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State-estimation plays a vital role to monitor, observe and understand the combined heat and electric network.
In this paper, a hybrid framework is presented to accurately estimate the system states of electric distribution
network and heat network, using the limited non-redundant measurements obtained from supervisory control
and data acquisition and advanced metering infrastructure systems. The presented hybrid framework involves
two steps, namely, the state-forecasting and the state-estimation. The state-forecasting uses a deep neural
network to forecast the system states at every fifteen minutes interval, while these forecasted states are
further used by the hybrid estimator, which uses a robust extended Kalman filter to estimate the system states
with help of both datasets corresponding to supervisory control and data acquisition and advanced metering
infrastructure systems, at hourly interval. The proposed framework does not completely rely on the system
model at different instants. The effectiveness of the method is validated through thorough comparisons with
simulation studies carried out using the Barry Island test system, United Kingdom. Satisfactory performance

is observed even with the presence of bad data in the measurements.

1. Introduction

Nowadays, the integration of the heat and electrical energy net-
works is booming in order to deliver reliable and cost-effective energy
services with reduced impact on the environment [1]. The integrated
energy networks are very flexible to improve the system performance
through implementation of energy hubs, where multiple energy carriers
at the ports are transformed to provide certain required energy services
in a coordinated manner [2,3]. Thus integrated energy networks are
emerging as a promising solution to obtain optimal dispatch of multi-
carrier energy systems to effectively reduce the energy consumption [4,
5]. The current status of heat pumps, related energy policies, and
future challenges of having coordinated heat and electrical energy
systems are summarized in [6], wherein the comprehensive analysis on
ancillary services of integrated heat and electrical energy systems is also
discussed to maintain reliability and flexibility in the system operation.

The electric network and district heat network can communicate
with one another when additional coupling elements such as CHPs
are connected, which collectively form CHEN [7,8]. Research has
been performed on accomplishing various essential objectives through
integrated electric and heat network analysis, such as improving
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demand side management, operator cost minimization, optimal schedul-
ing, etc. [9,10]. This requires the network control scheme to have real-
time knowledge about the topology and the states of the CHEN [11].
State estimation in CHEN therefore, plays pivot role for the network
operator in monitoring the system and taking appropriate control
decisions [12].

Traditionally, the state estimation task is usually accomplished
through model-based approaches using WLS estimation in power sys-
tems [13,14]. This approach has been replicated in the CHEN systems.
For instance Sun et al. [15] have performed the state-estimation in
CHEN using the measurements acquired from the SCADA system, how-
ever, the comprehensive measurement data is considered, usually not
available in practical networks. The redundancy in the network mea-
surements is desirable for precise state-estimation and the coupling
components such as CHPs contribute to increasing system redundancy
as they provide linkages between the electric and heat networks. Li
et al. [16] have analyzed the impact of installation locations of coupling
components in the CHEN energy flow calculation. Nevertheless, the
measurements redundancy in CHEN is still low and consequently it
becomes difficult for the traditional model based approach to accu-
rately estimate the network states [17]. To address this redundancy
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List of Abbreviations and Acronyms

AMEE Absolute mean estimated errors
AMFE Absolute mean forecasted error

AMI Advanced metering infrastructure
ANN Artificial neural network

CHEN Combined heat and electric network
CHP Combined heat and powerplant
DNN Deep neural network

EKF Extended Kalman filter

LV Low-voltage

MSE Mean square error

MV Medium-voltage

oS Operating system

PMU Phasor measurement unit

RAM Random access memory

SCADA Supervisory control and data acquisition
WLS Weighted least squares

WLAV Weighted least absolute value

issue, Zang et al. [18] have proposed a pseudo-measurement model
to roughly predict the heat load data at different nodes and use those
measurements for the state estimation purpose, using a model-based
WLAV state estimator. Furthermore, the effect of including the AMI
measurements is analyzed in [19] to enhance the observability of
the CHEN, using the weighted least absolute value based framework.
Observability is a necessary and sufficient requirement for the con-
struction of full-state estimators. Here, the performance of the CHEN
is hampered with the presence of the outliers as it is sensitive to the
anomalies in the measurements. Likewise, the similar drawbacks are
reported in [20] using the least square framework with second-order
conic programming. Owing to this concern, the alternating direction
method of multipliers-based bilinear measurement model is developed
in [21,22] for the CHEN to acquire the system states with the coor-
dinated coupling units, and improved computational efficiency [23].
These aforementioned model-based state estimation methods require
detailed hydraulic modeling, thermal modeling, and modeling of cou-
pling components of CHEN to build the relationship amongst mass
flow rate, pressure, temperature, heat power and electric power [24],
while considering the practical effect of variation in inlet temperature
causing the delay in heat transfer [25]. Since the model-based esti-
mators demand the complete modeling of the network dynamics and
redundant measurements, solely model-based approaches for CHEN
state-estimation cannot be completely relied on.

