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Thesis Summary 

Chunking and analogy, learning through associations and similarities respectively, 

are crucial cognitive processes in a usage-based theory of language development. 

Assessing their roles in child naturalistic word learning has posed significant 

challenges. In this thesis, I offer methodological solutions to examine the 

developmental plausibility of these processes. Chapter 2 discusses limitations in 

studies of early word segmentation from naturalistic speech, affecting conclusions 

about the processes' developmental plausibility. I present a new chunking-based 

model, CLASSIC Utterance Boundary (CLASSIC-UB), to study how English infants 

discover words from continuous naturalistic speech. Its plausibility is assessed 

through new metrics focusing on child production vocabularies from large-scale 

conversational corpora. I show the advantages of using large word production 

samples and how this can improve the refinement of early word segmentation and 

learning theories. In Chapter 3, conclusions about CLASSIC-UB’s plausibility are 

supported by extending this approach cross-linguistically, using Italian as a case 

study. Across Chapters 2 and 3, CLASSIC-UB more accurately captures child 

productions than other chunking and non-chunking accounts, supporting its 

plausibility in early word segmentation and learning. In Chapter 4, I identify 

methodological challenges in assessing the independent effects of chunking and 

analogy in child word processing. I focus on how children use sentence context to 

resolve ambiguous word meanings (word sense disambiguation). I present 

ChiSense-12, a new open-access sense-tagged corpus of child-directed speech, and 

describe its use in creating experimental stimuli to disentangle variables (verb-object 

associations and verb-event structures) that are informative about the independent 

role of chunking and analogy. Using this corpus, I showed - for the first time - that 

4-year-old children exploit both bottom-up verb-object associations and top-down 

verb-event structures to resolve lexical ambiguities. Overall, this thesis makes a 

significant contribution to usage-based theories of language development and 

improves our understanding of how children acquire language in real-life contexts. 
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Chapter 1 

General Introduction 

 

1.1 Introduction 

This thesis examines the role of chunking (i.e., the ability to learn from associations, 

e.g., Gobet, 2017; Gobet et al., 2001) and analogy (i.e., the ability to learn schemas 

based on similarities across exemplars, e.g., Abbot-Smith & Tomasello, 2006; Bybee, 

2010a; Ibbotson et al., 2012) in understanding how children leverage naturalistic 

speech to acquire and use their early vocabularies. I tested whether a chunking-

based learning mechanism can accurately model how children progress from 

identifying word forms in naturalistic child-directed speech to building their early 

production vocabularies in both English and Italian. Additionally, I investigated the 

combined role of chunking and analogy by assessing whether the performance of 4-

year-old English-speaking children in word sense disambiguation depends on their 

sensitivity to verb-object associations found in naturalistic child-directed speech, as 

well as their ability to apply known verbs to new objects. 

The influential usage-based theory of language development assumes that 

children's linguistic knowledge emerges from the recurrent application of domain-

general cognitive processes of chunking and analogy to the language events they 

encounter (Behrens, 2009; Bybee, 2010b; Tomasello, 2000, 2003, 2009). This 

theory posits that children can gradually attain adult-level linguistic competence by 

bootstrapping their linguistic knowledge from naturalistic input, using processes that 

are applicable across various domains (i.e., domain-general). This contrasts with an 

approach to language development that assumes the need for innate language 

knowledge (e.g., Valian, 2015). Therefore, a fundamental assumption of a usage-

based theory is that children's learning is influenced by their language experiences. 

This has made large conversational corpora valuable resources for investigating 

whether the input contains sufficient information for children to acquire specific 

linguistic knowledge. These datasets also allow, via computational experiments, for 

the examination of which learning mechanisms can effectively make use of the 
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information available in naturalistic input to acquire linguistic knowledge. Although 

previous work has produced a significant body of evidence supporting the role of 

chunking and analogy in children's language development (e.g., Behrens, 2021; 

Lieven, 2016), one of the challenges for researchers has been determining whether 

learning mechanisms, when applied to naturalistic input, can actually capture 

children's outcomes in real-world settings. In Chapter 2 and 3, I aimed to address 

this by examining if a chunking-based learning mechanism applied to child-directed 

speech could capture various distributional aspects of children’s production 

vocabularies measured from naturalistic conversations. Additionally, another 

challenge has been assessing whether learning mechanisms can explain the 

influence of naturalistic language experiences on children’s word processing. To 

address this, in Chapter 4 I explored how chunking and analogy might independently 

explain how children's naturalistic language experiences affect their ability to resolve 

lexical ambiguities in the lab. Specifically, I investigated whether children's chunking 

of frequent verb-object associations from child-directed speech and their 

generalizations from verb knowledge might help them disambiguate words with 

multiple meanings.  

In Study 1 (Chapter 2), I introduced a new computational model for early 

naturalistic word segmentation called CLASSIC Utterance Boundary (CLASSIC-UB). 

This model employs a chunking-based learning mechanism to process a large corpus 

of speech directed at English-speaking 2-year-old children. The model's performance 

is benchmarked against both a baseline and other influential models that implement 

different hypotheses about how children might identify word forms from continuous, 

naturalistic speech. Importantly, CLASSIC-UB's performance is assessed not only 

using traditional metrics that focus on the accuracy of word segmentation, but also 

through a new set of measures that relate the model's performance with children's 

production vocabularies found in the corpora. These new measures assess whether 

the model can capture the age at which children first produce a word, as well as 

word-level characteristics that account for a significant proportion of the variance in 

children's production vocabularies (word frequency, word length, neighbourhood 

density, and phonotactic probability). The aim of this study was to test whether a 

chunking-based learning mechanism, which has previously demonstrated high 
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accuracy in segmenting naturalistic speech, can also acquire a vocabulary that aligns 

with what children actually produce in naturalistic conversations. 

In Study 2 (Chapter 3), I built upon the work of the first study by exploring 

the cross-linguistic applicability of CLASSIC-UB, using speech directed at Italian-

speaking children aged 16 to 36 months as a case study. Key differences between 

English and Italian provided an opportunity to address limitations of the first study 

and to answer a new set of questions. Specifically, I investigated whether the 

findings of the first study could be generalized to Italian, a language that contains 

longer words than English. This helped to test whether the first study's results were 

dependent on English being relatively easier to segment due to its shorter average 

word length (which might favour certain learning mechanisms over others). The 

richer morphology of Italian allowed me to examine whether a chunking mechanism 

could also capture the emergence of morphological units alongside word forms as 

found for Italian children, also testing the idea that usage-based learners acquire 

representations at multiple levels of granularity. Lastly, Italian child-directed speech 

is notable for having a higher proportion of verbs compared to nouns, even though 

Italian children's vocabularies still contain more nouns than verbs (known as the 

"noun advantage"). This offered a chance to evaluate whether a chunking model 

operating on naturalistic speech could account for the noun advantage observed in 

Italian children’s speech, even though verbs are more common in the child-directed 

input. 

In Study 3 (Chapter 4), I explored whether 4-year-old children can use 

analogies to apply a known verb-event structure to an object previously 

unassociated with that structure, and ultimately disambiguate the meaning of the 

ambiguous noun object (e.g., "twist the [music/elastic] band"). The experimental 

stimuli for this study were developed after manually annotating all English child-

directed utterances in the CHILDES database (MacWhinney, 2000). This annotation 

process allowed me to extract verb-object co-occurrences between verbs and noun 

meanings. The aim was to create stimuli that could disentangle the effects of 

frequent verb-object associations—encountered by children in naturalistic 

conversations—from the semantics of the verbs themselves. The ultimate goal was 
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to test whether children are sensitive to the associations present in naturalistic input, 

and more importantly whether they can generalize a known verb-event structure to 

a previously unassociated noun meaning. 

This introductory chapter sets the stage for the subsequent empirical 

chapters. The next two sections summarize existing evidence and identify current 

gaps in research concerning the role of chunking in early naturalistic word 

segmentation and the use of verb-event structure analogy in early word sense 

disambiguation. The concluding section offers a summary of the research presented 

in this thesis, with an emphasis on its originality and contributions to the current 

body of knowledge in the field. 

 

1.2 Chunking as a Process for Infant Naturalistic Word Segmentation 

Infants’ initial linguistic communication is closely linked to pre-verbal joint-attention 

events they share with their caregivers (Tomasello, 2009). During these events, 

infants learn that linguistic inputs (e.g., utterances) serve distinct communicative 

intentions, such as directing the interlocutor's attention to a particular referent. The 

efficiency of speech as a communicative tool increases as infants begin to realize 

that utterances are combinations of words. This understanding eventually benefits 

their comprehension and use of the morphosyntactic and semantic aspects of the 

language (Tomasello, 2003). Since speech input is presented as a continuous stream 

of sounds, a critical early developmental task for infants is to determine which parts 

of this stream correspond to individual word forms (e.g., Newman et al., 2016). 

Various hypotheses have been put forward regarding the learning mechanisms that 

might help infants tackle this word segmentation task (e.g., Daland & Pierrehumbert, 

2011; French et al., 2011; Goldwater et al., 2009; Monaghan & Christiansen, 2010; 

Perruchet & Vinter, 1998; Saffran, Aslin, & Newport, 1996; Swingley, 2005). A 

prominent hypothesis suggests that infants may begin to recognize "chunks" of 

speech, which are sequences of sounds that appear frequently in the language and 

that become discernible to the child as distinct, familiar units during speech 

processing (e.g., French et al., 2011; Monaghan & Christiansen, 2010; Perruchet & 
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Vinter, 1998). Chunking is a domain-general cognitive process where events that are 

often associated in the environment gradually become represented as whole units, 

leading to more fluent processing (e.g., Gobet, 2017; Gobet et al., 2001). In word 

segmentation, chunking predicts the performance of both infants (e.g., French et al., 

2011; Perruchet & Vinter, 1998) and adults (e.g., Endress & Langus, 2017; Frank et 

al., 2010) at segmenting artificial languages in laboratory settings. Various 

computational studies have also demonstrated that child-directed speech in 

naturalistic settings can be accurately segmented into words using a chunking-based 

learning mechanism (e.g., French et al., 2011; Monaghan & Christiansen, 2010). 

However, the benchmark for models' segmentation accuracy of naturalistic 

speech has been based on word boundaries found in adult vocabularies (e.g., 

Daland & Pierrehumbert, 2011; Monaghan & Christiansen, 2010). These boundaries 

may not accurately reflect the segmentation patterns of infants and children. 

Specifically, standard evaluation metrics examine how accurately a computational 

model identifies the white spaces used as separators in orthographic transcriptions 

of speech. The underlying assumption of these metrics is that infants segment 

speech in a manner similar to adults. Yet, infants’ early representations include not 

only words but also phonotactically legal nonword sequences (e.g., Ngon et al., 

2013) and short multi-word combinations (e.g., Skarabela et al., 2021). This 

suggests that a developmentally plausible model might not necessarily be one that 

identifies a high percentage of word forms from the input, given that the initial 

lexicon comprises a diverse range of phonological sequences (e.g., Larsen et al., 

2017). Assessing developmental plausibility is challenging, mainly because we do not 

know the proportion of word forms that infants actually segment from the input in 

naturalistic environments. 

One approach to tackling this issue involves using word productions from 

naturalistic settings as an indicator of segmentation performance, supported by 

evidence that vocabulary acquisition is influenced by word segmentation (e.g., Estes 

et al., 2007; Hay et al., 2011). CLASSIC, a chunking-based computational model of 

vocabulary learning, has been shown to account for a significant proportion of the 

variance in English child production vocabularies (Jones et al., 2021). Specifically, 
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the model has simulated vocabulary growth trajectories based on the increased 

processing fluency derived from repeated exposure to phonological sequences in 

naturalistic input. However, a fundamental assumption in CLASSIC is that children 

already know where most word boundaries are in speech. Past simulations were 

more focused on aspects of vocabulary acquisition rather than the transition from 

initially identifying word forms within continuous speech to progressively establishing 

a vocabulary. Given the connection between word segmentation and word learning, 

I hypothesized that modifying CLASSIC for naturalistic word segmentation would 

lead to segmentation performance levels above chance. In Chapter 2, I evaluate this 

hypothesis by developing CLASSIC-UB–a version of CLASSIC that performs word 

segmentation by learning chunks that combine phonological sequences with 

utterance-boundary information–and comparing it against a selection of models. 

All models were evaluated based on both word segmentation and word 

learning criteria. I pinpointed key variables that account for a significant proportion 

of the variance in word learning. These include the age of first production, as 

estimated from child productions (Grimm et al., 2017; Smolík & Filip, 2022), and 

specific distributional characteristics of child vocabularies, namely word frequency, 

word length, neighbourhood density, and phonotactic probability (e.g., Stokes, 2010, 

2014; Storkel, 2009). Leveraging these measures allowed me to assess the 

developmental plausibility of segmentation models. Indeed, given the established 

relationship between word segmentation and word learning, the assumption is that a 

developmentally plausible model would more accurately segment words that children 

tend to produce earlier. Furthermore, the distribution of words segmented by a 

developmental plausible model based on various characteristics (e.g., word 

frequency) should mirror the distribution found in child production vocabularies. 

In Chapter 3, I examined the cross-linguistic plausibility of CLASSIC-UB. 

Various computational investigations have been conducted to examine how different 

segmentation mechanisms perform across languages (e.g., Caines et al., 2019; 

Fourtassi et al., 2013; Gervain & Guevara Erra, 2012; Phillips & Pearl, 2014; Saksida 

et al., 2016). In general, chunking has been shown to segment naturalistic speech 

with high accuracy across multiple languages (e.g., Caines et al., 2019). However, 
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performance variability has been observed based on different variables, such as 

average word length in a language (Caines et al., 2019) and its morphological 

complexity (e.g., Phillips & Pearl, 2014). One open question involves the relation 

between the variation in segmentation performance exhibited by chunking-based 

models and actual child developmental data. It remains unclear whether a model 

that segments with less accuracy in one language will also necessarily be less 

developmentally plausible (i.e., showing a worse fit to child production vocabularies), 

or whether lower segmentation accuracy simply reflects variations in specific 

language properties, which in turn influence children's segmentation and vocabulary 

learning. Chapter 3 fills this gap in a unique way, by investigating how cross-

linguistic differences in segmentation performance relate to model developmental 

plausibility, using Italian as a case study. Italian child-directed speech notably differs 

from English, being characterized by a longer average word length (e.g., Saksida et 

al., 2016) and higher morphological complexity due to its more extensive inflectional 

paradigm system (e.g., Tardif et al., 1997). Hence, using Italian child-directed 

speech as a case study allowed me to explore how key language-specific variation 

identified in prior cross-linguistic studies relates to developmental plausibility. 

 

1.3 Analogy as a Process for Using Verb-Event Structures in Early Word 

Sense Disambiguation 

Analogy is a domain-general process that is ubiquitous in child learning (e.g., 

Christie & Gentner, 2010; Ferry et al., 2010; Gentner, 2003; Silvey et al., 2023). It 

involves identifying a relational structure (a category) that encodes similarities and 

differences between representations. Categorization can boost child learning as it 

allows for generalizations (e.g., Christie & Gentner, 2010; Waxman & Markow, 

1995). For example, a child might attempt to dress up their dolls after the caregiver 

has helped them dress, because they have recognized a similar relational structure 

between the action of the adult dressing them and themselves dressing another 

entity. Such generalizations enable the child to understand and creatively engage 

with novel situations that share similarities with previously encountered experiences. 

Similarly, under a usage-based approach of language development, analogy refers to 
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the use of novel items in a known linguistic construction, and it is the fundamental 

mechanism by which the individual comes to use the language productively (Bybee, 

2010a). 

An example of how analogy may be used in language development involves 

children’s grammatical generalizations centred around verbs (Tomasello, 1992, 2003, 

2009). Children gradually accumulate experiences with word combinations that share 

common elements (e.g., “mummy kissed daddy”, “mummy kissed the baby”), and 

these representations of short word combinations shift towards partial productivity 

(e.g., "mummy kissed [KISSEE]"). This productivity arises because the child creates 

a representational slot in the verb construction ([KISSEE]), forming a schema based 

on similarities across objects previously encountered in that verb construction 

(Ambridge & Lieven, 2015). This schema essentially allows the child to extend the 

construction to items previously unassociated with it, provided they fit semantically 

within the schema (e.g., “mummy kissed grandma”).  

It is important to note that this usage-based approach, which sees analogy as 

central to linguistic productivity, is not the only perspective. In contrast, alternative 

nativist approaches propose that children have some innate knowledge of the 

components that make up the argument structure of verbs (e.g., Gleitman & Gillette, 

1995; Pinker, 1994a). For instance, a child might inherently understand that the verb 

“kiss” requires a noun argument, and that the verb’s object is the patient of the 

action. The child might also possess innate knowledge about some semantic 

characteristics that constitute a plausible patient (e.g., a patient of “kiss” is likely an 

animate entity). This implies that the child may not be generalizing (at least not 

entirely) from previous experiences with object arguments but rather applying a 

known semantic rule that essentially constrains the types of novel arguments that 

can fill the slot. I will return to this alternative approach in the General Discussion. 

However, throughout the thesis, I focus on evidence supporting the role of analogy, 

thereby examining the extent to which the usage-based approach can explain 

children’s early word processing without assuming innate biases. 

Previous research has provided evidence for the early use of analogy (e.g., 

Ibbotson & Tomasello, 2009); however, the independent contributions of analogy 
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and chunking in early child language learning remain unclear. This issue stems from 

the difficulty in assessing how much of children's knowledge in experimental tasks is 

derived from generalizations versus rote-learned chunks stored in long-term memory 

as whole units. In fact, children initially start representing speech using unanalysed 

chunks, meaning that grammatical aspects of language are not accessed. For 

example, a large proportion of the word combinations that children produce in their 

first year are frozen phrases, where the component words have never appeared in 

isolation in previous child productions (e.g., Bannard et al., 2009; Lieven et al., 

1992). These word combinations can be learned via chunking from the input, with 

frequent word combinations having stronger representations, which in turn are 

accessed more fluently (e.g., Bannard & Matthews, 2008). This suggests that to test 

for the role of generalizations in early language development, researchers need to 

control for the word combinations children have likely encountered in their past 

experiences. These rote-learned word combinations might facilitate linguistic 

processing without necessarily tapping into analogical reasoning for comprehension. 

This challenge of disentangling the role of chunking and analogy is evident in 

studies of early word processing (e.g., Andreu et al., 2013; Mani et al., 2016). For 

instance, 2-year-olds anticipate both typical and atypical upcoming objects of verbs 

with similar speed in a visual setting (Mani et al., 2016). In the experiment, children 

were presented with images on a screen, such as a “book” and “cheese”, under 

different conditions. In one scenario, they heard “read a…” while being shown a 

“book” (an appropriate-typical object) and “cheese” (an inappropriate object). In 

another, they were shown both a “letter” (appropriate-atypical object) and “cheese” 

(inappropriate object). Before the object's label was spoken, children quickly shifted 

their eye gaze to the appropriate referent. Notably, the speed of this anticipatory 

gaze was predicted by their productive vocabulary size, irrespective of the 

association strength (typicality) between the verb and its object. These findings 

suggest that children leverage their understanding of the semantics of verbs and 

objects (verb-event structure) to make predictions, rather than relying solely on the 

frequency with which specific verbs and objects appear together (frequent verb-

object chunks). However, a methodological problem with this type of experiment is 

that verb-object associations were defined through association norms or ratings 
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sourced from adult participants. Such norms might not accurately reflect the 

associations actually available to children in their linguistic environments. In other 

words, in Mani et al. (2016), children might have encountered “reading a letter” in 

their previous linguistic environment, thereby possibly receiving facilitation from 

stored chunks during the experimental task.  

 In other research areas examining early ambiguous word processing, the 

roles of chunking and analogy have been entirely confounded (Hahn et al., 2015; 

Rabagliati et al., 2013). For instance, some studies have investigated children's 

abilities to use verbs to disambiguate the meanings of ambiguous words (e.g., "bat" 

as in an animal or a racket). Compared to unambiguous word processing, employing 

ambiguous words has the additional advantage of controlling for any facilitatory 

effects stemming from the phonological characteristics of the target word itself (i.e., 

the phonological word form remains constant, forcing the child to solely process the 

alternative meanings mapped onto the word form). However, these studies have not 

examined which specific mechanism—chunking or analogy—might have influenced 

children’s disambiguation performance. For example, when verbs precede them, 4-

year-old children can effectively disambiguate words with multiple meanings, as in 

“swing the [animal/racket] bat” (Rabagliati et al., 2013). However, the roles of 

chunking and analogy in this context remain unclear. This is because the frequent 

co-occurrence of a verb with a specific meaning might cause a sequence like 

“swing+the+[racket]bat” to be largely rote-learned. In such cases, a child may not 

be drawing from their abstract understanding of the verb (i.e., a bat being an object 

that can be swung, similar to swords or hammers). To give another example, in the 

utterance “Karl met the star”, The verb “meet” is likely to co-occur more frequently 

with “star” in the context of a famous person rather than an astronomical object. At 

the same time, it is more plausible to "meet" an animate entity than an inanimate 

one (Hahn et al., 2015). Therefore, previous work in early word sense 

disambiguation has not differentiated between the role of chunking, which increases 

sensitivity to word associations, and analogy, which allows the individual to judge 

the semantic fit of verb arguments based on prior knowledge. 
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In Chapter 4, I selected word sense disambiguation as a case study due to 

the lack of evidence concerning the roles chunking and analogy might play in 

children's processing. I also addressed previous limitations in distinguishing the 

contributions of these cognitive mechanisms, as emerged in studies of both early 

unambiguous and ambiguous word processing. Similar to these prior studies, I 

focused on the influence that verb-object associations and verb-event structures 

might have on children’s performance. One method to differentiate the roles of 

chunking and analogy in early word sense disambiguation involves using naturalistic 

corpora of conversations. These can be used to create experimental stimuli that 

disentangle verb-object co-occurrences from verb-event structures. A significant 

limitation, however, is the lack of corpora containing child-directed speech tagged 

for word senses. Presently, only corpora of adult-written or spoken material are 

accessible (e.g., Pasini & Camacho-Collados, 2020), and they are unsuitable for 

answering questions about child processing. This is because adult-directed input 

differs from child-directed input in various aspects (e.g., Saxton, 2009). Hence, in 

Chapter 4, I introduce the first corpus of child-directed speech tagged for word 

senses, named ChiSense-12. This resource can be used to answer questions about 

the role of naturalistic variables in early word sense disambiguation. This 

comprehensive corpus tags word senses for 12 ambiguous words and includes 

annotations for instances where these words serve as direct objects of verbs. All 

utterances of English child-directed speech from the CHILDES database 

(MacWhinney, 2000) have been tagged, making ChiSense-12 a valuable reflection of 

the naturalistic input variables that English-speaking children may encounter in their 

linguistic environment. 

Leveraging ChiSense-12, I designed an experimental task to distinguish the 

roles of chunking and analogy in 4-year-old children's word sense disambiguation. 

Children participated in a web-based forced-choice task during which they listened to 

stories ending with a target ambiguous word. Images were also displayed, 

representing two alternative meanings of the ambiguous word alongside semantic 

distractors. The stories were constructed to isolate the impact of verb-object 

associations and verb-event structures. In one condition, selected verbs with a 

neutral verb-event structure were used (e.g., "She saw the [animal/food] chicken"). 
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Essentially, these verbs were compatible with both potential meanings of the target 

word. Importantly, these verbs were frequently associated with only one of the 

meanings in ChiSense-12 (e.g., chicken as the animal), thereby testing for the 

independent effect of verb-object associations. In a different condition, verbs that 

had never co-occurred with either meaning in ChiSense-12 were chosen, controlling 

for verb-object associations. Crucially, only one meaning served as a plausible 

argument for the verb (e.g., "She rescued the [animal] chicken"), testing for the 

independent effect of verb-event structures. 

In sum, Chapter 4 provides a unique opportunity to evaluate the role of 

naturalistic verb-object associations. This analysis sheds light on the potential 

influence of a chunking learning mechanism in early word sense disambiguation. 

Concurrently, by investigating whether children can apply known verbs to word 

senses that never appear alongside those verbs in child-directed speech (yet remain 

semantically appropriate), Chapter 4 examines the role of analogy in early word 

sense disambiguation. 

 

1.4 Summary of Research, Originality, and Contributions to Knowledge 

The three studies presented in this thesis are conceptually complementary, each 

offering a different approach to explore how naturalistic language experiences 

impact child development. As introduced above and discussed in detail throughout 

the thesis, prior research has presented various computational specifications for the 

learning mechanisms that might be involved in child word segmentation (Chapter 2). 

However, an open question is whether the accuracy of these mechanisms in 

segmenting words from naturalistic speech would result in developmentally plausible 

vocabularies, similar to those produced by children. I introduce a new approach to 

evaluate which computational specification most accurately captures the production 

vocabularies of English-speaking children in naturalistic settings. This provides a 

valuable method for model comparison and has the potential to significantly advance 

the field by assessing the developmental plausibility of the proposed mechanisms. 

Furthermore, I demonstrate that a method focused on capturing children's 
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naturalistic data can shed light on the strengths and limitations of these 

hypothesized learning mechanisms, particularly when augmented by cross-linguistic 

performance comparisons (Chapter 3).  

Additionally, prior research on word sense disambiguation has been limited by 

the presence of confounding variables. These limitations have hindered our ability to 

assess the potential contribution of chunking and analogy mechanisms to child 

performance. I demonstrate that constructing experimental stimuli based directly on 

what children hear in naturalistic conversations (Chapter 4) offers a viable method to 

provide empirical support for the hypothesized learning mechanisms believed to 

operate on such naturalistic input. Creating stimuli that reflect what is found in 

naturalistic speech also stands as a compelling test of a usage-based theory, which 

suggests that language experiences shape cognitive representations. 

As outlined in more detail in the General Discussion, the three studies carry 

significant implications for future research. The introduction of a new segmentation 

model, CLASSIC-UB, and new evaluation metrics could encourage the use of real-

world data for model comparison in subsequent studies, thereby enhancing the 

ecological validity of the findings. These investigations may also contribute to 

refining existing theoretical models on word segmentation and acquisition. New 

evidence on early child word sense disambiguation expands our understanding of 

how chunking and analogy might function in early language development, potentially 

paving the way for integrated models that explain language acquisition as a synergy 

between these two processes. Finally, insights into the specific learning mechanisms 

used during development could enable more accurate mapping of developmental 

trajectories and individual differences. This has the potential for broad impact on 

society, including the enhancement of educational strategies and a better 

understanding of language delays. 

  



14 
 

Chapter 2 

CLASSIC Utterance Boundary: A Chunking-Based Model of Early 

Naturalistic Word Segmentation 

 

2.1 Abstract 

Word segmentation is a crucial step in children’s vocabulary learning. While 

computational models of word segmentation can capture infants’ performance in 

small-scale artificial tasks, the examination of early word segmentation in naturalistic 

settings has been limited by the lack of measures that can relate models’ 

performance to developmental data. Here, we extended CLASSIC (Chunking Lexical 

and Sublexical Sequences in Children; Jones et al., 2021), a corpus-trained chunking 

model that can simulate several memory and phonological and vocabulary learning 

phenomena to allow it to perform word segmentation using utterance boundary 

information, and we have named this extended version CLASSIC utterance boundary 

(CLASSIC-UB). Further, we compared our model to the performance of children on a 

wide range of new measures, capitalizing on the link between word segmentation 

and vocabulary learning abilities. We showed that the combination of chunking and 

utterance-boundary information used by CLASSIC utterance boundary allowed a 

better prediction of English-learning children’s output vocabulary than did other 

models. 

 

2.2 Introduction 

Word segmentation is a fundamental process in infant language development. 

Phonological word forms are not given a priori but must be extracted from 

continuous speech input. While several computational models have captured basic 

word segmentation phenomena displayed by infants in small-scale artificial tasks, 

assessing whether models can scale up to naturalistic inputs has been hampered by 

limited sets of measures against which to compare performance. We present a new 

word segmentation model which extends CLASSIC (Chunking Lexical and Sublexical 
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Sequences in Children; Jones & Rowland, 2017; Jones et al., 2021; Jones, 2016; 

Jones, Justice, et al., 2020), a chunking model that uses naturalistic inputs to 

successfully simulate key developmental phenomena in memory and language. Our 

extended model, CLASSIC utterance boundary (CLASSIC-UB), performs unsupervised 

word segmentation using large-scale naturalistic inputs. Importantly, we have 

assessed our model against existing segmentation models using both standard 

evaluation metrics and novel developmental measures to provide a more 

comprehensive assessment of segmentation performance. 

Chunking models successfully account for adult (e.g., Frank et al., 2010) and 

infant (e.g., French et al., 2011; Perruchet & Vinter, 1998) word segmentation in 

laboratory tasks by extracting and storing frequent input sequences (chunks) as 

candidate words that guide subsequent segmentation. This allows chunking models 

(e.g., Kurumada et al., 2013) to account for lexical effects in infant segmentation 

such as easier extraction of novel words when they are preceded by familiar words 

(e.g., Bortfeld et al., 2005). Lexical effects are not predicted by competing models 

that assume a dedicated mechanism that estimates the location of word boundaries 

in speech by tracking sublexical regularities, such as through forward and backward 

sound transitional probabilities (e.g., Cleeremans & McClelland, 1991; Saksida et al., 

2016). Further, chunking also accounts for infants’ sensitivity to sublexical 

regularities (e.g., Hay et al., 2011; Pelucchi et al., 2009; Saffran, Aslin, & Newport, 

1996; Saffran et al., 1997; Saffran, Newport, & Aslin, 1996) because the component 

parts of a chunk are mutually linked, giving equal weight to forward and backward 

relations (e.g., French et al., 2011; Perruchet & Desaulty, 2008; Perruchet & Poulin-

Charronnat, 2012; Perruchet & Vinter, 1998; although see McCauley & Christiansen, 

2019, for a hybrid model of speech comprehension and production that forms 

chunks via backward transitional probability without the need to capture forward 

relations). 

Typically, computational investigations have used artificial language tasks to 

assess the plausibility of learning mechanisms involved in infant (e.g., French et al., 

2011; Perruchet & Vinter, 1998) and adult word segmentation (e.g., Endress & 

Langus, 2017; Frank et al., 2010). Although modelers have also examined scale-up 
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to naturalistic input (e.g., Daland & Pierrehumbert, 2011; Monaghan & Christiansen, 

2010; Saksida et al., 2016), such investigations have suffered from one important 

limitation: The benchmark for models’ segmentation accuracy has been the word 

boundaries present in adult vocabularies, but these word boundaries are unlikely to 

accurately reflect infants’ and children’s segmentation (e.g., Monaghan & 

Christiansen, 2010). In contrast, we have introduced new measures based on 

developmental data and specifically on the composition of children’s early 

vocabularies. The key insight is that children’s vocabularies should reflect early word 

segmentation processes: Word forms that are more easily discovered in the input 

should enter children’s vocabulary earlier in development. We used these novel 

developmental measures alongside traditional evaluation measures to provide a 

much richer assessment of the developmental plausibility of word segmentation 

mechanisms. Specifically, we used this suite of measures to compare CLASSIC-UB to 

other models that have shown different strengths in modelling early naturalistic 

segmentation. 

 

2.2.1 CLASSIC 

CLASSIC uses a domain-general chunking mechanism (Gobet et al., 2001) to model 

linguistic knowledge acquisition via experience with the sequential structure of the 

language. It is not a model of auditory perception or production per se (as basic 

processes that transfer information to the learning mechanism are not modelled) but 

a learning model representing performance increases derived from perceptual 

learning and efficiency in production (Jones, Justice, et al., 2020). The accumulation 

of language experience is essentially represented by the chunking of adjacent items, 

gradually shifting the model’s representations from sublexical to lexical and 

multiword units. A key assumption in CLASSIC is that children already know how to 

identify word boundaries. This has been implemented in CLASSIC because past 

simulations have investigated phenomena at an age where children are likely to 

have already learned how to segment speech into words. 
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We can illustrate how CLASSIC works using a simplified example in which the 

model repeatedly processes the phonetically transcribed utterance [d, æ, d | ɪ, z | k, 

ʌ, m, ɪ, ŋ]1 (i.e., dad is coming) where | demarcates word boundaries that, as we 

explained above, are given as input to the model. CLASSIC first chunks adjacent 

phonemes that do not cross a word boundary and forms biphone representations: 

[dæ, æd | ɪz | kʌ, ʌm, mɪ, ɪŋ]. Any learned chunks can subsequently be used to 

encode the input. For example, at the second iteration, the model would represent 

the utterance as [dæ, d | ɪz | kʌ, mɪ, ŋ], that is, proceeding from left to right, it 

uses the longest available chunks to encode each demarcated word. This way of 

encoding preserves the input temporal structure and represents a proxy for the 

increased processing efficiency derived from acquired knowledge2. The model then 

continues to join adjacent chunks; for example, the third iteration would result in the 

representation [dæd | ɪz | kʌmɪ, ŋ], where CLASSIC has learned two of three words 

in the utterance. When two adjacent chunks are words themselves, CLASSIC crosses 

word boundaries and learns multiword sequences (i.e., dæd|ɪz in the example); 

thus, at the fourth iteration, CLASSIC would encode the utterance as a two-word 

sequence followed by a word: [dæd|ɪz, kʌmɪŋ]. Finally, in a last iteration the model 

would represent the whole utterance as a single multiword chunk: [dæd|ɪz|kʌmɪŋ]. 

 CLASSIC accounts for the role of sublexical, lexical, and multiword sequences 

in language development. For example, in Jones’s (2016) study, incremental 

exposure to naturalistic speech supported CLASSIC’s building up of chunks at 

different grain sizes, capturing 85% of variance in nonword repetition performance—

a task closely related to vocabulary learning (e.g., Hoff et al., 2008)—from six 

studies involving 2- to 6-year-old children. CLASSIC has also simulated vocabulary 

learning more directly (Jones et al., 2021). Similar to the way 2–3-year-old children 

learn to produce words, CLASSIC gradually learns longer, more infrequent words 

that have a smaller number of similar words in the language (i.e., lower 

neighbourhood density) and higher internal predictability (i.e., higher average 

biphone probability or phonotactic probability). Jones et al. (2021) also showed that 

novel words entering children’s productive vocabularies are more likely to share 

large phonological chunks with words that they already use, indicating a pivotal role 

for phonological knowledge in vocabulary learning. In sum, these studies have 
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shown that sublexical knowledge can be used to learn and produce pseudowords 

and real words (see Baayen et al., 2019; Chuang et al., 2021, for similar conclusions 

using linear discriminative learning). 

Finally, Jones, Justice, et al. (2020) showed that phonological knowledge 

plays an important role in learning multiword sequences. CLASSIC captured the 

faster increase in children’s short-term memory for digit over word sequences likely 

because chunks that span multiple digits are learned more quickly from random 

combinations of digits occurring in naturalistic speech. This study also showed how 

knowledge of multiword sequences facilitates lexical processing (e.g., processing of 

the individual items five and six becomes more efficient when the two are presented 

within a familiar multiword sequence five–six). 

 In sum, CLASSIC is a chunking-based model that has captured important 

developmental phenomena in word learning but has not yet been applied to word 

segmentation. We showed how CLASSIC can be extended to perform word 

segmentation, thus making the model more developmentally plausible: Infants must 

of course discover word forms before they can learn novel words and integrate them 

into their existing vocabulary (Newman et al., 2016). 

 

2.2.2 CLASSIC-UB 

To extend CLASSIC to perform word segmentation, we retained CLASSIC’s 

architecture but removed word boundary information from the model input (i.e., the 

model was not constrained to chunk items within demarcated words). We also 

added utterance boundary information using positional markers (↵) that signal 

utterance start or end. Transcribers of the input corpora used in this study coded 

such positional markers based on various syntactic (e.g., utterances are centred 

around a main clause) and prosodic cues (e.g., pauses, intonation patterns 

distinguishing declarative, interrogative, or other clauses). Only written transcriptions 

were available for most of the input, not the original speech recordings, so it was 

not possible to automatically assign positional markers based on, for example, 

changes in phonetic features. Positional markers have been used in previous 
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computational work (e.g., Aslin et al., 1996; Christiansen et al., 1998; Saksida et al., 

2016) as a proxy for the increased saliency that phonological units at utterance 

boundaries gain in child-directed speech (e.g., Fernald & Mazzie, 1991). This has 

been modelled via conjunctive use of utterance-boundary markers and phonological 

units to perform distributional learning (e.g., utterance-boundary + syllable 

constitutes a pair of units for which transitional probabilities can be obtained; 

Saksida et al., 2016). In a similar way, CLASSIC-UB treats utterance-boundary 

markers as additional units that can be used to form chunks (i.e., a chunk becomes 

longer when an utterance-boundary marker is attached to a phonological sequence). 

We present a version of CLASSIC-UB that uses utterance-final markers and a 

version that uses both initial and final markers. Infants may privilege utterance-final 

words (e.g., Aslin et al., 1996; Christiansen et al., 1998) because these gain 

perceptual prominence from syllable lengthening (Wightman et al., 1992) and 

sentential accent in English (Cinque, 1993). However, some studies have suggested 

that infants may use both initial and final markers in segmentation (Seidl & Johnson, 

2006, 2008). In fact, different cues could facilitate segmentation of utterance-initial 

words (e.g., exaggerated amplitude, duration, pitch, and formant structure; 

Cruttenden, 1986). Therefore, the presence of initial markers should provide 

additional facilitation over utterance-final cues. We are not aware of any 

computational studies assessing the relative contribution of initial and final 

boundaries, thus our comparing CLASSIC-UB with final markers to CLASSIC-UB with 

both initial and final markers could shed light on the variables that facilitate word 

segmentation at utterance edges. 

Figure 1 illustrates how CLASSIC-UB segments input after the input has been 

transcribed using the CMU Pronouncing Dictionary (Lenzo, 2007), which contains 

over 134,000 phonetic transcriptions of English words and provides an automatic 

way to convert large orthographic input into phonetic form using alphabetic codes 

for phonemes rather than IPA (e.g., AE instead of æ). When encoding the 

utterance-final biphone AED in the first utterance, the model learns the chunk with 

an associated utterance-final marker (i.e., AED↵). If the chunk AED appears in later 

utterances, even in word-medial positions, the model will recognize that it can be 
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used in word-final position assuming a word boundary at this location (see the third 

utterance dad is coming). This also shows how the following phone IH is marked as 

“can begin a word” based on the model flagging AED as ending the preceding word 

DAED (bolded chunk of Figure 1). The same logic applies to utterance-initial 

markers. In essence, the function of the ↵ markers within chunks is akin to “this 

chunk can appear at the [beginning/end] of a word”. 

 

 

Figure 1. CLASSIC-UB generalization of utterance-boundary markers to utterance-

medial position. Solid lines indicate grouping of adjacent items into single chunks 

and storage into the lexicon. Dashed lines indicate use of stored chunks to segment 

speech. Lines are only shown for the first utterance. Time indicates independent 

presentations of new child-directed utterances. All English phonemes are present in 

the lexicon but are not shown for reason of space. The transcription used is based 

on the CMU pronouncing dictionary (Lenzo, 2007). 

 

Like CLASSIC, CLASSIC-UB processes phonemic input. As such, it assumes that 

children already know phoneme categories in line with an early phonetic category 

learning approach (e.g., Werker, 2018) and previous computational studies in word 
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segmentation (e.g., Batchelder, 2002; Daland & Pierrehumbert, 2011; Goldwater et 

al., 2009; but there are alternative approaches that we briefly refer to in the 

Discussion section). Knowledge of sound categories and co-occurrences of sounds 

might begin to develop at the same time or soon after infants start segmenting 

speech into words at around 6 months of age (Bortfeld et al., 2005). For example, 

between 3 and 9 months, infants discriminate between and learn new phonetic 

categories using distributional cues (e.g., Cristià, McGuire, et al., 2011; Maye et al., 

2008; Mersad et al., 2021; Yeung et al., 2014), and they can use this information in 

word segmentation (e.g., Jusczyk & Aslin, 1995) and soon after in word recognition 

tasks (around 12 months; Mani & Plunkett, 2010) and word learning tasks (around 

14 months; Fais et al., 2012). Similarly, between 4 and 9 months infants attune to 

native phonotactic patterns (Cristià, Seidl, & Gerken, 2011; Jusczyk et al., 1994) and 

can use this knowledge in word segmentation (e.g., Mattys & Jusczyk, 2001). 

Nevertheless, we also ran all of our simulations on syllabified input (see Method 

section) because infants may initially perceive syllables as basic linguistic units (e.g., 

Bertoncini & Mehler, 1981). 

As with CLASSIC, items that co-occur often will have more opportunities to be 

chunked together by CLASSIC-UB. This facilitates subsequent segmentation in two 

ways. First, when a word is frequent in the input, its sublexical components will have 

more opportunities to be chunked together, reaching a whole-word representation 

faster. This makes the model frequency sensitive, even though frequency is not 

explicitly tracked (unlike in other chunking models, such as PUDDLE (Phonotactics 

from Utterances Determine Distributional Lexical Elements; Monaghan & 

Christiansen, 2010; see Appendix S1 for a detailed description of this model). 

Second, learning words that share phonological material with other words will be 

facilitated by the reuse of existing chunks (e.g., learning just can make the sequence 

ust available to subsequently learn crust). Other models, such as PUDDLE, do not 

include this mechanism and rely on frequency information alone. 

The number and size of chunks changes as more input is processed. 

CLASSIC-UB processes input incrementally (i.e., one utterance at a time), as do 

other segmentation models (e.g., French et al., 2011; Monaghan & Christiansen, 
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2010; Perruchet & Vinter, 1998). As Figure 1 shows, each utterance is encoded from 

left to right by using existing chunks present in the model lexicon. Consistent with 

previous chunking models (e.g., Batchelder, 2002; French et al., 2011; Perruchet & 

Vinter, 1998), preference is given to encoding larger chunks over shorter ones. For 

example, the chunk AED ↵ that contains a boundary marker is preferred over the 

shorter chunk AED that does not contain a boundary marker. At the same time, 

new/larger chunks are stored in the model lexicon by joining adjacent encoded items 

together, facilitating subsequent segmentation. This makes the learning process 

plausible because children’s learning happens incrementally as a function of their 

accumulating knowledge of the language (e.g., Jones et al., 2021). 

Crucially, selecting larger chunks over shorter ones means that chunks formed 

by sublexical sequences and utterance-boundary markers are dispreferred to words, 

thus avoiding oversegmentation. At the same time, the presence of utterance-

boundary markers prevents the model from building large undersegmented chunks. 

Together, these two mechanisms favour segmentation at the (intermediate) word 

level. However, there is no explicit rule defining when the model should stop building 

chunks of increasing size. In fact, at later stages, the model stores multiword 

chunks, which is consistent with representation of multiword sequences from 11 

months of age (e.g., Jones, Cabiddu, & Avila-Varela, 2020; Skarabela et al., 2021). 

Notably, such longer chunks can include multiple boundary markers, which means 

the model can represent multiword sequences while also retaining knowledge of the 

individual words composing a sequence. For example, an utterance such as I’ll do it 

later could be encoded using the two chunks ↵ I’ll ↵ do ↵ it ↵ and later ↵. In sum, 

CLASSIC-UB learns chunks including both phonological and utterance-boundary 

information. Chunks gradually increase in size, facilitating subsequent segmentation. 

 

2.2.3 Evaluation of Naturalistic Speech Segmentation 

Corpus-based evaluations of segmentation models usually compare models’ output 

to segmented transcriptions of child-directed speech (e.g., Monaghan & 

Christiansen, 2010). Precision and recall are two widely used measures. Precision is 
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the number of words segmented by a model divided by the total number of items 

segmented, including segmentation errors (i.e., how many of the items found are 

words). Recall is the number of words segmented by a model divided by the total 

number of words in the input (i.e., how many words present in the input are found). 

In these two measures, chunking models perform better than do models that 

segment speech randomly (e.g., Bernard et al., 2020; Monaghan & Christiansen, 

2010), which is in line with results from computational studies capturing artificial 

language learning (e.g., French et al., 2011). For example, in Larsen et al.’s (2017) 

study, the chunking model PUDDLE showed the highest performance, reaching 82% 

for precision and 80% for recall. In contrast, another class of models that track 

sound transitional probabilities (see Appendix S1 for a detailed description) perform 

better than the random baseline models (e.g., Bernard et al., 2020) but less well 

than chunking models (e.g., 43% for precision and 51% for recall in Larsen et al.’s, 

2017, study). 

Although these measures capture how accurately models segment the input, 

they do not capture their developmental plausibility. The use of segmented input to 

evaluate model performance makes the implicit assumption that infants segment 

speech in an adult-like way. However, as discussed by Larsen et al. (2017), this 

assumption is likely to be wrong, given evidence that infants’ initial protolexicons 

contain words and frequent phonotactically legal nonword sequences (e.g., Ngon et 

al., 2013). Addressing this problem is not straightforward because how infants 

segment speech in naturalistic settings is not known. Larsen et al.’s (2017) solution 

was to link model accuracy to word age of acquisition. For example, dog was 

understood by a higher proportion of children at 13 months of age than was deer, 

and this should be reflected by a more accurate segmentation of dog than deer (i.e., 

dog is correctly segmented on more occasions). Theoretically, the reasoning behind 

using word learning as a proxy for segmentation performance is that vocabulary 

knowledge (word–meaning mapping) is facilitated by word segmentation (e.g., Estes 

et al., 2007; Hay et al., 2011). For example, in Estes et al.’s (2007) study, infants 

were able to extract, store, and recognize word forms previously presented in fluent 

speech to successfully perform a label–object association task. In sum, words that 

are acquired early must also be accurately segmented at earlier ages3. 
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We also capitalized on the link between vocabulary knowledge and 

segmentation as suggested by Larsen et al. (2017), but instead of age of acquisition 

derived from parental reports, we used age of first production derived from child 

speech (Grimm et al., 2017). Looking at production rather than comprehension has 

drawbacks, but it also has important advantages. The words children produce are, of 

course, not a direct reflection of their segmentation abilities. Production involves 

additional variables related to recalling stored instances from the lexicon and to 

articulation, and, of course, what children spontaneously produce at the time of 

recording does not reflect the entirety of their comprehension vocabularies. Further, 

there are limitations inherent in estimating children’s knowledge from a small 

number of relatively short samples of speech filtered through adult transcribers’ 

potentially biased judgement (e.g., leading to the omission of nonlexical 

productions). Nevertheless, using production vocabularies has two key advantages. 

First, it dramatically increases the number of words examined: The British 

communicative development inventory (CDI; Alcock, 2020), a parent-report measure 

of age of acquisition, contains only 330 words4, lacking sufficient statistical 

sensitivity. Second, we found that the CDI word sample has a word frequency 

distribution shifted toward high-frequency words not reflecting the Zipfian input that 

infants hear, that is, many low frequency and few high-frequency word types 

(Hendrickson & Perfors, 2019)5. Using such a sample might bias results because 

transitional probability models might perform well only because the distribution 

considered is less skewed toward low frequency words (Kurumada et al., 2013). 

We have additionally proposed a new measure examining whether a model 

can capture word-level characteristics of child vocabularies. Previous measures did 

not examine whether a model capitalized on sublexical/lexical regularities (similarly 

to how learning is evaluated in laboratory settings). Traditional measures have 

focused on finding a mechanism that minimizes segmentation errors, while the age 

of acquisition/production measure is focused on the time course of acquisition. In 

contrast, with our final set of analyses, we assessed whether the characteristics of 

the vocabulary learned by a model reflected what children had produced in the 

language corpora. In other words, we assessed whether the models and children 

were sensitive to input characteristics in a similar way. We focused on three lexical 
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measures—word frequency, word length, neighbourhood density—and one 

sublexical measure—phonotactic probability. These characteristics have explained 

approximately 50% of variance in word learning (Stokes, 2010, 2014; Storkel, 

2009). Finally, although word comprehension as a marker of vocabulary growth has 

been predominant (e.g., Fernald & Marchman, 2012), the use of evaluation 

measures based on early production was reasonable given both the relation between 

early vocalizations and vocabulary growth (McGillion et al., 2017) and the relation 

between early segmentation abilities and later expressive vocabularies (Newman et 

al., 2006, 2016). 

In summary, we asked whether a novel chunking account of word 

segmentation could scale up to naturalistic speech in a developmentally plausible 

way by comparing CLASSIC-UB to PUDDLE, a model that has shown high 

performance in traditional measures of naturalistic segmentation, and to backward 

and forward transitional probability models that might account for a high proportion 

of variance in child word knowledge (Larsen et al., 2017). We also asked whether 

utterance-initial edges play a role in segmentation beyond final edges by comparing 

two different implementations of CLASSIC-UB. Finally, we asked whether transitional 

probability models could capture developmental data better than chunking accounts 

by comparing PUDDLE to transitional probability models to test whether we had 

replicated previous results (Larsen et al., 2017) using different corpora and 

performance measures. 

 

2.3 Method 

2.3.1 Computational Models 

We compared CLASSIC-UB to forward and backward transitional probability (Saksida 

et al., 2016), PUDDLE (Monaghan & Christiansen, 2010), and a random baseline 

relying on a coin toss to place a boundary after each input unit (Lignos, 2012). A full 

description of these models can be found in Appendix S1. We implemented the 

models to process syllables or phonemes as basic units (see Appendix S2 for 

details). Python and R scripts for preparing the input, running the models, and 
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analyzing the output are available at the project’s OSF page 

(https://doi.org/10.17605/osf.io/kbnep). 

 

2.3.2 Corpora 

We used seven English corpora following Grimm et al.’s (2017) study (see Appendix 

S2 for input preprocessing and characteristics). We downloaded the corpora from 

the CHILDES database (MacWhinney, 2000). As target input for the models, we 

considered only transcripts of children aged 2 years. While infants start segmenting 

speech much earlier than 2 years of age, our choice to focus on this age group was 

motivated by the much smaller size of corpora of speech directed at children of 

younger ages (e.g., 54,274 utterances at age 1 year vs. 604,000 utterances at age 2 

years). As we show in Appendix S2, this limits the representativeness of input 

directed at children of younger ages. In total, the input to models contained 604,000 

utterances (mean length of utterance = 4.39) from 332 different speakers, directed 

to 53 target children. Such input was 3 to 60 times larger than input used in 

previous studies (Christiansen et al., 1998; Daland & Pierrehumbert, 2011; Larsen et 

al., 2017; Monaghan & Christiansen, 2010; Saksida et al., 2016). 

 

2.3.3 Measures of Model Performance 

2.3.3.1 Precision and Recall 

We compared the models’ performance by looking at the pairwise differences in 

mean precision and recall scores (e.g., Monaghan & Christiansen, 2010). We tested 

the last 10,000 utterances of output because the models’ performance was stable 

(see Figure 2) and because testing the entire output (i.e., 604,000) would have led 

to significant results even for trivial differences. We used a Welch’s t test for unequal 

variances, with p values and bootstrap 95% confidence intervals corrected for 

multiple comparisons using Holm’s correction. 

 

https://doi.org/10.17605/osf.io/kbnep
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2.3.3.2 Word Age of First Production 

We used the mean length of utterance for transcripts as a proxy of word age of first 

production following Grimm et al.’s (2017) study (see Appendix S3 for details). Mean 

length of utterance is a useful estimator of child gross linguistic skills (i.e., 

developmental stage), controlling for the fact that children with a similar age might 

be far apart in their language development. The sample contained 5,480 words. We 

fitted linear regression models predicting word age of first production as a function 

of the log10 number of times a target word was correctly segmented by each 

algorithm (Larsen et al., 2017). We weighted the number of times a word was 

correctly segmented by dividing it by input word frequency before fitting the 

regression models as the two variables correlated highly (e.g., for a random 

baseline, r = .92). Word frequency correlates highly with the age of word acquisition 

(e.g., Morrison et al., 1997), therefore failing to control for its effect might have led 

to results that were an artifact of frequency. Indeed, input frequency tended to 

strongly affect models’ performance; for example, for the random model, the 

correlation between the number of correct segmentations and age of first production 

dropped from .58 to .20 after we controlled for frequency. Therefore, controlling for 

input frequency allowed us to assess the performance of each segmentation 

algorithm over and above the fact that words that appear more often are acquired 

earlier. 

Since previous studies had not used weighting by word frequency, we also 

included analyses for the unweighted measure in Appendix S6 to facilitate 

comparison. To foreshadow our findings, differences between models were 

consistent when we used either the weighted or unweighted measure, with only one 

exception pertaining to transitional probability models that we address in the 

Discussion section. We based comparisons between models on pairwise differences 

in adjusted R2 from the regression models; we bootstrapped the 95% confidence 

interval of the difference between coefficients and corrected the interval using 

Holm’s correction (Grimm et al., 2017). We concluded that two coefficients differed 

significantly from one another if the corrected 95% confidence interval did not 

include 0. 
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2.3.3.3 Word-Level Measures 

We compared the distributions of unique words discovered by each model to 

children’s actual vocabulary (i.e., the words produced by children in the corpus) for 

phonemic length, word frequency, neighbourhood density, and phonotactic 

probability. According to Jones et al. (2021), the distribution of words relative to 

sublexical and lexical characteristics should be similar between children and model if 

the model’s learning mechanism is developmentally plausible. As in previous studies 

(e.g., Storkel, 2009; Swingley & Humphrey, 2018; Vitevitch & Luce, 1998), word 

length referred to the number of phonemes in a word; word frequency was the 

log10 frequency of a word across the input; phonotactic probability was the mean 

probability of a phoneme pair’s appearing in a word; neighbourhood density was the 

raw count of phonemic words that differed from a target word by one phoneme 

(i.e., by deletion, insertion, or substitution). We left phonotactic probability and 

neighbourhood density unmarked for stress to be consistent with previous work 

(e.g., Storkel, 2009; Swingley & Humphrey, 2018). 

