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Abstract

The flow network model is an established approach to approximate pressure-
flow relationships in a network, which has been widely used in many contexts.
However, little is known about the impact of bifurcation geometry on such approx-
imations, so the existing models mostly rely on unidirectional flow assumption
and Poiseuille’s law, and thus neglect the flow details at each bifurcation. In this
work, we address these limitations by computing Stokes flows in a 2D bifurcation
using LARS (Lightning-AAA Rational Stokes), a novel mesh-free algorithm for
solving 2D Stokes flow problems utilising an applied complex analysis approach
based on rational approximation of the Goursat functions. Using our 2D bifur-
cation model, we show that the fluxes in two child branches depend on not only
pressures and widths of inlet and outlet branches, as most previous studies have
assumed, but also detailed bifurcation geometries (e.g. bifurcation angle), which
were not considered in previous studies. The 2D Stokes flow simulations allow us
to represent the relationship between pressures and fluxes of a bifurcation using
an updated flow network, which considers the bifurcation geometry and can be
easily incorporated into previous flow network approaches. The errors in the flow
conductance of a channel in a bifurcation approximated using Poiseuille’s law
can be greater than 16%, when the centreline length is twice the inlet channel
width and the bifurcation geometry is highly asymmetric. In addition, we present
details of 2D Stokes flow features, such as flow separation in a bifurcation and
flows around fixed objects at different locations, which previous flow network
models cannot capture. These findings suggest the importance of incorporating
detailed flow modelling techniques alongside existing flow network approaches
when solving complex flow problems.

Keywords: Stokes flow, flow network, bifurcation, lightning solver, biharmonic
equation
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1 Introduction

The computation of fluid flows within networks plays a significant role in addressing
many engineering challenges. For instance, quantifying the blood flows in an organ
or an organ system can help us better understand their physiological functions [10].
Models for network flow can also provide valuable insights into vascular diseases [24]
to improve their treatments [19].

The standard way to compute flows in a network is via a flow network modelling
approach, which is a 0D reduced-order modelling of the underlying 3D fluids problem,
where junctions and boundary points of the network are represented by nodes with
flow segments between them. By assuming steady unidirectional flow with no-slip wall
conditions in each flow segment, the flow conductance in each segment is described by
Poiseuille’s law [32]:

G =
q

∆p
=

πd4

128µl
=

1

R
, (1)

where q is the flow rate, ∆p is the pressure drop across the segment, d is the diameter,
µ is the viscosity, l is the segment length, and R is the flow resistance, which is the
inverse of conductance and also commonly used. After prescribing the pressures at
boundary nodes of the network and imposing continuity of fluxes at each internal
nodes, a linear system between pressures and fluxes in the network can be constructed
[31], if the viscosity is a constant or a function of diameter only. From this “pressure-
flux relationship”, the fluxes can be solved easily using a standard linear solver when
pressures are known or vice versa. Note that the pressure-flux relationship is no longer
linear when the viscosity depends on other factors, e.g. the volume of red blood cells
when considering blood flow [25, 28, 29], then a non-linear solver will be needed.

The flow network approach has been widely used for microvascular flows [29], with
applications to oxygen transport [13, 30] and drug delivery [8]. In addition, the flow
network model has been used to compute flows in microfluidic devices for biomedical
applications [17, 23]. These applications rely on the ability of the flow network model
to provide a good approximation for Stokes flows in a complex network. However,
the assumption of unidirectional flow no longer hold precisely at the junction region,
causing errors in predicting the pressure-flow relationship and the flow partition at
the junction. Such errors can build up when considering large networks with a large
number of junctions. Furthermore, as a 0D approach, the flow network model neglects
the flow details at the bifurcation, making it impossible to investigate fluid-structure
interaction problems, e.g. the microparticle partition at a bifurcation [1].