This paper proposes a hybrid state-estimation approach in CHEN,
which involves a two-step process. The first step involves state forecast-
ing through a DNN, while the second step uses an extended Kalman
filter for obtaining accurate state-estimation in the network with limited
measurements. The proposed approach is not completely dependent
on the system model for state-estimation, neither does it requires the
complete set of measurements. A trade-off approach is taken in the pro-
posed method, where the measurements are split into the SCADA and
AMI measurements. The measurements data in CHEN are usually ob-
tained from the well-known SCADA systems and the AMI systems [26].
The AMI systems involve smart electric and heat meters, and the de-
tailed insight and accuracy of these measurement devices are reported
in [27]. The SCADA measurements are usually updated every 15 min
and the AMI measurements are updated on hourly basis. The PMU
data, if available, is considered at fifteen minute interval, clubbed with
the SCADA measurements. If just SCADA measurement data is used,
the interval time of which is about a few minutes, and the PMU data
acquired (at time intervals of milli-seconds) during the SCADA data
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acquisition period do not participate in the state estimation, resulting
in a waste of more accurate and higher refresh rate PMU data [28,29].
As a result, the researchers presented many options for integrating
measurements with different sample periods of SCADA system and
PMU data [30,31]. Using these methods, the SCADA measurements
can be processed in synchronism with the PMU measurements. Further,
the detailed time-scale characteristics for state-estimation in CHEN are
analyzed in [32] using the holistic frameworks. Using either the SCADA
or AMI measurements alone cannot be sufficient to perform the state-
estimation of the integrated networks, as the acquired measurements
lack in redundancy. Therefore, an application of the SCADA and AMI
measurements together is contemplated in this work. AMI measure-
ments data provides extremely abundant measurements data, and the
meters are often only loosely time-synchronized with possible delays
[33], thereby, the AMI measurements could be considered in the model
as pseudo measurements. However, the AMI data processing methods
[34,35] could be deployed aiming the measurement time-alignment,
of data sets from distributed metering, relying on the voltage signal
signature. As the SCADA measurements are updated every 15 min, the
measurements are processed through a trained DNN to obtain the ap-
proximate state estimates, termed herein as state forecasting. However,
when the operator has the collection of AMI measurements on hourly
basis, the approximate states obtained using DNN are further processed
using a robust EKF, to obtain very accurate system states. Therefore,
the first state-forecasting step and the second state estimation step are
sequentially carried-out. It is shown in the work that even if the AMI
measurements are insufficient to render the measurements redundancy,
consideration of pseudo measurements still fetch the state estimates
after the second step in the proposed hybrid state estimator. In light
of the discussion, the contributions of the work are as follows.

* A method of forecasting the CHEN states using only a limited
SCADA data-set.

» A robust extended Kalman filter design for state estimation in
CHEN using SCADA and AMI data-set containing some gross
errors.

+ A hybrid state estimation framework that handles the unsynchro-
nized SCADA and AMI noisy-measurements obtained at different
time frames.

Test results validate the proposed method on real-time data-sets of
the Barry Island CHEN system of the United Kingdom. The presented
framework provides excellent performance even with the bad data in
the heat and electrical measurement data-sets. Comprehensive compar-
ative results demonstrate the effectiveness of the estimation accuracy
of the proposed hybrid estimator, over the state-of-art WLS and ANN
based estimators. Additionally, the computational burden of proposed
estimator is also presented.

The rest of the work is divided as follows. Section 2 describes the
first (forecasting) step of the proposed hybrid state estimator, while
Section 3 elaborates on the second step of the estimator involving s
robust extended Kalman-filter based measurements processing. The de-
scription of the simulation test system, along with the detailed analysis
of results and discussions, is reported in Section 4. Finally, Section 5
draws the conclusions from the presented work.

2. State forecasting using DNN

The framework of the proposed hybrid state estimation is explained
in this section. A flowchart of the proposed hybrid state estimation
for power distribution systems is shown in Fig. 1. The left-hand of
the flowchart describes the ‘training phase’, where state models based
on DNN are applied for the state forecasting. The DNN-based state
forecasting method is employed at instants whenever SCADA measure-
ments are updated. Because the amount of SCADA measurements in the
CHEN are insufficient to provide system observability, standard model-
based estimators such as WLS or WLAV may fail to produce appropriate
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Fig. 1. Flowchart of proposed hybrid state estimator.