We carried out a chi-square goodness of fit test to compare observed 

probabilities of a word’s being of a certain length (in the output of a segmentation 

model) to the expected probabilities in children’s utterances; we focused on lengths 

of two to eight phonemes due to the low number of words at other phonemic 

lengths. We defined probabilities as the proportion of types at each length. We then 

looked at the pairwise differences in chi-square test statistics, using bootstrap 

confidence intervals as we described in the previous section. In other words, this 

analysis first looked at how close each model was to children’s performance and 

then used the estimates of such distance to compare models to one another. 

For word frequency, neighbourhood density, and phonotactic probability, 

which are continuous measures, we followed a similar procedure to the one that we 

used for word-level measures, but we used a Kolmogorov–Smirnov test statistic. 

Following Piantadosi et al.’s (2012) study, we divided each of these measures by 

word length. Word length tends to be anticorrelated with word frequency (e.g., Zipf, 
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1936) and neighbourhood density (Storkel, 2004) and positively correlated with 

phonotactic probability (Storkel, 2004). In our dataset, the correlations varied from 

moderate to strong: length and frequency (rs = −.37), length and neighbourhood 

density (rs = −.86), and length and phonotactic probability (rs = .42). 

 

2.4 Results 

We first report results for precision/recall and age of first production and finally for 

word-level measures. For ease of readability, in each subsection we give only a 

discursive presentation of key results and point to statistical results in the 

appendices. We have included both CLASSIC-UB initial and CLASSIC-UB initial-final 

in this section; however, for reasons of space, we have provided a discursive 

comparison between the two models in Appendix S11. 

 

2.4.1 Precision and Recall 

All models showed rapid learning (see Figure 2), reaching a ceiling in performance 

after approximately 40,000 utterances and indicating that the quantity of the input 

did not affect their performance (consistent with Daland & Pierrehumbert, 2011). We 

have provided pairwise statistical comparisons for the models in Appendix S4. All 

models segmented the input above chance (baseline), except for the transitional 

probability models when the input was syllabified (see Panel B in Figure 2 and 

Appendix S4). 
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Figure 2. Mean precision and recall performance with phonemic (Panel A) and 

syllabic (Panel B) input. The figure shows the random baseline, backward 

transitional probability (BTP) and forward transitional probability (FTP), CLASSIC-UB 
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with utterance-final and initial-final markers, PUDDLE. Performance was averaged 

every 1,000 utterances (Stage). Only the first 120 stages are shown to better 

appreciate changes in performance and because the performance of the models was 

stable. Grey confidence bands indicate the 95% confidence interval around the 

mean. 

 

In line with Larsen et al.’s (2017) findings, PUDDLE showed the best performance, 

outperforming the baseline, transitional probability, and CLASSIC-UB models. When 

we used phonemic input, PUDDLE found 73% of items were words for the precision 

measure and 79% of items were words for the recall measure. This model’s 

accuracy was higher when segmenting syllabified input, reaching 85% for the 

precision measure and 89% for the recall measure. CLASSIC-UB’s performance lay 

between the PUDDLE and the transitional probability models, with CLASSIC-UB 

initial-final reaching 50% for precision and recall with phonemic input, and 66% for 

precision and 58% for recall with syllabified input. 

 Overall, the models segmented naturalistic speech above chance. However, 

while traditional measures examined models’ accuracy, they told us nothing 

regarding whether a model’s segmentations reflected how infants segment speech, 

and we were not able to make any claim regarding the plausibility of one model 

compared to another. To address this issue, we turned to the next set of measures 

that related model performance to child data. 

 

2.4.2 Word Age of First Production 

Table 1 shows the adjusted R2 estimates for all linear regression models. Although 

the sizes of the estimates were small, they were in line with the results of Larsen et 

al. (2017), who, for example, showed that PUDDLE explained .067 of variance in 

child age of acquisition6. After carrying out all pairwise comparisons between 

adjusted R2 estimates (see Appendix S5), we found that only CLASSIC-UB initial-

final, CLASSIC-UB final, and PUDDLE—and only when we ran the models on 

phonemic input—outperformed the baseline at predicting word age of first 
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production. Surprisingly, when the models were run on syllabic input, none of them 

passed the baseline test (see Appendix S5). We discuss this unexpected finding in 

Appendix S13. Also, the results that we have reported above were based on 

weighting the predictor measure by frequency as we explained in the Method 

section. We have reported the results for the unweighted measure in Appendix S6. 

 

Table 1 Adjusted R2 for linear regression models predicting word age of first 

production as a function of weighted log10 number of times a word was correctly 

segmented by each model 

 Phonemic input Syllabified input 

Model R2
adjusted 95% CI R2

adjusted 95% CI 

Baseline .036 [.023, .052] .041 [.027, 057] 

Backward transitional probability .044 [.030, .059] .000 [.000, .002] 

Forward transitional probability .046 [.030, .060] .013 [.007, .021] 

CLASSIC-UB final .079 [.062, .100] .021 [.012, .030] 

CLASSIC-UB initial/final .084 [.066, .103] .038 [.025, .051] 

PUDDLE .078 [.060, .097] .061 [.043, .078] 

Note. Heteroskedasticity-robust standard errors were computed using a HC2 

estimator. The 95% confidence intervals indicate lower and upper limits of bootstrap 

confidence intervals around the estimate based on 1,000 iterations. Holm’s 

correction was applied by expanding the confidence intervals. 

 

Crucially, while CLASSIC-UB had lower precision and lower recall scores compared to 

PUDDLE (see Figure 2), the two models explained the same proportion of variance in 

child word age of first production (about 8%), suggesting that achieving lower 

segmentation accuracy might not necessarily lead to lower developmental 

plausibility. Nevertheless, age of first production did not consider the characteristics 

of the model’s vocabulary, nor did it answer questions about whether model and 
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children are sensitive to similar sublexical and lexical characteristics. The following 

fine-grained word-level measures addressed these questions. 

 

2.4.3 Word-Level Measures 

In line with the previous analysis, the models approximated children’s vocabularies 

better than the baseline only when we ran them on phonemic input. Therefore, in 

the following sections we report results for the phonemic analysis. We have included 

the results of the syllabic analysis in Appendices S7–S10, and we also discuss this 

finding in Appendix S13. 

 

2.4.3.1 Phonemic Length 

Qualitatively, all models learned more short than long words (see Figure 3) as 

children do (e.g., Storkel, 2009). However, CLASSIC-UB (both initial and initial-final) 

approximated the proportion of long words learned by children better than either 

PUDDLE or the transitional probability models did. The two CLASSIC-UB models were 

also the only ones to outperform the baseline (see Appendix S7). Finally, PUDDLE’s 

performance at approximating children’s vocabularies by phonemic length did not 

differ from forward and backward transitional probability models. 

 

 

Figure 3. Proportion of word types produced by children and discovered by each 

model by phonemic length, when phonemic input is used. 
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2.4.3.2 Word Frequency 

Children’s vocabularies are Zipfian like the input that they receive (e.g., Hendrickson 

& Perfors, 2019), and as such their vocabularies contain more low frequency words 

than high frequency words. We found no significant difference between PUDDLE and 

CLASSIC-UB at approximating child vocabularies by word frequency (see Figure 4 

and Appendix S8), but chunking models outperformed transitional probability 

models. This result was in line with empirical evidence showing that chunking 

models are better than transitional probability models at capturing lexical effects 

(e.g., Frank et al., 2010). 

 

 

Figure 4. Gaussian kernel density estimate of the distribution of unique words in 

children’s speech (Children) and discovered by each model, by Log10 word 

frequency (weighted by dividing a word frequency value by its phonemic length). 

Phonemic input is used. The area under each curve represents 100% of data points. 

Curve peaks represent the mode of each distribution.  

 

2.4.3.3 Neighbourhood Density 

In line with the fact that the majority of words in the language have zero or few 

lexical neighbours (e.g., Vitevitch, 2008), child vocabularies are populated by a high 

number of low-neighbourhood words. In this measure, only CLASSIC-UB final 

outperformed the baseline at approximating child vocabularies by neighbourhood 
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density, and this model performed significantly better than all other models (see 

Figure 5 and Appendix S9). 

 

 

Figure 5. Distribution of unique words in child speech (Children) and discovered by 

each model, by neighbourhood density (weighted by dividing a word neighbourhood 

density value by its phonemic length). Phonemic input is used. 

 

2.4.3.4 Phonotactic Probability 

As Figure 6 shows, child vocabularies are populated by words with low internal 

predictability (e.g., Storkel, 2009). All models were equally good at approximating 

child vocabularies, in line with evidence showing that both chunking and transitional 

probability models are sensitive to sublexical regularities in the speech input. 

However, the models’ performance did not differ statistically from the baseline model 

(see Appendix S10), suggesting that this measure might not have provided sufficient 

sensitivity for evaluating segmentation models. 
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Figure 6. Distribution of unique words in child speech (Children) and discovered by 

each model, by phonotactic probability (weighted by dividing a word phonotactic 

probability value by its phonemic length). Phonemic input is used. 

 

2.5 Discussion 

We compared CLASSIC-UB, a word segmentation model that uses naturalistic input, 

to another chunking model (PUDDLE) as well as to nonchunking accounts of word 

segmentation. We broadened the assessment of model developmental plausibility by 

introducing new measures that related model performance to child corpus data. We 

found that CLASSIC-UB acquired a vocabulary that more closely captured child 

vocabularies than did all other models; for example, both children and CLASSIC-UB 

learned a higher proportion of long and low-neighbourhood words compared to 

other models. We discuss each of these findings in turn. 

 

2.5.1 Measures of Developmental Plausibility 

In line with Larsen et al.’s (2017) study, we found that the results of traditional 

evaluation measures can be inconsistent with those of measures based on child 

speech. In fact, overall, CLASSIC-UB performed better than PUDDLE at predicting 

measures based on child speech despite segmenting approximately 30% fewer word 

tokens. One reason for this finding might be that traditional measures represent an 

adult benchmark. Infants might not segment speech into the same units as adults 

but might, at least initially, segment and store a protolexicon made of both word and 



37 
 

frequent nonword units (Ngon et al., 2013). This is also consistent with different 

accounts (e.g., Cutler et al., 2012; Pinker, 1994b) that have predicted that learners 

should commit segmentation errors based on the same cues that allow them to 

segment speech (e.g., rhythmic structure of the language, possible-word constraint, 

phonotactic constraints). Although researchers still do not know which specific 

errors—and more importantly in which proportion—infants make when segmenting 

naturalistic speech over the course of development, our findings nevertheless 

suggest that carrying out an in-depth examination of the kind of vocabulary built by 

models might be a first step toward assessing models’ developmental plausibility. 

In Larsen et al.’s (2017) study, transitional probability models explained a 

higher proportion of variance in age of acquisition than did chunking models. Using 

our adapted production measure, we showed that this result might depend on 

controlling for the role of word frequency. Namely, if one controls for frequency, 

transitional probability models do not actually perform above chance (see 

transitional probability models vs. the baseline model in Appendix S5). This means 

that the higher performance of transitional probability models might be largely 

driven by input frequency. This finding is not dependent on using a production 

measure; in a supplementary analysis (see CDI addendum in the project’s OSF 

profile), we examined the models’ ability to predict age of acquisition based on the 

UK CDI (a comprehension-based measure). When the comprehension measure was 

not frequency-weighted, we replicated Larsen et al.’s (2017) results. But importantly, 

when the measure was frequency-weighted, CLASSIC-UB again performed better 

than the other models (consistent with the production-based analyses reported 

here). 

We suggest that our proposed set of word-level measures might provide a 

richer and more nuanced method for evaluating the developmental plausibility of 

segmentation models. First, findings from word-level measures were in line with the 

age of first production results, with chunking models outperforming transitional 

probability and models run on syllabified input performing at chance (see 

Appendices S7–S10). In line with previous findings capturing in-laboratory data 

(e.g., French et al., 2011; Kurumada et al., 2013), word-level measures also showed 
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that, while both transitional probability and chunking models closely approximated 

child vocabularies at the sublexical level (phonotactic probability), chunking models 

performed better when lexical measures were considered (word length, word 

frequency, neighbourhood density). 

Second, word-level measures provided a more detailed test of the models’ 

lexical characteristics, highlighting performance differences that might be attributed 

to architectural differences across models. Indeed, CLASSIC-UB’s learning 

mechanism facilitated the discovery of words that overlap phonologically with 

previously discovered words. This allowed the model to approximate a greater 

proportion of children’s long/low-neighbourhood words than did competing models 

(see Figures 3 and 5). Therefore, uniquely relying on mechanisms that privilege 

highly probable sequences (e.g., PUDDLE, transitional probability models) makes it 

difficult to capture a portion of long/low-neighbourhood words that are generally 

more difficult to learn but that children nevertheless learn and that CLASSIC-UB can 

learn by exploiting phonological overlap. Interestingly, this feature of CLASSIC’s 

learning mechanism also means that the model can account for nonword repetition 

effects (Jones, 2016) that are due to phonological overlap across word and nonword 

sequences. Similarly, it is possible that CLASSIC-UB captures additional processes of 

storage and recall involved in word production (i.e., going beyond aspects of 

segmentation) and that this sensitivity explains its superior performance in 

approximating the characteristics of children’s productions. 

Although CLASSIC-UB more accurately represented the make-up of children’s 

early lexicons, its accuracy in segmenting words was not quite as good as that of 

PUDDLE (i.e., PUDDLE has a larger vocabulary). One could therefore argue that, at 

earlier stages in PUDDLE’s learning, word-level characteristics may match those of 

CLASSIC-UB and that it is only the subsequent increase in PUDDLE’s vocabulary that 

skews the distribution of the word-level characteristics. We conducted additional 

analyses (see Appendix S12) to evaluate this possibility. These analyses showed that 

differences in vocabulary size did not explain the differences in word-level measures. 

Finally, to support our claim regarding the role of overlapping phonological 

sequences in CLASSIC-UB, we conducted an additional exploratory analysis showing 
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that CLASSIC-UB’s ability to better approximate children’s vocabulary in word length 

and neighbourhood density increased as word frequency increased (see Appendix 

S12). This is in line with recent work showing that frequent words are more likely to 

share phonological material with previously learned words, therefore boosting child 

learning compared to learning less frequent words (Jones et al., 2023). Our result 

was also in line with evidence showing an effect of overlapping phonological 

sequences on vocabulary learning at around 2 years of age (e.g., Jones et al., 2023; 

Stokes, 2010; Storkel, 2009) but no effect at 12–15 months (Swingley & Humphrey, 

2018), suggesting that children first build a diverse repertoire of phonological chunks 

that later boost word learning (for a computational test of this idea using CLASSIC, 

see Jones & Rowland, 2017). 

Overall, our results speak in favour of models that exploit phonological 

overlap between sequences in word segmentation (e.g., French et al., 2011; 

Perruchet & Vinter, 1998) and add to previous work which highlighted the significant 

role of the overlap between sequences in word processing and acquisition 

(Gathercole, 1995; Jones et al., 2021). 

 

2.5.2 Limitations and Future Directions 

We have shown that chunking might play a significant role in early word 

segmentation by comparing our new chunking-based segmentation model CLASSIC-

UB to two other influential models: transitional probability and PUDDLE models. 

However, there are additional models that we did not consider. One important class 

of Bayesian models assumes that infants formulate hypotheses on the possible 

segmentations of utterances, ultimately preferring those segmentations that contain 

few frequent and short chunks (e.g., Goldwater et al., 2006, 2009). Another account 

is that infants form chunks based on both frequency and transitional probabilities 

(forward and backward) of syllable sequences, such as through mutual information-

based clustering (Swingley, 2005). Given that these accounts are primarily driven by 

frequency information, future comparisons to CLASSIC-UB are important for 

supporting our conclusion that phonological overlap between sequences plays a role 
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in the segmentation process in addition to frequency. Such comparisons would also 

be important because one influence does not exclude the other. As we argued 

above, CLASSIC-UB’s encoding efficiency uniquely increased when items became 

connected to others, that is, the more opportunities to chunk sublexical items the 

faster lexical representations were formed. However, once CLASSIC-UB has 

extracted a word representation from the input, it could further benefit from tracking 

its frequency in the input (e.g., see Jones, Justice, et al., 2020, for how a frequency-

tracking mechanism might improve CLASSIC’s performance). 

Moreover, it is highly likely that early naturalistic segmentation involves the 

use of a combination of cues. Indeed, the results of this study indicate that chunking 

alone might not be enough to discover items that are very long (Figure 3), occur 

very infrequently (Figure 4), receive no facilitation from word neighbours (Figure 5), 

and are made up of improbable sequences of sounds (Figure 6). This suggests that 

CLASSIC-UB might need to have access to additional cues to word boundary to be 

able to account for children’s ability to learn these words. We know that infants use 

a wide range of cues when segmenting speech such as prosodic salience of phrase 

edges (Gout at al., 2004), alternative ways to pronounce specific phonemes (i.e., 

allophonic variation; Hohne & Jusczyk, 1994), stress patterns (Jusczyk et al., 1999), 

degree of coarticulation of speech sounds (Johnson & Jusczyk, 2001), and others. 

Such cues could be considered in future work. 

An alternative (and nonmutually exclusive) possibility is that long, infrequent 

items with few neighbours might be learned via generalization of linguistic structures 

at different levels, including the syntactic level (Lippeveld & Oshima-Takane, 2020). 

For example, in Abend et al.’s (2017) study, an ideal Bayesian learner performed 

one-shot learning (i.e., formation of new word representations from a single 

exposure) by leveraging the mapping of words to their syntactic categories. 

Examining the role of syntactic categories would be important in future work as 

infants’ development of grammatical knowledge appears to start in parallel with the 

acquisition of phonology and the lexicon (e.g., Marino et al., 2020). 

Aside from our focus on a single word segmentation cue, another limitation is 

that we did not consider the models’ ability to capture the role of additional variables 
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in word segmentation and learning. For example, Swingley and Humphrey (2018) 

showed that word concreteness, word frequency in isolation (i.e., frequency with 

which a word occurs in a single-word utterance), and syntactic category predict 

word learning at 12 and 15 months of age. These predictors could be included in the 

statistical models of age of acquisition/production alongside our word-level 

predictors to see how they moderate models’ accuracy (i.e., number of correct word 

segmentations). Alternatively, our word-level evaluation measure could be extended 

to examine whether segmentation models can capture the distributions of these 

additional word-level features in children’s vocabularies. We would expect models to 

better capture characteristics to which they are sensitive, for example, in the sense 

that chunking models would show sensitivity to word frequency in isolation 

(Kurumada et al., 2013). 

Moreover, including these additional variables would be important because 

they differently impacted word comprehension and production in Swingley and 

Humphrey’s (2018) study; word concreteness only predicted word comprehension, 

and the effect of word frequency in isolation was moderated by syntactic category 

type only in word comprehension. Although we have highlighted limitations in using 

comprehension measures to investigate how well segmentation models perform, 

methods that look at comprehension and production should be considered 

complementary. Comparing comprehension and production would also allow 

researchers to test the extent to which CLASSIC-UB captures processes that are 

uniquely involved in production (such as recall and articulation). 

We would also like to highlight limitations deriving from the use of phoneme-

based input adopted in our study. The models did not have to deal with the complex 

problem of gradually abstracting phonological categories. Under an early phonetic 

learning approach (e.g., Werker, 2018), infants have to learn the relations between 

different realizations of phonemes based on contextual variation or lexical contrast 

(e.g., aspirated stops and unreleased stops are allophones of the phoneme /t/). 

Addressing this limitation in future work is important for increasing the 

developmental plausibility of the investigations. Alternatively, under more recent 

approaches, the goal of infant speech perception may not be to learn discrete 
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phonetic categories but instead be to represent continuous dimensions of raw 

speech (e.g., spectral energy) that are relevant to the native language (i.e., 

perceptual space learning; Feldman et al., 2021; McMurray, 2022). This implies that 

future work would need to consider more gradient units of speech perception. For 

example, recent work by Schatz et al. (2021) showed that a distributional learner 

can learn to discriminate phonetic contrasts by clustering auditory features into 

categories that are significantly smaller and more variable than traditional phonetic 

categories. Finally, we acknowledge that the early phonetic learning approach used 

in our work was also in contrast to other accounts that do not assume phonemes as 

basic units of perception, for example, work that has argued for gradient units 

dependent on the temporal unfolding of speech (e.g., Browman & Goldstein, 1992; 

Bybee, 2001; Mowrey & Pagliuca, 1995; Port & Leary, 2005) or others that have 

argued for features or morphophonemic forms (e.g., Chomsky & Halle, 1965; Postal, 

1968). 

 

2.6 Conclusion 

Our goal in this study was to test whether a chunking-based mechanism that has 

previously been successful in capturing early vocabulary learning might play a 

significant role in infant word segmentation. We then constructed CLASSIC-UB, 

which forms chunks of phonological and utterance-boundary material. Our 

simulations make three important contributions: They offer proof that (a) utterance 

boundaries carry useful information for word segmentation, (b) age of production 

and word-level measures can sensibly be used to evaluate model performance, and 

(c) CLASSIC can be augmented to form the segmentation model CLASSIC-UB, 

consistent with the hypothesis that chunking might be an important mechanism in 

early naturalistic word segmentation. 
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Chapter 3  

Simulating Early Word Segmentation and Word Learning from 

Italian Child-Directed Speech 

 

3.1 Abstract 

Syllables are likely the initial linguistic units infants discover from the speech stream 

during the first months of life. Infants might use statistical regularities between 

syllables to discover words from child-directed speech and build their early 

vocabularies. However, Cabiddu et al. (2023), Chapter 2 of the present thesis, have 

shown that only word segmentation models applied to phonemic input explained 

variability in different properties of English children’s vocabularies. None of the 

models run on syllabified input performed above the chance level, represented by a 

baseline model that segmented speech at random. Although these findings suggest 

that subsyllabic units might play a role in word learning as soon as infants begin 

discovering words from naturalistic speech, they might have been produced by a 

lack of sensitivity of the evaluation measures used. English child-directed speech 

includes a high proportion of monosyllabic words, which greatly simplified the 

segmentation task for a random model that had to correctly guess only a low 

number of consecutive word boundaries per utterance. To examine this potential 

artifact of syllabic word length, we replicated previous simulations of English on a 

new sample of Italian child-directed speech. We found that assuming phonemes as 

basic units of speech perception still provided a better account of early vocabulary 

learning in a language mostly containing multisyllabic words. We also showed that, 

to achieve sufficient sensitivity, measures that relate model performance to child 

data need to focus on the word token level, rather than examining word type 

distributions as in previous studies. Our cross-linguistic extension of previous 

analyses also indicated that the significant role of chunking learning mechanisms for 

capturing English vocabularies generalized to Italian. Moreover, to better examine 

how differences between English and Italian could influence models’ performance, 

we added two new evaluation measures that examined the models’ vocabularies by 

part of speech and number of morphological units acquired. We found that chunking 
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models showed emergence of morphological representations, and a noun advantage 

which mirrored that observed in Italian children’s production vocabularies. 

 

3.2 Introduction 

Examining the interaction of different levels of linguistic representation on language 

development is important because children do not solve linguistic tasks in isolation in 

the naturalistic environment. For example, when children start learning about the 

phonology of their language, they are also learning which phonological sequences in 

the speech input correspond to word-like units (e.g., Martin et al., 2013). In this 

computational study, we started examining how these two variables (type of 

phonological representations and segmentation learning mechanisms) might interact 

to build children’s early vocabularies. 

Evidence from speech perception studies suggests that the initial linguistic 

unit infants perceive might be the syllable (Bertoncini et al., 1988; Bertoncini & 

Mehler, 1981; Bijeljac-Babic et al., 1993; Jusczyk et al., 1995; Jusczyk & Derrah, 

1987). The prosodic characteristics of syllables (e.g., sonority) facilitate 

segmentation of continuous speech into representations structured around vowels, 

and thus allow the discovery of word forms by identifying at least some word onsets 

and offsets in the input (e.g., Räsänen et al., 2018). This behavioural evidence has 

typically been used by researchers to argue that syllables should be used as the 

basic units of speech perception in computational models of naturalistic word 

segmentation (e.g., Gambell & Yang, 2006; Saksida et al., 2016; Swingley, 2005). 

This was a plausible assumption, as such studies aimed to answer a fundamental 

question about word segmentation: Given unsegmented speech input, can infants 

use a given learning mechanism to identify a significant portion of input word forms?  

However, it is unclear whether assuming that children (and models) start 

from syllabified input remains plausible when the aim of the investigation moves 

beyond this fundamental question, for example examining how segmentation 

performance influences subsequent vocabulary learning (e.g., Newman et al., 2006; 

Newman et al., 2016). In fact, from 9 months of age infants use phonemic cues in 
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word segmentation (e.g., Jusczyk & Aslin, 1995; Mattys & Jusczyk, 2001), word 

processing (e.g., Mani & Plunkett, 2010), and word learning (e.g., Fais et al., 2012). 

These studies suggest that integrating phonemic knowledge might be important 

when modelling the shift from word segmentation to vocabulary acquisition. 

Alternatively, phonemic knowledge might not represent a significant contributor in 

the early phases of word acquisition: Using models that do not segment within 

syllables might still be reasonable, because other studies have highlighted how 

acquiring phonemic knowledge is a slow process that continues throughout 

childhood (3 to 12 years of age, e.g., McMurray, 2022) and that might be dependent 

on formal education (e.g., Morais et al., 1986, 1989). 

Importantly, this is currently an open question, as different computational 

studies have found mixed results. One study suggests that syllabic segmentation 

leads to better prediction of English word age of acquisition norms compared to 

phonemic segmentation (Larsen et al., 2017), while another study indicated that 

only phonemic segmentation allows segmentation models to capture when English 

children are likely to first produce a word (i.e., word age of first production) and 

different word-level properties (e.g., word length distribution; Cabiddu et al., 2023) 

in child vocabularies. 

In this work, we built on these studies and addressed key limitations which 

limited their conclusions about the role of different basic units of segmentation. 

Specifically, we compared a number of segmentation models to random baselines 

(not used in Larsen et al., 2017) that allowed us to test for the unique contribution 

of different assumptions about the basic units of speech segmentation on vocabulary 

learning (i.e., controlling for the influence of the specific word segmentation 

mechanisms implemented by each model). Crucially, we also tested our models on 

Italian child-directed speech to extend the conclusions of previous studies cross-

linguistically, with the main goal of addressing a potential artifact effect of word 

length when modelling English vocabulary learning: One likely reason why syllable 

representations achieve high performance in capturing child vocabulary learning 

even when the segmentation mechanism is random is due to the presence of many 

monosyllabic words in English input (Cabiddu et al., 2023), leaving less room for 
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more developmentally plausible segmentation mechanisms to make a difference in 

terms of predictive power. 

In contrast, Italian child-directed speech contains a significantly lower 

proportion of monosyllabic words, which should increase the sensitivity of the 

evaluation measures used. Consider a random baseline model that places a 

boundary after every input unit based on a coin toss. With the unsegmented (but 

syllabified) utterance “I run yes ter day”, the baseline only needs to correctly guess 

the presence of a word boundary before and after the utterance-medial word “run” 

(i.e., two consecutive correct guesses, with probability 0.52 = .25), while the task 

becomes more difficult when the input is in phonemic form (I r u n y e s t e r d a y) 

where four consecutive choices need to be made (i.e., place a boundary before “r” 

and after “n”, and do not place a boundary between “r” and “u”, and between “u” 

and “n”, with success probability of 0.54 = .063). The syllabic segmentation task 

becomes even easier when a monosyllabic word appears at an utterance boundary, 

in which case the left or right edge of the word is given for free. Finally, the 

facilitation is maximal in syllabified one-word utterances, where monosyllabic words 

are discovered by a random model with a probability of 1.  

Some evidence exists that using a language with higher average word length 

might increase the sensitivity of model evaluation measures. For example, Gervain 

and Guevara Erra (2012) have examined the performance of models that locate 

word boundaries in unsegmented speech based on transitional probabilities of 

adjacent syllable pairs. The study showed that segmentation models run on Italian 

syllabic input segmented a higher proportion of input word tokens than a random 

baseline, while the same models in Cabiddu et al. (2023) did not perform above 

chance when segmenting English input. It remains unclear, however, whether using 

Italian input would translate into higher sensitivity of measures that relate models’ 

performance to aspects of child vocabulary learning. 

Aside from the main goal of examining the role of phonemes versus syllable 

as basic units of speech perception, our work is the first to relate models’ 

segmentation performance to child vocabulary production data in a language other 

than English. Cross-linguistic examinations of segmentation mechanisms have 
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focused on understanding which mechanisms can maintain a high segmentation 

accuracy across languages and which input characteristics moderate models’ 

performance (e.g., Caines et al., 2019; Fourtassi et al., 2013; Gervain & Guevara 

Erra, 2012; Phillips & Pearl, 2014; Saksida et al., 2016). Here, we examined whether 

computational models implementing statistical learning mechanisms could capture 

key characteristics of Italian children’s early production vocabularies.  

Following Cabiddu et al. (2023), we examined two families of segmentation 

models: Transitional probability and chunking models. The use of transitional 

probability models was based on evidence of infants’ reliance on forward and 

backward sound transitional probabilities to locate word boundaries in artificial and 

natural languages (e.g., Hay et al., 2011; Pelucchi et al., 2009; Saffran, Aslin, & 

Newport, 1996). Chunking models instead implemented the idea that familiarity with 

n-gram sequences (from sublexical to multiword units) might facilitate subsequent 

word segmentation (e.g., Bortfeld et al., 2005; Cabiddu et al., 2023; French et al., 

2011; Monaghan & Christiansen, 2010; Perruchet & Vinter, 1998). In their study, 

Cabiddu et al. (2023) found that chunking models outperformed transitional 

probability models in different evaluation measures: Chunking models segmented 

the speech input with higher accuracy, discovering the largest number of input word 

tokens. Further, chunking models’ segmentation accuracy explained the largest 

variability in children’s word age of first production. Finally, the distribution of word 

types acquired by chunking models more closely resembled 2-year-old children’s 

production vocabularies by different word-level properties - frequency, phonemic 

length, neighbourhood density (how many words sound similar to a target word in 

child-directed speech), and phonotactic probability (how predictable a target word is, 

based on the average probability of its biphone sequences in child-directed speech). 

Together, these properties account for 20-50% of the variance in English child word 

learning (e.g., Jones et al., 2023; Stokes, 2010, 2014; Storkel, 2009). In sum, 

Cabiddu et al.’s (2023) study highlighted the significant role of chunking in 

segmenting word-like units from naturalistic unsegmented speech to build children’s 

early vocabularies.  
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Here, we extended this study to examine whether chunking might also play a 

significant role in Italian. There is evidence that, across languages including Italian, 

chunking models can segment naturalistic input with higher accuracy than 

transitional probability models (Caines et al., 2019). However, it is unclear whether 

higher accuracy would translate into higher developmental plausibility, as different 

studies have shown how model segmentation accuracy does not always lead to 

better prediction of aspects of children’s vocabularies (Cabiddu et al., 2023; Larsen 

et al., 2017). 

In the following section, we introduce key features of the Italian language 

and how they relate to English. We also present a set of predictions for this study, 

based on the role that these key features played in previous behavioural and 

computational studies. 

 

3.3 Similarities and Differences between Italian and English Speech 

3.3.1 Word Length 

Words in Italian child-directed speech have a higher average length compared to 

English, which should decrease the performance of baseline models that segment 

speech at random. Consequently, when syllabic input is used, the segmentation 

mechanisms tested should surpass baseline models at predicting child word age of 

first production and different child word-level properties as tested in Cabiddu et al. 

(2023). This should ultimately allow us to examine the plausibility of each 

segmentation mechanism in a more sensitive manner. 

Most words in Italian child-directed speech are multisyllabic (Italian mean 

syllabic length = 1.83; English mean syllabic length = 1.16; Saksida et al., 2016). 

Given that there are 2𝑁−1 ways to segment a string of N phonemes or syllables, 

longer words produce higher ambiguity in segmentation as confirmed by different 

computational studies (e.g., Caines et al., 2019; Fourtassi et al., 2013; Saksida et 

al., 2016). In this study, we leveraged the higher ambiguity of Italian child-directed 

speech to increase the sensitivity of developmental measures used in previous 

studies (Cabiddu et al., 2023; Larsen et al., 2017). Larsen et al. (2017) used a 
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developmental measure that related models’ segmentation accuracy to child word 

age of acquisition scores: They fitted linear regression models predicting the 

proportion of English-speaking children that at 13 months are reported to 

comprehend a target word - in the Communicative Development Inventory (CDI, 

Fenson et al., 2007) - from the number of times a model correctly segmented the 

target word from the input. The study did not find a clear advantage for a specific 

input unit. A segmentation model that tracks sound pair transitional probabilities in 

English (Saksida et al., 2016) explained the largest proportion of variance in word 

age of acquisition when processing syllabic input. Instead, a chunking model that 

tracks the frequency of n-grams to determine plausible English word-like units 

(PUDDLE, Monaghan & Christiansen, 2010) performed better on phonemic input. 

Importantly, the study did not include baseline models that segment speech 

randomly, not allowing to test how much variance was explained by assuming 

access to phonemic or syllabic units while controlling for the influence of specific 

segmentation mechanisms. 

The computational study of Cabiddu et al. (2023) included phonemic and 

syllabic random baseline models, and further extended the evaluation measures 

used by Larsen et al. (2017). They not only looked at word age of acquisition, but 

also word age of first production (estimated from corpora of child speech), and at 

how models’ vocabularies related to 2-year-olds’ production vocabularies in terms of 

the following word-level characteristics: frequency, phonemic length, neighbourhood 

density, and phonotactic probability. Different studies have shown that these four 

word-level characteristics account for 20-50% variance in English child word learning 

(e.g., Jones et al., 2023; Stokes, 2010, 2014; Storkel, 2009). Across all 

developmental measures, only phonemic segmentation led to above-chance 

prediction of child vocabulary data, with this pattern being consistent across all 

transitional probability and chunking models considered. 

Although this result might support the role of phonemic segmentation in early 

word acquisition, it requires further investigation. In fact, Cabiddu et al.’s (2023) 

study showed that models trained on syllabic input failed to account for child data 

because even the random baseline model built a larger vocabulary than children, 
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despite having received a comparatively small amount of child-directed input from 

the CHILDES database (MacWhinney, 2000): The study used a sample of 604,000 

utterances, which (according to one estimate; Swingley, 2007) would correspond to 

the amount of input that 1-year-old children approximately receive over just a 3-

week period. The baseline model also surpassed children in certain vocabulary 

measures (e.g., learning a higher proportion of low frequency words than are 

present in children production vocabularies). 

As suggested above, one reason for the high performance of the random 

baseline model might be the high proportion of monosyllabic word tokens in English 

(81% in the child-directed input used in Cabiddu et al.’s study). One way of testing 

this hypothesis is to repeat the simulations of Cabiddu et al. (2023) using Italian 

child-directed speech, which contains a lower proportion of monosyllabic word 

tokens (43% in the corpora of our study). We expected our Italian results to differ in 

two ways from Cabiddu et al.’s (2023) English results. First, as discovering word 

forms is more difficult when most input words are multisyllabic, we expected the 

syllabic random baseline model to acquire a vocabulary that is smaller than 

children’s productive vocabularies. In addition, if previous English results were an 

artifact of word length, the higher segmentation ambiguity of Italian speech should 

reduce the ability of the random baseline to predict aspects of children’s vocabulary 

acquisition, and consequently allow non-random models to perform above-chance in 

this prediction task, so that we can compare them against each other. 

 

3.3.2 Utterance Boundary Cues 

In English child-directed speech, words appearing at utterance edges gain salience 

from exaggerated prosodic characteristics (e.g., Cinque, 1993; Cruttenden, 1986; 

Wightman et al., 1992) and pauses between utterances (Fernald et al., 1989). As a 

result, infant word segmentation is facilitated by the salience of both utterance-initial 

and utterance-final words (Mattys et al., 1999; Seidl & Johnson, 2006, 2008). 

Further, novel nouns tend to be placed in utterance-final position (e.g., Fernald & 

Mazzie, 1991), which may facilitate word processing (Soderstrom, 2007) and word 
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learning (Golinkoff & Alioto, 1995) for these nouns. Findings from studies on Italian 

suggest that the role of utterance-boundary cues should be similar in this language 

as for English. Italian infants’ word segmentation might benefit from utterance-initial 

and utterance-final boundary cues given their sensitivity to differences in word 

frequency distributions at utterance edges (Gervain et al., 2008). Further, in Italian 

child-directed speech, presenting novel words in utterance-final position facilitates 

children’s word acquisition (Longobardi et al., 2015). 

In their recent computational study, Cabiddu et al. (2023) found results in line 

with the role of utterance boundary cues in English word segmentation and word 

learning. They used the segmentation model CLASSIC Utterance Boundary 

(CLASSIC-UB), which is sensitive to utterance boundary information by recursively 

joining adjacent sequences composed by phonological material and utterance 

boundary markers. The model stores these n-gram sequences and uses them to 

segment speech into word-like units. CLASSIC-UB was tested in two versions, one 

that implemented sensitivity to utterance final cues only (CLASSIC-UB final) and one 

with both utterance-initial and utterance-final cues (CLASSIC-UB initial/final). The 

study found that both utterance edges were useful to segment speech: CLASSIC-UB 

final discovered a larger proportion of input word tokens than random baselines, and 

CLASSIC-UB initial/final performed better than CLASSIC-UB final. However, when the 

model vocabulary was examined (i.e., the word types learned), adding sensitivity to 

utterance-initial cues (on top of utterance-final cues) did not improve CLASSIC-UB’s 

ability to capture word-level distributions of English children’s vocabularies by word 

frequency, word length, neighbourhood density, and phonotactic probability. 

These contradicting results were explained by differences in word token/type 

ratio at utterance boundaries in the child-directed speech input. On the one hand, a 

lower number of different (but highly frequent) words appeared in utterance-initial 

position compared to utterance-final position, increasing the likelihood of 

segmenting these words correctly and improving the overall model segmentation 

(token-based) scores; it is likely that these words included function words which are 

known to facilitate word segmentation in models (Johnson et al., 2014) and infants 

(Shi et al., 2006; Shi & Lepage, 2008). On the other hand, the input corpora 
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contained a larger number of different words in utterance-final position than in 

utterance-initial position, in line with the tendency of caregivers to present novel 

words in utterance-final position (Fernald & Mazzie, 1991). The higher diversity of 

words in utterance-final position meant that a model sensitive only to utterance-final 

cues could already build a large (type) vocabulary, with additional sensitivity to 

utterance-initial cues not significantly improving CLASSIC-UB’s ability to capture the 

age at which children first start producing a word in the transcripts and word-level 

characteristics of English children’s vocabularies.  

In this study, we used the two versions CLASSIC-UB final and CLASSIC-UB 

initial/final introduced by Cabiddu et al. (2023). Different studies on Italian (Gervain 

et al., 2008; Gervain & Guevara Erra, 2012; Longobardi et al., 2015, 2016) suggest 

that we should find similar results when the models are run on Italian child-directed 

speech.  

As in English, Italian function words are repeated frequently in utterance-

initial position (i.e., high token frequency), while many different content words tend 

to appear in utterance-final position (i.e., high type frequency). Differently from 

English, in Italian the subject can be omitted, therefore verbs can also appear in 

utterance-initial position and might attenuate the facilitatory effect of function 

words. Nevertheless, Italian infants may still be sensitive to highly frequent function 

words in the input. For example, the computational study of Gervain and Guevara 

Erra (2012) found that function words are traceable in Italian word segmentation, 

with forward transitional probability models performing better than backward 

transitional probability models because tracking forward relations leads to discovery 

of a higher proportion of utterance-initial functors (while the opposite was found for 

the functor-final Hungarian language). Further, Gervain et al. (2008) showed that 

Italian infants preferred an artificial language with a word order that respected the 

function/content word distribution of their native language (i.e., utterance beginning 

= high token frequency, utterance end = high type frequency). This study suggests 

that infants were sensitive to the positional saliency of utterance-initial and 

utterance-final words. Therefore, in this study we expected computational models to 



53 
 

benefit from both utterance-initial and utterance-final cues in Italian word 

segmentation. 

Further, even if Italian child-directed speech overall contains more verbs than 

nouns, the early production vocabularies of Italian-learning children still contain 

more nouns (Longobardi et al., 2015) – just like the vocabularies of English-learning 

children (Bates et al., 1994). Although there could be different explanations for this 

noun advantage (e.g., noun concreteness facilitating noun-meaning mapping, lower 

morphological complexity of Italian nouns compared to verbs), the interaction 

between prosodic cues and word frequency might also play a role. Nouns more often 

appear in utterance-final position than verbs and they more often appear in 

utterance-final position than in other positions. Longobardi et al. (2015) found that 

the percentage of maternal utterances containing nouns in final position at child age 

16 months correlated with the overall percentage of noun types produced by 

children at 20 months. In contrast, verbs in Italian child-directed speech more often 

appear in medial and utterance-initial positions than nouns, with overall prevalence 

in medial position which should make them more difficult to segment. Importantly, 

the frequency and positional salience of Italian nouns and verbs is useful to test the 

role of utterance-final cues in determining a noun advantage. In fact, in English 

child-directed speech noun types not only appear more often than verbs in 

utterance-final position, but they are also the most frequent part-of-speech category 

(e.g., Jones et al., 2023). This makes it difficult to examine whether the noun 

advantage in children’s productions is influenced by the positional salience of nouns 

or simply by their overall higher frequency compared to verbs. Instead, in Italian, 

verbs are overall more frequent than nouns. Therefore, if a noun advantage 

emerged in a computational model that only has access to linguistic input, one could 

conclude that the positional salience of utterance-final nouns would likely be driving 

the effect. 

Based on Cabiddu et al. (2023), if tracking novel words at the end of 

utterances explains a large variability in child world-level properties, we would only 

expect a significant facilitation from utterance-final cues (i.e., with variability 

explained by utterance-initial cues being negligible).  
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Further, if prosodic salience of utterance-final words plays a key role in 

determining a noun advantage in Italian vocabulary learning, we expected to find 

more nouns than verbs in the models’ acquired vocabularies, despite presence of 

more verbs in the Italian child-directed speech input. 

 

3.3.3 Morphology 

Italian child-directed speech has a richer morphology than English, which should 

overall decrease models’ segmentation performance due to higher oversegmentation 

(Johnson, 2008). However, oversegmentation of morphologically complex languages 

has also been shown to lead to discovery of morphological units (Loukatou et al., 

2022). Therefore, it is possible that a developmentally plausible segmentation model 

(which captures aspects of children’s vocabularies) might show learning of 

morphological forms alongside word units. 

A key difference between English and Italian concerns their morphological 

characteristics. English has a simpler morphology with most words being 

monomorphemic, which means that morphological and word boundaries often 

match. Instead, Italian has a richer morphological system mostly characterised by 

inflectional paradigms (e.g., casa = house, case = houses) for nouns, verbs, 

adjectives, articles, and pronouns. Several studies have shown that segmentation 

models segment input corpora with lower accuracy when morphologically rich input 

is provided (e.g., Fourtassi et al., 2013; Johnson, 2008; Loukatou et al., 2018; 2019; 

2022). For example, Loukatou et al. (2022) have shown that segmentation accuracy 

decreases because models present higher rates of oversegmentation when 

morphological complexity increases. When segmenting morphologically complex 

languages, oversegmentation could be useful to discover meaningful morphemes 

alongside word forms, in line with children’s early sensitivity to morphological units 

(Ferry et al., 2020; Marquis & Shi, 2015). Indeed, when plausible oversegmentation 

errors (e.g., oversegmenting real morphemes) were considered correct 

segmentations, the improvement in accuracy scores became more pronounced as 

morphological complexity increased, measured as the degree of synthesis (i.e., 
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number of morphosyntactic features that a word in a language can encode; 

Loukatou et al., 2022). 

 In sum, previous studies have identified a connection between word 

oversegmentation and morphological segmentation. However, it is not clear whether 

models that are less accurate due to oversegmentation would still capture aspects of 

child vocabularies successfully. It is possible that oversegmentation might lead to 

discovering morphological units at the expense of word forms, ultimately decreasing 

the models’ fit to child word-level measures. Alternatively, it is possible that lower 

segmentation accuracy due to oversegmentation (and discovery of morphemes) 

might provide a better fit to child data, in line with evidence that Italian infants 

understand the meaning of morphological regularities from 12 months of age (e.g., 

Ferry et al., 2020). In this study, we examined whether models’ oversegmentation 

led to discovery of morphemes, and whether models that better captured aspects of 

child vocabularies also showed learning of morphological units. 

 

3.3.4 Summary of Research Questions and Hypotheses 

We recapitulate the research questions and hypotheses of the study to facilitate 

understanding of the subsequent sections. 

The primary focus of the study was to determine whether the short syllabic 

length of English child-directed speech decreased the sensitivity of evaluation 

measures testing the ability of segmentation models to capture early child 

production vocabularies. We hypothesized that using Italian child-directed speech 

would increase the sensitivity of the evaluation measures, thereby allowing for a 

comparison of the performance of various segmentation models. 

For the first time, this study examines whether the advantage that chunking 

models have over transitional probability models, as observed in English 

segmentation and vocabulary learning, also applies to Italian. Given evidence of 

superior performance of chunking models in Italian segmentation (e.g., Caines et al., 

2019), we expected that these models would also better capture aspects of Italian 

child vocabulary learning compared to transitional probability models. 
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The study also assessed the potential impact of the saliency of utterance 

boundaries on Italian segmentation and vocabulary learning. Given the similarities in 

word type and token frequency distributions at utterance boundaries between 

English and Italian, we expected analogous effects of utterance boundaries in Italian 

segmentation and vocabulary learning to those observed in English (Cabiddu et al., 

2023). Specifically, cues at the beginning and end of utterances were expected to 

positively influence word segmentation. We also hypothesized that utterance-initial 

boundary cues would not explain variability in child word learning beyond that 

explained by utterance-final cues. Moreover, we expected that sensitivity to 

utterance-final cues would produce a noun bias as observed in Italian child 

vocabularies (Longobardi et al., 2015). 

Lastly, this study aimed to examine whether oversegmenting Italian child-

directed speech (due to its being a language characterized by greater morphological 

complexity than English) would result in the discovery of morphological units. More 

specifically, a greater number of discovered morphological units was expected in 

models that more accurately captured child vocabulary data, consistent with 

evidence pointing to Italian children's early knowledge of morphology (e.g., Ferry et 

al., 2020), occurring concurrently with their early vocabulary development. 

 

3.4 Method 

In the following sections, we present details about the segmentation models used, 

the preparation of input corpora, and the evaluation measures used for the analyses. 

The code for preparing the input corpora, running the segmentation models, and 

reproducing the results of the study is freely available at 

https://osf.io/xwp6u/?view_only=456aba900d4a47ea9ec7f0416cff2d6b. 

 

3.4.1 Computational models 

We considered the same segmentation models used by Cabiddu et al. (2023), run on 

either phonemic or syllabic input. A full theoretical and computational description of 
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each model is provided in the original article, here we provide a brief overview of the 

models.  

Two types of models were used, transitional probability and chunking models. 

We used two models that identify word boundaries based on forward or backward 

transitional probabilities of sound pairs (e.g., Saksida et al., 2016): A word boundary 

between a pair of phoneme or syllable units is placed when the probability that a 

unit follows (forward transitional probability) or precedes another (backward 

transitional probability) is low compared to the surrounding pairs: For example, in 

the unsegmented phonetic sequence “↵wɛrzdæd↵” (“↵wheresdad↵”), a word 

boundary is placed between the phoneme pair “zd” when its transitional probability 

is lower than the transitional probabilities of “rz” and “dæ”. Also, in the example, the 

symbol ↵ signals an utterance boundary. Typically, transitional probability models 

include information about utterance boundaries (e.g., Gervain & Guevara Erra, 2012; 

Saksida et al., 2016) that is used to compute transitional probabilities (e.g., in 

“↵wɛrzdæd↵”, “↵w” is treated as the first pair of the sequence). 

 Chunking models learn a lexicon of word-like phonological sequences 

(chunks) that are used to facilitate subsequent segmentation. Two chunking models 

were used, CLASSIC-UB (Cabiddu et al., 2023), and PUDDLE (Phonotactics from 

Utterances Determine Distributional Lexical Elements; Monaghan & Christiansen, 

2010). 

CLASSIC-UB (Cabiddu et al., 2023) is a model that uses an associative 

learning mechanism of chunking (Gobet et al., 2001) operating on sequences 

comprised of phonological and utterance boundary material. It is based on the 

model CLASSIC (e.g., Jones et al., 2021) and represents how gaining familiarity with 

sound combinations at different grain sizes facilitates language processing and 

learning (e.g., Christiansen & Chater, 2016; Jones, 2012; 2016; Jones et al., 2020; 

2021). Before receiving any input, the model is equipped with knowledge of 

phonemes or syllable units. When receiving its first unsegmented utterance (e.g., 

“wɛrzdæd”), the model encodes the input using such basic units (“w | ɛ | r | z | d | 

æ | d”) while also learning new chunks by joining adjacent units (“↵wɛ”, “ɛr”, “rz”, 

“zd”, “dæ”, “æd↵”). Learning new chunks allows the model to encode future input 
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more efficiently (i.e., using the longest available chunks to encode new utterances). 

For example, a second independent presentation of the same input utterance 

“wɛrzdæd” would now be encoded using fewer chunks (“↵wɛ | rz | dæ | d”), and 

further result in learning of the new chunks “↵wɛrz”, “rzdæ”, and “dæd↵”. As shown 

in this example and as found for its parent architecture CLASSIC (Jones et al., 

2021), Cabiddu et al. (2023) showed that a key advantage of CLASSIC-UB is its 

ability to reuse phonological chunks to learn new words. For example, this was 

found useful to capture effects of phonological neighbours: When a new word 

shares phonological chunks with other familiar words, the new word enters the 

model lexicon more quickly than words with no phonological neighbours in the 

language. 

As shown in the example above, the model is also made sensitive to 

utterance boundary information by attaching utterance boundary markers (“↵”) to 

utterance-initial (“↵wɛrz”) and utterance-final chunks (“dæd↵”). This facilitates 

future segmentation into word-like units. For example, a third utterance like 

“dædɪzkʌmɪŋ” (“dadiscoming”) would be segmented as “dæd↵ | ɪ | z | k | ʌ | m | ɪ | 

ŋ”, from which the model can start learning chunks that include demarcated word 

boundaries (i.e., the first chunk learned separates the word “dad” from subsequent 

phonological material: “dæd↵ɪ”). As explained above, CLASSIC-UB progressively 

constructs larger and larger chunks as a proxy for the increased processing 

efficiency derived from acquired knowledge. For the same reason, longer chunks are 

preferred for encoding the input over shorter ones. Then, the function of chunks 

that include demarcated word boundaries is key to the model because it prevents 

the building up of multi-word undersegmented chunks: The model leverages 

utterance boundaries to build multi-word chunks that also retain knowledge of the 

individual words composing the sequence, ultimately facilitating segmentation at the 

word level. 

PUDDLE (Monaghan & Christiansen, 2010) is a chunking model that focuses 

on the role that lexical frames have in language learning, from segmentation to 

grammatical categorization. The model starts from the assumption that infants’ early 

lexicons comprise sound sequences that occur frequently and that might not be 
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internally specified (e.g., Arnon, 2021). These lexical frames could comprise words 

(appearing in one-word utterances) but also multi-word sequences, and are initially 

extracted from the speech stream as whole unanalysed units using cues at frame 

edges (e.g., utterance-boundary cues). Once a diverse vocabulary of frames is 

acquired, the infant might start noticing similarities across frames and thus discover 

word boundaries within them (e.g., having encountered the one-word utterance 

“hello” might be useful to discover the word “baby” in “hellobaby”). Implementing 

these ideas, PUDDLE begins by representing whole utterances as single unanalysed 

chunks. For each chunk stored in the lexicon, information about its frequency of 

occurrence in the input is recorded (i.e., level of memory activation) and used to 

privilege extraction of frequent chunks in subsequent segmentations. Further, the 

model tracks which biphone sequences appear at chunk edges, and uses this 

information to constrain future segmentations (i.e., a chunk is identified within an 

utterance only if it is surrounded by sequences that previously began or ended other 

stored chunks). Given the use of whole-utterance frames at the beginning of the 

model learning, this tracking of biphone sequences at chunk edges essentially 

leverages knowledge of sounds that appear at utterance boundaries. 