To the best of our knowledge, Stokes flows in a bifurcation have not yet been thor-
oughly studied either analytically or numerically, even for a 2D setup. Analytical or
semi-analytical solutions exist for simpler 2D Stokes flow problems including flows
near a corner [20], in a partitioned channel [14], in an expanded channel [16] or a con-
stricted channel [33]. However, these analytical techniques are not suitable for solving
2D Stokes flows in an bifurcation with complex boundary geometries. Alternatively,
one can use numerical methods including finite element methods [15] and bound-
ary integral methods [26] to compute Stokes flows in a bifurcation. Considering the
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computational costs of domain discretisation and efforts of dealing with corner singu-
larities, however, these methods are too computationally expensive to run thousands
of simulations to comprehensively interrogate the parameter space.

Recent developments in rational approximation [4, 5, 11, 22] have underpinned
novel algorithms to compute 2D Stokes flows in bifurcations using an applied complex
variable approach [3, 37]. In 2019, Gopal and Trefethen [11] introduced the lightning
algorithm for solving Laplace’s equation in polygon domains using rational functions.
The lightning algorithm achieves a root-exponential convergence by clustering poles
exponentially near corners, providing an optimal way to deal with corner singularities.
Brubeck and Trefethen [3] applied the lightning algorithm to 2D Stokes flow prob-
lems. The stream function, that satisfies the biharmonic equation, can be represented
using two complex analytic Goursat functions [12] and approximated by rational func-
tions. Based on the lightning algorithm, we have developed the LARS (Lightning-AAA
Rational Stokes) algorithm [37] for computing 2D Stokes flows in general domains,
including domains which have curved boundaries or are multiply connected. The com-
putation usually takes less than one second on a laptop and gives solutions with at
least 6-digit accuracy [37].

In this work, we use the LARS algorithm to compute Stokes flows in 2D bifur-
cation with different geometrical and flow conditions. For bifurcations with different
channel widths, bifurcation angles, boundary geometry, we compute the flux-pressure
relationship and compare against Poiseuille’s law approximations. We show that the
impact of bifurcation geometry on the flux-pressure relationship can be considered
accurately using a Y-shaped network, which can be incorporated into a 0D flow net-
work model easily. Furthermore, we present flow features that cannot be captured by
a 0D network model, including streamline patterns, flow separation in a bifurcation,
and effects of fixed objects on the pressure-flux relationship of a bifurcation.

2 Problem formulation

In a Cartesian coordinate system x = (x, y)T , we consider a 2D bifurcation with one
inlet parent branch with width d, and two outlet child branches with widths d1 and d2,
respectively. We place the origin at the intersection of the centrelines of the channels.
The angle between the positive x axis and the two branch centrelines are denoted α
and β, respectively. Each channel has centreline length l.

We consider steady flow of an incompressible Newtonian viscous fluid governed by
the Stokes and continuity equations:

µ∇2u = ∇p, ∇ · u = 0, (2)

where u = (u, v)T is the 2D velocity field, p is the pressure and µ is the viscosity. We
prescribe normal stress and parallel flow boundary conditions at inlet and outlets, and
zero velocity boundary condition on the walls. The flow is thus assumed to enter and
exit the bifurcation region with fully developed parabolic flow.
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We non-dimensionalise as follows

X =
x

d
, U =

u

q/d
, P =

p

µq/d2
, (3)

where capitals denote dimensionless variables. The dimensionless Stokes equations in
component form, together with the continuity equation, then become

∂2U

∂X2
+
∂2U

∂Y 2
=
∂P

∂X
, (4)

∂2V

∂X2
+
∂2V

∂Y 2
=
∂P

∂Y
, (5)

∂U

∂X
+
∂V

∂Y
= 0. (6)

We set the dimensionless centreline length L = l/d = 2 for each channel to ensure
the flow domain has sufficient length that the flow is fully developed at the outlets.
We assume the dimensionless pressure at inlet P0 = 0. For a 2D bifurcation, we now
have 6 dimensionless parameters: child branch widths D1 and D2, outlet pressures P1

and P2 and bifurcation angles α and β. Figure 1 shows the dimensionless Stokes flow
problem in a 2D bifurcation.