SCADA AMI
Data Data

— 10:30 —)' State Forecasting with DNN |

— 10:45 —)I State Forecasting with DNN |
— 11:00 —>| EKF based State Estimation |<—
—» 11:15 _)I State Forecasting with DNN |
—» 11:30 —>| State Forecasting with DNN |
—» 11:45 —)l EKF based State Estimation |
—»> 12:00 —>| EKF based State Estimation I(-
— 12:15 —>| State Forecasting with DNN |

Fig. 2. Data flows and schedule of hybrid state estimation procedure.

estimation results. When both SCADA and AMI data are updated, an
enhanced Kalman filter-based estimator is implemented to guarantee
robust estimation results in the face of large errors. Thus, when both
SCADA and AMI measurements are refreshed, EKF-based hybrid estima-
tor is processed, to ensure robust estimation results against gross errors,
as depicted in Fig. 2. SCADA measurements are assumed to be updated
every fifteen minutes and the AMI data is refreshed hourly, and the
methods employed at each of time instants are as shown in Fig. 2.

The DNN is adopted for the system state forecasting. Each DNN
is a neural network with more than two hidden layers to imitate
complex relations of distribution systems. The proposed DNN-based
state model targets to update the CHEN states with a limited number
of SCADA measurements. The inputs, outputs and the training of DNN
are reported as follows. The input measurements constitute of,

. Outlet temperature, T,;, i € Load nodes in heat network.

. Supply temperature, T};, i € Source nodes in heat network.

. Nodal mass flow rate, Mmy;, i € Load nodes in heat network.

. Active power (P,), voltage magnitudes (|V|;) and Current flows
1; j); i, j € Electric network buses.

A WN R

Rather than all the above-mentioned sets of measurements, partial
set of available measurements are considered in practice due to lack of
installation of sufficient metering equipment in the electric network.
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Using these measurements, the DNN forecasts the CHEN system states.
For this purpose, a specialized DNN is used for system state forecasting
with the CHEN architecture. Each DNN is a neural network with
more than two hidden layers that imitates complicated distribution
system relations. Unlike the conventional data-driven strategy, which
uses all available measurements to reduce the computational burden
of complex distribution systems [36], the proposed DNN-based state
model aims to update distribution system states using just a minimal
amount of SCADA observations. Because the DNN has numerous hidden
layers and a high number of parameters, it may suffer from over-
fitting, leading in low accuracy and poor generalization performance on
unanticipated data. To solve this issue, two effective strategies are used:
dropout, in which units are randomly lost during the training stage,
and noise, which includes injecting noise to the DNN model. Further-
more, the complicated DNN may encounter costly computational costs
throughout the network training phase. The stochastic gradient descent
method is used to solve this issue, as shown here.

Y=Y -nVO;(w) (€D)]

where, Y indicates the network parameters, 5 is the learning rate, and
VQ,(w) is the gradient of the subset-i. The batch size is determined by
the number of samples in each subgroup. When network parameters
are updated, the method uses the gradient of a subset to estimate the
gradient of the whole training dataset. The DNN considered here, is a
five-layer neural network with one input layer of size of measurement
matrix, three hidden layers of size greater than the input layer size
and one output layer of size of the state matrix of the CHEN. In
addition, the dropout rate between the first and second hidden layer is
considered 0.1 and dropout rate for rest hidden layers are all considered
as 0.15. The noise is injected to the model through adding Gaussian
distribution noise to the input data as well as the weight factors of each
layer to avoid overfitting and make it as a high generalization. Fig. 3
illustrates the flow chart of the DNN-based state estimation training.
The MSE [37] is used in the algorithm tabulation to estimate network
losses, and “S,,’ is the number of subgroups chosen based on batch size.
When all training data is processed at once, the epoch is incremented.
The training of the DNN model is completed when the number of
epochs surpasses the iteration threshold (it,,,,) or the MSE is less than
the precision threshold (M SE,, ).

max

3. Hybrid state estimation methodology

At this stage, the measurement set is composed of SCADA measure-
ments and the available AMI data, shown as the two inputs of the
‘EKF-based state estimation box in Fig. 1. The formulation of robust
EKF model-based estimator that has the ability to reject erroneous
measurements, is described in this section in two stages. Initial stage
CHEN modeling, which is subsequently used in the second stage for
problem formulation. These are explained as follows.

