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Abstract

Molecular tools are increasingly applied for assessing and monitoring biodiver-

sity and informing conservation action. While recent developments in genetic

and genomic methods provide greater sensitivity in analysis and the capacity

to address new questions, they are not equally available to all practitioners:
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There is considerable bias across institutions and countries in access to tech-

nologies, funding, and training. Consequently, in many cases, more accessible

traditional genetic data (e.g., microsatellites) are still utilized for making con-

servation decisions. Conservation approaches need to be pragmatic by tackling

clearly defined management questions and using the most appropriate

methods available, while maximizing the use of limited resources. Here we

present some key questions to consider when applying the molecular toolbox

for accessible and actionable conservation management. Finally, we highlight

a number of important steps to be addressed in a collaborative way, which can

facilitate the broad integration of molecular data into conservation.
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1 | INTRODUCTION

Molecular methods are now widely used for monitoring
biodiversity and guiding conservation decisions (Hoban
et al., 2022). In addition, management plans increasingly
include genetic considerations (Pierson et al., 2016).
However, broad-scale implementation of management
plans that are informed by molecular data remains chal-
lenging (Taylor et al., 2017), especially because financial
and human resources are limited and most threatened
species are located in low- and middle-income countries
(Di Marco et al., 2017; Waldron et al., 2013).

Genetic information can contribute to conservation
management and policy in two principal ways. First, it
can be applied for identifying individuals, conservation
units, or species, describing family relationships —
including parentage, population structure and connectiv-
ity, hybridization, and assessing historical population size
(Hohenlohe et al., 2021; Kardos, 2021). Second, as genetic
diversity is strongly linked to the fitness of individuals, as
well as adaptive potential of populations, it forms a basis
for informing current and future planning of conserva-
tion actions intended to maximize population persistence
(Frankham et al., 2017; Kardos et al., 2021). Whereas his-
torically, there has been a strong focus on single locus
datasets (e.g., mitochondrial or chloroplast DNA) and on
a relatively low number of hypervariable loci (e.g., allo-
zymes, microsatellites), genomes are now sampled more
widely by identifying variable positions (single nucleotide
polymorphism (SNPs)) from reduced-representation
sequencing (RRS) or whole genome sequencing (WGS)
(Figure 1). Such broader sampling of the genome allows
for higher resolution and more precise inferences
that can be beneficial for conservation decisions
(Allendorf et al., 2010). However, genomics typically has
higher costs and resource requirements and relies more
strongly on available capacity to analyze and interpret
the results (Shafer et al., 2015). Genomic tools can

provide important information on the history of popula-
tions, the genomic consequences of small population size,
and provide more statistical power to estimate individual
and population fitness. However, for overall diversity
estimates and the inference of population structure,
genome-scale datasets often confirm results obtained
from traditional genetic datasets, and many metrics rele-
vant to conservation can also be derived from traditional
genetic markers (Hoban et al., 2022; O'Brien et al., 2022).
The relevance of applying molecular tools depends
greatly on the specific conservation context, including
the nature of threats and the urgency to mitigate them.
The best course of action regarding research setup,
including marker choice, therefore depends on the con-
servation issue, the level of precision and certainty
needed, and the available capacity and resources. For
these reasons, clear communication about what can be
achieved with various types of datasets is key.

Recent developments have led to an impressive
increase in genomic resources for a wide range of spe-
cies and genomic tools have accelerated the impact of
genetic data and concepts on policy and conservation
action. Some conservation-oriented organizations have
decisively and successfully taken up applying genetic
concepts in their conservation policies or actions
(e.g., National Oceanic and Atmospheric Administra-
tion, IUCN SSC Conservation Planning Specialist
Group, Nature Scot, International Whaling Commis-
sions, Australian Wildlife Conservancy, New Zealand
Department of Conservation and others). However, the
degree to which genetic considerations and molecular
data have been integrated into conservation and man-
agement programs varies greatly across the world, and
within nations (Pierson et al., 2016). This variation is, in
part, due to suboptimal communication between geneti-
cists and policymakers, with considerable important
data remaining dispersed, inaccessible, or misunder-
stood (Cook et al., 2021; Laikre et al., 2020; Sandström
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et al., 2019; Torres-Florez et al., 2018). In addition, even
though the costs of genetic analyses have fallen rapidly,
it is still considered costly and relies on specialized
expertise, making it less accessible. Differences in the
availability of specialized facilities and the capacity to