2

2
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,

-

P1

P2

P0 = 0

X

Y

Fig. 1: Schematic of Stokes flows through a 2D bifurcation.
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3 Representation of the bifurcation using a flow
network model

The pressure-flux relationship of Stokes flows at a bifurcation can be represented using
a Y-shaped flow network model as shown in Figure 2. The fluxes in flow segments are
Q, Q1 and Q2, where the arrows indicate the directions in which the flux is positive.
For any bifurcation, there are three unknown flow conductance G0c, G1c and G2c that
depend on the bifurcation geometry.

P0 Pc

P1

P2

G0c

G1c

G2c

Q

Q1

Q2

Fig. 2: Schematic of the flow network that represents the bifurcation.

The dimensionless fluxes in flow segments are related via

Q = Q1 +Q2 = G0c(P0 − Pc), Q1 = G1c(Pc − P1), Q2 = G2c(Pc − P2). (7)

When P0 = 0,

Pc =
G1cP1 +G2cP2

G0c +G1c +G2c
. (8)

From (7), we now have a linear system relating the pressures and fluxes at two outlets:
−G1cG2c −G1cG0c

G0c +G1c +G2c

G1cG2c

G0c +G1c +G2c

G1cG2c

G0c +G1c +G2c

−G2cG1c −G2cG0c

G0c +G1c +G2c


P1

P2

 =

Q1

Q2

 , (9)

represented by
GP = Q. (10)
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When two solutions of flux vector Q for two linear independent P (e.g. P = [1 0]T and
P = [0 1]T ) are provided, the rank 2 conductance tensor G and three unknown com-
ponents G0c, G1c and G2c can be calculated for flux predictions for different pressure
conditions. Note that we can only have this linear relationship (10) for Stokes flows,
since the Stokes equations are linear.

If the junction is simplified as a node and the fluid flow in each segment is assumed
to be fully developed, we can approximate three unknown flow conductance using
Poiseuille’s law for 2D channel flows [32]:

G̃0c =
1

12L
, G̃1c =

D3
1

12L
, G̃2c =

D3
2

12L
, (11)

where G̃ is the idealised flow conductance. Using (9) and (11), the pressure-flux
relationship for an idealised 2D bifurcation can be approximated by

−D3
1D

3
2 −D3

1

12L(1 +D3
1 +D3

2)

D3
1D

3
2

12L(1 +D3
1 +D3

2)

D3
1D

3
2

12L(1 +D3
1 +D3

2)

−D3
1D

3
2 −D3

2

12L(1 +D3
1 +D3

2)

P = G̃P = Q. (12)

We refer to this as Poiseuille’s law approximation in this paper, to distinguish it from
the pressure-flux relationship calculated from Stokes flow simulations.

4 Computing 2D Stokes flows via rational
approximation

The Poiseuille’s law approach (12) has been widely used to compute fluxes in large flow
networks, and usually provided good approximations. In this paper, we aim to compute
the pressure-flux relationship for general bifurcations with different geometries by
solving the 2D Stokes equations. Using the LARS algorithm [37], which uses an applied
complex variable approach with rational approximation, the 2D Stokes flow problems
can be computed with great speed and accuracy. In this section, we summarise the
LARS algorithm for computing 2D Stokes flows. Further details about the algorithm
can be found at [37]

4.1 The Goursat representation for biharmonic equations

We define a stream function ψ for the dimensionless Stokes flow problem as

U =
∂ψ

∂Y
, V = − ∂ψ

∂X
, (13)

which satisfies the biharmonic equation

∇4ψ = 0. (14)
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In the complex plane ζ = X + iY , where i =
√
−1, we have

∂

∂ζ
=

1

2

(
∂

∂X
− i

∂

∂Y

)
,
∂

∂ζ̄
=

1

2

(
∂

∂X
+ i

∂

∂Y

)
, (15)

where overbars denote complex conjugates. Then the biharmonic equation can be
rewritten as