Finally, we used two random baseline models that processed the input as 

strings of phonemes or syllables, respectively. For each input utterance, the models 

randomly placed a word boundary after each input unit based on a coin toss. These 

baselines are informative as they tell us how much of the input vocabulary could be 

segmented and learned by chance if the infant made random guesses about word 

boundaries. The only information that constrained the random models was the type 

of input unit (phonemic or syllabic) and the utterance boundaries (that are given for 

free as the models processed one utterance at a time). Therefore, comparing 

segmentation models with random models can tell us how much variability in word 

segmentation and word learning is additionally captured by the transitional 

probability and chunking mechanisms of interest. 
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3.4.2 Input Corpora 

As models’ input, we used Italian utterances directed to children of up to 2 years of 

age available in the CHILDES database (MacWhinney, 2000). The corpora were 

Klammler (Klammler & Schneider, 2011), Antelmi (Antelmi & Morlacchi, 2005), Roma 

(Volterra, 1984), D’Onorico (D’Odorico & Carubbi, 2003), and Tonelli (Tonelli et al., 

1998). The characteristics of the aggregated input are shown in Table 2. In terms of 

key characteristics relevant for our study, the average token syllabic length (1.78) 

was consistent with other studies that used Italian input (e.g., 1.83 in Saksida et al., 

2016, 1.80 in Gervain & Guevara Erra, 2012). This average length meant that 57% 

of word tokens and 97% of word types in the input were multisyllabic. The input 

contained more verb tokens than noun tokens, confirming the verb dominance in 

Italian child-directed input. However, we found a similar proportion of verb and noun 

types, which contrasts with other studies that have found roughly twice as many 

verb types as there were nouns (Longobardi et al., 2015; 2016). It is unclear what 

determined this difference. It might be that previous studies have focused on an age 

that is at the low end of the range considered here (16 months), at which the input 

might contain more verb types. It is also possible that other studies have 

overestimated the proportion of verb types as they considered a word sample (N 

range = 340 - 407) that is 11 times smaller than ours (N = 4,408). Despite this 

difference, the balance between nouns and verbs in our sample still indicates that if 

a computational exhibited a noun advantage, this could not be attributed to noun 

frequency. Moreover, the proportion of noun and verb types is still quite different 

from what found in English (Jones et al., 2023), where at a similar child age range 

the proportion of input noun types is twice that of verbs.  

Finally, our input confirmed that nouns appeared in utterance-final position 

more frequently than verbs, that most verbs appeared in medial position, with some 

also appearing in utterance-initial position. 

 

Table 2 The table displays the total number of input utterances used after being 

transcribed phonetically (Utterances); The mean length of utterance in number of 
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words (MLU); The number of words including repetitions (Tokens); The number of 

unique words (Types); The target child age range in months (Age); The percentage 

of noun/verb tokens and types; The average length of a word, noun, or verb in 

number of phonemes or syllables (All words, Nouns, and Verbs) considering either 

tokens or types; The percentage of utterances in which a noun or verb appeared in 

utterance-initial, medial, final position, or in a one-word utterance.  

 Utterances MLU Tokens/Types Age 

 22,190 4.24 94,146 / 4,408 16 - 36 

 Tokens (%) Types (%) 

Nouns 15 41 

Verbs 26 42 

Mean length Phonemes (Tokens/Types) Syllables (Tokens/Types) 

All 3.89 / 6.64 1.78 / 2.82 

Nouns 5.90 / 6.73 2.54 / 2.86 

Verbs 4.35 / 6.91 2.08 / 2.94 

Utterances (%) Initial Medial Final Isolated 

Noun 0.6 7 7.2 0.6 

Verb 4.3 15.2 5.4 0.7 

 

The procedure for preparing the input was the same as described for English in 

Cabiddu et al. (2023). We used the childesr package (Braginsky, Sanchez, et al., 

2019), which provides the CHILDES utterances in orthographic form using a 

standardized procedure to treat special codes across corpora (e.g., prosodic, 

discourse markers). Then, the utterances were transcribed phonetically using the 
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PhonItalia lexicon (Goslin et al., 2014), which contains phonological and syllabic 

forms for 120,000 Italian words. Information about word stress was excluded from 

phonetic transcriptions. We only retained utterances for which all words had a 

correspondent phonetic form in the reference lexicon. As a final step, we randomly 

shuffled the utterances to control for differences in mean length of utterance across 

transcripts. 

 We also coded word forms into morphemes using the Italian section of 

MorphyNet (Batsuren et al., 2021) and SIGMORPHON 2022 (Shared Task on 

Morpheme Segmentation, Batsuren et al., 2022), which are large multi-lingual 

databases of root words, inflectional, derivational, and compound morphology. Note 

that the models only processed phonemic or syllabic input, therefore morpheme 

conversion only served later morphological analyses (i.e., to examine whether an 

input word was segmented into morphemes by a model). We discarded 15% of 

input word types (N = 680/4,408) for not having a corresponding morpheme entry 

in the databases. Given that 39% of CHILDES utterances did not include part-of-

speech tags and 81% of input word types had only one possible morpheme 

segmentation, we used a non-contextual method for morpheme conversion. In cases 

where multiple morpheme segmentations were possible, we considered all 

alternatives as correct: For example, the form “acceso” (lit, turned on) can be 

segmented into different sets of morphemes depending on its role in a sentence. In 

“il caminetto acceso (the lit fireplace)” the word is correctly segmented as the 

monomorphemic noninflected “acceso” (masculine singular adjective), while in “lei 

ha acceso il caminetto (she has lit the fireplace)” the word is considered correctly 

segmented as the bimorphemic “acce | so” (verb past participle). Given our non-

contextual method of conversion, in “il caminetto acceso”, the word “acceso” was 

considered correctly segmented as either “acceso” or “acce | so”. In Appendix S14, 

we show that the results of the morphological analyses did not change when 

excluding words with alternative morphological segmentations. 
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3.4.3 Model Evaluation Measures 

3.4.3.1 Pairwise Model Comparisons 

We used the set of evaluation measures introduced by Cabiddu et al. (2023), with 

the addition of two new measures looking at models’ vocabularies by part of speech 

and number of morphological units acquired. We measured models’ segmentation 

accuracy by first calculating precision (Words segmented in an utterance / 

Sequences segmented in an utterance) and recall scores (Words segmented / Words 

in the input). These measures assessed the accuracy of the models in discovering 

input words. As for English, we carried out pairwise Welch’s t test comparisons 

taking the last 10,000 utterances as the target sample, at which the models’ 

performance stabilizes (see Figure 7). We corrected p values and 95% bootstrap 

confidence intervals using Holm’s correction. 

We used multiple measures to assess model developmental plausibility. We 

related models’ segmentation accuracy to children’s word age of acquisition and first 

production. Models’ segmentation accuracy was computed as the number of times a 

word type was correctly segmented from the input, divided by the frequency of the 

word type in the input. Child word age of acquisition was computed as the 

proportion of children that at 13 months of age were reported to understand a 

target word according to their caregivers. Reported comprehension scores for 436 

word types were taken from the Italian Communicative Development Inventory 

norms (CDI, Caselli et al., 2012). The scores were downloaded from the Wordbank 

repository (Frank et al., 2017). This analysis considered a final sample of 289 word 

types, after filtering out those types that the models could not learn as they were 

not present in the child-directed input corpora.  

Child word age of first production was instead estimated using the children’s 

utterances (N = 10,372) available in the corpora of our study. The lowest mean 

length of utterance (MLU) of a transcript in which a target word type appeared was 

taken as the word stage of first production. Mean length of utterance was computed 

using a bootstrapping procedure described in Cabiddu et al. (2023), which controlled 

for differences in number of utterances across transcripts. Using MLU as the age of 
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first production is useful because it provides information about child gross linguistic 

skills, controlling for the fact that children of the same age can be far apart in their 

developmental stage. This analysis considered a final sample of 1,653 word types.  

Given the focus of the age of first production estimation on linguistic 

competence rather than age, the nature of this corpora-based measure is different 

from the CDI-based one. To also include a measure of age of first production based 

on age, we repeated the estimation procedure described in Cabiddu et al. (2023) but 

using age in months rather than MLU as the stage of first production. This analysis, 

included in Appendix S15, returned results consistent with the MLU-based measure. 

To compare models’ performance in word age of acquisition and age of first 

production, we fitted separate linear regression models predicting each of these two 

outcome variables as a function of model segmentation accuracy. We then 

computed pairwise differences in models’ adjusted 𝑅2to compare how much variance 

in the outcome was explained by each segmentation model. We bootstrapped the 

95% confidence interval of the difference between each pair of adjusted 𝑅2, and 

corrected the intervals using Holm’s correction. We concluded that two segmentation 

models did not differ in the amount of variance explained if the confidence interval 

of their comparison included 0. 

We also compared the word types learned by each model with the ones 

produced by Italian children in the corpora. We compared models and children’s 

distributions of word types by four word-level characteristics: Phonemic length, 

frequency, neighbourhood density, and phonotactic probability. Some evidence 

exists that Italian word acquisition is related to characteristics of word frequency and 

word length (Braginsky, Yurovsky, et al., 2019), with more frequent and shorter 

words being produced at an earlier age by Italian children. However, no studies have 

investigated whether Italian children are more likely to learn dense neighbourhood 

words and words with high phonotactic probability (when one controls for word 

length) as found for English (Jones et al., 2021). Some studies on the effect of these 

variables in Italian adults’ nonword repetition suggest that similar effects might be 

found in children (Arduino & Burani, 2004; Bracco et al., 2015). In fact, Italian adults 

are faster at repeating dense neighbourhood and high phonotactic probability words 
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(e.g., Arduino & Burani, 2004). This facilitation in processing might also influence 

early word acquisition. 

Word length was computed as the number of phonemes in a target word. 

Word frequency was the log10 frequency of a target word in the child-directed input. 

Neighbourhood density was the number of words in the input that differed from a 

target word by deletion, substitution, or addition of a single phoneme. Phonotactic 

probability was the mean probability of a target word’s phoneme pair to appear in 

the child-directed input. In Cabiddu et al. (2023), word frequency, neighbourhood 

density, and phonotactic probability were correlated with word length. We found 

correlations in the same direction in Italian child-directed speech (𝑟𝑠  word length, 

word frequency= -.23 [-.28, -.19]; 𝑟𝑠  word length, neighborhood density = -.67 [-

.69, -.63]; 𝑟𝑠  word length, phonotactic probability = .26 [.21, .31]), although 

weaker, with a difference of approximately |.1| - |.2| compared to their English 

counterparts. Therefore, as in Cabiddu et al. (2023), we controlled for the effect of 

word length by dividing a target word frequency, neighbourhood density, or 

phonotactic probability value by its length. 

We conducted a chi-square goodness of fit test to compare the observed 

probabilities of encountering a word type at each phonemic length (in a model 

output) to the expected probabilities in children's productions. Next, we examined 

the pairwise differences in chi-square test statistics, using bootstrap confidence 

intervals as previously described. This analysis first examined how closely each 

model matched children's performance, to then use these distance estimates to 

compare the models to one another.  

To compare models’ fit to children in the continuous measures of word 

frequency, neighbourhood density, and phonotactic probability, we followed a similar 

procedure as with the word length measure, but we used a Kolmogorov-Smirnov 

test statistic. 

We also carried out additional analyses beyond those proposed by Cabiddu et 

al. (2023). To answer the question whether sensitivity to utterance-final cues could 

determine a noun advantage in Italian vocabulary learning, we compared the 
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models’ vocabularies by part of speech categories. We took all token occurrences of 

a target word in the input and chose the most frequent tag as the part of speech 

category for that target word type. The average coverage of the most frequent tag 

was 98% (SD = 7%). Further, to compare the noun advantage in models and 

children, we first computed the difference between the proportion of noun and verb 

types in children and models’ distributions. This first step gave us a measure of noun 

advantage over verbs. For example, the noun advantage in children was computed 

as P = 47% (nouns) – 31% (verbs) = 16%. Then, we looked at the difference in 

noun advantage between children and each model (ΔP), to examine whether they 

differ in the size of the advantage. We bootstrap the corrected 95% confidence 

interval for ΔP and concluded that the noun advantage in children and model was 

significantly different if the interval did not include 0.  

Finally, to examine if models that oversegment the input discovered 

morphological units and if models that captured child vocabularies acquired 

morphological units alongside word forms, we calculated how many morpheme 

tokens and types were discovered by each model. 

 

3.4.3.2 Comparing by input type 

We examined whether a model performed better when run on phonemic or syllabic 

input. First, we calculated how much variability in a certain measure a model 

explained beyond what could be explained by chance (baseline). This initial step 

ensured that differences between phonemic and syllabic model versions could not be 

attributed to the fact that syllabic input is easier to segment due to presence of a 

lower number of boundaries to estimate. Second, for each model, we carried out a 

comparison between input types. 

For example, for the accuracy measure of precision, we took the t values that 

referred to the comparison between precision scores of a phonemic or syllabic model 

and each correspondent random baseline (e.g., t value for phonemic CLASSIC-UB 

final vs. phonemic random baseline, and t value for syllabic CLASSIC-UB final vs. 

syllabic random baseline). Then, we took the difference between phonemic and 
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syllabic t values (Δt), which gave us a measure of whether a model explained more 

variability when run on phonemic or syllabic input, while also controlling for chance 

levels within each input type. We computed the corrected confidence interval for Δt. 

If the interval did not include 0, we concluded either that CLASSIC-UB final explained 

more variability when run on phonemic input (positive Δt) or that the model 

explained more variability when run on syllabic input (negative Δt). 

 We applied the same logic to the other measures but using their reference 

statistics (i.e., adj𝑅2 for age of acquisition/first production, 𝑋2 for phonemic length, 

and Kolmogorov-Smirnov D for word frequency, neighbourhood density, and 

phonotactic probability. 

 

3.5 Results 

In the following section, we present results for accuracy and developmental 

measures of performance. We only point to statistical results included in Appendix 

S16-S22.  

 

3.5.1 Precision and Recall 

In Figure 7, we display phonemic and syllabic model segmentation accuracy 

incrementally, with average precision and recall at every 1,000 utterance steps. The 

performance of some models (CLASSIC-UB for phonemic and syllabic input, and 

transitional probability for syllabic input) showed a positive trend indicating that 

these models might have not reached a plateau. Given that, overall, models applied 

to English speech reached a plateau approximately after 40,000 input utterances 

(Cabiddu et al., 2023), it is possible that the upward trend is due to the limited 

sample size available for Italian. 
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Figure 7 Mean precision and recall performance with phonemic (Panel A) and 

syllabic (Panel B) input. The figure shows the random baseline, backward 



69 
 

transitional probability (BTP), forward transitional probability (FTP), CLASSIC-UB 

with utterance-final and initial-final markers, and PUDDLE. Performance was 

averaged every 1,000 utterances (Stage). Error bands for each stage indicate the 

95% confidence interval around the mean. 

 

Overall, the models segmented with lower accuracy in Italian compared to English, 

which was expected given previous findings showing negative correlations between 

models’ segmentation accuracy and input average word length (e.g., Saksida et al., 

2016) and morphological complexity (e.g., Loukatou et al., 2022). For example, in 

Cabiddu et al. (2013), the model with the best accuracy was PUDDLE, whose 

accuracy scores ranged between 73% and 89%. With Italian, instead, PUDDLE 

reached a maximum of 55% precision and 64% recall when syllabic input was used 

(see Figure 7b). Even baseline performance declined - with syllabic input, the 

performance of the random baseline reduced from 46% precision and 51% recall for 

English to 30% precision and 30% recall for Italian. However, despite overall lower 

accuracy, almost all models performed above chance (see Appendix S16), even 

syllabic transitional probability models that were instead found to perform worse 

than a random baseline in English segmentation (Cabiddu et al., 2023). 

Specifically, all models performed above chance when syllabic input was used. 

With phonemic input, only the backward transitional probability model did not 

surpass the baseline in precision and recall (see top row of Figure 7a, and Appendix 

S16). This is line with analyses from Gervain and Guevara Erra (2012) showing that 

phonemic backward transitional probability performed at chance in Italian. Moreover, 

forward transitional probability always performed better than backward transitional 

probability (see Appendix S16), in line with results showing that tracking forward 

relations is more beneficial for segmenting words in head-initial languages like 

English (Cabiddu et al., 2023) and Italian (Gervain & Guevara Erra, 2012). 

 The models with the overall best performance across measures were the 

chunking models (see Figure 7 and Appendix S16), in line with what found in English 

(Cabiddu et al., 2023). 
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 Next, we looked at the improvement in accuracy of each model beyond 

chance (baseline) when processing phonemic or syllabic input. As can be seen in 

Appendix S16, chunking models’ relative improvement in accuracy above baseline 

was always higher when processing phonemic input (positive Δt values in both 

precision and recall). We found mixed results for transitional probability models. 

Backward transitional probability had a larger relative improvement when processing 

syllabic input (across accuracy measures), while forward transitional probability 

relative improvement was larger when processing syllabic input in precision, while 

larger when processing phonemic input in recall. 

 We also found mixed results regarding the role of utterance-boundary cues. 

In English (Cabiddu et al., 2023), adding utterance-initial cues always improved 

CLASSIC-UB’s segmentation accuracy scores (beyond facilitation from utterance-final 

markers); here we found a similar advantage of CLASSIC-UB initial/final over 

CLASSIC-UB final, but only when syllabic input was used (see Appendix S16). This 

result was related to rates of oversegmentation across models, with CLASSIC-UB 

initial-final presenting higher oversegmentation than CLASSIC-UB final (see Figure 

8a). Given the higher morphological complexity of Italian compared to English, it is 

possible that utterance-initial cues still benefitted segmentation, but at the 

morpheme level. In Figure 8b, we examined the number of morpheme tokens 

discovered by each model. When phonemic input was used, the addition of 

utterance-initial boundary cues led to discovery of a higher number of morphemes 

within words, which are the ones contributing to oversegmentation. The two models 

did not differ in the types of morphemes extracted, rather, certain morphemes were 

extracted more frequently in CLASSIC-UB initial/final compared to CLASSIC-UB final. 

The morphemes that contributed the most to the difference between models were 

function words (“e”, “un”, “a”, “i”), followed by words that often occurred in 

utterance-initial position and that contained morphemes homophonous to those 

frequent function words (“cos | a”, “tutt | i”, “vien | i”). We return to this result in 

the Discussion. 

 The difference between CLASSIC-UB final and CLASSIC-UB initial/final was 

instead less evident when using syllabic input. In syllabic segmentation, the benefit 
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of using utterance-initial cues in segmentation might be more difficult to detect, 

because Italian within-word morphemes are mostly intra-syllabic (i.e., they can only 

be detected by phonemic models, e.g., Gervain & Guevara Erra, 2012). Indeed, a 

much lower number of within-word morphemes was discovered across models when 

syllabic input was used (see Figure 8b). 

 

 

Figure 8 Panel A shows the number of tokens segmented by chunk type. Chunk 

types were defined as correctly identified Words, within-word Oversegmented 
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chunks (e.g., segmenting “og” from “dog”), correctly identified Multiword chunks 

(e.g., segmenting “thedog” from “thedog”), and Undersegmented chunks including 

at least one real word plus a part-word sequence (e.g., segmenting “edog” from 

“thedog”). Panel B shows the number of correctly segmented whole-word and intra-

word morpheme tokens by model and input unit. FTP is forward transitional 

probability, BTP is backward transitional probability. 

 

The morpheme analysis also indicates that models that oversegmented the most 

(transitional probability and baseline models) more likely discovered real within-word 

morphemes. However, better within-word morpheme segmentation was achieved at 

the expense of word-level segmentation accuracy in these models. 

These analyses informed us about the accuracy of the models, suggesting 

that chunking performed better than transitional probability and baseline in word 

segmentation. Also, we found that overall, when controlling for chance levels, 

models segmented input words with higher accuracy when processing phonemic 

input. Now, we turn to results from developmental measures that assessed how well 

models’ accuracy related to child data.  

 

3.5.2 Word Age of Acquisition and Production 

The first set of developmental measures focused on the timecourse of word 

acquisition, assessing whether segmentation models’ accuracy scores could be used 

to predict how early a word entered children’s comprehension or production 

vocabularies. When examining the word age of first production measure (Table 3a), 

no model significantly surpassed the random baseline model when run on Italian 

syllabic input (see pairwise comparisons in Appendix S17), similarly to that found for 

English (Cabiddu et al., 2023). Instead, we found that CLASSIC-UB models applied 

to phonemic input were the only models to significantly surpass the baseline. Also, 

no difference was found between CLASSIC-UB final and initial/final. The proportion 

of variance explained by the best model CLASSIC-UB final (Adj𝑅2 = .083 [.048, 



73 
 

.119]) for Italian (see Table 3a) was similar to that found for English (Adj𝑅2 = .079 

[.062, .100], Cabiddu et al., 2023). 

When using the age of acquisition measure based on the Italian CDI scores as 

the outcome, we found that none of the segmentation models explained any 

significant amount of variance (see Table 3b). This is in line with what found by 

Cabiddu et al. (2023) for English, and like for English this null result for Italian is 

most likely due to the limited size of the sample of word types that could be entered 

into this analysis (289 in Italian, 330 in English). 

Focusing on age of first production, we conducted an additional analysis to 

assess the contribution of phonemic and syllabic input in the models’ ability to 

capture variance in children’s timecourse of word production. As shown in Appendix 

S17, across models, the relative improvement (beyond chance) in predictive power 

was higher when processing phonemic input (positive ΔAdj𝑅2), in line with what 

found in the precision and recall accuracy measures. However, the difference 

between phonemic and syllabic input reached significance only for the forward 

transitional probability model (ΔAdj𝑅2 = 0526 [.0176, .0894]). We suspect the lack 

of significance might be due to the limited sample of words used in Italian compared 

to English (1,653 vs. 5,480). To further examine this, we used the data from 

Cabiddu et al. (2023) and carried out this analysis by input type on English. We 

found that all segmentation models predicted the most variability in English age of 

first production when processing phonemic input, and the difference between 

phonemic and syllabic input was significant across models (see Appendix S17). This 

result suggests that if we were to analyse larger sample sizes in Italian, the positive 

contribution of phonemic input to predicting the timecourse of Italian word 

production might be confirmed. 
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Table 3 Adjusted R2 for linear regression models predicting word age of first 

production (Panel A) and word age of acquisition (Panel B) as a function of weighted 

log10 number of times a word was correctly segmented by each model. 

Panel A Word Age of First Production 

 Phonemic input Syllabified input 

Model R2
adjusted 95% CI R2

adjusted 95% CI 

Baseline .024 [.007, .049] .035 [.015, .064] 

Backward transitional probability .018 [.006, .033] .010 [.002, .026] 

Forward transitional probability .044 [.026, .068] .003 [-.001, .011] 

CLASSIC-UB final .083 [.048, .119] .051 [.023, .086] 

CLASSIC-UB initial/final .072 [.046, .105] .046 [.023, .074] 

PUDDLE .028 [.010, .051] .025 [.009, .046] 

Panel B Word Age of Acquisition 

 Phonemic input Syllabified input 

Model R2
adjusted 95% CI R2

adjusted 95% CI 

Baseline .020 [-.003, .081] -.002 [-.003, .029] 

Backward transitional probability -.002 [-.003, .032] .001 [-.003, .030] 

Forward transitional probability .010 [-.003, .063] -.002 [-.003, .020] 

CLASSIC-UB final -.001 [-.003, .029] .004 [-.003, .060] 

CLASSIC-UB initial/final .005 [-.003, .060] .002 [-.003, .046] 

PUDDLE .005 [-.003, .049] .001 [-.004, .037] 

Note. Heteroskedasticity-robust standard errors were computed using a HC2 

estimator. The 95% confidence intervals indicate lower and upper limits of bootstrap 

confidence intervals around the estimate based on 1,000 iterations. Holm’s 

correction was applied by expanding the confidence intervals. 
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3.5.3 Word-Level Characteristics 

In Table 4, we first report the size of the vocabulary acquired by each model. Even if 

the models were exposed to a language where most words were multisyllabic, the 

models still benefitted from processing the input in syllable units, with some models 

(baseline, forward transitional probability, and both CLASSIC-UB models) acquiring 

larger vocabularies than in children’s productions (N = 1,653). The models’ relative 

advantage compared to children was similar to that found in English (Cabiddu et al., 

2023). For example, compared to children’s productions, CLASSIC-UB final acquired 

a vocabulary that was 1.21 times bigger in English and 1.27 times bigger in Italian.  

 

Table 4 Number of word types learned by each model when run on phonemic or 

syllabic input. 

 Word types 

 Phonemic input Syllabified input 

Baseline 532 1,747 

Backward transitional probability 227 1,196 

Forward transitional probability 318 2,754 

CLASSIC-UB final 1,371 2,102 

CLASSIC-UB initial/final 1,115 1,851 

PUDDLE 1,225 1,359 

 

Before proceeding with the comparison between word type distributions in models 

and children, we inspected the type of vocabularies acquired by children, compared 

to their child-directed speech input and the vocabularies of English children.  

As can be seen in Figure 9, Italian children produced shorter (9a) and more 

frequent words compared to their input (9b), in line with effects of word length and 

frequency found in previous studies (Braginsky, Yurovsky, et al., 2019). Further, 

Italian children produced words with a higher number of neighbours in the language 
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(9c), and words with a higher internal predictability compared to their input (9d). 

This result is in line with the same effects of neighbourhood density and phonotactic 

probability found in Italian adults’ word processing (Arduino & Burani, 2004), and on 

English children production vocabularies (Jones et al., 2021). 

 

 

Figure 9 Panel A shows then proportion of word types in child-directed speech and 

produced by children by phonemic length. The other panels show the gaussian 

kernel density estimate of the distribution of word types by log10 word frequency 

(B), neighbourhood density (C), and phonotactic probability (D). The last three 

measures are weighted by dividing a target word value by its phonemic length. In 

the last three measures, the area under each curve represents 100% of data points, 

with curve peaks representing the mode of each distribution. 

 

In terms of average word length, Italian child vocabularies contained longer words 

than in English child vocabularies, both in terms of number of phonemes (Italian: 

Mean = 5.68, SD = 1.84; English: Mean = 4.79, SD = 1.93) and syllables (Italian: 

Mean = 2.46, SD = .77; English: Mean = 1.95, SD = .92). Italian children also 

produced words with similar weighted log10 frequency in the input (Italian: Mean = 
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.22, SD = .30; English: Mean = .18, SD = .26), lower weighted neighbourhood 

density (Italian: Mean = .78, SD = 1.56; English: Mean = 1.41, SD = 2.34), and 

with higher weighted phonotactic probability (Italian: Mean = .0014, SD  = .0009; 

English: Mean = .0009, SD = .0006)7. 

We now compare the word types learned by each model to those produced 

by children on the four word-level properties of length, frequency, neighbourhood 

density, and phonotactic probability. As for English (Cabiddu et al., 2023), no model 

surpassed the baseline model when the input was processed in syllable units. The 

baseline model reached ceiling in performance, with its distribution of word types 

not differing significantly from children in any of the word-level measures (see 

Appendix S18-S21; Phonemic length: 𝑋2 = 7.22, p = .614; Word frequency: D = 

.043, p = .089; Neighbourhood density: D = .014, p = 1; Phonotactic probability: D 

= .027, p = 1). Given this ceiling effect, we did not carry out comparisons by input 

type, as the relative contribution of each model when processing syllabic input could 

not be assessed, and therefore it could not be compared to results based on 

phonemic input. We examine the reasons for this ceiling effect in the next 

exploratory section. Although, first, we discuss results on phonemic input in the 

remaining paragraphs of this section, and include syllabic results in Appendix S18-

S21. 

In line with that found for English (Cabiddu et al., 2023), chunking models 

performed better than transitional probability models at capturing all child word 

properties. Only CLASSIC-UB final performed better than the baseline at capturing 

the children’s phonemic length distribution, and surpassed all other models apart 

from CLASSIC-UB initial/final (see Figure 10a, see Appendix S18). No difference was 

found between CLASSIC-UB models and PUDDLE at capturing child word frequency 

(Figure 10b, Appendix S19) and neighbourhood density distributions (Figure 10c, 

Appendix S20). However, chunking models performed better than baseline and 

traditional probability models, which mostly learned shorter words, with higher 

frequency, and higher neighbourhood density. Finally, only CLASSIC-UB final 

performed better than the baseline at capturing the children’s phonotactic probability 
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distribution, and surpassed all other models apart from CLASSIC-UB initial/final (see 

Figure 10d, and Appendix S21). 

 

 

 

  

Figure 10. Panel A shows then proportion of word types produced by children and 

discovered by each model by phonemic length when phonemic input was used. The 

other panels show the gaussian kernel density estimate of the distribution of word 

types by log10 word frequency (B), neighbourhood density (C), and phonotactic 
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probability (D). The last three measures are weighted by dividing a target word 

value by its phonemic length. The area under each curve represents 100% of data 

points, with curve peaks representing the mode of each distribution. 

 

As for English (Cabiddu et al., 2023), across word properties, information about 

utterance-initial cues did not improve CLASSIC-UB performance above utterance-

final cues (see Appendix S18-S21). To further examine the utility of utterance-final 

cues for building an early vocabulary in Italian, we display the number of children 

and models’ word types by part of speech category. As can be seen in Figure 11, 

CLASSIC-UB models and PUDDLE were the only models that consistently presented a 

noun advantage over verbs across both input types. We also statistically examined 

whether the size of the noun advantage over verbs differed statistically from that of 

children (Appendix S22). We found that the proportional noun advantage in every 

model was statistically smaller than children’s noun advantage. We return to this 

result in the Discussion.  
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Figure 11 Proportion of word types acquired by children and each model, by input 

type and part of speech tag. 

 

Finally, we explored the kind of morphological vocabulary built by each model. We 

focused on models run on phonemic input (Figure 12, left panel), that were the ones 

that surpassed the random baseline in measures that related model performance to 

child data. As can be seen in Figure 12, the phonemic models that overall performed 

better at capturing the course of vocabulary acquisition and the word properties of 

child vocabularies (i.e., CLASSIC-UB models) were also the ones that learned the 

largest number of morpheme types overall.  

 

 

Figure 12. Number of morpheme types learned by each model, divided by 

morphemes corresponding to whole words (Word morpheme), and morphemes 

appearing as part of a word (Within-word morpheme).  

 

3.5.4 Exploratory Analysis of Word-Level Properties at the Token Level 

When assessing how well the models captured word-level properties of children’s 

productions, we could not carry out comparisons by input type because the syllabic 
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baseline performed at ceiling. Using Italian speech had the expected effect on the 

syllabic random baseline, which learned a lower percentage of input word types 

(40%) compared to English (56%). However, similarly to English, the syllabic 

baseline still produced implausibly large vocabularies (Table 4) and fit children’s 

word-level properties well (see Appendix S18-S21). In this section, we identified 

some potential explanations for this result.  

 First, our examination of differences between child-directed speech and 

children’s word type distributions showed that children produced vocabularies 

composed of words that are easy to acquire (e.g., short, with high-frequency in the 

input; see Figure 9). This meant that a baseline could potentially fit children’s data 

well even if some input word types were missed. To improve the sensitivity of the 

evaluation measures based on this point, one could try to increase the sample size 

of word types produced by children (using additional child utterances). For Zipf’s 

law, the probability of finding low frequency word types in children’s productions 

increases sharply when sample size increases (e.g., Cabiddu et al., 2023). This 

would translate into a much higher difficulty of segmentation across models, 

potentially increasing the sensitivity of the measures. Unfortunately, we could not 

increase sample size due to lack of additional corpora on CHILDES. 

Second, if a baseline model correctly segments a word just once, that word 

will enter the lexicon and will be counted in the distribution of learned word types. 

This may not be a fair comparison to children's data. For instance, the word 

"playing" is frequently used in the input and often produced by children. If a 

baseline model segments "playing" correctly only one time, the word will be 

considered learned. However, we would expect such a word to be consistently 

segmented correctly, given its frequency in the input and in children's speech. The 

issue of not only identifying the word in the input but also consistently segmenting it 

is not addressed in the examination of word-level properties since these focus on the 

distributions of word types. 

 To address the above limitation, in the following exploratory analyses we 

reevaluated the word-level properties considering the distribution of word tokens. As 

can be seen across Figures 13-16 and in statistical results in Appendix S18-S21, the 
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syllabic baseline did not reach ceiling in any of the word-level properties with these 

new token-based measures (i.e., higher sensitivity). We also found that, apart from 

phonotactic probability, the syllabic baseline was surpassed in performance in these 

new token-based measures. Taking into account the consistency of segmentation 

(token repetitions) as well as whether a word type has been discovered by a model 

made the task significantly more difficult for a baseline, which segmented word 

tokens that were significantly shorter, more frequent, and with higher 

neighbourhood density than in children’s token distributions.  

 We found that chunking models performed better than transitional probability 

models across measures and input types, with the best models being CLASSIC-UB 

initial/final and CLASSIC-UB final overall. Also, when using token-based measures, 

an advantage from including utterance-initial cues emerged, with CLASSIC-UB 

initial/final outperforming CLASSIC-UB final in the neighbourhood density measure 

with phonemic input, and in phonemic length, word frequency, and neighbourhood 

density with syllabic input. We return to this result in the Discussion. 

Finally, these new token-based measures also allowed us to achieve sufficient 

sensitivity to assess the contribution of phonemic and syllabic input in each model’s 

ability to capture child data. We found that, when controlling for chance levels, 

chunking models captured more variability in word-level properties when run on 

phonemic input across all word-level properties (see Appendix S18-S21). Transitional 

probability models showed similar results, with only two exceptions where no 

difference was found between phonemic and syllabic forward transitional probability 

to capture phonemic length (Appendix S18) and phonotactic probability (Appendix 

S21), and only one case where we found a larger contribution from syllabic input for 

backward transitional probability in word frequency (Appendix S19). 
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Figure 13 Proportion of word tokens at each phonemic length, produced by 

children and discovered by each model when phonemic and syllabic input was used. 

 

 

Figure 14 Gaussian kernel density estimate of the distribution of word tokens by 

weighted log10 word frequency, for children and models run on phonemic or syllabic 

input.  
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Figure 15 Gaussian kernel density estimate of the distribution of word tokens by 

weighted neighbourhood density, for children and models run on phonemic or 

syllabic input.  

 

 

Figure 16 Gaussian kernel density estimate of the distribution of word tokens by 

weighted phonotactic probability, for children and models run on phonemic or 

syllabic input. 
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3.5.5 Summary of Results 

Our investigation into the performance and developmental plausibility of 

segmentation models largely replicated previous results observed in English, using 

Italian child-directed input and child data. The results showed that chunking models 

outperformed transitional probability models in word segmentation. Additionally, 

chunking models explained a larger portion of variance in child developmental data. 

The study also provided new insights into the interaction between various input 

characteristics and segmentation learning mechanisms in capturing Italian 

vocabulary data. 

Using Italian child-directed speech increased the sensitivity of the model 

evaluation measures, but this was observed only in segmentation performance. This 

increased sensitivity allowed us to examine whether segmentation models exhibited 

superior performance when exposed to phonemic or syllabic input. We found that 

phonemic input determined the most significant increase in segmentation 

performance in comparison to random baselines. 

Similar to the findings in English, however, the random baseline model 

performed at ceiling when comparing word-level characteristics of models and 

children’s vocabularies. A novel exploratory analysis suggested that this lack of 

sensitivity might be attributable to the fact that Cabiddu et al. (2023) inspected 

model and child vocabularies by focusing solely on word type distributions. These 

distributions only considered the introduction of a word into the lexicon, ignoring the 

consistency of its use. We addressed this issue by looking at word token 

distributions, which increased the sensitivity of the word-level measures. With these 

enhanced measures, we again observed that, overall, models best captured the 

variance in child vocabularies when exposed to phonemic input. 

Furthermore, as for English, both utterance-initial and utterance-final cues 

played a role in segmentation performance. However, differently to what found for 

English, utterance-initial cues exhibited a less pronounced impact on word 

segmentation performance. Instead, they aided the discovery of part-word 

morphological units, particularly leveraging utterance-initial function words.  
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In line with the English findings, only utterance-final cues helped capturing 

the characteristics of child word type vocabularies. This supports the notion that the 

high diversity of new words appearing at the end of utterances in both English and 

Italian positively influences vocabulary development. Notably, we found that 

utterance-final cues induced a noun bias in models, even though the Italian input 

contained a higher proportion of verbs. 

Finally, models proficient at capturing the characteristics of child vocabularies 

were also able to acquire morphological units.  

In the following section, we offer a detailed discussion of each of these 

findings. 

 

3.6 Discussion 

We examined how well models of naturalistic word segmentation could discover 

words from Italian child-directed speech and capture different aspects of Italian 

children’s vocabularies. Our main goal was to assess the plausibility of phoneme vs. 

syllable representations for capturing the shift from early word segmentation to 

vocabulary learning. We found that, for the best performing chunking models, higher 

segmentation accuracy was achieved when processing phonemic input. Comparisons 

by input type also showed a trend toward facilitation from phonemic input when 

predicting the timecourse of word acquisition, and an advantage for phonemic input 

when analysing word-level properties at the token level. 

Moreover, we extended previous investigations of English cross-linguistically 

and found similar results for Italian, with segmentation mechanisms based on 

chunking performing better than transitional probability models across all measures 

used. We discuss these findings in the sections below. 

 

3.6.1 Word Length 

Our study aimed at increasing the sensitivity of previous measures that assessed 

models’ segmentation accuracy and their ability to capture the composition of child 



87 
 

vocabularies (Cabiddu et al., 2023). To achieve higher sensitivity, we increased the 

difficulty of the segmentation task by using Italian child-directed speech, which 

presents higher ambiguity due to its average word length and morphological 

complexity. We found that, when segmenting Italian speech, the accuracy of the 

segmentation models overall decreased compared to English. At the same time, as 

we expected, the models’ performance increased compared to random baseline 

models. For example, differently from English simulations, transitional probability 

models segmented speech above chance when syllabic input was used, in line with 

what found by Gervain and Guevara Erra (2012). However, despite the higher 

sensitivity in segmentation, we found that segmentation models exposed to syllabic 

input did not perform above chance in any of the developmental measures used 

(Appendix S17-S21), confirming the results found for English. The fact that, even in 

Italian, syllabic models failed to account for any variability in age of first production 

and child word-level properties suggests that the same results in English were not 

due to an artifact of word length. Additionally, the average word length in Italian 

was higher than in English, not only in the speech input but also in the children’s 

productions. This finding rules out the possibility that the lack of sensitivity was due 

to similar word length distributions in child vocabulary across the two languages. To 

confirm this interpretation, future investigations could examine other languages with 

high average word length (e.g., German, Turkish, or Russian). Further, we carried 

out an additional exploratory analysis and found that we could increase the 

sensitivity of the word-level measures by considering the distribution of word tokens 

produced by children and segmented by models, rather than word types. Word 

token distributions are usually examined in child-directed speech and used as 

predictors of child outcomes (e.g., Hirsh-Pasek et al., 2015; Hoff & Naigles, 2002; 

Huttenlocher et al., 2010). In this study, we showed that the examination of word 

token distributions in child speech (i.e., consistency of child word production) might 

also be important to evaluate the fit of different hypotheses about the learning 

mechanisms of early segmentation and word learning.  

 When assessing models’ segmentation accuracy in precision and recall, and 

their ability to predict child age of first production scores and token-based word-level 

properties, we found that overall models performed better when run on phonemic 
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input when controlling for chance levels (see Appendix S17-S21). These results are 

in line with studies showing how infants can leverage phonemic and phonotactic 

regularities to segment and learn words from the speech input (e.g., Fais et al., 

2012; Jusczyk & Aslin, 1995; Mattys & Jusczyk, 2001). 

 

3.6.2 Chunking vs. Transitional Probability 

In line with English results (Cabiddu et al., 2023), we found that chunking models 

performed better than transitional probability models in all segmentation and 

vocabulary measures used, suggesting that chunking might also play a significant 

role in Italian vocabulary learning. These results suggest that the benefit from 

tracking lexical and sound combinations over transitional probabilities (e.g., French 

et al., 2011; Perruchet & Poulin-Charronnat, 2012) and the key role of chunking in 

early vocabulary learning (e.g., Jones et al., 2021) might apply to Italian. 

 Moreover, as for English, we found that CLASSIC-UB performed better than 

other models, likely because of its advantage in recycling phonological chunks at 

different grain sizes to more efficiently learn new words containing these familiar 

chunks (Cabiddu et al., 2023). The only difference was that, when examining the 

distribution of word types learned, in English CLASSIC-UB outperformed all other 

models in the neighbourhood density measure, but not in the phonotactic probability 

one. In Italian, we found the opposite. This result is likely related to the fact that the 

relation between word length and each of the two measures is not constant across 

English and Italian input, which can produce different effects across languages even 

when one controls for word length within each language, as we explain below.  

In Italian speech, there is a prevalent presence of short biphone sequences. 

In contrast, English speech has a higher prevalence of longer sequences derived 

from phonological neighbours. CLASSIC-UB can employ either biphones or 

sequences from phonological neighbours to boost vocabulary learning. However, its 

preference for one sound combination over the other is determined by the 

predominant type in a given language. The predominance of a particular sound 

combination is influenced by the language's average word length: In languages with 
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longer words, like Italian, there are more biphones available to boost vocabulary 

learning. In contrast, languages with shorter words, such as English, contain more 

sequences from phonological neighbours. This distinction explains why we observed 

a marked advantage of CLASSIC-UB in capturing phonotactic probability in Italian, 

while an advantage in capturing neighbourhood density emerged in English. 

To explain in detail, as word length increases, the probability of finding 

phonological neighbours of a target word decreases rapidly (see Appendix S23). For 

example, a short 4-phoneme word like rest has a diverse set of phonological 

neighbours (best, chest, dressed, pressed, arrest, guessed, nest, rent, roast, etc.). 

However, from 6-phoneme words onwards the probability of finding phonological 

neighbours reduces essentially to 0 (e.g., Pisoni et al., 1985; Storkel, 2004). This 

establishes a non-linear relation between word length and neighbourhood density. In 

our case, 95% of words in the Italian input had 0 to 5 phonological neighbours, 

while 95% of English input words in Cabiddu et al. (2023) had 0 to 17 neighbours. 

Put simply, Italian speech comprises longer words. These longer words have fewer 

phonological neighbours, leading to difficulties in identifying a significant effect of 

neighbourhood density. The reason is that there are not many neighbours providing 

sound combinations that could boost vocabulary learning. 

In a similar non-linear fashion, as word length increases, phonotactic 

probability increases rapidly (see Appendix S23): That is, there is a much higher 

probability of finding frequent biphones in longer words, shifting the average 

biphone frequency of a target word upward. In other words, Italian speech 

comprises longer words than English does, and these words include more frequent 

biphones. CLASSIC-UB can use these biphones as sound combinations to boost 

vocabulary learning. 

In sum, considering the definitions of neighbourhood density and phonotactic 

probability and their relation with word length, biphone sequences are more 

prevalent in Italian than sequences derived from phonological neighbours. While 

CLASSIC-UB taps into familiar sound combinations similarly in both English and 

Italian, its sensitivity to different sound combinations changes as a function of which 

specific sound sequences are available in the speech input (short biphones more 
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prevalent in Italian, longer sequences from phonological neighbours more prevalent 

in English). Although this interpretation would require further examination in future 

work, partial evidence exists of the fact that neighbourhood density effects on 

children’s vocabularies are hard to find when focusing on longer words (Rajaram, 

2022). 

 

3.6.3 Utterance Boundaries 

Our prediction that both utterance-initial and utterance-final cues would facilitate 

word segmentation was partially supported, with CLASSIC-UB initial/final surpassing 

CLASSIC-UB final only in the recall measure when phonemic input was used (Figure 

7a, and Appendix S16). CLASSIC-UB initial/final did not perform better than 

CLASSIC-UB final in precision, due to higher rates of oversegmentation. However, 

we still found that such oversegmentation benefitted segmentation at the morpheme 

level. CLASSIC-UB initial/final learned a higher proportion of morphemes than 

CLASSIC-UB final. First, the model discovered more utterance-initial function words, 

in line with infants’ sensitivity to function words with high token frequency in 

utterance-initial position (Gervain et al., 2008). Second, the model oversegmented 

the input leveraging frequent function words, which impaired its performance at the 

word level but benefitted morpheme segmentation. This result is in line with the 

prosodic bootstrapping hypothesis (Christophe et al., 1997), under which function 

words can be used to discover adjacent content words in speech (e.g., Johnson et 

al., 2014; Shi & Lepage, 2008). The same account also posits that function words 

might lead to oversegmentation errors (which in our case were found to be useful to 

discover inflections), because some of these might be recognized as homophonous 

sounds within other words (e.g., “i” in “tutt | i”, “vien | i”), leading to restarting a 

lexical search. Importantly, we found that the decreased performance of CLASSIC-

UB initial/final in word segmentation did not impact its performance at capturing 

aspects of child vocabularies.  

 Differently from English, Italian child-directed speech contains more verbs 

than nouns. In our input sample for example, 24% of input word tokens were verbs, 
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and 16% were nouns. However, as in English, nouns tend to appear often in 

utterance-final position (see Table 2). These characteristics of Italian allowed us to 

test whether unique sensitivity to utterance-final cues could produce a noun 

advantage as seen in Italian children. All chunking models used learning 

mechanisms that leveraged utterance-final cues, and we found that these models 

consistently learned more nouns than verbs, as children do (Figure 11). This result 

indicates that at least some variability in child word production might be explained 

by facilitation from utterance-final boundary cues (Longobardi et al., 2015, 2016), to 

which all chunking models used here were sensitive. However, the size of the 

advantage was not as marked for the models as in children (see Appendix S22 for a 

statistical comparison), indicating that other variables might be involved. For 

example, our models did not have access to real-world meanings, which likely 

facilitate children in learning nouns because these have conceptually simpler 

referents (e.g., objects) that can be easily identified perceptually (e.g., Gentner, 

1982). 

 Finally, when examining the fit to word-level characteristics of child word 

types, we found that CLASSIC-UB did not benefit from tracking utterance-initial cues 

beyond utterance-final cues. This result was also found for English (Cabiddu et al., 

2023) and it is in line with evidence that many different Italian words appear in 

utterance-final position, and these more likely enter child (word type) vocabularies 

compared to words in other positions (Longobardi et al., 2015).  

 Interestingly, however, we found that tracking utterance-initial cues facilitated 

CLASSIC-UB beyond tracking utterance-final cues when we analysed the models’ fit 

to child vocabularies at the token level (see Appendix S18-S21). The reason for 

these contrasting results at the type and token levels lies in the fact that utterance-

initial words have low type frequency and high token frequency. That is, in 

utterance-initial positions we find many function words like conjunctions, articles, or 

pronouns that are repeated frequently (high token frequency), but with the variety 

of distinct words in each of these categories being limited (low type frequency). As a 

result, utterance-initial cues became more beneficial when examining segmentation 

accuracy (Figure 7) or token-based word-level properties (Figure 13-16), which are 



92 
 

all measures that consider the output tokens discovered by the models (i.e., token 

frequency becomes more relevant). In contrast, when using measures that consider 

word types as the outcome (word age of first production, word type word-level 

measures), the low number of distinct function words appearing in utterance-initial 

position could not contribute significantly to improve CLASSIC-UB’s performance. In 

sum, these results suggest that taking into account outcome measures based on 

both word types and word tokens might be important to assess the relative 

contribution of different cues to segmentation and vocabulary learning.  

 

3.6.4 Morphology 

Previous studies have found that word segmentation accuracy decreased when 

models were exposed to morphologically complex languages (Fourtassi et al., 2013; 

Johnson, 2008; Loukatou et al., 2018; 2019; 2022). In line with these studies, we 

found that segmentation models were less accurate at segmenting Italian speech 

compared to English, because of higher rates of oversegmentation which was 

related to discovery of morphological units (Figure 8). 

 This study was the first to assess whether segmentation models that better 

captured child vocabulary measures could also present evidence of morphological 

learning. We found that the more often models’ vocabularies resembled children’s 

(Figure 10), the larger the number of morpheme types they learned (Figure 12, 

phonemic input panel). Our simulations suggest that the same learning mechanisms 

sensitive to statistical regularities might help infants represent both word and 

morphological units. These results are also in line with studies showing that Italian 

infants start representing morphological units from 12 months of age, when they are 

also learning about words (Ferry et al., 2020). 

 

3.6.5 Limitations and Future Directions 

Our study suggests that processing the speech input at the sub-syllabic level might 

result in a more developmentally plausible output vocabulary, but there are 
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alternative explanations that would need to be tested and that could explain our 

results. A potential concern is that our results depend on the performance of a 

baseline model in the evaluation measures. Specifically, a random baseline exposed 

to phonemic input generally performs worse than one exposed to syllabic input. This 

is because phonemic input is harder to segment due to the increased number of 

word boundaries. Such a discrepancy might introduce bias to our results, leading 

segmentation models to explain more variance in phonemic evaluation measures 

simply because the random phonemic baseline is outperformed by its syllabic 

counterpart. However, it is crucial to note that this performance imbalance between 

phonemic and syllabic baselines is adjusted for by computing the relative 

improvements of each segmentation model in comparison to its respective baseline. 

For instance, when comparing the performance of CLASSIC-UB with phonemic input 

to a random baseline with the same input, both models encounter the same number 

of word boundaries to identify, thus facing an identical challenge.  

 Another potential concern is our use of a specific baseline to compare the 

performance of the models (i.e., fully random baseline). If the baseline changes, the 

results might differ. However, we believe that the baselines from previous studies 

may lead to similar conclusions or may not be suitable for our research. For 

instance, adopting a baseline that recognizes every phonemic or syllabic unit as a 

word (e.g., Bernard et al., 2020) would inherently favour the syllabic baseline. This 

is due to the prevalence of monosyllabic words over monophonemic ones. Thus, 

using a unit baseline would not alter the conclusions from our current analysis.  

On the other hand, if we were to treat every utterance as a single word — 

essentially discovering isolated words heard in one-word utterances (e.g., Fibla et 

al., 2022)— we would observe identical performance for both phonemic and syllabic 

inputs. This approach overlooks how segmentation task difficulty varies based on the 

perceptual unit used. Adopting this method would be equivalent to comparing the 

absolute performance of the segmentation models, without controlling for the fact 

that syllabic input presents fewer word boundaries to identify than phonemic input. 

Lastly, using pseudo-random baselines introduces its set of challenges due to 

underlying knowledge assumptions: It is unlikely that infants possess an 
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understanding of the true likelihood of a word boundary occurrence in the language 

(oracle baseline; Bernard et al., 2020). Likewise, they may not be aware of the true 

average word length across languages (Loukatou et al., 2019). 

Apart from evidence that supports the plausibility of phonemic segmentation 

in capturing child vocabularies through the use of baselines to compute relative 

measures of performance, we also found that models exposed to syllabic input 

learned larger vocabularies than those found in child productions, despite receiving 

limited input. This evidence can be considered additional support for the access to 

phonemic information in building early vocabularies. However, we acknowledge that 

this result may be influenced by our use of idealized segmentation models: Although 

all models used in this study learned in an incremental fashion and therefore are 

different from fully idealized learners that learn from the input in batches (i.e., 

simultaneous processing of the entire input, e.g., Brent & Cartwright, 1996), they 

still learn from the input at every opportunity (e.g., the probability of storing a chunk 

in the lexicon is 1 in CLASSIC-UB and PUDDLE). Aspects of idealized learning have 

been used to compensate for the fact that models’ input is typically very small 

compared to what children receive. However, in our case, facilitation from syllabic 

processing together with learning at every opportunity might be the reason for 

seeing word type vocabularies that are larger than children’s (Table 4), and that 

contain a higher proportion of low-frequency words (Appendix S19). To confirm that 

sensitivity to sub-syllabic units provides a better fit to child data, in future work the 

models’ learning could be constrained in different ways. For example, one could 

implement aspects of memory decay or limits on attention (e.g., Frank et al., 2010; 

French et al., 2011; Jones & Rowland, 2017; Perruchet & Vinter, 1998) that 

constrain the number of chunks that can be accessed at any given time. Still, it is 

unclear how a model that uniquely accesses syllabic units could capture the 

emergence of morphological chunks in Italian, as these require access to intra-

syllabic information.  

 Our study implemented a rigid comparison between syllabic-only and 

phonemic-only representations to test the implications of these two extreme 

scenarios on vocabulary learning. However, future work could consider the 
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implications of the gradual discovery of phonemic units in infants (e.g., Werker, 

2018). For example, different studies have proposed the use of a proto-lexicon of n-

grams as a potential solution to the phoneme learning problem (e.g., Fourtassi & 

Dupoux, 2014; Martin et al., 2013), and the use of a proto-lexicon is in line with 

studies showing how infants initially represent frequent sequences of words and 

nonwords (e.g., Ngon et al., 2013). For example, Martin et al. (2013) proposed a 

top-down solution that could be implemented within chunking models considered in 

our study. Knowledge of n-grams (i.e., word-like chunks of the type learned by our 

models), can be used to perform successful identification (at word boundaries) of 

segment pairs that belong to the same phoneme category. The use of n-grams is 

useful because it allows the model to handle the large context-dependent realization 

of phonemes, which creates overlaps between different phoneme categories. Of 

course, the facilitation from a proto-lexicon is an aspect that aligns with information 

that our models can currently encode, but there are also other variables that could 

contribute to phonetic learning such as semantic information (e.g., Fourtassi & 

Dupoux, 2014; Yeung & Nazzi, 2014). Finally, note that modelling the gradual 

discovery of phonemes is difficult because it requires large amounts of fine-grained 

phonetic transcriptions of child-directed speech. 

 

3.7 Conclusion 

In this computational work, we examined how assuming different learning 

mechanisms (chunking, transitional probability) and access to different speech 

perception units (phonemes, syllables) could influence the early phases of Italian 

infants’ word segmentation and word production. We found that (1) a chunking 

learning mechanism might play a significant role in early Italian word acquisition as 

found for English, (2) a chunking learning mechanism can capture a larger variability 

in children’s vocabulary outcomes when it has access to phonemic information 

compared to syllabic information, (3) the saliency of words at utterance initial and 

final boundaries might aid both early word segmentation and word learning, (4) a 

chunking learning mechanism might help Italian infants discover morphological units 

alongside word forms in the early phases of word acquisition. These results 
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emphasize the cross-linguistic significance of chunking mechanisms for early word 

discovery and acquisition. They also underscore the need to consider model 

performance across different languages, allowing researchers to investigate the 

effects of a broader set of characteristics from naturalistic input and their 

interactions with the hypothesized learning mechanisms. 
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Chapter 4  

The Role of Verb-Event Structure in Children’s Lexical 

Ambiguity Resolution 

 

4.1 Abstract 

Lexical ambiguity is pervasive in the English language. Recent evidence suggests 

that children represent and learn multiple meanings of ambiguous words from early 

in development (e.g., "letter" as in mail or as part of the alphabet). However, the 

naturalistic cues that enable young children to resolve lexical ambiguities remain 

unclear. Previous research indicates that verbs might serve as a critical sentence cue 

that children rely on for disambiguation. Yet, it remains unclear whether such 

facilitation originates from bottom-up cues (verb-lexical associations) or top-down 

cues (verb-event structures). In other words, are children able to disambiguate 

“letter” in “She posted a letter” because the verb “to post” co-occurs more 

frequently in the context of mail than in the context of the alphabet, or because they 

have an understanding of the kind of entities that can function as arguments of the 

verb? In this study, we created and used ChiSense-12, a large sense-annotated 

corpus of English child-directed speech, to disentangle the effects of bottom-up 

verb-lexical and top-down verb-event structure cues in an experimental task. Our 

results show that four-year-old children relied on both types of cues, providing the 

first evidence that children can integrate sentence cues at multiple levels for 

disambiguating word meanings. We conclude by discussing how our findings carry 

significant implications for theoretical models of word processing and 

disambiguation. 