generate, analyze, and interpret genetic and genomic
data are key considerations. Such facilities, including
high throughput sequencing equipment and high-
performance computing clusters, are not available in all
institutions or countries or are not readily accessible to

FIGURE 1 Summary of conservation questions and the application of different tools across the genetics/genomics continuum. Genetic

tools have been changing rapidly over time, from targeting organellar, single locus markers, to a few genetic markers in the nuclear DNA, to

genome-scale analyses including thousands of markers or even full genomes of individuals. There is no clear line differentiating genetics

from genomics as this presents a continuum of possibilities. The amount of data needed to address a question satisfactorily, that is, the exact

placement on the genetics/genomics continuum depends on the required resolution, precision, and certainty, and is, therefore, highly

context-specific. Therefore, the dot should be seen as the minimum data requirement, with the arrow indicating the applicability of other

markers, depending on specific data requirements. mtDNA, mitochondrial DNA; SNPs, Single Nucleotide Polymorphisms; RRS, Reduced-

Representation Sequencing (e.g., restriction site-associated DNA sequencing, RADseq; Genotyping-By-Sequencing, GBS); WGS, Whole

Genome Sequencing.
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local conservation researchers and practitioners. Interna-
tional collaborations may enable access to such facilities;
however, countries are also bound by stringent regula-
tions regarding the export of samples (e.g., Convention
on International Trade in Endangered Species [CITES]).
Studies may also be subject to permits or regulations
associated with the Nagoya Protocol on Access and Ben-
efit Sharing (https://www.cbd.int/abs/) to ensure the fair
and equitable use of genetic resources. Outsourcing
components of the workflow (e.g., DNA sequencing) is
typically more cost-effective; however, generating and
analyzing data locally have several significant benefits:
sample and data ownership remains with local
researchers and practitioners, training and expertise
transfers into the country, and direct connections to
local management and policy needs can be encouraged
(Holderegger et al., 2020).

Even if specialized facilities are available in a country,
it often remains unclear to conservation practitioners
which technological advances are beneficial for conserva-
tion projects and whether the additional costs associated
with generating genome-scale datasets are an effective
investment. Conservation researchers and practitioners
require standardized and optimized approaches with
demonstrated potential for broad-field application, while
in academic research the incentives to achieve this, both
in the form of funding and publications, are often lacking
(van Oosterhout, 2020). Despite this, several recent initia-
tives have aimed to bridge the gap between geneticists
and practitioners by providing well-informed decision-
support tools tailored toward end-users (Funk
et al., 2019; Hoffmann et al., 2015; Hogg et al., 2022;
Holderegger et al., 2019; Nielsen et al., 2022). Although
there is a need for best practice recommendations regard-
ing suitable data generation and analysis, these are
highly context-specific and may change as technologies
develop. Thus, it is challenging to articulate guidelines
that are broadly applicable across a variety of conserva-
tion questions, taxa, and technologies.

To facilitate the integration of genetic and genomics
research into applied conservation, here, we discuss the
conservation questions that can benefit from molecular
tool applications and provide guidance on which tools
are suitable, depending on the conservation context. This
is illustrated by a number of case studies, which show
how a growing body of genetic and genomic literature
has influenced conservation decisions. We conclude by
highlighting a number of steps for improving accessibility
and inclusion in the field of conservation genetics: Effec-
tively addressing these challenges will help to ensure that
those involved in conservation policy and management
around the world can access the information and
resources they need to apply appropriate molecular tools
to conservation questions.