∂4ψ

∂2ζ∂2ζ̄
= 0, (16)

which has a solution in the form

ψ(ζ, ζ̄) = Im[ζ̄f(ζ) + g(ζ)], (17)

where f(ζ) and g(ζ) are two analytic functions in the fluid domain, known as the
Goursat functions [12]. The dimensionless velocity, pressure and vorticity magnitude
(Ω = ∂V/∂X − ∂U/∂Y ) can then be expressed in terms of Goursat functions as

U − iV = −f(ζ) + ζ̄f ′(ζ) + g′(ζ), (18)

P − iΩ = 4f ′(ζ). (19)

The Goursat representation satisfies the biharmonic equation by construction. To solve
the Stokes flow problem, we therefore need to determine the Goursat functions such
that the boundary conditions are satisfied.

4.2 Approximating the Goursat functions using rational
functions

The LARS algorithm approximates the Goursat functions using rational functions
[37]. The rational function bases have clustering poles towards sharp corners [3, 11]
and near smooth boundaries [5, 22], Laurent series for multiply connected domains
[27, 34], and a polynomial for remaining smooth part of the solution. This leads to a
rational function r(ζ) in the form:

r(ζ) =

m∑
j=1

aj
ζ − zj

+

n∑
j=0

bjζ
j +

p∑
i=1

q∑
j=1

cij(ζ − ζi)
−j , (20)

where a, b and c are complex coefficients to be determined, z are poles and ζi is a
point in the ith hole. Note that we also need to include two log terms in two Goursat
functions (one for f(ζ) and one for g(ζ)) corresponding to each hole, due to the
logarithmic conjugation theorem [2, 27].

It has been shown that an analytic function in a polygon domain can be approx-
imated with a root-exponential convergence, if the poles are exponentially clustered
near corner singularities [11]. This leads to the lightning algorithm for computing
Laplace problems [11] and 2D Stokes flows [3] in polygon domains. For bifurcations
with sharp corners, we follow the lightning algorithm to place poles clustering towards
each corner singularity.
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For bifurcations with smooth boundaries, we first approximate the Schwarz func-
tion F (ζ) = ζ̄ on each curved boundary using the AAA algorithm [5, 22]. The AAA
algorithm searches for the best rational approximation in a barycentric form automat-
ically. We choose the Schwarz function here, because it only depends on the boundary
shape instead of the boundary value. After finding the rational function that approx-
imates the boundary shape, we use its poles outside the domain to approximate the
Goursat functions. This is known as the AAA-least squares approximation [5].

We perform a Vandermonde with Arnoldi orthogonalization [4] to construct a well-
conditioned basis for the polynomial, poles and Laurent series. Imposing the boundary
conditions of the fluid problem (18, 19), the complex coefficients a, b and c in two
Goursat functions can be computed easily by solving a least-squares problem. The
computation is carried out using MATLAB and example codes are available in [3, 37].

5 Results

Using the LARS algorithm, we present Stokes flows in 2D bifurcations with different
geometries including child branch widths, bifurcation angles and boundary geometries.
We also consider bifurcations with obstacles inside (e.g. a cylinder) and quantify their
impact on the pressure-flux relationship. We will compute the conductance tensor G
(9) for different bifurcation geometries, and compare these against the Poiseuille’s law
approximation (12) where applicable.

5.1 2D Stokes flows in a bifurcation

Figure 3 presents the Stokes flows in a typical 2D bifurcation computed by the lightning
algorithm [3], where D1 = 0.9, D2 = 0.8, α = π/4, β = π/3 and L = 2 for P1 = P2 = 0
and Q = 1. We set P1 = P2 = −30 so that the maximum velocity magnitude is at the
order of 1. The lightning algorithm places poles exponentially clustered towards three
sharp corners of the geometry, where the placement of poles are indicated by red dots
in Figure 3. Using a polynomial of degree 24 with 48 poles clustered near each corner,
a solution can be computed in less than one second on an Apple laptop with an M1
chip. The maximum error in dimensionless velocity components and pressures on the
domain boundary is less than 10−6.