3.1. Modeling of CHEN

An integrated hydraulic and thermal model is used to model the
district heat network. In this context, the continuity flow equation is
described as [24],

At =, @

where A is the network incidence matrix [24] that relates the nodes to
the branches; m is the vector of the mass flow (kg/s) within each pipe;
m, is the vector of the mass flow (kg/s) through each node injected
from a source or discharged to a load. Thereafter, the loop pressure for

entire hydraulic network is described as,

Nyipe

BKmlm| = ) B;jk;r;|;| =0 ()
i=1
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Fig. 3. DNN based state forecasting training process.

where B is the loop incidence matrix [24] that relates the loops to the
branches; and where K is the vector of the resistance coefficients of each
pipe. In (3), N, is the number of pipes; ‘/’ is the index of loops and ‘;’
is the index of pipes. The three different temperatures associated with
each node in the heat network include the supply temperature (T}), the
outlet temperature (7,) and the return temperature (7,) [38]. The heat
power is described as,

@ =Cyin (T, ~ T, 4

where @ is the vector of heat power consumed at each node, and C,=
0.0042 MJ/kg/°C. The temperature at the outlet of the pipe is [24],

T,

e

nd = (Tstart - Ta)e_AL/Cpm + Ta = T/ = T’ ¥ (5)

end — * start

where T, and T,,, are the temperatures at the start node and the
end node of a pipe, respectively. T, is the ambient temperature; k is
the overall heat transfer coefficient of each pipe per unit length; L is

the length of each pipe (m). Furthermore, T}, = Tyu — T,.T) , =
T,.q = T,,¥ = e */S™, The junction/mixture temperature at a node is

computed as,

(X o) Towa = (X 71 ) T ©)

where, m;, is the mass flow rate within a pipe coming into the node
(kg/s), m,,, is the mass flow rate within a pipe leaving the node (kg/s),
T;, is the temperature of flow at the end of an incoming pipe and 7,
is the mixture temperature of a node. A comparison of measurement
functions with the hydraulic model equations indicates that fewer equa-
tions exist for 7, and 7, than equations for mass flow rates, and only
temperature measurement equations are available for solving T and T,
in most instances. These factors produce many critical measurements in
the heating network, where the loss of a critical measurement can result
in an unobservable system, which would bear a drastic consequence
of preventing the execution of the state estimator. To counter this
problem, the AMI measurements are added into the state estimation
model. In electric network, the active power (P,), reactive power (Q;)
injections at bus ‘i’, and the current flows(7; j) between two buses ‘i’ and
‘j’, for an ‘n’ bus electric network can be expressed as,
n
P,.:|V,.|Z|Vj|(G,.jcos0U+B,.jsine,.j) )
j=1
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n

0, = V| X IV,I(G,; sin6;; — By cos0))) ®)
j=1

Il.j=\/(G?j+B[.2j)(IV,-|2+|Vj|2—2|V,-||Vj|0059,-j) ©

In (7) and (8), G; j and B; 7 indicate the branch conductances and
susceptances in the electric network. Besides this, the coupling units
considered include the CHP units, which can be modeled as follows,

Cmi = ¢i,source/Pi,CHP (10)

where, ¢; ;... and P, oy p are the heat and electric powers of the CHP
installed at source ‘i’ of the network, and ‘c,,;‘ is the heat-to-power ratio
of the gas turbine CHP.

3.2. Problem formulation

The objective of is to precisely estimate the following network states
from the SCADA and AMI measurements, obtained typically at hourly
intervals. Initially, the states to be estimated, and the measurements
available at this stage, are identified as follows.

» Network states to be estimated are,

. Mass low rates, m;;, ij € All pipes in heat network.

ijo
. Supply temperatures, T};, i € All heat load nodes.
. Return temperatures, T,;, i € All heat load nodes.
. Voltage magnitudes and Voltage angles at all buses in the

electric network

HWN R

» Measurements data include a partial subset of,

. Nodal heat power consumption, @;, i € Heat load nodes.
. Outlet temperature, T,;, i € Heat load nodes.

. Supply temperatures, T};, i € Heat source nodes.

. Nodal mass flow rates, m,;, i € Heat load nodes.

g bHhwh-

. Active powers, P, Reactive powers, Q;, and Voltage mag-
nitudes (|V|;), i € Electric buses.
6. Current flows (I; j) between two electric buses ’i’ and ’;’

Using the modeling equations presented in the earlier subsection,
the different measurements in the CHEN can be expressed in terms of
the network states in the following way.

Zos = hos(Xe) + Wes: Zpg = hps(Xp) + Wy (1)

Zop = hog(xe) + Weps Zpg = hpp(xp) + Whs 12)

where, ‘z,¢’ and ‘z,,” are SCADA and AMI measurements with electrical
network, while ‘z;¢’ and ‘z,,’ are SCADA and AMI measurements with
the heat network. ‘x,” and ‘x;,” are state vectors with electric and heat
networks respectively as follows,

x, =0, IVI] (13)

xp=[m; Ty T, 14)

si ri]

In (11) and (12), A,S(.), h,A(), h,S(), h, A(.) are the measurement
vector functions as follows,

Vi Z;'l=1 [V;|(G;; cos 6;; + By sin6;;)