 

4.2 Introduction 

Lexical ambiguity refers to the fact that a word form can carry multiple meanings 

depending on sentence context (e.g., “she played in a band” vs. “she twisted a 

band”). Lexical ambiguity is thought to improve communicative efficiency (Piantadosi 

et al., 2012): Speakers reuse familiar word forms, reducing cognitive demands on 
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the language system, while the use of rich, informative sentence contexts allows 

them to still convey a wide range of meanings. However, lexical ambiguity can pose 

a challenge to children, as they might not be able to fully leverage sentence context 

for disambiguation (e.g., Khanna & Boland, 2010; Rabagliati et al., 2013). In this 

study, we aimed to identify which aspects of sentence context children can use to 

resolve lexical ambiguities.  

Lexical ambiguity is extremely frequent in the English language (Rodd et al., 

2022), which suggests that mastering lexical ambiguity resolution may be a crucial 

skill for infants and children. Recent investigations have shown that English child-

directed speech is also lexically ambiguous (Meylan et al., 2021). Further, toddlers 

and pre-schoolers master lexical ambiguity in comprehension (Floyd et al., 2020) 

and production (Meylan et al., 2021), employing a diversity of meanings for most 

words just as adults do. However, less is known about which aspects of sentence 

context might facilitate children’s processing of ambiguous words. Previous studies 

have shown that children can learn different senses of ambiguous words from word-

level semantic cues (e.g., children can more easily associate a word form with two 

object referents if the objects are similar in shape; Floyd & Goldberg, 2021; 

Srinivasan et al., 2019) and syntactic category cues (e.g., whether the ambiguous 

sense functions as a noun or verb; Dautriche et al., 2018; Lippeveld & Oshima-

Takane, 2020), but few have examined which sentence context cues could facilitate 

children’s processing of ambiguous words (Khanna & Boland, 2010; Rabagliati et al., 

2013). These few studies have shown that, compared to adults, children aged 4 to 7 

years have difficulty using the top-down global plausibility of sentences to 

disambiguate familiar word senses. In other words, children appear to struggle with 

lexical disambiguation based on one’s real-world knowledge, which facilitates 

comprehension of causal relations, event sequences, and social norms conveyed by 

the overall discourse. In contrast, children seem to mostly rely on bottom-up word 

associations (i.e., tracking co-occurrences between words) to perform a shallow 

processing of sentence context when interpreting ambiguous words. Nevertheless, 

the variance in children's disambiguation performance can only be partially explained 

by word co-occurrences (Rabagliati et al., 2013), indicating that other top-down cues 

might play a role, but exactly which cues children rely on is still unknown.  
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In this study, we aimed to address this gap by examining whether the 

semantic restrictions that verbs impose on their arguments (i.e., verb-event 

structures) might represent a top-down sentence context cue that children could rely 

on from a young age. We hypothesized that these verb-event structures may play a 

significant role in children's lexical ambiguity resolution, given their role in children’s 

unambiguous word processing (Andreu et al., 2013; Mani et al., 2016) and their 

reliance on verbs in tasks that require sentence parsing, namely syntactic ambiguity 

resolution (Kidd & Bavin, 2005; Snedeker & Trueswell, 2004; Yacovone et al., 2021). 

Verbs are an important source of disambiguating information for ambiguous 

nouns (Hahn et al., 2015; Rabagliati et al., 2013); for example, after hearing the 

phrase “eat the chicken”, a child is likely to interpret the noun “chicken” as referring 

to a type of food rather than livestock. But while we know that verbs facilitate 

children’s interpretation of ambiguous words, it is still unclear whether such 

facilitation operates in a top-down or a bottom-up manner, because bottom-up and 

top-down cues are often entangled in naturalistic contexts (e.g., Ambridge et al., 

2015). In the example above, the verb “eat” might prime the target meaning 

“chicken [food]” via lexical association (i.e., working as a bottom-up cue to 

ambiguity resolution); alternatively, the semantic restrictions imposed by the verb 

“eat” on its arguments (verb-event structure) might guide top-down inferences to 

suppress contextually irrelevant meanings (e.g., upon hearing “eat the chicken”, the 

child may infer that “chicken” refers to a type of food because inanimate entities are 

more plausibly eaten than animate entities).  

In this work, we created and leveraged a large sense-annotated corpus of 

child-directed speech, ChiSense-12, to carefully construct experimental stimuli and 

disentangle the effect of bottom-up and top-down verb-related cues in early lexical 

ambiguity resolution. Understanding the role of different types of cues is important 

for theories of early sentence parsing, some of which emphasize children’s reliance 

on bottom-up cues (Snedeker & Yuan, 2008), while others propose that children 

consider both bottom-up and top-down cues from early on (Trueswell & Gleitman, 

2007). Furthermore, it is key to understanding the learning mechanisms that might 

underlie sensitivity to different cues in language development. For example, usage-
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based computational models of verb-event learning assume that children track word 

associations to learn how words are combined into sentences. Simultaneously, they 

use analogy mechanisms to compare sentences with similar associations and 

abstract verb-event constructions (e.g., Alishahi & Stevenson, 2007, 2008). This 

implies that children should be able to use their verb-event knowledge (alongside 

verb-lexical associations) in sentence parsing from early stages of development. 

Therefore, evidence from children’s processing would bolster the proof of principle 

evidence from computational studies, such as Alishahi and Stevenson (2007). 

In the following sections, we introduce studies that have examined the role of 

bottom-up and top-down cues in adults and children's lexical disambiguation. In our 

study, we also tested adults alongside children to serve as a comparative baseline 

and enable us to gain insights into the process of lexical disambiguation across 

different age groups. We then present a section that describes how we sense-tagged 

a large corpus of English child-directed speech and how we used it to construct 

experimental stimuli for our adults and children's study. In the remainder of the 

paper, we present and discuss the results of this experimental study. 

 

4.3 The Role of Context in Lexical Disambiguation 

Theories of lexical processing have faced the challenge of explaining which linguistic 

aspects allow the individual to access a word’s meaning. Influential models of lexical 

processing made the simplifying assumption that a word form maps to a single 

correspondent meaning (e.g., Plaut et al., 1996; Seidenberg & McClelland, 1989). 

Yet, evidence from both adults and children indicates that they map word forms to 

multiple meanings. For example, adults’ recognition of familiar words is slowed down 

when the target word maps onto different semantically unrelated senses (e.g., 

dog/tree bark), likely because of competition between representations of alternative 

meanings (Rodd et al., 2002). In a similar way, 4-year-old children can use sentence 

context to shift their interpretation of an ambiguous word from one sense to an 

alternative, but they still make more mistakes in choosing the correct meaning of an 

ambiguous word compared to an unambiguous one (Rabagliati et al., 2013). These 
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findings in adults and children can be accounted for by more recent models of lexical 

processing (Duffy et al., 2001; Rodd, 2020).  

 Among recent models of lexical processing, there is a shared focus on the 

importance of context in lexical representation. For example, the semantic settling 

model (Rodd, 2020) assumes that the individual represents word meanings in a 

high-dimensional lexical-semantic space. In other words, multiple features can 

define the link between a word form and its meaning, and these features relate to 

properties of the word itself or contextual aspects that are present when the word is 

used. The multiple meanings of a word are then defined by alternative paths in the 

lexical-semantic space, each path representing the set of features defining the 

mapping between a word form and each sense. Access to ambiguous word 

meanings is seen as a settling process, by which certain paths in the space become 

increasingly activated and settle toward a configuration correspondent to one of the 

alternative meanings. Activation is influenced by multiple cues that help the system 

settle on one meaning, including bottom-up information about a meaning’s usage 

patterns (e.g., meaning expectation based on frequently co-occurring words in 

sentence context), or top-down information regarding the meaning of a word that 

can be inferred given the context (e.g., real-world knowledge used for pragmatic 

inferences).  

The possibility of integrating a wide range of cues for word-meaning access 

implies that the individual possesses lexical-semantic representations that are rich 

and context-dependent (e.g., Elman, 2009). The same view is shared with a recent 

account of children’s word learning in Srinivasan and Rabagliati (2021), proposing 

that representations of word senses are conditioned on contextual aspects (e.g., 

a/some chicken; thirsty/roasted chicken). Indeed, evidence exists that contextual 

cues can work as an aid to word sense learning: For example, when a word typically 

used as a verb (e.g., "eat") is presented as a noun (e.g., "an eat"), infants find it 

easier to associate the word with a novel animal. In contrast, when a word is 

strongly associated as a noun with a specific referent (e.g., "dog"), infants find it 

difficult to extend its use to label another novel animal (Dautriche et al., 2018). This 



102 
 

suggests that the use of different syntactic categories is necessary to facilitate the 

expansion of a word's meaning to include additional referents.  

 Aside from word learning, evidence supporting the idea of contextualized 

representations in the processing of ambiguous words comes from studies involving 

both adults (e.g., Colbert-Getz & Cook, 2013; Witzel & Forster, 2014) and children 

(e.g., Hahn et al., 2015; Khanna & Boland, 2010; Rabagliati et al., 2013). However, 

the question of how children's representations differ from adults' remains open. 

Particularly, it is unclear if children’s representations can integrate both bottom-up 

and top-down cues to word meaning and how these cues are weighted in sentence 

parsing. We delve into these points in the following sections.  

 

4.3.1 Word- and Sentence-Level Influences on Disambiguation 

Adults and children’s disambiguation is influenced by cues at the word and sentence 

level. Regarding cues at the word level, both adults (Duffy et al., 1988; Rodd et al., 

2016) and children (Booth et al., 2006; Simpson & Foster, 1986) show sensitivity to 

meaning dominance, namely a bias toward the ambiguous word meaning that is 

most frequent in the language. In the adult literature, a bias has been documented 

that delays the interpretation of a subordinate (less frequent) meaning, even when 

the sentence context aligns with this subordinate meaning (the so-called 

subordinate-bias effect). An example of this can be seen in Duffy et al.'s (1988) 

study, where participants activated the dominant meaning of "ball" as an object 

even though the sentence context was clearly biased towards "ball" as in a dance 

gala (e.g., “Although attendance was not required, the ball was very important”). 

Similarly, when a prime word is semantically related to the dominant meaning of a 

target ambiguous word, children at different ages process the target faster or more 

accurately compared to when the prime word is related to the subordinate (9, 10, 

and 12 years old, Booth et al., 2006; 4 years old, Rabagliati et al., 2013; 8, 10, and 

12 years old, Simpson & Foster, 1986). 

 Other sources of disambiguation operate at the sentence level, working in 

concert and in certain cases mitigating the effect of word level influences. In adults, 
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a strongly supportive sentence context can, in some cases, eliminate the 

subordinate-bias effect (Colbert-Getz & Cook, 2013): For example, when a preceding 

context refers to “being around water”, reading time delays occur in accessing the 

river-related sense of “bank” because the dominant sense “bank [institution]” 

interferes with lexical access. However, including multiple references to the 

subordinate sense in the preceding context (“catching a fish”, “going to the river”, 

“being in the mud and around water”) eliminates the interference and allows the 

individual to access the subordinate sense as quickly as the dominant in a control 

condition. This evidence indicates that there is a cumulative effect of sentence 

context and, more importantly, it shows that sentence context is an important 

element for disambiguation as it interacts with sense frequency to influence word-

meaning access. A similar effect has been found in children by Rabagliati et al. 

(2013): They presented 4-year-olds with contexts that were highly constraining 

towards the subordinate senses of ambiguous words (e.g., “Kermit was walking in a 

dark cave. He was nervous about the animals, because he saw a big bat”). Children 

were as accurate at choosing the subordinate animal bat as they were at choosing 

an unambiguous target (“…because he saw a blackbird”), indicating no interference 

caused by the activation of the dominant sense object bat.  

The above findings indicate that both adults and children leverage sentence 

context in lexical disambiguation. However, they do not tell us whether adults and 

children process sentence context in the same way. This question is important for 

developmental theories that assume that young children rely solely on bottom-up 

information (word associations) when parsing speech (bottom-up account; Snedeker 

& Yuan, 2008), and for those that allow additional integration of top-down 

information (e.g., syntactic or semantic structures) when this is perceived as 

sufficiently reliable (cue-validity account; Trueswell & Gleitman, 2007). To shed light 

on this problem, studies have used contrastive tasks in which bottom-up and top-

down cues are embedded in text or spoken stories and they compete, pointing to 

opposite senses of ambiguous target words (Kambe et al., 2001; Khanna & Boland, 

2010; Rabagliati et al., 2013; Witzel & Forster, 2014). In these contrastive tasks, 

adults rely on top-down cues related to global semantic plausibility. Conversely, 

children appear more prone to interpretation errors, suggesting they might not be 
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fully integrating top-down cues. We discuss adults and children’s performance in 

contrastive tasks in the next section. 

 

4.3.2 Use of Bottom-Up and Top-Down Cues in Adults and Children 

When presented with contrastive stories, adults rely on top-down cues related to the 

story global semantic plausibility (e.g., Kambe et al., 2001, Rabagliati et al., 2013). 

For example, in Rabagliati et al. (2013), when hearing the short story “Kermit was 

walking in a dark cave. He was nervous about the animals, so he carried a big bat”, 

adults assigned an object interpretation to “bat” (e.g., baseball bat), even if the 

story contained words that frequently co-occur with the sense animal bat in the 

language (i.e., “dark cave”, “animals”). In other words, adults could use their event 

knowledge to infer that, given his emotional state, Kermit probably carried an object 

to protect himself. Note that this evidence does not mean that bottom-up 

associations have no effect on adult processing. In fact, in another study by Witzel 

and Forster (2014), word associations did cause some delay in the online processing 

of an ambiguous word when they conflicted with the overall context of the sentence. 

Moreover, in another study adults showed sensitivity to word associations when all 

cues in the sentence context fully supported one sense (i.e., non-contrastive task; 

e.g., Khanna & Boland, 2010), with an additive effect of bottom-up associations and 

top-down plausibility. 

In adults, reliance on top-down plausibility is useful, as solely relying on word 

associations could lead the individual to commit interpretation errors in cases where 

word associations are not particularly strong or when the alternative senses of an 

ambiguous word are semantically related and might share similar context word 

associations (e.g., food/animal chicken). But differently from adults, developmental 

studies on lexical ambiguity have shown that 4- to 7-year-old children do commit 

interpretation errors, failing or only partially integrating top-down global plausibility 

(Khanna & Boland, 2010; Rabagliati et al., 2013). For example, consider the 

homophones “guest” and “guessed” (/ɡɛst/) in Khanna and Boland (2010). If 

children generate top-down inferences based on sentence context, when they hear 
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“The house is clean because we expect a /ɡɛst/”, they should activate the congruent 

meaning “guest”, but not the incongruent “guessed”. Thus, they should 

subsequently find it easier to repeat the word “room” (which is a frequent lexical 

associate of “guest”), compared to hearing a context that is only compatible with the 

alternative meaning (e.g., Molly didn’t know the answer, so she /ɡɛst/). However, 

differently from adults, 7-year-olds showed the same facilitation from both “The 

house is clean because we expect a /ɡɛst/” and “Molly didn’t know the answer, so 

she /ɡɛst/” (compared to a completely unrelated sentence), suggesting that, 

although children were sensitive to the lexical association between /ɡɛst/ and 

“room”, they were not able to integrate top-down information from the sentence 

context. 

This evidence might suggest that children do not integrate top-down 

information (bottom-up account; Snedeker & Yuan, 2008). However, evidence from 

other studies suggest that there might be conditions in which children can leverage 

top-down cues (Hahn et al., 2015; Rabagliati et al., 2013). In the experiment from 

Rabagliati et al. (2013), 4-year-old children successfully disambiguated words based 

on a preceding sentence context (e.g., “Barney was on vacation. He fed/roasted the 

chicken, which was nice”). To test if successful disambiguation depended on the 

association between the preceding verb (e.g., to feed) and the ambiguous word 

sense (animal chicken), the authors ran a computational model that performed the 

disambiguation task uniquely leveraging the target sense frequency (dominance) 

and the statistical co-occurrence between context words (including the verb) and 

target sense in child-directed speech (bottom-up associations). Although the authors 

found a significant correlation between the model and children’s performance, this 

was moderate (r = .32), indicating that children might have relied on additional top-

down cues to resolve ambiguities. To examine this hypothesis, they tested children 

on a second contrastive task where bottom-up associations were put in competition 

with top-down global plausibility. They found that children could make partial use of 

top-down plausibility. For example, upon hearing the sentence “Elmo watched a 

funny movie about a castle, and a princess, and a silly dragon. That was a funny 

/na̍ɪt/”, they selected a picture depicting “night” (rather than one of a “knight”) 

more often than when the sentence ended in “And there was a funny /naɪt/”. Even if 
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words like “castle”, “princess”, “dragon”, and “knight” frequently co-occur in 

naturalistic speech, children were able to use their top-down event knowledge and 

infer that people usually watch movies at “night”. Therefore, children were sensitive 

to top-down cues. Importantly, however, in Rabagliati et al. (2013) children still 

relied more on lexical associations than on global plausibility: Even if a (residual) 

significant difference was found between the above conditions, children still selected 

“knight” more than 50% of the time in every condition. 

The above evidence suggests that, to some degree, 4-year-old children can 

understand the ongoing discourse by leveraging top-down global plausibility to 

resolve lexical ambiguities (Elman, 2009). However, it is still unclear whether there 

are conditions in which children could primarily rely on top-down cues, which would 

strongly support a cue-validity account (Trueswell & Gleitman, 2007).  

In this study, we directly compared children’s reliance on bottom-up vs. top-

down verb-related cues. We chose verbs because they are likely to represent a 

particularly valid cue that young children can rely on when processing ambiguous 

words. For example, the type of syntactic arguments that verbs take guide children’s 

interpretation of ambiguous sentences (e.g., Kidd & Bavin, 2005; Snedeker & 

Trueswell, 2004; Yacovone et al., 2021). To illustrate, 3- to 5-year-old children 

interpret the phrase “tickle the bear with the mirror” as “tickle the bear using the 

mirror” (even if two bears are shown, one of which is holding a mirror) because the 

verb “tickle” frequently co-occurs with instrument arguments in naturalistic speech 

(Yacovone et al., 2021). Further, verb-event structures guide children’s 

unambiguous word processing (Andreu et al., 2013; Mani et al., 2016). For example, 

3-year-olds know that “pushing a flowerpot” is more plausible than “pushing a road” 

even if they have never heard either in conversation (Andreu et al., 2013).  

Although some studies have investigated the role of verbs in early lexical 

ambiguity resolution (Hahn et al., 2015; Rabagliati et al., 2013), they have not 

examined the independent contribution of (bottom-up) verb-sense associations and 

(top-down) verb-event structure cues. This is because stimuli used in previous 

studies included verbs that were both lexically associated with a target sense and 

licensed the target sense as a plausible argument: in “Karl met the star”, the verb 
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“meet” is likely to co-occur more often with “star [famous person]” than “star 

[astronomical object]” in the language, and at the same time one more plausibly 

“meets” an animate entity than an inanimate one (Hahn et al., 2015). Moreover, in 

the experiments from Rabagliati et al. (2013), although children could successfully 

use verbs to disambiguate a subsequent target word in a non-contrastive task, in 

their second experiment the interpretation of contrastive passages did not always 

depend on verbs (e.g., “that/there was a funny (k)night”, or “the teacher played 

music with anyone/anything, even a band). Thus, the specific role played by verbs in 

lexical disambiguation remains to be studied. 

In our study, we used a large sense-annotated corpus of child-directed 

speech to design experimental materials which could disentangle the contribution of 

verb-noun lexical associations and top-down verb-event structure cues. The next 

section elaborates on the construction and the characteristics of the corpus. 

  

4.4 Annotating Child-Directed Speech for Word Senses: The ChiSense-12 

Corpus 

Language acquisition research has benefited from the use of annotated corpora of 

child-directed speech to examine key questions about how children learn and 

process language in real-world contexts (e.g., Monaghan & Rowland, 2017). 

Naturalistic corpora are useful in different ways. They can be used to analyse 

language use patterns, test the plausibility of different learning mechanisms by 

applying them to naturalistic speech through computational modelling, or aid in 

building experimental stimuli to test the role of variables found in naturalistic 

conversations. However, corpora currently available such as in the CHILDES 

database (MacWhinney, 2000) do not provide information about different senses 

that words can assume depending on the conversational context. The lack of sense-

annotated child-directed input makes it difficult to examine questions about child 

lexical ambiguity via methods that use naturalistic corpora. To address this 

limitation, we constructed the first large-scale child-directed speech corpus tagged 

for word senses. We named this new sense-tagged corpus ChiSense-12 (freely 
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available at https://gitlab.com/francescocabiddu/chisense-12), and we used it to 

carefully balance experimental materials that could disentangle the effect of verb-

lexical association and verb-event structure in children’s lexical ambiguity resolution.  

 Numerous sense-annotated corpora based on adult language exist (for an 

overview, see Pasini and Camacho-Collados, 2020). In these, sense annotation is 

usually based on Wikipedia pages or the sense inventory WordNet (Miller, 1995). 

The use of these sense-annotated corpora has proven to be useful in capturing 

adults’ word sense disambiguation. For example, Loureiro et al. (2021) have recently 

shown that computational models based on the Transformer neural architecture 

(Vaswani et al., 2017) more closely approximate adult sense inter-annotator 

agreement when trained on sense-annotated instances compared to uniquely 

exploiting glosses from sense inventories. Although this evidence highlights the 

potential of using adult corpora for adult word sense disambiguation, the same is not 

necessarily true for studying child competence. 

Compared to adult language, speech that young children hear is more 

repetitive (e.g., Jones et al., 2023), restricted to certain topics and concrete 

vocabulary (e.g., food, clothing, animals), with shorter sentences and simpler 

syntactic structure (Saxton, 2009). These characteristics may play a key role in early 

word processing and learning (e.g., Weisleder & Fernald, 2013), indicating that 

experimental or computational investigations aimed at capturing children’s language 

understanding should be based on the specific input they receive. Furthermore, sets 

of ambiguous words tagged in adult corpora may consider senses that are not 

understood by children, or conversely, they may omit senses that are understood by 

children. This makes it important to select samples of word senses that young 

children understand. 

In the first work addressing these challenges, Meylan et al. (2021) are 

currently tagging two large corpora of English child-directed speech (and 

corresponding child productions) from the CHILDES database. The child-directed 

corpora comprise speech directed to 18 children of age between 9 and 51 months. A 

total of 112,802 word tokens is being tagged using WordNet sense inventory as a 

reference. The sample of word types considered are based on a common measure of 

https://gitlab.com/francescocabiddu/chisense-12
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child vocabulary from parental report, the Communicative Development Index (CDI; 

Fenson et al., 2007), covering a total of 719 lemma+part-of-speech combinations in 

the corpus. 

Although Meylan et al.’s dataset will significantly contribute to the naturalistic 

study of lexical ambiguity in early childhood, it is less useful for examining the 

contribution of specific aspects of sentence context such as verb-event structure. 

First, tagging specific syntactic patterns (e.g., verb-object) was not the focus of the 

project. Secondly, high-frequency words in the dataset are downsampled (i.e., a 

random sample of 50 tokens in each 3-month recording interval is tagged) to 

minimize annotation time. Although this seems a reasonable strategy when focusing 

on word sense distributions for each word type, it limits the researcher’s ability to 

look at the distribution of verbs that co-occur with each specific sense (i.e., the verb 

distribution becomes especially downsampled for senses that appear infrequently in 

the corpus). For this reason, we used a large English corpus of child-directed speech 

where we manually tagged the full sample of tokens for both word sense and verbs 

that take a sense as an object. Given the large-scale nature of the project, to make 

the annotation task manageable we only coded a pre-selected sample of 12 

ambiguous words. We describe the corpus, the word sample, and our annotation 

strategy below. 

 

4.4.1 Corpus 

We downloaded all American and British English corpora from the CHILDES database 

(version 2020.1) using the R package childesr (Braginsky et al., 2019), which 

provides utterances in orthographic form using a standardized procedure to treat 

special codes across corpora (e.g., prosodic, discourse markers). Out of 72 corpora 

downloaded, we considered 53 involving target children of up to 4 years of age (59 

months), resulting in speech directed to 958 target children. We further filtered the 

dataset for utterances containing 12 ambiguous words (see Table 5). For each word, 

a frequent dominant sense and a less frequent subordinate sense were considered 

(e.g., Bat: dominant = animal, subordinate = object). 11 words were selected from 
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a previous study where 4-year-olds showed understanding of both dominant and 

subordinate senses (Rabagliati et al., 2013). An additional word was selected with 

both senses having a relatively high frequency in child-directed speech (/f̍laʊə/: 

flower/flour), with its dominant meaning being known by children from around 20 

months of age (Frank et al., 2017).  

 

4.4.2 Annotation 

The dataset was tagged by the first author. We only considered utterances where a 

target word was used in its dominant or subordinate sense. Each utterance was 

tagged for the word sense used (dominant/subordinate). For utterances where the 

sense was used as object argument, we reported the verb stem preceding the sense 

(see Table 5). For utterances where the word’s sense was not immediately 

understandable, the surrounding conversational context was considered (i.e., 

surrounding utterances in the transcripts; see Figure 17). If the conversational 

context did not allow the annotator to understand the intended meaning, the 

utterance was discarded. 

 

Table 5 Example of coded utterances. ID is the CHILDES database utterance 

number. This identifier can be used to retrieve specific corpus variables including 

speakers and target children’s information. The remaining columns contain the 

target utterance (GLOSS), target ambiguous word (TARGET), specific word sense 

(SENSE) and verb stem used with that sense (VERB). 

ID Gloss Target Sense Verb 

311504 who put the rubber band on there band object put on 

326153 are you in a marching band band music group be in 

326190 oh a clown's in the band band music group be in 

326293 remember Child when did we see a band band music group see 

 

The final dataset included 15,581 utterances out of an initial raw sample of 

21,342 (word tokens = 115,272; word types = 4,805). The dominant sense 
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appeared on average 73% of the time (SD = 13%). Descriptive statistics for each 

ambiguous word are presented in Table 6. 

 

Table 6 For each target word, the table shows the raw number of utterances in 

which dominant and subordinate meanings appeared (N), and percentage of 

utterances in which dominant sense appeared (Dominance). 

 

As 8 of the 12 words included in Chi-Sense 12 are also in Meylan et al.’s 

(2021) dataset, we plan to analyse inter-annotator agreement as soon as this large-

scale dataset is released. To give an idea of the difficulty of the annotation task, we 

conducted a small inter-annotator agreement study, generating a random list of 45 

sentences from the coded corpus (5 per target word, excluding target words that are 

not homographs, i.e., moose/mousse, flower/flour, sun/son). After a short training 

Word (Dominant/Subordinate) N (Dominant/Subordinate) Dominance 

Band (Object/Music Group)  178/58 75% 

Bat (Animal/Object)  247/130  66% 

Bow (Knot/Weapon) 230/27 89% 

Button (Electronic/Clothing) 568/285 67% 

Chicken (Animal/Food) 1463/937 61% 

Flower/Flour 3521/350 91% 

Glasses (Eye/Drinking) 683/620 52% 

Letter (Alphabet/Mail) 1446/946 60% 

Line (Geometric/Row) 471/241 66% 

Moose/Mousse 178/42 81% 

Nail (Finger/Tool) 460/106 81% 

Sun/Son 2029/365 85% 

MEAN (SD) - 73% (13%) 
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(using 5 training conversations), a second annotator read 45 test conversations 

between a child and one or more adults (see Figure 17). For each conversation, the 

second annotator was asked to indicate whether a target ambiguous word 

highlighted in red referred to its dominant meaning, subordinate meaning or to 

something else. 

 

 

Figure 17 Example of test conversation in the small inter-annotator study. The 

target word in red is surrounded by its conversational context. 

 

We found 100% agreement between first and second annotator (Kappa = 1). The 

scripts for generating the random list of sentences and the small study results can 

be found in the annotation project GitLab page 

https://gitlab.com/francescocabiddu/chisense-12. 

 In the following section, we describe how we designed an experimental task 

and used ChiSense-12 to create experimental conditions and stimuli that could 

https://gitlab.com/francescocabiddu/chisense-12
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answer our research questions on the role of verb information in early lexical 

ambiguity resolution. 

 

4.5 Design of Experimental Task 

We designed a web-based forced-choice task similar to Rabagliati et al. (2013), to 

examine the role of verb-noun lexical associations and top-down verb-event 

structure cues in adults and children’s lexical disambiguation.  

Participants heard spoken stories that ended with a target ambiguous noun 

(see Figure 18). Two seconds before story onset, four pictures appeared on the 

screen and stayed on until a picture was selected. After hearing the story, 

participants were asked to select a picture that corresponded to the last word of the 

story. In each trial, two pictures depicted the two senses of a target ambiguous 

word (the frequent dominant meaning and the subordinate less frequent meaning) 

(e.g., object band, music band). The other 2 pictures depicted distractor words 

semantically related to these senses, which were also good completions of 

experimental stories. Distractors were also frequency-matched to target senses 

based on the sense-annotated corpus statistics. More details about distractors and 

target sense frequencies in the corpora and their frequency matching can be found 

in Appendix S24. Participants also initially saw 3 training trials, with spoken stories 

ending with unambiguous target words (e.g., “Emily went to the shop. Then, she 

bought a banana”). 
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Figure 18 Example of trial. Participants saw a 2x2 grid depicting 2 target word 

senses (dominant: object band; subordinate: music band), and two distractor words 

(sock, team). Pictures appeared in random locations on every trial. After 2 seconds 

from picture presentation, the spoken story was played. Participants were allowed to 

respond only after the story ended. 

 

Following Rabagliati et al. (2013), we constructed the experimental stories in 

a way that would allow us to examine whether children use top-down event 

structure cues when these are put in competition with bottom-up cues (i.e., to 

exclude the possibility that children use top-down cues only when these are the only 

ones available in context). Therefore, we constructed stories comprising a prior 

context and a target context. The prior context always contained words that 

frequently co-occurred with the target subordinate sense in child-directed speech. 

For example, in Figure 19, the prior context “Sophia listened to some music” 

contains the words “listen” and “music” which frequently co-occur with the 

subordinate meaning music band. 
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Figure 19 Example of conditions involving the target word “band”. Participants 

could see a prior context either followed by a control, verb-lexical, or verb-event 

context. 

 

The target context was manipulated in 3 within-subject conditions. In the 

control condition, the main verb pointed toward the target subordinate sense (i.e., 

the same sense that was favoured by the prior context), both in terms of lexical 

associations in child-directed speech and plausibility based on verb-event structure. 

For example, in “Then, she played in a band” (see Figure 19), the verb “play in” is 

lexically associated with music band in child-directed speech and one more plausibly 

plays in a music band than an elastic band. Specifically, we defined verb-sense 

lexical association by weighing the raw frequency of verb-sense occurrence by the 

number of times the sense appeared in the corpus as an object of a verb (see 

Appendix S26). 

In the verb-lexical condition, the main verb was lexically associated to the 

dominant target sense (“get” frequently co-occurs with object band in child-directed 

speech; see Figure 19), therefore competing with bottom-up cues from the prior 

context (which pointed toward the subordinate target sense music band”). 

Importantly, verb-event structure information was compatible with both target 

senses in this condition (i.e., one can either “get a band [object]” or “band [music 



116 
 

group]”). Conversely, in the verb-event condition there was no lexical association 

between the main verb and either the dominant or subordinate sense. However, the 

verb only accepted the dominant sense as a plausible object (i.e., one can only 

“twist a band [object]”).  

Given the competition between cues from the prior and target context, in the 

verb-lexical and verb-event conditions one must make a higher number of inferences 

to link the two contexts (e.g., “Sophia listened to some music. Then, she twisted a 

band”) than in the control condition. Therefore, with the intent of weakening the link 

between contexts in the control condition as much as possible, we lowered the 

coherence of all stories. We used a temporal connective (“Then”) which is 

considered the lowest level of conceptual coherence save for completely unrelated 

sentences (see Connell & Keane, 2004; compare the control story “Sophia listened to 

some music. Then, she played in a band” to the alternative “Sophia wanted to create 

music, so she played in a band”). 

 

4.5.1 Study Hypotheses 

In this section, we outline the study hypotheses. Given the prominent role of lexical 

association in lexical ambiguity resolution (Khanna & Boland, 2010; Rabagliati et al., 

2013) and of verb bias in syntactic ambiguity resolution (e.g., Kidd & Bavin, 2005; 

Snedeker & Trueswell, 2004; Yacovone et al., 2021), we expected verbs to facilitate 

children’s performance when the unique cue available is verb lexical association, but 

it is an open question whether children would be sensitive to this bottom-up cue 

when verb plausibility does not help. 

Further, given the role of verb-event structure in early unambiguous word 

processing (Andreu et al., 2013; Mani et al., 2016), we would expect a strong effect 

of this top-down cue, but empirical evidence is needed to establish whether this 

would be the same for ambiguous word processing. 
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4.6 Method 

4.6.1 Participants 

All participants resided in the United Kingdom. We recruited 83 adults from the 

platform Prolific (age: M = 23 years, SD = 4.5 years; 55 females). Data from one 

adult were discarded for failing more than 1 out of 3 training trials. We used the 

adult dataset to carry out a series of power simulations, estimating the ideal sample 

size for child data collection. In doing so, we considered a range of true effect sizes, 

ensuring we achieved sufficient power even at smaller effect sizes than those 

expected from previous studies but still of practical significance. We also considered 

how power was affected by participant and item variation in interaction with sample 

size and effect size. Before collecting child data, we defined and pre-registered a 

data collection stopping rule in OSF at 

https://osf.io/a293m/?view_only==73b7fdb649ef42e0ab943d198b788c5c.This 

repository also contains a comprehensive report of the power analysis. The R scripts 

necessary to replicate the simulations are also available at 

https://osf.io/k2xmv/?view_only=5dbf0cb8e26f4b6e854eee28d93869e1.  

To summarize the criteria established by the stopping rule: Once the child 

sample reached N = 42 (the minimum adult sample for which power was simulated), 

different statistical models could be fitted to the child data. The models had differing 

complexities of random effects structure, with the final model selected being the 

most complex of those that satisfied all the criteria of the stopping rule. To stop data 

collection, a model (starting from the one with the most complex random structure) 

needed to demonstrate statistical convergence. Moreover, the stopping rule required 

that the standard deviation estimates of the random effect parameters of the child 

model (participant per condition slopes for more complex models; participant and 

item intercepts for the intercept-only model) should not exceed a specific threshold 

(defined by taking adults' standard deviations as the reference) to ensure adequate 

and stable power. For instance, the random effect standard deviations in the most 

complex model could not exceed twice the corresponding standard deviations in the 

adult model at N = 42. Crucially, if convergence and/or sufficient power were not 

achieved for any model, additional data were collected by adding one participant for 

https://osf.io/a293m/?view_only==73b7fdb649ef42e0ab943d198b788c5c
https://osf.io/k2xmv/?view_only=5dbf0cb8e26f4b6e854eee28d93869e1
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every counterbalancing experimental block (to ensure balanced control, verb-lexical, 

and verb-event data points for each target word). Effectively, the sample size was 

increased by N = 3 at every step. 

The criteria of the stopping rule were met upon reaching the final sample of N 

= 45. In addition to these 45 children, data from another 10 children had to be 

discarded during the course of data collection for various reasons (3 due to 

experimental errors, 1 due to fussiness, 5 due to failed training, and 1 due to 

language impairment). The final child sample included English-speaking children 

aged between 48 to 59 months (age: M = 52 months, SD = 3 months; gender: 8 

female, 9 male, 21 non-binary / third gender, 7 prefer not to say). The complete 

distributions of the child socio-demographic variables are reported in Appendix S25. 

This research project was approved by the ethics committee of the School of 

Psychology of Cardiff University (EC.18.05.08.5295GR).  

 

4.6.2 Materials 

We created experimental stories for the 12 ambiguous target words included in the 

ChiSense-12 corpus. The corpus was also tagged for verb stems that take 

ambiguous senses as object arguments. This allowed us to construct the 

experimental stories by computing relative frequencies of co-occurrence between 

verbs and target senses. Experimental stories with corresponding verb-target 

frequencies are shown in Appendix S26.  

To ensure that all senses in the study were known by children, we asked 

caregivers to fill in a questionnaire where they could indicate whether a target sense 

or context verb was “not understood”, “understood”, or “understood and used” by 

children. Parents responses on sense and verb knowledge across children are shown 

in Appendix S27. We excluded 24% of trials (129/540) for which a caregiver 

indicated the child did not know the context verb or at least one of the two target 

senses (although note that we obtained the same results when including the full 

sample of trials, see Appendix S28). 
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We also asked adults to name each picture used in the experiment. Given 

that we matched target and distractor pictures by frequency, we ensured that adults 

spontaneously named the distractors (not spoken in the stories) using the labels we 

used for the frequency matching (e.g., when matching “chicken” with the distractor 

“crow”, we ideally want the latter image to be named as “crow” by participants and 

not as “bird”). For every distractor, the expected label was always the most 

frequently reported, and was used by 89% adults on average (SD =15%). 

 

4.6.3 Procedure 

Adults completed the task independently online. Children’s online task was identical 

to the one completed by adults, but an experimenter supervised the sessions 

because children were asked to give verbal responses (i.e., to say the colour of the 

target picture background, see Figure 18). The presence of the experimenter was 

also to ensure that caregivers would not interfere in child responses and that 

children would stay engaged in every trial. 

Each participant in the experiment saw 4 control stories, 4 verb-lexical stories 

and 4 verb-event stories (all in randomized order), and assignment of stories to 

conditions was counterbalanced across participants (see counterbalancing blocks in 

Appendix S26).  

 

4.6.4 Statistical Analyses 

R scripts to reproduce all the figures, tables, and statistical results of this paper are 

available at https://osf.io/k2xmv/?view_only=5dbf0cb8e26f4b6e854eee28d93869e1. 

We first conducted our analyses on adults. Before collecting any child data, 

we pre-registered key aspects of the study design and our two main hypotheses at 

https://doi.org/10.17605/OSF.IO/FK378. The analyses that examined the two main 

hypotheses of the study contain no deviations from what is indicated in the pre-

registration documents. Additionally, we present a set of exploratory analyses not 

included in the pre-registration. These additional analyses were triggered by 

https://osf.io/k2xmv/?view_only=5dbf0cb8e26f4b6e854eee28d93869e1
https://doi.org/10.17605/OSF.IO/FK378
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comments received by anonymous reviewers, and we considered them valuable to 

shed light on the variables that might have determined adult and child performance 

at the experimental task. 

For the pre-registered analyses, we fitted mixed-effect logistic regression 

models separately to adults and children’s data. We used sense choice (dominant, 

subordinate) as the dependent variable, and condition as the independent variable 

(control, verb-lexical, verb-event). We specified two contrasts: control vs verb-

lexical, control vs verb-event. For the adult model, the random effect structure of 

the models included random intercepts for participant and item, and random slopes 

of condition per participant and item (excluding estimated correlations between item 

intercepts and slopes). For the child model, we included random intercepts of 

participant and item, and random slopes of participant per condition. These random 

effect structures were the ones that allowed the models to converge and for which 

our simulations indicated sufficient and stable power to detect effect sizes of interest 

(see simulation scripts on OSF). 

 

4.7 Results 

In this section, we report the results related to the two main hypotheses of the 

study. We report key results in text and include the full output of every statistical 

model in Appendix S28-S30.  

As can be seen in Figure 20, adults and children selected the subordinate 

meaning 96% and 56% of the time respectively in the control condition. This 

indicates that participants were able to integrate the sentence context to 

disambiguate the subordinate meaning of the target word. 

 An opposite pattern of responses, compared to the control condition, can be 

seen for both adults and children in the verb-event condition. Here, participants 

selected the dominant sense 88% and 62% of the time respectively. This suggests 

that they were able to rely on verb-event structures to select the dominant sense of 

the target words, over lexical associations from prior context pointing toward the 

subordinate. The difference in performance between control and verb-event 
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condition was significant for both adults (Odds Ratio = 759.56 [231.61, 2491.00], p 

< .001) and children (Odds Ratio = 7.39 [3.62, 15.11], p < .001). 
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Figure 20 Average percentage of trials in which an adult (panel a, N = 83) or child 

(panel b, N = 45) selected either dominant, subordinate, or distractor picture, as a 

function of condition (Control, Verb-Lexical, and Verb-Event). Error bars show 95% 

confidence intervals corrected for within-subject variance.  

 

Adults and children responded differently in the verb-lexical condition, 

however. Adults mostly relied on prior context (65% subordinate meaning selection) 

while children relied on verb-sense lexical association instead (60% dominant 

meaning selection). In other words, when verb-event structure in the target context 

was neutral, adults likely preferred to rely on the global plausibility of the story 

triggered by the lexical associates included in the prior context (i.e., even if prior and 

target contexts were not strongly related in terms of coherence, still in “Sophia 

listened to some music. Then, she got a band” adults selected “band [music group]” 

because the speaker talked about “music”). 

Children, instead, relied on the lexical association between verb and dominant 

sense in the language (speakers often talk about “getting a band [object]” in real-

world contexts). This result is in line with studies which showed children’s reliance 

on verb lexical associations in sentence parsing (e.g., Kidd & Bavin, 2005; Snedeker 

& Trueswell, 2004; Yacovone et al., 2021).  

Interestingly, the difference in performance between control and verb-lexical 

conditions was significant not only for children (Odds Ratio = 4.68 [2.31, 9.49], p < 

.001), but also for adults (Odds Ratio = 25.29 [9.00, 71.05], p < .001). In other 

words, although adults likely relied on global plausibility guided by prior context 

associations, they still selected more dominant senses in the verb-lexical than in the 

control condition.  

We further explore this result visually in Figure 21. Panel a shows that, in 

adults, there was more variability in dominant sense choice in the verb-lexical 

condition compared to the verb-event condition. This may indicate that adults also 

were residually sensitive to verb-lexical associations, given that the only difference 

between verb-lexical and verb-event conditions involved the verb preceding the 
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target. This result in adults is in line with their sensitivity to verb-patient lexical 

associations in studies where they are presented with (unambiguous) thematically 

appropriate patients differing in their strength of association to the verb (Andreu et 

al., 2013; Mani et al., 2016), and more generally with adults’ sensitivity to lexical 

associations in sentence parsing (Khanna & Boland, 2010; Witzel & Forster, 2014). 
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Figure 21 Mean percentage of dominant meaning choice in each condition (with 

95% confidence intervals corrected for within-subject variance) for adults (a) and 

children (b). Individual participants are also shown by data points, with lines that 

connect performance in Control and Experimental (Verb-Lexical or Verb-Event) 

conditions for each participant. 

 

The pre-registered analyses conducted so far supported our two hypotheses 

regarding the key facilitative role of both verb-event structures and verb-lexical 

associations in early lexical ambiguity resolution. However, these analyses did not 

take into consideration how and whether the variables that characterize our 

experimental items (prior context associations, verb-sense associations, target sense 

dominance in child-directed speech) or participants’ predictors (child verb knowledge 

from parent report) can capture participants’ response variability, and whether the 

effect of different predictors was similar in adults and children. We have examined 

these questions in the following exploratory analyses, which can shed light on the 

cues adults and children relied on when resolving lexical ambiguities.  

 

4.8 Exploratory Analyses 

Conducting further analyses on predictors of performance can help us examine the 

differences between how adults and children performed. In our previous analyses, 

we did not directly compare the performance of the two age groups. Making a direct 

comparison would be useful to see if adults and children relied on similar variables 

but only differed in the magnitude of the observed effects. Another possibility is that 

the two groups differed in how sensitive they were to certain variables, leading to 

qualitative differences in performance. 

One noticeable difference in performance between children and adults was 

observed in the verb-lexical condition. Adults predominantly selected the subordinate 

sense, whereas children mostly chose the dominant sense (Figure 20). One potential 

explanation is that adults may require only few lexical associations in the prior 

context to activate the subordinate sense, whereas children might need stronger 
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evidence, such as longer sentences or more robust associations, to activate the 

subordinate sense through bottom-up associations. In other words, the connection 

between “music” and “band” in “Sophia listened to some music. Then, she got a 

band” may be stronger in adults due to their greater language experience. 

Alternatively, children might be more sensitive to sentence local information 

and may struggle to integrate variables from the broader context (e.g., Gertner & 

Fisher, 2012), resulting in a higher reliance on verb-sense associations (e.g., “getting 

an elastic band”) compared to adults.  

Additionally, children might be more attuned to the word-level characteristic 

of sense dominance, as they might not fully integrate the sentence context and 

instead rely more on word-level information. 

 To explore these possibilities, we combined the data from both adults and 

children. We then applied a mixed-effects model, considering the sense choice in the 

verb-lexical condition (dominant/subordinate) as the outcome, and the variables age 

group (adult/child), relative frequency of the dominant sense (dominance), verb-

sense association, and prior context associations as predictors. This included two-

way interactions between predictors, and three-way interactions between the age 

group and each pair of continuous predictors. The full output of this model is 

provided in Appendix S29. 

Prior context associations were deduced by considering all the words in the 

preceding context and averaging their relative frequency of occurrence in child-

directed sentences which contained the target subordinate sense. Note that we also 

obtained consistent results when computing prior associations from only content 

words, pronouns, and prepositions (Rabagliati et al., 2013), or only content words. 

Our analysis revealed a significant main effect of age group (Odds Ratio = 

4.20 [2.41, 7.32], p < .001). This indicates that adults selected the dominant sense 

significantly less frequently than children in the verb-lexical condition, thus 

supporting a quantitative difference in performance between the two age groups. 

 We also found a main effect of verb-sense association (Odds Ratio = 1.78 

[1.25, 2.55], p = .001) and no significant interaction between verb-sense association 
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and age group (Odds Ratio = 0.78 [0.40, 1.37], p = .336). This result indicates that 

both adults and children were sensitive to this cue in similar way, as shown in Figure 

22.  

 

 

Figure 22 Boxplots showing the distribution of the percentage of dominant sense 

choices in the verb-lexical condition among adults and children, by verb-sense 

association. Black horizontal segments display the median values for each group. 

Verb-sense association was split at the median for graphical representation but was 

kept continuous in the statistical model. The data points represent individual 

participants and have been jittered to prevent visual overlap. The blue segments 

denote the 95% bootstrap confidence intervals of the median for each group, 

obtained from 1000 iterations.  

 

Further, we found a significant interaction between prior association and 

dominance (Odds Ratio = 0.55 [0.38, 0.80], p = .002), as well as an interaction 

between age group and dominance (Odds Ratio = 0.38 [0.21, 0.67], p = .001). We 

visually examine these two interactions in Figure 23, where we plot percentages of 
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dominant sense choice as a function of prior association and dominance, for both 

adults and children. Consistent with the first interaction, for both adults and children 

prior associations had a significant effect only at high levels of dominance. This is 

attributable to a positive correlation between prior association and dominance in the 

experimental stories (rs = .18), meaning the contrast between low and high prior 

association becomes more pronounced at high levels of dominance. As a result, at 

low levels of dominance, prior association showed no significant effect, regardless of 

age. 
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Figure 23 Boxplots showing the distribution of the percentages of dominant sense 

choice in the verb-lexical condition for adults (panel a) and children (panel b), as a 

function of prior association and sense dominance. Prior association and sense 

dominance were split at their median for graphical representation but were kept 

continuous in the statistical model. The data points represent individual participants 

and have been jittered to prevent visual overlap. Black horizontal segments display 

the median values for each group. The blue segments denote the 95% bootstrap 

confidence intervals of the median for each group, obtained from 1000 iterations. 

 

Also, at low levels of dominance, children's performance was at ceiling (i.e., 

they almost always selected the dominant meaning) while adult performance was at 

floor (i.e., they almost never selected the dominant meaning, consistent with the 

second interaction found). This could suggest that even when dominance was not 

strongly pronounced, children were still clearly sensitive to it, being more receptive 

to the word-level frequency of the dominant sense. This might have determined a 

qualitative difference in performance. However, the plausibility of this explanation is 

unclear as we would also expect high dominance to mitigate the effect of high prior 
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association. Yet, what we see in children's performance is a floor effect (evidenced 

by the boxplot on the far right of Figure 23b). Perhaps it is more likely that adults 

simply exhibited less overall sensitivity to sense dominance because our dominance 

variable may not accurately reflect adults' representations. In fact, the dominance 

counts were based on child-directed speech and may not accurately reflect sense 

dominance in adult-directed speech. Frequency counts for adult-directed speech 

were unavailable, as tagged adult corpora usually consist of written text rather than 

spoken conversations. 

Importantly, these results indicate that children, like adults, demonstrated 

sensitivity to prior context associations and were similarly responsive to verb-sense 

associations. This shows they were capable of using both broader and local contexts 

for disambiguation. 

Finally, could it be that children’s high sensitivity to dominance might have 

assisted them in selecting the dominant meaning in the verb-event condition, 

regardless of their knowledge of verb-event structures? To further examine the role 

of sense dominance, we fitted another exploratory mixed-effects model (Appendix 

S29) where sense choice in the verb-event condition was the outcome variable, with 

age group (adult/child), prior association, and sense dominance as predictors 

(including two-way and three-way interactions). We only found a main effect of age 

group (Odds Ratio = 0.32 [0.15, 0.70], p = 0.004), with adults selecting significantly 

more frequently the dominant sense in this condition, therefore indicating a 

quantitative difference in performance between the two age groups. Moreover, we 

found no effect of sense dominance (Odds Ratio = 0.87 [0.37, 2.05], p = 0.758) nor 

prior associations (Odds Ratio = 0.87 [0.36, 2.13], p = 0.763), suggesting that 

adults and children likely relied on verb-event structures to disambiguate the target 

words. 

To further investigate this result, we fitted an additional mixed-effects model 

on child data only (Appendix S29), using sense choice in the verb-event condition as 

the outcome, with prior association, sense dominance, and verb production (Not 

Produced = Not used or Understand only; Produced = Understand and Use) as 

predictors (including two-way interactions). Verb production was computed from our 
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parent-report questionnaire. Interestingly, Verb production was the only significant 

predictor in this model (Odds Ratio = 3.36 [1.08, 10.49], p = 0.037), with children 

being more likely to select the dominant meaning if parents reported production of 

the preceding verb (see Figure 24). 

 

 

Figure 24 Boxplots showing the distribution of percentage of dominant sense 

choice in the verb-event condition, when caregivers reported the experimental verb 

was produced by the children (Produced) or not (Not produced). Item variability is 

shown through connecting lines. The blue segments denote the 95% bootstrap 

confidence intervals of the median for each group, obtained from 1000 iterations. 

 

This provides preliminary evidence that children relied on their understanding 

of verb-event structures in the verb-event condition (assuming that being able to 

produce a verb is indicative of more consolidated knowledge of verb-event 

structure). It is worth noting that, if these assumptions hold true, one would also 

anticipate the association with verb production to be less pronounced in the verb-

lexical condition (i.e., the verb-event structure is neutral in this condition, thus 

knowledge of the verbs should not predict children’s performance). However, we 
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could not conduct the same analysis for the verb-lexical condition as the vast 

majority of verbs in this condition were reported by parents as being produced by 

nearly all children in our sample. 

In conclusion, our exploratory analyses have overall indicated that children 

were sensitive to sentence context, and that our manipulations of verb-lexical 

associations and verb-event structures may have functioned as cues for lexical 

disambiguation. While children displayed a similar degree of sensitivity to sentence-

context cues as adults, their overall performance was significantly lower than that of 

the adults. This suggests that their abilities to use the different cues presented in the 

experimental task may not have yet reached the adult state. Finally, the only 

qualitative difference in performance we found involved children’s higher reliance on 

sense dominance in the verb-lexical condition compared to adults. However, this 

result requires further exploration in future work to rule out the possibility that 

adults' representations of sense frequency distributions might be different from that 

of children due to differing uses of senses in adult-directed speech. 