2 | PRAGMATIC DECISIONS FOR
INTEGRATING MOLECULAR DATA
INTO CONSERVATION

To bolster the uptake of molecular methods in conserva-
tion, identifying pragmatic approaches can allow for effi-
cient data collection and integration to more rapidly
address specific conservation questions (Figure 2). A
number of key questions related to appropriate sampling
design, data requirements, and data availability can pro-
vide guidance, but it is important to acknowledge that
the ability to access funding, resources, or analysis capac-
ity also influences the choice of methods. Genetic infor-
mation can be integrated through the application of
proxies, repurposing previously collected data, and/or the
collection of new data.

When molecular data are not available, whether
through limited access to samples or facilities, or limited
funding for this type of research, conservation decisions
can be informed by genetic considerations through the
use of proxy data. Careful assessment of risks and limita-
tions can help to ensure the appropriate applications of
proxy data. Examples where proxy data have been used
include the freely available environmental and geographic
distance variables which can be used as surrogates for
both neutral and adaptive genetic variation in prioritizing
protected area acquisitions (Hanson et al., 2017). If a pop-
ulation of interest has not been genotyped, genetic infor-
mation from neighboring populations, such as their
assignment to a phylogeographic clade, can be used to
guide decisions regarding the choice of suitable source
and target populations for translocations, as was recently
illustrated in the case of lions (Bertola, Miller, et al., 2022;
Bertola, Sogbohossou, et al., 2022). In general, compara-
tive phylogeography can be used to explore whether pat-
terns across species are congruent, for instance, due to
similar evolutionary histories, such as shared glacial refu-
gia (Bertola et al., 2016; Willis et al., 2004). Delineations or
data from ecologically similar and co-occurring species
can thus be suitable proxies to determine boundaries
between phylogeographic lineages and evolutionary rela-
tionships between populations, providing relevant insights
into overall biodiversity patterns. This means that differ-
entiation and isolation between populations can be inte-
grated into conservation decisions for populations for
which genetic data do not yet exist.

Proxies for other components of within-species genetic
diversity can also be used (Figure 2). Recently, Hoban
et al. (2021) proposed the following indicators for asses-
sing genetic diversity in a global biodiversity conservation
framework: (1) the ratio of populations with an effective
population size (Ne) above versus below 500, (2) the pro-
portion of populations maintained relative to a historic
baseline, and (3) the number of populations/species for
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which genetic diversity is monitored. These indicators, for
which actual genetic data are not a prerequisite, have been
shown to be applicable in several countries and will pro-
vide information for monitoring genetic diversity (Hoban
et al., 2023). Furthermore, O'Brien et al. (2022) have pro-
posed a framework for bringing together different report-
ing mechanisms in a way that is suitable for all countries,
including lower-income countries.

If genetic resources do already exist, for example, as
publicly available data, and there is capacity to repurpose
these, they may provide a good source of information to
guide and support conservation decisions without requir-
ing additional sequencing or genotyping. Many studies
make genetic data available through online repositories
(e.g., Genbank and NCBI). At present, the majority of
publicly accessible data represents traditional genetic
studies, although the number of species for which whole
genome-scale data are available is steadily increasing.
Traditional genetic datasets are still useful in that they
may add insight to specific research questions, or
enhance the utility of new datasets by building on exist-
ing baselines (Hauser et al., 2021; Nielsen et al., 2020;
Saha et al., 2022; Stronen et al., 2022). A useful collabora-
tion between genetics researchers and practitioners could
be in aiding the translation of existing genomic resources,
for example, data available in the scientific literature, to
relevant conservation applications, or using that

information to develop fit-for-purpose tools that can
address on-the-ground conservation needs. Traditional
genetic markers can further be used to calculate recently
proposed Essential Biodiversity Variables (EBVs) for
genetic composition, covering genetic diversity, genetic
differentiation, inbreeding, and effective population size
(Ne) (Hoban et al., 2022). Defining these EBVs specifi-
cally aims to improve aggregation, harmonization, and
interpretation of biodiversity observations.