5.2 Effects of channel width on the flow network representation

For a bifurcation consisting of 3 straight channels with L = 2, the geometry has four
degrees of freedom: D1, D2, α and β. To investigate the effects of the width of two
child branches, we set the bifurcation angles α = π/4 and β = π/4, and investigate the
effects of changing the bifurcation angles in Section 5.3. Figure 4 shows the relative
differences in G0c, G1c and G2c from 2D Stokes flows simulations, compared with
Poiseuille’s law approximations for D1, D2 ∈ [0.5, 1]. For each combination of D1 and
D2, we perform two Stokes flow simulations for two outlet pressure conditions, and
compute the three flow conductance using Eq. 9. The black curve indicates the possible
widths of two child branches, if they obey Murray’s law [21] in 2D: D2

1+D
2
2 = D2 = 1.
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Fig. 3: Stokes flows in a 2D bifurcation for P1 = P2 = 0 and Q = 1, solved by the
lightning algorithm, where D1 = 0.9, D2 = 0.8, α = π/4, β = π/3 and L = 2 (same
as the bifurcation shown in Figure 1). The streamlines are denoted by black lines and
the velocity magnitude is represented by a colourmap. The locations of the poles are
marked by red dots.

Note that every term is to the third power in the original Murray’s law for 3D problems
[21].

Fig. 4: Relative differences in G0c, G1c and G2c from 2D Stokes flows simulations,
compared with Poiseuille’s law approximations for D1, D2 ∈ [0.5, 1], when α = π/4,
β = π/4 and L = 2. The black curve indicates the possible widths of two child branches
based on Murray’s law in 2D.
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In this parameter space, the conductance approximation based on Poiseuille’s law
underestimates the flow conductance in two child branches. The error in the flow
conductance in the parent branch only becomes significant whenD1 andD2 are close to
0.5. Furthermore, (G1c−G̃1c)/G̃1c is up to 16.6%, while (G2c−G̃2c)/G̃2c is only about
1%, when D1 = 0.5 and D2 = 1. This indicates that the Poiseuille’s law approximation
underestimates not only the total flux through a bifurcation, but also the fraction
of flux that enters the first branch, when D1 = 0.5 and D2 = 1. Similar effects are
found in the second branch, when D1 = 1 and D2 = 0.5. Note that these numbers
are for L = 2. For bifurcations with larger channel lengths, the mismatch between
two approximations will be reduced, since Poiseuille’s law becomes a more accurate
approximation for the conductance of fully developed flows in straight channels.

5.3 Effects of bifurcation angle on flow partition

Fig. 5: Stokes flows in a 2D bifurcation with different bifurcation angles, when D1 =
D2 = 1, P1 = P2 = 0 and L = 2. The centre streamline of the parent branch is
coloured in red. Other streamlines are coloured in black.
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Figure 5 presents Stokes flows in bifurcations with different bifurcation angles,
when D1 = D2 = 1, P1 = P2 = 0, L = 2 and Q = 1. Based on the Poiseuille’s
law approximation, two child branches should have an even flow partition for all 6
cases. However, Stokes flow simulations reveal that the first branch receives more flow
than the second branch in cases (a), (b), (c) and (e). One can observe that the centre
streamline of the parent branch (coloured in red), which represents the equal flow
partition, enters the first branch in these cases.

Fig. 6: Relative differences in G0c, G1c and G2c from 2D Stokes flows simulations,
compared with Poiseuille’s law approximations for different bifurcation angles, when
D1 = D2 = 1 and L = 2.

While setting D1 = D2 = 1 and L = 2, we perform a parameter sweep for
α, β ∈ [0, π/2] except when |α + β| < π/2, since this will lead to a small angle or
an overlap between the two child branches. As shown in Figure 6, the Poiseuille’s
law underestimates the flow conductance in three flow segments, while the maximum
errors in G0c, G1c and G2c happen at α = β = π/2; α = π/2 and β = 0; and α = 0
and β = π/2, respectively. When α = π/2 and β = 0, the actual flow conductance
in the first branch is about 9% higher than the Poiseuille’s law approximation, where
the differences in the other two branches are much smaller. This leads to more flow in
the first branch than the second branch as shown in cases (a), (c) and (e) in Figure 5,
where α = π/2 and β < π/2.