 

4.9 Discussion 

Although theories of word learning (e.g., Markman, 1991; Trueswell et al., 2013; Yu 

& Smith, 2007) and word processing (e.g., Plaut et al., 1996; Seidenberg & 

McClelland, 1989) typically do not account for lexical ambiguity and predict that 

young children do not map word forms to multiple meanings, recent evidence 

indicates that child-directed speech is rich in word sense ambiguity, and the same is 

true for children’s early vocabularies (Meylan et al., 2021). In this study, we found 

evidence suggesting that children as young as four years of age map and can 

process at least two alternative meanings of familiar noun forms, supporting similar 

findings on early lexical disambiguation (e.g., Hahn et al., 2015; Rabagliati et al., 

2013). Importantly, we examined the interplay between bottom-up and top-down 

cues at the sentence level. Our findings show that, when these cues were in direct 

competition with prior lexical associations pointing toward a subordinate meaning, 

children preferentially relied on verb-sense associations (verb-lexical condition) or 
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verb-event structures (verb-event condition) to select the dominant sense of an 

ambiguous target. In subsequent analyses of predictors of child performance, we 

identified verb-sense associations as a significant predictor in the verb-lexical 

condition and verb-event knowledge (measured by a proxy of parent-reported verb 

knowledge) as a significant predictor in the verb-event condition. These findings 

provide the first evidence that children can resolve a contrastive task by integrating 

and mostly relying on either bottom-up verb-lexical or top-down verb-event 

structure cues during sentence parsing for disambiguation. This supports the idea 

that children's word representations are contextual, rich in both bottom-up and top-

down aspects from early in their development (Srinivasan & Rabagliati, 2021). 

Moreover, this study highlighted the importance of leveraging naturalistic 

conversations to disentangle the effect of bottom-up and top-down cues at the 

sentence level, which are often confounded due to the ubiquitous role of lexical 

statistics in language development (e.g., Ambridge et al., 2015). In the following 

paragraphs, we discuss each finding that emerged in the study. 

In the pre-registered analyses, we found that children could switch from the 

subordinate meaning implied by the prior context to the dominant meaning implied 

by the target context. Additionally, in the exploratory analyses, we showed that 

children weighed different cues at the word and sentence level to make categorical 

decisions on the target word meanings. Importantly, children were sensitive to the 

strength of each of the cues present in the experimental task, from the relative 

frequency of each target meaning in the language, to more distant effects from 

bottom-up prior context lexical associations, and more local sentence cues like 

bottom-up verb-sense associations or top-down verb-event information. 

Children were not only capable of handling multiple bottom-up and top-down 

cues in sentence parsing for disambiguation, but these cues also related to child 

performance in a continuous manner. Specifically, the more frequently a target 

meaning occurred in the language, the higher the likelihood that children selected 

this dominant meaning during the task. This evidence aligns with findings about 

children’s faster naming latencies when a prime activates a target dominant sense 

(Booth et al., 2006; Simpson & Foster, 1986). 
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At the same time, we found that sentence context can serve to mitigate the 

subordinate-bias effect by providing a supportive environment for less frequently 

used meanings of a word. In fact, the stronger the word associations in the prior 

context with the subordinate target meaning, the higher the likelihood of children 

selecting the subordinate meaning. This influence of bottom-up word associations 

supports findings such as those from Rabagliati et al. (2013), who found that prior 

associations from global context (preceding sentence) could explain some of the 

variance in child lexical disambiguation. It is also worth noting that, in that study, 

the influence of lexical associations was found in coherent tasks, where all sentence 

cues pointed toward one meaning. The present study replicated the result but in a 

contrastive task, showing that prior associations play a role also when put in 

competition with other cues to word meaning. 

Moreover, the more frequently a verb was used with a specific target 

dominant sense in child-directed speech—for example, “getting an elastic band”—

the higher the likelihood that children selected the dominant sense in the verb-lexical 

condition. This result aligns with other findings showing the importance of lexical 

statistics that verbs carry with them for child language processing (e.g., Kidd & 

Bavin, 2005; Mani et al., 2016; Snedeker & Trueswell, 2004; Yacovone et al., 2021), 

and more generally, is in line with evidence showing that children leverage sentence 

local information in sentence parsing (e.g., Gertner & Fisher, 2012). 

Lastly, the stronger a child's knowledge of a preceding verb's semantics (as 

indexed by their use of the verb in production), the higher the likelihood of the child 

selecting the (dominant) sense in the verb-event structure condition, where that 

sense represented a more plausible argument for the verb. This result is line with 

studies on unambiguous word processing that have shown how children can use 

verb-event structures in sentence parsing to judge novel arguments of familiar verbs 

(e.g., Andreu et al., 2013).  

Overall, the relations between predictors and child performance provide 

evidence in support of a cue-validity account (Trueswell & Gleitman, 2007): Children 

are able to weigh different bottom-up and top-down cues depending on their 

reliability to determine word meaning. This account also suggests that as children 
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grow, they gradually refine their estimation of the general reliability of each cue in 

determining word meaning. Such fine-tuning could account for differences in how 

children of varying ages apply these cues. Thus, to further support this account, it 

would be worthwhile to study the evolution of cue weighting in our task throughout 

childhood, both quantitatively and qualitatively. For instance, as children grow and 

gain a deeper understanding of the role that top-down cues play in sentence 

structure, we anticipate that they will increasingly rely on these cues. For example, a 

more comprehensive understanding of naturalistic event sequences could enable 

children to recognize the importance of global plausibility in contrastive lexical 

ambiguity tasks. 

Finally, the significant differences between control and experimental 

conditions as well as the significance of different predictors of performance align 

with a semantic-settling model of lexical processing (Rodd, 2020). This model 

emphasizes the interactive role of word-level sense-dominance and sentence-level 

bottom-up and top-down cues to ambiguous word representation. Evidence 

supporting this account primarily comes from adult processing, so this study has 

contributed to extending the model’s predictions to child processing. 

 

4.9.1 Future Directions 

4.9.1.1 Adult and Child Performance  

We found both quantitative and qualitative differences in performance between 

adults and children. Below, we discuss how different explanations for these 

differences could be investigated in future work. 

Both adults and children predominantly selected dominant senses when these 

were primed by verb-event structures (more than 50% dominance sense choices). 

This suggests that both groups could rely on their verb-event knowledge and 

override the influence from bottom-up prior context lexical associations. However, 

adults more consistently chose dominant senses than children, indicating a 

quantitative difference in performance. One reason for this difference might be that 

children's limited language experience with verbs could have negatively affected 
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their use of verb-event structures compared to adults. As observed, verb production 

was a significant variable in predicting child performance in the verb-event condition. 

Thus, differences in performance could be due to stronger and richer verb 

representations in adults. 

Another possible explanation, which is not mutually exclusive, could relate to 

children's difficulties in revising their interpretations towards the dominant sense 

after initially committing to the subordinate upon hearing prior context associate 

words. This explanation would align with studies where children show difficulties in 

revising their interpretations (e.g., Kidd & Bavin, 2005; Qi et al., 2020; Yacovone et 

al., 2021). These processing difficulties could potentially be explained by immature 

executive function abilities (e.g., Khanna & Boland, 2010). If these difficulties are 

present, we expect that children would switch to the dominant sense more slowly 

than adults. Therefore, in future research, it would be important to implement a 

direct measure of switching behaviour based on real-time sentence processing. For 

instance, we hypothesise that when examining those trials in which participants 

begin by fixating on the subordinate sense, children would be slower than adults to 

redirect their eye-gaze to the dominant meaning upon hearing the disambiguating 

verb. Furthermore, we would expect measures of executive function abilities to 

account for age group differences beyond the influence of verb knowledge. 

While we did not employ a direct measure of switching behaviour in this 

study, our comparison between the control and verb-event condition could still be 

seen as an indicator of group-level switching behaviour. In simpler terms, we 

evaluated how challenging it is for children to switch to the dominant meaning when 

considering their baseline preference for the subordinate sense in the control 

condition. For instance, we found that children chose the dominant sense in 62% 

and 25% of trials in the verb-event and control conditions, respectively. The 

difference of 37% could be considered a proxy of switching performance. The 

difference between conditions was considerably higher in adults (88% - 4% = 84%), 

suggesting that their switching performance may have been better. We further 

examined these differences between adults and children in an additional exploratory 

statistical model (see Appendix S30). This additional model indicated that the 
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difference between adults and children was significant (Odds Ratio Age Group * 

[Control vs. Verb-event] = .02 [.01, .05], p < .001). However, without a measure of 

executive function skills, we cannot determine whether this age group difference 

was exclusively due to children's lack of verb-event knowledge, or whether 

processing difficulties also played a part. Future research should explore this issue in 

depth. 

Aside from processing limitations, it is worth noting that the involvement of 

limited language experience might also explain the qualitative difference in the verb-

lexical condition. When exposed to stories with neutral verbs (e.g., “Sophia listened 

to some music. Then she got a band”), we would expect bottom-up lexical 

associations from the prior context (listen to, music) to trigger adults' top-down 

event knowledge (i.e., the only interpretation that forces the story to have global 

coherence is “music band”). As shown in the second experiment of Rabagliati et al. 

(2013), 4-year-olds might not yet have mastered the ability to integrate sentence 

cues into a global interpretation of discourse. This skill requires children to use their 

pragmatic abilities, reasoning about real-world events and how these are expressed 

through language. Therefore, the lack of rich language representations might have 

determined children's higher reliance on the word level (i.e., sense dominance) 

instead of the more global discourse context. 

In summary, while children have demonstrated the ability to use different 

sentence context cues for disambiguation, they have not yet reached the adult 

stage. To better understand the quantitative and qualitative differences between 

adults and children, future work should consider examining performance at different 

child ages, collecting measures of cognitive abilities such as inhibition skills (e.g., 

Khanna & Boland, 2010), as well as measures of pragmatic knowledge of events, 

which have not yet been considered when assessing child lexical disambiguation 

(e.g., tests that can help assess children's understanding of causal relationships, 

event sequences, and social norms, e.g., Khan et al., 2016). 
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4.9.1.2 Learning Mechanisms  

What types of learning mechanisms might be involved in children's use of verb 

knowledge for lexical disambiguation? A semantic-settling account posits that the 

significance of various cues to disambiguation changes through language experience 

(Rodd, 2020). This account assumes that the individual uses mechanisms that track 

and store highly specific knowledge about the distributional statistics of word 

meanings’ usage. This context-dependent knowledge is hypothesized to exert an 

effect both in the long term and short term (Rodd et al., 2016; Wiley et al., 2018). 

For instance, baseball players have trouble inhibiting baseball-related senses of 

target words, even in fully disambiguating contexts. An example would be still 

activating the sense “baseball bat” in the story “Monica had a great fear of things 

flying around her head; she looked for the bats that lived in the shed” (Wiley et al., 

2018). Further, a recent encounter with a sense of an ambiguous word boosts its 

availability and reactivation from minutes to a day (Gaskell et al., 2019; Rodd et al., 

2016). 

Rodd's (2020) proposal of distributional learning mechanisms that gradually 

form sense representations aligns with usage-based accounts of language 

development (e.g., Abbot-Smith & Tomasello, 2006; Ambridge 2019; 2020; Bybee, 

2010b). These accounts suggest that the child undergoes continuous readaptation of 

their representations through language experience. Usage-based accounts posit that 

at least two mechanisms are involved in language learning: a simple associative 

learning mechanism, which is sensitive to different sources of statistical regularities 

in the linguistic input, and an analogical mechanism that analyses common features 

between similar linguistic exemplars encountered to abstract linguistic structures. 

For instance, related to the specific context of our study, Alishahi and Stevenson 

(2007) proposed a Bayesian computational model that learns verb-event structures 

by gradually generalizing over the semantic characteristics of the verb's syntactic 

arguments encountered during training. The learning process is enabled by a 

probabilistic mechanism that first records the associative relation between a verb 

and its semantic features, the position of the syntactic arguments, and the semantic 

characteristics of the items that progressively fill those arguments. The model draws 
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analogies across similar sentences and forms verb construction representations, 

which can then generalize arguments to novel items. Through incremental 

probabilistic learning, the model successfully simulated adult plausibility judgments 

of verb-selectional preferences (e.g., “The mechanic warned the driver” versus “The 

mechanic warned the engine”). 

In principle, the simulations by Alishahi and Stevenson (2007) demonstrate 

that usage-based mechanisms can develop verb construction representations and 

assist in processing novel arguments. These findings imply that a usage-based 

approach might be promising for understanding how verb constructions assist 

children in disambiguating words with multiple meanings. However, it is important to 

note that the simulations assumed a wealth of knowledge on the part of the learner, 

including a rich understanding of verb and argument semantics (derived from 

dictionaries), ideal identification of syntactic arguments, their semantics, and their 

positions relative to the main verb. Therefore, it remains unclear whether a usage-

based learner could capture verb-event influences on child lexical disambiguation 

when applied to raw, naturalistic language, without the need to supplement the 

input with external resources that enhance sensitivity to syntactic and semantic 

information.  

 

4.10 Limitations 

An important aspect of word disambiguation, which we have not explored, involves 

the semantic relation between different senses of a target form. Specifically, a key 

distinction is often drawn between polysemous and homophonous words. 

Polysemous word forms correspond to senses that are semantically related (e.g., 

chicken as an animal or meat), while homophonous senses do not share this relation 

(e.g., bat as an animal or an object). Research on this subject has demonstrated 

that polysemy is particularly advantageous for children's mapping of word forms to 

multiple novel senses (e.g., Floyd & Goldberg, 2021). This is likely because they 

have already mapped certain semantic dimensions in common between the senses 

and only need to focus on the new elements that determine sense difference.  
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In word processing, polysemy also presents an advantage, with the reason 

being that homophony increases the competition between senses, resulting in slower 

reading disambiguation in adults (e.g., Frisson, 2009). For children, instead, no 

processing differences were found between polysemous and homophonous words 

(Rabagliati et al., 2013). However, this conclusion was drawn from an offline 

measure from a forced-choice task, thus it might be possible to still find differences 

with more fine-grained measures of performance (e.g., tracking eye-movements as 

the spoken stories unfold in a looking-while-listening task).  

In this study, we did not investigate differences between ambiguity types due 

to the limited number of items used (N = 12). This limitation was determined by the 

constraints in the number of available items that were sense-tagged in the ChiSense-

12 corpus. The forthcoming release of the sense-tagged corpus by Meylan et al. 

(2021) will increase the number of items available for testing, enabling researchers 

to evaluate different ambiguity types in our or similar tasks. It is important to note, 

however, that the distinction between polysemy and homophony is typically based 

on dictionary definitions. Research has demonstrated that there is considerable 

variability in perceived relatedness of senses in polysemy (Klein & Murphy, 2001). 

This variation can present complications when attempting to test ambiguity types 

experimentally, as these types cannot be easily defined. 

Finally, while our study has benefited from the use of a sense-tagged corpus 

of child-directed speech, the application was constrained in its relevance to adults' 

performance. For instance, although children displayed a higher reliance on sense 

dominance compared to adults, it was not possible to conclude that sense 

dominance plays a more substantial role in children's than adults’ disambiguation 

because our measure of sense dominance was derived from a corpus of child-

directed speech. Sense dominance might exhibit different distribution patterns when 

considering adult-adult conversations. In future research, it would be advantageous 

to either employ sense-tagged adult-directed conversations (as soon as they become 

available) or to conduct a pilot study wherein sense dominance is inferred through 

online measures, such as reaction time or total looking time toward alternative 

senses upon hearing a target word in isolation. These strategies would more 
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effectively differentiate the effects of sense dominance in the two age groups and 

more accurately assess whether the extent to which the subordinate bias effect is 

flexible and responsive to context changes during development. 

 

4.11 Conclusion 

This study examined children’s ability for lexical disambiguation, focusing on the 

interplay between bottom-up and top-down cues in word interpretation. The results 

showed that children both use and show sensitivity to the strength of multiple 

disambiguation cues. This supports recent models of lexical processing that highlight 

the contextual nature of word representations. The study also underscored both the 

utility and limitations of combining corpus analyses of naturalistic conversations with 

experimental work. On the one hand, this approach allows for meticulous control 

over variables that often intertwine in naturalistic speech. On the other hand, it also 

emphasizes the challenges associated with the limited availability of data sourced 

from language corpora. Lastly, the study found quantitative and qualitative 

differences between adults and children. These differences prompt new questions 

about the learning mechanisms, processing constraints, and aspects of language 

experience that may drive the transition to adult disambiguation skills. 
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Chapter 5 

General Discussion 

 

5.1 General Aims of the Thesis 

This thesis focused on understanding how experiences with naturalistic speech can 

influence the way infants and children learn and use words. A core assumption of 

the usage-based theory of language development is that children form word 

representations by consistently attending to linguistic input through domain-general 

cognitive processes (Bybee, 2010b). This assumption carries two implications: First, 

computational models of domain-general processes - when applied to naturalistic 

language input - should be able to capture children's performance. Second, effects 

of children's naturalistic language experiences should be evident when studying how 

they learn and process words. In this thesis, I identified two research areas where 

assessing these implications of the usage-based theory of language development 

has been challenging, mostly due to methodological issues associated with 

connecting what children hear in their naturalistic environments to their actual word 

learning and processing. Across three empirical chapters, I introduced novel 

approaches to evaluate the impact of naturalistic language experiences and the role 

of domain-general processes in early word learning and processing. 

In the following sections, I provide a summary of the findings from the 

empirical chapters, alongside a discussion on the implications of these studies, their 

limitations, and suggestions for future research. 

 

5.2 The Role of Chunking in Early Naturalistic Word Segmentation and 

Word Learning 

5.2.1 Chapter 2. CLASSIC Utterance Boundary: A Chunking-Based Model 

of Early Naturalistic Word Segmentation 

Chapter 2 examined the role of a domain-general cognitive process of chunking (i.e., 

the ability to learn from associations) in how children segment words from 
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naturalistic speech. While previous studies have shown that chunking-based 

computational models can segment naturalistic speech with high accuracy (e.g., 

French et al., 2011; Monaghan & Christiansen, 2010), there has been a lack of 

evaluation metrics that link model segmentation accuracy to infants' real-world 

performance. To address this, I introduced new evaluation measures that connect 

model segmentation accuracy to the naturalistic word productions found in child 

speech. Using these measures, a developmentally plausible model is characterized as 

one that accurately segments words which children produce early on, and also 

acquires a vocabulary that mirrors that of children in terms of various word-level 

characteristics: Word length, word frequency, neighbourhood density, and 

phonotactic probability. Moreover, I introduced a new computational model of early 

word segmentation, CLASSIC-UB. This model is an extension of the vocabulary 

learning model CLASSIC (Jones & Rowland, 2017; Jones et al., 2021; Jones, 2016; 

Jones, Justice, et al., 2020), which I have adapted to segment naturalistic 

continuous speech. CLASSIC-UB performs word segmentation by combining the 

learning of frequently associated phonological sequences with information at the 

start and end of utterances. I evaluated the performance of CLASSIC-UB against 

previous chunking and nonchunking models of segmentation, including the chunking 

model PUDDLE (Monaghan & Christiansen, 2010) and two models that identify word 

boundaries in speech based on sound transitional probabilities (e.g., Saksida et al., 

2016). 

The primary finding of this study was that a model's ability to segment 

naturalistic input with high accuracy (i.e., identifying the largest proportion of words 

from the input) does not necessarily make it developmentally plausible. 

Interestingly, although CLASSIC-UB segmented naturalistic input with lower accuracy 

than the competing chunking model PUDDLE, it performed better than PUDDLE at 

capturing the distribution of words children produce, in terms of word length and 

neighbourhood density. An analysis of the performance differences among models 

showed that CLASSIC-UB's advantage was related to its use of overlapping 

phonological sequences at varied grain sizes. This characteristic helped the model in 

learning words typically difficult to learn (those that are long and have few 

phonological neighbours in the language) but are still acquired by children. 
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The study's second key finding was that sensitivity to both utterance-initial 

and utterance-final cues improved CLASSIC-UB’s segmentation accuracy. However, 

only utterance-final cues played a role in capturing child vocabularies. This 

distinction is related to specific characteristics of the input at utterance boundaries. 

In child-directed speech, a diverse set of novel words often appears in the 

utterance-final position, making this cue particularly beneficial for vocabulary 

acquisition. In contrast, fewer novel words are found in utterance-initial position, 

making them less relevant for word acquisition. Still, words in the utterance-initial 

position are frequently repeated (e.g., function words). This aspect of token 

frequency allows the model to segment these words with high accuracy, thereby 

improving its performance in segmentation accuracy measures. 

Finally, the study highlighted the better performance of chunking models 

(CLASSIC-UB, PUDDLE) over transitional probability models in terms of naturalistic 

segmentation measures and in capturing child production measures. The chunking 

models consistently outperformed the transitional probability models across all 

accuracy metrics. They also more effectively captured child vocabulary metrics at the 

lexical level, such as word length, word frequency, and neighbourhood density. This 

observation is consistent with earlier studies showing that chunking models segment 

naturalistic input with greater accuracy than transitional probability models (e.g., 

Larsen et al., 2017). Additionally, chunking models have been found to more 

accurately capture lexical effects on word segmentation in lab settings compared to 

transitional probability models (e.g., French et al., 2011; Kurumada et al., 2013). 

Overall, these results indicate that the cognitive process of chunking might play a 

significant role in early naturalistic word segmentation and learning. 

 

5.2.2 Chapter 3. Simulating Early Word Segmentation and Word Learning 

from Italian Child-Directed Speech 

Chapter 3 extended the first study of the thesis by examining the cross-linguistic 

validity of its findings, using Italian as a case study. Overall, the research confirmed 

the better performance of chunking models over transitional probability models in 
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segmenting naturalistic input and capturing child vocabularies. The advantage of 

CLASSIC-UB over other models was also further confirmed in the Italian context, 

supporting the first study’s conclusions about its developmental plausibility. 

This second study investigated how the variability previously observed in 

model segmentation accuracy across languages (e.g., Saksida et al., 2016) might 

relate to the models' developmental plausibility (as assessed using the new 

evaluation metrics introduced in Chapter 2). In this study, I conducted a detailed 

analysis to determine whether the results from the English simulations could be 

extended to Italian. Additionally, I aimed to understand how outcomes varied based 

on specific characteristics of the language under investigation. 

The primary focus of the second study was to assess how the average word 

length of a language influenced simulation results. The study on English examined 

potential basic perception units (phonemes and syllables) that infants might initially 

use to tackle the segmentation problem and how these choices impacted model 

learning. However, conclusions regarding this aspect could not be drawn, as the new 

evaluation metrics applied to syllabic input demonstrated low sensitivity. I 

hypothesized that this issue likely arose because English contains a significant 

proportion of monosyllabic words. For this reason, a random baseline model 

exhibited high performance, leaving minimal room for other models to account for 

variability in child vocabularies. Therefore, for the second study, I used Italian child-

directed speech, which has a smaller proportion of monosyllabic words. While using 

Italian did improve the sensitivity of the models, it only allowed for meaningful 

comparisons across syllable-based models in terms of word segmentation accuracy, 

not in word production. Subsequent exploratory analyses indicated that this limited 

sensitivity was determined by neglecting the role of word frequency in word 

production measures. This factor was overlooked in word-level measures that 

considered the pool of unique word types a model acquired from the input. 

By replicating the simulations with Italian and employing more sensitive 

measures, I was able to link segmentation accuracy to child production vocabularies 

when considering both phonemes and syllables as basic units of infant speech 

perception. This analysis led me to conclude that segmentation models generally 
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performed better when exposed to phonemic rather than syllabic input. This finding 

aligns with existing research emphasizing the importance of subsyllabic units in early 

word processing and learning (Fais et al., 2012; Jusczyk & Aslin, 1995; Mattys & 

Jusczyk, 2001; Mani & Plunkett, 2010). 

A second significant finding related to the impact of differences in average 

word length across languages on CLASSIC-UB's ability to capture both sublexical 

(phonotactic probability) and lexical (neighbourhood density) characteristics of child 

vocabularies.  I found that CLASSIC-UB held an advantage over other competing 

models in capturing English children's vocabulary productions by neighbourhood 

density. However, it showed no such advantage when capturing word productions 

by phonotactic probability. Conversely, in Italian, the situation was the opposite: 

CLASSIC-UB outperformed other models in terms of phonotactic probability but not 

with neighbourhood density. In relation to these findings, I observed that the Italian 

language offers a greater proportion of short biphone sequences than longer 

phonological sequences. These short biphone sequences were likely used by the 

model to improve its vocabulary learning, making it particularly proficient at 

capturing phonotactic probability in Italian child vocabularies. In contrast, English 

provides longer sequences that that are captured by the definition of a phonological 

neighbour. CLASSIC-UB was also sensitive to these longer sequences, as its learning 

spans multiple chunk lengths, allowing it to capture the neighbourhood density of 

English child vocabularies. In essence, when we examined the impact of word 

length, we found that overlapping phonological sequences affected CLASSIC-UB's 

learning in both Italian and English. The extent of this effect was determined by the 

specific language input's prominent features. 

Another level of investigation concerned the differences between English and 

Italian in terms of morphological complexity. Previous studies have shown 

morphological complexity to impact models' segmentation accuracy (e.g., Phillips & 

Pearl, 2014). The results of the second study supported past findings that higher 

rates of oversegmentation occurred in languages with richer morphologies, such as 

Italian. This oversegmentation was also related to the discovery of morphological 

units in the speech input. Most importantly, for the first time, I examined how rates 
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of oversegmentation affect model developmental plausibility. I found that 

oversegmentation did not negatively impact CLASSIC-UB’s ability to capture the 

properties of child vocabularies. Furthermore, the model was able to acquire 

morphological units as well as word forms, in line with Italian children’s early 

comprehension of morphology (e.g., Ferry et al., 2020). 

 Finally, the cross-linguistic extension of previous simulations allowed me to 

investigate the advantage of utterance-final boundaries in capturing child 

vocabularies. Italian child-directed speech is distinctive because it contains a higher 

proportion of verbs than nouns, yet children still learn more nouns (Longobardi et 

al., 2015). Italian nouns often appear in the utterance-final position, which could 

explain the children's noun advantage. The study revealed that chunking models 

sensitive to utterance-final cues exhibited a noun advantage as in child vocabularies, 

despite being exposed to a higher proportion of verbs. This supported the significant 

role of utterance-final cues in vocabulary learning. Importantly, this aspect could not 

be adequately investigated using English child-directed speech since, while nouns 

also appear in utterance-final position, they constitute the largest word category 

(i.e., utterance-final word frequency and word category frequency are entangled). 

This constitutes a confound, making the use of Italian speech important for 

assessing the role of utterance-final cues. 

 

5.2.3 Implications for the Study of Early Word Segmentation and Word 

Learning 

The findings from the studies presented in Chapters 2 and 3 have several 

implications for research on early naturalistic word segmentation. When modelling 

either English or Italian segmentation, I discovered that the results from 

segmentation accuracy measures were not always in agreement with those based on 

model performance on developmental data. This potential misalignment between 

these two types of measures has been highlighted in previous work (Larsen et al., 

2017). The studies in this thesis confirm the need for greater attention to the type of 

evaluation measures used to assess developmental plausibility. 
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Attention has previously been given to building models based on cognitively 

plausible assumptions (e.g., Phillips & Pearl, 2015). Discussions have centred around 

which underlying learning mechanisms, cognitive constraints, and speech perception 

units might best approximate the actual segmentation task infants face. Additionally, 

the findings in this thesis emphasize the need to delve deeper into constructing 

evaluation measures that more closely align model performance with developmental 

data. This alignment is particularly challenging in the context of naturalistic 

segmentation. Carefully designed experimental tasks can produce scores that reflect 

the types of representations infants acquire in laboratory settings. These scores can 

be directly compared to model outputs to infer developmental plausibility (e.g., 

French et al., 2011; Perruchet & Vinter, 1998). However, it is more challenging to 

extract scores that represent infant comprehension in real-world settings. One 

solution I proposed in this thesis is to capitalize on the close relation between word 

segmentation and word learning. By using production vocabularies from extensive 

corpora of naturalistic conversations, one can create rich sets of developmental 

measures of model performance. 

The strength of the approach based on child production lies not only in 

providing a child-based benchmark for model evaluation and comparison but also in 

facilitating a detailed examination of the architectural differences that cause 

variation in model performance. Specifically, child productions offer large sample 

sizes that enable an in-depth analysis of different properties of child vocabularies. 

This approach overcame the lack of sensitivity in the word age of acquisition 

measures based on CDI estimates for both English (Chapter 2) and Italian (Chapter 

3). This insensitivity (also discussed in point 5 of the Notes section) was due to the 

samples of words available from the CDI being smaller than those available in the 

production vocabularies extracted from the CHILDES database. Moreover, the large 

samples of production vocabularies allowed me to examine interactions between 

variables. For instance, the advantage of CLASSIC-UB in capturing word length and 

neighbourhood density distributions was assessed by examining how its alignment 

with child distributions improved with increasing word frequency. In this context, the 

large sample size made it feasible to explore interactions between word frequency 

and other word-level measures. Another benefit of using large samples of child 



148 
 

productions is the opportunity to analyse the roles of type and token frequencies. 

This was evident when exploring the segmentation and acquisition of words at 

utterance boundaries in both English and Italian, also considering how these 

variables might influence the acquisition of words from different part-of-speech 

categories. Overall, the results presented in this thesis suggest that the proposed 

model evaluation method holds promise for detailed investigations into the 

plausibility of various learning mechanisms associated with child word segmentation 

and learning. 

The results from the studies in the thesis carry implications for theoretical 

models of early word segmentation and word learning. Previous research in word 

segmentation has particularly focused on the role of transitional probabilities and 

chunk frequency (e.g., French et al., 2011). The advantage of CLASSIC-UB over 

other models is that it captures the potential role of overlapping phonological 

sequences in word segmentation. Although this was not the central focus of earlier 

studies, various word segmentation models contemplate the role of overlapping 

sequences at different levels. For instance, in the chunking-based segmentation 

model, PARSER (Perruchet & Vinter, 1998), the inclusion of a memory interference 

parameter could allow researchers to examine how overlapping phonological 

sequences might either facilitate or disrupt the activation of phonological chunks. 

Similarly, the neural network segmentation model, TRACX (French et al., 2011), 

employs distributed representations of chunks spread across its hidden layers. These 

distributed representations potentially offer a highly flexible similarity gradient across 

chunks. This flexibility does not restrict the model to evaluating overlapping 

sequences for adjacent sequences, as seen in CLASSIC-UB or PARSER. Instead, it 

can go beyond by evaluating the similarity based on sequences with intervening 

elements. For instance, the model's responses to nonwords like "gaboti" and 

"kapodi" would be more closely aligned than when exposed to "gaboti" and 

"pudosa", even though both pairs do not share overlapping sequences of adjacent 

sounds. Evidence suggests that sequences with intervening elements play a role in 

infant word segmentation at 17 months of age and subsequent word learning (Frost 

et al., 2020; Monaghan et al., 2023). This indicates that it may also be important to 
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extend CLASSIC-UB’s architecture to incorporate chunks that encode non-adjacent 

dependencies.  

The role of overlapping sequences in vocabulary knowledge has also been 

highlighted in studies that consider their effect on nonword processing (e.g., 

Gathercole, 1995; Jones, 2016) as well as their cascading impact on child vocabulary 

growth (Jones et al., 2021). Overall, evidence from previous work and in this thesis 

indicates that comparing models that leverage overlapping phonological sequences 

could provide a deeper understanding of the learning mechanisms behind early word 

segmentation and word learning. Such comparisons would not only clarify theoretical 

foundations but also improve our understanding of how various input variables—like 

overlapping sequences, transitional probabilities, and frequent chunks—jointly 

influence the segmentation performance of infants and children. 

 

5.2.4 Limitations and Future Research 

There are several limitations to the work presented on the role of chunking in early 

naturalistic word segmentation, which could open different lines for future research. 

A primary limitation is that the studies did not explore the range of potential learning 

mechanisms proposed in earlier work. Models chosen for comparison with CLASSIC-

UB were selected based on their capacity to shed light on the efficacy of different 

evaluation measures related to segmentation accuracy and child word learning. 

Larsen et al. (2017), who first highlighted the need for assessing developmental 

plausibility in segmentation models, demonstrated that transitional probability 

models and PUDDLE had contrasting strengths based on different performance 

metrics. While PUDDLE was the most accurate model for segmenting speech, 

transitional probability was best at capturing child age of word acquisition. Beyond 

this initial examination of the influence of evaluation metrics on conclusions about 

developmental plausibility, future research should examine a broader array of 

segmentation mechanisms. This encompasses alternative methods that view the 

segmentation task as Bayesian inference, applied to transitional probabilities with 

the model DiBS (Diphone-Based Segmentation; Daland & Pierrehumbert, 2011), or 



150 
 

on chunks (Adaptor Grammar; Goldwater et al., 2009). It also includes methods that 

employ a mix of strategies, such as monitoring transitional probability and chunk 

frequency concurrently (Swingley, 2005). Moreover, as previously mentioned, it 

would be valuable to consider other influential chunking models that incorporate the 

role of overlapping phonological sequences, like PARSER (Perruchet & Vinter, 1998) 

and TRACX (French et al., 2011). In sum, comparing a wide range of models is 

crucial to support the findings of the current studies on chunking's role in word 

segmentation and learning. This comparison would be important to also examine the 

hypothesis that overlapping phonological sequences play a role in early word 

segmentation beyond transitional probabilities and chunk frequencies. Recent 

efforts, such as the WordSeg package tool (Bernard et al., 2020), aim to facilitate 

the comparison of computational models of word segmentation. This open-source 

package could be expanded to incorporate evaluation metrics of developmental 

plausibility introduced in this thesis, establishing a cohesive developmental 

benchmark for researchers interested in early word segmentation. 

The simulations presented in this thesis evaluated a parsimonious model of 

segmentation, CLASSIC-UB, which used an unconstrained mechanism of chunking 

combined with sensitivity to utterance boundaries to achieve segmentation of 

naturalistic speech. This parsimonious approach was employed to isolate the effects 

of chunking sequences in long-term memory and sensitivity to cues at different 

utterance boundaries in early segmentation. However, this choice involved making 

idealized assumptions about how learners process the input. Future work should 

explore how additional processing constraints influence the model's performance, 

potentially increasing the psychological plausibility of the model. For instance, once 

CLASSIC-UB learns a word as a complete chunk, subsequent encounters with that 

word do not influence the model’s processing. However, we know that children 

become gradually faster at accessing familiar word representations (Fernald et al., 

1998). Such a speed of processing constraint could be implemented in various ways: 

Either as a mechanism that affects the level of activation of a chunk in long-term 

memory (as in PUDDLE) or as a processing advantage that speeds up the time 

required to access phonological sequences from long-term memory during encoding. 

This latter concept aligns with how parent versions of CLASSIC-UB have 
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incorporated timing parameters in their architectures (e.g., Lloyd-Kelly et al., 2016) 

and is consistent with shorter looking times to familiar sequences in infant 

segmentation studies (e.g., Black & Bergmann, 2017). Moreover, different chunking 

architectures have examined the impact of short-term memory limitations on 

performance (e.g., Gobet & Lane, 2010; Lloyd-Kelly et al., 2016; Perruchet & Vinter, 

1998). Investigating whether modelling cognitive limitations on short-term memory 

can explain performance variability beyond constraints on long-term memory 

retrieval would be worthwhile. 

Another limitation of the current studies is their focus on model performance 

at the group level. The child-directed speech used aggregated input from different 

target children. Similarly, the evaluation measures were computed across target 

children (e.g., the word frequency distribution of the productions across all children). 

This approach was chosen to maximize sample size, compensating for the 

phenomenon where a reduced sample size dramatically decreases the number of 

low-frequency words, a consequence of the Zipfian properties of speech. This 

methodological choice, however, restricts the scope of investigations. For instance, it 

prevents researchers from modelling how vocabularies grow over time and from 

examining the associated individual differences. Such a fine-grained analysis would 

offer a richer understanding of the plausibility of the models and provide insights 

into variables that may predict language delays (e.g., Fernald & Marchman, 2012). 

In Chapter 2, I discussed how a limited word sample size might influence the 

study's conclusions, as certain mechanisms, like transitional probability, are favoured 

by training on less skewed frequency distributions (e.g., Kurumada et al., 2013). 

Notably, in Chapter 3, I replicated the first study using a considerably smaller sample 

size. This smaller sample size did not dramatically influence the performance of 

transitional probability models. The only significant change was observed when 

modelling the child's age of first production (Table 3), where forward transitional 

probability outperformed PUDDLE. This deviation warrants further investigation, as it 

might result from transitional probability benefitting from a reduced presence of low-

frequency words in the smaller Italian sample. Given the advantages of using cross-

linguistic data in evaluating models of early word segmentation, future research 
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would significantly benefit from a focus on constructing large-scale corpora derived 

from children’s naturalistic conversations. For instance, several previous simulations 

of word segmentation have employed a target sample size of a minimum of 10,000 

child-directed speech utterances (e.g., Caines et al., 2019; Christiansen et al., 1998; 

French et al., 2011; Goldwater et al., 2009; Monaghan & Christiansen, 2010). 

However, setting such a sample size threshold decreases the number of languages 

that can be investigated in the CHILDES database from 44 to 15 (e.g., Jessop et al., 

2023), presenting a substantial obstacle to conducting cross-linguistic studies. 

Aside from the outcome related to age of first production, the conclusions 

derived from the smaller sample's analysis remained consistent. Results from 

developmental measures were replicated even with a limited sample. While the 

robustness of these measures needs further verification through a study centred on 

sample size variations, the findings are encouraging for moving beyond group-level 

analyses. For example, a recent study by Jessop et al. (2023) began investigating 

how a model of early naturalistic word segmentation might reflect vocabulary 

trajectories. They proposed a new model called CIPAL (Chunk-based Incremental 

Processing and Learning). This model is based on the same architecture used to 

build CLASSIC-UB but also incorporates various cognitive limitations as mentioned 

above (e.g., timing parameters that modulate access to representations in long-term 

memory and limited short-term memory capacity). They used a range of inputs from 

different languages, with a minimum of 10,000 utterances per sample. The model 

was exposed to input directed at individual children, and vocabulary acquisition was 

assessed every 50 utterances to obtain repeated measures of vocabulary growth. 

These measures were then compared to vocabulary growth curves derived from CDI 

estimates from 15 languages. They discovered that the model's growth curves were 

similar to those of the CDI estimates in terms of quadratic growth. Namely, the 

vocabulary growth of the model decelerated over time, much like the estimates for 

children. Moreover, visual comparisons between the model and CDI curves showed 

similar individual variabilities. The results of this recent study are promising for 

future investigations using CLASSIC-UB for several reasons. First, since CIPAL is 

closely related to CLASSIC-UB, I expect that the latter might also be effective in 

predicting vocabulary growth and individual differences. Second, because vocabulary 
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growth curves offer a more fine-grained analysis of model performance, they might 

address the sensitivity issues I found when modelling the age of acquisition from 

CDI scores in Chapters 2 and 3. This would be useful since comprehension and 

expressive skills, while related, are influenced by different input variables (Swingley 

& Humphrey, 2018). Moreover, comparing model performance in capturing both 

comprehension and production vocabularies would allow an estimation of how much 

of CLASSIC-UB's performance is due to its ability to simulate increased fluency in 

production (e.g., recall and articulation) on top of segmentation abilities. 

Third, combining the approach I have taken in this thesis with the method 

used to evaluate CIPAL could significantly advance current knowledge. CIPAL has 

not been compared to competing models yet, so it remains unclear how it stands 

against other theories regarding the learning mechanisms involved in early 

segmentation. Additionally, the influence of different processing limitations within 

CIPAL has not been evaluated. An initial comparison between CLASSIC-UB and 

CIPAL could provide insights into how processing limitations (inherent in CIPAL) 

might influence vocabulary growth modelling. Moreover, modifications to CLASSIC-

UB that gradually incorporate these assumptions could further elucidate which 

specific assumptions improve prediction. 

Lastly, it is important to note that the conclusions derived from the modelling 

simulations in Chapters 2 and 3 are essentially proofs of concept and need further 

validation in future research. For instance, the modelling results have provided 

intriguing predictions that warrant exploration. One such prediction involves the 

interaction between type and token word frequencies and cues at utterance 

boundaries in improving segmentation accuracy and vocabulary learning. The 

prediction is that the role of utterance boundaries would differ in languages with 

different input characteristics. As an example, Dutch and Japanese caregivers tend 

to position new, unfamiliar words as one-word utterances rather than at the end of 

multiword utterances (Han et al., 2021). I expect that only word frequency in 

isolation would then predict the vocabulary size of Dutch and Japanese children. 

Instead, I expect no significant impact from the frequency of utterance-final words 

in multiword utterances. 
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Another prediction arises from the role of overlapping phonological sequences 

defined within the context of either neighbourhood density or phonotactic probability 

(as discussed in Chapter 3). The modelling suggests that, in English, neighbourhood 

density might be a more influential factor in predicting children’s vocabularies than 

phonotactic probability. Conversely, the opposite might be true for Italian. Future 

research could explore this hypothesis by comparing the relative significance of 

these variables in predicting children’s productive vocabularies in both languages. 

Examining these differences across languages is crucial to bolster the notion that 

infants and children form representations of varying grain size (e.g., Jessop et al., 

2023; Jones et al., 2021). In other words, it would support the idea that a single 

underlying mechanism can produce both sublexical phonotactic probability and 

lexical neighbourhood density effects, even though these are typically viewed as 

resulting from distinct cognitive processes (e.g., Storkel, 2009). 

 

5.3 The Role of Chunking and Analogy in Early Word Sense 

Disambiguation 

5.3.1 Chapter 4. The Role of Verb-Event Structure in Children’s Lexical 

Ambiguity Resolution 

Chapter 4 examined the roles of domain-general cognitive processes of chunking 

(the ability to learn from associations) and analogy (the ability to generalize a known 

linguistic structure to an item not previously heard in that structure) in early word 

sense disambiguation. While young children often find word sense disambiguation 

challenging in experimental setups (e.g., Khanna & Boland, 2010), verb cues have 

been shown to facilitate their performance (Hahn et al., 2015; Rabagliati et al., 

2013). However, it remains unclear which aspects of verb knowledge children draw 

upon in word sense disambiguation. One hypothesis suggests that children’s 

processing primarily relies on rote-learned associations between verbs and specific 

objects (Snedeker & Yuan, 2008). Alternatively, it is possible that young children 

understand verb-event structures, which they leverage to comprehend ambiguous 

verb objects. This second hypothesis would suggest children's reliance on abstract 
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verb knowledge, consistent with theories that propose early knowledge of linguistic 

structures for sentence processing (Trueswell & Gleitman, 2007). A challenge in 

contrasting these two hypotheses is that word associations and verb-event structural 

information are often confounded in naturalistic speech. 

Nevertheless, research has attempted to examine the unique contributions of 

verb associations and verb-event structures to early unambiguous word processing 

(Andreu et al., 2013; Mani et al., 2016). These studies have shown that young 

children can use both cues to predict upcoming objects in a sentence. Yet, it remains 

unclear whether these variables similarly influence the processing of ambiguous 

words. These studies also have some methodological limitations. Specifically, verb-

object associations were defined through association norms or ratings sourced from 

adult participants. Such norms might not accurately reflect which associations are 

actually available to children in their linguistic environments. For this reason, the 

experimental stimuli might have not entirely controlled for verb-object associations 

(Mani et al., 2016), as items labelled as presenting weak associations between a 

verb and its object might still be fairly typical in child environments. Even when the 

researchers set out to disentangle the two variables (Andreu et al., 2013) - by 

pairing verbs with atypical but semantically appropriate objects (that is, with null 

word associations), atypicality was defined using expert academic judgment. Again, 

this definition might not capture what is (a)typical in child environments. 

In Chapter 4, I introduced a new methodological approach to evaluate the 

influence of verb-object associations and verb-event structures on early word sense 

disambiguation. I defined these variables by examining naturalistic conversations 

involving children up to the age of 4, which corresponds to the age of the children 

tested in this study. I began by manually annotating all child-directed utterances 

from the English section of the CHILDES database (MacWhinney, 2000). From this 

annotation, I extracted verb-sense associations that enabled me to design an 

experimental condition that tested the unique role of these associations in 

disambiguation. This was possible by choosing verbs with neutral verb-event 

structures but strong verb-sense associations. Conversely, to examine the effect of 

verb-event structures, I selected verbs that children do not hear in association with 
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the experimental word senses, as observed in the annotated naturalistic 

conversations. Therefore, I expected that child participants would have to rely on 

their knowledge of verb-event structures when using those verbs for disambiguation. 

The study revealed that 4-year-old English-speaking children could use both 

verb-sense associations and verb-event structures to disambiguate word meanings. 

This supports the idea that children employ both rote-learned associations and 

abstract linguistic knowledge in sentence parsing (Trueswell & Gleitman, 2007). It 

also aligns with usage-based theories of language acquisition, which posit that both 

chunking and analogy play key roles in early development (Abbot-Smith & 

Tomasello, 2006; Bybee, 2010a; Ibbotson et al., 2012). 

Further exploratory analyses produced findings consistent with previous 

literature and the above conclusions. First, children’s performance was influenced by 

the frequency of word senses in naturalistic speech. This aligns with prior research 

highlighting children's sensitivity to the frequency dominance of certain word senses 

over others (e.g., Booth et al., 2006; Rabagliati et al., 2013; Simpson & Foster, 

1986). Second, verb-object associations derived from naturalistic speech were 

predictive of children's performance, emphasizing the significance of using child-

directed naturalistic input when constructing experimental stimuli. Third, children's 

verb knowledge, as assessed from parent-report questionnaires, was predictive of 

child performance at the disambiguation task. This suggests that children drew upon 

their understanding of verb-event structures during disambiguation. 

 

5.3.2 Implications for the Study of Child Lexical Ambiguity Resolution 

Chapter 4 highlighted the value of leveraging large corpora of child-directed speech 

to carefully examine the role of naturalistic variables in child word sense processing. 

While previous experimental evidence points to children's difficulties in word sense 

disambiguation, observations from naturalistic interactions suggest that children 

grasp lexical ambiguities in their speech from a very young age (Meylan et al., 

2021). The findings in Chapter 4 highlight the importance of considering the input 

children typically receive. Doing so can help identify variables that may contribute to 
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this early proficiency. The recently released annotated corpus, ChiSense-12, offers a 

promising avenue for conducting corpus analyses to pinpoint these variables within 

the situational contexts children encounter. 

It is also worth mentioning that the forthcoming release of the annotated 

corpus by Meylan et al. (2021) will offer a more extensive sample size of target 

ambiguous words. This will enable researchers to determine if the results from the 

current study can be generalized to a broader set of ambiguous words that children 

learn early on. This expanded sample size will also allow for the investigation of 

variables not covered by ChiSense-12, such as the influence of different sense 

categories (e.g., homophony, polysemy) or the role of a target word sense's 

syntactic category in enhancing word sense processing (e.g., Dautriche et al., 2018). 

Furthermore, the corpus from Meylan et al. will include words included in the 

Communicative Development Inventory (Fenson et al., 2007). This means that 

researchers will be able to examine the significance of word sense knowledge in 

early word learning, an area which has received limited attention. For example, a 

crucial question to explore is whether vocabulary growth is underestimated when 

considering the gradual enrichment of sense representations. Alternatively, could 

examining sense distributions over developmental stages capture significant variance 

in language delays (e.g., Norbury, 2005)? Ultimately, leveraging naturalistic 

conversations holds promise for deepening our insights into early word processing 

and learning. 

The findings in Chapter 4 align with a usage-based perspective on language 

development (Tomasello, 2000, 2003, 2009) which assumes that children's word 

representations are shaped by learning mechanisms of chunking and analogy. These 

mechanisms allow for the integration of abstract linguistic structures, like verb-event 

knowledge, while also preserving idiosyncratic characteristics drawn from the 

learner’s experiences with language, such as verb-object associations. Furthermore, 

the current findings support various accounts of sentence parsing and word 

processing. First, they highlight the idea that some top-down abstract information 

sources might be more beneficial than others (Trueswell & Gleitman, 2007). For 

example, 4-year-old children may be proficient in using their semantic knowledge 
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about verb usage. However, they might find it challenging to integrate global 

discourse plausibility (Khanna & Boland, 2010; Rabagliati et al., 2013) since it 

requires several aspects of pragmatic, syntactic, and semantic knowledge. 

Second, the current findings support the recent account of child word learning 

proposed by Srinivasan and Rabagliati (2021) and the recent semantic settling 

account of word processing by Rodd (2020). These findings indicate that children 

integrate lexical ambiguity into their vocabularies, and that their representations of 

word meanings incorporate both bottom-up and top-down contextual aspects. This 

integration should be considered in research aiming to understand child word 

learning, especially as we move away from the notion that child word forms map 

onto single meanings (e.g., Trueswell et al., 2013).  

 

5.3.3 Limitations and Future Research 

In Chapter 4, I concluded that linguistic experience influences a child's ability to 

disambiguate word meanings by tracking word associations and generalizing known 

verb-event structures. This conclusion was drawn from the significant role that verb-

object co-occurrences in naturalistic speech and parent-reported verb knowledge 

played in predicting children’s performance. I discussed the possibility that these 

variables, which relate to a child's language experience, might also account for the 

performance differences between child and adult age groups. In other words, the 

better performance of adults might be attributed to their more extensive language 

experience. However, this conclusion requires further exploration for various 

reasons. Firstly, one should study language experience more effectively by 

examining performance across different child age groups or using longitudinal 

designs that assess the relationship between language learning trajectories and 

improvements in word sense disambiguation tasks. 

Second, I discussed how word sense disambiguation tasks often tap into 

language knowledge at various levels. For instance, in the task used in the current 

study, competition was introduced between different sentences within a discourse. 

This likely involved the use of semantic knowledge at the local sentence level (via 
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the manipulated verb cues) but could also potentially extend to pragmatic 

knowledge which allows individuals to smoothly connect sentences into a coherent 

narrative (this might have contributed to the qualitative differences observed 

between adult and child performance in the verb-lexical condition). Therefore, to 

better assess language experience, future research should also consider pragmatic 

knowledge. For instance, additionally using tests that assess children's 

understanding of causal relationships, event sequences, and social norms (e.g., 

Khan et al., 2016) would provide a richer insight into the type of knowledge children 

and adults use to parse discourse and perform sense disambiguation. 

 Third, it is possible that children's limited processing skills could account for 

the age differences observed in the current study. Prior research has highlighted the 

role of processing skills in both syntactic (e.g., Kidd & Bavin, 2005; Yacovone et al., 

2021) and word ambiguity resolution (Khanna & Boland, 2010). This interest is 

driven by the possibility that limited processing skills might obscure children’s true 

abilities. Consequently, examining these processing limitations could also be 

interesting to reveal children's understanding of abstract linguistic structures at an 

earlier age. In summary, a more comprehensive, concomitant evaluation of language 

and processing skills across developmental stages will help researchers better 

understand the variables and underlying processes that determine differences 

between children and adults in word sense disambiguation. 

Finally, it is important to address the limitations concerning conclusions on the 

type of abstract knowledge involved in children's use of verb-event structures. While 

I have concluded that the use of these structures suggests the involvement of 

usage-based analogical learning mechanisms, the evidence does not rule out 

alternative mechanisms proposed by nativist approaches. This limitation stems from 

the fact that Chapter 4's primary aim was not to delve deep into the mechanisms 

determining the use of verb-event structures, but rather to examine experimental 

evidence supporting the idea that both chunking and analogy might be 

independently involved in early word sense disambiguation. To reiterate, the 

significant role of chunking was inferred from the observation that children can 

resolve lexical ambiguities solely based on verb-object associations. This conclusion 
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was reached while controlling for any verb semantics by using verbs that can accept 

both target word senses as plausible arguments (e.g., “She saw the [animal/food] 

chicken”). The role of analogy was instead highlighted by the fact that, when 

controlling for verb-object associations (i.e., selecting verbs that do not co-occur 

with either target sense in natural conversations), children still managed to resolve 

lexical ambiguities based on their understanding of verb semantics. 

Moving forward, it is essential to delve into what exactly chunking entails and 

the specifics of this mechanism, similarly to what discussed in Chapters 2 and 3. For 

instance, does the suggested learning mechanism store verb-object chunks by 

focusing on the transitional probability between word pairs, as suggested by 

McCauley and Christiansen (2019)? Or does it leverage overlapping lexical and 

multiword phonological sequences, as proposed by Jones et al. (2020)? Although 

this question warrants further exploration, I do not believe it presents significant 

challenges to a usage-based approach. This is primarily because it is hard to 

envision a mechanism determining sensitivity to verb-object associations without 

fundamentally emphasizing language usage as the primary driver. However, the type 

of mechanism that determines sensitivity to verb-event structures is more 

controversial. 

One possibility—which aligns with the usage-based approach I have employed 

throughout this thesis—suggests that learners gradually form expectations about the 

types of object arguments a verb can accept. This is achieved by generalizing from 

the characteristics of known words that have previously occupied the object 

argument slot in their linguistic experiences. Central to this explanation is the 

concept of analogy (Bybee, 2010a). However, there is an alternative perspective: 

That a child's innate knowledge of verbs' argument structures might include 

constraints on the kinds of words considered semantically plausible in the verb 

object slot (e.g., Gleitman & Gillette, 1995; Pinker, 1994a). This account does not 

provide specific indications on exactly which semantic aspects of verb arguments 

might be innately specified and which not. The semantic structure of verb syntactic 

frames might be specified at different degrees of detail (e.g., Copestake & Briscoe, 

1992; Fodor & Katz, 1964; Jackendoff, 1985; Pustejovsky, 1995). For example, it 
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could go beyond merely defining "bat" as a patient of "swing", specifying that "bat" 

is a "physical object" (e.g., Fodor & Katz, 1964) or even specifying more specific 

attributes like "liquid" to the object argument of "drink" (e.g., Jackendoff, 1985). 

Despite its under specification, this perspective posits that children would not (at 

least not entirely) draw analogies from their past linguistic encounters; instead, they 

would apply predefined rules that enable the verb-argument structure to be 

generative, meaning they can extend it to new instances of object arguments. 

To compare these two hypotheses, one approach would be to test children at 

a younger age, at which point they likely have not had enough language exposure to 

estimate the plausibility of object arguments. This would help determine whether 

children possess any inherent bias towards plausibility. Another approach, which I 

employed for Chapters 2 and 3, involves using a computational modelling approach. 