Finally, project teams may decide to generate new data
to obtain the information necessary to address a specific
research question. In the past, it has been challenging to
ensure that new molecular datasets are comparable across
different laboratories, or compatible with previously gener-
ated data, for example, for use in temporal monitoring or
other applications. Calibration of equipment and workflows
may differ between laboratories and change through time.
This has been particularly challenging for microsatellite
datasets, which have been widely used for conservation pur-
poses. Genomic markers, such as SNPs, have been heralded
as more consistent than traditional genetic markers; but,
depending on the methods used to select, genotype, and
analyze SNPs, these datasets can also vary widely (Wright
et al., 2019). Compatibility issues are especially relevant for
long-term genetic monitoring projects, which re-assess
genetic diversity over time (i.e., multi-generational studies
and historical/ancient DNA) and may alert us to changes

FIGURE 2 Flowchart listing decisions and considerations when integrating genetic information into conservation.
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such as increasing inbreeding or genomic erosion (Díez-
Del-Molino et al., 2018; Jensen et al., 2022). However, apart
from some limited geographies (e.g., California or Sweden)
and species (e.g., whales managed by the International
Whaling Commission), long-term genetic monitoring is not
yet widely applied to wild species (Pierson et al., 2016). This
is often due to funding being sporadic and opportunistic,
making long-term projects more challenging to implement
and maintain. Relying on a validated panel of markers, or
including overlap with a previously used marker set when
designing a new panel, allows for expanding a shared base-
line across countries. In addition, archiving of DNA samples
and associated metadata is important for future calibration
or other updates to methods. This allows conservation pro-
jects to build upon previous observations, either corroborat-
ing past results or providing new insights that can be used
to change the course of action.

For many species of conservation concern, new stud-
ies build upon previously derived results and can utilize
simulations to inform population changes (case studies

in Figure 3 and Table S1; two worked-out examples in
Boxes 1 and 2). Leveraging new technologies and the
decreasing costs of genomic analysis enables compari-
son of results obtained with different methods and re-
evaluation of previous conservation recommendations.
Two case studies, with black and white rhinoceros
(Diceros bicornis and Ceratotherium simum, resp.) and
with Macquarie perch (Macquaria australasica) are
described in more detail to highlight how various molec-
ular resources have been combined to help guide con-
servation decisions in these species (Boxes 1 and 2).

3 | COMMUNICATION
AND INTEGRATION

The integration of genetics into management plans and
policy has been hampered by limited resources and subop-
timal communication between geneticists and policy-
makers (Cook et al., 2021; Laikre et al., 2020; Sandström

FIGURE 3 Case study examples in which conservation management is informed by genetic or genomic data (more case studies and

additional details can be found in Table S1). These examples do not provide a complete review of all genetic studies executed on the species

shown but rather refer to specific studies. Two cases are worked out in more detail: black and white rhinoceros (Box 1) and Macquarie perch

(Box 2). Colors indicate data types: yellow, Whole Genome Sequencing (WGS); red, Reduced-Representation Sequencing (RRS); pink, Single

Nucleotide Polymorphisms (SNP), dark blue, microsatellites/AFLP; light blue, nuclear sequences; green, mtDNA/chloroplast DNA (Case study

references: 1: Moran et al., 2021; 2: Harmoinen et al., 2021; Smeds et al., 2021; 3: Lecocq et al., 2017; 4: Hartvig et al., 2020; 5: Pavlova et al., 2017;