5.4 Separation of Stokes flows in a 2D bifurcation for different
outlet pressures

All pressure-flux relationships in previous examples can be computed using both Stokes
flow simulations and Poiseuille’s law. We now investigate more complex scenarios that
can only be understood using 2D Stokes flow solvers rather than a linear network
approach.

The separation of Stokes flows has been studied [6, 18, 20]. In the context of
flows in a bifurcation, a similar concept of the separation of microparticle trajectories
has been used for studying microparticle advection and partition [1, 7, 35]. Here we
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investigate the separation streamline (i.e. the streamline that separates the flows into
two branches) of 2D Stokes flows in a bifurcation for different P1 and P2.

In this section, we set D1 = D2 = 1, α = β = π/4 and L = 2 for the bifurcation
geometry. We set the inlet flux Q = 1 rather than inlet pressure P0, so the flow now is
only dependent on outlet pressure difference P1−P2. Figure 7 displays the streamlines
that separate the flows for different P1 − P2. For cases (a)-(c), the red streamline
separates the flow that enters two child branches. For cases (d)-(f), the red streamline
separates the flow from the parent branch and the first branch that enters the second
branch, since the flow direction reverses in the first branch. Based on Stokes flow
simulations, the reverse flow appears when P1 − P2 > 22.49, while it is estimated to
be P1 − P2 = 24 using Poiseuille’s law.

Fig. 7: Stokes flows in a 2D bifurcation for different P1 = P2, when D1 = D2 = 1,
α = β = π/4, L = 2 and Q = 1. The streamline that separates the flows into (or from)
two branches is coloured in red. Other streamlines are coloured in black.
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5.5 Effects of boundary geometry on bifurcation flow

We now study the flow partition in bifurcations with curved boundaries. We replace
the boundary walls with cubic Bézier curves with two control points at two ends and
the other two control points at the location of the original sharp corner. We will show
that the flux-pressure relationship in these bifurcation can be represented accurately
by a Y-shaped flow network using Stokes flow simulations, due to the linearity of the
Stokes equations (2).

Figure 8 presents the Stokes flows computed in the same bifurcation as shown in
Figure 1, but with curved boundaries. We use a polynomial of degree 48 with poles
placed by the AAA algorithm [5, 22] near the three curved boundaries. The number
of AAA poles is much smaller than the lightning poles for sharp corner cases, so we
increase the polynomial degree to achieve the same order of accuracy O(10−6).

Fig. 8: Stokes flows in a 2D bifurcation with smooth boundaries solved by the LARS
algorithm, where D1 = 0.9, D2 = 0.8, α = π/4, β = π/3, L = 2, P1 = P2 = 0 and
Q = 1 (same as the bifurcation shown in Figure 1). The streamlines are denoted by
black lines and the velocity magnitude is represented by a colourmap. The AAA poles
are marked by red dots.

The flow conductance calculated from Stokes flow simulations are G0c = 0.0509,
G1c = 0.0403 and G2c = 0.0306, while these are 0.0422, 0.0313 and 0.0226 for the
bifurcation consisting of straight channels (while Poiseuille’s law gives 0.0417, 0.0304
and 0.0213). The increase of flow conductance in each segment is due to the increase in
the bifurcation area. The large differences between these two geometries demonstrate
the needs of updating the conductance components of the flow network based on
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detailed flow simulations for representing the accurate flux-pressure relationship at a
bifurcation.

We can now use the computed flow conductance components and (9) to construct
an updated Y-shaped flow network to predict the flow partition at the bifurcation
(Figure 8) for different outlet pressures. The maximum relative difference in Q1 for
P1, P2 ∈ [−20, 20] between the updated flow network predictions and Stokes flow
simulations is O(10−10), several orders of magnitude below the numerical accuracy of
these simulations: O(10−6). This shows that the flux-pressure relationship of Stokes
flows in a bifurcation with any shape can be simply represented using a Y-shaped flow
network, given that the flow is fully developed entering and exiting the domain.