P, .
Q’~ |Vi|z:;.'=1 [V;|(G;; sin6;; — B;; cos ;)
hesO=| [ |= S 5 5 (15)
l (G2 +B2) (WP + IV, = 2111V, cos ;)
Vi V|
h,()= [P,] _ |I/i|Z;l:] |V;|(G;j cos 6;; + B;; sin6;;) 16)
eA 0, Vil 7, IV;1(Gyj sin6;; — By cos 6;))
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The vector function Ay 4(.) is the heat power Eq. (4). Notice that the
AMI measurements data in electric network is usually obtained at the
LV side of secondary substations for reducing installation costs. In such
case, the AMI data at the LV side is employed to derive the equivalent
measurements at the MV side, along with concurrent derivation of the
covariance of equivalent measurements [39]. After that, the derived
measurements at the MV side are used herein. To avoid the imprecise
estimation resulting due to the possible abrupt changes in the system,
a robust extended Kalman filter is contemplated here. Since CHEN is a
quasi-static system that changes in a slow manner, one could assume
the previous estimated states would be similar to the present values
and the concept of utilizing previous state values to predict the next
states is plausible. A transition relationship between consecutive states
could be formulated and utilized to enhance the estimation results and
predict the upcoming states as well [[40]]. In grid-connected mode,
any surplus or deficit in electrical power is supplied from the main grid
and there is no heat generated at the electricity slack bus bar. Thus, the
derivative of the heat power mismatches with respect to the electrical
variables is zero. In order to obtain more accurate state estimates,
the initial estimates obtained from the state forecasting are utilized as
measurements with finite Gaussian noise. Thereafter, a robust extended
Kalman filter based probabilistic method is iteratively invoked, which
uses the noisy measurements obtained from SCADA and AMI data in
CHEN. For this purpose, the state and the measurement matrices of the
robust EKF are formulated as,

T
a® = [x(ek—l) x(hk—l)] +w®;w® ~ N(0,Q,) (18)

P = H@®) +0®; 0% ~ N(0,Ry) (19)

where a«® and p®, denote state matrix and the measurement matrix,
respectively, for the k,, sample, with k =1, 2, ... K. w(k) is the process
noise with covariance Q, at k,;, instant, and v* is the measurement
noise with covariance R, at k,;, instant. In (19), H(.) is a vector function
which combines the vector functions (15)-(17) values at k,, instant as,

T
(k) — | k) (k) (k) (k) (k)
H@®) = [hes RV ] (20)

where, % denotes the forecasted values of the states taken as approx-
imate measurements with relatively high error covariance. Since the
system (18)-(19) is quasi-static system, the states of the system are
updated as follows [41],

K =P J" (TP IT + Ry (1)
_ 0H(a™®)
T 0a® gt—glo (22)
ak+h = g® 4 Kk(ﬂ(k+1) _ H(&(k))) (23)

Thus the estimated state vector a**" results the final output of
the system. K, is the Kalman gain and J is the Jacobian matrix
of the filter, that relates the different measurements and the states
in CHEN. The diagonal and off-diagonal elements of the Jacobian
matrix are evaluated based on both inter-network and the coupling-
network relations. The evaluation of the elements of Jacobian matrix
is described as follows.

- 0P P 0P 0P 7
26 V| o oT
© 0 0 ©
a0 V| on T
Joo T | oo ooy
J= Jhe Iy |= 26 V| am- JoT 24
I ) o OPhi oD
sXs§ 00 V| o aT
A S Y |
a0 V| 2] JaT
L Ty i
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inter- i ices i oP 0P 90 0@ Oy
In (24), the inter-electric submatrices include 36° V]’ 28° AV]® 0

and %. The elements of these sub-matrices are computed using the
relations (7)-(9). Similarly, the inter-heat sub-matrices include %,
%, % and %. The elements of these sub-matrices are computed using
the relations (2)-(6). Moreover, the matrix I is an identity matrix of
size equal to number of states, ’s’. Out of the remaining sub-matrices
which are off-diagonal, it can be identified that the submatrices 22

ﬁ:
Q & ol f aI 7 E oT . , .
w31 T o 8 and Pl hold ‘zero’ values as there is no cross

coupling between the corresponding states and the measurements. For
J ., the vector of the nonzero elements Zlsauree o calculated using (4)

and (10) as,
aPll,xource _ aPi,CHP —CA (Tsi,xource - TriA,Source) (25)
o - o — “p“lisource ¢

mi

Furthermore, in grid-connected mode, the off-diagonal submatrices
g and % are zero, because the heat power is not a function of the
electricity network and thus J,, = 0 [24]. In islanded mode, J,, holds
nonzero elements and the vector of the nonzero elements is calculated
using (7) and (10) as,
[ P source i source ]

20, oV iy

= i [ReGVIVENGy — jBy)  Re(=Vi(Gyy — jBy)e™ %) (26)

In (26), subscript ‘i’ represents the source at the electricity slack bus-
bar. After the evaluation of Jacobian matrix, the state matrix (a**1) of
CHEN is updated using (21)—(23). Finally, the error covariance vector
Py, is for the next iteration is updated as follows.