Lutz et al., 2021; Pavlova et al., 2022; 6: Clout et al., 2002; 7: Moodley et al., 2017; Moodley et al., 2018; Moodley et al., 2020; S�anchez-Barreiro

et al., 2021; 8: Kershaw et al., 2017; 9: Poulakakis et al., 2008; Edwards et al., 2013; Jensen et al., 2015; Gaughran et al., 2018).
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et al., 2019; Torres-Florez et al., 2018). Balanced collabora-
tions and two-way communication between researchers,
conservation practitioners, and policymakers are necessary
to effectively integrate genetic information into conserva-
tion management (see e.g., Di Marco et al. (2017); Wal-
dron et al. (2013)). We recommend improving connections
for both genetics researchers and management practi-
tioners to share relevant knowledge and resources and
encouraging, or even facilitating close collaborations
between stakeholders with different backgrounds. Already
established initiatives can provide guidance on how such
approaches can be implemented and transferred to other
geographic regions. For example, in Victoria, Australia,
the State government environment department, in collabo-
ration with researchers, has developed a Genetic Risk
Index (GRI) used for biodiversity management planning
and investment decisions (https://www.environment.vic.
gov.au/biodiversity/genetic-risk-index). The GRI applies
evolutionary genetic principles to rank species in terms of
the likelihood that they are experiencing loss of genetic

BOX 1 Black and white rhinoceros.

The well‐documented poaching and demo-
graphic collapse of black rhinoceros (Diceros
bicornis) has raised concern regarding the sur-
vival of the species. Despite a wide historical dis-
tribution, the black rhinoceros now survives in
only five countries in Africa. Moodley et
al. (2017) aimed to assess genetic variation by
comparing historical and modern black rhinoc-
eros samples in both the mtDNA (control region
of 477 bp) and 11 nuclear microsatellites. The
results showed a staggering loss of 69% of the
species’ mtDNA variation with diversity lower
toward the limits of the species' range. The levels
of nuclear diversity were also higher in historic
samples and most ancestral lineages are now
absent from the modern populations; genetically
unique populations no longer exist (Nigeria,
Cameroon, Chad, Eritrea, and Angola).

White rhinoceros (Ceratotherium simum) has
a discontinuous African distribution which is
limited to the extent of sub‐Saharan grasslands.
Both southern and northern populations have
declined but the southern population has recov-
ered. In contrast, for the northern population,
only two post‐reproductive females remain.
Moodley et al., 2018 assessed the species’ demo-
graphic history by analyzing 419 bp of the
mtDNA control region for 63 individuals across
the species' range. In addition, 232 individuals
were genotyped for 10 microsatellites. Nuclear
microsatellite diversity was low to moderate and
only three mtDNA haplotypes were identified.
Results showed little change in genetic diversity
over time, but both populations showed a decline
in effective population size. The decline of the
southern population corresponded with the colo-
nial period and the northern population showed
a bottleneck during the time of the Bantu
migration.

In Moodley et al. (2020), authors sequenced
and annotated the first black rhinoceros genome.
In addition, East African black rhinoceros and
northern white rhinoceros genomes were re‐
sequenced and previously published data were
included to investigate levels of heterozygosity.
For black rhinoceros, more recent genetic contact
across the Zambezi Valley between 125 and 150
KYA has been reported. At least one East African
mtDNA haplotype was sampled on the southern
banks of the Zambezi River and one southern

African haplotype was sampled north of the
Zambezi River. This result appears to be in con-
trast with the strong mtDNA and microsatellite
(nuclear) discontinuity on either side of the Zam-
bezi (Moodley et al., 2017). The Zambezi River
may act as a barrier, but it is periodically perme-
able for black rhinoceros. White rhinoceros
populations also came into secondary contact
(100–220 KYA), which is consistent with gene
flow estimates derived from microsatellite data
(Moodley et al., 2018). In addition, gene flow con-
tinued long after the initial divergence and cessa-
tion of panmixia within black and white
rhinoceros lineages. The expansion and contrac-
tion of habitats with glacial cycles appear to have
maintained gene flow. In addition, Sánchez‐Bar-
reiro et al. (2021) presented a temporal white rhi-
noceros genomic data set, including 52
individuals to uncover additional patterns of pop-
ulation structure and within‐subspecies genomic
erosion.