5.6 Effects of fixed objects on bifurcation flow

As already seen, a Y-shaped flow network is a valid approximation for pressure-flux
relationship for a range of conditions of Stokes flows in a 2D bifurcation. We now
consider multiply connected problems of bifurcations containing fixed objects. We
consider a simple case with only one fixed cylinder in a symmetrical bifurcation (D1 =
D2 = 1, α = β = π/4 and L = 2) to investigate the effects of the location and size
of the cylinder on the three flow conductance components. The cylinder has a centre
coordinate (X0, Y0) and a radius R.

Fig. 9: Stokes flows in a 2D bifurcation with a fixed cylinder at (X0, Y0) = (0, 0) and
R = 0.2 solved by the LARS algorithm, where D1 = D2 = 1, α = β = π/4, L = 2,
P1 = P2 = 0 and Q = 1. The locations of the poles and Laurent series are marked by
red and blue dots, respectively.
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Figure 9 shows the Stokes flows computed in a bifurcation for D1 = D2 = 1, α =
β = π/4, L = 2, P1 = P2 = 0 and Q = 1, with a fixed cylinder with (X0, Y0) = (0, 0)
and R = 0.2. In addition to poles and a degree 80 polynomial, we also include a degree
20 Laurent series about the centre of the cylinder (blue points) in the rational function
basis, as shown in Figure 8. The solution is computed to the accuracy O(10−5) in 1.5
seconds. A similar case has been considered in [37], where one can find further details
of the numerical algorithm.

For this complex geometry, one can also find a network representation for the
pressure-flux relationship between the three openings (9). Figure 10 shows the effects
of (X0, Y0) and R on the flow conductance of three channels. The presence of a fixed
cylinder mainly reduces the flow conductance (or increases the flow resistance) of the
segment containing the cylinder, while slightly affects other segments, as represented
by the cyan regions in Figure 10. This local effect suggests that only updating the flow
conductance of the segment containing the cylinder may give a good approximation for
the pressure-flux relationship of a bifurcation and even a flow network which consists
of a large number of bifurcations. Its potential application to network flows will be
discussed in the next section.

(a) R = 0.1

(b) R = 0.2

Fig. 10: G0c, G1c and G2c of a bifurcation withD1 = D2 = 1, α = β = π/4 and L = 2,
when there is a fixed cylinder with different centre location (X0, Y0) and radius R.
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We also consider the impact of cylinder sizes on flow conductance, where R = 0.1
in Figure 10a and R = 0.2 in Figure 10b. When the cylinder radius doubles from
0.1 to 0.2, the flow conductance is halved from 0.02 to 0.01. In addition, the flow
conductance is higher when the gap between the cylinder and the channel wall is
smaller. This stresses the need of considering the lateral location of the cylinders or
other finite sized objects for accurate flow conductance computations. However, the
effect of lateral location on flow conductance is less significant for larger cylinders
(R = 0.2), as the magenta boundaries near the channel walls disappear in Figure 10b.

6 Discussion

In this paper, we computed 2D Stokes flows in a single bifurcation, and investigated
the effects of bifurcation geometry on flows, especially the pressure-flux relationship
between inlet and outlets. Making full advantage of the great speed and accuracy of
our 2D Stokes flow solver [37], we performed simulations for parameters including child
branch widths and bifurcation angles. In addition, we investigated the separation of
Stokes flows in a bifurcation for different outlet pressures. We considered the effects
of domain boundaries and fixed objects on Stokes flows in a bifurcation.

Our simulation results show that the bifurcation geometry can have an impact
on Stokes flows for a given boundary condition. Even when only interested in the
pressure-flux relationship, the geometrical effects cannot be fully captured by the 0D
Poiseuille’s law model. In section 5.3, we present Stokes flows in bifurcations with
the same channel widths, but different branching angles. All these bifurcations are
represented by the same flow network model, if the flow conductance components are
approximated by Poiseuille’s law. However, the Poiseuille’s law approximation of flow
conductance can have an error up to 9% for L = 2 in the parameter space of α and β
in Figure 6.