Pro=Pr+Q 27)

kaH = iJl:+1 - Kk'jﬁl;l (28)

The matrices R, and Q, in the process are typically initialized
as 1071, and 107*I,,, respectively [42], where subscripts ‘s’ and ‘m’
denote number of states and number of measurements respectively. In
(21), however, R, is replaced with R, el#*“*"-H@)I® by assigning the
exponential term of error between the sensed and the calculated mea-
surements. If the error is high, then, the exponential factor increases
faster, which increases the error covariance term and thereby mitiga-
tion of the error is achieved. Thus, robust performance is achieved by
incorporating exponential term, under high measurement noises.

4. Results and discussion

The proposed method is tested on a Barry Island test system as
shown in Fig. 4. It consists of a heat network with a total of 31
pipes and 29 load nodes, and an electrical distribution network with
a total of 8 buses with lumped loads at 6 buses. Both the networks
are coupled through the CHP units. The detailed parameters of the
test system considered are reported in [24]. The load data for all the
heat network nodes and electric load buses in the CHEN are altered to
obtain different operating conditions, and the load flow analysis of the
combined network is carried in the Matlab® platform, to obtain various
measurements with the operating conditions. For instance, the set of
SCADA and AMI measurements obtained under different operating con-
ditions at different instants in a 2-day interval are as shown Figs. 5(a)
and 5(b) respectively at 15 min. and hourly intervals. A total of 10000
operating conditions under different load conditions are considered,
i.e., 10000 samples are simulated to acquire the training and testing
data sets. Out of these, 20% (i.e.2000) samples are considered for
testing purpose. The simulated measurements (which include both
SCADA and AMI measurements) in various operating conditions are
superimposed with white Gaussian noise [17], to test the effectiveness
of the state-estimation with proposed algorithm. The different test cases
considered are as follows.
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Case-I: Effectiveness of the DNN based state forecasting with
SCADA measurements

Case-II: Effectiveness of the proposed hybrid method with both
SCADA and AMI measurements

Case-III: Comparison of the hybrid method with the conventional
state estimation method

Case-IV: Evaluation of the hybrid method under the presence of
bad-data in the measurements

Case-V: Evaluation of the Computational burden of the algorithm

4.1. Case-I: Effectiveness of DNN based state forecasting

Initially, effectiveness of the state-forecasting method employed in
this work, is presented. The training data-sets used for state-forecasting
are reported in Section 2, where the input data is the partial SCADA
measurements, and the output data is the forecasted states of the
system. These forecasted states of the system include voltage magni-
tude, voltage phase angle, pipe mass flow rate, supply temperature
and return temperatures at load nodes. The forecasting is being carried
out using the DNN algorithm with the procedure as shown in Fig. 3.
The results of various forecasted states, are compared with the ideal
states, to give the forecast error. The AMFE over different operating
conditions, is as reported in Fig. 6, where the AMFEs in the supply
and return temperatures at all the load nodes, mass flow rates in all
the pipes, voltage magnitudes at all load buses and voltage angles at
all buses except the slack bus are shown. Moreover, the DNN phase is
substituted with the single-layer ANN in Fig. 1, and the corresponding
variation in the mean error is also pointed out in Fig. 6. Furthermore,
Fig. 7 points out the maximum and the mean of AMFEs of various
forecasted states using DNN (e.g., mean and the maximum of the return
temperature AMFEs over all the load nodes, is as shown in the last
couple of bars in Fig. 7). It can be seen that the AMFEs obtained from
the initial forecasting stage are sufficiently low, e.g. below about 0.5%
error in each of the forecasted state. Thus presented DNN algorithm
suffices for nearly accurate estimates of different states in CHEN, solely
based on SCADA measurements in the absence of AMI measurements.

4.2. Case-II: Effectiveness of hybrid state-estimation method
In this case, the measurements data is considered from both SCADA

