ(s−1) +

+(l4 φ(s−1) + φ⊺
(s−1)l4) + ... + (ls+3 φ(0) + φ⊺

(0)ls+3),

(67)

and so on with respect to evolution parameters ts ∈ R, s ∈ Z+, where we put, by
definition, the asymptotic expansion

grad h(l̃) ∼ ∑
j∈Z+

λ−j⟨φ(j)(l)x|∂/∂x⟩ (68)

as |λ| → ∞ for some matrix elements φ(j) ∈ End C2, j ∈ Z+. Having substituted Expan-
sion (68) into Expression (65), the corresponding determining differential matrix relation-
ship ensues:

⟨ ∂

∂x
◦ |φ(l)x⟩lx + ⟨lx| ∂

∂x
φ(l)x⟩ = 0, (69)

where, we put, by definition, grad h(l̃) := ⟨φ(l)x|∂/∂x⟩ ∈ G̃ and l̃ := ⟨lx|dx⟩ ∈ G̃∗. As a
result of simple calculations, one easily obtains an infinite recurrent hierarchy of matrix
algebraic relationships:

∑
j∈N

ljtrφ(s−j) + ∑
s∈N

l j φ(s−j) + ∑
s∈N

φ⊺
(s−j)lj = 0 (70)

for any s ∈ Z+, where, by definition, the standard matrix trace is denoted as trφ(j) , j ∈ Z+,
and whose solution, that is, an infinite set of matrices {lj ∈ End Cn : j ∈ N}, gives rise to
the searched seed element ub (64).
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We now proceed to solving the system of matrix algebraic equations (70) for the case
m = 3, which reduces to the following compatible matrix algebraic relationships:

l1trφ(0) + (l1 φ(0) + φ⊺
(0)l1) = 0,

l1trφ(1) + ( l1 φ(1) + φ⊺
(1)l1) + l2trφ(0) + (l2 φ(0) + φ⊺

(0)l2) = 0,
l1trφ(2) + (l1 φ(2) + φ⊺

(2) l1) + l2trφ(1)+

+l2trφ(1) + φ⊺
(1)l2) + l3trφ(0) + (l3 φ(0) + φ⊺

(0)l3) = 0,
l1trφ(4) + (φ⊺

(4)l1 + φ⊺
(4)l1) + l2trφ(3)+

+(l2 φ(3) + φ⊺
(3)l2) + l3trφ(2) + (l3 φ(2) + φ⊺

(2)l3)+
+l4trφ(1) + (l4 φ(1) + φ⊺

(1)l4) + l5trφ(0) + (l5 φ(0) + φ⊺
(0)l5), ...

(71)

and so on for the unknown matrices lj ∈ End E2, j ∈ N. In addition, as the expressions
in (62) belong to the Lie algebra sl(2;R), we have to put trφ(j) = 0 for all j ∈ Z+, thus
reducing (71) to the next algebraic relationships:

(l1 φ(0) + φ⊺
(0)l1) = 0,

( l1 φ(1) + φ⊺
(1)l1) + + (l2 φ(0) + φ⊺

(0)l2) = 0,
(l1 φ(2) + φ⊺

(2) l1) + (l2 φ(1) + φ⊺
(1)l2) + (l3 φ(0) + φ⊺

(0)l3) = 0,
(φ⊺

(4)l1 + φ⊺
(4)l1) + (l2 φ(3) + φ⊺

(3)l2) + (l3 φ(2) + φ⊺
(2)l3)+

+(l4 φ(1) + φ⊺
(1)l4) + (l5 φ(0) + φ⊺

(0)l5), ...

(72)

and so on. Also, take into account that matrices φ(j) ∈ End C2, j ∈ Z+, characterizing the
differential–algebraic nonlinear Schrödinger Equation (57), are given by the following (62)
matrix expressions:

φ(0) =

(
−1 0
0 1

)
, φ(1) =

(
0 u
v 0

)
, φ(2) =

( 1
2 uv − 1

2 ut1
1
2 vt1 − 1

2 uv

)
, (73)

φ(3) =

( 1
4 (vut1 − uvt1)

1
4 (ut1t1 − 2u2v)

1
4 (vt1t1 − 2uv2) − 1

4 (vut1 − uvt1)

)
,

φ(4) =

(
(uvt1t1 − ut1 vt1 − 3u2v2 + vut1t1)/8 (6uvut1 − ut1t1t1)/8

(vt1t1t1 − 6uvvt1)/8 (−uvt1t1 + ut1 vt1 + 3u2v2 − vut1t1)/8

)
, ... (74)

and so on, a priori satisfying the differential-matrix relationships (51). The matrix elements
lj ∈ End C2, j ∈ −3, 0 ∪ N, respectively, satisfy the infinite hierarchy of the following
differential-matrix relationships:

− ∂l1/∂ts = (l1 φ(s) + φ⊺
(s)l1) + (l 2 φ(s−1) + φ⊺

(s−1)l2)+
+(l3 φ(s−2) + φ⊺

(s−2)l3) + (l4 φ(s−3) + φ⊺
(s−3)l4)+

+(l5 φ(s−4) + φ⊺
(s−4)l5) + ... + (ls+1 φ(0) + φ⊺

(0)ls+1)+

− ∂l2/∂ts = (l2 φ(s) + φ⊺
(s)l2) + (l3 φ(s−1) + φ⊺

(s−1)l3)+
+(l4 φ(s−2) + φ⊺

(s−2)l4) + ... + (ls+2 φ(0) + φ⊺
(0)ls+2),

− ∂l3/∂ts = (l3 φ(s) + φ⊺
(s)l3) + (l4 φ(s−1) + φ⊺

(s−1)l4)+
+... + (ls+3 φ(0) + φ⊺

(0)ls+3), ...