These papers illustrate how the analysis of
different markers (genetics to genomics) can help
to answer questions at either a higher evolution-
ary level or at the phylogeographic, phylogenetic,
or population level. Genome‐level analysis often
reveals finer scale patterns that are not observed
when using mtDNA or microsatellite data, how-
ever, here, the overall patterns of diversity were
supported by all marker types.
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diversity likely to impact population persistence and is
informed by genetic data if they are available. In the
absence of genetic data, as is the case in a substantial pro-
portion of the 1155 species initially assessed, pragmatic
proxies, such as population size estimates, area of occu-
pancy, estimated dispersal capacity, etc., are applied. In
North America, genetic data have been used to identify
Evolutionary Significant Units (ESUs) for purposes of
applying the Endangered Species Act in Pacific salmon
(Oncorhynchus spp) for the past 30 years (Waples, 1991).
In Scotland, the first report on genetic diversity, published
in 2020 by NatureScot, the statutory nature conservation
body, provides a scorecard to assess the threats to genetic
diversity within wild species (Hollingsworth et al., 2020).
This scorecard was designed to be transferable to any
country or region regardless of economic status or the

BOX 2 Macquarie perch.

The Macquarie perch (Macquaria australasica) is
a freshwater fish once common and widespread
through the Murray‐Darling Basin of Eastern
Australia, but it experienced severe population
declines and isolation due to human impacts.
Genetic and genomic methodologies play an
important role in the conservation and manage-
ment at the population level and individual level,
respectively.

Pavlova et al. (2017) explored the conse-
quences of habitat loss and fragmentation on
population‐level genetic diversity and future pop-
ulation trajectories of M. australasica. Using an
844 bp mtDNA fragment for 339 individuals
across 17 populations and 19 microsatellites for
871 individuals from 20 populations, In combina-
tion with simulations, the authors estimated Ne
across the species range, evaluated levels of
genetic diversity for each population, and identi-
fied populations requiring genetic rescue/genetic
restoration, as well as potential donor sources. It
demonstrated that within a few decades, smaller
populations are likely to suffer genetic erosion
and inbreeding unless diversity is restored and
maintained by translocations. Augmented gene
flow was recommended as an urgent manage-
ment action and subsequently adopted by the
species‐wide recovery plan.

The consequences of genetic augmentation
were evaluated by Lutz et al. (2021) using RRS
markers for the M. australasica population rein-
troduced into the Ovens River, comprising indi-
viduals originating from the genetically diverse
Yarra source population and the moderately
diverse Dartmouth population. For the individ-
ual‐level analyses, 1679 individuals were scored
for 1204 SNPs for parentage, kinship, and sibship
analysis, and data for 92 individuals scored for
735 SNPs to assess individual genetic diversity
and genetic dissimilarity between broodstock
parents. For the population‐level analyses, 564
individuals were scored for 1003 SNPs and
reduced data sets were then used to calculate
population structure and undertake genetic clus-
ter assignment and hybrid analysis. Lutz et
al. (2021) found that cross‐type strongly predicted
the survival of stocked offspring, with offspring
of two Yarra parents having the highest survival
and the majority of fish surviving in the Ovens
River having at least one Yarra parent, despite