and AMI measurements. After the initial forecasting stage with the DNN
based method, using the SCADA measurements, the robust EKF-based
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hybrid estimator is applied as shown in Fig. 1, which makes use of AMI
measurements. As the AMI measurements are not always available, the
hybrid estimator is employed only at the instants where both SCADA
and AMI measurements are readily available, as identified in Fig. 2.
The hybrid estimator has the information of all the measurements
and the forecasted states for quick convergence, and using them, the
accurate system state estimates are obtained through the procedure
highlighted in Section 3. Since the robust EKF involves modeling equa-
tions, to ensure the system observability, some pseudo measurements
need to be considered along with the available partial SCADA and AMI
measurements. The pseudo measurements in this case are simulated
by appending 50% Gaussian noise to the simulated measurements at
various operating conditions. Thus, the pseudo measurements of nodal
heat power consumptions, load outlet temperatures, active and reactive
powers at various load nodes and buses are considered herein, with
varying degrees of system observability. For instance, with high system
observability with available SCADA and AMI measurements, 10% of
pseudo measurements are considered. With low system observability,
50% of pseudo measurements are considered, i.e. half of the total
number of measurements of the measurement set highlighted in the
Section 3.2 are considered. For fair comparison with the DNN based
state-forecasting method, the set of SCADA measurements are main-
tained the same, while the AMI measurements are increased to increase
the system observability. Fig. 8 illustrates the mean and maximum
values of AMEEs of the CHEN states, under 10%, 25% and 50% pseudo
measurements, while the mean and maximum values of AMFEs with
DNN are also presented. It can be observed that the values of AMEEs are
higher for 50% pseudo-measurements as compared with the 25% and
10% pseudo-measurements. As the percentage of pseudo-measurements
are increased, the AMEEs are noticeably increased due to having higher
degree of uncertainty in the state estimation. On the other hand the
AMFEs with the DNN, which is solely based on SCADA measurements,
tend to be lower than considering the EKF based hybrid state estimator
with greater than 25% of pseudo measurements.

4.3. Case-IIl: Comparison of hybrid method with conventional state-
estimation

Conventionally, the CHEN state estimators proposed do not include
the state forecasting stage, and the state estimation is performed either
with traditional least squares based methods (e.g., WLS and WLAV
based) [18]. In contrast to the proposed hybrid CHEN state estimator,
the conventional state estimators are purely model based approaches,
which require mathematical modeling the electric and heat network
dynamics and demand the system to be observable. Consequently the
model based methods cannot be relied upon in the CHEN, where the
measurement redundancy is low. Thus the traditional WLS/WLAV-
based approaches are not robust methods for CHEN state estimation.
Therefore, for fair comparison between the traditional model-based
estimator and the proposed hybrid estimator, a high degree of system
observability is kept with only 10% pseudo measurements in AMI data.
The estimated CHEN states with the proposed hybrid estimator and the
model-based WLS estimator, are observed at different test instants. The
error histogram of the mean of the estimated AMEEs is plotted and
presented in Fig. 9. For ease of understanding, the absolute error chart
is plotted for the mean of the different states in the electrical network
and the heat network. Y-axis represents the number of instances/data
frequency, while the X-axis represents the mean of the estimated error.
For instance, the mean of the voltage estimation error over all the
electrical voltage buses, with proposed hybrid method is near zero for
over 1400 data instances as depicted in Fig. 9(a). Fig. 9(a) represents
the error histogram with the electrical network states (e.g., voltage
magnitude and voltage phase angle), while Fig. 9(b) represents the
error histogram with the heat network states. The summary statistics
depicting the approximate mean and standard deviations with the
absolute error values depicted in the histogram plots are also reported
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herein. The mean values of different quantities are reported in Table 1
and the standard deviation values of as reported in Table 2. Thus, it is
observed that the hybrid state estimator ascertains more accuracy than
the traditional model based estimator, in case of the less observable
systems such as CHEN.

4.4. Case-1V: Effectiveness of hybrid method under presence of bad-data

As mentioned earlier, the AMI measurements data is considered
from the set of simulated measurements with 2% Gaussian error dis-
tribution. To evaluate the robustness of the hybrid method under the
presence of some bad data in the measurements, the AMI measurements
of active and reactive power measurement data at electrical bus-4 and
heat power measurement data at bus-5 are added with the erroneous
data with five times the normal noise, during the time instants between
60 to 80 h. Consequently, Fig. 10(a) and Fig. 10(b) depict a close look
upon the comparison of proposed hybrid estimator with the traditional
WLS method. As seen in Fig. 10, WLS based estimator provides more
biased state estimates of bus voltages and angles at bus-4, while the
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Table 1
Mean values of absolute errors of model-based estimator and proposed estimator.
Method Voltage Voltage angle Mass flow rate Supply Return
magnitude (rad) (kg/s) temperature temperature
(pu.) [€9) Q)
Model-based 0.0002 —0.00004 —0.0012 0.0901 0.0108
WLS
Proposed 0.0003 —0.00005 —-0.0013 0.0409 0.0045
Table 2
Standard deviation values of the absolute errors of the model-based estimator and the proposed estimator.
Method Voltage Voltage angle Mass flow rate Supply Return
magnitude (rad) (kg/s) temperature temperature
(pu.) (9] Q)
Model-based 0.0067 0.0004 0.0341 0.1042 0.0536
WLS
Proposed 00.0031 0.0001 0.0148 0.0600 0.0293
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mass flow rate, supply and return temperatures in the heat network
are also biased. Further, the robustness of the hybrid method under the
presence of some gross errors in the SCADA measurements is simulated,
where the voltage magnitudes at the electric buses are added with the
erroneous data with five times the normal noise, during the time in-
stants between 35 to 50 h. Consequently, Fig. 11 depicts the comparison
of the proposed hybrid estimator with the traditional WLS method.
The WLS based estimator provides more biased state estimates of bus
voltages and angles, compared to the hybrid state estimator. The hybrid
estimator is robust against the bad-data, because the measurement
redundancy and the convergence is increased on account of initial DNN
based forecasted states.