In this paper, we assume L = 2 across all simulations. For a larger L, the flow will
have a parabolic-like profile in a larger fraction of a channel where the Poiseuille’s law
provides a very good approximation, so the error in flow conductance will be reduced.
Conversely, for a smaller L, Poiseuille’s law approximation may become less accurate.
For a much smaller L, it is possible that even the boundary conditions set in our 2D
Stokes flow simulations may no longer accurately represent the underlying physics.

Since the Stokes equations are linear, the solutions of any physical quantity should
be able to add linearly to construct a new solution, when their boundary conditions
are added up. Here we only exploit the linearity between fluxes and pressure bound-
ary conditions for different bifurcation geometries, to provide the foundation for a
more systemic workflow that will enable precise reduced-order modelling of flows and
particles in a complex network.

We have shown that the pressure-flux relationship of 2D Stokes flows in a bifur-
cation of any geometry can be represented by an updated 0D flow network based
on 2D flow simulation results. The flow conductance tensor in the updated network
model only depend on bifurcation geometry, and it can predict fluxes for any pressure
boundary conditions.
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In a flow network that consists of several orders of bifurcations with known bound-
ary pressure conditions, the maximum flux error in Poiseuille’s law approximation is
expected to be larger than that in a single bifurcation model. At a bifurcation, the
errors are usually not symmetric between two child branches (e.g. see Figure 6), result-
ing in an inaccurate prediction of flow partition with errors that can be accumulated
over bifurcations of different orders. This suggests that replacing each bifurcation node
in a flow network with a Y-shaped network that considers the bifurcation geometry
may significantly improve the pressure-flux calculation. However, the improvements
and associated increase in computational cost require investigation in future work.

We have also considered fixed objects in a bifurcation and their impact on the
pressure-flux relationship. Our results show that the object mainly reduces the flow
conductance of the channel containing the object, while having little effect on other
segments. This local effect holds even when the object centre is within one channel
width from the bifurcation centre (Figure 10). For computing the pressure-flux rela-
tionship of a large 2D flow network with multiple objects, we may identify segments
with object, and only update the flow conductance of these segments considering local
objects. The update will be based on 2D Stokes flow simulations [37], or a machine
learning model that learns from high-fidelity simulation results [9]. Similar local effects
are expected for 3D flows and moving objects, but these require future work.

It should be noted that the updated network model, despite considering bifurcation
geometries in pressure-flux relationship, is still a 0D approach that compresses most
flow information. The flow details can be extremely useful when considering advective
transport of finite size objects [1] or advection-diffusion of tiny particles [38], and
these can only be obtained by Stokes flow simulations [37]. One example shown here
in Section 5.6 reveals that the flow conductance tensor of a bifurcation (or even a
channel) with a fixed cylinder depends on the lateral location of the cylinder, a result
that cannot be obtained from a 0D model.

All results presented in this work are purely 2D, but these can provide insight
on 3D network flow problems. A similar Y-shaped flow network for the pressure-flux
relationship can be derived for any 3D bifurcation from 3D Stokes flow simulations,
since 3D Stokes equations are still linear. However, the parameter space that defines
a 3D bifurcation is expected to be larger, leading to a more complex problem to be
considered comprehensively. For example, the centreline of three branches are not
necessarily in the same plane. A future work on 3D bifurcations is thus necessary
before translating the findings from this paper to 3D scenarios.

Lastly, all results presented in this work are based on numerical simulations. The
simulation results require validation against fluid dynamics experiments in future stud-
ies. Such experiments can be carried out in bifurcating flow chambers with sufficient
height to mimic infinite channel walls. Then the 2D fluid velocity can be measured on
a horizontal cut of the chamber using a particle imaging velocimetry [36].
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