This would aim to demonstrate, as proof of principle, that language input alone is 

sufficient for using verb-event structures in word sense disambiguation. 

There is indeed computational evidence suggesting how analogical learning 

mechanisms might operate on verb-event structures. Alishahi and Stevenson (2007) 

proposed a Bayesian computational model that learns verb-event structures by 

gradually generalizing over the semantic characteristics of a verb's syntactic 

arguments encountered during training. This learning is facilitated by a probabilistic 

mechanism that initially records the associative relation between a verb and its 

semantic features, the positions of the syntactic arguments, and the semantic 

characteristics of the items that incrementally fill those arguments. The model draws 

analogies across similar sentences, forming verb construction representations, which 

then allow it to generalize arguments to new items. Through incremental 

probabilistic learning, the model effectively simulated adult plausibility judgments 

regarding verb-event preferences (e.g., “The mechanic warned the driver” versus 

“The mechanic warned the engine”). In principle, the simulations by Alishahi and 

Stevenson (2007) demonstrate that usage-based mechanisms can develop verb-

event representations and assist in processing novel arguments. This suggests that a 

usage-based approach might also be valuable in understanding how verb 

constructions help children disambiguate words with multiple meanings. However, it 
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is also crucial to note that the simulations assumed extensive knowledge on the 

learner's part, including a comprehensive understanding of both verb and argument 

semantics (sourced from dictionaries), ideal identification of syntactic arguments, 

their semantics, and their positions relative to the main verb. 

In recent research, I began exploring how a usage-based learner might 

develop sense-specific representations and how these representations might be 

shaped by the sentence context, including verb information (Cabiddu et al., 2023). I 

evaluated a large group of models (N = 45) based on the Transformer neural 

architecture (Vaswani et al., 2017). These models perform sense disambiguation by 

leveraging sentence context to produce high-dimensional, contextualized 

representations, an approach consistent with Rodd's model (2020) and other usage-

based accounts (e.g., Ambridge, 2020). Transformers can be considered usage-

based learners. They retain a vast amount of context-dependent data from language 

exemplars while also gradually encoding context-independent information across 

different linguistic levels. Notably, Transformers have been shown to be sensitive to 

both syntactic and semantic sentence structures (e.g., Jawahar et al., 2019; Tenney 

et al., 2019), meaning that the models' layers contain information from which labels 

for various aspects, including syntactic categories, constituents, semantic roles, and 

coreference, among others, can be predicted. This sensitivity enabled me to apply 

these models directly to raw, naturalistic language without requiring additional 

external resources to implement sensitivity to such structures. By using the models 

on raw, unlabelled input, I could study how sense disambiguation could be achieved 

using representations drawn from naturalistic child-directed speech. Namely, the 

models' word sense representations were computed based on sets of utterances 

directed at children. 

I found that Transformers could approximate findings observed for 4-year-old 

children as in Rabagliati et al. (2013) as well as in the current experiment of my 

thesis. Transformers showed the ability to use both global and local sentence 

contexts to disambiguate word meanings in coherent tasks. These are tasks where 

all cues, including word associations and event structures, point toward the intended 

meaning, as in “Oscar was at the beach. He caught a fish, which was exciting”. 
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Furthermore, they also exhibited a degree of success in capturing how children could 

use verb-event structures to disambiguate word meanings ("Sophia twisted a 

[music/elastic] band”). This supports the idea that the semantic restrictions verbs 

impose on their arguments could be learned using some form of distributional 

mechanism operating on linguistic events. 

However, it is also worth noting that the simulations also revealed significant 

challenges for Transformers. Many models within the tested pool struggled to match 

the performance levels of children on contrastive tasks. These tasks, such as the one 

presented in Chapter 4 of this thesis, require resolving the competition between 

word associations from prior contexts and event structures from local contexts. For 

instance, in my experiment, consider the sentence “Sophia listened to some music. 

Then, she twisted the band”. The word associations from the prior context (like 

"listen" and "music") point toward "music band", while the verb-event structure from 

the local context ("twist") indicates "elastic band". Similarly, in Rabagliati et al.'s 

(2013) experiment, the sentence “Kermit was in a dark cave. He was nervous about 

the animals, so he carried a big bat” presents a competition between word 

associations pointing to an "animal bat" and global plausibility directing towards a 

"baseball bat". My ongoing research aims to explore whether these limitations in 

Transformers could be attributed to their lack of real-world knowledge, as they can 

only derive word and sentence semantics from textual input, therefore struggling to 

make pragmatic inferences based on real-world knowledge such as “Given that 

Kermit was in a dark cave and was nervous about animals, it makes sense that he 

would carry a bat (e.g., heavy stick) for protection, rather than a flying mammal”. 

This research would allow to consider how far one can push a usage-based 

approach and whether one would need to integrate domain-specific constraints 

consistent with nativist approaches (e.g., Pinker, 1989; Thornton, 2012) or domain-

general innate biases (e.g., Perfors et al., 2011) to reach model developmental 

plausibility. In summary, it remains unclear whether Transformers generate sense 

predictions in a manner similar to children or adults. However, they could serve as 

valuable tools to test the claim that word sense processing can be approximated by 
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learning mechanisms that do not need the implementation of innate verb 

knowledge. 

 

5.4 Conclusion 

This thesis emphasized the importance of studying how naturalistic language 

experiences influence word learning and processing outcomes, when one’s goal is to 

test the idea that children might be usage-based learners. This work offered three 

key contributions: (a) New methods were introduced to investigate early word 

segmentation and early word sense processing using naturalistic corpora of 

conversations. These methods are suitable for both computational and behavioural 

studies examining a usage-based perspective on infants and children's word learning 

and processing. (b) This research underscored the significant role of chunking as a 

learning mechanism. Infants and children potentially employ this mechanism to 

extract words from naturalistic speech and form their initial production vocabularies. 

(c) Chunking and analogy, as independent learning mechanisms, might support 

children's early processing of lexical ambiguities. This was deduced by observing 

young children's sensitivity to both bottom-up and top-down sentence cues to word 

meaning. In conclusion, this thesis holds significant implications on both theoretical 

and practical fronts. It enhances our understanding of how infants and children learn 

language in real-life contexts and may pave the way for a more profound 

comprehension of the sources of individual differences and learning difficulties. 
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Notes 

1 For ease of exposition, the example uses IPA phonetic transcription. However, in 

our simulations, we used a transcription based on the CMU Pronouncing Dictionary 

(Lenzo, 2007; see an example in Figure 1). 

2 However, CLASSIC’s encoding does not allow partial activation of chunks unlike in 

Baayen et al.’s (2011) study. 

3 Interestingly, when Larsen et al.’s (2017) measure was used, transitional 

probability models performed better than chunking models despite their discovering 

fewer words in the input as we mentioned above. For example, a transitional 

probability model explained 19% of variance in age of acquisition (the highest 

performance in the study), while the chunking model PUDDLE explained only 7% 

(Larsen et al., 2017). 

4 The CDI words and gestures includes 373 phonological words (not considering 

homophone duplicates) typically acquired by infants between 8 and 18 months of 

age. Our final sample contained 330 words after filtering for those CDI words 

present in the child-directed input that the segmentation models received (i.e., CDI 

words that the models had the opportunity to learn). 

5 A discussion about the effect of sample size reduction when using the age of 

acquisition measure from the CDI can be found in the file CDI_addendum at the 

project’s OSF page (https://doi.org/10.17605/osf.io/kbnep). 

6 Adjusted R2 estimates cannot typically be directly compared to R2 estimates. 

However, because of our large sample size, adjusted R2 and R2 estimates and 

confidence intervals were identical, allowing us to compare our adjusted R2 

estimates to Larsen et al.’s (2017) R2 estimates. In fact, as sample size increases 

expected R2 estimates become less biased and approach adjusted R2 unbiased 

estimates of the population explained variance (Karch, 2020). 

7 Italian and English child vocabularies become comparable by word-level measures 

only when considering similar amounts of input utterances and child word types. 

Otherwise, the measures can be biased by sample size. For instance, the word "dog" 
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might occur less frequently in Italian merely because its frequency is counted in a 

limited number of Italian utterances compared to English. Similarly, using two 

different child sample sizes for word types (Italian = 1,653; English = 5,480) can 

skew the comparison. Larger word type samples are more likely to contain low-

frequency or long words. To correct for these biases, we sampled the same number 

of input utterances from English child-directed speech used in Cabiddu et al. (2023) 

as we had for Italian (N = 22,190). We then used this reduced input to recompute 

the word-level measures for English children’s word types (weighted log10 

frequency, weighted neighbourhood density, weighted phonotactic probability). We 

also downsampled the English child set of word types from 5,480 to 1,653 word 

types to match Italian children’s sample size. It is important to note that choosing 

different random samples for input utterances or child word types did not 

significantly alter the means and standard deviations reported in the text. 

Additionally, we obtained similar results when comparing Italian word type 

distributions to the full raw English child word type distributions computed from the 

full English input. 
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Appendix 

Appendix S1: Computational Models 

Transitional probability models 

The implementation of forward and backward transitional probability models (FTP 

and BTP, respectively) followed the procedures found in previous studies (e.g., 

Frank et al., 2010; Larsen et al., 2017; Saksida et al., 2016) in which the transitional 

probabilities of a phoneme/syllable pair were computed as: 

𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑇𝑃(𝑈𝑡−1, 𝑈𝑡) =
𝐹(𝑈𝑡−1, 𝑈𝑡)

𝐹(𝑈𝑡−1)
 

𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑇𝑃(𝑈𝑡−1, 𝑈𝑡) =
𝐹(𝑈𝑡−1, 𝑈𝑡)

𝐹(𝑈𝑡)
 

Where 𝐹(𝑈𝑡−1, 𝑈𝑡) is the frequency of a pair of units (two phonemes or syllables), 

while 𝐹(𝑈𝑡−1) and 𝐹(𝑈𝑡) are the frequencies of the first and second unit 

respectively. We used a strictly incremental version of these models in which 

transitional probabilities were updated at every utterance. A word boundary was 

placed within a phoneme/syllable target pair if the transitional probabilities of the 

surrounding pairs were both greater than the target pair transitional probability (i.e., 

relative threshold). Utterance boundaries were used as additional units available to 

the models, therefore for the phoneme pair ↵h in [↵hellobaby↵], 𝐹(𝑈𝑡−1) would 

correspond to the frequency of the utterance-initial marker ↵ and 𝐹(𝑈𝑡) to the 

frequency of the phoneme h. 

Although using an absolute threshold has been shown to increase models’ 

performance at precision and recall measures (Gambell & Yang, 2006; Saksida et al., 

2016), we instead used a relative threshold where word boundaries were posited 

based on the transitional probabilities of the surrounding biphones or syllable pairs. 

The choice of a relative threshold was consistent with studies showing that infants 

segment at local minima of transitional probability (e.g., Saffran et al., 1996; 1999), 

while we were not aware of any experimental findings that have provided direct 

evidence for an absolute threshold mechanism. Further, we used a strictly 

incremental version of the transitional probability models (i.e., word boundaries are 
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set based on current transitional probabilities of surrounding pairs), to match 

CLASSIC-UB and PUDDLE’s incremental way of learning. One could apply the same 

incremental principle to an absolute threshold by updating a running average; 

indeed, absolute transitional probabilities can fall out of predictive incremental 

learning models (e.g., Baayen et al., 2013; Harmon & Kapatsinski, 2021). 

 

PUDDLE 

PUDDLE (Monaghan & Christiansen, 2010) parses utterances phoneme by phoneme, 

searching for a matched string in its lexicon (we also adapted the original model to 

process the input syllable by syllable). At the start of the segmentation process, 

whole sentences are stored in the lexicon as this is initially empty. Items in the 

lexicon are ranked by absolute frequency of occurrence (which guides further string 

matching). The frequency of an item is updated every time it is discovered in the 

input, making the model strictly incremental. The lexicon in PUDDLE stores chunks 

that can begin or end utterances, and these can comprise phonemes, phoneme 

pairs, or longer sequences of phonemes up to whole utterances. When PUDDLE 

finds a match in the lexicon, it only recognizes the item if (a) there is an item on its 

left which ends with a previously encountered ending, and (b) there is an item on its 

right which begins with a previously encountered beginning. 

 

Random baseline 

We chose to implement a fully random baseline which relies on a random coin toss 

to place a boundary after each input unit (Lignos, 2012). This baseline represents a 

scenario in which a child would segment the input by making random guesses on 

word boundary locations and tends to mostly segment short and frequent words as 

the input gives more opportunities to correctly segment them (Grimm et al., 2017), 

that is, these words are more likely to be discovered by chance. Comparing to 

chance is informative because, ideally, one would want a more complex model, 

which implements a specific segmentation mechanism, to at least perform better 

than chance. A fully random baseline is also more informative than baselines which 
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consider each utterance or each unit as a word (e.g., Bernard et al., 2020). These 

baselines would only discover a very low proportion of word types from the 

phonemic input (an utterance baseline would only discover types that appear as 

one-word utterances, while a unit baseline would only discover mono-phonemic 

word types). Finally, pseudorandom baselines are problematic because of their prior 

knowledge assumptions. For example, it is unlikely that infants have knowledge of 

the true probability of a word boundary to occur in the language (oracle baseline; 

e.g., Bernard et al., 2020), or the true average word length in cross-linguistic terms 

(Loukatou et al., 2019). 
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Appendix S2: Input Preprocessing 

The seven CHILDES corpora used were: Belfast (Henry, 1995), Manchester 

(Theakston et al., 2001), Thomas (Lieven et al., 2009), Tommerdahl (Tommerdahl & 

Kilpatrick, 2013), Wells (Wells, 1981), Forrester (Forrester, 2002), Lara (Rowland & 

Fletcher, 2006). The corpora were imported into the R environment (R Core Team, 

2018) using the package childesr (Braginsky et al., 2019), which guarantees a 

standardized procedure for obtaining the utterance samples. The corpora were 

phonetically transcribed using the CMU Pronouncing Dictionary (Lenzo, 2007). The 

transcription process was carried out without considering word stress markers in the 

dictionary. Utterances containing one or more words not appearing in the CMU 

Pronouncing Dictionary were discarded. 

 The advantage of using a transcription dictionary is that it allows automatic 

transcription of large input corpora into phonetic form. However, it has the 

important limitation of assuming that words always consist of the same phonemes in 

running speech. This is not the case as words undergo significant phonetic reduction 

in conversational speech (e.g., until [ʌntɪl] may be also realized via phoneme 

deletion [_ntil] or substitution [ʌntəl]; see Johnson, 2004). Addressing this limitation 

would require access to either phonetically transcribed corpora which include 

different word realizations (e.g., Schuppler et al., 2011) or to systems that directly 

operate on raw speech (e.g., Arnold et al., 2017; ten Bosch et al., 2022). 

The corpora differed by mean length of utterance (MLU; see Table S2.1). If 

utterances are not shuffled, the models’ performance oscillates depending on the 

corpus MLU. This happens because long sentences are more difficult to segment for 

all segmentation models. Given the input to different children is likely to show 

variability in MLU across time, we controlled for this variation by randomly shuffling 

the order of the utterances; given that this variation influenced all models equally, 

this choice should not affect comparisons between models. 

 When required, the syllabification of the input was performed using the 

WordSeg package (Bernard et al., 2020), which applies the maximal onset principle 

(Phillips & Pearl, 2015). We have not claimed that such a procedure corresponds to 
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how an infant would segment the input into syllables (for work focused on this 

problem, see Räsänen et al., 2018), as by definition the maximal onset principle 

requires prior knowledge of word onsets. Rather, it is a convenient deterministic 

strategy for presyllabifying the corpora, which can then be used as input for the 

models under the assumption that infants might be already organizing speech as 

strings of syllabic constituents before they have started representing word forms 

(e.g., Bertoncini & Mehler, 1981; Bertoncini et al., 1988; Bijeljac-Babic et al., 1993). 

Further, it is worth noting that the maximal onset principle is not the only strategy 

that could be used, as other variables can influence English syllabification (e.g., 

word-edge frequency, stress, vowel quality, sonority, morphology; Derwing, 1992; 

Derwing & Eddington, 2014; Olejarczuk & Kapatsinski, 2018).  

 The input for the models were all utterances from the seven corpora that 

were directed to children of age 2 years (see Table S2.1). We believed that this 

choice to focus on age 2 years was justified for two reasons. First, at age 2 years a 

larger amount of data on children’s own productions is available in the corpora. 

Since we evaluated our models on measures that were based on child productions 

(i.e., age of first production and word-level measures), focusing on age 2 years 

allowed us to test the models on a much larger sample of word types. At ages earlier 

than 2 years child productions decrease significantly in type frequency (e.g., at Year 

1, child word types are about one quarter of Year-2 word types) which would 

significantly limit the sample of words used to compute our evaluation measures. 
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Table S2.1 Descriptive statistics of phonetically transcribed CHILDES English 

corpora filtering for utterances directed to children of age 2 years  

Corpus Utterances MLU Word tokens Word types 

Forrester 3,183 4.89 15,567 1,576 

Tommerdahl 5,700 4.84 27,610 1,646 

Wells 16,292 3.62 59,042 3,053 

Belfast 17,923 5.52 99,004 3,922 

Lara 59,598 3.68 219,184 4,316 

Thomas 194,695 5.23 1,018,726 8,160 

Manchester 307,079 3.96 1,215,740 9,587 

Note. For each corpus, the table indicates the number of input utterances, mean 

length of utterance (MLU, i.e., mean number of words in an utterance), number of 

words including repetitions (Word tokens), number of different words (Word types) 

 

Second, the corpora also contain many more utterances directed to 2-year-olds than 

to younger children. The input available in CHILDES at Year 0 or 1 is significantly 

smaller in size compared to input directed to Year 2. For example, our 2-year-olds’ 

input comprised 604,000 utterances, while 1-year-olds’ input only contained 54,274 

utterances. This was problematic because a smaller sample of utterances was more 

likely to be biased and less likely to preserve the characteristics of naturalistic 

speech directed to young children. Thus, focusing on age 2 years represented a 

compromise: This was the youngest age group for which a large enough (and thus 

representative) sample of child-directed speech was available. 

To illustrate this point further, we have generated Figure S2.1 below. In this 

figure (panels Raw of each lexical measure), one can see that the characteristics of 

the input change significantly from age 0 to 2 years, with the presence of more long, 

infrequent, low-neighborhood, and high-phonotactic words as age increased. 
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Crucially, we can show that these differences were mostly due to differences in 

sample size (see also Montag et al., 2018). This was because the likelihood of 

finding long/infrequent/low-neighborhood/high-phonotactic words increases as 

sample size increases. Indeed, when we matched input at different age bins by 

sample size (i.e., sampling the same number of utterances as in the smallest age 

sample) we saw that the differences between corpora decreased substantially (see 

Matched panels of Figure S2.1). Therefore, the loss from choosing input directed to 

age 2 years (i.e., maximizing sample size at the expense of input age) was lower 

compared to choosing input smaller in size at earlier ages, which would instead 

grossly misrepresent the characteristics of the naturalistic input. 

In conclusion, although some differences between speech at different ages 

remained when we controlled for input sample size, and it was thus possible that the 

age-2-year input was not entirely representative of the input at younger ages, the 

input that we had available for younger children was almost certainly not 

representative of naturalistic input directed to children of those ages either, because 

so little of it is available in existing corpora. Future studies may try to replicate these 

analyses using speech directed at earlier ages, once large-scale corpora of language 

input directed at such earlier ages become available to researchers. 
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Figure S2.1 Word characteristics of word type distributions for input directed at 

Year 0, 1, and 2. Raw panels show word characteristics when considering all 

utterances available at each age (age 0 years = 11,745; age 1 year = 54,274; age 2 

years = 604,000). Age-1- and 2-year utterances were taken from the same corpora 

used in Chapter 2, while age-0-year utterances were taken from the Korman corpus 

(Korman, 1992), which contains maternal speech directed to infants aged between 4 

and 16 weeks. Matched panels refer to word type distributions when each input is 

matched by age-0-year sample size, therefore randomly sampling 11,745 utterances 

from age-1- and age-2-year corpora. Results did not depend on the particular 

random samples computed as repeating the sampling procedure produced identical 

distributions. 
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Appendix S3: Word Age of First Production Estimation 

Word age of first production has been used in Grimm et al.’s (2017; 2019) studies as 

an index of word learning. If a word is first produced early in development, it is 

assumed that this is in part because it is easy to learn. To compute word age of first 

production estimates, we used Grimm et al.’s (2017; 2019) procedure, as its validity 

was assessed in two ways: corpora age of first production estimates showed a fairly 

strong correlation with American English communicative-development-inventories 

from parent-report measures of child expressive vocabulary (rs = .50, p < .001) and 

a stronger correlation with the only estimates for British English that are directly 

derived from children (i.e., from a picture-naming task; Morrison et al., 1997; rs = 

.65, p < .001).  

To estimate word age of first production, we used mean length of utterance 

as a proxy of the developmental stage at which a word is acquired. For a given 

word, we first computed mean length of utterance for each transcript via 

bootstrapping (to compensate for differences in number of utterances). The lowest 

mean length of utterance across transcripts was then taken as age of first 

production value in order to correct for inflation (as it is likely that children knew a 

target word before they produced it in the recordings). This method also avoided 

having to find a set of common words across corpora to calculate a mean stage; 

finding a set of common words across corpora would have meant discarding a high 

amount of low frequency words that do not appear in all corpora, resulting in a 

skewed set of high-frequency words. 
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Appendix S4: Comparison of Precision and Recall Measures 

We have included a narrative account of the findings in Table S4.1 and S4.2 in the 

paper in the section Results and Discussion / Precision and Recall. 

Table S4.1 Comparison of models for the precision and recall measures for 

phonemic input 

        95% CI 

Model comparison Measure M1a M2b ∆Mc t p df LL UL 

BTP vs. PUDDLE Recall .45 .79 −.33 −73.05 < .001 19,044.5 −.348 −.320 

BTP vs. PUDDLE Precision .42 .73 −.32 −66.73 < .001 19,681.9 −.333 −.304 

BTP vs. Baseline Recall .45 .17 .28 60.43 < .001 19,391.0 .266 .293 

BTP vs. Baseline Precision .42 .14 .27 59.57 < .001 19,094.8 .258 .284 

BTP vs. CLASSIC-

UB initial/final Precision .42 .5 −.09 −16.96 < .001 19,989.6 −.101 −.071 

BTP vs. CLASSIC-

UB final Precision .42 .49 −.07 −13.26 < .001 19,936.1 −.084 −.055 

BTP vs. FTP Recall .45 .51 −.05 10.31 < .001 19,998.0 −.066 −.038 

BTP vs. FTP Precision .42 .47 −.05 −10.26 < .001 19,997.8 −.067 −.037 

BTP vs. CLASSIC-

UB initial/final Recall .45 .5 −.04 −8.58 < .001 19,988.7 −.058 −.028 

BTP vs. CLASSIC-

UB final Recall .45 .45 .01 1.17 .243 19,907.3 −.004 .016 

FTP vs. Baseline Recall .51 .17 .33 71.56 < .001 19,381.2 .318 .346 

FTP vs. Baseline Precision .47 .14 .32 70.78 < .001 19,073.4 .310 .338 

FTP vs. PUDDLE Recall .51 .79 −.28 −61.57 < .001 19,032.8 −.294 −.266 

FTP vs. PUDDLE Precision .47 .73 −.26 55.74 < .001 19,668.1 −.279 −.251 

CLASSIC-UB final 

vs. Baseline Precision .49 .14 .34 72.09 < .001 18,639.9 .326 .355 
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CLASSIC-UB final 

vs. PUDDLE Recall .45 .79 −.34 −71.29 < .001 18,476.8 −.355 −.321 

CLASSIC-UB final 

vs. Baseline Recall .45 .17 .27 56.75 < .001 18,895.5 .259 .289 

CLASSIC-UB final 

vs. PUDDLE Precision .49 .73 −.25 50.59 < .001 19,362.6 −.265 −.231 

CLASSIC-UB final 

vs. FTP Recall .45 .51 −.06 −11.13 < .001 19,911.2 −.073 −.042 

CLASSIC-UB final 

vs. CLASSIC-UB 

initial/final Recall .45 .50 −.05 −9.44 < .001 19,955.8 −.066 −.034 

CLASSIC-UB final 

vs. CLASSIC-UB 

initial/final Precision .49 .50 −.02 3.36 .003 19,973.2 −.032 .004 

CLASSIC-UB final 

vs. FTP Precision .49 .47 .02 3.28 .003 19,942.2 .004 .028 

CLASSIC-UB 

initial/final vs. 

Baseline Precision .50 .14 .36 77.5 < .001 18,935.1 .345 .374 

CLASSIC-UB 

initial/final vs. 

Baseline Recall .50 .17 .32 68.94 < .001 19,245.2 .311 .339 

CLASSIC-UB 

initial/final vs. 

PUDDLE Recall .50 .79 −.29 −62.62 < .001 18,872.7 −.304 −.274 

CLASSIC-UB 

initial/final vs. 

PUDDLE Precision .50 .73 −.23 −47.98 < .001 19,575.9 −.247 −.215 

CLASSIC-UB 

initial/final vs. FTP Precision .50 .47 .03 6.79 < .001 19,991.8 .020 .047 

CLASSIC-UB 

initial/final vs. FTP Recall .50 .51 −.01 1.63 .206 19,989.9 −.020 .002 
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PUDDLE vs. 

Baseline Recall .79 .17 .61 149.07 < .001 19,950.6 .598 .624 

PUDDLE vs. 

Baseline Precision .73 .14 .59 138.79 < .001 19,825.3 .574 .601 

Note. Pairwise comparisons via Welch’s t test for unequal variances; p values and 

bootstrap 95% confidence intervals are corrected for multiple comparisons (using 

Holm’s correction). FTP = forward transitional probability; BTP = backward 

transitional probability. 

aM1  = first model mean. bM2 = second model mean. c∆M = mean difference.  
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Table S4.2 Comparison of precision and recall measures for syllabified input 

        95% CI 

Model comparison Measure M1a M2b ∆Mc t p df LL UL 

BTP vs. PUDDLE Recall .38 .89 −.51 −116.28 < .001 15,269.446 −.528 −.503 

BTP vs. PUDDLE Precision .46 .85 −.40 −87.41 < .001 17,137.092 −.411 −.384 

BTP vs. CLASSIC-

UB initial/final Precision .46 .66 −.20 −39.55 < .001 19,734.761 .217 −.185 

BTP vs. CLASSIC-

UB initial/final Recall .38 .58 −.20 −37.96 < .001 19,913.453 −.219 −.186 

BTP vs. CLASSIC-

UB final Precision .46 .57 −.11 −20.43 < .001 19,984.445 −.123 −.093 

BTP vs. CLASSIC-

UB final Recall .38 .48 −.11 −19.2 < .001 19,996.639 −.12 −.088 

BTP vs. Baseline Recall .38 .46 −.08 −14.24 < .001 19,997.407 −.095 −.063 

BTP vs. Baseline Precision .46 .51 −.06 −10.37 < .001 19,997.833 −.072 −.041 

BTP vs. FTP Precision .46 .49 −.04 −6.79 < .001 19,987.974 −.052 −.022 

BTP vs. FTP Recall .38 .41 −.03 −5.52 < .001 19,997.237 −.047 −.016 

FTP vs. PUDDLE Recall .41 .89 −.48 -109.94 < .001 15,324.968 −.499 −.471 

FTP vs. PUDDLE Precision .49 .85 −.36 −80.70 < .001 17,360.737 −.376 −.346 

FTP vs. Baseline Recall .41 .46 −.05 −8.75 < .001 19,997.989 −.064 −.033 

FTP vs. Baseline Precision .49 .51 −.02 −3.69 .001 19,990.389 −.034 −.006 

CLASSIC-UB final 

vs. PUDDLE Recall .48 .89 −.41 −93.02 < .001 15,343.657 −.422 −.394 

CLASSIC-UB final 

vs. PUDDLE Precision .57 .85 −.29 −64.64 < .001 17,397.080 −.302 −.272 

CLASSIC-UB final 

vs. CLASSIC-UB 

initial/final Precision .57 .66 −.09 −18.51 < .001 19,838.308 −.107 −.079 
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CLASSIC-UB final 

vs. CLASSIC-UB 

initial/final Recall .48 .58 −.10 −18.31 < .001 19,933.371 −.112 −.081 

CLASSIC-UB final 

vs. FTP Precision .57 .49 .07 13.78 < .001 19,997.734 .057 .088 

CLASSIC-UB final 

vs. FTP Recall .48 .41 .08 13.71 < .001 19,997.914 .059 .091 

CLASSIC-UB final 

vs. Baseline Precision .57 .51 .05 9.95 < .001 19,987.279 .037 .068 

CLASSIC-UB final 

vs. Baseline Recall .48 .46 .03 4.95 < .001 19,997.843 .013 .042 

CLASSIC-UB 

initial/final vs. 

PUDDLE Recall .58 .89 −.31 −74.00 < .001 15,872.605 −.325 −.297 

CLASSIC-UB 

initial/final vs. 

PUDDLE Precision .66 .85 −.19 −46.49 < .001 18,269.313 −.208 −.179 

CLASSIC-UB 

initial/final vs. FTP Precision .66 .49 .16 32.86 < .001 19,825.279 .151 .180 

CLASSIC-UB 

initial/final vs. FTP Recall .58 .41 .17 32.39 < .001 19,928.617 .157 .189 

CLASSIC-UB 

initial/final vs. 

Baseline Precision .66 .51 .15 28.66 < .001 19,747.424 .129 .161 

CLASSIC-UB 

initial/final vs. 

Baseline Recall .58 .46 .12 23.37 < .001 19,926.899 .108 .140 

PUDDLE vs. 

Baseline Recall .89 .46 .44 98.97 < .001 15,318.378 .422 .448 

PUDDLE vs. 

Baseline Precision .85 .51 .34 75.27 < .001 17,165.941 .326 .351 
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Note. Pairwise comparisons via Welch’s t test for unequal variances; p values and 

bootstrap 95% confidence intervals are corrected for multiple comparisons (using 

Holm’s correction). FTP = forward transitional probability; BTP = backward 

transitional probability. 

aM1  = first model mean. bM2 = second model mean. c∆M = mean difference.  
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Appendix S5: Frequency-Weighted Age of First Production Analyses: 

Pairwise Differences Between Models’ Adjusted R2 

A narrative account of the phonemic analysis is available in section Results and 

Discussion / Word Age of First Production of Chapter 2. Instead, here we focus on 

findings when models were run on syllabified input. Table S5.1 shows that models 

run on syllabified input did not perform better than the baseline. PUDDLE performed 

better than CLASSIC-UB initial-final and CLASSIC-UB final at predicting children’s 

word age of first production. However, the difference between PUDDLE and the 

baseline was not significant and neither was the difference between the baseline and 

CLASSIC-UB initial-final.  

CLASSIC-UB initial-final performed better than CLASSIC-UB final at predicting 

children’s word age of first production. 

PUDDLE explained a significantly higher proportion of variance in word age of 

first production than forward and backward transitional probability models. 
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Table S5.1 Frequency-weighted age of first production analyses: Pairwise 

differences between adjusted R2 values of models when phonemic or syllabified input 

was used 

   95% CI 

Model comparison Input type ∆R2 LL UL 

BTP vs. Baseline Phoneme .008 −.011 .026 

FTP vs. Baseline Phoneme .010 −.011 .031 

FTP vs. BTP Phoneme .002 −.013 .016 

CLASSIC-UB final vs. Baseline Phoneme .043 .020 .069 

CLASSIC-UB final vs. BTP Phoneme .035 .013 .059 

CLASSIC-UB final vs. FTP Phoneme .033 .011 .057 

CLASSIC-UB final vs. PUDDLE Phoneme .001 −.015 .018 

CLASSIC-UB initial/final vs. Baseline Phoneme .048 .024 .073 

CLASSIC-UB initial/final vs. BTP Phoneme .040 .010 .061 

CLASSIC-UB initial/final vs. FTP Phoneme .038 .016 .059 

CLASSIC-UB initial/final vs. PUDDLE Phoneme .006 −.016 .029 

CLASSIC-UB initial/final vs. CLASSIC-UB final Phoneme .005 −.006 .016 

PUDDLE vs. Baseline Phoneme .042 .021 .064 

PUDDLE vs. BTP Phoneme .034 .011 .054 

PUDDLE vs. FTP Phoneme .032 .014 .054 

Baseline vs. BTP Syllable .041 .024 .058 

Baseline vs. FTP Syllable .028 .012 .047 

Baseline vs. CLASSIC-UB final Syllable .020 .005 .040 

Baseline vs. CLASSIC-UB initial/final Syllable .003 −.012 .020 

FTP vs. BTP Syllable .013 .005 .022 

CLASSIC-UB final vs. BTP Syllable .021 .011 .032 
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CLASSIC-UB final vs. FTP Syllable .008 −.004 .020 

CLASSIC-UB initial/final vs. BTP Syllable .038 .025 .054 

CLASSIC-UB initial/final vs. FTP Syllable .025 .010 .044 

CLASSIC-UB initial/final vs. CLASSIC-UB final Syllable .017 .010 .026 

PUDDLE vs. BTP Syllable .061 .043 .082 

PUDDLE vs. FTP Syllable .048 .023 .068 

PUDDLE vs. CLASSIC-UB final Syllable .040 .024 .062 

PUDDLE vs. CLASSIC-UB initial/final Syllable .023 .008 .041 

PUDDLE vs. Baseline Syllable .020 −.001 .039 

Note. ∆R2 = difference between adjusted R2 values. Lower and upper limits of 

bootstrap confidence intervals were based on 1,000 iterations and corrected using 

Holm’s correction. FTP = forward transitional probability; BTP = backward 

transitional probability. 
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Appendix S6: Frequency-Unweighted Age of First Production Analyses 

Interestingly, Larsen et al. (2017) found that a forward transitional probability model 

run on syllabified input showed the best performance, predicting 19% of variance in 

word age of acquisition. In contrast, we found that a forward transitional probability 

model run on syllabified input predicted a low proportion of variance, R2
adjusted = 

.013, 95% CI [.007, .021] (see Table 1 in the main paper). We suggest this 

difference was related to differences in the predictor measure; we weighted the 

predictor measure by the frequency of a target word in the input, while Larsen used 

raw counts. Accordingly, when we used raw counts and syllabified input, we were 

able to replicate Larsen’s finding (see Tables S6.1 and S6.1), with the forward 

transitional probability model showing the best performance followed by CLASSIC-UB 

final. Importantly, however, even in this analysis we found that no model 

outperformed the baseline, with the baseline performing significantly better than 

forward transitional probability. Larsen did not include a comparison to a random 

baseline. We also obtained the same result when using raw counts and phonemic 

input, with CLASSIC-UB final showing the best performance but not being able to 

outperform the baseline. These results indicated that controlling for input word 

frequency and including a random baseline are both important to draw conclusions 

about the developmental plausibility of different segmentation models. A discussion 

on the role of the random baseline is included in Appendix S13. 
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Table S6.1 Adjusted R2 for linear regression models predicting word age of first 

production as a function of unweighted log10 number of times a word was correctly 

segmented by each model  

 Phonemic input  Syllabified input 

  95% CI   95% CI 

Model R2
adjusted LL UL  R2

adjusted LL UL 

Baseline .273 .252 .295  .340 .310 .364 

Backward transitional 

probability 

.153 .140 .167  .225 .202 .249 

Forward transitional 

probability 

.168 .151 .185  .311 .284 .338 

CLASSIC-UB final .227 .205 .250  .301 .274 .327 

CLASSIC-UB initial/final .196 .176 .219  .278 .252 .302 

PUDDLE .195 .175 .214  .217 .194 .238 

Note. Heteroskedasticity-robust standard errors were computed using a HC2 

estimator. The 95% confidence intervals indicate lower and upper limits of bootstrap 

confidence intervals around the estimate (based on 1,000 iterations). Holm’s 

correction was applied to the confidence intervals. 
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Table S6.2 Pairwise differences between adjusted R2 of unweighted age of first 

production models  

   95% CI 

Model comparison Input type ∆R2 LL UL 

Baseline vs. BTP Phoneme .120 .101 .140 

Baseline vs. FTP Phoneme .105 .088 .126 

Baseline vs. PUDDLE Phoneme .078 .060 .098 

Baseline vs. CLASSIC-UB initial/final Phoneme .077 .056 .097 

Baseline vs. CLASSIC-UB final Phoneme .046 .026 .069 

FTP vs. BTP Phoneme .015 .000 .029 

CLASSIC-UB final vs. BTP Phoneme .074 .051 .098 

CLASSIC-UB final vs. FTP Phoneme .059 .031 .083 

CLASSIC-UB final vs. PUDDLE Phoneme .032 .009 .056 

CLASSIC-UB final vs. CLASSIC-UB initial/final Phoneme .031 .020 .042 

CLASSIC-UB initial/final vs. BTP Phoneme .043 .022 .065 

CLASSIC-UB initial/final vs. FTP Phoneme .028 .008 .048 

CLASSIC-UB initial/final vs. PUDDLE Phoneme .001 −.014 .017 

PUDDLE vs. BTP Phoneme .042 .022 .060 

PUDDLE vs. FTP Phoneme .027 .009 .047 

Baseline vs. PUDDLE Syllable .123 .101 .145 

Baseline vs. BTP Syllable .115 .095 .137 

Baseline vs. CLASSIC-UB initial/final Syllable .062 .042 .08 

Baseline vs. CLASSIC-UB final Syllable .039 .020 .058 

Baseline vs. FTP Syllable .029 .010 .047 

BTP vs. PUDDLE Syllable .008 −.015 .030 

FTP vs. PUDDLE Syllable .094 .067 .122 
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FTP vs. BTP Syllable .086 .064 .109 

FTP vs. CLASSIC-UB initial/final Syllable .033 .012 .056 

FTP vs. CLASSIC-UB final Syllable .010 −.007 .026 

CLASSIC-UB final vs. PUDDLE Syllable .084 .061 .109 

CLASSIC-UB final vs. BTP Syllable .076 .053 .100 

CLASSIC-UB final vs. CLASSIC-UB initial/final Syllable .023 .013 .033 

CLASSIC-UB initial/final vs. PUDDLE Syllable .061 .041 .080 

CLASSIC-UB initial/final vs. BTP Syllable .053 .023 .079 

Note. ∆R2 = difference between adjusted R2 values. Lower and upper limits of 

bootstrap confidence intervals were based on 1,000 iterations and corrected using 

Holm’s correction. BTP = backward transitional probability; FTP = forward 

transitional probability. 
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Appendix S7: Approximation of Child Production Vocabulary by Phonemic 

Length 

We ran analyses on both phonemic and syllabified input. We have given a narrative 

account of the phonemic-input analysis in the section Results and Discussion / Word-

Level Measures / Phonemic Length of Chapter 2; below we focus on syllabified input. 

 When we used syllabified input (see Figure S7.1, Table S7.1, and Table S7.2), 

the model with the best performance was CLASSIC-UB final, but even this model did 

not outperform the baseline at approximating children’s vocabularies by phonemic 

length. We have included a discussion on the role of the random baseline in 

Appendix S13. 

CLASSIC-UB initial-final and CLASSIC-UB final showed a better performance 

than PUDDLE at approximating children’s vocabularies by phonemic length. We 

found no significant difference when comparing CLASSIC-UB final and CLASSIC-UB 

initial-final. Finally, PUDDLE performance did not differ statistically from the 

backward transitional probability model and was significantly worse than the forward 

transitional probability model. 

 

 

Figure S7.1 Proportion of unique words (types) produced by children and 

discovered by each model by phonemic length, when syllabified input was used. 
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Table S7.1 Child-model comparison by phonemic length. 

     95% CI 

Comparison Input type χ2 df p LL UL 

Children vs. Baseline Phoneme 528.99 6 < .001 421.46 691.44 

Children vs. BTP Phoneme 1,314.99 6 < .001 1,112.25 1,552.42 

Children vs. FTP Phoneme 1274.04 6 < .001 1,107.59 1,486.48 

Children vs. CLASSIC-UB 

final 

Phoneme 244.9 6 < .001 167.47 357.26 

Children vs. CLASSIC-UB 

initial/final 

Phoneme 311.02 6 < .001 223.76 440.03 

Children vs. PUDDLE Phoneme 1178.97 6 < .001 969.29 1,406.66 

Children vs. Baseline Syllable 16.62 6 .022 6.1 64.2 

Children vs. BTP Syllable 401.07 6 < .001 268.08 598.9 

Children vs. FTP Syllable 130.19 6 < .001 67.29 244.6 

Children vs. CLASSIC-UB 

final 

Syllable 14.62 6 .023 7.11 56.59 

Children vs. CLASSIC-UB 

initial/final 

Syllable 19.34 6 .011 6.62 74.01 

Children vs. PUDDLE Syllable 439.45 6 < .001 317.47 604.34 

Note. We compared the probability of observing words of different phonemic lengths 

in the models’ vocabularies against the expected probability of words being of a 

given phonemic length in children’s vocabularies. Comparisons were tested via a chi-

square goodness of fit test. The chi-square statistic always compares the distance of 

a model’s distribution from children’s. The table shows the type of comparison, the 

input type used, the chi-square statistic, degrees of freedom, p value and cut-offs of 

95% bootstrap confidence interval of the statistic. Holm’s correction was applied to p 

values and confidence intervals. BTP = backward transitional probability; FTP = 

forward transitional probability. 
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Table S7.2 Pairwise differences between the chi-square statistics reported in Table 

S7.1, comparing how well two models’ observed probabilities of phonemic lengths fit 

children’s expected probabilities, when phonemic or syllabified input is used 

   95% CI 

Model comparison Input type ∆χ2 LL UL 

Baseline vs. CLASSIC-UB final Phoneme 284.09 146.62 416.98 

Baseline vs. CLASSIC-UB initial/final Phoneme 217.97 69.46 393.14 

BTP vs. CLASSIC-UB final Phoneme 1,070.09 874.65 1,291.03 

BTP vs. CLASSIC-UB initial/final Phoneme 1,003.97 813.07 1,255.92 

BTP vs. Baseline Phoneme 785.99 564.44 983.90 

BTP vs. PUDDLE Phoneme 136.01 −75.75 368.09 

BTP vs. FTP Phoneme 40.94 −133.07 239.68 

FTP vs. CLASSIC-UB final Phoneme 1029.14 856.78 1260.98 

FTP vs. CLASSIC-UB initial/final Phoneme 963.02 736.17 1207.71 

FTP vs. Baseline Phoneme 745.05 551.63 946.67 

FTP vs. PUDDLE Phoneme 95.07 −111.00 287.36 

CLASSIC-UB initial/final vs. CLASSIC-UB 

final 

Phoneme 66.12 −41.65 172.99 

PUDDLE vs. CLASSIC-UB final Phoneme 934.07 717.61 1,153.22 

PUDDLE vs. CLASSIC-UB initial/final Phoneme 867.95 679.12 1,084.11 

PUDDLE vs. Baseline Phoneme 649.98 423.18 858.81 

Baseline vs. CLASSIC-UB final Syllable 2.00 −25.63 31.97 

BTP vs. CLASSIC-UB final Syllable 386.45 203.26 578.85 

BTP vs. Baseline Syllable 384.45 223.81 556.98 

BTP vs. CLASSIC-UB initial/final Syllable 381.73 200.61 570.78 

BTP vs. FTP Syllable 270.88 122.27 419.30 

FTP vs. CLASSIC-UB final Syllable 115.57 31.55 219.54 
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FTP vs. Baseline Syllable 113.57 31.45 212.32 

FTP vs. CLASSIC-UB initial/final Syllable 110.85 13.61 226.86 

CLASSIC-UB initial/final vs. CLASSIC-UB 

final 

Syllable 4.72 −33.69 43.77 

CLASSIC-UB initial/final vs. Baseline Syllable 2.72 −36.82 44.92 

PUDDLE vs. CLASSIC-UB final Syllable 424.83 299.34 576.60 

PUDDLE vs. Baseline Syllable 422.83 253.88 609.58 

PUDDLE vs. CLASSIC-UB initial/final Syllable 420.11 274.95 581.06 

PUDDLE vs. FTP Syllable 309.26 78.34 508.42 

PUDDLE vs. BTP Syllable 38.38 −211.69 295.25 

Note. The ∆χ2 measure examined whether two models’ distributions were at the 

same distance from children’s expected probabilities. The order of each pairwise 

difference was set as in the column Comparison (e.g., in Baseline vs. CLASSIC-UB 

final, the CLASSIC-UB final χ2 estimate is subtracted from the Baseline χ2 estimate). 

Lower and upper limits of bootstrap 95% confidence intervals were based on 1,000 

iterations and corrected using Holm’s correction. BTP = backward transitional 

probability; FTP = forward transitional probability. 
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Appendix S8: Approximation of Child Production Vocabulary by Weighted 

Log10 Word Frequency 

We ran analyses on both phonemic and syllabified input. We have provided a 

narrative account of the phonemic-input analysis in the section Results and 

Discussion / Word-Level Measures / Word Frequency of Chapter 2; below we focus 

on syllabified input. 

When syllabified input was used (see Figure S8.1, Table S8.1, and Table 

S8.2), PUDDLE outperformed CLASSIC-UB initial-final and CLASSIC-UB final at 

approximating children’s vocabularies by weighted log10 word frequency. However, 

neither PUDDLE nor CLASSIC-UB initial-final were able to outperform the baseline. 

We have included a discussion on the role of the random baseline in Appendix S13. 

CLASSIC-UB final did not differ statistically from CLASSIC-UB initial-final. 

Finally, PUDDLE outperformed forward and backward transitional probability at 

approximating children’s vocabularies by weighted log10 word frequency. 

 

 

Figure S8.1 Gaussian kernel density estimate of the distribution of unique words in 

children’s speech (Children) and discovered by each model, by weighted log10 word 

frequency. Syllabified input was used. The area under each curve represents 100% 

of data points. Curve peaks represent the mode of each distribution.  
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Table S8.1 Child-model comparison by weighted log10 word frequency 

    95% CI 

Model comparison Input type D p LL UL 

Children vs. Baseline Phoneme .29 < .001 .27 .32 

Children vs. BTP Phoneme .26 < .001 .23 .30 

Children vs. FTP Phoneme .23 < .001 .20 .27 

Children vs. CLASSIC-UB final Phoneme .13 < .001 .11 .15 

Children vs. CLASSIC-UB initial/final Phoneme .16 < .001 .14 .19 

Children vs. PUDDLE Phoneme .13 < .001 .11 .16 

Children vs. Baseline Syllable .05 < .001 .03 .07 

Children vs. BTP Syllable .11 < .001 .09 .14 

Children vs. FTP Syllable .10 < .001 .08 .12 

Children vs. CLASSIC-UB final Syllable .10 < .001 .08 .12 

Children vs. CLASSIC-UB initial/final Syllable .07 < .001 .06 .10 

Children vs. PUDDLE Syllable .04 < .001 .03 .06 

Note. Comparisons were tested via Kolmogorov–Smirnov test statistic. Models 

distributions of unique words by weighted log10 word frequency were compared to 

child distribution. Holm’s correction was applied to p values and confidence intervals. 

BTP = backward transitional probability; FTP = forward transitional probability. 
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Table S8.2 Pairwise differences between the Kolmogorov–Smirnov statistics 

reported in Table S8.1  

   95% CI 

Model comparison Input type ∆D LL UL 

Baseline vs. CLASSIC-UB final Phoneme .169 .136 .198 

Baseline vs. PUDDLE Phoneme .163 .127 .192 

Baseline vs. CLASSIC-UB initial/final Phoneme .132 .087 .159 

Baseline vs. FTP Phoneme .064 .028 .101 

Baseline vs. BTP Phoneme .030 −.006 .069 

BTP vs. CLASSIC-UB final Phoneme .138 .098 .175 

BTP vs. PUDDLE Phoneme .133 .096 .175 

BTP vs. CLASSIC-UB initial/final Phoneme .101 .063 .139 

BTP vs. FTP Phoneme .034 -.001 .072 

FTP vs. CLASSIC-UB final Phoneme .105 .067 .145 

FTP vs. PUDDLE Phoneme .099 .063 .132 

FTP vs. CLASSIC-UB initial/final Phoneme .068 .028 .106 

CLASSIC-UB initial/final vs. CLASSIC-UB final Phoneme .037 .006 .072 

CLASSIC-UB initial/final vs. PUDDLE Phoneme .032 −.006 .069 

PUDDLE vs. CLASSIC-UB final Phoneme .005 −.020 .036 

Baseline vs. PUDDLE Syllable .003 −.017 .028 

BTP vs. PUDDLE Syllable .066 .039 .091 

BTP vs. Baseline Syllable .063 .028 .089 

BTP vs. CLASSIC-UB initial/final Syllable .035 .009 .060 

BTP vs. FTP Syllable .015 −.008 .034 

BTP vs. CLASSIC-UB final Syllable .014 −.010 .038 

FTP vs. PUDDLE Syllable .052 .028 .081 
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FTP vs. Baseline Syllable .048 .023 .073 

FTP vs. CLASSIC-UB initial/final Syllable .021 −.002 .042 

CLASSIC-UB final vs. PUDDLE Syllable .053 .028 .079 

CLASSIC-UB final vs. Baseline Syllable .049 .019 .074 

CLASSIC-UB final vs. CLASSIC-UB initial/final Syllable .022 −.002 .045 

CLASSIC-UB final vs. FTP Syllable .001 −.017 .016 

CLASSIC-UB initial/final vs. PUDDLE Syllable .031 .006 .058 

CLASSIC-UB initial/final vs. Baseline Syllable .028 .000 .052 

Note. Comparison of how closely two models’ distributions of unique words were to 

children’s productions by weighted log10 word frequency when phonemic or 

syllabified input was used. Lower and upper limits of bootstrap confidence intervals 

were based on 1,000 iterations and corrected using Holm’s correction. BTP = 

backward transitional probability; FTP = forward transitional probability. 
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Appendix S9: Approximation of Child Production Vocabulary by Weighted 

Neighbourhood Density 

We ran analyses on both phonemic and syllabified input. We have included a 

narrative account of the phonemic-input analysis in the section Results and 

Discussion / Word-Level Measures / Neighbourhood Density of Chapter 2; below we 

focus on syllabified input. 

When we used syllabified input (see Figure S9.1, Table S9.1, and Table S9.2), 

CLASSIC-UB final showed the best performance at approximating children’s 

vocabularies by weighted neighbourhood density, but it was not able to outperform 

the baseline. We have included a discussion on the role of the random baseline in 

Appendix S13. 

CLASSIC-UB final did not differ statistically from CLASSIC-UB initial-final. 

Finally, PUDDLE did not differ statistically from backward transitional probability and 

performed significantly worse than forward transitional probability at approximating 

children’s vocabularies by weighted neighbourhood density. 

 

 

Figure S9.1 Gaussian kernel density estimate of the distribution of unique words in 

children’s speech (Children) and discovered by each model by weighted 

neighborhood density. Syllabified input was used. 
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Table S9.1 Child-model comparison by weighted neighbourhood density  

    95% CI 

Model comparison Input type D p LL UL 

Children vs. Baseline Phoneme .20 < .001 .18 .23 

Children vs. BTP Phoneme .37 < .001 .34 .40 

Children vs. FTP Phoneme .34 < .001 .32 .37 

Children vs. CLASSIC-UB final Phoneme .14 < .001 .12 .17 

Children vs. CLASSIC-UB initial/final Phoneme .18 < .001 .16 .21 

Children vs. PUDDLE Phoneme .29 < .001 .26 .32 

Children vs. Baseline Syllable .03 .029 .02 .04 

Children vs. BTP Syllable .12 < .001 .10 .14 

Children vs. FTP Syllable .05 < .001 .03 .07 

Children vs. CLASSIC-UB final Syllable .03 .005 .02 .05 

Children vs. CLASSIC-UB initial/final Syllable .05 < .001 .03 .07 

Children vs. PUDDLE Syllable .17 < .001 .14 .19 

Note. Model distributions of unique words by weighted neighbourhood density were 

compared to child distribution. The 95% bootstrap confidence intervals of the 

statistic were adjusted using Holm’s correction. BTP = backward transitional 

probability; FTP = forward transitional probability. 
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Table S9.2 Pairwise differences between the Kolmogorov–Smirnov statistics 

reported in Table S9.1  

   95% CI 

Model comparison Input type ∆D LL UL 

Baseline vs. CLASSIC-UB final Phoneme .063 .034 .092 

Baseline vs. CLASSIC-UB initial/final Phoneme .021 −.007 .050 

BTP vs. CLASSIC-UB final Phoneme .228 .191 .261 

BTP vs. CLASSIC-UB initial/final Phoneme .185 .147 .222 

BTP vs. Baseline Phoneme .164 .127 .197 

BTP vs. PUDDLE Phoneme .081 .049 .110 

BTP vs. FTP Phoneme .028 −.002 .058 

FTP vs. CLASSIC-UB final Phoneme .199 .168 .229 

FTP vs. CLASSIC-UB initial/final Phoneme .157 .122 .191 

FTP vs. Baseline Phoneme .136 .101 .171 

FTP vs. PUDDLE Phoneme .053 .023 .083 

CLASSIC-UB initial/final vs. CLASSIC-UB final Phoneme .042 .007 .074 

PUDDLE vs. CLASSIC-UB final Phoneme .146 .115 .178 

PUDDLE vs. CLASSIC-UB initial/final Phoneme .104 .065 .135 

PUDDLE vs. Baseline Phoneme .083 .049 .118 

BTP vs. Baseline Syllable .092 .055 .123 

BTP vs. CLASSIC-UB final Syllable .086 .044 .119 

BTP vs. FTP Syllable .073 .045 .100 

BTP vs. CLASSIC-UB initial/final Syllable .066 .028 .103 

FTP vs. Baseline Syllable .019 −.010 .044 

FTP vs. CLASSIC-UB final Syllable .013 −.019 .039 

CLASSIC-UB final vs. Baseline Syllable .006 −.007 .02 
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CLASSIC-UB initial/final vs. Baseline Syllable .026 .001 .046 

CLASSIC-UB initial/final vs. CLASSIC-UB final Syllable .019 −.002 .038 

CLASSIC-UB initial/final vs. FTP Syllable .007 −.023 .036 

PUDDLE vs. Baseline Syllable .141 .113 .164 

PUDDLE vs. CLASSIC-UB final Syllable .135 .110 .155 

PUDDLE vs. FTP Syllable .122 .079 .155 

PUDDLE vs. CLASSIC-UB initial/final Syllable .115 .087 .142 

PUDDLE vs. BTP Syllable .049 −.002 .090 

Note. Comparison of how closely two models’ distributions of unique words were to 

children’s productions by weighted neighbourhood density when phonemic or 

syllabified input is used. Lower and upper limits of bootstrap confidence intervals 

were based on 1,000 iterations and corrected using Holm’s correction. BTP = 

backward transitional probability; FTP = forward transitional probability. 
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Appendix S10: Approximation of Child Production Vocabulary by Weighted 

Phonotactic Probability 

We ran analyses on both phonemic and syllabified input. We have provided a 

narrative account of the phonemic-input analysis in the section Results and 

Discussion / Word-Level Measures / Phonotactic Probability of Chapter 2.  