(75)
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easily ensuing from (67). Subject to the unknown matrices lj ∈ End C2, j ∈ N, we
solve recurrently the algebraic matrix relationships (72) jointly with the differential matrix
equalities

− ∂l1/∂t1 = (l1 φ(1) + φ⊺
(1)l1) + (l 2 φ(0) + φ⊺

(0)l2),

− ∂l2/∂t1 = (l2 φ(1) + φ⊺
(1)l2) + (l3 φ(0) + φ⊺

(0)l3),

− ∂l3/∂t1 = (l3 φ(1) + φ⊺
(1)l3) + (l4 φ(0) + φ⊺

(0)l4),
−∂l4/∂t1 = (l4 φ(1) + φ⊺

(1)l4) + (l5 φ(0) + φ⊺
(0)l5), ...

(76)

and so on, following from (75) at s = 1, and obtain the following matrix expressions:

l1=
(

0 α − η1
α + η1 0

)
, l2=

(
αv β − η2

β + η2 −αu

)
, (77)

l3=
(

αvt1 /2 + βv −αuv/2 + γ − η3
−αuv/2 + γ + η3 αut1 /2 − βu

)
,

l4=
(

α vt1t1 /4+β vt1 /2 − αuv2/2 + γv −α(uvt1 − vut1)/4 − ηuv/2
−α(uvt1 − vut1)/4 − ηuv/2 αu2v/2 − αut1t1 /4 + βut1 /2 − γu

)
, ...

and so on, where α, β, γ and ηj ∈ R, j = 1, 3, are arbitrary constant parameters.
Recall now that, following the Adler–Kostant–Souriau scheme [28,41,42,44], the con-

structed evolution flows (66) are Hamiltonian flows that commute to each other with
respect to the standard Lie–Poisson bracket:

{γ(l̃), µ(l̃)} := (l̃|[grad+ γ(l̃), grad+ µ(l̃)]− [grad− γ(l̃), grad− µ(l̃)]) (78)

for arbitrary smooth functionals γ, µ ∈ D(G̃∗
+) on the adjoint space G̃∗

+ and generated
by the corresponding Casimir invariant functionals, where (...)± denotes the projection
upon the loop Lie subalgebras G̃±. Moreover, we observe that the first two affine linear
flows of the countable hierarchy (48) satisfy the non-commutative quantum deformation
type relationships (51), subject to the two-dimensional Sato Grassmannian associative
algebra. The result obtained above, solving the corresponding inverse problem for the
infinite commuting to each other hierarchy of affine vector fields (59) on the torus T2, can
be reformulated as the following theorem.

Theorem 2. The infinite completely integrable nonlinear Schrödinger-type hierarchy of evolution
flows (58) is equivalent to a hierarchy of commuting to each other orbit flows generated by the
co-adjoint action of a special loop diffeomorphism group of the torus T2 on the adjoint space G̃∗

− to
its affine loop Lie algebra G̃ ≃ d̃i f f (T2). The related first two affine linear flows of (59) on the torus
T2 describe a non-commutative quantum deformation of the two-dimensional Sato Grassmannian
associative algebra.

Proof. Taking into account Proposition 2 and the linear differential–algebraic relation-
ships (51), one obtains the corresponding matrix structure constants, specified by means of
the first two affine linear flows on the torus T2, determining a suitable quantum deforma-
tion of the Sato Grassmannian associative algebra.

It is worth remarking here that the iterative differential-matrix scheme described above,
based on Relationships (72) and (75) and applied to the the suitably reduced generating
matrix seed element l1 ∈ End E2, gives rise to the well-known countable KP-hierarchy of
completely integrable Hamiltonian systems. A similar statement can also be proven for the
case of a matrix seed element l1 ∈ End E3, generating the well-known countable hierarchy
of integrable two-component Manakov-type Hamiltonian systems.
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6. Conclusions

Inspired by recent investigations of the Sato Grassmannian and its deep connections
with description of the Frobenius-type manifolds, initiated by B. Dubrovin, we analyzed
these within a special Adler–Kostant–Symes approach to construction of infinite hierarchies
of integrable matrix flows as co-adjoint orbits of a special subgroup of the loop diffeomor-
phism group of tori. The studied affine Lie subalgebras of linear vector fields on tori made
it possible, in part, to describe some kinds of Frobenius manifolds within the Dubrovin-
type reformulation of the well-known WDVV associativity equations, previously derived
in topological field theory. Based on studying a related Lax-type spectral problem, we
have stated that these equations are equivalent to some bi-Hamiltonian flows on a smooth
functional submanifold with respect to two compatible Poisson structures, generating a
countable hierarchy of hydrodynamic flows that commute to each other. We also studied
the inverse problem aspects of the quantum Sato Grassmannian structure constants’ de-
formations, related to the well-known countable hierarchy of the higher-order nonlinear
Schrödinger-type completely integrable evolution flows.
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