Fig. 9. Comparison of absolute errors between model-based estimator and proposed
hybrid estimator (a) Electric network states (b) Heat network states.

4.5. Case-v: Evaluation of computational burden

For the evaluation of computational burden, the DNN-based es-
timator is triggered in fifteen minutes interval, while the EKF-based
estimator is executed hourly, for about 72 h, with computer spec-
ifications holding i7 Intel processor and 32 GB RAM operated on
Windows OS. Fig. 12 shows the time taken by various steps involved
with the hybrid estimator. It may be noted that the DNN based state
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estimation in CHEN is usually performed in the order of minutes and
the algorithm takes less than a second.

Further analysis on computational performance of the hybrid esti-
mator is evaluated on ‘city-level CHEN system’ [43], consisting of a
19-bus electric power system and a 69-node heating system. For testing
the scalability, evaluation of computational burden of this system is
carried out with computer specifications holding 32 GB RAM and i7
Intel processor. The measurement data-set for the network is generated
exactly in a similar way as that of Barry Island reported before Sec-
tion 4.1. Here, the DNN-based estimator is triggered in fifteen minutes
interval and the EKF-based estimator is executed hourly. Fig. 13(a)
shows the computational results with the city-level CHEN system at
both the steps involved with the proposed estimator. It may be noted
that the DNN based state forecasting step involves least time as in
the case with the data learning methods, while the EKF-based hybrid
state estimation step takes significant computational time. Further, it is
observed that the computational time has considerably increased (esp.
with the Hybrid state estimation), as the system size has increased
to the 19-bus and 69-node system. This is because the hybrid state
estimator involves several matrix computations including a large size
Jacobian matrix. When the same system simulation is carried out with
computer specifications holding i5 Intel processor and only 16 GB
RAM, the corresponding results are highlighted in Fig. 13(b). From the
results, it is observed that the estimator functions considerably well
even at a low computational cost; however, the computational time is
increased. Therefore, the proposed estimator can easily extend up to the
CHEN system sizes with 19-bus electric power system and a 69-node
heating system.

5. Conclusions

A hybrid state estimation framework is presented herein, which
precisely estimates the CHEN network states using the limited number
of SCADA and AMI measurements data. Two step method is employed
here, wherein the first step, i.e. the state-forecasting is performed at
frequent intervals to give the approximate information of the network
states to the operator. The second step is performed using robust ex-
tended Kalman filter at less frequent intervals, upon the availability of
AMI data, to output the accurate system states even under the presence
of bad-data in measurements. The method is tested on a Barry Island
case study of the United Kingdom. About 10,000 operating scenarios
are considered to set a comprehensive data-set, out of which 80%
datasets are used for the DNN training purpose. The results show that
AMFE:s of the forecasted states are achieved below 0.5%, solely with the
SCADA measurements. When both the SCADA and AMI information is
processed through the hybrid estimator, the output AMEEs are observed
to go down significantly, proving the effectiveness of the proposed
framework. The test cases are considered with varying levels of redun-
dancy in AMI measurements and accordingly 10%, 25% and 50% of
pseudo measurements are added to ensure the system observability. It
is observed that the hybrid estimator with more than 25% of pseudo

10

measurements, is undesirable in the case study, as the state-forecasting
performance supersedes the state estimator performance. Furthermore,
the comparative analysis with the state-of-art model-based approaches,
show the superior performance of the proposed hybrid estimator, as it
involves the two step procedure with robust EKF based measurements
processing strategy wherein the forecasted states are also treated as
measurements with Gaussian/white noise. Due to this reason, it is also
noticed that the bad-data injected in the electric and heat network
measurements do not much effect the estimation accuracy with the
proposed estimator. Finally the computational time of the proposed
method is evaluated, wherein it has been noted that the DNN takes
negligible amount of time whereas the EKF based method takes as
significant computational time. However, the computational time of
approach is observed to be quite low compared to the field state
estimators, which run every few minutes. Moreover, the proposed
framework does not rely on the system model at different instants,
unlike different state-of-art CHEN state estimation methods. Conse-
quently, the proposed framework serves as a suitable solution for the
state-estimation needs of the current day CHEN network bearing highly
redundant measurements.
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