When we used syllabified input, we found no significant differences between 

models’ performance at approximating children’s vocabulary by weighted 

phonotactic probability (see Figure S10.1, Table S10.1, and Table S10.2). 

 

 

Figure S10.1 Gaussian kernel density estimate of the distribution of unique words 

in children’s speech (Children) and discovered by each model, by weighted 

phonotactic probability. Syllabified input was used.  
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Table S10.1 Child-model comparison by weighted phonotactic probability 

    95% CI 

Model comparison Input type D p LL UL 

Children vs. Baseline Phoneme .05 .002 .03 .08 

Children vs. BTP Phoneme .08 < .001 .05 .12 

Children vs. FTP Phoneme .08 < .001 .05 .11 

Children vs. CLASSIC-UB final Phoneme .07 < .001 .05 .10 

Children vs. CLASSIC-UB initial/final Phoneme .09 < .001 .06 .12 

Children vs. PUDDLE Phoneme .05 < .001 .03 .08 

Children vs. Baseline Syllable .02 .770 .01 .04 

Children vs. BTP Syllable .01 .770 .01 .03 

Children vs. FTP Syllable .02 .368 .01 .05 

Children vs. CLASSIC-UB final Syllable .02 .368 .01 .04 

Children vs. CLASSIC-UB initial/final Syllable .03 .044 .02 .06 

Children vs. PUDDLE Syllable .02 .770 .01 .04 

Note. Model distributions of unique words by weighted phonotactic probability were 

compared to child distribution. The 95% bootstrap confidence intervals of the 

statistic were adjusted using Holm’s correction. BTP = backward transitional 

probability; FTP = forward transitional probability. 
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Table S10.2 Pairwise differences between the Kolmogorov–Smirnov statistics 

reported in Table S10.1 

   95% CI 

Model comparison Input type ∆D LL UL 

BTP vs. Baseline Phoneme .031 −.001 .073 

BTP vs. PUDDLE Phoneme .028 −.021 .072 

BTP vs. CLASSIC-UB final Phoneme .007 −.029 .045 

BTP vs. FTP Phoneme .002 −.027 .033 

FTP vs. Baseline Phoneme .029 −.007 .064 

FTP vs. PUDDLE Phoneme .026 −.018 .078 

FTP vs. CLASSIC-UB final Phoneme .005 −.032 .034 

CLASSIC-UB final vs. Baseline Phoneme .024 −.014 .059 

CLASSIC-UB final vs. PUDDLE Phoneme .021 −.028 .075 

CLASSIC-UB initial/final vs. Baseline Phoneme .042 .008 .081 

CLASSIC-UB initial/final vs. PUDDLE Phoneme .038 −.011 .098 

CLASSIC-UB initial/final vs. CLASSIC-UB final Phoneme .017 −.014 .050 

CLASSIC-UB initial/final vs. FTP Phoneme .012 −.022 .045 

CLASSIC-UB initial/final vs. BTP Phoneme .01 −.032 .050 

PUDDLE vs. Baseline Phoneme .003 −.038 .042 

Baseline vs. BTP Syllable .004 −.016 .024 

FTP vs. BTP Syllable .009 −.014 .030 

FTP vs. Baseline Syllable .005 −.017 .023 

FTP vs. PUDDLE Syllable .003 −.018 .019 

CLASSIC-UB final vs. BTP Syllable .01 −.014 .028 

CLASSIC-UB final vs. Baseline Syllable .006 −.017 .022 

CLASSIC-UB final vs. PUDDLE Syllable .003 −.017 .020 



241 
 

CLASSIC-UB final vs. FTP Syllable .001 −.015 .015 

CLASSIC-UB initial/final vs. BTP Syllable .017 −.017 .037 

CLASSIC-UB initial/final vs. Baseline Syllable .013 −.008 .034 

CLASSIC-UB initial/final vs. PUDDLE Syllable .011 −.012 .032 

CLASSIC-UB initial/final vs. FTP Syllable .008 −.015 .029 

CLASSIC-UB initial/final vs. CLASSIC-UB final Syllable .008 −.014 .027 

PUDDLE vs. BTP Syllable .006 −.021 .027 

PUDDLE vs. Baseline Syllable .002 −.017 .022 

Note. Comparison of how closely two models’ distributions of unique words were to 

children’s productions by weighted phonotactic probability when phonemic or 

syllabified input was used. Lower and upper limits of bootstrap confidence intervals 

were based on 1,000 iterations and corrected using Holm’s correction. BTP = 

backward transitional probability; FTP = forward transitional probability. 
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Appendix S11: CLASSIC-UB Initial-Final Versus CLASSIC-UB Final 

In this section, we briefly discuss whether the comparison between CLASSIC-UB 

initial-final and CLASSIC-UB final (on all the measures considered in our study) 

suggested that the addition of utterance-initial markers improved model 

performance.  

 As can Figure 2 in the main text and Appendix S4 indicate, CLASSIC-UB initial-

final showed a better performance than did CLASSIC-UB final in the traditional 

measures, reaching .50 for precision and .50 for recall with phonemic input (vs. .49 

for precision and .45 for recall), and .66 for precision and .58 for recall with 

syllabified input (vs. .57 for precision and .48 for recall). This suggested that the 

inclusion of initial (in addition to final) utterance-boundary markers was useful in 

segmenting the speech input as other studies have shown (Seidl & Johnson, 2006, 

2008). 

However, results for the developmental measures suggested that utterance-

initial markers did not significantly improve model performance. CLASSIC-UB initial-

final did not explain more variability in child age of first production compared to 

CLASSIC-UB final, suggesting that an initial utterance-boundary marker might not be 

necessary for predicting word age of first production (see Table S6.1). Similarly, 

adding utterance-initial markers did not significantly improve the model’s ability to 

capture any of the word-level characteristics of children’s vocabularies (see Tables 

S7.2, S8.2, S9.2, and S10.2).  

When measures that are not weighted by input frequency are considered 

(i.e., traditional measures, unweighted age of first production, word-level measures; 

see Appendices S4 and S6–S10), this result was likely due to the ratio of type to 

token frequency of the words present in the input at utterance-initial and final 

position. Namely, token frequency (i.e., frequency of a word including repetitions) 

was lower for words appearing at the end of utterances, M = 305.35, SE = 28.81, 

than were words appearing at the start of utterances, M = 652.05, SE = 62.81. At 

the same time, the input contained higher type frequency (i.e., more different 

words) at the end of utterances (N = 5,485) than at the beginning (N = 786). This 
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suggested that CLASSIC-UB’s segmentation accuracy increased when provided with 

utterance-initial markers because there were more repeated words that the model 

was able to segment correctly at the start of utterances, but their role became 

marginal for building a lexicon as the majority of novel words appeared at utterance 

ends (e.g., Fernald & Mazzie, 1991). 

This result provided evidence in support of previous work (e.g., Pearl et al., 

2010) suggesting that utterance-initial words might be segmented with higher 

accuracy because they have a higher token frequency (e.g., pronouns, determiners) 

than have more variable utterance-final ones (e.g., nouns, verbs). Additionally, using 

measures based on child data, we showed that the high type frequency of 

utterance-final words might be important in the process of building a lexicon from 

the segmented words. In other words, even if the perceptual salience of word 

boundaries at utterance-initial and final edges equally facilitates word extraction in 

the laboratory (Seidl & Johnson, 2006; 2008), their role in the naturalistic 

environment might be moderated by frequency information. The repeated 

presentation of few different words in utterance-initial position might increase the 

likelihood of segmenting those words correctly. Conversely, encountering a large 

number of different words at utterance ends might increase the chance of building a 

more diverse (i.e., larger) vocabulary. Finally, this also means that facilitatory effects 

of utterance boundaries in naturalistic settings might be different for languages 

where, for example, new words do not tend to be placed at utterance ends as in 

English child-directed speech (e.g., Dutch, Japanese; Han et al., 2021). 
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Appendix S12: Does PUDDLE Represent a Child With More Advanced 

Vocabulary Knowledge? 

The difference between CLASSIC-UB and PUDDLE in the word-level measures (i.e., 

with CLASSIC-UB better approximating children’s vocabularies by phonemic length 

and neighbourhood density) might be explained by differences in vocabulary size. At 

the end of learning, PUDDLE had a larger vocabulary than CLASSIC-UB, and might 

be taken to represent a child with more advanced vocabulary knowledge. 

Conversely, it is possible that an earlier stage of PUDDLE with smaller vocabulary 

might show similar performance to CLASSIC-UB on our developmental measures. To 

assess this possibility, we were able to look at the models’ developmental cascades 

to see whether model differences still held when we considered the stage at which 

PUDDLE had reached a vocabulary equal in size to that of CLASSIC-UB. We carried 

out this analysis only for phonemic input because CLASSIC-UB developed a smaller 

vocabulary than PUDDLE only when using phonemic input but not when using 

syllabified input (see Table S12.1). 

 

Table S12.1 Raw number of word types learned by CLASSIC-UB models and 

PUDDLE when run on phonemic or syllabic input, ranked from largest to smallest. 

Model Input type Word types learned 

CLASSIC-UB final Syllables 8,047 

CLASSIC-UB initial/final Syllables 7,451 

PUDDLE Syllables 5,903 

PUDDLE Phonemes 3,967 

CLASSIC-UB final Phonemes 3,611 

CLASSIC-UB initial/final Phonemes 3,049 
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In Figure S12.1, black vertical lines indicate the stage at which PUDDLE had reached 

a vocabulary size equal to that of CLASSIC-UB final or that of CLASSIC-UB initial/final 

(as indicated by the text labels). If differences between models are explained by 

vocabulary size, PUDDLE word-level distributions at the vertical lines should become 

similar to CLASSIC-UB’s distributions at stage 20 (i.e., at the end of its learning). 

Instead, for those measures that were found to show significant differences, that is, 

phonemic length and neighbourhood density, differences between PUDDLE and 

CLASSIC-UB models held across stages, with PUDDLE’s learning being always biased 

toward short (three-phoneme and four-phoneme) words and high-neighbourhood 

words compared to CLASSIC-UB models. 

 

 

Figure S12.1 Proportion of types discovered at each input stage for each word-

level measure. Proportion of types was computed by dividing the cumulative number 

of word types by the total number of types at a specific stage. Stage was computed 

by dividing the segmented utterances into 20 equal stages; the 604 stages used for 

the precision and recall measures were divided into wider stages, 20, because the 

probability of discovering new word types decreases substantially at later stages. For 
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continuous word-level measures (i.e., word frequency, neighbourhood density, and 

phonotactic probability), word types were divided into groups based on child-

directed speech tertiles. For example, T1 in the word frequency measure identifies 

words that have a low frequency in child-directed speech (<= 33rd percentile), while 

T3 refers to high-frequency words in child-directed speech (> 66th percentile). Black 

vertical lines indicate the stages at which PUDDLE has reached a vocabulary size 

equal to CLASSIC-UB final or CLASSIC-UB initial/final. 

 

As we discussed in the main paper (see Measures of Developmental Plausibility 

section of the Discussion), differences in performance can be explained by CLASSIC-

UB’s ability to learn words with overlapping phonological sequences (see Jones, 

2016). Indication of this can be seen when one looks at the length and 

neighbourhood findings separately by word frequency. In Figure S12.2 below, one 

can see that CLASSIC-UB became more accurate at capturing child vocabularies as 

frequency increased. This happened because frequent words are more likely to share 

phonological sequences with previously learned words, consequently boosting 

CLASSIC-UB’s learning compared to other models which do not show such 

facilitation (as their learning mechanism is uniquely based on tracking target 

sequences’ frequency). Namely, other models’ performance at capturing child 

phonemic length and neighbourhood density did not improve as word frequency 

increased. 
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Figure S12.2 Child and models’ phonemic length and neighbourhood density 

distributions at different child-directed word frequency tertiles. 

 

We also conducted a final exploratory analysis to support our claim that CLASSIC-UB 

captures long and low-neighbourhood words from the child vocabularies better than 

PUDDLE. Specifically, we wanted to check whether CLASSIC-UB actually learned 

more long and low-neighbourhood words than did PUDDLE rather than it simply 

missing a portion of children’s short, high-neighbourhood words (that PUDDLE 

instead captured), producing in turn an increase in the relative proportion of long, 

low-neighbourhood words in its vocabulary.  

Thus, we looked at the absolute number of children’s word types captured by 

each model, as shown in Figure S12.3. In this figure, we plotted the raw number of 
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types produced by children, alongside the number of children’s words that CLASSIC-

UB final or PUDDLE captured or missed (by phonemic length and neighbourhood 

density). This analysis excluded a portion of words that the models learned from the 

input but that were not produced by children; when including this set of words, the 

results that we obtained were consistent with the analysis reported below. As Figure 

S12.3 shows, differences in phonemic length were not due only to the fact that 

PUDDLE captured more three- and four-phoneme children’s words than did 

CLASSIC-UB but also to the fact that CLASSIC-UB captured a higher absolute 

number of five- to eight-phoneme words than did PUDDLE. Similarly, although 

PUDDLE captured a higher number of high-neighbourhood words (T3), it also 

captured a lower absolute number of words in the low and middle neighbourhood 

range (T1 and T2) than did CLASSIC-UB. In sum, this analysis supported our claim 

that CLASSIC-UB’s learning mechanism facilitates the learning of words that are 

generally more difficult to learn (i.e., long and with a low number of similar words in 

the input) but that children nevertheless acquire. 
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Figure S12.3 The plot shows the raw number of word types produced by children 

alongside the raw number of word types produced by children that CLASSIC-UB final 

and PUDDLE learned (captured) or not learned (missed). Phonemic length considers 

children’s words from two to eight phonemes, while weighted neighbourhood density 

considers children’s words in low (T1), middle (T2) and high (T3) neighbourhood 

child-directed speech tertiles. 
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Appendix S13: Controlling for Baseline Segmentation Performance 

An unexpected finding of our study was that, when we used syllabified input, no 

model was able to outperform the baseline in developmental measures. Providing a 

model with the input syllabic structure likely represents a strong facilitation which 

makes it difficult to compare competing models. First, given that models’ input 

contains 81% of monosyllabic tokens, syllabifying the input (i.e., avoiding 

oversegmentation of syllables) allows a model to discover—by chance—a large 

proportion of word types. For example, although models were exposed to limited 

input compared to what children receive, when processing syllabified input they 

discovered more word types, M = 7,223, min = 5903, max = 8,047, than did 

Thomas (the child with the largest production vocabulary; N = 5,899). The models 

also learned more low-frequency words than did children when run on a syllabified 

input (see Figure S8.1 in the Appendix S8), and this may have been for the same 

reason.  

 Furthermore, previous computational work has shown that providing chunking 

models with the input syllabic structure might not be necessary, as models that are 

run on phonemic input only commit a small proportion of intrasyllabic segmentation 

error (Goldwater et al., 2009). To confirm this, more work that compares models 

and infants’ actual segmentation performance is needed. For example, future work 

could investigate whether the issue with the syllabic baseline applies cross-

linguistically or is only present in languages such as English that have a large 

number of monosyllabic words.  
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Appendix S14: Morphological Analysis Excluding Words with Multiple 

Morpheme Segmentations 

Figure S14.1 and S14.2 display the number of morpheme tokens and types 

discovered by each segmentation model in the study, when excluding words that 

can have alternative morphological segmentations based on part-of-speech. The 

models’ performance is similar to that found when models were evaluated on all the 

words available in the input (see Figure 8b and Figure 12 in the thesis). 

 

 

Figure S14.1 Number of morpheme tokens segmented by Baseline, backward 

transitional probability (BTP), forward transitional probability (FTP), CLASSIC-UB 

final, CLASSIC-UB initial-final, and PUDDLE. Tokens are grouped by morphemes that 

appear within words (Within-word morpheme) and morphemes that correspond to 

words (Word morpheme). Morpheme tokens are shown for models run on phonemic 

or syllabic input. 
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Figure S14.2 Number of morpheme types segmented by Baseline, backward 

transitional probability (BTP), forward transitional probability (FTP), CLASSIC-UB 

final, CLASSIC-UB initial-final, and PUDDLE. Types are grouped by morphemes that 

appear within words (Within-word morpheme) and morphemes that correspond to 

words (Word morpheme). Morpheme types are shown for models run on phonemic 

or syllabic input. 

 

Appendix S15: Age-based Age of First Production Measure 

In this section, we report results of the age of first production analysis but 

computing word stage of first production as the lowest age in months (instead mean 

length of utterance, MLU) of a transcript in which a target word type appeared. 

Differently from the measure included in Chapter 3, this age-based measure focuses 

on age rather than on linguistic competence. As shown in Table S15.1 and S15.2, 

results obtained with this age-based measure are similar to that found with the age 

of first production measure based on linguistic competence (see Table 3a in the 

thesis, and Table S17.1 in Appendix S17). This suggests that differences obtained 

between the CDI-based age of acquisition measure and the MLU-based age of first 

production measure in Chapter 3 are likely not determined by the fact that the two 

measures focus on age and linguistic competence respectively.  
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Table S15.1 Adjusted R2 for linear regression models predicting age-based word 

age of first production as a function of weighted log10 number of times a word was 

correctly segmented by each model 

 Phonemic input  Syllabified input 

  95% CI   95% CI 

Model R2
adjusted LL UL  R2

adjusted LL UL 

Baseline .049 .021 .084  .041 .016 .074 

Backward transitional 

probability 
.028 .012 .048 

 
.017 .006 .034 

Forward transitional 

probability 

.054 .028 .088  
.003 0 .011 

CLASSIC-UB final .113 .074 .162  .07 .039 .105 

CLASSIC-UB initial/final .108 .069 .155  .066 .039 .1 

PUDDLE .043 .019 .071  .041 .019 .069 

Note. Heteroskedasticity-robust standard errors were computed using a HC2 

estimator. The 95% confidence intervals indicate lower and upper limits of bootstrap 

confidence intervals around the estimate (based on 1,000 iterations). Holm’s 

correction was applied to the confidence intervals. 
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Table S15.2 Pairwise differences between adjusted R2 of weighted age-based age 

of first production models  

   95% CI 

Model comparison Input type ∆R2 LL UL 

Baseline vs. BTP Phoneme .021 -.007 .052 

Baseline vs. PUDDLE Phoneme .006 -.031 .047 

FTP vs. BTP Phoneme .026 -.001 .061 

FTP vs. PUDDLE Phoneme .011 -.031 .044 

FTP vs. Baseline Phoneme .005 -.028 .041 

CLASSIC-UB final vs. BTP Phoneme .085 .041 .131 

CLASSIC-UB final vs. PUDDLE Phoneme .07 .026 .128 

CLASSIC-UB final vs. Baseline Phoneme .064 .01 .131 

CLASSIC-UB final vs. FTP Phoneme .059 .00 .113 

CLASSIC-UB final vs. CLASSIC-UB 

initial/final 

Phoneme 
.005 -.014 .023 

CLASSIC-UB initial/final vs. BTP Phoneme .08 .038 .133 

CLASSIC-UB initial/final vs. PUDDLE Phoneme .065 .019 .113 

CLASSIC-UB initial/final vs. Baseline Phoneme .059 .004 .122 

CLASSIC-UB initial/final vs. FTP Phoneme .054 .005 .111 

PUDDLE vs. BTP Phoneme .015 -.012 .05 

Baseline vs. FTP Syllable .038 .009 .069 

Baseline vs. BTP Syllable .024 -.006 .059 

Baseline vs. PUDDLE Syllable .00 -.024 .025 
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BTP vs. FTP Syllable .014 -.004 .037 

CLASSIC-UB final vs. FTP Syllable .067 .035 .111 

CLASSIC-UB final vs. BTP Syllable .053 .018 .093 

CLASSIC-UB final vs. Baseline Syllable .029 -.021 .074 

CLASSIC-UB final vs. PUDDLE Syllable .029 -.013 .063 

CLASSIC-UB final vs. CLASSIC-UB 

initial/final 

Syllable 
.004 -.01 .018 

CLASSIC-UB initial/final vs. FTP Syllable .063 .031 .098 

CLASSIC-UB initial/final vs. BTP Syllable .049 .011 .092 

CLASSIC-UB initial/final vs. Baseline Syllable .025 -.02 .069 

CLASSIC-UB initial/final vs. PUDDLE Syllable .025 -.013 .06 

PUDDLE vs. FTP Syllable .038 .012 .07 

PUDDLE vs. BTP Syllable .024 -.007 .057 

Note. ∆R2 = difference between adjusted R2 values. Lower and upper limits of 

bootstrap confidence intervals were based on 1,000 iterations and corrected using 

Holm’s correction. BTP = backward transitional probability; FTP = forward 

transitional probability.  
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Appendix S16: Comparison of Precision and Recall Measures 

We have included a narrative account of the findings in Table S16.1, S16.2, and 

S16.3 in Chapter 3, in the section Results / Precision and Recall. 

 

Table S16.1 Comparison of models for the precision and recall measures for 

phonemic input 

        95% CI 

Model comparison Measure M1a M2b ∆Mc t p df LL UL 

BTP vs. PUDDLE Recall .11 .58 
-

.48 
-120 <.001 18,612.8 

-

.488 

-

.462 

BTP vs. PUDDLE Precision .09 .49 -.4 -98.92 <.001 17,504 
-

.411 

-

.386 

BTP vs. CLASSIC-UB 

initial/final 
Precision .09 .44 

-

.35 
-81.51 <.001 16,803 

-

.357 

-

.333 

BTP vs. CLASSIC-UB 

initial/final 
Recall .11 .45 

-

.34 
-80.04 <.001 17,435.3 

-

.357 

-

.331 

BTP vs. CLASSIC-UB final Precision .09 .43 
-

.34 
-79.26 <.001 16,628 

-

.352 

-

.326 

BTP vs. CLASSIC-UB final Recall .11 .43 
-

.32 
-72.85 <.001 17,245.9 -.33 

-

.304 

BTP vs. FTP Recall .11 .31 -.2 -52.17 <.001 19,129.7 -.21 
-

.188 

BTP vs. FTP Precision .09 .24 
-

.15 
-41.77 <.001 19,231 

-

.159 

-

.139 

BTP vs. Baseline Recall .11 .13 
-

.02 
-5.33 <.001 19,984.9 

-

.026 

-

.009 

BTP vs. Baseline Precision .09 .09 0 .8 .617 19,827 
-

.004 
.009 
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FTP vs. PUDDLE Recall .31 .58 
-

.28 
-63.84 <.001 19,917.9 

-

.291 

-

.263 

FTP vs. PUDDLE Precision .24 .49 
-

.25 
-57.76 <.001 19,285 

-

.265 

-

.236 

FTP vs. Baseline Recall .31 .13 .18 47.97 <.001 18,931.6 .169 .194 

FTP vs. Baseline Precision .24 .09 .15 43.98 <.001 18,473 .14 .162 

CLASSIC-UB final 

vs. Baseline 
Precision .43 .09 .34 81.76 <.001 15,724 .329 .357 

CLASSIC-UB final 

vs. Baseline 
Recall .43 .13 .3 69.29 <.001 16,990.2 .287 .315 

CLASSIC-UB final vs. FTP Precision .43 .24 .19 41.86 <.001 18,589 .178 .205 

CLASSIC-UB final 

vs. PUDDLE 
Recall .43 .58 

-

.16 
-32.7 <.001 19,601.8 

-

.173 

-

.143 

CLASSIC-UB final vs. FTP Recall .43 .31 .12 25.3 <.001 19,200.8 .106 .132 

CLASSIC-UB final 

vs. PUDDLE 
Precision .43 .49 

-

.06 
-11.86 <.001 19,846 

-

.073 

-

.045 

CLASSIC-UB final 

vs. CLASSIC-UB 

initial/final 

Recall .43 .45 
-

.03 
-5.24 <.001 19,990.8 -.04 

-

.014 

CLASSIC-UB final 

vs. CLASSIC-UB 

initial/final 

Precision .43 .44 
-

.01 
-1.02 .617 19,992 

-

.016 
.005 

CLASSIC-UB initial/final 

vs. Baseline 
Precision .44 .09 .35 84.12 <.001 15,890 .335 .361 

CLASSIC-UB initial/final 

vs. Baseline 
Recall .45 .13 .33 76.5 <.001 17,180.2 .314 .341 

CLASSIC-UB initial/final 

vs. FTP 
Precision .44 .24 .2 43.49 <.001 18,741 .184 .209 

CLASSIC-UB initial/final 

vs. FTP 
Recall .45 .31 .15 31.34 <.001 19,332.9 .133 .159 
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CLASSIC-UB initial/final 

vs. PUDDLE 
Recall .45 .58 

-

.13 
-27.44 <.001 19,697.6 

-

.145 

-

.117 

CLASSIC-UB initial/final 

vs. PUDDLE 
Precision .44 .49 

-

.05 
-10.91 <.001 19,900 

-

.068 
-.04 

PUDDLE vs. Baseline Recall .58 .13 .46 116.56 <.001 18,383.9 .445 .47 

PUDDLE vs. Baseline Precision .49 .09 .4 102.27 <.001 16,574 .388 .414 

Note. Pairwise comparisons via Welch’s t test for unequal variances; p values and 

bootstrap 95% confidence intervals are corrected for multiple comparisons (using 

Holm’s correction). FTP = forward transitional probability; BTP = backward 

transitional probability. 

aM1  = first model mean. bM2 = second model mean. c∆M = mean difference.  

 

Table S16.2 Comparison of precision and recall measures for syllabified input 

        95% CI 

Model comparison Measure M1a M2b ∆Mc t p df LL UL 

BTP vs. PUDDLE Recall .37 .64 
-

.27 

-

56.73 
<.001 19,387.74 

-

.285 

-

.255 

BTP vs. CLASSIC-UB 

initial/final 
Recall .37 .6 

-

.24 
-46.6 <.001 19,979.91 

-

.253 

-

.222 

BTP vs. CLASSIC-UB 

initial/final 
Precision .42 .63 

-

.21 

-

40.82 
<.001 19,940.213 

-

.222 
-.19 

BTP vs. CLASSIC-UB final Recall .37 .55 
-

.18 

-

34.66 
<.001 19,997.43 

-

.195 

-

.164 

BTP vs. CLASSIC-UB final Precision .42 .59 
-

.18 

-

34.27 
<.001 19,983.493 

-

.192 
-.16 

BTP vs. FTP Precision .42 .57 
-

.15 

-

29.02 
<.001 19,964.685 

-

.163 

-

.132 

BTP vs. FTP Recall .37 .5 
-

.13 

-

25.81 
<.001 19,997.92 -.15 

-

.119 
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BTP vs. PUDDLE Precision .42 .55 
-

.13 
-25.8 <.001 19,799.583 -.14 

-

.115 

BTP vs. Baseline Precision .42 .3 .12 24.29 <.001 19,863.693 .108 .136 

BTP vs. Baseline Recall .37 .3 .06 12.89 <.001 19,898.38 .052 .078 

FTP vs. Baseline Precision .57 .3 .27 55.06 <.001 19,963.588 .254 .283 

FTP vs. Baseline Recall .5 .3 .2 39.61 <.001 19,904.01 .184 .212 

FTP vs. PUDDLE Recall .5 .64 
-

.14 

-

28.79 
<.001 19,400.90 

-

.149 

-

.121 

FTP vs. PUDDLE Precision .57 .55 .02 4.12 <.001 19,927.452 .008 .031 

CLASSIC-UB final 

vs. Baseline 
Precision .59 .3 .3 60.33 <.001 19,936.794 .284 .311 

CLASSIC-UB final 

vs. Baseline 
Recall .55 .3 .24 48.71 <.001 19,882.90 .23 .258 

CLASSIC-UB final 

vs. PUDDLE 
Recall .55 .64 

-

.09 

-

18.96 
<.001 19,352.72 

-

.104 

-

.078 

CLASSIC-UB final 

vs. CLASSIC-UB 

initial/final 

Recall .55 .6 
-

.06 
-11.3 <.001 19,972.91 

-

.071 

-

.044 

CLASSIC-UB final 

vs. PUDDLE 
Precision .59 .55 .05 9.81 <.001 19,890.950 .036 .061 

CLASSIC-UB final vs. FTP Recall .55 .5 .05 8.95 <.001 19,996.90 .033 .062 

CLASSIC-UB final 

vs. CLASSIC-UB 

initial/final 

Precision .59 .63 
-

.03 
-6.19 <.001 19,983.508 

-

.043 

-

.019 

CLASSIC-UB final vs. FTP Precision .59 .57 .03 5.56 <.001 19,994.125 .015 .041 

CLASSIC-UB initial/final 

vs. Baseline 
Precision .63 .3 .33 67.55 <.001 19,981.746 .313 .341 

CLASSIC-UB initial/final 

vs. Baseline 
Recall .6 .3 .3 61.36 <.001 19,964.85 .286 .316 
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CLASSIC-UB initial/final 

vs. FTP 
Recall .6 .5 .1 20.45 <.001 19,982.28 .089 .119 

CLASSIC-UB initial/final 

vs. PUDDLE 
Precision .63 .55 .08 16.37 <.001 19,954.809 .064 .092 

CLASSIC-UB initial/final 

vs. FTP 
Precision .63 .57 .06 11.87 <.001 19,994.615 .044 .072 

CLASSIC-UB initial/final 

vs. PUDDLE 
Recall .6 .64 

-

.03 
-7.03 <.001 19,568.70 

-

.045 
-.02 

PUDDLE vs. Baseline Recall .64 .3 .33 73.15 <.001 19,767.36 .322 .348 

PUDDLE vs. Baseline Precision .55 .3 .25 52.53 <.001 19,991.504 .235 .264 

Note. Pairwise comparisons via Welch’s t test for unequal variances; p values and 

bootstrap 95% confidence intervals are corrected for multiple comparisons (using 

Holm’s correction). FTP = forward transitional probability; BTP = backward 

transitional probability. 

aM1  = first model mean. bM2 = second model mean. c∆M = mean difference.  

 

Table S16.3 For each model, comparison of phonemic vs. syllabic model 

implementation (Δt), in Precision and Recall 

   95% CI 

Measure Model Δt LL UL 

Precision BTP -23.49 -27.17 -19.32 

Recall BTP -18.22 -21.69 -14.43 

Precision FTP -11.08 -14.32 -7.59 

Recall FTP 8.36 5.59 11.25 

Precision CLASSIC-UB final 21.43 15.94 25.98 

Recall CLASSIC-UB final 20.58 16.06 24.70 



262 
 

Precision CLASSIC-UB initial-final 16.58 12.29 20.91 

Recall CLASSIC-UB initial-final 15.13 11.17 19.10 

Precision PUDDLE 49.74 45.50 54.34 

Recall PUDDLE 43.42 38.90 48.73 

Note. 95% confidence intervals are corrected for multiple comparisons (using Holm’s 

correction). FTP = forward transitional probability; BTP = backward transitional 

probability.  
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Appendix S17: Age of First Production and Age of Acquisition Analyses: 

Pairwise Differences Between Models’ Adjusted R2 

A narrative account of Table S17.1, S17.2, and S17.3 is available in section Results / 

Word Age of Acquisition and Production of Chapter 3. 

 

Table S17.1 Age of first production analyses: Pairwise differences between 

adjusted R2 values of models when phonemic or syllabified input was used 

   95% CI 

Model comparison Input type ∆R2 LL UL 

Baseline vs. BTP Phoneme .006 -.012 .026 

FTP vs. BTP Phoneme .026 .002 .052 

FTP vs. Baseline Phoneme .02 -.008 .047 

FTP vs. PUDDLE Phoneme .016 -.013 .043 

CLASSIC-UB final vs. BTP Phoneme .065 .027 .106 

CLASSIC-UB final vs. Baseline Phoneme .059 .013 .102 

CLASSIC-UB final vs. PUDDLE Phoneme .055 .012 .095 

CLASSIC-UB final vs. FTP Phoneme .039 -.004 .081 

CLASSIC-UB final vs. CLASSIC-UB 

initial/final 

Phoneme 
.011 -.006 .027 

CLASSIC-UB initial/final vs. BTP Phoneme .054 .018 .094 

CLASSIC-UB initial/final vs. Baseline Phoneme .048 .009 .093 

CLASSIC-UB initial/final vs. PUDDLE Phoneme .044 .01 .081 

CLASSIC-UB initial/final vs. FTP Phoneme .028 -.009 .07 
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PUDDLE vs. BTP Phoneme .01 -.015 .038 

PUDDLE vs. Baseline Phoneme .004 -.02 .026 

Baseline vs. FTP Syllable .032 .008 .062 

Baseline vs. BTP Syllable .025 -.005 .058 

Baseline vs. PUDDLE Syllable .01 -.019 .042 

BTP vs. FTP Syllable .007 -.006 .024 

CLASSIC-UB final vs. FTP Syllable .048 .024 .079 

CLASSIC-UB final vs. BTP Syllable .041 .012 .078 

CLASSIC-UB final vs. PUDDLE Syllable .026 -.009 .072 

CLASSIC-UB final vs. Baseline Syllable .016 -.022 .053 

CLASSIC-UB final vs. CLASSIC-UB 

initial/final 

Syllable 
.005 -.006 .016 

CLASSIC-UB initial/final vs. FTP Syllable .043 .019 .075 

CLASSIC-UB initial/final vs. BTP Syllable .036 .006 .075 

CLASSIC-UB initial/final vs. PUDDLE Syllable .021 -.015 .055 

CLASSIC-UB initial/final vs. Baseline Syllable .011 -.023 .043 

PUDDLE vs. FTP Syllable .022 .003 .047 

PUDDLE vs. BTP Syllable .015 -.01 .042 

Note. ∆R2 = difference between adjusted R2 values. Lower and upper limits of 

bootstrap confidence intervals were based on 1,000 iterations and corrected using 

Holm’s correction. FTP = forward transitional probability; BTP = backward 

transitional probability. 
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Table S17.2 Age of acquisition analyses: Pairwise differences between adjusted R2 

values of models when phonemic or syllabified input was used 

   95% CI 

Model comparison Input type ∆R2 LL UL 

Baseline vs. BTP Phoneme .022 -.027 .069 

Baseline vs. CLASSIC-UB final Phoneme .021 -.044 .084 

Baseline vs. CLASSIC-UB initial/final Phoneme .015 -.053 .08 

Baseline vs. PUDDLE Phoneme .015 -.062 .075 

Baseline vs. FTP Phoneme .01 -.035 .065 

FTP vs. BTP Phoneme .012 -.029 .054 

FTP vs. CLASSIC-UB final Phoneme .011 -.056 .071 

FTP vs. CLASSIC-UB initial/final Phoneme .005 -.055 .063 

FTP vs. PUDDLE Phoneme .005 -.065 .06 

CLASSIC-UB final vs. BTP Phoneme .001 -.032 .04 

CLASSIC-UB initial/final vs. BTP Phoneme .007 -.032 .077 

CLASSIC-UB initial/final vs. CLASSIC-UB 

final 

Phoneme 
.006 -.01 .038 

CLASSIC-UB initial/final vs. PUDDLE Phoneme .00 -.036 .039 

PUDDLE vs. BTP Phoneme .007 -.029 .068 

PUDDLE vs. CLASSIC-UB final Phoneme .006 -.042 .06 

Baseline vs. FTP Syllable .00 -.014 .018 

BTP vs. Baseline Syllable .003 -.021 .049 

BTP vs. FTP Syllable .003 -.022 .052 
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CLASSIC-UB final vs. Baseline Syllable .006 -.025 .048 

CLASSIC-UB final vs. FTP Syllable .006 -.02 .055 

CLASSIC-UB final vs. BTP Syllable .003 -.036 .04 

CLASSIC-UB final vs. CLASSIC-UB 

initial/final 

Syllable 
.002 -.015 .022 

CLASSIC-UB initial/final vs. Baseline Syllable .004 -.025 .041 

CLASSIC-UB initial/final vs. FTP Syllable .004 -.021 .045 

CLASSIC-UB initial/final vs. BTP Syllable .001 -.034 .031 

PUDDLE vs. Baseline Syllable .013 -.033 .071 

PUDDLE vs. FTP Syllable .013 -.023 .074 

PUDDLE vs. BTP Syllable .01 -.055 .079 

PUDDLE vs. CLASSIC-UB initial/final Syllable .009 -.036 .066 

PUDDLE vs. CLASSIC-UB final Syllable .007 -.047 .073 

Note. ∆R2 = difference between adjusted R2 values. Lower and upper limits of 

bootstrap confidence intervals were based on 1,000 iterations and corrected using 

Holm’s correction. FTP = forward transitional probability; BTP = backward 

transitional probability. 

 

Table S17.3 For each model, comparison of phonemic vs. syllabic model 

implementation (∆R2), in the age of first production measure. For each model 

implementation, the analysis controls for chance levels by initially subtracting a 

baseline AdjR2 from a model AdjR2 (see Chapter 3 for a detailed explanation). For 

each model, positive and negative ∆R2 values indicate higher contribution of 

phonemic or syllabic input respectively. This analysis is carried out in Italian and 

English. English data are taken from Cabiddu et al. (2023) 

   95% CI 
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Model Language ∆R2 LL UL 

BTP Italian .019 -.01 .05 

FTP Italian .053 .016 .086 

CLASSIC-UB final Italian .043 -.004 .096 

CLASSIC-UB 

initial-final 

Italian .038 -.006 .085 

PUDDLE Italian .014 -.011 .037 

BTP English .049 .028 .069 

FTP English .038 .016 .059 

CLASSIC-UB final English .064 .038 .087 

CLASSIC-UB 

initial-final 

English .051 .026 .075 

PUDDLE English .022 .004 .039 

Note. 95% confidence intervals are corrected for multiple comparisons (using Holm’s 

correction). FTP = forward transitional probability; BTP = backward transitional 

probability. 
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Appendix S18: Approximation of Child Production Vocabulary by Phonemic 

Length 

Word types 

We ran analyses on both phonemic and syllabified input. We have given a narrative 

account of the phonemic-input analysis in the section Results / Word-Level 

Characteristics of Chapter 3; below, we include statistical comparisons for both 

phonemic input and syllabic input. 

 

Table S18.1 Child-model comparison by phonemic length. 

     95% CI 

Comparison Input type χ2 df p LL UL 

Children vs. Baseline Phoneme 286.02 9 <.001 198.62 479.33 

Children vs. BTP Phoneme 501.91 9 <.001 332.17 914.91 

Children vs. FTP Phoneme 694.18 9 <.001 513.31 1031.51 

Children vs. CLASSIC-UB 

final 
Phoneme 17.35 9 .13 9.06 78.77 

Children vs. CLASSIC-UB 

initial/final 
Phoneme 32.32 9 .001 13.19 111.01 

Children vs. PUDDLE Phoneme 127.97 9 <.001 59.51 235.55 

Children vs. Baseline Syllable 7.22 9 .614 7.22 50.86 

Children vs. BTP Syllable 26.23 9 .009 14.06 113.91 

Children vs. FTP Syllable 162.29 9 <.001 89.77 307.94 

Children vs. CLASSIC-UB 

final 
Syllable 25.76 9 .009 11.68 109.95 
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Children vs. CLASSIC-UB 

initial/final 
Syllable 16.48 9 .13 10.16 86.05 

Children vs. PUDDLE Syllable 102.03 9 <.001 57.32 204.77 

Note. We compared the probability of observing words of different phonemic lengths 

in the models’ vocabularies against the expected probability of words being of a 

given phonemic length in children’s vocabularies. Comparisons were tested via a chi-

square goodness of fit test. The chi-square statistic always compares the distance of 

a model’s distribution from children’s. The table shows the type of comparison, the 

input type used, the chi-square statistic, degrees of freedom, p value and cut-offs of 

95% bootstrap confidence interval of the statistic. Holm’s correction was applied to p 

values and confidence intervals. BTP = backward transitional probability; FTP = 

forward transitional probability. 

 

Table S18.2 Pairwise differences between the chi-square statistics reported in 

Table S18.1, comparing how well two models’ observed probabilities of phonemic 

lengths fit children’s expected probabilities, when phonemic or syllabified input is 

used 

   95% CI 

Model comparison Input type ∆χ2 LL UL 

Baseline vs. CLASSIC-UB final Phoneme 268.66 156.91 424.43 

Baseline vs. CLASSIC-UB initial/final Phoneme 253.69 140.96 425.89 

Baseline vs. PUDDLE Phoneme 158.05 5.93 404.26 

BTP vs. CLASSIC-UB final Phoneme 484.56 296.67 820.98 

BTP vs. CLASSIC-UB initial/final Phoneme 469.59 264.08 847.97 

BTP vs. PUDDLE Phoneme 373.95 172.61 763.75 

BTP vs. Baseline Phoneme 215.90 -6.81 551.59 
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FTP vs. CLASSIC-UB final Phoneme 676.83 455.95 1049.33 

FTP vs. CLASSIC-UB initial/final Phoneme 661.86 441.92 964.69 

FTP vs. PUDDLE Phoneme 566.22 338.80 886.49 

FTP vs. Baseline Phoneme 408.17 167.05 752.40 

FTP vs. BTP Phoneme 192.27 -205.68 541.46 

CLASSIC-UB initial/final vs. CLASSIC-

UB final 

Phoneme 14.97 -27.99 79.39 

PUDDLE vs. CLASSIC-UB final Phoneme 110.62 21.97 201.48 

PUDDLE vs. CLASSIC-UB initial/final Phoneme 95.65 -0.83 179.67 

BTP vs. Baseline Syllable 19.01 -40.18 90.20 

BTP vs. CLASSIC-UB initial/final Syllable 9.74 -52.91 67.60 

BTP vs. CLASSIC-UB final Syllable 0.47 -55.05 51.66 

FTP vs. Baseline Syllable 155.07 47.26 320.30 

FTP vs. CLASSIC-UB initial/final Syllable 145.81 42.18 293.69 

FTP vs. CLASSIC-UB final Syllable 136.54 35.28 274.75 

FTP vs. BTP Syllable 136.07 16.76 305.11 

FTP vs. PUDDLE Syllable 60.26 -57.63 203.29 

CLASSIC-UB final vs. Baseline Syllable 18.54 -24.02 83.59 

CLASSIC-UB final vs. CLASSIC-UB 

initial/final 

Syllable 
9.27 -46.80 66.01 

CLASSIC-UB initial/final vs. Baseline Syllable 9.26 -22.84 63.60 

PUDDLE vs. Baseline Syllable 94.81 20.30 161.78 

PUDDLE vs. CLASSIC-UB initial/final Syllable 85.55 0.42 167.71 

PUDDLE vs. CLASSIC-UB final Syllable 76.28 -18.75 151.19 
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PUDDLE vs. BTP Syllable 75.81 -16.85 179.44 

Note. The ∆χ2 measure examined whether two models’ distributions were at the 

same distance from children’s expected probabilities. The order of each pairwise 

difference was set as in the column Comparison (e.g., in Baseline vs. CLASSIC-UB 

final, the CLASSIC-UB final χ2 estimate is subtracted from the Baseline χ2 estimate). 

Lower and upper limits of bootstrap 95% confidence intervals were based on 1,000 

iterations and corrected using Holm’s correction. BTP = backward transitional 

probability; FTP = forward transitional probability. 

 

 

Figure S18.1 Proportion of unique words (types) produced by children and 

discovered by each model by phonemic length, when syllabified input was used. 

 

Word tokens 

This analysis is a repetition of the analysis done on word types above, but 

considering the distributions of word tokens in children and models. We have given a 

narrative account of this analysis in the section Exploratory Analysis of Word-Level 

Properties at the Token Level in Chapter 3; below, we include statistical comparisons 

for both phonemic input and syllabic input. 

 

Table S18.3 Child-model comparison by phonemic length. 

     95% CI 
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Comparison Input type χ2 df p LL UL 

Children 

vs. Baseline 
Phoneme 11724.67 9 <.001 10702.54 12888 

Children vs. BTP Phoneme 6858.66 9 <.001 6460.14 7305.29 

Children vs. FTP Phoneme 18378.04 9 <.001 17504.42 19470.99 

Children 

vs. CLASSIC-UB 

final 

Phoneme 2741.4 9 <.001 2455.01 3104.63 

Children 

vs. CLASSIC-UB 

initial/final 

Phoneme 2549.08 9 <.001 2243.2 2884.7 

Children 

vs. PUDDLE 
Phoneme 5451.78 9 <.001 4804.53 6297.6 

Children 

vs. Baseline 
Syllable 2572.99 9 <.001 2241.48 3001.58 

Children vs. BTP Syllable 4909.25 9 <.001 4320.07 5584.04 

Children vs. FTP Syllable 10276.23 9 <.001 9492.15 11293.92 

Children 

vs. CLASSIC-UB 

final 

Syllable 2761.34 9 <.001 2345.02 3319.55 

Children 

vs. CLASSIC-UB 

initial/final 

Syllable 1107.39 9 <.001 920.28 1411.46 

Children 

vs. PUDDLE 
Syllable 2977.77 9 <.001 2449.03 3582.16 

Note. We compared the probability of observing words of different phonemic lengths 

in the models’ vocabularies against the expected probability of words being of a 
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given phonemic length in children’s vocabularies. Comparisons were tested via a chi-

square goodness of fit test. The chi-square statistic always compares the distance of 

a model’s distribution from children’s. The table shows the type of comparison, the 

input type used, the chi-square statistic, degrees of freedom, p value and cut-offs of 

95% bootstrap confidence interval of the statistic. Holm’s correction was applied to p 

values and confidence intervals. BTP = backward transitional probability; FTP = 

forward transitional probability. 

 

Table S18.4 Pairwise differences between the chi-square statistics reported in 

Table S18.3, comparing how well two models’ observed probabilities of phonemic 

lengths fit children’s expected probabilities, when phonemic or syllabified input is 

used 

   95% CI 

Model comparison Input type ∆χ2 LL UL 

Baseline vs. CLASSIC-UB 

initial/final 

Phoneme 
9175.60 7744.24 10593.40 

Baseline vs. CLASSIC-UB final Phoneme 8983.28 7606.19 10438.68 

Baseline vs. PUDDLE Phoneme 6272.89 4958.73 7517.70 

Baseline vs. BTP Phoneme 4866.01 3665.33 6120.34 

BTP vs. CLASSIC-UB initial/final Phoneme 4309.59 3719.21 4809.03 

BTP vs. CLASSIC-UB final Phoneme 4117.27 3523.86 4664.88 

BTP vs. PUDDLE Phoneme 1406.88 882.14 1991.45 

FTP vs. CLASSIC-UB initial/final Phoneme 15828.96 14589.53 16802.34 

FTP vs. CLASSIC-UB final Phoneme 15636.64 14481.46 16955.05 

FTP vs. PUDDLE Phoneme 12926.26 12091.99 13853.69 

FTP vs. BTP Phoneme 11519.37 10699.81 12438.44 
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FTP vs. Baseline Phoneme 6653.36 5211.40 8126.65 

CLASSIC-UB final vs. CLASSIC-

UB initial/final 

Phoneme 
192.32 -89.40 478.79 

PUDDLE vs. CLASSIC-UB 

initial/final 

Phoneme 
2902.70 2191.08 3621.60 

PUDDLE vs. CLASSIC-UB final Phoneme 2710.38 1845.95 3592.87 

Baseline vs. CLASSIC-UB 

initial/final 

Syllable 
1465.61 811.95 2014.36 

BTP vs. CLASSIC-UB initial/final Syllable 3801.86 3158.87 4490.74 

BTP vs. Baseline Syllable 2336.25 1359.24 3261.62 

BTP vs. CLASSIC-UB final Syllable 2147.90 1422.09 2786.18 

BTP vs. PUDDLE Syllable 1931.48 838.41 2975.82 

FTP vs. CLASSIC-UB initial/final Syllable 9168.84 8314.60 10126.70 

FTP vs. Baseline Syllable 7703.23 6537.68 9045.58 

FTP vs. CLASSIC-UB final Syllable 7514.88 6826.85 8263.64 

FTP vs. PUDDLE Syllable 7298.46 6004.19 8603.68 

FTP vs. BTP Syllable 5366.98 4405.97 6167.21 

CLASSIC-UB final vs. CLASSIC-

UB initial/final 

Syllable 
1653.96 1268.49 2104.18 

CLASSIC-UB final vs. Baseline Syllable 188.35 -413.27 864.51 

PUDDLE vs. CLASSIC-UB 

initial/final 

Syllable 
1870.38 1110.38 2564.54 

PUDDLE vs. Baseline Syllable 404.77 -92.92 951.54 

PUDDLE vs. CLASSIC-UB final Syllable 216.42 -611.89 996.58 
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Note. The ∆χ2 measure examined whether two models’ distributions were at the 

same distance from children’s expected probabilities. The order of each pairwise 

difference was set as in the column Comparison (e.g., in Baseline vs. CLASSIC-UB 

final, the CLASSIC-UB final χ2 estimate is subtracted from the Baseline χ2 estimate). 

Lower and upper limits of bootstrap 95% confidence intervals were based on 1,000 

iterations and corrected using Holm’s correction. BTP = backward transitional 

probability; FTP = forward transitional probability. 

 

Table S18.5 For each model, comparison of phonemic vs. syllabic model 

implementation (∆X2), in the phonemic length measure. For each model 

implementation, the analysis controls for chance levels by initially subtracting a 

baseline X2 from a model X2 (see Chapter 3 for a detailed explanation). For each 

model, positive and negative ∆X2 values indicate higher contribution of phonemic or 

syllabic input respectively.  

  95% CI 

Model ∆X2 LL UL 

BTP 7202.26 6081.08 8363.48 

FTP 1049.87 -319.49 2384.48 

CLASSIC-UB final 9171.62 8214.39 10223.04 

CLASSIC-UB initial/final 7709.99 6738.81 8700.69 

PUDDLE 6677.67 5789.53 7585.13 

Note. 95% confidence intervals are corrected for multiple comparisons (using Holm’s 

correction). FTP = forward transitional probability; BTP = backward transitional 

probability. 
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Appendix S19: Approximation of Child Production Vocabulary by weighted 

log10 frequency 

Word types 

We ran analyses on both phonemic and syllabified input. We have given a narrative 

account of the phonemic-input analysis in the section Results / Word-Level 

Characteristics of Chapter 3; below, we include statistical comparisons for both 

phonemic input and syllabic input. 

 

Table S19.1 Child-model comparison by weighted log10 frequency. 

    95% CI 

Comparison Input type D p LL UL 

Children vs. Baseline Phoneme .4 <.001 .33 .46 

Children vs. BTP Phoneme .49 <.001 .42 .58 

Children vs. FTP Phoneme .31 <.001 .24 .39 

Children vs. CLASSIC-UB final Phoneme .12 <.001 .1 .16 

Children vs. CLASSIC-UB initial/final Phoneme .14 <.001 .11 .18 

Children vs. PUDDLE Phoneme .09 <.001 .06 .12 

Children vs. Baseline Syllable .04 .089 .02 .08 

Children vs. BTP Syllable .09 <.001 .06 .15 

Children vs. FTP Syllable .17 <.001 .13 .22 

Children vs. CLASSIC-UB final Syllable .09 <.001 .07 .12 

Children vs. CLASSIC-UB initial/final Syllable .09 <.001 .07 .11 

Children vs. PUDDLE Syllable .11 <.001 .07 .15 

Note. Comparisons were tested via Kolmogorov–Smirnov test statistic. Models 

distributions of unique words by weighted log10 word frequency were compared to 
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child distribution. Holm’s correction was applied to p values and confidence intervals. 

BTP = backward transitional probability; FTP = forward transitional probability. 