the majority of fish originating from Dartmouth.
The authors determined that, while Yarra off-
spring had the highest fitness, the Yarra x Dart-
mouth cross‐type also had relatively high
survival, and combining compatible stocks as
part of the implementation of the recovery plan
is of overall benefit to the restoration of M. aus-
tralasica. Sex determination is an important tool
for conservation and management, however,
rapid sex‐chromosome turnover in fish hinders
the development of markers to sex‐monomorphic
species. Pavlova et al. (2022) used annotated
genomes and RRS data (1,492,004 SNPs) for the
M. australasica and the golden perch M. ambi-
gua, and WGS of 50M. australasica of each sex,
to identify a sex‐determination and develop an
affordable sexing assay. Whereas the RRS
approach yielded few sex‐linked SNPs, WGS data
revealed a small genomic region (146 bp) inher-
ited in a predominantly XY fashion. A test of a
molecular sexing assay targeting a SNP with a
male‐specific allele in the sex‐linked region, and
amplicon sequencing data for four Percichthyid
species indicated that the M. australasica sexing
region is species‐specific and either specific to
populations related to those in which it was
detected or can be influenced by environment.
The identification of sex‐linked markers will
assist practitioners in monitoring the recovery of
Macquerie perch populations by providing a tool
to determine genetic sex in some populations and
to interpret those results in the context of other
influencing factors, such as environmental
conditions.

8 of 15 BERTOLA ET AL.



accessibility of direct genetic or genomic data for their spe-
cies (O'Brien et al., 2022). Although the published score-
card uses information from molecular data, it can also be
completed using assessments based on pragmatic proxies
and genetic principles if genetic data are not available.

4 | A COMMUNITY EFFORT
TO MOVING FORWARD

It is crucial that we, as a community, embrace the diverse
contexts in which researchers and practitioners operate,
improve accessibility, address inequities, and prioritize
inclusivity in conservation genetics. Key points common
to conservation genetic projects include data storage,
accessibility, and stewardship (McCartney et al., 2021;
Toczydlowski et al., 2021). Capacity-building can not
only focus on the generation and interpretation of geno-
mic data but also on the incorporation of genetic princi-
ples in the absence of genetic data. Two-way
communication between the various stakeholders is cru-
cial for connecting research questions and data to on-
the-ground conservation needs (Pärli et al., 2021). This
requires closing the communication gap by making the
literature and datasets more broadly available, through
Open Access and in a variety of languages (Karam-
Gemael et al., 2018; Torres-Florez et al., 2018), consistent
with FAIR (Findability, Accessibility, Interoperability,
and Reusability) and CARE (Collective Benefit, Authority
to control, Responsibility, Ethics) principles (Carroll
et al., 2021; Wilkinson et al., 2016).

As a way forward, we suggest the following steps to facili-
tate the uptake of molecular data in conservation manage-
ment and policy. They cover the following topics: (1) training
and capacity building, (2) data generation, storage, and anal-
ysis, (3) communication, and (4) implementation.

1. Encourage co-creation of conservation genetics pro-
jects: Involve all relevant parties, including Indige-
nous Peoples and local communities, early in the
project co-design phase to ensure that decisions are
pragmatic and cost-effective, and partnerships
are balanced and equitable, consistent with the
Nagoya protocol (see also https://www.cbd.int/abs/;
also see Hogg et al. (2017); Rayne et al. (2022); Taft
et al. (2020); Taylor et al. (2017); Russo et al. (2023)).

2. Develop in-person laboratory training programs: Stan-
dardize the training program curricula, ingredient
lists, and laboratory exercises for workshops that
increase the adoption of genomic technology (includ-
ing portable technology) and field-sequencing pipe-
lines; strive for approaches that can be used as
widely as possible; also see Watsa et al. (2020).

3. Enhance in-country capacity for data generation:
Increase support to develop and operationalize low-
cost and flexible laboratory facilities in countries or
regions without established molecular biology
research infrastructure: This includes (1) ensuring
genetic dataset creation and data analysis can remain
within the scope of in-country scientists, (2) account-
ing for the prohibitive costs and challenges with in-
country availability of reagents, and (3) considering
limited or no access to reliable cold chains; also see
Ebenezer et al. (2022); Pomerantz et al. (2018).

4. Build in-country capacity for data analysis: Support
in-country access to analysis tools, computing
resources, and data storage, as well as sustainable
strategies for financing these; also see Rodríguez
et al. (2007); Wilson et al. (2016).