 

Table S19.2 Pairwise differences between the Kolmogorov–Smirnov statistics 

reported in Table S19.1 

   95% CI 

Model comparison Input type ∆D LL UL 

Baseline vs. PUDDLE Phoneme .314 .228 .392 

Baseline vs. CLASSIC-UB final Phoneme .276 .2 .349 

Baseline vs. CLASSIC-UB initial/final Phoneme .263 .187 .332 

Baseline vs. FTP Phoneme .094 -.009 .174 

BTP vs. PUDDLE Phoneme .405 .289 .507 

BTP vs. CLASSIC-UB final Phoneme .367 .27 .458 

BTP vs. CLASSIC-UB initial/final Phoneme .354 .259 .447 

BTP vs. FTP Phoneme .185 .075 .299 

BTP vs. Baseline Phoneme .091 -.007 .199 

FTP vs. PUDDLE Phoneme .22 .133 .328 

FTP vs. CLASSIC-UB final Phoneme .182 .099 .267 

FTP vs. CLASSIC-UB initial/final Phoneme .169 .08 .276 

CLASSIC-UB final vs. PUDDLE Phoneme .038 -.026 .108 

CLASSIC-UB initial/final vs. PUDDLE Phoneme .051 -.017 .127 

CLASSIC-UB initial/final vs. CLASSIC-

UB final 

Phoneme 
.013 -.021 .054 

BTP vs. Baseline Syllable .051 -.008 .098 
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BTP vs. CLASSIC-UB initial/final Syllable .003 -.033 .052 

BTP vs. CLASSIC-UB final Syllable 0 -.028 .041 

FTP vs. Baseline Syllable .128 .036 .186 

FTP vs. CLASSIC-UB initial/final Syllable .08 .02 .141 

FTP vs. CLASSIC-UB final Syllable .077 .018 .132 

FTP vs. BTP Syllable .077 -.005 .143 

FTP vs. PUDDLE Syllable .062 .019 .109 

CLASSIC-UB final vs. Baseline Syllable .051 .003 .079 

CLASSIC-UB final vs. CLASSIC-UB 

initial/final 

Syllable 
.003 -.01 .018 

CLASSIC-UB initial/final vs. Baseline Syllable .048 .001 .076 

PUDDLE vs. Baseline Syllable .065 -.009 .13 

PUDDLE vs. CLASSIC-UB initial/final Syllable .018 -.036 .079 

PUDDLE vs. CLASSIC-UB final Syllable .014 -.044 .075 

PUDDLE vs. BTP Syllable .014 -.06 .073 

Note. Comparison of how closely two models’ distributions of unique words were to 

children’s productions by weighted log10 word frequency when phonemic or 

syllabified input was used. Lower and upper limits of bootstrap confidence intervals 

were based on 1,000 iterations and corrected using Holm’s correction. BTP = 

backward transitional probability; FTP = forward transitional probability. 

 



279 
 

 

Figure S19.1 Gaussian kernel density estimate of the distribution of unique words 

in children’s speech (Children) and discovered by each model, by weighted log10 

word frequency. Syllabified input was used. The area under each curve represents 

100% of data points. Curve peaks represent the mode of each distribution. 

 

Word tokens 

This analysis is a repetition of the analysis done on word types above, but 

considering the distributions of word tokens in children and models. We have given a 

narrative account of this analysis in the section Exploratory Analysis of Word-Level 

Properties at the Token Level in Chapter 3; below, we include statistical comparisons 

for both phonemic input and syllabic input. 

 

Table S19.3 Child-model comparison by weighted log10 frequency. 

    95% CI 

Comparison Input type D p LL UL 

Children vs. Baseline Phoneme .42 <.001 .41 .44 

Children vs. BTP Phoneme .46 <.001 .45 .48 

Children vs. FTP Phoneme .43 <.001 .42 .44 

Children vs. CLASSIC-UB final Phoneme .08 <.001 .07 .09 
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Children vs. CLASSIC-UB 

initial/final 
Phoneme .08 <.001 .07 .09 

Children vs. PUDDLE Phoneme .16 <.001 .15 .17 

Children vs. Baseline Syllable .18 <.001 .17 .2 

Children vs. BTP Syllable .13 <.001 .12 .14 

Children vs. FTP Syllable .23 <.001 .22 .24 

Children vs. CLASSIC-UB final Syllable .08 <.001 .07 .09 

Children vs. CLASSIC-UB 

initial/final 
Syllable .05 <.001 .04 .06 

Children vs. PUDDLE Syllable .16 <.001 .15 .17 

Note. Comparisons were tested via Kolmogorov–Smirnov test statistic. Models 

distributions of unique words by weighted log10 word frequency were compared to 

child distribution. Holm’s correction was applied to p values and confidence intervals. 

BTP = backward transitional probability; FTP = forward transitional probability. 

 

Table S19.4 Pairwise differences between the Kolmogorov–Smirnov statistics 

reported in Table S19.3 

   95% CI 

Model comparison Input type ∆D LL UL 

Baseline vs. CLASSIC-UB final Phoneme .344 .323 .364 

Baseline vs. CLASSIC-UB initial/final Phoneme .343 .327 .358 

Baseline vs. PUDDLE Phoneme .262 .25 .277 

BTP vs. CLASSIC-UB final Phoneme .385 .363 .406 

BTP vs. CLASSIC-UB initial/final Phoneme .383 .364 .399 

BTP vs. PUDDLE Phoneme .302 .289 .314 
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BTP vs. Baseline Phoneme .04 .023 .055 

BTP vs. FTP Phoneme .035 .023 .049 

FTP vs. CLASSIC-UB final Phoneme .35 .333 .366 

FTP vs. CLASSIC-UB initial/final Phoneme .348 .334 .358 

FTP vs. PUDDLE Phoneme .267 .258 .275 

FTP vs. Baseline Phoneme .005 -.006 .016 

CLASSIC-UB initial/final vs. CLASSIC-

UB final 

Phoneme 
.001 -.007 .012 

PUDDLE vs. CLASSIC-UB final Phoneme .082 .066 .102 

PUDDLE vs. CLASSIC-UB initial/final Phoneme .081 .069 .091 

Baseline vs. CLASSIC-UB initial/final Syllable .136 .12 .147 

Baseline vs. CLASSIC-UB final Syllable .103 .081 .126 

Baseline vs. BTP Syllable .049 .028 .074 

Baseline vs. PUDDLE Syllable .024 .015 .032 

BTP vs. CLASSIC-UB initial/final Syllable .087 .067 .103 

BTP vs. CLASSIC-UB final Syllable .054 .044 .063 

FTP vs. CLASSIC-UB initial/final Syllable .18 .162 .195 

FTP vs. CLASSIC-UB final Syllable .147 .139 .157 

FTP vs. BTP Syllable .094 .085 .105 

FTP vs. PUDDLE Syllable .069 .05 .089 

FTP vs. Baseline Syllable .045 .025 .064 

CLASSIC-UB final vs. CLASSIC-UB 

initial/final 

Syllable 
.033 .015 .048 

PUDDLE vs. CLASSIC-UB initial/final Syllable .112 .1 .12 
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PUDDLE vs. CLASSIC-UB final Syllable .078 .061 .097 

PUDDLE vs. BTP Syllable .025 .008 .043 

Note. Comparison of how closely two models’ distributions of unique words were to 

children’s productions by weighted log10 word frequency when phonemic or 

syllabified input was used. Lower and upper limits of bootstrap confidence intervals 

were based on 1,000 iterations and corrected using Holm’s correction. BTP = 

backward transitional probability; FTP = forward transitional probability. 

 

Table S19.5 For each model, comparison of phonemic vs. syllabic model 

implementation (∆D), in the word frequency measure. For each model 

implementation, the analysis controls for chance levels by initially subtracting a 

baseline D from a model D (see Chapter 3 for a detailed explanation). For each 

model, positive and negative ∆D values indicate higher contribution of phonemic or 

syllabic input respectively.  

  95% CI 

Model ∆D LL UL 

BTP -.09 -.11 -.07 

FTP .04 .02 .06 

CLASSIC-UB final .24 .22 .26 

CLASSIC-UB initial/final .21 .19 .22 

PUDDLE .24 .22 .25 

Note. 95% confidence intervals are corrected for multiple comparisons (using Holm’s 

correction). FTP = forward transitional probability; BTP = backward transitional 

probability. 
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Appendix S20: Approximation of Child Production Vocabulary by weighted 

neighbourhood density 

Word types 

We ran analyses on both phonemic and syllabified input. We have given a narrative 

account of the phonemic-input analysis in the section Results / Word-Level 

Characteristics of Chapter 3; below, we include statistical comparisons for both 

phonemic input and syllabic input. 

 

Table S20.1 Child-model comparison by weighted neighbourhood density 

    95% CI 

Comparison Input type D p LL UL 

Children vs. Baseline Phoneme .26 <.001 .2 .33 

Children vs. BTP Phoneme .46 <.001 .4 .54 

Children vs. FTP Phoneme .47 <.001 .4 .54 

Children vs. CLASSIC-UB final Phoneme .06 .144 .02 .1 

Children vs. CLASSIC-UB initial/final Phoneme .07 .022 .04 .12 

Children vs. PUDDLE Phoneme .03 1 .02 .08 

Children vs. Baseline Syllable .01 1 .01 .05 

Children vs. BTP Syllable .01 1 .02 .06 

Children vs. FTP Syllable .09 <.001 .06 .14 

Children vs. CLASSIC-UB final Syllable .04 .869 .02 .08 

Children vs. CLASSIC-UB initial/final Syllable .03 1 .01 .07 

Children vs. PUDDLE Syllable .04 1 .02 .08 

Note. Comparisons were tested via Kolmogorov–Smirnov test statistic. Models 

distributions of unique words by weighted neighbourhood density were compared to 
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child distribution. Holm’s correction was applied to p values and confidence intervals. 

BTP = backward transitional probability; FTP = forward transitional probability. 

 

Table S20.2 Pairwise differences between the Kolmogorov–Smirnov statistics 

reported in Table S20.1 

   95% CI 

Model comparison Input type ∆D LL UL 

Baseline vs. PUDDLE Phoneme .229 .152 .286 

Baseline vs. CLASSIC-UB final Phoneme .206 .129 .265 

Baseline vs. CLASSIC-UB initial/final Phoneme .191 .112 .254 

BTP vs. PUDDLE Phoneme .427 .336 .513 

BTP vs. CLASSIC-UB final Phoneme .404 .317 .497 

BTP vs. CLASSIC-UB initial/final Phoneme .389 .297 .49 

BTP vs. Baseline Phoneme .198 .108 .31 

FTP vs. PUDDLE Phoneme .434 .331 .512 

FTP vs. CLASSIC-UB final Phoneme .411 .325 .495 

FTP vs. CLASSIC-UB initial/final Phoneme .396 .307 .476 

FTP vs. Baseline Phoneme .206 .112 .303 

FTP vs. BTP Phoneme .008 -.092 .086 

CLASSIC-UB final vs. PUDDLE Phoneme .023 -.027 .061 

CLASSIC-UB initial/final vs. PUDDLE Phoneme .038 -.021 .082 

CLASSIC-UB initial/final vs. CLASSIC-

UB final 

Phoneme 
.015 -.026 .065 

Baseline vs. BTP Syllable .001 -.029 .022 
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FTP vs. BTP Syllable .081 .009 .11 

FTP vs. Baseline Syllable .081 .011 .113 

FTP vs. CLASSIC-UB initial/final Syllable .064 .021 .094 

FTP vs. PUDDLE Syllable .059 .004 .091 

FTP vs. CLASSIC-UB final Syllable .057 .014 .088 

CLASSIC-UB final vs. BTP Syllable .025 -.039 .051 

CLASSIC-UB final vs. Baseline Syllable .024 -.04 .054 

CLASSIC-UB final vs. CLASSIC-UB 

initial/final 

Syllable 
.008 -.028 .043 

CLASSIC-UB final vs. PUDDLE Syllable .002 -.034 .032 

CLASSIC-UB initial/final vs. BTP Syllable .017 -.037 .049 

CLASSIC-UB initial/final vs. Baseline Syllable .016 -.031 .048 

PUDDLE vs. BTP Syllable .023 -.033 .058 

PUDDLE vs. Baseline Syllable .022 -.031 .06 

PUDDLE vs. CLASSIC-UB initial/final Syllable .006 -.028 .042 

Note. Comparison of how closely two models’ distributions of unique words were to 

children’s productions by weighted neighbourhood density when phonemic or 

syllabified input was used. Lower and upper limits of bootstrap confidence intervals 

were based on 1,000 iterations and corrected using Holm’s correction. BTP = 

backward transitional probability; FTP = forward transitional probability. 
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Figure S20.1 Gaussian kernel density estimate of the distribution of unique words 

in children’s speech (Children) and discovered by each model, by weighted 

neighbourhood density. Syllabified input was used. The area under each curve 

represents 100% of data points. Curve peaks represent the mode of each 

distribution. 

 

Word tokens 

This analysis is a repetition of the analysis done on word types above, but 

considering the distributions of word tokens in children and models. We have given a 

narrative account of this analysis in the section Exploratory Analysis of Word-Level 

Properties at the Token Level in Chapter 3; below, we include statistical comparisons 

for both phonemic input and syllabic input. 

 

Table S20.3 Child-model comparison by weighted neighbourhood density 

    95% CI 

Comparison Input type D p LL UL 

Children vs. Baseline Phoneme .41 <.001 .4 .42 

Children vs. BTP Phoneme .38 <.001 .36 .39 

Children vs. FTP Phoneme .32 <.001 .31 .34 

Children vs. CLASSIC-UB final Phoneme .08 <.001 .07 .09 
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Children vs. CLASSIC-UB 

initial/final 
Phoneme .03 <.001 .03 .04 

Children vs. PUDDLE Phoneme .14 <.001 .13 .15 

Children vs. Baseline Syllable .14 <.001 .13 .16 

Children vs. BTP Syllable .14 <.001 .12 .15 

Children vs. FTP Syllable .2 <.001 .19 .22 

Children vs. CLASSIC-UB final Syllable .09 <.001 .08 .1 

Children vs. CLASSIC-UB 

initial/final 
Syllable .06 <.001 .05 .06 

Children vs. PUDDLE Syllable .11 <.001 .1 .12 

Note. Comparisons were tested via Kolmogorov–Smirnov test statistic. Models 

distributions of unique words by weighted neighbourhood density were compared to 

child distribution. Holm’s correction was applied to p values and confidence intervals. 

BTP = backward transitional probability; FTP = forward transitional probability. 

 

Table S20.4 Pairwise differences between the Kolmogorov–Smirnov statistics 

reported in Table S20.3 

   95% CI 

Model comparison Input type ∆D LL UL 

Baseline vs. CLASSIC-UB initial/final Phoneme .377 .353 .395 

Baseline vs. CLASSIC-UB final Phoneme .331 .307 .35 

Baseline vs. PUDDLE Phoneme .274 .257 .291 

Baseline vs. FTP Phoneme .086 .071 .1 

Baseline vs. BTP Phoneme .034 .019 .05 

BTP vs. CLASSIC-UB initial/final Phoneme .343 .319 .367 
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BTP vs. CLASSIC-UB final Phoneme .297 .271 .318 

BTP vs. PUDDLE Phoneme .24 .223 .257 

BTP vs. FTP Phoneme .052 .036 .067 

FTP vs. CLASSIC-UB initial/final Phoneme .291 .269 .31 

FTP vs. CLASSIC-UB final Phoneme .244 .223 .267 

FTP vs. PUDDLE Phoneme .187 .174 .2 

CLASSIC-UB final vs. CLASSIC-UB 

initial/final 

Phoneme 
.046 .037 .055 

PUDDLE vs. CLASSIC-UB initial/final Phoneme .104 .086 .12 

PUDDLE vs. CLASSIC-UB final Phoneme .057 .041 .071 

Baseline vs. CLASSIC-UB initial/final Syllable .085 .065 .107 

Baseline vs. CLASSIC-UB final Syllable .052 .03 .075 

Baseline vs. PUDDLE Syllable .03 .021 .039 

Baseline vs. BTP Syllable .007 -.01 .021 

BTP vs. CLASSIC-UB initial/final Syllable .079 .066 .091 

BTP vs. CLASSIC-UB final Syllable .045 .034 .057 

BTP vs. PUDDLE Syllable .023 .006 .039 

FTP vs. CLASSIC-UB initial/final Syllable .148 .139 .159 

FTP vs. CLASSIC-UB final Syllable .115 .104 .127 

FTP vs. PUDDLE Syllable .093 .072 .11 

FTP vs. BTP Syllable .07 .055 .081 

FTP vs. Baseline Syllable .063 .043 .083 

CLASSIC-UB final vs. CLASSIC-UB 

initial/final 

Syllable 
.033 .026 .041 



289 
 

PUDDLE vs. CLASSIC-UB initial/final Syllable .055 .036 .075 

PUDDLE vs. CLASSIC-UB final Syllable .022 .007 .038 

Note. Comparison of how closely two models’ distributions of unique words were to 

children’s productions by weighted neighbourhood density when phonemic or 

syllabified input was used. Lower and upper limits of bootstrap confidence intervals 

were based on 1,000 iterations and corrected using Holm’s correction. BTP = 

backward transitional probability; FTP = forward transitional probability. 

 

Table S20.5 For each model, comparison of phonemic vs. syllabic model 

implementation (∆D), in the neighbourhood density measure. For each model 

implementation, the analysis controls for chance levels by initially subtracting a 

baseline D from a model D (see Chapter 3 for a detailed explanation). For each 

model, positive and negative ∆D values indicate higher contribution of phonemic or 

syllabic input respectively.  

  95% CI 

Model ∆D LL UL 

BTP .03 .01 .05 

FTP .15 .13 .17 

CLASSIC-UB final .28 .26 .29 

CLASSIC-UB initial/final .29 .27 .31 

PUDDLE .24 .23 .26 

Note. 95% confidence intervals are corrected for multiple comparisons (using Holm’s 

correction). FTP = forward transitional probability; BTP = backward transitional 

probability. 
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Appendix S21: Approximation of Child Production Vocabulary by weighted 

phonotactic probability 

Word types 

We ran analyses on both phonemic and syllabified input. We have given a narrative 

account of the phonemic-input analysis in the section Results / Word-Level 

Characteristics of Chapter 3; below, we include statistical comparisons for both 

phonemic input and syllabic input. 

 

Table S21.1 Child-model comparison by weighted phonotactic probability 

    95% CI 

Comparison Input type D p LL UL 

Children vs. Baseline Phoneme .1 .003 .06 .17 

Children vs. BTP Phoneme .28 <.001 .2 .38 

Children vs. FTP Phoneme .21 <.001 .14 .3 

Children vs. CLASSIC-UB final Phoneme .02 1 .02 .07 

Children vs. CLASSIC-UB initial/final Phoneme .06 .075 .03 .12 

Children vs. PUDDLE Phoneme .12 <.001 .08 .18 

Children vs. Baseline Syllable .03 1 .02 .07 

Children vs. BTP Syllable .07 .006 .04 .13 

Children vs. FTP Syllable .07 .001 .04 .12 

Children vs. CLASSIC-UB final Syllable .04 .394 .02 .09 

Children vs. CLASSIC-UB initial/final Syllable .03 .803 .02 .08 

Children vs. PUDDLE Syllable .11 <.001 .07 .17 

Note. Comparisons were tested via Kolmogorov–Smirnov test statistic. Models 

distributions of unique words by weighted phonotactic probability were compared to 
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child distribution. Holm’s correction was applied to p values and confidence intervals. 

BTP = backward transitional probability; FTP = forward transitional probability. 

 

Table S21.2 Pairwise differences between the Kolmogorov–Smirnov statistics 

reported in Table S8.1 

   95% CI 

Model comparison Input type ∆D LL UL 

Baseline vs. CLASSIC-UB final Phoneme .079 .01 .136 

Baseline vs. CLASSIC-UB initial/final Phoneme .042 -.03 .114 

BTP vs. CLASSIC-UB final Phoneme .253 .139 .339 

BTP vs. CLASSIC-UB initial/final Phoneme .217 .107 .315 

BTP vs. Baseline Phoneme .174 .067 .279 

BTP vs. PUDDLE Phoneme .155 .04 .28 

BTP vs. FTP Phoneme .068 -.052 .183 

FTP vs. CLASSIC-UB final Phoneme .185 .087 .272 

FTP vs. CLASSIC-UB initial/final Phoneme .149 .071 .236 

FTP vs. Baseline Phoneme .106 .004 .216 

FTP vs. PUDDLE Phoneme .087 .005 .196 

CLASSIC-UB initial/final vs. CLASSIC-

UB final 

Phoneme 
.036 -.014 .077 

PUDDLE vs. CLASSIC-UB final Phoneme .098 .01 .144 

PUDDLE vs. CLASSIC-UB initial/final Phoneme .062 -.02 .124 

PUDDLE vs. Baseline Phoneme .02 -.053 .089 

BTP vs. Baseline Syllable .048 -.002 .087 
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BTP vs. CLASSIC-UB initial/final Syllable .041 -.006 .083 

BTP vs. CLASSIC-UB final Syllable .034 -.013 .08 

BTP vs. FTP Syllable .004 -.028 .042 

FTP vs. Baseline Syllable .043 0 .073 

FTP vs. CLASSIC-UB initial/final Syllable .037 -.005 .072 

FTP vs. CLASSIC-UB final Syllable .03 -.002 .065 

CLASSIC-UB final vs. Baseline Syllable .013 -.025 .041 

CLASSIC-UB final vs. CLASSIC-UB 

initial/final 

Syllable 
.006 -.025 .035 

CLASSIC-UB initial/final vs. Baseline Syllable .007 -.027 .039 

PUDDLE vs. Baseline Syllable .081 .027 .124 

PUDDLE vs. CLASSIC-UB initial/final Syllable .074 .018 .118 

PUDDLE vs. CLASSIC-UB final Syllable .068 .018 .111 

PUDDLE vs. FTP Syllable .038 -.005 .085 

PUDDLE vs. BTP Syllable .033 -.013 .08 

Note. Comparison of how closely two models’ distributions of unique words were to 

children’s productions by weighted phonotactic probability when phonemic or 

syllabified input was used. Lower and upper limits of bootstrap confidence intervals 

were based on 1,000 iterations and corrected using Holm’s correction. BTP = 

backward transitional probability; FTP = forward transitional probability. 
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Figure S21.1 Gaussian kernel density estimate of the distribution of unique words 

in children’s speech (Children) and discovered by each model, by weighted 

phonotactic probability. Syllabified input was used. The area under each curve 

represents 100% of data points. Curve peaks represent the mode of each 

distribution. 

 

Word tokens 

This analysis is a repetition of the analysis done on word types above, but 

considering the distributions of word tokens in children and models. We have given a 

narrative account of this analysis in the section Exploratory Analysis of Word-Level 

Properties at the Token Level in Chapter 3; below, we include statistical comparisons 

for both phonemic input and syllabic input. 

 

Table S21.3 Child-model comparison by weighted phonotactic probability 

    95% CI 

Comparison Input type D p LL UL 

Children vs. Baseline Phoneme .14 <.001 .13 .16 

Children vs. BTP Phoneme .13 <.001 .11 .14 

Children vs. FTP Phoneme .19 <.001 .18 .21 

Children vs. CLASSIC-UB final Phoneme .07 <.001 .06 .08 
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Children vs. CLASSIC-UB 

initial/final 
Phoneme .06 <.001 .05 .07 

Children vs. PUDDLE Phoneme .09 <.001 .08 .1 

Children vs. Baseline Syllable .07 <.001 .06 .08 

Children vs. BTP Syllable .11 <.001 .1 .12 

Children vs. FTP Syllable .13 <.001 .12 .14 

Children vs. CLASSIC-UB final Syllable .07 <.001 .06 .08 

Children vs. CLASSIC-UB 

initial/final 
Syllable .06 <.001 .05 .07 

Children vs. PUDDLE Syllable .08 <.001 .07 .09 

Note. Comparisons were tested via Kolmogorov–Smirnov test statistic. Models 

distributions of unique words by weighted phonotactic probability were compared to 

child distribution. Holm’s correction was applied to p values and confidence intervals. 

BTP = backward transitional probability; FTP = forward transitional probability. 

 

Table S21.4 Pairwise differences between the Kolmogorov–Smirnov statistics 

reported in Table S21.3 

   95% CI 

Model comparison Input type ∆D LL UL 

Baseline vs. CLASSIC-UB initial/final Phoneme .084 .064 .112 

Baseline vs. CLASSIC-UB final Phoneme .076 .054 .104 

Baseline vs. PUDDLE Phoneme .056 .042 .073 

Baseline vs. BTP Phoneme .015 -.006 .037 

BTP vs. CLASSIC-UB initial/final Phoneme .069 .048 .094 

BTP vs. CLASSIC-UB final Phoneme .061 .039 .081 
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BTP vs. PUDDLE Phoneme .041 .026 .057 

FTP vs. CLASSIC-UB initial/final Phoneme .134 .115 .156 

FTP vs. CLASSIC-UB final Phoneme .126 .104 .145 

FTP vs. PUDDLE Phoneme .106 .093 .116 

FTP vs. BTP Phoneme .065 .047 .085 

FTP vs. Baseline Phoneme .05 .028 .069 

CLASSIC-UB final vs. CLASSIC-UB 

initial/final 

Phoneme 
.008 -.001 .019 

PUDDLE vs. CLASSIC-UB initial/final Phoneme .029 .008 .046 

PUDDLE vs. CLASSIC-UB final Phoneme .02 .003 .036 

Baseline vs. CLASSIC-UB initial/final Syllable .006 -.008 .02 

BTP vs. CLASSIC-UB initial/final Syllable .05 .036 .061 

BTP vs. Baseline Syllable .044 .024 .063 

BTP vs. CLASSIC-UB final Syllable .043 .031 .055 

BTP vs. PUDDLE Syllable .034 .015 .052 

FTP vs. CLASSIC-UB initial/final Syllable .064 .055 .076 

FTP vs. Baseline Syllable .058 .039 .076 

FTP vs. CLASSIC-UB final Syllable .057 .046 .068 

FTP vs. PUDDLE Syllable .048 .029 .068 

FTP vs. BTP Syllable .014 .004 .026 

CLASSIC-UB final vs. CLASSIC-UB 

initial/final 

Syllable 
.008 0 .016 

CLASSIC-UB final vs. Baseline Syllable .001 -.01 .014 

PUDDLE vs. CLASSIC-UB initial/final Syllable .016 0 .035 
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PUDDLE vs. Baseline Syllable .01 0 .021 

PUDDLE vs. CLASSIC-UB final Syllable .008 -.008 .026 

Note. Comparison of how closely two models’ distributions of unique words were to 

children’s productions by weighted phonotactic probability when phonemic or 

syllabified input was used. Lower and upper limits of bootstrap confidence intervals 

were based on 1,000 iterations and corrected using Holm’s correction. BTP = 

backward transitional probability; FTP = forward transitional probability. 

 

Table S21.5 For each model, comparison of phonemic vs. syllabic model 

implementation (∆D), in the phonotactic probability measure. For each model 

implementation, the analysis controls for chance levels by initially subtracting a 

baseline D from a model D (see Chapter 3 for a detailed explanation). For each 

model, positive and negative ∆D values indicate higher contribution of phonemic or 

syllabic input respectively.  

  95% CI 

Model ∆D LL UL 

BTP .06 .04 .08 

FTP .01 -.01 .03 

CLASSIC-UB final .08 .06 .1 

CLASSIC-UB initial/final .08 .06 .1 

PUDDLE .07 .05 .08 

Note. 95% confidence intervals are corrected for multiple comparisons (using Holm’s 

correction). FTP = forward transitional probability; BTP = backward transitional 

probability. 
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Appendix S22: Size of Noun Advantage 

In this section, we report an analysis that compares the size of the noun advantage 

over verbs in children and models, by phonemic or syllabic input. A detailed 

description of how this analysis was carried out is included in the method section of 

Chapter 3. Here, we report the statistical results of the analysis in Table S22.1. A 

narrative account of the results is included in the section Results / Word-Level 

Characteristics of Chapter 3.  

 

Table S22.1 Child-model noun advantage comparisons, by input type. A negative ∆P 

indicates a that a model noun advantage is smaller than that shown in children’s 

productions. 

   95% CI 

Model comparison Input type ∆P LL UL 

Children vs. Baseline Phoneme -.177 -.285 -.068 

Children vs. BTP Phoneme -.238 -.39 -.074 

Children vs. FTP Phoneme -.124 -.243 -.001 

Children vs. CLASSIC-UB final Phoneme -.133 -.219 -.047 

Children vs. CLASSIC-UB initial/final Phoneme -.136 -.229 -.051 

Children vs. PUDDLE Phoneme -.095 -.162 -.025 

Children vs. Baseline Syllable -.095 -.169 -.023 

Children vs. BTP Syllable -.167 -.274 -.072 

Children vs. FTP Syllable -.176 -.257 -.096 

Children vs. CLASSIC-UB final Syllable -.11 -.182 -.044 

Children vs. CLASSIC-UB initial/final Syllable -.14 -.219 -.058 

Children vs. PUDDLE Syllable -.111 -.196 -.024 
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Note. ∆P is the difference between the proportional noun advantage in children and 

model: for example, ∆P = phonemic Baseline’s P (29% nouns – 31% verbs = -2%) - 

Children’s P (47% nouns – 31% verbs = 16%) = -18% . Holm’s correction was 

applied to confidence intervals. BTP = backward transitional probability; FTP = 

forward transitional probability.  
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Appendix S23: Input Changes in Neighbourhood Density and Phonotactic 

Probability as a Function of Word Phonemic Length  

In this section, we include plots that show a non-linear relation of phonemic length 

with neighbourhood density (Figure S23.1a) and phonotactic probability (Figure 

S23.1b). Such non-linear relations mean that in Italian, given its high average word 

length, input words have a low number of neighbours in the language and are 

composed of biphone sequences that are frequent in the language.  

 

  

Figure S23.1 Average neighbourhood density (a) and average phonotactic 

probability (b) by word phonemic length, in the Italian child-directed speech input. 

Vertical dashed lines indicate the average word length in the child-directed speech 

input. 
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Appendix S24: Frequency Match of Target Senses and Distractor Words’ 

Distributions 

Distractor words appeared in the input corpora and were chosen (specifically 

considering their stems) to match the targets’ input frequency distribution and to be 

semantically associated to target senses. Where possible (i.e., given the frequency 

constraint was satisfied), semantic association between distractors and targets was 

based on the Florida association norms (Nelson et al., 2004). Input frequencies of 

target senses and corresponding distractors are shown in Table S24.1, while Figure 

S24.1 shows how the frequency distributions of distractors and targets compare to 

the frequency distribution of common nouns in the input corpora. 

 

Table S24.1 Input frequency per million of target senses and corresponding 

distractor words. 

Target Frequency Target Distractor Frequency Distractor 

band: object 14.38 sock 204.13 

band: music group 4.69 team 9.23 

bat: animal 19.96 owl 80.99 

bat: object 10.50 sword 11.30 

bow: knot 18.58 dress 135.64 

bow: weapon 2.18 target 2.63 

button: tech 45.89 bell 64.92 

button: clothing 23.03 zip 11.85 

chicken: animal 118.20 crow 5.25 

chicken: food 75.71 biscuit 138.90 

flower/flour: flower 284.48 leaf 130.39 

flower/flour: flour 28.28 salad 43.99 

glasses: eye 55.18 scarf 21.72 
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Target Frequency Target Distractor Frequency Distractor 

glasses: drinking 50.09 jug 14.08 

letter: alphabet 116.83 number 240.57 

letter: mail 76.43 box 717.73 

line: geometry 38.05 circle 150.67 

line: order 19.47 square 64.92 

moose/mousse: moose 14.38 gorilla 21.96 

moose/mousse: mousse 3.39 donut 10.82 

nail: body part 37.17 carrot 119.97 

nail: object 8.56 screwdriver 28.68 

sun/son: sun 163.93 tree 421.63 

sun/son: son 29.49 pirate 19.57 

 

 

Figure S24.1 Input frequency distribution of all common nouns in the corpora (left 

panel), target nouns (middle panel) and distractors (right panel). No significant 
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difference was found between distractors and targets’ log10 frequency distributions 

(Welch t = -1.26, p = 0.215). 
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Appendix S25: Socio-Demographic Characteristics of the Child Sample 

 

 

 

Figure S25.1 Place of residence of children’s families in the UK. 
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Figure S25.2 Socio-Demographic characteristics of the child sample (N = 45). 

Postcode unemployment rate was chosen as a proxy of socio-economic status 

because each country (England-Wales, Scotland, and Northern Ireland) had different 

indices of deprivation. Instead, the proportion of population that is unemployed was 

a measure consistently used across countries’ deprivation reports. 
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Appendix S26: Experimental Stories 

Table S26.1 Stimuli divided by 3 counterbalancing blocks. Each story has a prior 

context and a following control, verb-lexical or verb-event context. Verb-sense 

associations for subordinate and dominant senses are reported. These were 

computed as the raw frequency of verb-sense occurrence weighted by the number 

of times a sense appeared in ChiSense-12 as a verb object. The first three stories 

are training trials, presented to participants in random order. 

Training Trials 

Emily went to the shop. Then, she bought a banana. 

John and Mary were at the zoo. Then, they heard the tiger. 

Charlie was waiting for his friend. Then, he opened the door. 

Block A 

Prior context Control context Verb-sense association 

(subordinate/dominant) 

Sophia listened to some music Then, she played in a band  .029 / .000 

John threw the ball Then, Mary swung the bat  .078 / .000 

Wendy bought some tools and a piece of 

wood 

Then, she got a nail  .056 / .014 

George had an apple for breakfast Then, he ate a mousse .077 / .000 

Prior context Verb-lexical context  

The teacher said goodbye to the daughter Then, she looked at the sun .000 / .041 

Harry got eggs, milk and sugar Then, he held the flower .000 / .006 

Olivia had some chips Then, she saw the chicken .005 / 053 

Jack got some arrows Then, he made a bow .000 / .054 

Prior context Verb-event context  

Julia and Beth wanted some milk Then, Julia folded the glasses .000 / .000 

Leo and Mark were waiting for the bus Then, Mark rubbed out the 

line 

.000 / .000 

John was putting on a shirt Then, he rang the button .000 / .000 

Charlie got some stamps this morning Then, he sang the letters .000 / .000 

Block B 

Prior context Control context Verb-sense association 

(subordinate/dominant) 

The teacher said goodbye to the daughter Then, she talked to the son .023 / .000 

Harry got eggs, milk and sugar Then, he mixed the flour .015 / .000 

Olivia had some chips Then, she ate the chicken .116 / .007 

Jack got some arrows Then, he shot a bow .111 / .000 

Prior context Verb-lexical context  
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Julia and Beth wanted some milk Then, Julia found the glasses .007 / .016 

Leo and Mark were waiting for the bus Then, Mark followed the line .005 / .055 

John was putting on a shirt Then, he touched the button .000 / .014 

Charlie got some stamps this morning Then, he looked for the 

letters 

.004 / .011 

Prior context Verb-event context  

Sophia listened to some music Then, she twisted a band .000 / .000 

John threw the ball Then, Mary got bitten by the 

bat 

.000 / .000 

Wendy bought some tools and a piece of 

wood 

Then, she chewed on a nail .000 / .000 

George had an apple for breakfast Then, he met a moose .000 / .000 

Block C 

Prior context Control context Verb-sense association 

(subordinate/dominant) 

Julia and Beth wanted some milk Then, Julia filled the glasses .007 / .000 

Leo and Mark were waiting for the bus Then, Mark stood in the line .044 / .000 

John was putting on a shirt Then, he undid the button .071 / .000 

Charlie got some stamps this morning Then, he posted the letters .185 / .000 

Prior context Verb-lexical context  

Sophia listened to some music Then, she got a band .000 / .065 

John threw the ball Then, Mary liked the bat .000 / .033 

Wendy bought some tools and a piece of 

wood 

Then, she drew a nail .000 / .014 

George had an apple for breakfast Then, he saw a moose .038 / .085 

Prior context Verb-event context  

The teacher said goodbye to the daughter Then, she relaxed under the 

sun 

.000 / .000 

Harry got eggs, milk and sugar Then, he trimmed the flower .000 / .000 

Olivia had some chips Then, she rescued the 

chicken 

.000 / .001 

Jack got some arrows Then, he ironed a bow .000 / .000 
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Appendix S27: Children’s Reported Knowledge of Target Senses and Verbs 

 

Figure S27.1 Caregivers’ responses indicating whether children understood (i.e., 

“Understand Only” or “Understand & Use”) or did not understand a target noun 

sense or verb. An item (e.g., "band") was excluded from the analyses if the 

caregiver reported that the child did not understand either the verb used in that 
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context (e.g., "to play in" in "played in a band") or any of the target senses 

presented in the task (music band or elastic band). Note that item exclusion was 

implemented on an individual basis. For instance, even if most children did not 

comprehend "mousse", the item "moose/mousse" was included for certain children 

because the caregiver reported that the child understood both target senses and the 

verb. As depicted in the figure, the only stimuli that seemed to be notably 

challenging due to a significant proportion of children not knowing them were the 

sense "mousse" and the verb "to trim". 
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Appendix S28: Statistical Models of Pre-Registered Analyses 

This section presents the reporting of all statistical analyses related to the pre-

registered hypotheses investigating the impact of verb-lexical associations and verb-

event structures on lexical disambiguation. 

Table S28.1 presents the statistical model using adult data. The assumptions 

of this model are confirmed and examined in Figure S28.1. 

Subsequently, Table S28.2 introduces two alternative statistical models for 

children's data, with differences in their random effect structures. The models use 

data that have been filtered based on the knowledge of target nouns and verbs 

reported by parents for their children. Figure S28.2 confirms that the assumptions of 

these models are met. Following this, Figure S28.3 displays various plots to examine 

whether a desirable level of power is achieved for the observed effect sizes in the 

children's data. 

Finally, Table S28.3 shows consistent results when applying the same 

statistical models to the raw data from children, which are not filtered for reported 

noun and verb knowledge. 

 

Table S28.1 

Mixed-effects logistic regression model on adult data. The model employs sense 

choice (dominant or subordinate) as the dependent variable, while the condition 

(control, verb-lexical, or verb-event) is used as the independent variable. Two 

contrasts were analysed: control versus verb-lexical, and control versus verb-event. 

The model’s random effect structure includes random intercepts for participants and 

items, and random slopes of condition per participant and item. The model omits 

any estimated correlations between item intercepts and slopes to ensure model 

convergence. 

  Adult Model 

Predictors Odds Ratios CI p 



310 
 

(Intercept) 0.02 0.01 – 0.06 <0.001 

Control vs. Verb-Lexical 25.29 9.00 – 71.05 <0.001 

Control vs. Verb-Event 759.56 231.61 – 2490.92 <0.001 

Random Effects 

σ2 3.29 

τ00 id 0.06 

τ00 Item 1.69 

τ11 id.VerbLexical 0.34 

τ11 id.VerbEvent 2.21 

τ11 Item.VerbLexical 1.27 

τ11 Item.VerbEvent 1.39 

ρ01 id.VerbLexical -0.17 

ρ01 id.VerbEvent -0.99 

ICC 0.42 

N ptid 83 

N ItemNumber 12 

Observations 995 

Marginal R2 / Conditional R2 0.566 / 0.746 
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Figure S28.1 Examination of assumptions for the mixed-effects logistic model fitted 

on adult data, using the DHARMa package in R (Hartig, 2022). The left panel 

displays a QQ-plot with no observed deviations from the expected distribution, as 

confirmed by Kolmogorov-Smirnov (KS) test for distribution correctness, as well as 

additional dispersion and outlier tests. The right panel presents a plot of residuals 

against the predicted value, with the absence of clear patterns in this plot indicating 

a lack of heteroscedasticity issues. 

 

Table S28.2 presents the outputs of two statistical models applied to 

children's data. Model A incorporates a random effects structure that includes only 

random intercepts for participant and item, while Model B includes random slopes for 

participant per condition. 

Our power stopping rule indicated that a sample size of 45 would be sufficient 

for fitting the more complex Model B. This model demonstrated convergence on the 

child data, and the standard deviation values of random slopes for participant per 

condition did not exceed twice those of adults (refer to our OSF for how the 

stopping rule was dependent on these criteria). However, we also observed that the 

effect sizes for children were smaller than those estimated from previous studies 

(see expected effect sizes in our OSF). Therefore, we examined whether sufficient 

power was still achieved based on the observed effect sizes in the child models. 

 

Table S28.2 

Mixed-effects logistic regression models applied to children's data, filtered based on 

reported knowledge of target nouns and verbs. The dependent variable is sense 

choice (dominant, subordinate), and the independent variable is condition (control, 

verb-lexical, verb-semantic). Two contrasts were analysed: Control versus verb-

lexical, and control versus verb-event. Model A incorporates random effect intercepts 

for participant and item, whereas Model B additionally includes random slopes for 

participant per condition. 
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 Child models (vocabulary knowledge filtered data) 

  Model A Model B 

Predictors 
Odds 
Ratios 

SE CI p 
Odds 
Ratios 

SE CI p 

(Intercept) 0.35 0.11 0.19 – 0.65 0.001 0.38 0.13 0.20 – 0.73 0.004 

Control vs. Verb-
Lexical 

5.30 1.64 2.89 – 9.71 <0.001 4.68 1.69 2.31 – 9.49 <0.001 

Control vs. Verb-
Event 

8.36 2.77 4.37 – 16.00 <0.001 7.39 2.70 3.62 – 15.11 <0.001 

Random Effects 

σ2 3.29 3.29 

τ00 0.14 id 0.53 id 
 

0.51 Item 0.54 Item 

τ11   1.59 id.VerbLexical 
 

  1.31 id.VerbEvent 

ρ01   -0.70 id.VerbLexical 
 

  -0.98 id.verbEvent 

ICC 0.17 0.24 

N 45 id 45 id 
 

12 Item 12 Item 

Observations 362 362 

Marginal R2 / 
Conditional R2 

0.168 / 0.306 0.139 / 0.350 
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(a) 

 

(b) 

Figure S28.2 Examination of assumptions for the mixed-effects logistic model fitted 

on child data, for Model A (random intercepts only) in panel (a), and Model B 

(random intercepts and slopes) in panel (b). The left plots display QQ-plots with no 

observed deviations from the expected distribution, as confirmed by Kolmogorov-

Smirnov (KS) test for distribution correctness, as well as additional dispersion and 

outlier tests. The right plots present plots of residuals against the predicted value, 

with the absence of clear patterns in these plots indicating a lack of 

heteroscedasticity issues. 

 

For Model B (the most complex model that allowed for convergence), we 

found that a power of .8 was still achieved in the verb-event condition, even when 

considering the smaller effect size observed. However, in the verb-lexical condition, 

we found a power of .67 when relating the observed child effect size to the 

simulated power curve (see Figure S28.3, bottom row). We verified whether the loss 

of simulated power impacted the estimates of the model. We, therefore, also fitted 

Model A to the child data—a less complex model including only random intercepts—
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for which a power of .8 was achieved in both the verb-lexical and verb-event 

conditions. As depicted in Figure S28.2, odds ratios, standard errors, and confidence 

intervals are similar across Models A and B, suggesting that the simulated loss of 

power did not influence the parameter estimation in Model B. 

 

 

Figure S28.3 Simulated power curves as a function of effect size and standard 

deviations of random effects intercepts or slopes of participant per condition. The 

top panel (a) refers to power simulated for model A, while the bottom panel (b) 

refers to power simulated for model B. The top black horizontal line indicates power 
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of .8. The bottom black horizontal line indicates the type I error cut-off at alpha = 

.05. Blue dotted lines indicate observed estimates for adults, while the orange dotted 

lines refer to children’s observed estimates for vocabulary filtered data. 

 

The concordance in parameters between Models A and B, combined with the 

statistically significant result found in the verb-lexical condition, is reassuring. These 

findings may suggest that the parameter estimates are relatively stable, irrespective 

of the model's complexity, and that even with somewhat reduced simulated power, 

the effect was strong enough to be detected in the verb-lexical condition. However, 

it is important to emphasize that these aspects do not directly resolve the power 

issue. The lower power in the verb-lexical condition for Model B still constitutes a 

limitation of the study. Future research should address this by adjusting the stopping 

rule and power simulations based on our observed effect sizes, which will likely 

necessitate collecting more data from children. 

 

Table S28.3 

Refitting of the mixed-effects logistic regression models using raw data from 

children, showing significant effects even when not filtering children’s data based on 

reported target nouns and verbs’ knowledge.  

 Child models (raw data) 

  Model A Model B 

Predictors 
Odds 
Ratios 

SE CI p 
Odds 
Ratios 

SE CI p 

(Intercept) 0.56 0.15 0.33 – 0.94 0.029 0.58 0.17 0.33 – 1.01 0.054 

Control vs. Verb-
Lexical 

3.67 0.95 2.22 – 6.09 <0.001 3.44 1.09 1.85 – 6.41 <0.001 

Control vs. Verb-Event 4.92 1.31 2.92 – 8.31 <0.001 4.73 1.61 2.42 – 9.21 <0.001 

Random Effects 

σ2 3.29 3.29 

τ00 0.04 id 0.51 id 
 

0.44 Item 0.44 Item 
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τ11   1.47 id.VerbLexical 
 

  1.97 id.VerbEvent 

ρ01   -0.66 id.VerbLexical 
 

  -1.00 id.VerbEvent 

ICC 0.13   

N 45 id 45 id 
 

12 Item 12 Itemr 

Observations 460 460 

Marginal R2 / 
Conditional R2 

0.112 / 0.225 0.119 / - 
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Appendix S29: Statistical Models of Exploratory Analyses 

This section presents the results of all statistical analyses related to the exploratory 

investigation of various predictors' impact on adults and children's performance in 

the experimental task.  

Table S29.1 provides the statistical model examining the predictors of 

performance in the verb-lexical condition for adults and children. Figure S29.1 

confirms and examines the assumptions of this model. 

Table S29.2 provides the statistical model that investigates the predictors of 

performance in the verb-event condition for adults and children. Figure S29.2 

confirms and examines the assumptions of this model. 

Table S29.3 provides the statistical model that investigates the predictors of 

performance in the verb-event condition for children exclusively. This model includes 

the child-reported knowledge of target nouns and verbs for each experimental item 

as one of the predictors. Figure S29.3 confirms and examines the assumptions of 

this model. 

 

Table S29.1 

Mixed-effects logistic model considering sense choice in the verb-lexical condition 

(dominant/subordinate) as the outcome and using age group (adult/child), relative 

frequency of the dominant sense (dominance), verb-sense association, and prior 

context associations as predictors. The model includes two-way interactions among 

predictors, and three-way interactions between the age group and each pair of 

continuous predictors. To allow for model convergence, only the participant random 

effect intercept is included. 

  
Adult-Child Model 

(Verb-Lexical Condition) 

Predictors Odds Ratios CI p 

(Intercept) 0.46 0.33 – 0.63 <0.001 

Age [adult vs. child] 4.20 2.41 – 7.32 <0.001 
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Prior association 0.68 0.51 – 0.92 0.011 

Dominance 1.89 1.37 – 2.59 <0.001 

Verb-sense association 1.78 1.25 – 2.55 0.001 

Age × prior association 1.06 0.64 – 1.75 0.832 

Age × dominance 0.38 0.21 – 0.67 0.001 

Age × verb-sense association 0.74 0.40 – 1.37 0.336 

Prior association × dominance 0.55 0.38 – 0.80 0.002 

Dominance × verb-sense association 1.22 0.84 – 1.78 0.300 

Prior association × verb-sense 
association 

0.70 0.42 – 1.16 0.162 

(Age × prior association) × dominance 1.13 0.58 – 2.18 0.719 

(Age × dominance) × verb-sense 
association 

0.67 0.35 – 1.29 0.232 

(Age] × prior association) × verb-
sense association 

1.60 0.68 – 3.76 0.279 

Random Effects 

σ2 3.29 

τ00 id 0.46 

ICC 0.12 

N id 128 

Observations 462 

Marginal R2 / Conditional R2 0.335 / 0.417 
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Figure S29.1 Examination of assumptions for the mixed-effects logistic model fitted 

on adult and child data in the verb-lexical condition, using the DHARMa package in R 

(Hartig, 2022). The left plot displays a QQ-plot with no observed deviations from the 

expected distribution, as confirmed by Kolmogorov-Smirnov (KS) test for distribution 

correctness, as well as additional dispersion and outlier tests. The right plot presents 

residuals against the predicted value, with the absence of clear patterns in these 

plots indicating a lack of heteroscedasticity issues. 

 

Table S29.2 

Mixed-effects logistic model considering sense choice in the verb-event condition 

(dominant/subordinate) as the outcome and using age group (adult/child), relative 

frequency of the dominant sense (dominance), and prior context associations as 

predictors. The model includes two-way and three-way interactions. Participant and 

item random effect intercepts are included. 

  
Adult-Child Model 

(Verb-Event Condition) 

Predictors Odds Ratios CI p 

(Intercept) 13.11 5.55 – 30.94 <0.001 



320 
 

Age [adult vs. child] 0.32 0.15 – 0.70 0.004 

Prior association 0.87 0.36 – 2.13 0.763 

Dominance 0.87 0.37 – 2.05 0.758 

Age × prior association 1.49 0.67 – 3.31 0.332 

Age × dominance 1.25 0.58 – 2.69 0.563 

Prior association × dominance 0.62 0.26 – 1.48 0.279 

(Age × prior association) × 
dominance 

0.74 0.36 – 1.55 0.432 

Random Effects 

σ2 3.29 

τ00 id 0.89 

τ00 Item 1.44 

ICC 0.41 

N id 124 

N Item 12 

Observations 451 

Marginal R2 / Conditional R2 0.104 / 0.475 
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Figure S29.2 Examination of assumptions for the mixed-effects logistic model fitted 

on adult and child data in the verb-event condition. The left plot displays a QQ-plot 

with no observed deviations from the expected distribution, as confirmed by 

Kolmogorov-Smirnov (KS) test for distribution correctness, as well as additional 

dispersion and outlier tests. The right plot presents residuals against the predicted 

value, with the absence of clear patterns in these plots indicating a lack of 

heteroscedasticity issues. 

 

Table S29.3 

Mixed-effects logistic model considering children’s sense choice in the verb-event 

condition (dominant/subordinate) as the outcome and using verb reported 

comprehension (produced/not produced), relative frequency of the dominant sense 

(dominance), and prior context associations as predictors. The model includes two-

way interactions. Participant and item random effect intercepts are included. 

  
Child Model 

(Verb-Event Condition) 

Predictors Odds Ratios CI p 

(Intercept) 1.59 0.45 – 5.61 0.474 

Comprehension [produced vs. not 
produced] 

3.36 1.08 – 10.49 0.037 

Prior association 1.93 0.47 – 7.88 0.361 

Dominance 1.74 0.49 – 6.20 0.393 

Comprehension × prior association 0.55 0.15 – 2.02 0.371 

Comprehension × dominance 0.64 0.19 – 2.19 0.476 

Prior association × dominance 0.47 0.18 – 1.25 0.129 

Random Effects 

σ2 3.29 

τ00 id 0.25 

τ00 Item 1.47 

ICC 0.34 
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N id 45 

N Item 12 

Observations 155 

Marginal R2 / Conditional R2 0.115 / 0.419 

 

 

Figure S29.3 Examination of assumptions for the mixed-effects logistic model fitted 

on child data in the verb-event condition. The left plot displays a QQ-plot with no 

observed deviations from the expected distribution, as confirmed by Kolmogorov-

Smirnov (KS) test for distribution correctness, as well as additional dispersion and 

outlier tests. The right plot presents residuals against the predicted value, with the 

absence of clear patterns in these plots indicating a lack of heteroscedasticity issues. 
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Appendix S30: Age Group Differences in Sense Switching Selection 

This section presents the reporting of an additional exploratory statistical model. 

This model has the same structure as the models fitted in the pre-registered 

analyses section (Appendix S28), but it includes the age group (Adults vs. Children) 

as a predictor.  

Table S30.1 presents the statistical model using data from both children and 

adults. The assumptions of this model are confirmed and examined in Figure S30.1. 

The results of this additional model show that adults switched from the 

subordinate to the dominant sense more frequently than children. This pattern was 

observed when transitioning both from the control to the verb-lexical condition, as 

well as from the control to the verb-event condition. 

 

Table S30.1 

Mixed-effects logistic regression model on adult and child data. The model employs 

sense choice (dominant or subordinate) as the dependent variable, while the 

condition (control, verb-lexical, or verb-event) is used as the independent variable. 

Two contrasts were analysed: control versus verb-lexical, and control versus verb-

event. An additional predictor variable of age group (Adult vs. Child) has been 

included in the model, as well as its interaction with the variables from the two 

contrasts. The model’s random effect structure includes random intercepts for 

participants and items, and random slopes of condition per participant and item. 

  Adult-Child Model 

Predictors Odds Ratios CI p 

(Intercept) 0.03 0.01 – 0.06 <0.001 

Age [Adult vs. Child] 17.26 7.39 – 40.35 <0.001 

Control vs. Verb-Lexical 19.73 8.13 – 47.91 <0.001 

Control vs. Verb-Event 457.39 159.25 – 1313.67 <0.001 
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Age × [Control vs. Verb-Lexical] 0.26 0.10 – 0.68 0.006 

Age × [Control vs. Verb-Event] 0.02 0.01 – 0.05 <0.001 

Random Effects 

σ2 3.29 

τ00 id 0.44 

τ00 Item 0.92 

τ11 id.VerbLexical 0.50 

τ11 id.VerbEvent 2.02 

τ11 Item.VerbLexical 0.79 

τ11 Item.VerbEvent 1.26 

ρ01 -0.62 

 
-0.91 

 
-0.07 

 
-0.26 

ICC 0.36 

N id 128 

N Item 12 

Observations 1357 

Marginal R2 / Conditional R2 0.492 / 0.678 
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Figure S30.1 Examination of assumptions for the mixed-effects logistic model fitted 

on adult and child data to examine sense switching behaviour. The left plot displays 

a QQ-plot with no observed deviations from the expected distribution, as confirmed 

by Kolmogorov-Smirnov (KS) test for distribution correctness, as well as additional 

dispersion and outlier tests. The right plot presents residuals against the predicted 

value, with the absence of clear patterns in these plots indicating a lack of 

heteroscedasticity issues. 

 

 

 