5. Provide training in genetic concepts and theory: Inte-
grate foundational genetic training into curricula
available to conservation practitioners and policy-
makers to empower their use of genetic data inter-
pretation for management applications, especially in
low- and middle-income countries, where opportuni-
ties for conservation genetics training may be lim-
ited; also see Schweizer et al. (2021).

6. Establish central knowledge hubs for conservation genet-
ics: Provide “one-stop-shops” to make relevant
resources findable and accessible (e.g., the webpage of
the Coalition for Conservation Genetics: https://www.
coalitionforconservationgenetics.org/); also see Hoban
et al. (2013); Kershaw et al. (2022); Russo et al. (2023).

7. Commit to long-term storage and availability of samples,
data, and metadata: Enable future research, consistent
with both the FAIR and CARE guiding principles, with
clear agreements regarding sample, data, and metadata
ownership and conditions of use. Ensure data and
metadata availability in public data repositories where
appropriate; also see Crandall et al. (2023); Kitchener
et al. (2021); Strand et al. (2020).

8. Commit to long-term engagement across the research-
policy-practice interface: Maintain connections between
researchers, policymakers, and practitioners, including
Indigenous Peoples and local communities, to facilitate
evaluation of conservation actions and follow-up stud-
ies; also see Cook et al. (2021); Lundmark et al. (2019);
Thompson et al. (2023).

9. Develop open-access educational resources: Increase
the scope and range of open-access conservation
genetics resources online (e.g., recorded lectures,
textbooks, field and laboratory protocols, GitHub
repositories, and hands-on exercises); also see Kure-
lovic (2015); Roche et al. (2022).

10. Establish platforms for networking and communica-
tion: Connect practitioners with those who can
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provide guidance, data, or access to reagents required
for in-country genetic studies to address manage-
ment and policy needs; also see Pärli et al. (2021);
Sandström et al. (2019); Taft et al. (2020); Russo
et al. (2023).

11. Encourage communication across laboratories/institu-
tions/countries: Explore opportunities to align work,
and increase standardization and compatibility of
datasets, allowing for continuous expansion
of shared baselines; also see Hindrikson et al. (2017);
Taylor et al. (2017); Shaffer et al. (2022).

12. Break down language barriers: Ensure the availability of
resources in multiple languages and make sure that
communication follows mutual and inclusive principles
avoiding technical jargon; Also see (Amano et al., 2016;
Amano et al., 2021; M�arquez & Porras, 2020; Torres-
Florez et al., 2018).

5 | CONCLUSION

To facilitate the uptake of genetic considerations and
serve conservation management and policy needs
most pragmatically, it is important to assess the nec-
essary molecular information and how it can be
obtained most cost-effectively. Cutting-edge genomic
research leads to critical new insights, as well as to
the development of resources and methods that allow
more precise and accurate inferences. Simultaneously,
traditional genetic markers or genetic indicators pro-
vide sufficient data to address many management
questions, despite the possible lack of incentives to
generate and utilize these data in new academic
research projects. There usually is a tradeoff between
cost and precision, and practitioners may be faced
with limitations related to sample availability/quality,
access to genetic facilities, capacity to process and
interpret the data, and compatibility issues with data
collected at earlier time points or by alternative
means. It is crucial that we acknowledge the local
conditions and strive for broad incorporation of
molecular data and concepts into policy and manage-
ment decisions. Improving opportunities for commu-
nication and collaboration between genetics
researchers and decision-makers is an essential com-
ponent of achieving this goal. The CBD and other
policy mechanisms requesting genetic diversity moni-
toring can also help to identify and allocate the nec-
essary capacity-building resources and funding to
support this. Failing to do so will only lead to fur-
ther widening of the gap between conservation genet-
ics and applied conservation, and risks slowing down
existing initiatives to make conservation science more
equitable.
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